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The main purpose of a single-arm phase II cancer trial of a new regimen is to determine

whether it has sufficient anti-tumor activity against a specific type of tumor to warrant its

further clinical development. Such a research question can be answered under the frame-

work of hypothesis testing. With the advent of targeted therapies that prolong disease

stabilization, cancer patients typically experience stable disease (SD) rather than tumor

shrinkage. It has been shown that patients with SD also achieve clinical benefits. There-

fore, when evaluating the anti-tumor activity of a new treatment, clinicians are interested

not only in overall response rate (complete or partial response(s)), but also in other types

of measurements indicating clinical benefit. Taking two primary efficacy endpoints as an

example, if the new treatment can improve on either endpoint(s), it may be promising for

further evaluation. Therefore, “OR” logical relationship between the two primary efficacy

endpoints is used when specifying the alternative hypothesis. In phase II cancer clinical

trials, two-stage designs rather than single-stage ones are widely used for its possibility

of early termination for futility to protect cancer patients. Motivated by two real cancer

clinical trials, we propose a single-arm two-stage phase II cancer clinical trial design with

two dichotomous alternative primary efficacy endpoints. Because of unknown correlation

between two endpoints at the design stage, minimax rule is used to determine the optimal
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design, which minimizes the maximum of the expected sample size among all possible cor-

relations, subject to the type I and II error constraints. Optimal designs for a variety of

design parameters as well as the corresponding operating characteristics are provided. In

addition, the statistical inferences of the design are studied. The MLE point estimators as

well as confidence regions for the true event rates for the two efficacy endpoints are derived.

Three types of confidence regions are obtained by inverting likelihood based test statistics:

Wald, Score, and Likelihood ratio statistics. Among the three, the likelihood ratio-type

confidence region performs the best in terms of good coverage probability and comparable

expected area, and thus is recommended for this two-endpoint two-stage design.
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Chapter 1

Introduction

1.1 Purpose of phase II trials

Phase I trials provide information about the maximum tolerated dose(s) (MTDs) of the

treatment and most cancer treatments must be delivered at the MTD for maximum effect.

Phase I trials generally treat only 3 to 6 patients per dose level, however, and the patients

are diverse with regard to their cancer diagnosis. Consequently such trials provide little or

no information about antitumor activity (Simon, 1989). The purpose of a phase IIA trial

of a new anticancer drug is to determine whether the drug has sufficient activity against a

specific type of tumor to warrant its further clinical development (phases IIB and phase III)

(Simon, 1989). The research question of an initial rough estimate of the degree of antitumor

activity of the treatment or drug can be answered under the framework of hypothesis testing.

In contrast with phase II designs in other medical fields, these phase IIA cancer trials

are usually not performed in a controlled design but as single-arm studies. In early years

of cancer treatment when chemotherapy is the main option, the objective response rate

(ORR), defined as the proportion of patients whose tumors shrink by at least 50%, was

chosen as the primary efficacy endpoint.

Typically, due to ethical considerations, phase II trials in oncology are performed with

planned interim analyses to allow early termination for futility to protect patients. In early

1960s, when anticancer agents had low activity, Gehan (1961) proposed a two-stage trial

design with a futility rule, which rejected a drug early if there were no observed responses

in the first stage. A more general design that allows multistage testing was provided by

Fleming (1982). Then Simon (1989) proposed a two-stage design which had either optimal

or minimax properties. Due to its easy usage, Simon’s two-stage design is widely adopted.

There are also a lot of extension work based on Simon’s design. For example, Chen’s optimal
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three-stage designs (Chen, 1997), Jung’s admissible designs that balance the optimization

criteria of expected sample size and maximum sample size (Jung et al., 2004), Lin and

Shih’s adaptive version of Simon’s two-stage design considering two alternative response

rates (either an optimistic or a skeptic target response rate) (Lin and Shih, 2004), Banerjee

and Tsiatis’ adaptive two-stage designs allowing different stage II sample sizes depending on

different stage I results (Banerjee and Tsiatis, 2006), and Englert and Kieser’s flexible phase

II designs based on the conditional error function principle (Englert and Kieser, 2012). All

of these designs are only for a single primary endpoint.

1.2 Concepts of multiple co-primary endpoints vs. multiple primary end-

points (or called ‘alternative primary endpoints’)

Later on, several authors proposed methods utilizing more than one primary endpoint.

Bryant and Day (1995), Thall and Cheng (2001), and Conaway and Petroni (1995) take both

efficacy and safety into consideration. The logical relationship between efficacy and safety

endpoints is ‘AND’, which means recommending a new regimen only if it improves on both

efficacy and safety endpoints. With the advent of targeted therapies that prolong disease

stabilization, there are increasing needs of using multiple efficacy endpoints as alternative

primary endpoints of cancer clinical studies. Motivated by two recent cancer clinical studies,

in this dissertation we consider multiple measures on efficacy and the logical relationship

among the multiple efficacy endpoints is ‘OR’.

Most human diseases are characterized by multiple measures, including signs, symptoms,

quantitative measurements, and patient-reported outcomes (Offen et al., 2007). And the

effects of interventions are also multi-dimensional. In clinical trials, adoption of more than

one primary endpoint offers an attractive design feature to capture a more comprehensive

characterization of the intervention effects and provide more informative intervention com-

parisons. For these reasons, nowadays, using more than one primary endpoint has become a

common design feature in clinical trials for disease areas such as oncology, infectious disease,

and cardiovascular disease (Sozu et al., 2015).

When evaluating an intervention’s efficacy, it is customary to classify efficacy endpoints
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as primary or secondary. For clarity, two types of multiplicity of the primary endpoints

need to be differentiated, that is, “alternative primary endpoints” and “multiple co-primary

endpoints”. The first type is when an intervention is deemed efficacious if it improves on

at least one of the multiple primary endpoints. There may be no consensus on the single

most appropriate measure of therapeutic benefit, or it may not be practical to evaluate

the therapeutic effect on a unified scale. Take the following as an example of “alternative

primary endpoints”. A clinical trial to assess the therapeutic benefit in unstable angina

patients could include efficacy endpoints such as mortality, myocardial infarction, urgent

or emergency coronary revascularization, etc., all of which are of primary clinical interest

(Sankoh et al., 1997).

The second type is when an intervention is deemed efficacious only if it improves on all

of the multiple primary endpoints. The clinical rationale for adopting “multiple co-primary

endpoints” should be clear and should not be due to experts’ inability to choose among

several endpoints (Offen et al., 2007). Offen et al. (2007) gives a list of disorders (such

as Migraine and Alzheimer’s disease) known to them for which regulatory agencies have

required multiple co-primary endpoints when assessing the effect of an intervention in their

Table 1 (Figure 1.1 is an extract of their Table 1).

Figure 1.1: Part of the Table 1 of Offen et al. 2007
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1.3 A Motivating Example

In recent years, our paradigm for understanding and treating cancer is changing. Cancers

once viewed as relatively homogeneous in terms of organ location and treatment strat-

egy (“one drug fits all”) are now better understood to be increasingly heterogeneous across

biomarker and genetically defined patient subpopulations (Renfro and Sargent, 2017). Thus,

the landscape of cancer treatment is evolving from chemotherapy (the major treatment

method when Simon’s two-stage design was first proposed) to targeted therapies (including

immunotherapies). Standard non-specific chemotherapy agents are cytotoxic (that is, they

kill all kinds of cells, both normal cells and tumor cells), while targeted therapies are often

cytostatic (that is, they block tumor cell proliferation). In terms of efficacy endpoints, his-

torically, tumor response is an accepted endpoint to assess clinical benefit in phase II trials.

Then with the advent of targeted therapies that prolong disease stabilization, patients typ-

ically experience stable disease (SD) rather than tumor shrinkage (Mandrekar et al., 2010).

It has been shown that patients with SD also achieve clinical benefit (Shepherd et al., 2005),

and hence it is not appropriate to ignore SD when assessing treatment efficacy. Another

example is the development of the anticancer drug Sorafenib. Sorafenib (NEXAVAR) is a

kinase inhibitor indicated for the treatment of unresectable hepatocellular carcinoma and

advanced renal cell carcinoma. Clinical studies show that Sorafenib extends progression-

free survival (PFS) but the response rate is only 2% ( Highlights of prescribing information

for Bayer drug NEXAVAR at the url: https://www.accessdata.fda.gov/drugsatfda_

docs/label/2010/021923s008s009lbl.pdf and Llovet et al. (2008)). So the response rate

(CR+PR) as used in Simon’s two-stage design may not be appropriate to assess the anti-

tumor activity of cytostatic drug such as Sorafenib. Progression-free survival (PFS) rate

has now become an accepted alternate endpoint in assessing treatment efficacy as it includes

a patient who achieves SD for an extended period of time as a success, in addition to those

who achieve complete or partial response (Mandrekar et al., 2010). PFS is defined as the

time from registration or randomization to the earlier of disease progression or death from

any cause. An ongoing phase II, single arm study assessing the safety and efficacy of single

agent CC-486 (oral Azacitidine) in previously treated subjects with locally advanced or

https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021923s008s009lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021923s008s009lbl.pdf
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metastatic Nasopharyngeal carcinoma sponsored by Celgene (ClinicalTrials.gov identifier:

NCT02269943) is also using two alternative primary efficacy endpoints: overall response

rate (ORR) and 6-month PFS rate.

So when evaluating the anti-tumor activity of a new treatment/regimen to a specific type

of tumor, clinicians are interested not only in CR+PR (in terms of tumor shrinkage), but

also in other types of measurements indicating clinical benefit (for instance, progression-free

survival). If the new treatment/regimen can improve on either type of endpoints, it may

be promising for further evaluation.

1.4 Research questions and Objectives

The advancement of medicine has made the usage of more than one primary endpoint a

common design feature in clinical trials for disease areas such as oncology, infectious disease,

and cardiovascular disease. Previously, several authors have proposed two-stage phase II

clinical trial designs considering both efficacy and toxicity, which belongs to the category

of “multiple co-primary endpoints”. Very few studies if any have discussed phase II trial

designs with “alternative primary endpoints”.

Our research question can be stated specifically as “Does the new treatment have suffi-

cient anti-tumor activity when there are multiple alternative primary endpoints?” Hypoth-

esis testing is one method capable of answering this research question. Recall the process

of hypothesis testing and there is one important step of getting the critical values/region

of the decision rule given a significance level. These critical values are part of the design

parameters for a phase II cancer trial design.

In this dissertation we will develop a single-arm two-stage design for phase II cancer

clinical trials with two dichotomous alternative primary endpoints of efficacy. (The two

binary efficacy endpoints may come from two different pathways, or from different mecha-

nisms.) The design is capable of detecting activity on either endpoint measure with high

probability when the drug or regimen is truly active on one or both measures, and mean-

while be capable of rejecting the drug or regimen (i.e. accepting the null hypothesis) with

high probability when the underlying truth is that there is little activity on both measures.
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The objectives of this dissertation are:

1. Develop a single-arm two-stage design for phase II cancer clinical trials with two (or

more) dichotomous alternative primary endpoints of efficacy.

2. Develop an efficient algorithm to find the optimal designs.

3. Develop methods of joint statistical inferences on the response rates for the two alter-

native primary efficacy endpoints.

The rest of this dissertation is organized as follows. In Chapter 2, we will review several

previous studies that have provided some foundations for this dissertation. The proposed

two-endpoint two-stage design for a Phase II cancer trial will be presented in Chapter 3.

Statistical inference for the proposed design can be found in Chapter 4. Conclusions and

possible future work are summarized in Chapter 5.
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Chapter 2

Literature Review

There are quite a lot of papers related to phase II trials, either on one primary endpoint or

on bivariate endpoints considering efficacy and safety simultaneously. Bayesian approaches

have also been proposed. In the following, three papers on the design perspective for Phase

II trials and two papers on inference perspective will be reviewed in details.

2.1 Simon(1989)’s Optimal Two-Stage Designs for Phase II Clinical Trials

In many studies, ethical concerns have led to the development of sequential and group

sequential designs for Phase II studies. For instance, Simon (1989) proposed two-stage group

sequential designs to determine whether a new anticancer drug has sufficient activity against

a specified type of tumor to warrant its further development. Those designs are based on

testing a null hypothesis H0: π ≤ p(0) versus an alternative hypothesis HA: π ≥ p(A). A

cancer clinical trial following Simon’s study designs can be carried out as follows.

• In the first stage of the trial, n1 patients are enrolled, treated and observed for clinical

response. The trial will be terminated at the end of the first stage and the drug will

be rejected if r1 or fewer responses are observed. This occurs with the probability

of early termination PET = B(r1;n1, π) where B denotes the cumulative binomial

distribution and π denotes the true probability of response.

• Otherwise, an additional n2 patients are accrued. The drug will be rejected at the

end of the second stage if r or fewer total responses are observed.

After the investigator specifies the uninteresting level of response probability p(0) and

the desirable target level p(A) together with type I and II error bounds α and β, the design

parameters (n1, n2, r1, r) for the “optimal” two-stage design can be found so as to minimize
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the expected sample size under H0 while satisfying type I/II error constraints. The opti-

mization is taken over all values of n1 and n2 as well as r1 and r. That is, find the design

parameters Q = (n1, n2, r1, r) which

minimizes E(N |H0: π = p(0))

subject to

Pr(Y1 > r1 and Y > r| π = p(0)) ≤ α

Pr(Y1 > r1 and Y > r| π = p(A)) ≥ 1− β

where Y1 and Y are total number of responses at the end of stage 1 and stage 2, respectively.

For Simon’s “minimax” design, the design parameters can be found to minimize the

maximum sample size n (where n = n1 + n2) while satisfying type I/II error constraints.

2.2 Design from Conaway and Petroni(1995)

In Phase II studies, information on treatment safety for the new therapy under investigation

is also needed in addition to the preliminary information on treatment’s anti-tumor activity.

Previous proposed designs have the common feature that the hypothesis testing procedure

is based on the response rate of single endpoint. Even though trials based on these designs

implicitly consider safety information, sample size determination and stopping rules are

based on the single endpoint of most interest, which calls researchers’ attention to consider

multiple endpoints in group sequential designs of phase II trials. However, many existing

articles on multiple endpoints rely on large sample theory to derive their test statistics and

stopping rules. Results based on these large sample test statistics may not be applicable to

phase II trials with small sample size. Conaway and Petroni (1995) proposed a method for

designing group sequential Phase II trials with two dependent binary endpoints, “response”

and “toxicity” based on enumerating the exact distribution for the bivariate binary end-

points. They set up the problem to test the null hypothesis that “the new treatment is not

sufficiently safe or effective” against the alternative that “the new treatment is sufficiently

safe and effective”.
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Binary variables representing response and toxicity are observed in each of n patients.

The data can be summarized in a 2 × 2 table where Xij is the number of patients with

response classification i and toxicity classification j (Table 2.1).

Table 2.1: 2× 2 table summarizing data containing two endpoints

Toxicity
Yes No

Response Yes X11 X12 Xr

No X21 X22 Xr

Xt Xt n

Assume that X = (X11, X12, X21, X22) has a multinomial distribution with underlying

probabilities P = (p11, p12, p21, p22). The probability of a response is pr =p11 + p12, and

the probability of a toxic event is pt =p11 + p21. The research hypotheses can be written as

H0:{(pr, pt)|pr ≤ pr0 or pt ≥ pt0}

vs.

HA:{(pr, pt)|pr > pr0 and pt < pt0}

where pr0 is the response rate for the standard treatment, and pt0 is the toxicity rate for the

standard treatment. Their method for determining sample size is based on choosing a test

statistic, T , and desired levels of type I error and type II error at a particular point in the

alternative space, pr = pra and pt = pta , under an assumed association between response

and toxicity. The bivariate test they use is based on the joint distribution of the random

variables (Xr, Xt), where Xr = X11 + X12 and Xt = X11 + X21. Odds ratio θ was chosen

to describe the association between response and toxicity because it is a natural measure

of association in 2× 2 tables, and it does not depend on the marginal probabilities.

The critical values defining the reject region, and the sample size, n, are chosen to satisfy

the following error requirements:

P [reject H0|(pr0 , pt0), θ] 6 α,
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sup
pr6pr0 or pt>pt0

P [reject H0|(pr, pt), θ] 6 γ,

P [reject H0|(pra , pta), θ] > 1− β.

Both α and γ represent type I error rates:

• α provides a bound on the type I error at a particular point (pr0 , pt0), for a given θ;

while

• γ bounds the maximum type I error over the entire null hypothesis region.

Typically α = 0.05, γ = 0.30, and β = 0.10 in their proposed designs. For a fixed

sample size n (single-stage design), the event “reject H0” ={ Xr > cr, Xt 6 ct } and the

critical values (cr, ct) are found by enumerating the joint distribution of (Xr, Xt). Take

for example a proposed phase II trial of high dose chemotherapy for patients with non-

Hodgkin’s lymphoma. Earlier studies results for this patient population have indicated that

standard therapy results in an estimated response rate of 50% with approximate 30% of the

patients experiencing life-threatening toxicities. In addition, previous results indicated that

approximate 35-40% of the patients who experienced a complete response also experienced

life-threatening toxicities. So (pr0 , pt0) is assumed to be (0.5, 0.3) and the odds ration

to be 2. With the desired power of 90% and a particular point in the alternative space

(pra , pta) = (0.75, 0.15), by enumerating the distribution of (Xr, Xt), n = 30 was found to

be the smallest sample size that yielded a rule satisfying all the error requirements. The

corresponding rule has (cr, ct)=(7,18) and rejection probabilities

P [Xr > cr, Xt 6 ct |(pr0 , pt0), θ] = 0.0377,

P [Xr > cr, Xt 6 ct |(pra , pta), θ] = 0.9095,

sup
pr6pr0 or pt>pt0

P [Xr > cr, Xt 6 ct |(pr, pt), θ] = 0.2814.

They also extended the procedure to allow for early termination of a study if early re-

sults indicate that the treatment is not sufficiently effective or is too toxic (multiple-stage

design). Examples were given to illustrate the two- and three-stage designs in their paper.

This design focused on derivation of stopping rules for phase II trials with two dependent
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binary endpoints, where a new treatment is recommended when it is both sufficiently safe

and effective. The logical relationship between the two dependent endpoints in the alter-

native hypothesis is “AND”. When searching for an optimal two-stage design, they used

a particular value of odds ratio to describe the association between the two dependent

endpoints. They have used two types of type I error rates in defining the critical values:

α, a bound on type I error at a particular value of (pr, pt) corresponding to the current

standard therapy and γ, the global bound on the maximum type I error over the entire null

hypothesis region.

2.3 Design from John Bryant and Roger Day (1995)

Bryant and Day (1995) proposed a modified two-stage design incorporating toxicity consid-

erations into a Simon design by requiring that the trial be terminated after the initial stage

if either the number of observed responses is inadequate or the number of observed toxi-

cities is excessive. Otherwise, the treatment under investigation is recommended following

the second stage only if there are both a sufficient number of responses and an acceptably

small number of toxicities in total. Let YR1 and YR2 denote the total number of clinical

responses at the end of stage 1 and stage 2, respectively; YT1 and YT2 the total number of

patients who do not experience toxicity at the end of stage 1 and stage 2, respectively; and

CR1 and CR2 the critical boundaries for response while CT1 and CT2 the critical boundaries

for nontoxicity. The trial proceeds as follows:

• Accrue N1 patients in the first stage of the trial. Only if YR1 > CR1 and YT1 > CT1,

continue to the second stage. Otherwise, terminate the trial early at the end of stage

1.

• In stage 2, accrue (N2 −N1) additional patients. At the end of stage 2, recommend

the treatment for further consideration only if we observe YR2 > CR2 and YT2 > CT2.

The directions in the decision rule for each endpoint are the same under this setting.

The authors considered the following four possible states of nature hypotheses Hij : PR =

PRi, PT = PTj , i = 0, 1; j = 0, 1, where PR, PR0, PR1 denote the true response rate, the
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investigator-specified “unacceptable” response rate, and the “acceptable” response rate (0 <

PR0 < PR1 < 1), respectively; while PT , PT0, PT1 denote the true rate of nontoxicity, the

investigator-specified “unacceptable” rate of nontoxicity, and the “acceptable” nontoxicity

rate, respectively:

H00 : PR = PR0, PT = PT0

H01 : PR = PR0, PT = PT1

H10 : PR = PR1, PT = PT0

H11 : PR = PR1, PT = PT1

The design is specified by a vector Q = (N1, N2, CR1, CR2, CT1, CT2). To determine the

design parameter vector Q based on these hypotheses, the test statistics and the distri-

bution of the test statistics are needed. To fully specify the joint distribution of response

and toxicity under any of the above states of nature hypotheses, an additional parameter

describing the association between response and toxicity is required in addition to the pa-

rameters PR and PT . This association between response and toxicity can be parameterized

by the odds ratio φ = p00p11/p01p10, where p00 is the proportion of patients who do not

respond and who do become toxic, p01 is the proportion who do not respond and do not

experience toxicity, p10 is the proportion who respond and who do become toxic, and p11 is

the proportion who respond without toxicity.

For any study design Q, denote by Eij = Eij(Q, φ) the expected number of patients

accrued, given state of nature Hij : i = 0, 1; j = 0, 1. Let αR > 0, αT > 0, and β > 0 be

error bounds specified by the investigators: αR is an upper bound on the probability of

erroneously recommending a treatment whose response rate is inadequate; αT bounds the

probability of erroneously recommending a treatment that is unacceptably toxic; and β is

a bound on the probability of failing to recommend a treatment that is acceptable with

respect to both response and toxicity. Define

αij(Q, φ) = Pr{Recommend Treatment|Hij ,Q, φ},
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and

ψ(Q, φ) = max{E01(Q, φ), E10(Q, φ)}.

If nothing is assumed a priori concerning the value of φ, the design parameters Q may be

determined by solving the mathematical program

min
Q

max
φ>0

ψ(Q, φ), (2.1)

subject to

max
φ>0

α01(Q, φ) ≤ αR, (2.2a)

max
φ>0

α10(Q, φ) ≤ αT , (2.2b)

min
φ>0

α11(Q, φ) ≥ 1− β. (2.2c)

E00 does not appear in the object function ψ, because it is less than either E01 or E10; and

likewise the error rate α00 does not appear in the constraints (2.2a - 2.2c), because it is less

than either α01 or α10.

The functions Eij and αij may be evaluated using a certain bivariate binomial distribu-

tion Pr{YR = yR, YT = yT } under an assumption of independent and identically distributed

accruals. Consider an independent sequence of n patients, each having probability PR for

clinical response and PT for nontoxicity. Let PR|1 = p11/PT , PR|0 = p10/(1 − PT ). Let YR

and YT denote the total number of responses and nontoxicities, respectively. Denote by

b(· ;n, P ) the binomial probability function with parameters n and P , and define

B(y;n, P ) =
∑
j>y

b(j;n, P ) = Pr(Y > y|Y ∼ binom(n, P )).

Denote the joint probability function Pr{YR = yR, YT = yT } by d(yR, yT ;n, PR, PT , φ).

A straightforward conditioning argument shows that

d(yR, yT ;n, PR, PT , φ) = Pr {YR = yR, YT = yT }
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= Pr(YT = yT )Pr(YR = yR|YT = yT ) (2.3)

The idea of this conditioning can be sketched as:

n i.i.d patients −→

Non-toxic=Yes with clinical response(X1 patients)

yT patients =⇒ No response

Non-toxic=No with clinical response(X2 patients)

(n− yT ) patients =⇒ No response

where YR = X1 +X2 = yR, X1 ∼ Bin(yT , PR|1), and X2 ∼ Bin(n− yT , PR|0).

Based on the above sketch, the last conditional probability in (2.3) can be expanded as

follows:

Pr(YR = yR|YT = yT )

=Pr(X1 +X2 = yR|YT = yT )

=
∑

max(0,yR+yT−n)6j≤min(yR,yT )

Pr(X1 = j|YT = yT )Pr(X2 = yR − j|YT = yT )

=
∑

max(0,yR+yT−n)6j≤min(yR,yT )

b(j; yT , PR|1)b(yR − j;n− yT , PR|0).

So the above equation (2.3) can be further written as follows:

d(yR, yT ;n, PR, PT , φ) = Pr{YR = yR, YT = yT } = Pr(YT = yT )Pr(YR = yR|YT = yT )

= b(yT ;n, PT )
∑

max(0,yR+yT−n)≤j≤min(yR,yT )

b(j; yT , PR|1)b(yR − j;n− yT , PR|0). (2.4)

Now define

D(yR, yT ;n, PR, PT , φ) = Pr(YR > yR, YT > yT ) =
∑
u>yR

∑
υ>yT

d(u, υ;n, PR, PT , φ).

Eij(Q, φ) = N1 + (N2 −N1)D(CR1, CT1;N1, PRi, PTj , φ) = N1PET +N2(1− PET ).

Similarly, conditioning on the number of responses and nontoxicities observed during stage
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1 leads to

αij(Q, φ) =Pr{Recommend Treatment|Hij ,Q, φ}

=Pr(YR1 > CR1, YT1 > CT1, YR2 > CR2, YT2 > CT2)

=
∑

yR1>CR1

∑
yT1>CT1

{Pr(YR2 − YR1 > CR2 − yR1, YT2 − YT1 > CT2 − yT1|YR1 = yR1,

YT1 = yT1)× Pr(YR1 = yR1, YT1 = yT1)}

=
∑

yR1>CR1

∑
yT1>CT1

D(CR2 − yR1, CT2 − yT1;N2 −N1, PRi, PTj , φ)

× d(yR1, yT1;N1, PRi, PTj , φ) (2.5)

The mathematical programs (2.1 - 2.2c) will be considered in greater details based on the

following theorems.

In the case where response and toxicity are assumed to be independent, the following

Theorem shows that the computations required to evaluate Eij and αij factor in a convenient

way.

Theorem 2.3.1 Let N = (N1, N2), CR = (CR1, CR2), and CT = (CT1, CT2). Let C1 and

C2 be any integers, and denote C = (C1, C2). Define

α∗(N,C, P ) =
∑
y>C1

b(y;N1, P )B(C2 − y;N2 −N1, P ).

Then in the special case of φ = 1,

Eij(Q, 1) = N1 + (N2 −N1)B(CR1;N1, PRi)B(CT1;N1, PTj),

and

αij(Q, 1) = α∗(N,CR, PRi)α
∗(N,CT , PTj), i = 0, 1; j = 0, 1.

The above Theorem 2.3.1 indicates that in the special case of independence (φ = 1),

the calculations of expected sample sizes and error rates are much simplified and can be

factored into product of simple binomial distributions.
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When response and toxicity are assumed independent, Theorem 2.3.1 allows the reduc-

tion of the mathematical programs (2.1-2.2c) to:

min
Q

ψ(Q, 1), (2.6)

subject to

α01(Q, 1) = α∗(N,CR, PR0)α∗(N,CT , PT1) ≤ αR, (2.7a)

α10(Q, 1) = α∗(N,CR, PR1)α∗(N,CT , PT0) ≤ αT , (2.7b)

α11(Q, 1) = α∗(N,CR, PR1)α∗(N,CT , PT1) ≥ 1− β. (2.7c)

In the case where the odds ratio φ is unspecified, optimal design parameters are found

by solving the mathematical programs (2.1-2.2c). The required computations are simplified

by the fact that Eij and αij are monotonic functions of φ:

Theorem 2.3.2 For i = 0, 1; j = 0, 1 and for fixed Q, αij(Q, φ) and Eij(Q, φ) are

nondecreasing continuous functions of φ.

Theorem 2.3.2 allows the reduction of mathematical programs (2.1-2.2c) to:

min
Q

ψ(Q,∞), (2.8)

subject to

α01(Q,∞) ≤ αR, (2.9a)

α10(Q,∞) ≤ αT , (2.9b)

α11(Q, 0) ≥ 1− β. (2.9c)

For either φ = 0 or φ =∞, the calculation of the joint probability function d(·, ·;n, PR, PT , φ)

in (2.3) reduces to a product of binomial terms, thus simplify the computations required

for mathematical programs (2.1-2.2c).

As long as β is moderately small, designs obtained by solving the mathematical programs
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(2.8-2.9c) will have operating characteristics that differ negligibly from those obtained under

the independence assumption φ = 1 (mathematical programs (2.6-2.7c)). The following

Theorem 2.3.3 will show that any Q feasible under the assumption that φ = 1 will also be

feasible, or nearly so, for all φ > 0. Theorem 2.3.4 will show that the optimality criteria

ψ(Q, 1) and max
φ>0

ψ(Q, φ) = ψ(Q,∞) are nearly equal for designs which are feasible for

φ = 1.

Theorem 2.3.3 If Q satisfies the constraints (2.7a-2.7c), then

α01(Q,∞) = max
φ>0

α01(Q, φ) ≤ αR/(1− β), (2.10a)

α10(Q,∞) = max
φ>0

α10(Q, φ) ≤ αT /(1− β), (2.10b)

α00(Q,∞) = max
φ>0

α00(Q, φ) ≤ min(αR, αT )/(1− β), (2.10c)

α11(Q, 0) = min
φ>0

α11(Q, φ) ≥ 2(1− β)1/2 − 1. (2.10d)

Theorem 2.3.4 Suppose that Q satisfies the constraints (2.7a-2.7c). Define

R(Q) = {max
φ>0

ψ(Q, φ)−N1}/{ψ(Q, 1)−N1},

U1(Q) = 1/min{B(CR1;N1, PR1), B(CT1;N1, PT1)}

and

U2(Q) = 1/Pr{Continue to stage 2|H11,Q, φ = 1}.

Then,

1 ≤ R(Q) ≤ U1(Q) ≤ U2(Q) ≤ 1/(1− β).
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2.4 Point estimation of the binomial probability in clinical trials with a

single-endpoint, two-stage design

Although the primary goal of Phase II trials is decision making (terminate the trial or

continue further to Phase III) rather than inference, obtaining an estimate of the true

response rate p is often of interest, particularly when the trial was deemed successful and

the new drug accepted for further evaluation in Phase III trials (Porcher and Desseaux,

2012). The most common estimator of p is the sample response rate, which is also the

Maximum Likelihood Estimator (MLE) in a single-endpoint, two-stage design. Take a two-

stage design allowing early termination for futility only for example.

Notations (k = 1, 2):

• nk: number of patients accrued during stage k;

• Xk: number of responders during stage k;

• Sk: cumulative number of responders by stage k, Sk =
∑k

i=1Xi;

• ak: lower stopping boundaries for stage k;

• M : stopping stage.

The MLE for a two-stage design is:

p̂ =

 X1
n1
, stop at stage 1 (m = 1, 0 ≤ s ≤ a1)

X1+X2
n1+n2

, stop at stage 2 (m = 2, a1 + 1 ≤ s ≤ n1 + n2)

=
X1

n1
I (X1 ≤ a1) +

X1 +X2

n1 + n2
I (X1 > a1) .

In single-stage trials, the sample proportion is still unbiased for p. However, due to the

sequential nature of the two-stage trials, the MLE is biased. By definition, the bias of the

MLE is:

bias(p̂|p) = E (p̂|p)− p.

There are several ways to derive the bias of the MLE. Two ways are presented here: one

through the use of indication function, and the other one based on the joint probability
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mass function of a complete and sufficient statistic for p.

Method 1 to derive the bias of MLE(analytically)

p̂ =
X1

n1
I (X1 ≤ a1) +

X1 +X2

n1 + n2
I (X1 > a1)

=
X1

n1
+

(
X1 +X2

n1 + n2
− X1

n1

)
I (X1 > a1)

=
X1

n1
+
n1X1 + n1X2 − (n1 + n2)X1

(n1 + n2)n1
I (X1 > a1)

=
X1

n1
+
n1X2 − n2X1

(n1 + n2)n1
I (X1 > a1)

E (p̂|p) = E

(
X1

n1

)
+ E

(
n1X2 − n2X1

(n1 + n2)n1
I (X1 > a1)

)
= p+

n2p

n1 + n2
E (I (X1 > a1))− n2

(n1 + n2)n1
E (X1I (X1 > a1))

= p+
n2

(n1 + n2)n1
E (n1pI (X1 > a1))− n2

(n1 + n2)n1
E (X1I (X1 > a1))

= p− n2

(n1 + n2)n1
E ((X1 − n1p) I (X1 > a1))

= p− n2

(n1 + n2)n1

n1∑
x1>a1

(x1 − n1p)

 n1

x1

 px1(1− p)n1−x1

bias(p̂|p) = − n2

(n1 + n2)n1

n1∑
x1>a1

(x1 − n1p)

 n1

x1

 px1(1− p)n1−x1

So the bias of the MLE is always negative.

Method 2 to derive the bias of MLE(suitable for numerical calculations)

Let M denote the stage at which a trial is terminated and S denote the number of re-

sponders at Stage M . Jung and Kim (2004) showed that (M,S) is a complete and sufficient

statistic for p in multistage designs such as Simon’s two stage design. They also derived the

probability mass function of the random vector (M,S) as: f (m, s|p) = Pr(M = m,S = s|p).

The details are as follows.
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When m=1,

f (m, s|p) = Pr(M = 1, S = s|p) = Pr(X1 = s|p) =

 n1

s

 ps(1− p)n1−s

When m=2,

f (m, s|p) = Pr(M = 2, S = s|p)

= Pr(S2 = s, a1 + 1 ≤ S1 ≤ n1)

= Pr(X1 +X2 = s, a1 + 1 ≤ X1 ≤ n1)

=

min(n1,s)∑
x1=a1+1

Pr(X1 +X2 = s,X1 = x1)

=

min(n1,s)∑
x1=a1+1

Pr(X2 = s− x1) Pr(X1 = x1)

=

min(n1,s)∑
x1=a1+1

 n2

s− x1

 ps−x1(1− p)n2−s+x1

 n1

x1

 px1(1− p)n1−x1

= ps(1− p)n1+n2−s
min(n1,s)∑

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1


bias(p̂|p) = E (p̂|p)− p

=
∑

all possible (m, s)

p̂(m, s)f(m, s|p)− p

=
1

n1

a1∑
s=0

sf(1, s|p) +
1

n1 + n2

n1+n2∑
s=a1+1

sf(2, s|p)− p

Since unbiasedness is a desired feature, Jung and Kim (2004) derived the uniformly min-

imum variance unbiased estimator (UMVUE) of p in multistage clinical trials. Considering

that the sample proportion after the first stage, p̂1 = X1
n1

, is an unbiased estimator of p, and

based on the Rao-Blackwell theorem, they obtained the UMVUE by taking the conditional

expectation of an unbiased estimator (the first stage sample proportion p̂1 = X1
n1

) given a

complete and sufficient statistic (M,S) = (m, s), where m and s denote specific observations
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of random variables M and S, respectively. So the UMVUE of p is obtained by

p̃ = E{p̂1|(m, s)} = E{X1|(m, s)}/n1

=
1

n1

∑
x1 Pr(X1 = x1|(m, s))

When M = 1, p̃ = p̂1.

When M = 2, for a1 + 1 ≤ x1 ≤ n1,

Pr(X1 = x1|(m, s))

=
Pr(X1 = x1,M = m,S = s|p)

Pr(M = m,S = s|p)

=
Pr(M = m,S = s|X1 = x1) Pr(X1 = x1)

f(m, s|p)

=
Pr(S2 = X1 +X2 = s,X1 > a1|X1 = x1) Pr(X1 = x1)

ps(1− p)n1+n2−s
∑min(n1,s)

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1


=

Pr(X2 = s− x1|X1 = x1) Pr(X1 = x1)

ps(1− p)n1+n2−s
∑min(n1,s)

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1



=

 n2

s− x1

 ps−x1(1− p)n2−s+x1

 n1

x1

 px1(1− p)n1−x1

ps(1− p)n1+n2−s
∑min(n1,s)

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1



=

 n2

s− x1

 n1

x1


∑min(n1,s)

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1


So when M = 2, the UMVUE

p̃ = E{p̂1|(m, s)} = E{X1|(m, s)}/n1

=
1

n1

∑
x1 Pr(X1 = x1|(m, s))
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=

∑min(n1,s)
x1=max(a1+1,s−n2)

 n2

s− x1

 n1 − 1

x1 − 1


∑min(n1,s)

x1=max(a1+1,s−n2)

 n2

s− x1

 n1

x1


Then the authors gave an example to present the UMVUE and the MLE for observations

from a Simon’s optimal two-stage design with design parameters Q = (n, n1, a1, a2) =

(43, 13, 3, 12), (p(0), p(A), α, β) = (0.2, 0.4, 0.05, 0.20) in Table I of Jung and Kim (2004).

They also plotted the distributions of the UMVUE and the MLE for the same optimal

two-stage design in their Figure 1.

Table I of Jung and Kim (2004)

When m = 1, UMVUE and MLE are the same.

When m = 2, UMVUE and MLE are very similar for large s values, while MLE is much

smaller than UMVUE for small s values. But the probabilities of observing those scenarios

for which UMVUE and MLE are very different (esp. at (m, s) = (2, a1 + 1) = (2, 4)) are



23

very small based on the values of the p.m.f f(m, s|p).

To understand the relative efficiency of the UMVUE as compared to the MLE defined as

the ratio of the mean squared error(MSE) of the MLE to the variance of the UMVUE, Jung

and Kim (2004) conducted numerical studies based on two-stage designs with lower stopping

boundaries only. The results show that for all designs (optimal or minimax designs), the

MLE has smaller MSE for smaller true response rates than UMVUE, but larger MSE for

larger true response rates. It is also shown that there appears to be some efficiency loss

with UMVUE as compared to MLE, particularly for optimal designs, a reasonable price for

unbiasedness.

2.5 Interval estimation of binomial probability in clinical trials with a

single-endpoint two-stage design

Besides point estimates, confidence intervals are often reported in Phase II trials. Since

the interval estimation of response rate has been extensively developed in the literature

for a binomial response in a single-stage design, Tsai et al. (2008) considered the interval

estimation of the response probability when the second stage is allowed to continue in a

two-stage design. This is the method of conditional inference. Two asymptotic interval

estimators, Wald and score, as well as two exact interval estimators, Clopper-Pearson and
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Sterne, are constructed according to the two binomial responses from this two-stage design,

where the binomial response after the first stage follows a truncated binomial distribution.

These interval estimators are based on the conditional MLE given the trial proceeds to the

second stage.

Notations:

• L(p): Likelihood function conditioning on the second stage is allowed to continue;

• G(a1, n1, p) = Pr(a1 < X1 ≤ n1) = Pr(a1 + 1 ≤ X1 ≤ n1);

• G1(a1, n1, p): first derivative of G(a1, n1, p) with respect to p;

• G2(a1, n1, p): second derivative of G(a1, n1, p) with respect to p.

When the trial is allowed to continue to the second stage, the probability distribution of

X1 is referred to as truncated binomial distribution with response probability p. Its p.m.f.

is

Pa1(X1 = x1) =

 n1

x1

 px1(1− p)n1−x1

∑n1
k=a1+1

 n1

k

 pk(1− p)n1−k

=

 n1

x1

 px1(1− p)n1−x1

G(a1, n1, p)

The distribution of X2 is simple binomial and its p.m.f. is

P (X2 = x2) =

 n2

x2

 px2(1− p)n2−x2

The likelihood function based jointly on X1 = x1 and X2 = x2 can be expressed as

L(p) =
1

G(a1, n1, p)

 n1

x1

 n2

x2

 px1+x2(1− p)n1+n2−x1−x2

The score function is

S(p) = −G1(a1, n1, p)

G(a1, n1, p)
+
x1 + x2

p
− n1 + n2 − x1 − x2

1− p
.
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The graph of S(p) displays that a unique solution can be obtained for a1 + 1 < x1 +

x2 < n1 + n2. The equation S(p) = 0 does not have a closed-form solution. Hence, the

Newton-Raphson (NR) algorithm is employed to obtain a numerical estimate of p, e.g.,

when x1 + x2 = 25, the NR algorithm found the solution as 0.580.

To apply the NR algorithm, the observed Fisher information must be derived and it is

as follows:

In(X, p) =
G(a1, n1, p)G2(a1, n1, p)−G2

1(a1, n1, p)

G2(a1, n1, p)
+
x1 + x2

p2
+
n1 + n2 − x1 − x2

(1− p)2

The NR iterative algorithm starts with an initial guess of p, say 0.5; then update by the

iteration equation:

p[j] = p[j−1] + S(p[j−1])/In(X, p[j−1])

In this manner, this algorithm generates a sequence of estimates and the conditional MLE,

p̂c, is the limit of p[j] as j →∞.

The asymptotic confidence intervals, say Wald and Score intervals, can be derived based

on the asymptotic distribution of the conditional MLE p̂c.

Wald Confidence Interval

Under regularity conditions, the asymptotic distribution of the conditional MLE

p̂c ∼ AN(p, I−1
T (p))

where IT (p) is the Fisher information of p̂c,

IT (p) = E[In(X, p)]

=
G(a1, n1, p)G2(a1, n1, p)−G2

1(a1, n1, p)

G2(a1, n1, p)
+
µ(p)

p2
+
n1 + n2 − µ(p)

(1− p)2

where

µ(p) = E(X1 +X2) = n1pG(a1 − 1, n1 − 1, p)/G(a1, n1, p) + n2p

The Fisher information IT (p) can be consistently estimated by replacing p by p̂c in it.
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For true p, the Wald test statistic

p̂c − p
I
−1/2
T (p̂c)

has an asymptotic standard normal distribution. The confidence intervals can be con-

structed by inverting the hypothesis test based on the acceptance region at level α

−z1−α
2
≤ p̂c − p
I
−1/2
T (p̂c)

≤ z1−α
2
.

The resulting (1− α)× 100% Wald confidence interval is

[p̂c − z1−α
2
I
−1/2
T (p̂c), p̂c + z1−α

2
I
−1/2
T (p̂c)]

except that the lower limit is 0 if this is negative and the upper limit is 1 if this is greater

than 1. Since for x1 + x2 = a, the MLE of p is 0 and for x1 + x2 = n, the MLE is 1, their

interval estimates are 0 and 1, respectively.

Because a discrete random variable can take on only specified values, the correction for

continuity adjustment is employed. 1/(2(n − a1 − 1)) is used as the factor for continuity

correction(CC) for a two-stage design. Thus, the Wald interval with CC (Wald c) in Simon’s

two-stage design is:

[p̂c − (z1−α
2
I
−1/2
T (p̂c) + 1/(2(n− a1 − 1))), p̂c + (z1−α

2
I
−1/2
T (p̂c) + 1/(2(n− a1 − 1)))].

As investigated by many researchers, it is well known that the coverage probability of the

Wald interval is usually below the nominal confidence level for a single-stage design. Thus

the authors also derived the Score confidence interval for p.

Score Confidence Interval

Following Wilson’s concept, the lower and upper limits of the Score confidence interval

can be solved by replacing p̂c with the actual success probability p in the denominator of
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the Wald statistic. That is, the Score statistic is

p̂c − p
I
−1/2
T (p)

For a given p̂c, the lower interval limit is the solution to the equation

hL(p) = (p̂c − p)− z1−α
2
I
−1/2
T (p) = 0

and the upper interval limit is the solution to the equation

hU (p) = (p̂c − p) + z
1−α

2
I
−1/2
T (p) = 0.

The graph of hL(p) for various x shows that a unique solution of p can be obtained

except for x = a1 + 1, and the graph of hU (p) for various x shows that a unique solution

of p can be obtained except for x = n1 + n2. Thus, when x = a1 + 1, the lower limit is 0

and the upper limit of the score interval is the solution to the equation hU (p) = 0. When

x = n1 + n2, the upper limit is 1 and the lower limit of the score interval is the solution to

the equation hL(p) = 0.

The bisection numerical algorithm can be employed to obtain solutions to hL(p) = 0

and hU (p) = 0 more easily than the NR algorithm. The resulting Score CI is denoted by

[pScoreL , pScoreU ]. The lower limit of the score interval with CC is the solution to the equation

(p̂c − p)− 1/(2(n− a1 − 1))− z
1−α

2
I
−1/2
T (p) = 0

and the upper limit of the score interval with CC is the solution to the equation

(p̂c − p) + 1/(2(n− a1 − 1)) + z
1−α

2
I
−1/2
T (p) = 0.

The resulting CI (Score c) is denoted by [pScore cL , pScore cU ].

Coverage probability and the expected width were used to evaluate the performance of
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interval estimators. Coverage probability of an interval estimator is defined as:

CP (p) =
∑n

x=0I(x, p)P (X = x)

where x is the possible values of the Binomial random variable X and I(x, p) is an indicator

function indicating whether the interval based on X = x contains p or not.

Expected width of an interval estimator is defined as

EW (p) =
∑n

x=0(p̂U − p̂L)P (X = x).

Note that both coverage probability and expected width are functions of p.

Regarding unbiasedness, the (conditional) MLE, p̂c, is slightly underestimated, and

the sample proportion p̂ is overestimated for Simon’s designs when only cumulative data

from second stage is used. Note that the reason why Tsai et al. (2008) claimed sample

proportion overestimated in terms of unbiasedness is that Tsai et al. (2008) has used only

the distribution of the second stage data. In contrast, Jung and Kim (2004) claimed the

overall bias of sample proportion, which considers data from both stage 1 and stage 2, is

always negative (that is, sample proportion underestimates).

In general, the bias of p̂c is much smaller than that of sample proportion p̂ (conditional

likelihood vs. full likelihood, and the former utilized one more information that knowing

M=2), and hence p̂c is recommended for use in practice in Tsai et al. (2008).

With conditional inference, the coverage probability of the Wald intervals without CC

are below the nominal confidence level (95%) for most of Simon’s optimal designs. The Wald

interval with CC seems slightly better than that without CC. The coverage probability of

the Score intervals with and without CC are the same for most of Simon’s optimal designs,

except for two designs. Except for the Wald interval without CC, the score interval has the

smallest interval width as compared to the other interval estimators examined here.

In summary, Tsai et al. (2008) recommends the Score interval for both Simon’s optimal

and minimax designs using conditional inference.
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Chapter 3

Two-stage Design for Phase II Cancer Clinical Trials With

Two Endpoints

Recall that our research question is “Does the new treatment have sufficient anti-tumor

activity when there are multiple alternative primary endpoints of efficacy?” It can be written

mathematically as:

H0 : π1 ≤ p(0)
1 , π2 ≤ p(0)

2 , · · · , πk ≤ p
(0)
k

HA : π1 ≥ p(A)
1 or π2 ≥ p(A)

2 · · · or πk ≥ p
(A)
k

Let’s narrow down the research question a little bit and start with k = 2. Let probabil-

ities of event/success for each of the binary efficacy endpoints be designated as π1 and π2,

respectively. Then the research hypotheses can be formulated as follows:

H0 : π1 ≤ p(0)
1 and π2 ≤ p(0)

2

HA : π1 ≥ p(A)
1 or π2 ≥ p(A)

2

where p
(0)
1 and p

(0)
2 are specified values that are believed to be uninteresting or comparable

to the current standard of care, p
(A)
1 and p

(A)
2 are the targeted response rates with p

(0)
1 < p

(A)
1

and p
(0)
2 < p

(A)
2 .

3.1 Design Settings

Our methodology has been developed in the context of phase II cancer clinical trials. Sup-

pose we are interested in two binary alternative primary endpoints of efficacy, either origi-

nally binary or being dichotomized from continuous efficacy variables. The probablities of



30

event/success for each of the binary efficacy endpoints are denoted as π1 and π2, respectively.

The original data in a two-stage design looks like:

Table 3.1: The original data structure

ID Endpoint 1 Endpoint 2
(Y es = 1 or No = 0) (Y es = 1 or No = 0)

Stage 1 1 X11 X12

2 X21 X22

· · ·
· · ·
n1 Xn11 Xn12

Total at the end of stage 1 X1 =
∑n1

i=1Xi1 Y1 =
∑n1

i=1Xi2

Stage 2 n1 + 1 X(n1+1)1 X(n1+1)2

· · ·
· · ·

n1 + n2( = n) Xn1 Xn2

Total at the end of stage 2 X =
∑n
i=1Xi1 Y =

∑n
i=1Xi2

where

• X11, X21, ..., Xn11, X(n1+1)1, ..., Xn1
i.i.d∼ Bernoulli(π1). Let X1 and X denote the total

number of responses for endpoint 1 at the end of stage 1 and of stage 2 if any,

respectively, that is, X1 =
∑n1

i=1Xi1 and X =
∑n

i=1Xi1. Then X1 ∼ Binomial(n1,

π1) and X ∼ Binomial(n, π1); and

• X12, X22, ..., Xn12, X(n1+1)2, ..., Xn2
i.i.d∼ Bernoulli(π2). Let Y1 and Y denote the total

number of responses for endpoint 2 at the end of stage 1 and of stage 2 if any,

respectively, that is, Y1 =
∑n1

i=1Xi2 and Y =
∑n

i=1Xi2. Then Y1 ∼ Binomial(n1, π2)

and Y ∼ Binomial(n, π2);

Within the same individual i, there are some correlation between Xi1 and Xi2; and people

are independent of each other.

A two-stage design allowing for early termination for futility only can be specified by a

vector of six parameters Q = (n1, n, s1, t1, s, t) :

• n1: the number of patients enrolled in stage 1;

• n: total number of enrolled patients in stage 1 and stage 2;
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• (s1, s): critical values associated with the occurrence of endpoint 1 at the end of stage

1 and of stage 2, respectively;

• (t1, t): critical values associated with the occurence of endpoint 2 at the end of stage

1 and of stage 2, respectively.

The trial proceeds as follows:

• Accrue n1 patients in stage 1. If X1 ≤ s1 and Y1 ≤ t1, terminate the trial due to

futility.

• Otherwise, accrue additional (n − n1) patients into the 2nd stage. Recommend the

treatment only if {(X1 > s1 or Y1 > t1) and (X > s or Y > t)}.

Note that in two-stage designs, the sample size is a random variable. When the numbers

of responses at the end of stage 1 pass the interim critical boundaries, the trial continues to

the second stage. In such cases, we only make decisions (reject the null hypothesis or accept

the null hypothesis) at the end of the study, rather than at the end of stage 1. For instance,

if a clinical trial indeed successfully enters the second stage, and is with the responses

{(X1 > s1, Y1 ≤ t1) and (X ≤ s, Y > t)}, we recommend the treatment at the conclusion of

the study and the efficacy claim is based on both efficacy endpoints at the second stage.

This is an example in which the evidence of efficacy for both endpoints is not accumulated

sufficiently at the end of stage 1 due to limited sample size even though the response of

the either endpoint appears to be effective at the end of stage 1, we need to use additional

information from the second stage to confirm our conclusion.

One of the goals of this dissertation is, given 8 parameters (α, β1, β2, β, p
(0)
1 , p

(0)
2 , p

(A)
1 ,

p
(A)
2 ), to search for feasible solutions of Q= (n1, n, s1, t1, s, t) that satisfy type I/II error

constraints, and then use the optimality criteria to find the “best” solution.

3.2 Derivation of the joint probability function of two correlated binary

variables

When doing hypothesis testing, we need to find out appropriate test statistics. In a single-

stage design with n patients, let the collected summary data be denoted as (X,Y ), where
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X and Y are total number of responses for endpoint 1 and for endpoint 2, respectively. X

and Y are convenient test statistics for π1 and π2, respectively. The details of deriving the

joint probability function of (X,Y ) are as follows.

The original individual data in a single-stage design with n patients can be collapsed

into 4 response patterns, which can be represented by a 2× 2 table as follows:

Table 3.2: Response Pattern

Pattern Endpoint 1 Endpoint 2 total obs.
1 Y es Y es n11

2 Y es No n10

3 No Y es n01

4 No No n00

Table 3.3: Observed Counts

Endpoint 1
Y es No

Endpoint 2 Y es C11 = n11 C01 = n01 Y = n+1

No C10 = n10 C00 = n00

X = n1+ n

Table 3.4: Probability

Endpoint 1
Y es No

Endpoint 2 Y es π11 π01 π2

No π10 π00

π1

The random quantities in each cell of the 2 × 2 table (Table 3.3), (C11, C10, C01, C00),

are distributed as:

(C11, C10, C01, C00) ∼Multinomial(n, (π11, π10, π01, π00))
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Recall that the probability mass function of a multinomial distribution is:

f(x1, x2, ..., xk;n, p1, p2, ..., pk) = Pr(X1 = x1, X2 = x2, · · · , Xk = xk)

=

(
n

x1, x2, · · · , xk

)
px11 p2

x2 ...pxkk

=
n!

x1! x2!...xk!
px11 p2

x2 · · · pxkk .

Table 3.5: Sketch of the joint p.m.f of (X,Y )

X
0 1 2 ... ... n

0
1

Y 2
...
...
n

The joint distribution of (X,Y ) is sketched in Table 3.5 (given n and π11) and the joint

probability mass function (p.m.f) of (X,Y ) can be derived:

p(x, y;n, π1, π2, π11) = P (X = x, Y = y)

=
∑
n11

Pr(C11 = n11, C10 = x− n11, C01 = y − n11, C00 = n− x− y + n11)

=
∑

max(0, x+y−n)≤n11≤min(x, y)

(
n

n11, x− n11, y − n11, n− x− y + n11

)
× πn11

11 × π
x−n11
10

× πy−n11
01 × πn−x−y+n11

00

=
∑

max(0, x+y−n)≤n11≤min(x, y)

(
n

n11, x− n11, y − n11, n− x− y + n11

)
× πn11

11

× (π1 − π11)x−n11 × (π2 − π11)y−n11 × (1− π1 − π2 + π11)n−x−y+n11 (3.1)

where

max(0, π1 + π2 − 1) ≤ π11 ≤ min(π1, π2).

Regarding the correlation/association between the two endpoints Xi1 and Xi2 within
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the same individual i , it can be expressed through any convenient measure such as the

correlation coefficient or the odds ratio. Let such an association between Xi1 and Xi2

be represented by Pr[Xi1 = 1, Xi2 = 1] = π11, rather than the complicated correlation

coefficient.

The following brief derivations will show that:

• π11 can be representative of the correlation between Xi1 and Xi2;

• The correlation between Xi1 and Xi2 within the same individual i is equal to the

correlation between X and Y ;

• Thus, π11 can be representative of the correlation/association between X and Y .

Pr[Xi1 = 1, Xi2 = 1] = π11,

P r[Xi1 = 1, Xi2 = 0] = π10 = π1 − π11,

P r[Xi1 = 0, Xi2 = 1] = π01 = π2 − π11,

P r[Xi1 = 0, Xi2 = 0] = π00 = 1− π1 − π2 + π11.

Xi1 1 1 0 0

Xi2 1 0 1 0

probability π11 π1 − π11 π2 − π11 1− π1 − π2 + π11

count n11 x− n11 y − n11 n− x− y + n11

E[Xi1Xi2 ] = 1× 1× π11 + 1× 0× (π1 − π11) + 0 + 0 = π11 = Pr[Xi1 = 1, Xi2 = 1]

corr(Xi1, Xi2) =
cov(Xi1, Xi2)√

V ar(Xi1)×
√
V ar(Xi2)

=
E[Xi1 ×Xi2] − E[Xi1] × E[Xi2]√

V ar(Xi1)×
√
V ar(Xi2)

=
π11 − π1 × π2√

π1 × (1 − π1)×
√
π2 × (1 − π2)

Since X =
∑n

i=1Xi1, Y =
∑n

i=1Xi2,

cov(X, Y ) = cov

(
n∑
i=1

Xi1,
n∑
i=1

Xi2

)
= ncov(X11, X12),
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so corr(X,Y ) = corr(Xi1, Xi2), for all i.

3.3 Derivation of the Power Function

In order to get the sample sizes and the critical values in the design parameters Q, we need

first to define the power function as follows:

G(Q, π11|H) = Pr(Recommend Treatment|Q, π11, H)

3.3.1 Single-Stage Designs

For single-stage designs, recommend the treatment if X > s or Y > t. The power function

for Single-Stage designs can be written as:

Gs(Q, π11|H) = Pr(Recommend Treatment|Q, π11, H)

=Pr(X > s or Y > t | Q, π11, H)

=1− Pr(X ≤ s, Y ≤ t | Q, π11, H)

=1−
s∑

x=0

t∑
y=0

p(x, y;n, π1, π2, π11)

Let

D(s, t;n, π1, π2, π11) = Pr(X ≤ s, Y ≤ t | X ∼ Bin(n, π1), Y ∼ Bin(n, π2), π11)

=
s∑

x=0

t∑
y=0

p(x, y;n, π1, π2, π11),

then the power function for Single-Stage designs can be denoted as:

Gs(Q, π11|H) = Gs(n1, n, s1, t1, s, t, π11, π1, π2)

=1−
s∑

x=0

t∑
y=0

p(x, y;n, π1, π2, π11) = 1−D(s, t;n, π1, π2, π11)
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3.3.2 Two-Stage Designs

For two-stage designs, recommend the treatment if {(X1 > s1 or Y1 > t1) and

(X > s or Y > t)}. The power function for two-stage designs can be written as:

Gt(Q, π11|H) = Pr(Recommend Treatment|Q, π11, H)

=Gt(n1, n, s1, t1, s, t, π11, π1, π2)

=Pr(X1 > s1 or Y1 > t1), (X > s or Y > t))

=Pr((X > s or Y > t))− Pr(X1 ≤ s1, Y1 ≤ t1, (X > s or Y > t))

=1− Pr(X ≤ s, Y ≤ t)− Pr((X > s or Y > t)|X1 ≤ s1, Y1 ≤ t1)Pr(X1 ≤ s1, Y1 ≤ t1)

=1− Pr(X ≤ s, Y ≤ t)− (1− Pr(X ≤ s, Y ≤ t|X1 ≤ s1, Y1 ≤ t1))Pr(X1 ≤ s1, Y1 ≤ t1)

=1− Pr(X ≤ s, Y ≤ t)− Pr(X1 ≤ s1, Y1 ≤ t1)

+ Pr(X ≤ s, Y ≤ t|X1 ≤ s1, Y1 ≤ t1)Pr(X1 ≤ s1, Y1 ≤ t1)

=1− Pr(X ≤ s, Y ≤ t)− Pr(X1 ≤ s1, Y1 ≤ t1)

+ Pr(X ≤ s, Y ≤ t,X1 ≤ s1, Y1 ≤ t1)

=1−D(s, t;n, π1, π2, π11)−D(s1, t1;n1, π1, π2, π11)

+

s1∑
i=0

t1∑
j=0

{D(s− i, t− j;n2, π1, π2, π11)× p(i, j;n1, π1, π2, π11)}

The detailed derivation of calculation of the underlined term of probability is as follows:

Pr(X ≤ s, Y ≤ t,X1 ≤ s1, Y1 ≤ t1)

=Pr(X1 +X2 ≤ s, Y1 + Y2 ≤ t,X1 ≤ s1, Y1 ≤ t1)

=

s1∑
i=0

t1∑
j=0

Pr(X1 +X2 ≤ s, Y1 + Y2 ≤ t,X1 = i, Y1 = j)

=

s1∑
i=0

t1∑
j=0

Pr(X2 ≤ s− i, Y2 ≤ t− j,X1 = i, Y1 = j)

=

s1∑
i=0

t1∑
j=0

Pr(X2 ≤ s− i, Y2 ≤ t− j)Pr(X1 = i, Y1 = j).



37

3.4 Properties of the power function for two-stage designs with bivariate

endpoints.

In this section, we will study the relationship between the power function and each of the

design parameters π1, π2, π11, t and s.

3.4.1 With respect to π1 or π2

Previous studies (Simon, 1989; Banerjee and Tsiatis, 2006) did not rigidly prove that the

power function is a monotone function of the marginal probability such as π1. Instead,

some has used numerical calculation results to project the monotonicity. For our study, in

the beginning, we also use this empirical strategy to present the monotonicity.

The following 3D plots (given a fixed (Q, π11)) show that the power function is a non-

decreasing continuous function of π1, and of π2 as well. The values of the power function in

the space defined by the composite null hypothesis H0 : π1 6 p
(0)
1 and π2 6 p

(0)
2 , which are

essentially the values of the type I error rate, have its maximum value at π1 = p
(0)
1 and π2 =

p
(0)
2 .
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Figure 3.1: Relationship between the Power Function and (π1, π2).
(left): Given (Q, π11)=(n1, n, s1, t1, s, t, π11) = (15, 29, 8, 6, 15, 10, 0.1).
(right): Given (Q, π11)=(n1, n, s1, t1, s, t, π11) = (20, 50, 5, 6, 10, 15, 0.1)

Using the method of mathematical induction (MI), we can theoretically prove that the

power function is a non-decreasing function of π1, and of π2.
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Theorem 3.4.1 The power function is a non-decreasing function of π1 and a non-decreasing

function of π2 as well.

Proof : We will use the method of mathematical induction(MI) to prove the theorem.

Recall the steps to implement MI:

• Base case: prove the given statement for the 1st natural number;

• Inductive step: prove that, if the statement holds for some natural number n, then

the statement holds for n+ 1.

Briefly, the proof for Theorem 3.4.1 consists of three parts:

• Part 1: Prove D(s, t;n, π1, π2, π11) is monotone in π1;

• Part 2: Prove the power function for single-stage designs Gs(Q, π11|H) is monotone

in π1;

• Part 3: Prove the power function for two-stage designs Gt(Q, π11|H) is monotone in

π1.

Part 1. Prove D(s, t;n, π1, π2, π11) is monotone in π1

Step 1: For n = 1, we have

D(s, t;n, π1, π2, π11) = Pr(X ≤ s, Y ≤ t|X ∼ Ber(π1), Y ∼ Ber(π2), π11).

If (s, t) = (0, 0),

D(s, t;n, π1, π2, π11) = Pr(X = 0, Y = 0) = 1− π1 − π2 + π11,

∂

∂π1
D(s, t;n, π1, π2, π11) = −1;

if (s, t) = (1, 0),

D(s, t;n, π1, π2, π11) = Pr(X ≤ 1, Y = 0) = (1− π1 − π2 + π11) + (π1 − π11)

= 1− π2,

∂

∂π1
D(s, t;n, π1, π2, π11) = 0;
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if (s, t) = (0, 1),

D(s, t;n, π1, π2, π11) = Pr(X = 0, Y ≤ 1) = 1− π1,

∂

∂π1
D(s, t;n, π1, π2, π11) = −1;

if (s, t) = (1, 1),

D(s, t;n, π1, π2, π11) = Pr(X ≤ 1, Y ≤ 1) = 1,

∂

∂π1
D(s, t;n, π1, π2, π11) = 0.

Therefore, when n = 1, D(s, t;n, π1, π2, π11) is a non-increasing function of π1.

Step 2:

Assume that for n = k ≥ 1, D(s, t; k, π1, π2, π11) is a non-increasing function of π1, that is,

∂

∂π1
D(s, t; k, π1, π2, π11) ≤ 0.

Therefore when n = k + 1, consider an independent sequence of k + 1 patients. Let Phm

denote the probability of the response pattern for the first patient,

Phm = Pr(X11 = h,X12 = m) =



π11, when h = m = 1

π1 − π11, when h = 1,m = 0

π2 − π11, when h = 0,m = 1

1− π1 − π2 + π11, when h = m = 0,

and Xi1 ∼ Ber(π1), Xi2 ∼ Ber(π2) are the endpoint 1 response status and endpoint 2

response status from the ith patient for i = 1, · · · , k + 1, respectively. By conditioning on

the number of responses for Endpoint 1 and Endpoint 2 for the first patient, we have

D(s, t; k + 1, π1, π2, π11)

= Pr(X ≤ s, Y ≤ t | X ∼ Bin(k + 1, π1), Y ∼ Bin(k + 1, π2), π11)

= Pr(X11 +X21 + · · ·+X(k+1),1 ≤ s,X12 +X22 + · · ·+X(k+1),2 ≤ t)
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=
∑
h=0,1

∑
m=0,1

Pr(X21 + · · ·+X(k+1),1 ≤ s− h,X22 + · · ·+X(k+1),2 ≤ t−m|X11 = h,

X12 = m)Phm

=
∑
h=0,1

∑
m=0,1

Pr(X21 + · · ·+X(k+1),1 ≤ s− h,X22 + · · ·+X(k+1),2 ≤ t−m )Phm

=
∑
h=0,1

∑
m=0,1

D(s− h, t−m; k, π1, π2, π11)× Phm

Denote by D′ the partial derivative of D with respect to π1, we get

D′(s, t; k + 1, π1, π2, π11)

=
∑
h=0,1

∑
m=0,1

∂Phm
∂π1

D(s− h, t−m; k, π1, π2, π11)

+
∑
h=0,1

∑
m=0,1

D′(s− h, t−m; k, π1, π2, π11)Phm.

By the previous assumption for n = k, the second part is non-positive. Expanding the first

part of the above equation,

∑
h=0,1

∑
m=0,1

∂Phm
∂π1

D(s− h, t−m; k, π1, π2, π11)

= D(s− 1, t; k, π1, π2, π11)−D(s, t; k, π1, π2, π11)

= Pr(X ≤ s− 1, Y ≤ t | X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

− Pr(X ≤ s, Y ≤ t | X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

= − Pr(X = s, Y ≤ t | X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

≤ 0.

Therefore,

D′(s, t; k + 1, π1, π2, π11) ≤ 0.

Combining the above step 1 and step 2, and by mathematical induction,

D(s, t;n, π1, π2, π11) is non-increasing in π1 for any n ≥ 1.
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Part 2. Prove the power function for single-stage designs Gs(Q, π11|H) is mono-

tone in π1

For single-stage designs, the power function is

Gs(Q, π11|H) = Gs(n1, n, s1, t1, s, t, π11, π1, π2)

=1−D(s, t;n, π1, π2, π11).

Since D(s, t;n, π1, π2, π11) is non-increasing in π1, therefore the power function for single-

stage designs is non-decreasing in π1.

Part 3. Prove the power function for two-stage designs Gt(Q, π11|H) is monotone

in π1

The power function for two-stage designs is:

Gt(Q, π11|H) = Gt(n1, n, s1, t1, s, t, π11, π1, π2)

=1−D(s1, t1;n1, π1, π2, π11)−D(s, t;n, π1, π2, π11)

+

s1∑
i=0

t1∑
j=0

{D(s− i, t− j;n2, π1, π2, π11)× p(i, j;n1, π1, π2, π11)}.

Step 1: when n1 = 0, the design is reduced to the single stage design and we have proved

that the power function is non-decreasing in π1.

Step 2: Assume that for n1 = k ≥ 0 and any n ≥ k + 1, s1, t1, s, t, the power function

Gt(n1 = k, n, s1, t1, s, t, π11, π1, π2) is non-decreasing in π1,

G′t(k, n, s1, t1, s, t, π11, π1, π2) =
∂

∂π1
Gt(k, n, s1, t1, s, t, π11, π1, π2) ≥ 0,

then for n1 = k + 1 and any n ≥ k + 2, s1, t1, s, t, the power function can be expressed

by conditioning on the number of responses for Endpoint 1 and Endpoint 2 for the first

patient, who is surely in the first stage,

Gt(k + 1, n, s1, t1, s, t, π11, π1, π2)

= 1− P (X ≤ s, Y ≤ t)− P (X1 ≤ s1, Y1 ≤ t1|X1 ∼ Bin(k + 1, π1), Y1 ∼ Bin(k + 1, π2), π11)
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+ P (X ≤ s, Y ≤ t,X1 ≤ s1, Y1 ≤ t1)

= 1− P (X11 +X21 + · · ·+Xn1 ≤ s,X12 +X22 + · · ·+Xn2 ≤ t)

− P (X11 +X21 + · · ·+X(k+1),1 ≤ s1, X12 +X22 + · · ·+X(k+1),2 ≤ t1)

+ P (X11 +X21 + · · ·+Xn1 ≤ s,X12 +X22 + · · ·+Xn2 ≤ t,

X11 +X21 + · · ·+X(k+1),1 ≤ s1, X12 +X22 + · · ·+X(k+1),2 ≤ t1)

= 1−
∑
h=0,1

∑
m=0,1

{P (X21 + · · ·+Xn1 ≤ s− h,X22 + · · ·+Xn2 ≤ t−m)Phm}

−
∑
h=0,1

∑
m=0,1

{P (X21 + · · ·+X(k+1),1 ≤ s1 − h,X22 + · · ·+X(k+1),2 ≤ t1 −m)Phm}

+
∑
h=0,1

∑
m=0,1

{P (X21 + · · ·+Xn1 ≤ s− h,X22 + · · ·+Xn2 ≤ t−m,

X21 + · · ·+X(k+1),1 ≤ s1 − h,X22 + · · ·+X(k+1),2 ≤ t1 −m)Phm}

= 1−
∑
h=0,1

∑
m=0,1

{Phm[1−Gt(k, n− 1, s1 − h, t1 −m, s− h, t−m,π11, π1, π2)]}

=
∑
h=0,1

∑
m=0,1

{Phm Gt(k, n− 1, s1 − h, t1 −m, s− h, t−m,π11, π1, π2)}.

Take partial derivative with respect to π1 and we get

G′t(k + 1, n, s1, t1, s, t, π11, π1, π2)

=
∑
h=0,1

∑
m=0,1

∂Phm
∂π1

Gt(k, n− 1, s1 − h, t1 −m, s− h, t−m,π11, π1, π2)

+
∑
h=0,1

∑
m=0,1

G′t(k, n− 1, s1 − h, t1 −m, s− h, t−m,π11, π1, π2)Phm

By previous assumption that for n1 = k, the second part is non-negative. Expanding the

first part of the above equation,

∑
h=0,1

∑
m=0,1

∂Phm
∂π1

Gt(k, n− 1, s1 − h, t1 −m, s− h, t−m,π11, π1, π2)

= Gt(k, n− 1, s1 − 1, t1, s− 1, t, π11, π1, π2)−Gt(k, n− 1, s1, t1, s, t, π11, π1, π2)

= {1− P (X ≤ s− 1, Y ≤ t)− P (X1 ≤ s1 − 1, Y1 ≤ t1)

+ P (X ≤ s− 1, Y ≤ t,X1 ≤ s1 − 1, Y1 ≤ t1)}

− {1− P (X ≤ s, Y ≤ t)− P (X1 ≤ s1, Y1 ≤ t1) + P (X ≤ s, Y ≤ t,X1 ≤ s1, Y1 ≤ t1)}
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= P (X = s, Y ≤ t) + P (X1 = s1, Y1 ≤ t1)

− {P (X = s, Y ≤ t,X1 ≤ s1 − 1, Y1 ≤ t1) + P (X ≤ s, Y ≤ t,X1 = s1, Y1 ≤ t1)}

≥ 0.

Hence, G′t(k + 1, n, s1, t1, s, t, π11, π1, π2) ≥ 0.

Combining the above step 1 and step 2, and by mathematical induction, the power

function for two-stage designs Gt(n1, n, s1, t1, s, t, π11, π1, π2) is non-decreasing in π1.

Combining the above Parts 1-3, the power function, no matter for one-stage designs or

for two-stage designs, is non-decreasing in π1.

By symmetry, the power function is also non-decreasing in π2.

�

Theorem 3.4.1 shows that the possible values of the power function under H0, (that is,

the possible values of the joint type I error), in the space constructed by the composite

null hypothesis H0: π1 6 p
(0)
1 and π2 6 p

(0)
2 have its maximum value at the pair point

constructed by the simple null hypothesis H0: π1 = p
(0)
1 and π2 = p

(0)
2 . To satisfy the

type I error constraint, we only need to consider designs for the simple null hypothesis

H0: π1 = p
(0)
1 and π2 = p

(0)
2 .

Previous composite alternative hypothesis HA: π1 > p
(A)
1 or π2 > p

(A)
2 can be divided

into 3 separate spaces:

HA1: π1 > p
(A)
1 and 0 6 π2 < p

(A)
2 ,

HA2: 0 6 π1 < p
(A)
1 and π2 > p

(A)
2 ,

HA3: π1 > p
(A)
1 and π2 > p

(A)
2 .

The possible values of the power function in the space defined by HA1: π1 > p
(A)
1 and 0 6

π2 < p
(A)
2 have its minimum value at π1 = p

(A)
1 and π2 = 0 mathematically, but we use the

value of the power function at π1 = p
(A)
1 and π2 = p

(0)
2 instead since the latter value makes

more sense for clinicians. The latter value is the statistical power when the drug or regimen

is with desired clinical response rate in efficacy Endpoint 1 and with non-zero uninteresting
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response rate in efficacy Endpoint 2. Similarly, the minimum power in the space defined by

HA2: 0 6 π1 < p
(A)
1 and π2 > p

(A)
2 is at π1 = p

(0)
1 and π2 = p

(A)
2 and the minimum power in

the space defined by HA3: π1 > p
(A)
1 and π2 > p

(A)
2 is at π1 = p

(A)
1 and π2 = p

(A)
2 .

That is the rationale we, from here on, will only consider the error constraints for the

simple null hypothesis:

H0: π1 = p
(0)
1 and π2 = p

(0)
2

versus the simple alternative hypotheses:

HA1: π1 = p
(A)
1 and π2 = p

(0)
2 ,

HA2: π1 = p
(0)
1 and π2 = p

(A)
2 ,

HA3: π1 = p
(A)
1 and π2 = p

(A)
2 .

Note: given Q and π11,

G(Q, π11|HA1) < G(Q, π11|HA3), that is, power(HA1) < power(HA3),

G(Q, π11|HA2) < G(Q, π11|HA3), that is, power(HA2) < power(HA3).

3.4.2 With respect to π11

In general case with π11 unspecified, it seems that the joint type I error for two-stage

designs (the value of the power function under H0) is not monotone in π11 (see Figure 3.2

for example), though the joint type I error for one-stage designs is still monotone in π11).

Note: the reason why ours is not monotone in π11 while the power function of two-stage

designs in Bryant and Day (1995) is monotone in π11 is as follows. The power function in

Bryant and Day(1995) is essentially:

G(Q, π11|Hij) = Pr{Recommend Treatment|Hij ,Q, π11}

=Pr(X1 > s1, Y1 > t1, X > s, Y > t)
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Figure 3.2: Relationship between the Joint Type I error rate (y axis) for two-stage designs and π11(x axis).
(left): Given (Q, π1, π2) = (n1, n, s1, t1, s, t, π1, π2) =(15, 29, 8, 6, 15, 10, 0.2, 0.3);
(mid): Given (Q, π1, π2) = (n1, n, s1, t1, s, t, π1, π2) = (15, 29, 8, 6, 15, 10, 0.3, 0.45);
(right): Given (Q, π1, π2) = (n1, n, s1, t1, s, t, π1, π2) = (15, 29, 8, 6, 15, 10, 0.5, 0.5).

while the power function for two-stage designs in our study is more complicated, and consists

of three parts:

G(Q, π11|H) = Pr(Recommend Treatment|Q, π11, H)

=Pr(X1 > s1 or Y1 > t1), (X > s or Y > t))

=1− Pr(X ≤ s, Y ≤ t)− Pr(X1 ≤ s1, Y1 ≤ t1)

+ Pr(X ≤ s, Y ≤ t,X1 ≤ s1, Y1 ≤ t1)

3.4.3 With respect to t or s

Theorem 3.4.2 Given fixed π1, π2 and π11, the power function is a non-increasing function

of t given (n, n1, s1, t1, s).

It is straightforward to prove.

Application of Theorem 3.4.2: In searching algorithm, we search for optimal value of

t in descending order and when this parameter constellation Q = (n, n1, s1, t1, s, t) with this

maximum value of t satisfying type II error constraints is found, this parameter constellation

Q will be further judged for other conditions.

I used this property in the searching process—searching for optimal t value in descending

order of t and find the maximum value of t which satisfies the type II error constraint. Since

s is in similar position of t, I search for optimal s value in descending order of s as well.
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The same applies for t1 and s1. That is, type II error is a non-decreasing function of t1

given (n, n1, s1, s, t), and the type II error is a non-decreasing function of s1 given (n, n1,

t1, s, t).

3.5 Properties of the expected sample size under H0 for the two stage

designs with bivariate endpoints

There may be many feasible designs that satisfy type I/II error constraints, so additional

optimality criteria are needed to select one of these feasible designs. e.g. :

minimizing E(N |H0,Q, π11).

Let’s look at the properties of E(N |H,Q, π11) for two-stage designs first.

E(N |H,Q, π11) = n1PETH + n(1− PETH) = n− PETH(n− n1)

where

PETH = Pr(X1 ≤ s1, Y1 ≤ t1|H,Q, π11) = D(s1, t1;n1, π1, π2, π11)

Theorem 3.5.1 For two-stage designs, given Q and π11, E(N |H,Q, π11) is a non-decreasing

function of π1 and of π2 as well.

Proof: Recall that in the proof of Part 1 of Theorem 3.4.1, we have already proved

that D(s, t;n, π1, π2, π11) is non-increasing in π1 for any n ≥ 1, so E(N |H,Q, π11) is non-

decreasing in π1.

The same applies to the relationship between E(N |H,Q, π11) and π2.
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Theorem 3.5.2 For two-stage designs, given Q and fixed π1 and of π2, E(N |H,Q, π11) is

a non-increasing function of π11.

Proof: The method of Mathematical Induction (MI) will be used to prove that

D(s, t;n, π1, π2, π11) is non-decreasing in π11 for any n ≥ 1. Hence this Theorem follows.

Steps to prove the monotonicity of D(s, t;n, π1, π2, π11) in π11:

Step 1: when n = 1,

D(s, t;n, π1, π2, π11) = Pr(X ≤ s, Y ≤ t|X ∼ Ber(π1), Y ∼ Ber(π2), π11).

If (s, t) = (0, 0),

D(s, t;n, π1, π2, π11) = Pr(X = 0, Y = 0) = 1− π1 − π2 + π11,

∂

∂π11
D(s, t;n, π1, π2, π11) = 1;

If (s, t) = (1, 0),

D(s, t;n, π1, π2, π11) = Pr(X ≤ 1, Y = 0)

= (1− π1 − π2 + π11) + (π1 − π11) = 1− π2,

∂

∂π11
D(s, t;n, π1, π2, π11) = 0;

If (s, t) = (0, 1),

D(s, t;n, π1, π2, π11) = Pr(X = 0, Y ≤ 1) = 1− π1,

∂

∂π11
D(s, t;n, π1, π2, π11) = 0;

If (s, t) = (1, 1),

D(s, t;n, π1, π2, π11) = Pr(X ≤ 1, Y ≤ 1) = 1,

∂

∂π11
D(s, t;n, π1, π2, π11) = 0.
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In summary, when n = 1, D(s, t;n, π1, π2, π11) is a non-decreasing function of π11.

Step 2:

Assume that for n = k ≥ 1, D(s, t; k, π1, π2, π11) is a non-decreasing function of π11, that is

(denote by D′π11 the partial derivative of D with respect to π11, ),

D′π11(s, t; k, π1, π2, π11) =
∂

∂π11
D(s, t; k, π1, π2, π11) ≥ 0.

Then, when n = k+ 1, consider an independent sequence of k+ 1 patients. Let Phm denote

the probability of the response pattern for the first patient,

Phm = Pr(X11 = h,X12 = m) =



π11, when h = m = 1

π1 − π11, when h = 1,m = 0

π2 − π11, when h = 0,m = 1

1− π1 − π2 + π11, when h = m = 0,

and Xi1 ∼ Ber(π1), Xi2 ∼ Ber(π2) are the endpoint 1 response status and endpoint 2

response status from the ith patient for i = 1, · · · , k + 1, respectively. By conditioning on

the number of responses for Endpoint 1 and Endpoint 2 for the first patient, we have

D(s, t; k + 1, π1, π2, π11)

= Pr(X ≤ s, Y ≤ t | X ∼ Bin(k + 1, π1), Y ∼ Bin(k + 1, π2), π11)

= Pr(X11 +X21 + · · ·+X(k+1),1 ≤ s,X12 +X22 + · · ·+X(k+1),2 ≤ t)

=
∑
h=0,1

∑
m=0,1

Pr(X21 + · · ·+X(k+1),1 ≤ s− h,

X22 + · · ·+X(k+1),2 ≤ t−m|X11 = h,X12 = m)Phm

=
∑
h=0,1

∑
m=0,1

D(s− h, t−m; k, π1, π2, π11)× Phm

Take partial derivative of D with respect to π11, we get

D′π11(s, t; k + 1, π1, π2, π11)

=
∑
h=0,1

∑
m=0,1

∂Phm
∂π11

D(s− h, t−m; k, π1, π2, π11)
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+
∑
h=0,1

∑
m=0,1

D′π11(s− h, t−m; k, π1, π2, π11)Phm

=
∑
h=0,1

∑
m=0,1

(−1)h+mD(s− h, t−m; k, π1, π2, π11)

+
∑
h=0,1

∑
m=0,1

D′π11(s− h, t−m; k, π1, π2, π11)Phm

By the previous assumption for n = k, D′π11(s − h, t − m; k, π1, π2, π11) ≥ 0, so the

second part of the above equation is non-negative. And the first part

∑
h=0,1

∑
m=0,1

(−1)h+mD(s− h, t−m; k, π1, π2, π11)

= D(s, t; k, π1, π2, π11)−D(s− 1, t; k, π1, π2, π11)−D(s, t− 1; k, π1, π2, π11)

+D(s− 1, t− 1; k, π1, π2, π11)

= Pr(X = s, Y ≤ t | X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

− Pr(X = s, Y ≤ t− 1 | X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

= Pr(X = s, Y = t|X ∼ Bin(k, π1), Y ∼ Bin(k, π2), π11)

≥ 0,

D′π11(s, t; k + 1, π1, π2, π11) ≥ 0.

In summary, when n = k + 1, D(s, t; k + 1, π1, π2, π11) is a non-decreasing function of

π11.

Combining the above step 1 and step 2, and by mathematical induction,

D(s, t;n, π1, π2, π11) is a non-decreasing function of π11 for any n ≥ 1. Since

E(N |H0,Q, π11) = n− n2D(s1, t1;n1, π1 = p
(0)
1 , π2 = p

(0)
2 , π11),

so E(N |H0,Q, π11) is non-increasing in π11. �

Theorem 3.5.3 For two-stage designs, given fixed π1, π2 and π11, E(N |H,Q, π11) is a

non-increasing function of s1 and of t1 as well.

Proof is Straightforward.
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3.6 Determination of design parameters based on marginal and overall

Type I and Type II error constrains

In trial designs for multiple endpoints, taking bivariate endpoints as an example here, we

need to consider not only the overall type I error constraint based on the joint distribution

of the bivariate endpoints, but also the marginal type I error constraint for each endpoint.

Let α, β1, β2, β be error bounds specified by the investigators: α bounds the probability

of erroneously recommending a treatment whose two primary alternative efficacy endpoints

both have unacceptable response rate; β1 bounds the probability of failing to recommend

a treatment whose first of the two primary alternative efficacy endpoints has adequate

response rate, second inadequate; β2 bounds the probability of failing to recommend a

treatment whose first of the two primary alternative efficacy endpoints has inadequate re-

sponse rate, second adequate; β bounds the probability of failing to recommend a treatment

when both of the two primary alternative efficacy endpoints have adequate response rates.

Let G(Q, π11|H) denote the power function of the design under H. The design parameters

Q = (n1, n, s1, t1, s, t) may be determined by solving the following mathematical program

min
Q

max
π11

E(N |Q, π11, H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ), (3.2)

subject to

max
π11

G(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 )

= max
π11

P{(X1 > s1 or Y1 > t1), (X > s or Y > t)|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 } ≤ α (3.3a)

P (X1 > s1 and X > s|H01 : π1 = p
(0)
1 ) ≤ α and

P (Y1 > t1 and Y > t|H02 : π2 = p
(0)
2 ) ≤ α (3.3b)

min
π11

G(Q, π11|HA1 : π1 = p
(A)
1 , π2 = p

(0)
2 ) > 1− β1, (3.3c)

min
π11

G(Q, π11|HA2 : π1 = p
(0)
1 , π2 = p

(A)
2 ) > 1− β2 (3.3d)

min
π11

G(Q, π11|HA3 : π1 = p
(A)
1 , π2 = p

(A)
2 ) > 1− β (3.3e)

The following brief proof would suggest that the above constraints in (3.3) can be further
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simplified based on the relationship between joint and marginal probabilities.

In single-stage designs, under the simple null hypothesis,

Joint type I error = Gs(Q, π11|H0)

= Pr(X > s or Y > t|H0 : π1 = p
(0)
1 and π2 = p

(0)
2 )

= 1− Pr(X ≤ s and Y ≤ t|H0 : π1 = p
(0)
1 and π2 = p

(0)
2 )

Marginal type I error for endpoint 1 = Pr(X > s|H0 : π1 = p
(0)
1 )

= 1− Pr(X ≤ s|H0 : π1 = p
(0)
1 )

It is straightforward that the marginal type I error for either endpoint is less than or

equal to the joint type I error in single-stage designs based on the sketch of the joint p.m.f of

(X,Y ) in Table 3.5. If we put the error constraint on the joint type I error, it will guarantee

that the marginal type I error is also constrained. That is, marginal type I error for either

endpoint ≤ joint type I error ≤ α.

For two-stage designs,

Joint type I error = Gt(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 )

= P{(X1 > s1 or Y1 > t1), (X > s or Y > t)|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 } (3.4)

Marginal type I error for endpoint 1 = P (X1 > s1 and X > s|H01 : π1 = p
(0)
1 ) (3.5)

Marginal type I error for endpoint 2 = P (Y1 > t1 and Y > t|H02 : π2 = p
(0)
2 ) (3.6)

We would intuitively prove that the underlined probability term in (3.4) is always greater

than or equal to each of the two probabilities in (3.5) and (3.6). Let

event A1=(X1 > s1), event B1=(Y1 > t1), event A=(X > s), event B=(Y > t),

then

{(A1 ∪B1) ∩ (A ∪B)} ⊃ (A1 ∩A),

{(A1 ∪B1) ∩ (A ∪B)} ⊃ (B1 ∩B).
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Therefore,

P{(X1 > s1 or Y1 > t1), (X > s or Y > t)|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 }

> P (X1 > s1 and X > s|H01 : π1 = p
(0)
1 ),

P{(X1 > s1 or Y1 > t1), (X > s or Y > t)|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 }

> P (Y1 > t1 and Y > t|H02 : π2 = p
(0)
2 ).

So if we put the error constraint on joint type I error in two-stage designs as stated in

(3.4), the error constraints on marginal type I errors are guaranteed to be satisfied.

By combining the above brief proof on the relationship between marginal and joint type

I error rates in both single-stage designs and two-stage designs, the mathematical program

in (3.2) and (3.3) can be simplified as the following:

min
Q

max
π11

E(N |Q, π11, H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ), (3.7)

subject to

max
π11

G(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ) ≤ α, (3.8a)

min
π11

G(Q, π11|HA1 : π1 = p
(A)
1 , π2 = p

(0)
2 ) > 1− β1, (3.8b)

min
π11

G(Q, π11|HA2 : π1 = p
(0)
1 , π2 = p

(A)
2 ) > 1− β2, (3.8c)

min
π11

G(Q, π11|HA3 : π1 = p
(A)
1 , π2 = p

(A)
2 ) > 1− β. (3.8d)

If β1 = β2 = β, then (3.8d) is included in (3.8b) or (3.8c).

3.7 Methods and algorithms

For specified values of α, β, β1, β2, p
(0)
1 , p

(0)
2 , p

(A)
1 , and p

(A)
2 , we have determined optimal

designs by enumeration using exact bivariate binomial probabilities. For each value of total

sample size n and each value of n1 in the range [1, n− 1], we will find the feasible solutions
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Q = (n1, n, s1, t1, s, t) which satisfies the error constraints (3.8a) – (3.8d) and then use the

optimality criteria, that is, minimizing the expected sample size under the null hypothesis

as shown in (3.7), to find the “best” solution.

Technically, this is found by searching over the ranges of s1 in [0, n1 − 1] and t1 in

[0, n1 − 1]. For each value of s1, t1, and s, we determine the maximum value of t that

satisfies the type II error constraints since the type II error is a monotone function of t given

(n1, n, s1, t1, s). We then examine whether that set of parameters Q = (n1, n, s1, t1, s, t)

satisfies the type I error constraint. If it does, save it to the set of feasible solutions. Then

among all the feasible solutions, locate the minimum expected sample size of n under the

null hypothesis and its corresponding Q. That is the globally optimal design.

For this two-stage design for cancer clinical trials with two alternative primary endpoints,

how to determine the searching range of n and how to clearly specify the optimality criteria

require more attention.

3.7.1 Determination of the searching range of n

For “alternative primary endpoints”, the central issue is to control the false-positive rate

(type I error) at the study level since there are many chances to declare efficacy. It is a

traditional multiplicity problem. A common approach to handle this traditional multiplicity

problem is to adjust the significance level downward for individual testings so that the overall

false-positive rate can be maintained at the desirable level (Sankoh et al., 1997).

We calculate sample sizes for endpoint 1 and endpoint 2, respectively, using Dr. Richard

Simon’s formula (as shown in the following) under the unadjusted power and adjusted

(Bonferroni adjustment) nominal type I error rate:

n = p(1− p)
[
z1−α + z1−β

p(A) − p(0)

]2

(3.9)

where p = (p(0) + p(A))/2, p(0) and p(A) are probabilities of event under the null and

alternative hypotheses for each endpoint, respectively. The α level here in this formula is

the adjusted nominal type I error rate, say, 0.025 if the total nominal type I error rate for

the entire study with two alternative primary endpoints is 0.05. β here is the unadjusted
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nominal type II error rate for the study. The smaller of the two sample sizes (which

corresponds to larger ‘effect size’) is multiplied by 0.85 and 1.5 to serve as the lower and

upper limits of the searching range for n respectively.

3.7.2 Optimality Criteria

We found that more than one, actually many, feasible solutions share the same minimum

expected sample size ofN under the null hypothesis because of discreteness of the underlying

bivariate binomial distribution and the small difference in the value of E(N | H0) between

feasible solutions sharing the same (n, n1, s1, t1). So the optimality criteria for the optimal

design now is:

1. Minimum E(N |H0);

2. Maximum type I error(closer to nominal level) since there are three type II errors and

the directions of the magnitude of them are not the same in most time.

3.7.3 Naive exhaustive searching algorithm

Given investigator-specified values of (α, β1, β2, β, p
(0)
1 , p

(0)
2 , p

(A)
1 , p

(A)
2 ), use the exact

bivariate binomial probability to exhaustively search among loops (from outer loop to inner

loops: n → n1 → s1 → t1 → s → t) to find feasible solutions to satisfy error constraints.

searching range for n : follow the strategy mentioned in section 3.7.1 .

for n1 : [
n

4
,
3n

4
];

for s1 : [n1p
(0)
1 , n1p

(A)
1 ];

for t1 : [n1p
(0)
2 , n1p

(A)
2 ];

for s : [max(s1 + 1, np
(0)
1 ), np

(A)
1 ];

for t : [max(t1 + 1, np
(0)
2 ), np

(A)
2 ].

Then among those feasible solutions, apply the optimality criteria(as mentioned in sec-

tion 3.7.2) to locate the optimal design.
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3.7.4 Refined searching algorithm starting from independence assumption

Initially we tried to do exhaustive searching directly (just using the naive exhaustive search-

ing algorithm as mentioned in section 3.7.3). However, due to the introduction of the cor-

relation parameter π11 into the bivariate joint distribution, the time cost in optimization

and exhaustive searching has increased dramatically, especially when n > 30.

Theorems 2.3.3 and 2.3.4 from Bryant and Day (1995) have inspired us to adopt a

pre-screening strategy via starting searching assuming the two alternative primary efficacy

endpoints are independent. Find those feasible solutions satisfying type I/II error con-

straints under independence assumption, and sort them by the optimality criteria under

independence assumption. Next, among the top 5% of the sorted feasible solutions, relax

the independence assumption, do computation-intensive calculations of real maximized type

I/II error rates allowing π11 to assume any values in its defined range, and search and locate

the optimal design after applying the optimality criteria.

3.8 Results

The following tables 3.6 to 3.9 show optimal two-stage designs for cancer clinical trials with

two alternative primary endpoints for a variety of design parameters with p
(0)
1 ≤ p

(0)
2 . The

following notations are used in these tables

G0(Q, π11) = G(Q, π11|H0 : π1 = p
(0)
1 , π2 = p

(0)
2 ),

G1(Q, π11) = G(Q, π11|HA1 : π1 = p
(A)
1 , π2 = p

(0)
2 ),

G2(Q, π11) = G(Q, π11|HA2 : π1 = p
(0)
1 , π2 = p

(A)
2 ),

G3(Q, π11) = G(Q, π11|HA3 : π1 = p
(A)
1 , π2 = p

(A)
2 ).

Table 3.6 is for cancer trials with δ = 0.20 = p
(A)
1 − p

(0)
1 = p

(A)
2 − p

(0)
2 and Table

3.7 is for trials with δ = 0.15 = p
(A)
1 − p

(0)
1 = p

(A)
2 − p

(0)
2 . Table 3.8 is for trials with

δ1 = 0.15 = p
(A)
1 − p

(0)
1 , δ2 = 0.20 = p

(A)
2 − p

(0)
2 , and Table 3.9 is for trials with δ1 =

0.20 = p
(A)
1 − p(0)

1 , δ2 = 0.15 = p
(A)
2 − p(0)

2 . The operating characteristics for each of the

optimal two-stage sequential design (including the maximized type I error rate, minimized
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powers and the minimized value of maximum possible expected sample size under the null

hypothesis in the defined range of π11) are presented as well.
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Some discussions:

1. In the study design stage, we may not have too much information about the nuisance

correlation parameter π11 and we want to be conservative. So we searched thoroughly

in the defined range of π11. The searching results show that π11 may assume different

values to achieve the maximized type I error rate, minimized powers, the minimum

of the maximized value among all possible expected sample sizes under the null hy-

pothesis.

2. Due to the time cost of thorough searching in the defined range of π11, we only did the

computation-intensive calculations of real maximized type I and II error rates among

the top 5% of sorted feasible solutions from independence assumption, so the resulting

designs we got may not be global optimal, but close to as shown in Bryant and Day

(1995).
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Chapter 4

Statistical Inference For Proposed Two-stage Design For

Phase II Cancer Clinical Trials with Two Endpoints

In this chapter, we will focus on methodology for making statistical inference based on the

proposed two-stage design for phase II cancer clinical trials with two endpoints.

4.1 Review of the MLE for π and the total Fisher information in a single-

endpoint two-stage design

When a clinical trial with a single-endpoint two-stage design completes and we get all the

data at hand, that is, given (n, n1, s1, s), we have observed the individual data

(M,X11, X21, · · · , Xn11, X(n1+1)1, · · · , Xn1) using the notations in Chapter 3. The individ-

ual data can be summarized by (X1, X,M), where

• X1: total number of responses at the end of stage 1;

• X: total number of responses at the end of stage 2;

• M : which stage the trial stops at.

Consider the likelihood function in this single-endpoint two-stage design:

1. If X1 ≤ s1, the trial stops early at the end of stage M = 1 , the likelihood function is:

L(π|X1,M = 1) = Pr(X11 = x11, X21 = x21, ..., Xn11 = xn11)

=

n1∏
i=1

πxi1(1− π)1−xi1 = π
∑n1
i=1 xi1(1− π)n1−

∑n1
i=1 xi1

= πx1(1− π)n1−x1 .
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2. If X1 > s1, enroll additional n2 patients into the trial after stage 1, and record the

number of responses during stage 2 as X2, thus X2 = X−X1. The likelihood function

is:

L(π|X1, X,M = 2) = πx1+x2(1− π)n1+n2−x1−x2 = πx(1− π)n−x.

Summarizing the above 2 scenarios, the likelihood function for a single-endpoint two-

stage design can be written as:

L(π|X1, X,M) = πx1+x2(M−1)(1− π)(n1−x1)+(n2−x2)(M−1),

and the log-likelihood

l(π) = logL(π) = [x1 + x2(M − 1)] log π + [(n1 − x1) + (n2 − x2)(M − 1)] log(1− π).

We have

l′(π) =
∂l(π)

∂π
=
x1 + x2(M − 1)

π
− (n1 − x1) + (n2 − x2)(M − 1)

1− π

Let the above item l′(π) be equal to 0, then we can get the maximum likelihood estimator

(MLE) for π in a single-endpoint two-stage design:

π̂MLE =
x1 + x2(M − 1)

n1 + n2(M − 1)

=

 x1
n1
, if M = 1;

x1+x2
n1+n2

, if M = 2.

The MLE for π in a single-endpoint two-stage design is sample proportion in essence. Since

∂2 logL(π)

∂π2
= −x1 + x2(M − 1)

π2
− (n1 − x1) + (n2 − x2)(M − 1)

(1− π)2
,

the total Fisher information is:

I(π) = E

[
−∂

2 logL(π)

∂π2

]
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= E

[
X1 +X2(M − 1)

π2
+

(n1 −X1) + (n2 −X2)(M − 1)

(1− π)2

]
.

Given that M is a random variable dependent on X1 (M = 1 if X1 ≤ s1, M = 2

otherwise), M is a function of X1. Since X1 and X2 are independent, M and X2 are

independent. Since

E(M) = 1× Pr(X1 ≤ s1) + 2× [1− Pr(X1 ≤ s1)]

= 2− Pr(X1 ≤ s1)

= 2−
s1∑
k=0

 n1

k

πk(1− π)n1−k,

the total Fisher information for a single-endpoint two-stage design is:

I(π) = E

[
−∂

2 logL(π)

∂π2

]
= E

[
X1 +X2(M − 1)

π2
+

(n1 −X1) + (n2 −X2)(M − 1)

(1− π)2

]
=
n1π + n2π

[
1−

∑s1
k=0

(
n1

k

)
πk(1− π)n1−k

]
π2

+
n1 − n1π + n2(1− π)

[
1−

∑s1
k=0

(
n1

k

)
πk(1− π)n1−k

]
(1− π)2

=
n1 + n2

[
1−

∑s1
k=0

(
n1

k

)
πk(1− π)n1−k

]
(1− π)π

.

4.2 Maximum Likelihood Estimators for (π1, π2) in a two-endpoint two-

stage design

We will use the following notations for a two-endpoint two-stage design:

• n1, n2: number of patients enrolled in stage 1, stage 2, respectively; these two quan-

tities are constants by design;

• n(1),
11 n

(2)
11 : number of patients with (endpoint1 response = Yes, endpoint 2 response

= Yes) = (1, 1) response pattern at stage 1 and stage 2, respectively;

note that we have n
(1)
11 ∼ Bin(n1, π11), n

(2)
11 ∼ Bin(n2, π11), with π11 defined in Table

3.4;
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• X1, X2: total number of respondents for endpoint 1 at stage 1 and stage 2, respectively;

X1 ∼ Bin(n1, π1), X2 ∼ Bin(n2, π1);

• Y1, Y2: total number of respondents for endpoint 2 at stage 1 and stage 2, respectively,

and Y1 ∼ Bin(n1, π2), Y2 ∼ Bin(n2, π2);

• M : a random variable describing at which stage the clinical trial stops,

M =

 1 if X1 ≤ s1 and Y1 ≤ t1
2 if X1 > s1 or Y1 > t1

We have

Pr(M = 1) = Pr(X1 ≤ s1 and Y1 ≤ t1)

=

s1∑
x=0

t1∑
y=0

p(x, y;n1, π1, π2, π11) = PET ;

E(M) = 1× Pr(M = 1) + 2× [1− Pr(M = 1)] = 2− Pr(M = 1)

Consider the likelihood function for a cancer clinical trial with the two-endpoint two-

stage design:

1. If X1 ≤ s1 and Y1 ≤ t1, the trial stops early at the end of stage 1. By using the

individual data, the likelihood function can be written as:

L(π1, π2, π11|n1,n(1)11 , x1, y1,M = 1)

= Pr[(X11, X12) = (x11, x12), ..., (Xn11, Xn12) = (xn11, xn12)]

=

n1∏
i=1

πxi1xi2
11 (π1 − π11)xi1(1−xi2)(π2 − π11)(1−xi1)xi2(1− π1 − π2 + π11)(1−xi1)(1−xi2)

= π

n1∑
i=1

xi1xi2

11 (π1 − π11)

n1∑
i=1

xi1(1−xi2)
(π2 − π11)

n1∑
i=1

(1−xi1)xi2

(1− π1 − π2 + π11)

n1∑
i=1

(1−xi1)(1−xi2)

= π
n
(1)
11

11 (π1 − π11)x1−n(1)
11 (π2 − π11)y1−n

(1)
11 (1− π1 − π2 + π11)n1−x1−y1+n(1)

11

2. If X1 > s1 or Y1 > t1, then continue to the 2nd stage and enroll additional n2 patients.
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The likelihood function is

L(π1, π2, π11|n1,n2, n
(1)
11 , n

(2)
11 , x1, x2, y1, y2,M = 2)

= π
n
(1)
11 +n

(2)
11

11 (π1 − π11)x1−n
(1)
11 +x2−n(2)

11 (π2 − π11)y1−n
(1)
11 +y2−n(2)

11

× (1− π1 − π2 + π11)n1−x1−y1+n
(1)
11 +n2−x2−y2+n

(2)
11

Summarizing the above 2 scenarios, the likelihood function for a clinical trial with a

two-endpoint two-stage design is

L(π1, π2, π11|n1,n2, n
(1)
11 , n

(2)
11 , x1, x2, y1, y2,M)

= π
n
(1)
11 +n

(2)
11 (M−1)

11 (π1 − π11)(x1−n(1)
11 )+(x2−n(2)

11 )(M−1)(π2 − π11)(y1−n(1)
11 )+(y2−n(2)

11 )(M−1)

× (1− π1 − π2 + π11)(n1−x1−y1+n
(1)
11 )+(n2−x2−y2+n

(2)
11 )(M−1),

and the log-likelihood is

logL(π1, π2, π11)

= [n
(1)
11 + n

(2)
11 (M − 1)] log π11 + [(x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)] log(π1 − π11)

+ [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)] log(π2 − π11)

+ [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)] log(1− π1 − π2 + π11).

The first partial derivatives of the log-likelihood function are

∂ logL(π1, π2, π11)

∂π1
=

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
,

∂ logL(π1, π2, π11)

∂π2
=

(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2 − π11

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
,

∂ logL(π1, π2, π11)

∂π11
=
n

(1)
11 + n

(2)
11 (M − 1)

π11
− (x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)

π1 − π11
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− (y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2 − π11

+
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
.

Let each of the above three equations be zero, then

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
= 0,

(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2 − π11

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
= 0,

n
(1)
11 + n

(2)
11 (M − 1)

π11
− (x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)

π1 − π11

− (y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2 − π11

+
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
= 0.

This implies

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11

=
(y1 − n(1)

11 ) + (y2 − n(2)
11 )(M − 1)

π2 − π11

=
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11

n
(1)
11 + n

(2)
11 (M − 1)

π11
=

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11
.

Hence

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11
=

(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2 − π11

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11
=

(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
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π1 − π11

π11
=

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

=
x1 + x2(M − 1)− [n

(1)
11 + n

(2)
11 (M − 1)]

n
(1)
11 + n

(2)
11 (M − 1)

.

This implies

π2 =
(y1 − n(1)

11 ) + (y2 − n(2)
11 )(M − 1)

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)
(π1 − π11) + π11,

π1 =
x1 + x2(M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

π11,

and

(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

π1 − π11

=
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

1− π1 − π2 + π11
, (4.1)

thus we can express π1 and π2 as functions of π11

π1 =
x1 + x2(M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

π11,

π2 =
y1 + y2(M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

π11.

Plugging these two equations for π1, π2 as functions of π11 back to Equation (4.1) and

keeping only π11, we get

π̂11,MLE =
n

(1)
11 + n

(2)
11 (M − 1)

n1 + n2(M − 1)

=


n
(1)
11
n1
, if M = 1,

n
(1)
11 +n

(2)
11

n1+n2
, if M = 2,

π̂1,MLE =
x1 + x2(M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

π11 =
x1 + x2(M − 1)

n1 + n2(M − 1)

=

 x1
n1
, if M = 1,

x1+x2
n1+n2

, if M = 2.
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π̂2,MLE =
y1 + y2 (M − 1)

n
(1)
11 + n

(2)
11 (M − 1)

π11 =
y1 + y2(M − 1)

n1 + n2 (M − 1)

=


y1
n1
, if M = 1,

y1+y2
n1+n2

, if M = 2.

4.3 Estimation of Confidence region for (π1, π2) in a two-endpoint two-

stage design

Based on Chapter 9 of the textbook “Statistical Inference” by George Casella, there is

a strong correspondence between acceptance regions of hypothesis tests and confidence

sets/regions. So we can obtain a confidence region by inverting a hypothesis test. In this

section, we will propose three types of confidence regions based on the inverses of three

types of likelihood based test statistics − Wald, Score and Likelihood Ratio statistics.

4.3.1 Wald-type confidence region for (π1, π2) in a two-endpoint two-stage

design

The first type of confidence region we considered is created by inverting a Wald statistic.

Under regularity conditions, θ̂MLE is AN(θ, {IT (θ)}−1), i.e.,


π̂1,MLE

π̂2,MLE

π̂11,MLE

 ∼ AN



π1

π2

π11

 ,
∑


where
∑

= {IT (θ)}−1 is a 3×3 variance-covariance matrix.

Throughout this chapter, we will partition the parameter vector θ as follows:

θ
3×1

=

 θ1
2×1

θ2
1×1


where θ2 = π11 is treated as a nuisance parameter, and our parameters of interest is

θ1 =

 π1

π2

 .
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With this partitioning H0 : θT1 = (π1, π2)T = (π1,0, π2,0)T , the Wald statistic is:

Tw = (θ̂1 − θ1,0)T {[IT (θ̂)]−1
(1,1)}

−1(θ̂1 − θ1,0).

In order to derive the Wald statistic, we first need to find the Fisher Information matrix

for the design.

Let θT = [π1, π2, π11], the second derivatives of the log-likelihood function are:

∂2 logL(π1, π2, π11)

∂θ∂θT
=


l′′11 l′′12 l′′13

l′′21 l′′22 l′′23

l′′31 l′′32 l′′33


where

l′′11 = −(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

(π1 − π11)2

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

l′′12 = l′′21 = −(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

l′′13 = l′′31 =
(x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)

(π1 − π11)2

+
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

l′′22 = −(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

(π2 − π11)2

− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

l′′23 = l′′32 =
(y1 − n(1)

11 ) + (y2 − n(2)
11 )(M − 1)

(π2 − π11)2

+
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

l′′33 = −n
(1)
11 + n

(2)
11 (M − 1)

π2
11

− (x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)

(π1 − π11)2

− (y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

(π2 − π11)2
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− (n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2
.

Fisher information matrix is

I(θ) = E

[
−∂

2 logL(π1, π2, π11)

∂θ∂θT

]

= E


−l′′11 −l′′12 −l′′13

−l′′21 −l′′22 −l′′23

−l′′31 −l′′32 −l′′33

 =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 .

Let

η = E(M − 1) = Pr(M = 2) = 1− Pr(M = 1) = 1− PET,

then

E(N) = n1PET + (n1 + n2)(1− PET ) = n1(1− η) + (n1 + n2)η = n1 + n2η,

and we have

I11 = E

[
(X1 −N (1)

11 ) + (X2 −N
(2)
11 )(M − 1)

(π1 − π11)2

+
(n1 −X1 − Y1 +N

(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

=
E(X1 −N (1)

11 ) + E(X2 −N (2)
11 )E(M − 1)

(π1 − π11)2

+
E(n1 −X1 − Y1 +N

(1)
11 ) + E(n2 −X2 − Y2 +N

(2)
11 )E(M − 1)

(1− π1 − π2 + π11)2

=
(n1π1 − n1π11) + (n2π1 − n2π11)η

(π1 − π11)2

+
(n1 − n1π1 − n1π2 + n1π11) + (n2 − n2π1 − n2π2 + n2π11)η

(1− π1 − π2 + π11)2

=
(n1 + n2η)(1− π2)

(π1 − π11)(1 − π1 − π2 + π11)

I12 = I21 = E

[
(n1 −X1 − Y1 +N

(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

=
(n1 − n1π1 − n1π2 + n1π11) + (n2 − n2π1 − n2π2 + n2π11)η

(1− π1 − π2 + π11)2
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=
n1 + n2η

1− π1 − π2 + π11

I13 = I31 = E

[
−(X1 −N (1)

11 ) + (X2 −N (2)
11 )(M − 1)

(π1 − π11)2

−(n1 −X1 − Y1 +N
(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

= − (n1 + n2η)(1− π2)

(π1 − π11)(1 − π1 − π2 + π11)
= −I11

I22 = E

[
(Y1 −N (1)

11 ) + (Y2 −N
(2)
11 )(M − 1)

(π2 − π11)2

+
(n1 −X1 − Y1 +N

(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

=
(n1π2 − n1π11) + (n2π2 − n2π11)η

(π2 − π11)2

+
(n1 − n1π1 − n1π2 + n1π11) + (n2 − n2π1 − n2π2 + n2π11)η

(1− π1 − π2 + π11)2

=
n1 + n2η

π2 − π11
+

n1 + n2η

1− π1 − π2 + π11

=
(n1 + n2η)(1− π1)

(π2 − π11)(1 − π1 − π2 + π11)

I23 = I32 = E

[
−(Y1 −N (1)

11 ) + (Y2 −N (2)
11 )(M − 1)

(π2 − π11)2

−(n1 −X1 − Y1 +N
(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

= − (n1 + n2η)(1− π1)

(π2 − π11)(1 − π1 − π2 + π11)

= −I22

I33 = E

[
N

(1)
11 +N

(2)
11 (M − 1)

π2
11

+
(X1 −N (1)

11 ) + (X2 −N (2)
11 )(M − 1)

(π1 − π11)2

]

+ E

[
(Y1 −N (1)

11 ) + (Y2 −N (2)
11 )(M − 1)

(π2 − π11)2

+
(n1 −X1 − Y1 +N

(1)
11 ) + (n2 −X2 − Y2 +N

(2)
11 )(M − 1)

(1− π1 − π2 + π11)2

]

=
n1π11 + n2π11η

π2
11

+
(n1π1 − n1π11) + (n2π1 − n2π11)η

(π1 − π11)2

+
(n1π2 − n1π11) + (n2π2 − n2π11)η

(π2 − π11)2

+
(n1 − n1π1 − n1π2 + n1π11) + (n2 − n2π1 − n2π2 + n2π11)η

(1− π1 − π2 + π11)2
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= (n1 + n2η)(
1

π11
+

1

π1 − π11
+

1

π2 − π11
+

1

1− π1 − π2 + π11
)

=
(n1 + n2η)(π1π2 + 2π1π2π11 − π2

11 − π1π
2
2 − π2

1π2)

π11(π1 − π11)(π2 − π11)(1− π1 − π2 + π11)

In summary, the Fisher information matrix is

I = (n1 + n2η)
1

π1−π11
+ 1

1−π1−π2+π11

1
1−π1−π2+π11

− 1
π1−π11

− 1
1−π1−π2+π11

1
1−π1−π2+π11

1
π2−π11

+ 1
1−π1−π2+π11

− 1
π2−p11

− 1
1−π1−π2+π11

− 1
π1−π11

− 1
1−π1−π2+π11

− 1
π2−π11

− 1
1−π1−π2+π11

1
π11

+ 1
π1−π11

+ 1
π2−π11

+ 1
1−π1−π2+π11


= (n1 + n2η)

 a+ b b −a− b
b c+ b −c− b

−a− b −c− b d+ a+ c+ b


where

a =
1

π1 − π11
,

b =
1

1− π1 − π2 + π11
,

c =
1

π2 − π11
,

d =
1

π11
.

We have

I−1 =
1

n1 + n2η


ab+ac+bd+cd

abc+abd+acd+bcd
ac−bd

abc+abd+acd+bcd
ab+ac

abc+abd+acd+bcd

ac−bd
abc+abd+acd+bcd

ac+ad+bc+bd
abc+abd+acd+bcd

ac+bc
abc+abd+acd+bcd

ab+ac
abc+abd+acd+bcd

ac+bc
abc+abd+acd+bcd

ab+ac+bc
abc+abd+acd+bcd

 .

Therefore

I−1
(1,1) =

1

n1 + n2η

ab+ ac+ bd+ cd

abc+ abd+ acd+ bcd

=
1

n1 + n2η

×
1

π1−π11
( 1
1−π1−π2+π11

+ 1
π2−π11

) + 1
π11

( 1
1−π1−π2+π11

+ 1
π2−π11

)
1

π1−π11

1
1−π1−π2+π11

( 1
π2−π11

+ 1
π11

) + 1
π2−π11

1
π11

( 1
π1−π11

+ 1
1−π1−π2+π11

)

=
1

n1 + n2η

×
( 1
1−π1−π2+π11

+ 1
π2−π11

)( 1
π1−π11

+ 1
π11

)
1

π11(π1−π11)(π2−π11)(1−π1−π2+π11)
(π11 + (π2 − π11) + (1− π1 − π2 + π11) + (π1 − π11))
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=
1

n1 + n2η

(1−π1)
(π2−π11)(1−π1−π2+π11)

π1
π11(π1−π11)

1
π11(π1−π11)(π2−π11)(1−π1−π2+π11)

=
π1(1− π1)

n1 + n2η

I−1
(2,2) =

1

n1 + n2η

ac+ ad+ bc+ bd

abc+ abd+ acd+ bcd

=
1

n1 + n2η

1
π1−π11

( 1
π2−π11

+ 1
π11

) + 1
1−π1−π2+π11

( 1
π2−π11

+ 1
π11

)
1

π1−π11

1
1−π1−π2+π11

( 1
π2−π11

+ 1
π11

) + 1
π2−π11

1
π11

( 1
π1−π11

+ 1
1−π1−π2+π11

)

=
1

n1 + n2η

( 1
π2−π11

+ 1
π11

)( 1
π1−π11

+ 1
1−π1−π2+π11

)
1

π1−π11

1
1−π1−π2+π11

( 1
π2−π11

+ 1
π11

) + 1
π2−π11

1
π11

( 1
π1−π11

+ 1
1−π1−π2+π11

)

=
1

n1 + n2η

×
1

π11(π2−π11)
(π11 + (π2 − π11))

1
(π1−π11)(1−π1−π2+π11)

((1− π1 − π2 + π11) + (π1 − π11))
1

π11(π1−π11)(π2−π11)(1−π1−π2+π11)
(π11 + (π2 − π11) + (1− π1 − π2 + π11) + (π1 − π11))

=
1

n1 + n2η

π2(1− π2)

1

=
π2(1− π2)

n1 + n2η

I−1
(1,2) = I−1

(2,1) =
1

n1 + n2η

ac− bd

abc+ abd+ acd+ bcd

=
1

n1 + n2η

1
π1−π11

1
π2−π11

− 1
1−π1−π2+π11

1
π11

1
π1−π11

1
1−π1−π2+π11

( 1
π2−π11

+ 1
π11

) + 1
π2−π11

1
π11

( 1
π1−π11

+ 1
1−π1−π2+π11

)

=
1

n1 + n2η

1
π11(π1−π11)(π2−π11)(1−π1−π2+π11 )

(π11 × (1− π1 − π2 + π11)− (π1 − π11)(π2 − π11))

1
π11(π1−π11)(π2−π11)(1−π1−π2+π11)

(π11 + (π2 − π11) + (1− π1 − π2 + π11) + (π1 − π11))

=
1

n1 + n2η

π11 − π1π11 − π2π11 + π2
11 − π1π2 + π1π11 + π2π11 − π2

11

1

=
π11 − π1π2

n1 + n2η

MLEs and the Fisher Information matrix can now be plugged in to construct the Wald

test statistic under H0 : (π1, π2)T = (π1,0, π2,0)T :

Tw = (θ̂1 − θ1,0)T {[IT (θ̂)]−1
(1,1)}

−1(θ̂1 − θ1,0) (4.2)

=
(
π̂1 − π1, π̂2 − π2

) π̂1(1−π̂1)
n1+n2η̂

π̂11−π̂1π̂2
n1+n2η̂

π̂11−π̂1π̂2
n1+n2η̂

π̂2(1−π̂2)
n1+n2η̂

−1 π̂1 − π1

π̂2 − π2


=

n1 + n2η̂

π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

(
π̂1 − π1, π̂2 − π2

)
×

 π̂2(1− π̂2) −(π̂11 − π̂1π̂2)

−(π̂11 − π̂1π̂2) π̂1(1− π̂1)

 π̂1 − π1

π̂2 − π2


=

n1 + n2η̂

π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

{
π̂2(1− π̂2)(π̂1 − π1)2
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−2(π̂1 − π1)(π̂2 − π2)(π̂11 − π̂1π̂2) + π̂1(1− π̂1)(π̂2 − π2)2
}

where η̂ = 1− P̂ET = 1−
∑s1

x=0

∑t1
y=0 p(x, y;n1, π̂1, π̂2, π̂11), and for simplicity of notations

we dropped the subscript ‘MLE’ in the MLE estimators in Tw and also from now on, i.e.,

π̂i = π̂i,MLE for i = 1, 2, likewise the convention will apply to other MLE estimators as well.

Under regularity conditions, we have

Tw
·∼ χ2

2

The confidence region then can be constructed by inverting a hypothesis test based on the

acceptance region at level α. Therefore, an approximate 100(1-α)% Wald-type confidence

region for (π1, π2) is the ellipse determined by all (π1, π2) such that

Tw ≤ χ2
2,1−α.

For instance, when α = 0.05, χ2
2,1−α = 5.991. The approximate 95% Wald-type confi-

dence region for (π1, π2) is an ellipse consisting of all (π1, π2) satisfying

π̂2(1− π̂2)(π̂1 − π1)2 − 2(π̂1 − π1)(π̂2 − π2)(π̂11 − π̂1π̂2) + π̂1(1− π̂1)(π̂2 − π2)2

≤ 5.991 ∗ π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

n1 + n2η̂
.

When we get the data and plug in the MLEs, the above inequality represents an ellipse.

But when π̂2 = 0 or π̂2 = 1 or π̂1 = 0 or π̂1 = 1 or π̂2 = π̂1 = π̂11, the above inequality no

longer represents a whole ellipse.

An example of an approximate 95% Wald-type confidence region (CR) for a simulated

data (assuming true (π1, π2, π11) = (0.05, 0.25, 0.03)): (x1, x, y1, y, n
(1)
11 , n

(2)
11 ) = (3, 5, 2, 7, 1, 2)

from the optimal design (n, n1, s1, t1, s, t) = (25, 12, 1, 1, 3, 3), is shown in Figure 4.1.

In simulation studies, some confidence regions are of a complete ellipse shape, just like

Figure 4.1 shows. However, there are some special cases we only have a partial ellipse as

shown in Figure 4.2. The occurrence of incomplete ellipse patterns shown in Figure 4.2 is

because the approximate 95% Wald-type confidence ellipse is constrained by the fact that
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Figure 4.1: The approx. 95% Wald-type Confidence Region for (π1, π2) for a simulated data
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Figure 4.2: Some special examples for the approx. 95% Wald-type CRs from simulations
(upper): Pattern 1.1 Pattern 2.1 Pattern 2.2
(bottom): Pattern 2.3 (left: scenario 1; right: scenario 2)
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the range for both π1 and π2 is [0, 1]. So in the event a Wald-type confidence region was

partially outside of the parameter space, we truncated that region to only contain values in

the unit square.

4.3.2 Score-type confidence region for (π1, π2) in a two-endpoint two-stage

design

The second asymptotic confidence region we propose is created by inverting a Score test

statistic. Recall that the Score test statistic is:

Ts = S1(θ̃)T {IT (θ̃)−1}(1,1)S1(θ̃),

where θ̃ is the MLE of θ under H0, that is,

θ̃ =


π̃1

π̃2

π̃11

 =


π1,0

π2,0

π̃11

 ,

and π̃11 is a value of π11 from the range max(0, π1,0 + π2,0 − 1) ≤ π11 ≤ min(π1,0, π2,0)

such that it maximizes the log-likelihood function logL(π1,0, π2,0, π11) under H0. Under

regularity conditions, we have

Ts
·∼ χ2

2

The construction of a Score-type confidence region is shown in the following four steps:

Step 1: Solve for π̃11

There are two methods to get π̃11: method 1 is to find the solution that maximizes the

likelihood, for example using “optimize” function in R, and method 2 is solving π̃11 from

the cubic equation from the score equation. The details of method 2 are as follows.

The log-likelihood function is

logL(π1, π2, π11)

= [n
(1)
11 + n

(2)
11 (M − 1)] log π11 + [(x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)] log(π1 − π11)
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+ [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)] log(π2 − π11)

+ [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)] log(1− π1 − π2 + π11).

Under H0:  π1

π2

 =

 π1,0

π2,0

 ,

the MLE of the nuisance parameter π11, π̃11, can be found by solving the corresponding

score equation

∂ logL(π1,0, π2,0, π11)

∂π11
= 0.

That is

0 =
n

(1)
11 + n

(2)
11 (M − 1)

π11
− (x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)

π1,0 − π11

− (y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)

π2,0 − π11

+
(n1 − x1 − y1 + n

(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)

(1− π1,0 − π2,0 + π11)
,

0 =
1

π11(π1,0 − π11)(π2,0 − π11)(1− π1,0 − π2,0 + π11)

× {[n(1)
11 + n

(2)
11 (M − 1)](π1,0 − π11)(π2,0 − π11)(1− π1,0 − π2,0 + π11)

− [(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)]π11(π2,0 − π11)(1− π1,0 − π2,0 + π11)

− [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)]π11(π1,0 − π11)(1− π1,0 − π2,0 + π11)

+ [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)]

× π11(π1,0 − π11)(π2,0 − π11)},

0 = [n
(1)
11 + n

(2)
11 (M − 1)](π1,0 − π11)(π2,0 − π11)(1− π1,0 − π2,0 + π11)

− [(x1 − n(1)
11 ) + (x2 − n(2)

11 )(M − 1)]π11(π2,0 − π11)(1− π1,0 − π2,0 + π11)

− [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)]π11(π1,0 − π11)(1− π1,0 − π2,0 + π11)

+ [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)]

× π11(π1,0 − π11)(π2,0 − π11).
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Let

A = [n
(1)
11 + n

(2)
11 (M − 1)], B = [(x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)],

C = [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)],

D = [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)],

then the above equation can be represented as:

0 = A(π1,0 − π11)(π2,0 − π11)(1− π1,0 − π2,0 + π11)

−Bπ11(π2,0 − π11)(1− π1,0 − π2,0 + π11)− Cπ11(π1,0 − π11)(1− π1,0 − π2,0 + π11)

+Dπ11(π1,0 − π11)(π2,0 − π11)

= (A+B + C +D)π3
11

+ {A(1− π1,0 − π2,0 − π1,0 − π2,0) +B(1− π1,0 − π2,0 − π2,0)

+ C(1− π1,0 − π2,0 − π1,0) −D(π1,0 + π2,0)}π2
11

+ {A(π1,0π2,0 − (π1,0 + π2,0)(1− π1,0 − π2,0))−Bπ2,0(1− π1,0 − π2,0)

− Cπ1,0(1− π1,0 − π2,0) +Dπ1,0π2,0}π11

+Aπ1,0π2,0(1− π1,0 − π2,0)

= (A+B + C +D)π3
11

+ π2
11{(A+B + C)− π1,0(2A+B + 2C +D)− π2,0(2A+ 2B + C +D)}

+ π11{π2
1,0(A+ C) + π2

2,0(A+B) + π1,0π2,0(3A+B + C +D)− π1,0(A+ C)

− π2,0(A+B)}+Aπ1,0π2,0(1− π1,0 − π2,0).

We have

A+B + C +D = n
(1)
11 + n

(2)
11 (M − 1) + [(x1 − n(1)

11 ) + (x2 − n(2)
11 )(M − 1)]

+ [(y1 − n(1)
11 ) + (y2 − n(2)

11 )(M − 1)]

+ [(n1 − x1 − y1 + n
(1)
11 ) + (n2 − x2 − y2 + n

(2)
11 )(M − 1)]

= n1 + (M − 1)n2,
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A+B + C = (x1 + y1 − n(1)
11 ) + (M − 1)(x2 + y2 − n(2)

11 ),

2A+B + 2C +D = n1 + (M − 1)n2 + n
(1)
11 + n

(2)
11 (M − 1) + [(y1 − n(1)

11 )

+ (y2 − n(2)
11 )(M − 1)]

= n1 + y1 + (M − 1)(n2 + y2),

2A+ 2B + C +D = n1 + (M − 1)n2 + n
(1)
11 + n

(2)
11 (M − 1) + [(x1 − n(1)

11 )

+ (x2 − n(2)
11 )(M − 1)]

= n1 + x1 + (M − 1)(n2 + x2),

A+ C = y1 + (M − 1)y2, A+B = x1 + (M − 1)x2,

3A+B + C +D = n1 + (M − 1)n2 + 2[n
(1)
11 + n

(2)
11 (M − 1)]

= (n1 + 2n
(1)
11 ) + (M − 1)(n2 + 2n

(2)
11 ).

After re-arrangement, the above equation can be expressed in the format of

aπ3
11 + bπ2

11 + cπ11 + d = 0

where

a = n1 + (M − 1)n2,

b = −π1,0[(y1 + n1) + (M − 1)(y2 + n2)]− π2,0[(x1 + n1) + (M − 1)(x2 + n2)]

+ [(x1 + y1 − n(1)
11 ) + (M − 1)(x2 + y2 − n(2)

11 )],

c = π1,0π2,0[(n1 + 2n
(1)
11 ) + (M − 1)(n2 + 2n

(2)
11 )]− π2,0(1− π2,0)[x1 + (M − 1)x2]

− π1,0(1− π1,0)[y1 + (M − 1)y2],

d = π1,0π2,0(1− π1,0 − π2,0)[n
(1)
11 + (M − 1)n

(2)
11 ].

For cubic equation ax3 + bx2 + cx+ d = 0, the solution is

x = {q + [q2 + (r − p2)3]1/2}1/3 + {q − [q2 + (r − p2)3]1/2}1/3 + p
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where

p = − b

3a
, q = p3 +

bc− 3ad

6a2
, r =

c

3a

i.e.

x =
3

√√√√(− b3

27a3
+

bc

6a2
− d

2a

)
+

√(
− b3

27a3
+

bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

+
3

√√√√(− b3

27a3
+

bc

6a2
− d

2a

)
−

√(
− b3

27a3
+

bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

− b

3a

This is an explicit solution formula for π̃11 from a cubic equation. With the help

of a computer, the complicated-looking roots, which may contain complex numbers, can

be obtained. If the solution for π̃11 from the cubic equation does not fall in the range

{max(0, π1,0 +π2,0− 1) ≤ π11 ≤ min(π1,0, π2,0)}, then check the boundaries of the range for

π11.

Step 2: Derive the Score statistic after getting π̃11

By inverting the Score-type test statistic, an approximate 100(1− α) % Score-type con-

fidence region for (π1, π2) is the region determined by all (π1, π2) such that

S1(θ̃)T {IT (θ̃)−1}(1,1)S1(θ̃) ≤ χ2
2,1−α,

that is, {
(π1, π2)|Ts = S1(θ̃)T {IT (θ̃)−1}(1,1)S1(θ̃) ≤ χ2

2,1−α

}
.

Let

A =
(x1 − n(1)

11 ) + (M − 1)(x2 − n(2)
11 )

π1 − π̃11

B =
(y1 − n(1)

11 ) + (M − 1)(y2 − n(2)
11 )

π2 − π̃11

C =
(n1 − x1 − y1 + n

(1)
11 ) + (M − 1)(n2 − x2 − y2 + n

(2)
11 )

1− π1 − π2 + π̃11
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then

Ts = S1(θ̃)T {IT (θ̃)−1}(1,1)S1(θ̃)

=

 (x1−n(1)
11 )+(M−1)(x2−n(2)

11 )
π1 −π̃11 − (n1−x1−y1+n

(1)
11 ) +(M−1)(n2−x2−y2+n

(2)
11 )

1−π1−π2 +π̃11
(y1−n(1)

11 )+(M−1)(y2−n(2)
11 )

π2 −π̃11 − (n1−x1−y1+n
(1)
11 ) +(M−1)(n2−x2−y2+n

(2)
11 )

1−π1−π2 +π̃11

T

×

 π1(1−π1)
n1+n2η

π̃11−π1π2
n1+n2η

π̃11−π1π2
n1+n2η

π2(1−π2)
n1+n2η


×

 (x1−n(1)
11 )+(M−1)(x2−n(2)

11 )
π1 −π̃11 − (n1−x1−y1+n

(1)
11 ) +(M−1)(n2−x2−y2+n

(2)
11 )

1−π1−π2 +π̃11
(y1−n(1)

11 )+(M−1)(y2−n(2)
11 )

π2 −π̃11 − (n1−x1−y1+n
(1)
11 ) +(M−1)(n2−x2−y2+n

(2)
11 )

1−π1−π2 +π̃11


=

1

n1 + n2η

(
A− C B − C

) π1(1− π1) π̃11 − π1π2

π̃11 − π1π2 π2(1− π2)

 A− C

B − C


=

1

n1 + n2η
{(A− C)2π1(1− π1) + 2(A− C)(B − C)(π̃11 − π1π2)

+ (B − C)2π2(1− π2))}

Since π̃11 does not have a simple form and is a function of (π1,0, π2,0), and also η is a

function of (π1,0, π2,0, π̃11), there is no simple form for the Score statistic Ts. We can use the

grid searching method to find the asymptotic Score-type Confidence Region numerically.

The process for locating the Score-type confidence region for (π1, π2) based on the ob-

served data through grid searching is as follows.

1. For the observed data (M,x1, x, y1, y, n
(1)
11 , n

(2)
11 ) with the design (n, n1, s1, t1), divide

the parameter space for (π1, π2) into small grids. At each grid point of (π1, π2), solve

for π̃11 , either through the cubic equation

aπ3
11 + bπ2

11 + cπ11 + d = 0,

or through the R function “optimize( )” (preferring the latter method).

2. Then η can be calculated since η is a function of (π1, π2, π̃11), i.e.,

η(π1, π2, π̃11) = 1− PET = 1−
s1∑
x=0

t1∑
y=0

p(x, y;n1, π1, π2, π̃11).
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Figure 4.3: Sketch of the division of the parameter space for (π1, π2) into small grids

3. Calculate the Score test statistic Ts at this grid point. If Ts ≤ χ2
2,1−α, then the

current grid point is within the Score-type confidence region. Otherwise, the current

grid point is not part of the Score-type confidence region.

4. Repeat Step (1)− (3) for each grid point of (π1, π2).

After exhaustive grid searching, and if the grid is sufficiently small, the Score-type

confidence region will consist of those grid points satisfying Ts ≤ χ2
2,1−α.

The following Figure 4.4 exemplifies the located Score-type confidence region by grid

searching for the simulated dataset (M,x1, x2, y1, y2, n
(1)
11 , n

(2)
11 ) = (2, 16, 15, 15, 20, 11, 11),

which is generated from the design (π1, π2, n, n1, s1, t1) = (0.4, 0.6, 60, 23, 11, 16) assuming

π11 = 0.3.

Since for each simulated dataset, each of the grid points in the parameter space for

(π1, π2) will be checked to see whether the Score statistic at that point satisfying Ts ≤ χ2
2,1−α

and then decide whether that grid point is part of the Score-type CR, so the time cost for

locating a Score-type CR is higher than that for locating a Wald-type CR.



90

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

95% Score−type Confidence region(CR) for data 

(M, x1, x2, y1, y2, n11_1, n11_2)=(2, 16, 15, 15, 20, 11, 11) generated from the design 

(p1, p2, p11, n, n1, s1, t1)=(0.4, 0.6, 0.3, 60, 23, 11, 16)

p1.grid

p
2
.g

ri
d

Figure 4.4: 95% Score-type Confidence Region for (π1, π2) for a simulated dataset

4.3.3 Likelihood ratio type confidence region for (π1, π2) in a two-endpoint

two-stage design

The third asymptotic confidence region we propose is created by inverting a Likelihood ratio

test statistic. The Likelihood ratio statistic is:

TLR = −2 log

sup
θ∈H0

L(θ|Y )

sup
θ∈Θ

L(θ|Y )
= −2(l(θ̃|Y )− l(θ̂|Y )),
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where θ̃ is the MLE of θ under H0, that is,

θ̃ =


π̃1

π̃2

π̃11

 =


π1,0

π2,0

π̃11

 ,

and π̃11 maximize log-likelihood(π1,0, π2,0, π11) under H0 in the range of max(0, π1,0 +π2,0−

1) ≤ π11 ≤ min(π1,0, π2,0). Under regularity conditions, we have

TLR
·∼ χ2

2.

When the data at hand implies the MLE estimates under the whole sample space such that

π̂11 = π̂1 = π̂2,

then the statistic TLR is undefined. So in simulation studies later, when calculating coverage

probability of LR-type CRs and the expected area of the LR-type CRs, such datasets will

be excluded.

Since π̃11 is involved, we can also use the strategy of grid searching to locate the asymp-

totic Likelihood ratio-type Confidence Region numerically. The process is very similar to

that described in the section of locating a Score-type confidence region.

The following Figure 4.5 exemplifies the located Likelihood ratio-type confidence region

by grid searching for the simulated dataset

(M,x1, x2, y1, y2, n
(1)
11 , n

(2)
11 ) = (2, 11, 12, 20, 24, 4, 6),

which is generated from the design (π1, π2, n, n1, s1, t1) = (0.35, 0.45, 87, 37, 9, 13) assuming

π11 = 0.18.
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Figure 4.5: 95% Likelihood ratio-type Confidence Region for (π1, π2) for a simulated dataset

4.3.4 Comparison of Wald-type, Score-type and LR-type confidence re-

gions

Coverage probability and expected area are used as evaluation criteria to compare the

performance of Wald-type, Score-type and LR-type confidence region estimators.

Criterion I. Coverage probability

The region R (X) is said to be a 100(1− α)% confidence region if,

P [R(X) will cover the true θ] = 1− α.

This probability is calculated under the true, but unknown, value of θ.
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The actual coverage probability (CP) of a confidence region can be calculated as:

CP =
∑

all possible (m,x,y)

ICR(π1, π2)f(m,x, y|π1, π2)

where ICR(π1, π2) is an indicator function that is equal to 1 if the true (π1, π2) lies in the

region CR, and equal to 0 otherwise; and f(m,x, y|π1, π2) is the probability mass function

for the random vector (M,X, Y ). Given the impracticality of summing over infinitely

many values of (M,X, Y ), we estimate the coverage probability of each confidence region

using a Monte Carlo simulation, rather than exact theoretical calculation. The schema of

calculating the coverage probability of each type of confidence region is shown in Figure

4.6.

Figure 4.6: Schema of Calculating the Coverage Prob. of each type of CR

After choosing some representative optimal designs from Table 3.6 to 3.9, and considering
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the scenarios of low/medium/high positive correlation between the two alternative binary

efficacy endpoints, where the level of correlation can be described by π11 or the correlation

coefficient ρ, the coverage probabilities of the Wald-type, Score-type and Likelihood ratio-

type CRs were calculated and compared using simulation sample size = 1000. The results

are in Table 4.1.

Because discrete random variables can only take on specified values, the correction for

continuity adjustment is employed. Since only Wald test statistic has closed form, the

continuity correction is only applied to Wald statistic by plugging in (θ̂1 − θ1,0 − cc) to

the underlined parts: Tw = (θ̂1 − θ1,0)T {[IT (θ̂)]−1
(1,1)}

−1(θ̂1 − θ1,0). Four different factors

for continuity correction were tried in the position of “cc”: cc1 = −ccf, cc2 = ccf, cc3 =

2× ccf, cc4 = −2× ccf , where

ccf =
1

2× [n1 + n2(M − 1)]

based on Tsai et al. (2008).
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Observation in Table 4.1: Similar to the phenomenon observed by many other

researchers, the coverage probability of the Wald-type CR is below the nominal confi-

dence level for this two-endpoint two-stage design. The calculation result shows that using

cc4 = −2 × ccf has slightly better improvement on the coverage probability of Wald-type

CR (Table 4.1). The factor “2” in cc4 may be due to that we have two endpoints here,

and the minus sign in cc4 may be justified by the fact that the MLEs (sample proportion)

are always negatively biased (Jung and Kim, 2004). It is unusual to see that the coverage

probability of the Score-type CR is so unstable. In some cases, the coverage probability of

the Score-type CR is much better than that of Wald-type CR; while in some other cases,

the coverage probability of Score-type CR is really small. The overall coverage probability

of the LR-type CR is good.

Criterion II. Expected Area

A. Calculation of the expected area of Wald-type CRs

The area of one Wald-type confidence region(an ellipse) for an observed dataset can

be regarded as an area between two curves, which can be calculated as the integral of

“top curve minus bottom curve”. Suppose the upper and lower curves can respectively be

expressed as:

upper curve: Y = F (x)

lower curve: Y = G(x)

and the two curves intersect at two end points (aL,F (aL)) and (aR,F (aR))(as shown in

Figure 4.7),

then

Area between two curves =

∫ aR

aL

[F (x)−G(x)]dx,

where aL and aR are the solutions for F (x) = G(x).
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x

y

Y=G(x)

Y=F(x)

aL aR

Figure 4.7: Calculation of the area between two curves

Suppose the equation outlining the Wald-type confidence region/ellipse is

ax2 + bxy + cy2 = d,

then we have

cy2 + bxy + (ax2 − d) = 0, (4.3)

y =
−bx±

√
(bx)2 − 4c(ax2 − d)

2c
.

This implies

F (x) =
−bx+

√
(bx)2 − 4c(ax2 − d)

2c
,

G(x) =
−bx−

√
(bx)2 − 4c(ax2 − d)

2c
.

Therefore aL and aR are essentially the solutions of (bx)2 − 4c(ax2 − d) = 0.

aL = −
√

4cd

4ac− b2
,

aR =

√
4cd

4ac− b2
.
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Recall that the equation outlining the ellipse of a 95% Wald-type confidence region is

5.991 =
n1 + n2η̂

π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

{
π̂2(1− π̂2)(π̂1 − π1)2

−2(π̂1 − π1)(π̂2 − π2)(π̂11 − π̂1π̂2) + π̂1(1− π̂1)(π̂2 − π2)2
}
.

After re-arrangement, it can be written as

0 = [π̂1(1− π̂1)]π2
2 + 2π2{π̂1π̂11 − π̂1π̂2 − π1π̂11 + π1π̂1π̂2}

− 5.991
π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

n1 + n2η̂

+ π̂1π̂2(π̂1 − 2π̂11 + π̂2) + 2π1π̂2(π̂11 − π̂1) + π̂2(1− π̂2)π2
1.

If we use the notation in formula (4.3) and let y = π2, then

c = π̂1(1− π̂1)

bx = 2{π̂1π̂11 − π̂1π̂2 − π1π̂11 + π1π̂1π̂2}

ax2 − d = −5.991
π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

n1 + n2η̂

+ π̂1π̂2(π̂1 − 2π̂11 + π̂2) + 2π1π̂2(π̂11 − π̂1) + π̂2(1− π̂2)π2
1.

Thus

F (π1) =
−2{π̂1π̂11 − π̂1π̂2 − π1π̂11 + π1π̂1π̂2}+

√
∆(π1)

2π̂1(1− π̂1)
,

G(π1) =
−2{π̂1π̂11 − π̂1π̂2 − π1π̂11 + π1π̂1π̂2} −

√
∆(π1)

2π̂1(1− π̂1)
,

where

∆(π1) = 4{π̂1π̂11 − π̂1π̂2 − π1π̂11 + π1π̂1π̂2}2

− 4π̂1(1− π̂1){π̂1π̂2(π̂1 − 2π̂11 + π̂2) + 2π1π̂2(π̂11 − π̂1)

+ π̂2(1− π̂2)π2
1 − 5.991

π̂1π̂2(1− π̂1)(1− π̂2)− (π̂11 − π̂1π̂2)2

n1 + n2η̂
}
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Solutions of ∆(π1) = 0 are aL and aR, therefore

Area of a Wald-type CR =

∫ aR

aL

[F (π1)−G(π1)]dπ1 =
1

π̂1(1− π̂1)

∫ aR

aL

√
∆(π1)dπ1.

When the approximate 95% Wald-type CR is a complete ellipse, locate the two inter-

section points of the two curves (aL,F (aL)) and (aR,F (aR)) and then use the above formula

to calculate the area of the ellipse. This is straightforward.

However, when the Wald-type CR is close to the boundaries, the confidence region may

be an incomplete ellipse, such as one of the patterns in Figure 4.2. In such cases, we need

to identify the pattern first, locate the points intersecting with the x-axis and y-axis, and

then use the above formula accordingly to calculate the area of the incomplete ellipse. Then

the expected area (EA) of Wald-type CRs in one simulation with 1000 simulated datasets

is the average of the areas of all Wald-type CRs, each CR from one simulated dataset.

B. Calculation of the expected area of Score-type and LR-type CRs.

For the calculation of the area of a Score-type (or LR-type) confidence region, employ

the strategy of grid searching as mentioned previously , and then use the proportion of the

total grid points within the Score-type (or LR-type) confidence region as an approximation

to the area of the Score-type (or LR-type) CR, that is,

Area of a Score-type (or LR-type) CR ≈
number of grids satisfying T ≤ χ2

2,1−α
total number of grid points

.

Thus the expected area (EA) of Score-type (or LR-type) CRs is just the average of areas

of Score-type (or LR-type) CRs, with each CR derived from one simulated dataset.

C. Comparison of the expected area among Wald-, Score-, and LR-type CRs

The following Figure 4.8 is a graphical comparison among the three types of confidence

regions in two different scenarios under the same design: an early stop trial(M = 1) and

a trial continuing to the second stage (M = 2). A numerical comparison of the expected

areas (EA) among Wald-, Score-, LR-type confidence regions is shown in Table 4.2. The

corresponding coverage probability (CP) is shown in parentheses. We only chose some

optimal designs with relatively good coverage probabilities to do EA comparison.
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Figure 4.8: Comparison of 95% Score-type(yellow points), LR-type(blue points), and Wald-type
(red line) Confidence Regions for (π1, π2) based on different simulated datasets, which were generated
from the same design parameters
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Observations in Figure 4.8 and Table 4.2

From Figure 4.8, it seems that when M = 2, the Score-type CR is the smallest, and that

when M = 1 (the trial stops early at stage 1), the Wald-type CR is the smallest. Based on

Table 4.2, when the proportion of the total randomly generated datasets with early stopping

(i.e. M = 1) is high, the expected area of the Score-type CR will become much larger. This

may be explained part by Figure 4.8. The expected areas between Wald-type and LR-type

CRs are comparable in general.

In summary, when taking both coverage probability and expected area into account, the

Likelihood ratio-type CR performs best: with good coverage probability and comparable

expected area. The Likelihood ratio-type CR is a compromise between the Wald-type and

Score-type CRs. In general, the Likelihood ratio-type CR is recommended.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation has developed a two-stage optimal design for a single-arm phase II cancer

clinical trial with two alternative binary primary efficacy endpoints under a variety of pa-

rameter settings. Since the two alternative primary efficacy endpoints within a patient are

correlated, the inclusion of the nuisance correlation parameter has made the joint distribu-

tion and the power function more complicated for the study design in terms of controlling

both Type I and II error constraints of the study. Sill et al. (2012) has mentioned the

necessity of considering the case with two alternative primary efficacy endpoints although

they used different terminology. They only considered three relatively extreme cases for

the correlation parameter: independent, partially and fully dependent. This dissertation,

however, has considered all possible values of this correlation parameter since we may not

have much information about this nuisance correlation parameter at the design stage and

we want to be conservative.

This thorough consideration on the correlation parameter has made whole searching

process for optimal designs very computation-intensive and the time cost is very expensive.

Due to the time cost of the searching process, the resulting designs we got may not be the

globally optimal ones though it is sub-optimal. The resulting designs show that the corre-

lation parameter may assume different values to achieve the maximized type I error rate,

the minimized powers, the minimum of the maximized value among all possible expected

sample sizes under H0.

The optimal two-stage designs and the corresponding operating characteristics listed in

Tables 3.6 to 3.9 can be referenced when planning a phase II cancer clinical trial with two

binary alternative primary efficacy endpoints.
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Although the primary goal of phase II cancer trials is testing whether the new treatment

has sufficient anti-tumor activity for further development, obtaining estimates of the true

event rates for the two binary alternative primary efficacy endpoints is also of interest, espe-

cially when the trial is deemed successful to go to Phase III. In this dissertation, we derived

the most intuitive and commonly used point estimators, maximum likelihood estimators

(MLE), for the true event rates for the two binary alternative primary efficacy endpoints.

We also proposed three types of confidence regions for (π1, π2) based on the inverses of three

types of likelihood based test statistics — Wald, Score and Likelihood Ratio statistics. The

Wald-type confidence region for (π1, π2) is of a closed form, while Score-type and Likelihood

ratio-type CRs are located using grid searching method.

The performance of the three types of confidence regions is compared using simulation

data and the evaluation criteria include coverage probability and expected area. The cover-

age probability of the Wald-type confidence region is below the nominal confidence level for

this two-endpoint two-stage design, which is similar to the phenomenon observed by many

other researchers. The coverage probability of Score-type confidence region fluctuates: in

some cases it is much better than that of Wald-type confidence region; while in some other

cases, it is really small. The coverage probability of the likelihood ratio-type confidence

region is good in general.

The expected areas between the Wald-type and the likelihood ratio-type confidence

regions are comparable in general. If it is more likely for the trial to stop early, the expected

area of the Wald-type confidence region is the smallest among the three, and the expected

area of the Score-type confidence region is the largest (actually dramatically large). If it

is more likely for the trial to continue to the second stage, the expected areas of the three

types of confidence regions are similar.

All the three types of confidence regions are derived based on asymptotic distributions.

It seems that the Score-type confidence region is more conservative and more sensitive to

small sample size in Phase II cancer clinical trials.

In conclusion, when taking both coverage probability and expected area into account, the

likelihood ratio-type confidence region performs best among the three: with good coverage

probability and comparable expected area. The likelihood ratio-type confidence region
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is a compromise between the Wald-type and Score-type confidence regions. In general,

the likelihood ratio-type confidence region is recommended for this two-endpoint two-stage

design.

5.2 Future Work

In addition to the optimal two-stage design proposed in this dissertation, minimax two-

stage design can also be considered for the same research question by changing one of the

optimality criteria of minimizing E(N |H0) into minimizing the maximum sample size. In

some cases, the “minimax” design may be more attractive than the optimal design with

minimum expected sample size. This will be the case when the difference in expected sample

sizes is small and the patient accrual rate is low (Simon, 1989).

The sample size for stage 2 in the currently proposed design is pre-specified. An adaptive

design, which allows the sample size of the second stage to depend on the results from the

first stage n2(R), where R is the number of responses in the first stage, can be further

considered for the same research question with two alternative primary efficacy endpoints.

Banerjee and Tsiatis (2006) is a good reference for this.

The maximum likelihood estimators(MLE) are usually the first type of point estimators

for consideration. There is no best estimator and each type of estimator has its own advan-

tages and disadvantages. The MLE for (π1, π2) in the two-stage design here is negatively

biased. Other point estimators such as bias reduced estimators and conditional MLEs can

be explored and compared. Conditional MLEs are of special interest because conditional

estimator may reduce bias and variance given

V ar(X) = V ar(E(X|Y )) + E(V ar(X|Y )).

Tsai et al. (2008) can be a reference and a starting point.

The proposed confidence regions are now based on asymptotic distributions, and the

exact confidence regions based on Clopper-Pearson method and Sterne method can be

further considered.
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The proposed design and inference methods can be generalized from currently two end-

points to more than two endpoints.
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