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    Alcohol exposure during gestation increases susceptibility to the development 

of pituitary tumors in response to estrogen in rat offspring. While the mechanism 

underlie this effect is not fully understood, serum estradiol (E2) and pituitary 

aromatase mRNA expression are increased in fetal alcohol exposed (FAE) 

offspring, which suggests a role for the estrogen axis. To test our hypothesis, 

pregnant Fischer 344 rats were fed between gestational days 7 and 21 with a 

liquid diet containing alcohol (AF), pair-fed with isocaloric liquid diet (PF), or fed 

rat chow (AD). At 60 days of age, animals were ovariectomized and received a 

subcutaneous estradiol implant. Rats were sacrificed at various times point after 

estradiol implantation. At the time of sacrifice, pituitaries of these animals were 

inspected for tumor growth. Estradiol treatment time-dependently increased 

pituitary weight in AF group as compared to AD and PF groups. After 120 days of 
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estradiol treatment, inspection of the pituitary revealed that most tumors in the 

AF group were hemorrhagic and showed expansion to the surrounding tissue. 

Pituitary tumors from FAE offspring showed strong nuclear p53 and Ki67 

expression. Significantly higher mRNA levels of hemorrhage-associated genes 

and proteins (PTTG, FGF4 and MMP-9) and multipotency genes and proteins 

(SOX2, Oct4 and CD133) were also observed in pituitary tumor tissues from AF 

group as compared with PF and AD groups. To test whether FAE enhances the 

population of cancer stem cells (CSCs) in the pituitary in response to estradiol, 

pituitaries were collected, and plated in ultra-low plates to promote pituisphere 

formation. The growing spheres were enzymatically dissociated to permit serial 

passaging.  Assessment of a panel of genes related to multipotency (OCT4, 

NANOG, KLF4, SOX2, CD133, CD44, nestin and CD34) indicated that mRNA 

and protein expression of most of these genes was significantly higher in pituitary 

cells derived from spheres of AF animals as compared to AD. Pituitary cells 

derived from spheres of AF animals showed higher cell proliferation, migration 

and colony formation rates as compared to the control group. The pituitary cells 

derived from AF spheres were able to grow in immunodeficient mice. These data 

suggest that alcohol feeding enhances pituitary tumor development, and may 

program the pituitary to express pluripotent and growth promoting molecules 

under the estrogenic influence to induce aggressive pituitary tumor.  
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Chapter 1 

Review of the Literature 

1- History of fetal alcohol disorder  

    In 1973, James and Smith observed that alcoholic mothers could give birth to children 

with morphological defects and developmental delays, which they termed fetal alcohol 

syndrome (FAS) (Christoffel and Salafsky 1975; Jones and Smith 1973). FAS defects 

include a set of facial anomalies that consist of short eyelid openings (palpebral fissures), 

flat midface, thin upper lip, and a flat or smooth groove between nose and upper lip 

(philtrum). The children diagnosed with FAS also exhibited growth retardation and 

significant cognitive and/or behavioral problems (Bhuvaneswar, et al. 2007; Jacobson 

and Jacobson 2002).  

   In the 1980s scientists defined a new clinical term called fetal alcohol effect (FAE) 

(Sokol and Clarren 1989).  FAE is a general description for children who were previously 

exposed to alcohol during embryonic development without showing facial abnormalities, 

growth retardation, or brain damage. However, these children later showed some 

behavioral abnormalities and difficulties in learning and speaking later in life (Aase, et al. 

1995; Clarren and Smith 1978). This made scientists classify them under the category of 

fetal alcohol effect.  

    In 1996, the United States’ Institute of Medicine (IOM) defined five categories of 

FAE: FAS with and without confirmed alcohol exposure, partial FAS (pFAS), alcohol-

related neurodevelopmental disabilities (ARND) and alcohol-related birth defects 

(ARBD) (Benz, et al. 2009; Quick 1996). pAE refers to individuals who develop some 
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facial abnormalities and either growth, central nervous system (CNS) deficits, or a 

complex pattern of behavioral or cognitive abnormalities. ARND refers to those with 

CNS deficits or a complex pattern of behavioral or cognitive abnormalities, while ARBD 

includes individuals with congenital physical abnormalities (Benz et al. 2009).  

    In 2005 Hoyme et al. (Hoyme, et al. 2005) resolved the ambiguous points of IOM 

classification by defining Fetal alcohol spectrum disorders (FASDs) based on four digital 

codes: facial abnormalities, growth retardation, cognitive disabilities and behavioral 

abnormalities (Benz et al. 2009; Hoyme et al. 2005). Individuals who have one or two of 

these four digital codes will be defined as having FAS or FAE (Astley 2006).  Hence for 

FASDs the assessment ranking of the four digital points varies between one, which refers 

to almost complete absence of diagnostic features to four, which refers to a strong 

presentation of classical diagnostic features. However, because the four digital code 

system depends mostly on neurodegenerative and cognitive defects, but does not include 

information related to prenatal alcohol exposure and the offspring’s background such as 

genetic diseases and family history, FASD may be over-diagnosed (Jones, et al. 2006). 

Therefore, more research, including the identification of biomarkers, is needed to 

improve FASD diagnosis. For example, alcohol-induced pathology biomarkers like 

aspartate aminotransferase, and alanine aminotransferase, or some ethanol metabolism 

derivatives such as fatty acid ethyl ester, ethyl sulfate, and phosphatidyl ethanol, may 

serve as a potential biomarker to determine prenatal alcohol exposure (Caprara, et al. 

2007; Gareri, et al. 2008; Littner and Bearer 2007; Sharma, et al. 2013).  In addition, 

neuroimaging could be used to diagnose brain size and abnormalities in brain shape as 

they relate to FASD (Lebel, et al. 2008; Moore, et al. 2014; Wozniak, et al. 2006) .  

http://topics.sciencedirect.com/topics/page/Prenatal_development
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2- Pathology of fetal alcohol exposure 

   Since Jones and Smith established FAS clinically, researchers started studying the 

effects of prenatal alcohol exposure on the offspring’s immunity and susceptibility to 

disease. Sharron and her colleagues studied the effects of FAS on the immune system of 

13 patients whose age ranged between 12 months to 11 years. Their survey revealed that 

children with FAS developed lymphocytopenia and neutrophilia. In addition 70% of 

these patients had respiratory infections such as pneumonia, meningitis and sepsis, which 

suggested possible abnormalities of phagocytic mechanisms (Johnson, et al. 1981).  

      There are some clinical evidences in children who exposed to alcohol identified the 

effect of prenatal alcohol exposure on the neurodevelopmental. One earlier study 

reviewed the immunity functions of 13 documented cases of FAS, and more recently, one 

interesting clinical study investigated the effect of prenatal alcohol exposure on the 

limbic-hypothalamic-pituitary-adrenal axis (HPA). Both studies revealed that prenatal 

alcohol exposure altered cortisol activity in the offspring (Caputo, et al. 2016; Ouellet-

Morin, et al. 2011). Cortisol is a stress hormone that regulates some body functions in 

response to stress such as immunity and blood glucose (Andrews, et al. 2002; Walker 

1996). Another case study was performed to measure insulin like growth factor (IGF), 

leptin and IGF binding proteins in infants with documented FAS. IGF and leptin were 

measured as markers for growth development. Interestingly IGF was significantly 

increased with age in both groups; it was remarkably higher in the alcohol-exposed group 

compared to control children. Furthermore, leptin levels were significantly lower in the 

alcohol-exposed group compared to the non-exposed group. The data clearly reveal that 
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prenatal alcohol exposure can disrupt the normal hormonal functions in offspring (Aros, 

et al. 2011; Caputo et al. 2016).  

    Findings from both rodents and primate models strongly support the idea that fetal 

alcohol exposure significantly alters the HPA axis in the offspring. In addition, adult rat 

models prenatally exposed to ethanol from gestational day 7 until day 21, which equal the 

second and third trimesters in humans, have shown over responsiveness to stressors such 

as lipopolysaccharide (LPS) injection and to drugs including morphine and alcohol (Lee 

and Rivier 1993; Schneider, et al. 2002; Taylor, et al. 1988; Weinberg 1993; Weinberg, et 

al. 2008; Zhang, et al. 2005).  

    Researchers have clearly recorded the harmful effects of chronic alcohol consumption 

on reproductive function in women. For instance, alcoholic women show a higher rate of 

menstrual abnormalities as compare to nonalcoholic women (Gabriel, et al. 1998). The 

menstrual abnormalities include cessation of ovulation, pain, bleeding or irregular 

menstrual cycles. The alcoholic women who present with menstrual abnormalities show 

hormonal elevation of estradiol, adrenocorticotropic hormone (ACTH) and prolactin 

(PRL) (Halmesmaki, et al. 1987). Furthermore, Hankinson et al found that post-

menopausal women exposed to 30g of alcohol daily increases levels of RPL and estradiol 

remarkably as compare to nondrinker women (Hankinson, et al. 1995; Nagata, et al. 

2007; Petridou, et al. 1992; Singletary and Gapstur 2001; Smith-Warner, et al. 1998; 

Stevens and Hilakivi-Clarke 2001; Wuu, et al. 2002).  
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3- Relationship between alcohol consumption, prolactin levels and incidence of 

prolactinoma 

   Prolactinoma is a condition in which a noncancerous tumor (adenoma) of the pituitary 

gland in the brain overproduces the hormone RPL (Asa 2008). A major effect is 

decreased levels of sex hormones - estrogen in women and testosterone in men 

(Charpentier, et al. 1985; Delemer 2009; Gillam, et al. 2006; Klibanski 2010; Melmed, et 

al. 2002). Endocrinologists in the endocrine and pituitary tumor clinical center at 

Massachusetts hospital in the USA indicated that 25% of autopsies performed the 

presence of small pituitary tumors, and mostly were prolactinomas (Charpentier et al. 

1985; Delemer 2009; Gillam et al. 2006). Prolactinoma is classified according to the size 

of the tumor mass; microadenomas are less than 10 mm and macroadenomas 10 mm or 

more (Charpentier et al. 1985; Delemer 2009; Gillam et al. 2006). The plasma RPL level 

is related to the tumor size; however, the plasma RPL level can go above the 10000 ng 

per litter in the case of the pituitary macroadenoma. However, the majority of these 

tumors are not considered life-threatening, with only 14 out of 100,000 considered 

clinically significant (Charpentier et al. 1985; Delemer 2009; Gillam et al. 2006; 

Manuchehri, et al. 2007; Schlechte 2007).  

   It is now well documented that chronic alcohol drinking increases the level of plasma 

RPL. An early case study with lactating women was conducted to determine the effect of 

binge to moderate drinking on oxytocin and RPL levels. The researchers exposed the 

women to 0.4 g/kg alcohol in orange juice, and RPL secretion was stimulated by the use 

of breast pumps. Alcohol consumption increased RPL levels significantly compared to 

women who did not consume alcohol. Furthermore, alcohol consumption decreased 
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oxytocin level compare with normal women (Mennella and Pepino 2006). An additional 

clinical case conducted in Germany was employed to measure serum RPL after 

withdrawal of alcohol in 99 alcoholic male patients compared to 44 normal nonalcoholic 

subjects. Interestingly the data revealed that RPL levels were elevated during the first 14 

days of alcohol withdrawal compare to the control group (Wilhelm, et al. 2011).   

    The Sarkar lab has studied the effect of binge drinking on RPL levels in cyclic, 

ovariectomized, and estradiol-17beta-treated ovariectomized Fischer-344 rat models. The 

animals were divided into three groups: the first group was exposed to 8.7% alcohol in 

liquid diet (AF), the second group was exposed to an isocaloric liquid diet minus ethanol 

(PF) and the third group was given a solid diet ad libitum (AD). Interestingly exposure to 

ethanol increased plasma RPL levels in a time-dependent manner in cyclic, 

ovariectomized, and estradiol-17beta-treated ovariectomized females. Furthermore 

alcohol consumption increased wet pituitary weight, prolactin mRNA expression and 

proliferation labeling index as compare to AD and PF animals (De, et al. 2002). In a 

study conducted by European scientists, persistent hyperprolactinemia was observed in 

16 alcoholic women admitted for 6-week alcoholism treatment at a social hospital 

(Valimaki, et al. 1990). Furthermore, alcohol-induced hyperprolactinemia has also been 

demonstrated in 12 men and 9 women with acute alcohol intoxication (AAI).Plasma RPL 

levels were measured directly when these individuals arrived at the emergency room. 

Serum RPL levels were 5.8-fold higher in AAI women and 3.5-fold higher in AAI men 

as compared to control women and men (Frias, et al. 2002). Thus, it appears that chronic 

alcohol intake in humans results in hyperprolactinemia. 
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      Alcohol also induces hyperprolactinemia in non-human primates and laboratory 

animals. Studies conducted in female macaque monkeys showed that in some of these 

monkeys, the RPL levels were elevated after chronic self-administration of alcohol (3.4 

g/kg/day) (Mello, et al. 1988). Interestingly, hyperprolactinoma is not only the most 

common pituitary tumor in humans, but this type of pituitary tumor is commonly found  

in laboratory animals (Sarkar 2006). The incidence of spontaneous pituitary adenoma was 

reported in 56% of aged Wistar male and female rats, and in 51% of aged Long-Evans 

female rats; most of these tumors were prolactinomas (Dipak Sarkar 1983; Sarkar 2010a). 

The Sarkar laboratory has shown that ethanol increases plasma PRL levels and pituitary 

weights in cycling and ovariectomized female rats and promotes the E2-induced 

development of prolactinomas (Chen, et al. 2006; De et al. 2002; De, et al. 1995; 

Oomizu, et al. 2003; Sarkar and Boyadjieva 2007; Sarkar, et al. 2007). Therefore, these 

data suggest that ethanol consumption is also a positive risk factor for hyperprolactinemia 

in animal models.  Evidence from animal studies also suggests a detrimental effect of 

prenatal alcohol on lactotrope physiology. Adult Fischer female rats exposed to prenatal 

alcohol (35% of the calories derived from alcohol) displayed increased pituitary weights 

and serum PRL levels in response to estrogen (Gottesfeld, et al. 1992; Sarkar 2010b).  

Interestingly,  it has not been determined if exposure to alcohol prior to birth  programs 

the pituitary to increase the susceptibility to the development of prolactinomas  This will 

be a major focal point of this thesis.   

4- The pathogenesis and epidemiology of pituitary tumors:   

    The pituitary is a bean-shaped organ located in the sella turcica at the base of the skull 

(May, et al. 2014). This small organ plays critical roles in the maintenance of several 
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hemostatic functions.  Anatomically, the pituitary has two lobes: the posterior lobe and 

the anterior lobe or adenohypophysis, where most pituitary tumors originate (Al-Brahim 

and Asa 2006; Asa and Ezzat 2009).  The adenohypophysis is composed of six different 

types of epithelial cells: corticotroph cells, which are responsible for producing (ACTH); 

somatotroph cells, which are responsible for producing growth hormone GH; lactotroph 

cells, which are responsible for producing the hormone prolactin (PRL); thyrotroph cells, 

which are responsible for producing thyroid stimulating hormone; and gonadotroph cells, 

which are responsible for producing follicle stimulating hormone and luteinizing 

hormone (Al-Brahim and Asa 2006).  

    Pituitary tumors are most frequently benign, treatable and non-symptomatic tumors; 

nevertheless, they can cause a wide range of symptoms, depending on the hormonal 

mileu and tumor size.  The clinical symptoms of excessive hormone production are as 

follows: growth hormone (GH): acromegaly and gigantism; PRL: amenorrhea, 

galactorrhea, infertility, reduced libido and impotence; adrenocorticotropic hormone 

(ACTH): Cushing’s disease and hypercorticoidism; and FSH: hyperthyroidism. The 

effects of intracranial tumor growth include intracranial pressure, visual disturbances, 

hyper- or hypo-pituitarism and diabetes mellitus (Al-Brahim and Asa 2006; Asa 2008; 

Asa and Ezzat 2009; Asa and LiVolsi 2008). However, aggressive and invasive 

adenomas can spread locally to the surrounding tissues such as the bony sphenoid 

structures and parasellar venous cavernous sinuses (Kaltsas, et al. 2005). These types of 

pituitary tumors cause many problems due to medical complications and tumor relapse. 

Pituitary carcinomas are rare; however, the prognosis for this type of tumor is poor 

(Kaltsas et al. 2005). Whether fetal alcohol exposure increases the incidence of 
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aggressive and invasive pituitary adenomas or possibly induces pituitary carcinoma is a 

question this thesis will explore.   

     According to the Central Brain Tumor Registry of the United States (CBTRUS), the 

incidence of pituitary tumors is about 2.94 cases per 100,000 persons, and pituitary 

tumors account for 10-15% of all brain tumors, Glioblastoma represents 45% of 

malignant tumors, and meningioma represents 54% of non-malignant tumors (Adams, et 

al. 1993; Minematsu, et al. 2005; Ostrom, et al. 2013; Vankelecom 2012). Interestingly, 

the data collected by the CBTRUS in the last three years showed that the incidence of 

pituitary tumors in the US has increased significantly as compared with the previous ten 

years (Bunin, et al. 1998; Gittleman, et al. 2014). Possible explanations of this increase 

include improvement in diagnostic methods; however an increased incidence for other 

reasons cannot be excluded (Bunin et al. 1998; Gittleman et al. 2014).  Unfortunately, the 

CBTRUS report does not provide data regarding the specific types of pituitary tumors, so 

a precise estimate of the prevalence of each type is not possible (Gittleman et al. 2014) . 

5- Characterization of pituitary tumors:  

     Pituitary tumor classification is a controversial topic; pituitary tumors can be classified 

based on size, presence or absence of metastasis, type of hormone secreted or 

morphology (Al-Brahim and Asa 2006; Asa, et al. 1999; Asa and LiVolsi 2008; Asa, et 

al. 1982). Morphological classification is the most commonly used criterion, and its 

evaluation depends on histology, immunohistochemistry and electron microscopy. If the 

classification is made based on the size of the tumor, then the categories are 

microadenoma (<10 mm), macroadenoma (>10 mm) and giant adenoma (>5 cm) (Asa et 
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al. 1999; Asa and LiVolsi 2008; Asa et al. 1982).  Pituitary tumors can also be classified 

as intra-pituitary adenomas when the tumors are growing extensively but are not invasive 

(60-90%), or as invasive adenomas when the pituitary adenomas extend beyond the 

pituitary capsule and invade the adjacent tissues (10-35%). According to the WHO 

definition, invasive pituitary adenoma is not regarded as proof of a malignant tumor, i.e. a 

carcinoma.  The WHO considers pituitary invasive adenoma as  a carcinoma when the 

tumor cells invade distant parts of the body, such as the spinal cord and lungs (Al-Brahim 

and Asa 2006; Asa and Ezzat 2009; Colao, et al. 2010a; Colao and Loche 2010; Colao, et 

al. 2010b; Kopczak, et al. 2014a; Kopczak, et al. 2014b).  According to the WHO 

classification, pituitary carcinoma can only be diagnosed if distinct cerebrospinal and/or 

systemic metastasis is documented (Colao et al. 2010a; Colao and Loche 2010; Colao et 

al. 2010b). Pituitary carcinoma is rare and accounts for less than 1% of pituitary tumors, 

and these primarily produce RPL and less frequently ACTH (Colao et al. 2010a; Colao 

and Loche 2010; Colao et al. 2010b). Based on the published clinical cases, pituitary 

tumors that secrete RPL or ACTH more commonly progress to carcinoma than tumors 

that do not secrete these hormones, but the molecular mechanisms that signal the 

transformation from an invasive macroadenoma to malignant disease are poorly 

understood (Astaf'eva, et al. 2004; Chrisoulidou, et al. 2004). Although some biomarkers 

such Ki67, P53 and P27 are used to indicate tumor cell proliferation, invasiveness, 

metastasis and malignant behavior of tumor cells, these markers might be poor predictive 

markers as their expression levels only change late in the malignant transformation 

process (Astaf'eva et al. 2004; Chrisoulidou et al. 2004; Yokoyama, et al. 2004). 

Increased expression of the cell cyclin family genes such as CCNB2, CCND1 and 
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CDKN1B, and reduced retinoblastoma protein (Rb) have been recorded in pituitary 

carcinoma and some other types of cancer such as colorectal carcinoma and small cell 

lung carcinoma (Barakat, et al. 2004; Bombardieri, et al. 2004; Chatzistamou, et al. 2004; 

Gollini, et al. 2004; Kaltsas, et al. 2004; Komninos, et al. 2004; Limdi and Crampton 

2004).  Other studies have reported that overexpression of tumor microenvironment 

genes such as fibroblast growth factor (FGF) and pituitary tumor transforming gene 

(PTTG) may predict pituitary cancer or pituitary aggressive adenoma (Panguluri and 

Kakar 2009); similarly, the over expression of these genes is found in breast carcinoma 

(Bedussi, et al. 2014; Criscitiello, et al. 2015; Koziczak, et al. 2004; Panguluri and Kakar 

2009; Solbach, et al. 2004; Watkins, et al. 2010). In addition to the tumor 

microenvironment genes, high throughput technology has suggested a genetic 

background of pituitary adenomas (de Lima, et al. 2012). Interestingly, Zhao et al. used a 

three-stage genome-wide association study (GWAS) to gain insight into the genetic basis 

of pituitary adenoma; they discovered three new susceptibility loci below the genome-

wide significance threshold (P < 5 × 10−8) in the combined analysis: 10p12.31,10q21.1 

and 13q12.13 (Ye, et al. 2015). Similarly, in the present work we are using RNA 

sequencing technology to identify novel genes and novel isoforms whose change may be 

associated with aggressive prolactinomas induced by fetal alcohol exposure.  

6-   Criteria of invasive pituitary tumors:  

    Approximately 20 to 25% of pituitary adenomas invade surrounding structures, such as 

the sphenoid sinus and/or the cavernous sinus (Dai, et al. 2016; Hansen, et al. 2014; Meij, 

et al. 2002; Scheithauer, et al. 1986; Tampanaru-Sarmesiu, et al. 1996; Thapar, et al. 

1996a; Thapar, et al. 1996b). Knowledge of the normal anatomy of the sellar and 
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parasellar regions can inform our understanding of the anatomical compartments that can 

be invaded by pituitary tumors. Invasion of the sphenoid sinus can be assessed by 

different methods: by using imaging techniques (such as CT and/or MRI), or 

histologically by assessing invasion of the mucosa of the sphenoid sinus. Microscopic 

identification of invasion to the surrounding tissue, such as dural invasion, is not 

considered a predictable indicator of aggressiveness (Meij et al. 2002; Sano, et al. 1989; 

van der Vlugt-Meijer, et al. 2002). According to the Hardy classification system, 

extension of the tumor to the cavernous sinus is mostly classified as grade 3 or 4 (Knosp, 

et al. 1993). Giant adenoma is a second type of invasive adenoma, defined by a tumor 

size of more than 30 mm, or in some studies a cut off of more than 40 mm.  

7- Criteria of aggressive pituitary adenomas: 

    Aggressive pituitary adenomas are classified as either invasive or non-invasive 

adenoma, microadenomas or macroadenomas.  Alternatively they can be characterized as 

aggressive tumors if the tumor is expansively growing, recurrent, and/or has spread to the 

cavernous bone or to the skull bone with no response to chemotherapy (Di Ieva, et al. 

2014; Rotondo, et al. 2014). According to the WHO, pituitary aggressive adenomas  are 

defined as atypical when they show positive immunoreactivity for MIB‑1 Ki67 (labeling 

index more than 3) and extensive immunostaining for P53 (Onguru, et al. 2004). A 

prolactinoma is a prolactin-producing adenoma and is the most common type of 

aggressive pituitary adenomas. Prolactinomas often occur in female patients and are often 

unresponsive to treatment with dopamine agonists   (Delgrange, et al. 1997; Heaney 

2011; Komninos et al. 2004; Trouillas, et al. 2000). Resistance to dopamine agonists is 

the signature criteria of malignant prolactinoma. Malignant prolactinoma is characterized 
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by relapse within a short time of starting chemotherapy and surgical treatment. A precise 

histopathological description helps in identifying features of aggressive behavior (Heaney 

2011; Komninos et al. 2004). For example, a Crooke cell is one of the important 

characteristics of malignant and aggressive pituitary adenoma. Crooke cells are non-

tumorous cells characterized by hyaline accumulation. Physician Crooke identified the 

Crooke cell in 1935 in the anterior pituitary gland of Cushings patients (George, et al. 

2003; Kovacs, et al. 2005; Saeger, et al. 2007). Crooke cells are corticotropic cells that 

undergo massive accumulation of glucocorticoid in cytoplasmic vesicles. These cells play 

a role in producing ACTH and causing Cushing disease. Other work has found that 

Crooke cells play a role in transforming adenoma tumors to aggressive or cancerous 

tumors (George et al. 2003; Kovacs et al. 2005). Supporting clinical studies have found 

features of malignant and aggressive pituitary tumors in more than 60% of patients with 

Crooke cell tumor. Furthermore, this type of tumor is non-responsive to chemotherapy 

and recurrence occurs within 1-3 years from the time of surgical removal (Di Ieva, et al. 

2012; George et al. 2003; Sav, et al. 2015). In comparison with other types of pituitary 

adenomas, Crooke cell adenomas are classified as aggressive and malignant pituitary 

tumors.  

    Sparsely granulated somatotroph adenomas, densely granulated lactotroph adenomas, 

acidophil stem cell adenomas, thyrotroph adenomas, plurihormonal adenomas, silent 

adenomas and null cell adenomas can develop to aggressive pituitary tumors (Asa 2008; 

Asa and Ezzat 2002; Mete and Asa 2012; Mete, et al. 2012). Infrequently, silent 

somatotroph adenomas display aggressive behavior and progress to carcinomas (Batisse, 

et al. 2013; Scheithauer et al. 1986; Vieira Neto, et al. 2013). Both sparsely granulated 
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somatotroph adenomas and densely granulated lactotroph adenomas are characterized by 

immunochemical staining for the hormone or by secretory granules that are detected by 

electronic microscopy or fluorescent microscopy. In sparsely granulated somatotroph 

adenomas, altered growth hormone (GH) receptor signaling is associated with 

morphological changes that result in the formation of paranuclear keratin aggresomes 

(fibrous bodies) (Batisse et al. 2013). Sparsely granulated somatotroph adenomas have 

imperceptible immunoreactivity for GH, but stain positive with CAM 5.2, an antibody 

that recognizes cytokeratin-8 and to a lesser extent cytokeratin-7. These tumors are also 

characterized by a peculiar globular cytoplasmic positivity, strong nuclear staining for 

Pit-1 and a Ki-67 labelling index ≥3% (Sano, et al. 1991; Thapar et al. 1996a). However, 

for all pituitary tumor types, the incidence of pituitary adenomas that progress to 

aggressive or invasive adenomas or of pituitary carcinomas is very small. In this regard 

compiling further statistical data is of great importance.  

8- Biomarkers of aggressive and invasive pituitary adenoma:  

    While several histological and pathological biomarkers for early diagnosis of 

invasiveness and aggressiveness have been proposed, no specific marker can decisively 

predict the pathological prognosis of pituitary neoplasms. Studies of biomarkers use to 

predict aggressive and invasive pituitary adenoma have been reported (Salehi, et al. 

2010a; Salehi, et al. 2010b; Sav, et al. 2012).  

    Ki-67 (utilizing the MIB-1 antibody) provides a nuclear labelling index and is the most 

dependable cell proliferation marker for distinguishing proliferating from inactive cells. 

When the percentage of Ki67 nuclear positive staining detected in a tumor section is 
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more than 3%, the tumor falls under the aggressive and invasive category.  Furthermore, 

the 3% Ki67 staining cutoff is useful to discriminate invasive from noninvasive 

adenomas with 97% specificity and 73% sensitivity (Salehi, et al. 2009; Tampanaru-

Sarmesiu et al. 1996; Thapar et al. 1996a; Thapar et al. 1996b; Thapar, et al. 1996a).  

However, there is a lack of standardization of the Ki67 labeling index. In some studies 

for instance, a Ki67 nuclear value less than 1.5% refers to treatable pituitary adenoma. 

Other publications have suggested that a Ki67 nuclear value of more than 6% indicates 

pituitary invasive adenoma and may predict malignancy (Kovacs, et al. 2004; Thodou, et 

al. 2004). The variance in the use of the Ki67 labeling index to characterize pituitary 

tumor may have several reasons: tumor heterogeneity, method of preparing tumor 

sections, choosing a good antibody and the staining protocol, which may lead to the lack 

of reproducibility of Ki67 labeling index (Salehi et al. 2009, 2010a).  

    P53 is one of the cellular antigens used as a tumor indicator because it is involved in 

regulation of cell proliferation. P53 positive immunoreactivity indicates pituitary 

aggressive and invasive adenoma with a highly predictable relapse and recurrence (Salehi 

et al. 2009, 2010a). Indeed noninvasive pituitary adenoma presents  with no detectable 

P53 nuclear positive immunostaining, while invasive and aggressive pituitary adenoma 

presents with more than 10% P53 positive staining and 100% in malignant pituitary 

adenoma (Thapar et al. 1996a; Thapar et al. 1996b). Interestingly, when high expression 

of P53 is associated with high Ki67 labeling index, the tumor will classify as pituitary 

aggressive adenoma and in some cases pituitary carcinoma (George et al. 2003; Salehi et 

al. 2009, 2010a; Salehi, et al. 2008; Thapar et al. 1996b). More importantly, P53 positive 

staining associated with Ki67 labeling index, and in association with nuclear labelling of 
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securin (also known as pituitary tumor transforming gene 1 protein, or PTTG) allowed 

physicians  to classify five of 25 patients presenting with prolactinoma as having invasive 

adenoma and predicted development malignancy (Wierinckx, et al. 2007). Although the 

expression of P53 can predict invasive and aggressive adenoma, some studies have not 

able to detect P53 expression (Salehi et al. 2009, 2010a; Salehi et al. 2008). WHO defines 

positive staining for P53 as a classification of pituitary invasive adenoma or atypical 

adenoma. However, its detection can be ambiguous and a definitive method of 

quantitating p53 expression has yet to be approved (Batista, et al. 2006; Thapar et al. 

1996a). 

    Proteolytic enzymes play an essential role in developing aggressive, invasive tumors 

because they help to break down the basement membrane, destroy the parenchyma, and 

connective tissues to allow the tumor cells to migrate and move to the neighbor tissue. 

Measuring proteolytic enzyme immunoreactivity or or mRNA expression would be 

useful in characterizing pituitary adenomas. Matrix metalloproteinases (MMPs, 

especially MMP9 and MMP2) are members of proteinases whose expression correlate 

with invasive and aggressive tumor and a high radiological grade of tumor (Jaquet, et al. 

2003; Trouillas, et al. 2003).  

    Growth factors have been investigated as reliable biomarkers to categorize pituitary 

tumors. Epidermal growth factors (EGFs), vascular endothelial growth factors (VEGFs), 

their receptors (EGFR and VEGFR, respectively) which are expressed by GH-producing 

adenoma cells and lactotroph-producing adenoma cells, and EGFR and VEGFR levels 

correlate with aggressiveness of pituitary adenomas (Jaffe and Barkan 1992; LeRiche, et 

al. 1996). FGFs and their receptors are critical for cell proliferation, regulated 
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development, stem cell motility, migration of mesenchymal cells and differentiation. 

Overexpression of FGF4 mRNA expression in pituitary tumor tissue and high 

immunoreactivity for the FGF family members predict aggressive and invasive pituitary 

adenoma. Some studies have identified a high level of FGF in blood samples of patients 

with the most aggressive type of pituitary adenoma (Asa and Ezzat 2005; Mete, et al. 

2013; St Bernard, et al. 2005).  

    Further studies and techniques are needed to identify new reliable biomarkers, which 

can potentially predict the aggressive and invasive behavior of pituitary tumors.   

9-  Angiogenesis biomarkers  

    Angiogenesis is an important process in tumor growth, but no coherent data regarding 

its role in the development of pituitary adenomas have been established (Lloyd, et al. 

2003).  Tumor angiogenesis includes two main fields: morphometric analysis of the 

vessels and characterization of the biological processes that lead to organization and 

formation of macrovesicles in the tumor tissue. Quantification of the blood macrovesicles 

in pituitary tumor tissue and comparison to the normal pituitary tissue under normal 

physiological states may help the pathologist to differentiate between invasive and non-

invasive pituitary adenoma as well as help to characterize the pituitary tumor subtypes 

like secretory adenoma, non-secretory adenoma or nonfunctional adenoma (Jugenburg, et 

al. 1995; Kovacs, et al. 2001; Lloyd, et al. 2001; Turner, et al. 2000b, c; Turner, et al. 

2000d). Macrovesicle density (MVD) measurement is the most reliable method used to 

quantify macrovesicles in different types of tumors.  Several publications have found a 

positive correlation between MVD and invasive pituitary tumor (Jugenburg et al. 1995; 
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Lloyd et al. 2003; Turner et al. 2000b). However, meta-analysis and more recent studies 

have found that MVD is not a reliable indicator of angiogenesis and cannot  decisively 

diagnose pituitary behavior (Di Ieva, et al. 2008).  Vascular reshaping could be 

considered a predictive marker of aggressiveness and relapse and chemotherapy 

resistance, but currently there is no such standardized and accepted method available. 

Computer methods to measure geometric diameter of MVD are the most reliable methods 

to assess pituitary tumor angiogenesis. However, this method is limited to research work, 

despite attempts to use it in the clinic (Di Ieva et al. 2008; Di Ieva, et al. 2013).  

Understanding the molecular biology of angiogenesis is challenging in brain and pituitary 

organs. Next generation sequencing, genetic, and epigenetic studies need to be employed 

to understand the mechanisms that lead to angiogenesis and unmask their role in the 

development of aggressive and invasive pituitary adenoma (Carmeliet and Jain 2011; Liu, 

et al. 2003; Zachary 2003a, b).  

    Evidence suggests that VEGF plays an important role in promoting invasive pituitary 

tumors by an undefined mechanism. Some studies have found that using tyrosine kinase 

inhibitors that target the VEGF receptor, such as sorafenib or sunitinib could be useful to 

treat patients with a pituitary tumor (Barroso-Sousa, et al. 2014; Barroso-Sousa, et al. 

2013a; Barroso-Sousa, et al. 2013b; Sanchez-Tejada, et al. 2013).  However, more studies 

need to be done to uncover the role of VEGF in the development and progression of 

pituitary adenomas (Lepore, et al. 2006; Lloyd et al. 2003) .  Therefore, VEGF cannot be 

use as a conclusive marker of aggressive and invasive adenoma.   

    Angiogenesis growth factors have been widely studied in other types of cancer such as 

glioma. For example, studies have found hypoxia-inducible factors (HIFs) play critical 



19 
 

 
 

roles in the poor prognoses of glioblastoma. In pituitary tumors studies have reported that 

amplification of HIFs in invasive pituitary adenoma while some other studies have 

reported that HIF expression is elevated in pituitary carcinoma (Kaur, et al. 2005; Lepore 

et al. 2006; Lloyd et al. 2003; Sav et al. 2012).  

    Endocan (also known as ESM-1) is a proteoglycan secreted by endothelial cells 

(Maurage, et al. 2009; Scherpereel, et al. 2003) and has been described as a marker of 

neoangiogenesis. Interesting studies have found a strong correlation between positive 

immunostaining for endocan and pituitary tumor recurrence and chemotherapy resistance 

(Cornelius, et al. 2012). Furthermore, correlation of endocan expression with some other 

proliferation markers including P53 and Ki67, make endocan a promising biomarker of 

aggressive and invasive pituitary tumors (Cornelius et al. 2012).   

    PTTG is correlated with angiogenesis (Sav et al. 2015; Sav et al. 2012) and, in 

pituitary tumors, PTTG mRNA levels represent strong positive correlation with 

angiogenesis factors including VEGF and VEGFR mRNA (McCabe, et al. 2002). 

Further, both knocking down and overregulating of PTTG promotes chromosomal 

instability and aneuploidy, and deletion of PTTG abolishes tumor growth by enhancing 

P53 and P21 dependent apoptosis pathways (Chesnokova and Melmed 2009, 2010; 

Chesnokova, et al. 2010).  

10- The molecular mechanism of pituitary tumorigenesis  

    Several studies have attempted to define the genetic keys of pituitary tumorigenesis 

(Lloyd 2004). Studies have demonstrated that mutations in oncogene RAS strongly 

correlate with invasive and malignant carcinoma (Karga, et al. 1992; Pei, et al. 1994). 
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Next generation sequencing including microarray, RNA sequencing and comparative 

genomic hybridization has found genes whose expression is impaired in invasive 

pituitary tumors and in somatotroph pituitary adenomas (Wierinckx et al. 2007). 

Furthermore, variants in the gene encoding GHRH are predictive of tumor aggressiveness 

(Thapar, et al. 1997a; Thapar, et al. 1997b). However, our understanding of pituitary 

tumorigenesis, invasiveness and pituitary carcinoma needs more investigation.  

    Some of these approaches to study molecular mechanism have determined that 

mutations in angiogenic growth factors, a Ki67 labeling index > 10% and P53 positivity 

>5% and allelic loss of chromosome 11 may be indicators of pituitary carcinoma 

(Zemmoura, et al. 2013). However, it must be stressed that pituitary carcinomas often 

lack these changes, and aggressive pituitary adenomas might express similar markers as 

carcinomas (Rickert, et al. 2001). In general there is a wide similarity in appearance 

between the different types of pituitary tumors.  

    Multiple endocrine neoplasia (MEN) type I (MEN1) is an autosomal dominant 

disorder characterized by endocrine tumors of the pituitary gland, parathyroid gland, 

endocrine–gastrointestinal tract and pancreas. MEN1 is a tumor suppressor gene present 

on chromosome 11q12, and translates to menin, a known nuclear protein. Menin protein 

plays a role in regulation many cellular functions like transcriptions, genomic stability, 

cells proliferation and division. Patients with MEN1 mutation usually have a family 

history of the disorder, and MEN1 mutations can be identified in 70–95% of patients. In 

patients with MEN1, pituitary tumors are usually diagnosed at an earlier age, have a 

higher degree of aggressiveness and invasiveness, are more often resistant to treatment, 
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and have higher rates of tumor recurrence than sporadic pituitary adenomas (Syro, et al. 

2012; Trouillas, et al. 2008).  

    Bone morphogenetic protein (BMP) is one of the secreted transforming-growth factor 

beta superfamily that play a crucial role in anterior pituitary cell commitment. There are 

at least two members of this family, BMP2 and BMP4 (Takuma, et al. 1998; Zhao 2003).  

BMP4 plays a critical role in early pituitary development in which it expresses from 

ventral diencephalon at 9.5-day post cotium as the infundibulum makes direct contact 

with Rathke’s pouch. Although the BMPs family has more than 20 members, BMP2 and 

BMP4 are the most important factors that play essential roles in pituitary tumor 

development (Kahata, et al. 2004; Kawabata, et al. 1998). Recently, Marcelo Páez-Pereda 

and his colleagues have shown that noggin and BMP2 mRNA expression are 

downregulated in D2
-/-

 mice, which is very similar to other prolactinoma models 

including estradiol-induced prolactinoma in the rat model and human pituitary adenoma 

(Fiorentini, et al. 2002). This evidence is consistent with in vivo and in vitro studies, 

which reveal reduced pituitary tumor growth in nude mice by overexpression of noggin 

or smad4dn, one of the TGFβ families (Delidow, et al. 1991; Peluso, et al. 1991; 

Ramsdell 1991). TGFβ plays a significant role in inhibition of the oncogenic expression 

of c-Myc protein (Chi, et al. 2015; Mullen and Wrana 2017). However, BMP-4 over 

growth signaling in the control of PRL-secreting cells cancels the inhibitory effect of 

TGFβ. Similarly, in vivo experiments using GH3–Smad4dn cells (which do not respond 

to either BMP-4 or TGFβ) fail to induce tumors in nude mice.  Hence, noggin as a BMP-

4 blocker, and Smad4 dn blocked tumor growth in vivo. Hence, the results obtained with 
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Smad4 dn clones strongly suggest that BMP-4 stimulates prolactinoma growth, whereas 

TGFβ inhibits it.  

    Wnt proteins are autocrine secretory molecules playing a significant role in cell 

proliferation, differentiation and migration. Wnt1, initially called integration 1 (Int-1), 

was described in virally induced murine breast cancers (Clevers and Nusse 2012; 

Guardavaccaro and Clevers 2012; Schepers and Clevers 2012).  There are three principle 

pathways of Wnt proteins: canonical (β-catenin), non-canonical also known as the 

‘calcium’ pathway, and the ‘planar cell polarity’ pathway.  The canonical β-catenin 

pathway triggers when Wnt interacts with its membrane receptor frizzled (Fz) to deck 

other co-receptor includes lipid-related peptide 5/6 (LRP5/6) to form heterodimeric 

complex receptor for Wnt proteins. Then Wnt/βcatenin signaling transduce to activate 

nuclear transcription factors including T-cell factor (TCF) and lymphocyte enhancing 

factor (LEF) to utilize multiple cell activities (Clevers and Nusse 2012; Schepers and 

Clevers 2012; Yi, et al. 2011).  Wnt/β-catenin plays an essential role in the normal 

development and tumor development in different tissues and organs including endocrine 

tissues (Poutanen 2006). Although the role of Wnt signaling in breast cancer 

development has been addressed by many studies (Benhaj, et al. 2006), the exact 

mechanism of Wnt signaling in subtypes of pituitary tumors is not fully understood. 

Interesting clinical study on 43 pituitary adenoma specimens were obtained from patients 

exposed to surgical operation and normal control pituitary tissues were collected at 

autopsy. The study found that Wnt/β-catenin mRNA and protein expression strongly 

correlated to the invasive grade of pituitary adenomas (Li, et al. 2014). Furth more, Wnt4 

knock out mice show hypoplasia of the anterior lobe of the pituitary gland with a 
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significant reduction in the GH, PRL and ACTH cells population as well as reducing 

αGSU, which is alpha glycoprotein hormone subunit common to LH, FSH and TSH 

(Potok, et al. 2008; Rosenfeld, et al. 2000; Treier, et al. 1998). Other studies have shown 

that overexpression of Wnt4 in the pituitary adenoma due to downregulation of the Wnt 

inhibitory factors WIF1 consequently develop to pituitary invasive or aggressive 

adenoma (Elston, et al. 2008). Hence, Wnt signaling may play a role in pituitary tumor 

development, and in particular GH producing adenoma, PRL producing adenoma, and 

TSH producing adenoma.  

    Sox2 is a member of high mobility group (HMG) box DNA-binding domain called 

Sox family that contain from 79 amino acids and sharing more than 50% homology on 

the sex-determining gene SRY. SRY is sex determination Y chromosome discovered in 

1990, which is solely responsible for sex determination. SRY has conservative DNA 

binding domain that geometrically designed to bind to the minor groove of DNA, which 

gives SRY the biological effect in sex determination.  Mutation in the binding protein 

leads male in to female sex reversal (Gubbay, et al. 1990; Keramari, et al. 2010; 

Koopman, et al. 1991; Pontiggia, et al. 1994; Sinclair, et al. 1990). Emerging evidence 

indicates that Sox2 protein play appreciated role in Wnt-target gene expression. Other 

evidence implicates that Sox2 gene expression is regulated by Wnts, and together these 

Sox-Wnt interactions appear to play spatial temporal role in activation of canonical Wnt 

signaling in embryonic and cancer development (Castinetti, et al. 2011; Gaston-Massuet, 

et al. 2011; Kormish, et al. 2010; Zhang, et al. 2008; Zhang, et al. 2009). Gaston and 

colleagues have done an interesting experiment on Hesx1
Cre/+

; Ctnnb1
+/lox(ex3)

 mice line 

drive activation form of β-d-galactosidase expression in the periluminal progenitors cells 
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at 9.5–10.5 dpc and in committed differentiated adult cells (Andoniadou, et al. 2007; 

Gaston-Massuet et al. 2011). Activation of Wnt/β-catenin signaling in progenitor stem 

cells, but not in the adult differentiated pituitary cells, led to development of a pituitary 

tumor resembling the pediatric form of human craniopharyngioma (Alatzoglou, et al. 

2011). Furthermore, the overexpression of mutant β-catenin in Sox2-Cre lines activate 

pituitary tumorigenesis. Like the human craniopharyngioma (adamantinomatous 

craniopharyngioma, ACP), the main target is the nuclear accumulation of mutant β-

catenin, which leads to tumor development (Alatzoglou et al. 2011).  

11-  Pituitary gland and stem cells  

    The pituitary gland has a low rate cell turnover (Levy 2002) and is composed of six 

hormonal-responsive cell populations that are regulated by certain physiological stages 

such as puberty, sexuality and lactation (Nolan, et al. 1998). Pituitary progenitor/stem 

cells play important roles in the regulation of hormone synthesis and secretion under 

normal physiological demands (Carbajo-Perez and Watanabe 1990; Rizzoti 2010; 

Taniguchi, et al. 2002). The idea of pituitary stem cells has been widely supported by 

Yutaka and his colleagues when they double labeled the anterior pituitary mitotic cells 

with hormone specific antibodies. They found less than10 percent of these cells 

differentiated into different hormone secretory cells while the other portion remained to 

undifferentiated. In addition, 30 to 40 percent of the differentiated cells were identified as 

GH and PRL-producing cells, indicating the potential activity of pituitary stem cells 

towards GH and PRL hormonal producing cells (Candolfi, et al. 2002; Taniguchi et al. 

2002; Tierney and Robinson 2002). Later, Chen et al has supported the idea of pituitary 

stem cells by staining the anterior pituitary lobes of adult mice for verapamil-sensitive 
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Hoechst dye, which is specific for stem/progenitor cells. More importantly flow 

cytometry and immunofluorescent staining reveals that the Hoechst dye labeled a cell 

population that expresses stem cell specific antigen (Sca1). Interestingly, by studying 

these cells, they found that Notch, Wnt, and sonic hedgehog signaling pathways, which 

are known to be involved in stem cell renewal and fate decision, are highly activated, 

suggesting a potential molecular mechanism (Chen, et al. 2005).  

    Endocrinologists have provided many studies that support the hypothesis of pituitary 

stem cells. Yoshimura et al did the first such study by transplanting purified 

chromophobes or amphophils cell at the intrahypothalamic sites in hypophysectomized 

rats. Chromophobe cells refer to the type of the anterior and intermediate pituitary 

epithelial cells that their cytoplasm does not stain readily.  After 24hrs,the Chromophobe 

pellets started increasing their mitotic activity, then differentiated into acidophilic and 

basophilic cells, which suggested that chromophobes pellet worked as stem cells pool 

(Yoshimura, et al. 1969).  About ten years ago, Chen and his colleagues successfully 

isolated progenitor stem cells from the anterior pituitary gland of Green fluorescent 

protein (GFP) transgenic mice. They labeled the anterior pituitary lobe suspensions with 

R-PE-labeled anti-Sca1, which is a general stem cell antigen marker to sort the stem cells 

by fluorescence activated cell sorting (FACS) technique. Interestingly, Sca1 positive cells 

shown expression of most of the common progenitor transcription factors including Sox2, 

Oct4, HHS, Nanog, nestin, prominin-1, and Bmi-1, and members of the Notch (Notch1 

and Hes1), Wnt, and Shh (Ptch1) (Chen et al. 2005; Chenn 2008).  Eventually, 

simultaneous studies reported convincing evidence that support the existence of 

facultative stem cells in the pituitary gland (Chen, et al. 2009; Fauquier, et al. 2008; 
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Garcia-Lavandeira, et al. 2009; Gleiberman, et al. 2008). Taken all together, the data 

suggest that the stem/progenitor positive cells are indeed present on the marginal zone of 

the Rathkes pouch remnant, which in the past repeatedly identified as a pituitary stem cell 

niche (Carbajo-Perez and Watanabe 1990; Correr and Motta 1981; Wilson 1986; 

Yoshimura, et al. 1977).  

   While it is clear that cells with stem cell characteristics exist in the pituitary gland, 

more studies are need to identify their functionality and their contribution to 

organogenesis and disease development including cancer progression and repair 

mechanisms.  

12- Role of stem cells in pituitary tumor development  

    Considerable evidence supports the existence of cancer stem cells (CSCs) in pituitary 

adenomas isolated from mice and humans (Chen, et al. 2014; Hosoyama, et al. 2010; 

Lloyd, et al. 2013; Mertens, et al. 2015; Orciani, et al. 2015; Tunici and Yu 2009; van 

Rijn, et al. 2013; Xu, et al. 2009; Yunoue, et al. 2011). Identifiers of CSCs include some 

or all the following criteria: self-renewal, multipotent proliferation ability, resistance to 

chemotherapy, ability to proliferate to progenitor stem cells (PSCs) and ability to 

constitute tumors in immunodeficient experimental animals.  Recent reports have studied 

stemness features of ACP pituitary tumors in children. The researchers found positive 

immunoreactivity for markers of adult pituitary stem cells (Sox2, Klf4, Nanog, Oct4 and 

β-catenin) in human pituitary tumor samples (Garcia-Lavandeira, et al. 2012). Of note, in 

the ACP mouse model, investigators have not found Sox9 expression in β-catenin cell 
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clusters but in the cells, surrounding the clusterSox2 expression is clearly upregulated 

(Andoniadou, et al. 2012; Andoniadou, et al. 2011; Gaston-Massuet et al. 2011).  

    It has been found that the expression of a nuclear form of βcatenin in Rathke's pouch 

precursors in the mouse (Hesx1Cre/+; Ctnnb1lox(ex3)/+ mouse model) is enough to 

develop pituitary tumors similar to human ACP (Gaston-Massuet et al. 2011). Rathke’s 

pouch marks the beginning of the anterior pituitary and contains a group of 

undifferentiated cells that are characterized by self-renewal and the ability to differentiate 

to all the other hormone-producing cells of the anterior pituitary gland.  ACP tumors are 

characterized by nuclear βcatenin accumulation, which leads to activate Wnt signaling 

pathways. Furthermore, microarray and gene clustering analysis have reported similar 

structures in human and mouse ACP (Andoniadou et al. 2012). Some studies have 

identified CSC transcription factors in human ACPs, but no functional characterization 

has been determined (Garcia-Lavandeira et al. 2012; Holsken, et al. 2014). Mouse ACP 

tumors, however, contain a cluster of cells with the ability to self-renew. These cells are 

capable of forming progenitor cells and differentiating into hormone-producing cells in 

vitro (Gaston-Massuet et al. 2011). As compared to the normal mouse pituitary gland, 

mouse ACPs are composed of higher numbers of cluster cells when cultured in stem cell 

medium, suggesting the existence of stem cells compartment in this type of pituitary 

tumors.  In addition, stem cells generated from mouse ACP tumors express stemness 

markers such as Nestin, Sox2 and Oct4, and express low level of differentiated markers 

like Pit1 and S100. Furthermore, the cells are characterized by higher proliferation rates 

as compared to normal pituitary stem cells generated from the normal mouse pituitary 

gland (Gaston-Massuet et al. 2011). In conclusion, human and mouse model studies have 
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supported the role of CSCs in pituitary tumorigenesis. More experiments need to be done 

to enhance our understanding about the role of normal stem cells in the pituitary gland 

and improve our ability to delineate the possible role of stem cells in pituitary tumor 

formation.  This may lead to the development of new possible biomarkers and effective 

diagnoses.  

13-  Pituitary carcinomas  

    Pituitary carcinomas are defined by the presence of metastases. Whether spread of the 

tumor to the brain and sella tissue is also a definition of carcinoma is a matter of 

controversy (Gaffey, et al. 2002; Trilck, et al. 2005). Pituitary carcinoma is very rare; 

however, most of the defined cases to date are either PRL-producing tumors or ACTH-

producing tumors (Gaffey et al. 2002). Interestingly, most pituitary carcinomas originate 

from invasive relapsing adenomas, or from tumors that had undergone surgical removal 

or radiation therapy, which may stimulate the tumor cells to invade the surrounding 

connective tissue and migrate through the blood vessels (McCutcheon, et al. 2000; 

Quevedo, et al. 2000; Salpietro, et al. 2000). Most of the published reports of pituitary 

carcinomas show a higher index of Ki-67 and p53 protein and a lower expression of p27 

(Roncaroli, et al. 2003; Weber, et al. 2003) in the primary tumor and its metastases. Ras 

mutations can be found in PRL-secreting carcinomas (Cai, et al. 1994). However, more 

studies are needed to differentiate these pituitary carcinoma which may exhibit similar 

features. 
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Chapter 2 

Fetal alcohol exposure increases susceptibility to tumorigenesis in the pituitary 

gland in ovariectomized rats exposed to estrogen: in vivo evidence 

Abstract  

It is widely accepted that exposure to adverse environmental conditions and lifestyle 

choices during pregnancy can result in fetal programming that underlies disease 

susceptibility in adulthood. Fetal alcohol-exposed offspring display many behavioral and 

physiological abnormalities including neuroendocrine-immune functions, which often 

persist into their adult life. Since the neuroendocrine-immune system is critically 

involved in the regulation of tumor surveillance, we sought to determine whether fetal 

alcohol exposure increases the susceptibility to estrogen-induced pituitary prolactin-

secreting tumors (prolactinomas) commonly occurring pituitary tumor in humans. 

Pregnant Fischer 344 rats were fed between gestational days 7 and 21 with a liquid diet 

containing alcohol (AF), pair-fed with isocaloric liquid diet (PF), or fed ad libitum with 

rat chow (AD). At 90 days of age, some of the female offspring were sacrificed on the 

day of estrous and used for determination of pituitary functions.  The remaining animals 

were ovariectomized and received a subcutaneous estradiol implant. These rats were 

sacrificed at various time periods after estradiol implantation. At the time of sacrifice, 

pituitaries of these animals were inspected for tumor and the whole body were inspected 

for any tumor metastasis. Fetal alcohol exposed animals showed increased levels of 

pituitary weight, pituitary prolactin (PRL), plasma PRL, pituitary aromatase, pituitary 

αESR and plasma estrogen as compared to those in control AD and PF rats. Estradiol 
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treatment also time-dependently increased pituitary weight in AF group as compared to 

AD and PF groups. After 90 days of estradiol treatment, inspection of the pituitary 

revealed that most tumors in the AF group were hemorrhagic and showing expansion to 

the surrounding tissue. AD and PF rats did not show any non-pituitary site tumors. 

Histopathological evaluation revealed that tumors in AF group were more densely packed 

cells as compare to the PF and AD groups which showed uniform cells with abundant 

cytoplasm. Pituitary tumor from alcohol exposed animals showed strong nuclear p53 and 

Ki67 expression. Significantly higher mRNA levels of hemorrhage-associated genes and 

proteins (PTTG, FGF4 and MMP-9) and multipotency genes and proteins (SOX2, Oct4 

and CD133) were also observed in pituitary tumor tissues from AF group as compared 

with PF and AD groups. These data provide evidence for the development of aggressive 

and possible neoplastic prolactinomas in the pituitary after estrogen treatment in fetal 

alcohol exposed female rats.  
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Introduction  

    The National Toxicology Program has established that alcoholic beverages are human 

teratogens or human carcinogens (Doi, et al. 2004; National Toxicology 1995). 

Moreover, the International Association of Research on Cancer’s 2009 survey estimates 

that around 3.5% of cancer deaths in the U.S. are caused by alcohol consumption 

(Nelson, et al. 2013). Epidemiological studies also identified that early environmental 

exposure of alcohol and drug abuse increases childhood diseases including 

neuropsychological disorders, cognitive deficiencies, facial abnormalities, and decreases 

in normal brain size, diabetes, obesity and cancer development (Blystone, et al. 2009; 

Hilakivi-Clarke 1997a, b, c; Hilakivi-Clarke, et al. 1997a; Kue Young, et al. 2002; Rider, 

et al. 2009; Wigle, et al. 2008; Young, et al. 2002). Although evidence for an increased 

incidence of cancer in FAS is not abundant, two reports have identified FAS children that 

have developed neuroblastoma under age 7, (Kinney, et al. 1980; Seeler, et al. 1979). 

Using animal models Hilakivi-Clarke and colleagues have shown that prenatal alcohol 

exposure increases the risk for mammary tumor development and that this may be due to, 

increases in plasma estrogen levels in the offspring (Hankinson et al. 1995; Hilakivi-

Clarke 1997a; Hilakivi-Clarke, et al. 1997b). In agreement with this, Polanco and 

colleagues have demonstrated increased mammary tumor development in fetal alcohol 

exposed offspring after 16 weeks of a single NMU injection (Hilakivi-Clarke, et al. 

2004). However, no studies have investigated if fetal alcohol exposure affects 

prolactinoma development. In this study, we tested whether FAE offspring are more 

susceptible to developing prolactinomas under the influence of estradiol.   
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The ovarian steroid estradiol is known to increase proliferation of lactotroph cells 

in humans as well as in laboratory animals (De Nicola, et al. 1978; Garcia and Kapcala 

1995; Gomez, et al. 1977; Gooren, et al. 1988; Lloyd 1983; Sarkar, et al. 1982; Wiklund, 

et al. 1981). Certain populations of humans are more susceptible to estradiol’s mitogenic 

action on lactotropes (Luciano, et al. 1985). Similarly, different strains of laboratory rats 

exhibit differences in lactotropic cell susceptibility to estradiol. For example, Fischer-344 

(F344) (Banerjee, et al. 1994) and AxC-Irish strains (Stone, et al. 1979) are sensitive to 

estrogen’s growth-promoting and tumor-inducing actions on the pituitary. The F344 

strain is most sensitive to estrogen, and chronic estradiol treatment in this strain induces 

lactotropic proliferation that results in lactotropic tumors within a few months (Pastorcic, 

et al. 1995). Unlike F344 rats, Sprague Dawley (SD), Brown Norway, and Holzman 

strains show low lactotropic cell proliferation upon chronic estrogen treatment (Banerjee 

et al. 1994; Hokfelt, et al. 1990; Wiklund and Gorski 1982). Therefore in this study we 

used F344 rats. We report here that fetal alcohol exposure promotes the development of 

invasive prolactinomas possibly by increasing the stem cell niche.  
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Materials and Methods 

Animals – general care 

Fisher-344 rats were obtained from Harlan Laboratories (Indianapolis, IN) and housed 

under controlled conditions with a 12 h light/dark cycle at a constant temperature of 

22°C. All animal procedures were approved by the Rutgers University Institutional 

Animal Care and Use Committee according to NIH guidelines. Rats were housed two 

animals per Open-type Shoe Box Cages with Bedcob bedding and were fed with ad 

libitum rat chow and tap water in a conventional facility. Health status of animals was 

checked regularly by determining body weight, feeding and general behaviors, and 

university veterinarians were consulted to address any special health needs.  

Fetal alcohol exposure studies  

Animals were checked for normal estrus cycle prior to breeding. Gestational status was 

checked the morning following mating by examining a vaginal smear on a light 

microscope; if sperm appeared, rats were considered pregnant and this was counted as the 

first day of pregnancy. On gestational day 7 through 21 rats were fed either rat chow ad 

libitum (AD), a liquid diet containing ethanol (AF; Bioserve, Frenchtown NJ) ad libitum 

or pair-fed (PF; Bioserve) an isocaloric liquid control diet (with ethanol calories replaced 

by maltose-dextrin). The concentration of ethanol varied in the diet for the first 4 days 

from 1.7 to 5.0% v/v to habituate the dams to the alcohol diet. After this habituation 

period, dams were fed the liquid diet containing ethanol at a concentration of 6.7% v/v. 

Previous studies have shown that the peak blood ethanol concentration is achieved in the 

range of 120–150 mg/dl (0.12–0.15%) in pregnant dams fed with this liquid diet (Miller 
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1992). At postnatal day 2 (PD2), AF and PF pups were cross-fostered to untreated 

lactating AD dams to prevent any compromised nurturing by the AF and PF moms. Litter 

size was maintained at 8 pups per dam to minimize any nurturing effect on the body 

growth. Pups were weaned on PD21, and housed by sex. In each experimental group only 

one female offspring from each litter was used in order to avoid any gene homogeneity. 

Study using intact female rats 

To determine whether FAE alters pituitary lactotropic cell growth, proliferation, and 

pituitary gene expression during adulthood, a group of 18 to 24 AD, PF or AF female 

offspring were used. Rats were sacrificed by decapitation at 90 days of age on the day of 

estrus (6-8 animals/feeding group). Pituitary tissues and trunk blood samples were 

collected for pituitary weight and hormone and gene measurements. Some of the pituitary 

tissues were fixed with formalin and used for IHC analyses.  

Study using ovariectomized and estradiol-treated female rats 

We also determined if FAE alters the mitogenic effects of estrogen on lactotropes. 

Estrogen is known to increase the proliferation of PRL producing lactotropic cells and the 

development of prolactinomas (1-7).  For this, a group of 48 animals at 60 days of age 

was ovariectomized under sodium pentobarbital anesthesia (50–60 mg/kg, i.p.) as a 

general anesthesia and 2.5% Bupivacaine (sc) as a local analgesia, and then 

subcutaneously implanted with an estradiol-17β (Sigma, St. Louis, MO) filled 1-cm 

silastic capsule (Dow Corning, Midland, MI) (8 animals/feeding group) or an empty 1-cm 

silastic capsule (8 animals/feeding group). After surgery, animals were kept under 

observation for pain and suffering or infection for 3 days. Estrogen-treated rats were kept 
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in a cage fit with a HEPA filter to protect the user from estrogen contamination from 

these animals. The estradiol capsules were shown to maintain plasma levels of estradiol-

17β between 120 and 150 pg/ml and induce prolactinomas (De, et al. 1996). In order to 

determine the time-course of estradiol effects on pituitary weight and hormone 

production, groups of rats were sacrificed by decapitation on 60 days, 90 days, and 120 

days after the implants.  

Tissue Histology 

Pituitary tissues were fixed in 10% neutral-buffered formalin, and dehydrated, cleared, 

and embedded in Paraplast using facilities located in the Histopathology Core of the 

Environmental Occupational Health Sciences Institute at Rutgers University. Samples 

were sectioned at 6 µm and placed on slides. For pituitaries, cross sections were obtained. 

Sections were stained with hematoxylin and eosin using conventional protocol and 

mounted with Permount. An experienced pathologist, Dr. Kenneth Reuhl, who was blind 

to treatment, viewed tumor slides to assess tissue pathology. Representative images were 

taken using a Nikon microscope at 10X and 20X.  

Immunohistochemistry (IHC) 

Slides containing 6 µm pituitary sections were baked overnight at 60°C. Sections were 

then deparaffinized in xylene and rehydrated in decreasing concentrations of ethanol. 

Antigen retrieval was performed by heating the slides in 10 mM sodium citrate (pH 6.0) 

at 95°C for 20 min then cooled to room temperature.  All antibody and vendor 

information is listed in Table 1. In general, tissues were blocked in normal horse serum 

(Vector, Burlingame, CA) for 60 minutes at room temperature. Samples were incubated 
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overnight at 4°C with either primary antibody or rabbit primary antibody isotype control 

(Life Technologies; Grand Island, NY), which served as a negative control for each slide. 

The following day the tissues were incubated with secondary antibody (Vector, 

Burlingame, CA) for 60 minutes at room temperature. Slides were counterstained with 

DAPI (Vector, SK-4100) then mounted with Permount Prolong media.  For all IHC, 

tumor sections were viewed and five representative pictures of each section were taken at 

random using an Olympus FSX100 microscope at 20X (Olympus). The pictures were 

taken with the same exposure settings for all samples. The amounts of Ki67, P53, FGF4, 

PTTG, MMP9, SOX2, CD133, OCT4 protein staining in each section were counted using 

Photoshop software, only dark brown staining was counted as positive staining. The 

number of stained cells and number of total cells (hematoxylin stained cells) within a 

4000 µm area was counted and the percent of cells stained was calculated by dividing the 

number of positive cells with the number of total cells x 100.  

Enzyme linked immunosorbent assays (ELISA) for PRL and estrogen 

Plasma PRL and estradiol levels were measured using a rat PRL ELISA kit (Alpco 

Diagnostics, 55-PRLRT-E01, Salem, NH) and rat estrogen ELISA kit (My BioSource, 

MBS703614; San Diego, CA) respectively, as per the instructions from the manufacturer.  

Quantitative PCR for gene expression measurements 

Gene expression levels of aromatase, αESR, Ki67, P53, FGF4, PTTG, MMP9, SOX2, 

CD133, OCT4 in rat pituitaries were measured by quantitative PCR (SYBR green assay). 

Total RNA from pituitary glands was extracted using the All in One Purification Kit 

(Norgen Biotek, Ontario, Canada). Total RNA (1 μg) was converted to first strand 
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complementary DNA (cDNA) using a high capacity cDNA reverse transcription kit 

(Applied Biosystems, Carlsbad, CA). All the primer sequences used for the study are 

given in Table 2. Quantitative PCR was performed at 95°C for 5 min followed by 40 

cycles of 95°C for 15 sec, 60°C for 30 sec, 72°C for 40 sec using Applied Biosystems 

7500 Real time PCR system. The quantity of target gene expression was measured using 

the standard curve method. GAPDH and ribosomal protein 19 (RPL-19) were used as 

internal controls. GAPDH and RPL-19 did not vary between groups. Gene expression 

levels as GAPDH ratios are presented in the figures. 

Statistical analysis 

Data were analyzed using Prism 5.0 (GraphPad) Software, and presented in the figures as 

mean ± SEM. The significant differences between different treatment groups were 

assessed with one-way analysis of variance (ANOVA) and Newman Keuls posttest. 

P<0.05 was considered significant. 

Results  

1- Fetal alcohol exposure increases pituitary weights and levels of pituitary prolactin 

(PRL), plasma PRL, pituitary aromatase, and plasma estrogen in female offspring 

    Previous studies have reported that chronic or binge alcohol drinking increases plasma 

PRL and estrogen levels in humans and in various animals models (Hilakivi-Clarke et al. 

2004; Mello et al. 1988; Mennella and Pepino 2006, 2008). Our laboratory has recently 

shown that fetal alcohol exposure (FAE) increases the incidence of prolactinomas 

(Gangisetty, et al. 2015). The underlying mechanisms for increased susceptibility to 

tumorigenesis in the pituitary of these offspring are not apparent. Many human tissues 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140699#pone-0140699-t001
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express the enzyme aromatase, which locally catalyzes the conversion of steroids to 

estrogens (Gao, et al. 2017). There is increasing evidence that aromatase may be involved 

in some tumor cell proliferation pathways. Hence, we hypothesized that aromatase 

expression is increased in the pituitary of FAE animals, providing a local source of 

estrogens to stimulate the proliferation of prolactin-producing lactotrophs. To test this we 

measured the pituitary content for PRL and aromatase and by single or double-staining 

IHC procedures. We also measured aromatase and alpha estrogen receptor mRNA levels 

in these tissues using quantitative RT-PCR methods. Additionally, we measured plasma 

levels of PRL and estrogen by ELISAs and pituitary wet weight. As expected from the 

previous work (Gangisetty et al. 2015), pituitary PRL immunoreactivity was increased in 

AF animals (Fig. 1A, B). The IHC staining data also showed increased cells with positive 

staining for aromatase in FAE animal pituitary tissues (Fig. 1C, D). We found that the 

level of PRL mRNA and aromatase mRNA, but not αESR mRNA, was significantly 

higher in fetal alcohol-fed animals, as compared to controls (Fig. 1E, F, G). Additionally, 

we found that plasma estrogen levels (H), plasma PRL levels (I) and pituitary weights 

were higher in fetal alcohol-fed animals as compared to controls. These data provide 

evidence supporting the hypothesis that estrogen overproduction in the pituitary and other 

tissues in the periphery increases the susceptibility of PRL-producing lactotropes to 

develop tumors.  

2- Fetal alcohol exposure increases the development of aggressive prolactinomas in 

the pituitary after estrogen treatment in female rats  

    The experiment described above indicates that in utero alcohol exposure enhances 

plasma and pituitary estrogen levels in the offspring.  Because estrogen is mitogenic to 
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lactotropes (De Nicola et al. 1978; Gomez et al. 1977; Landolt, et al. 1987), we 

hypothesized that prolonged elevation of estrogen production in FAE offspring may lead 

to the development of more aggressive pituitary tumors.  There is evidence that estrogen 

produced locally through aromatization might enhance tissue expression of PTTG and 

FGF2 which are known to be markers of an aggressive prolactinoma (Yilmaz, et al. 

2015).  To address this, we first compared the time-dependent effects of estrogen on the 

pituitary weight (as a measure of tumor development) and the plasma PRL level (as a 

measure of hormone secreted by the tumor) in fetal alcohol-exposed and control diet-

exposed offspring. These data are shown in Figure 2.  Estrogen treatment via a silastic 

capsule that maintained plasma estrogen levels at 120 pg/ml increased both pituitary 

weights and plasma levels of PRL. Estrogen effects on pituitary weights and plasma PRL 

levels were time-dependent; the longer the treatment the higher the pituitary weight and 

PRL level (compare data between 2A and E). It is also important to note that both 

pituitary weight and PRL responses to estrogen were higher in AF group than those in 

AD and PF groups at all time points. Inspection of the pituitary gland 120 days after 

estrogen treatment revealed that some of the pituitary tumors of AF animals were highly 

vascularized, penetrating to the sphenoid bone and pressing on the median eminence (Fig. 

2G top two panels).  Pituitaries of estrogen-treated AD and PF rats were smaller and less 

vascularized (Fig. 2G bottom two panels). Histopathological inspections showed that 

pituitaries of AF animals had small round tumor cells in a solid pattern, necrosis, and the 

epithelial cells colonized in nested shape surrounded with blood vessels, which indicates 

angiogenesis signaling, while the pituitary tumor section from AD and PF animals 

showed uniform epithelial cells and infiltration of eosinophilic cells (Figure 2H). These 
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data suggest that FAE rat pituitaries, particularly PRL producing lactotropes, are more 

responsive to the mitogenic action of estrogen. 

3- Fetal alcohol exposure increases the expression of Ki67 and other biomarkers of 

cell proliferation in the pituitary tumor tissue  

     In order to further determine the aggressiveness of pituitary tumors, various 

biomarkers for aggressive pituitary adenomas were studied. As discussed earlier pituitary 

adenomas exhibit a wide range of behaviors and the prediction of aggressive or malignant 

behavior in pituitary adenomas remains challenging.  Recent evidence suggests that the 

expression of FGFR4, MMP, PTTG, Ki-67, p53 may serve as biomarkers for aggressive 

pituitary adenomas (Mete et al. 2012).  

     In order to determine the characteristic changes in pituitary tumors of FAE rats, the 

Ki67 and P53 labeling indices were first examined by staining the pituitary tumor tissue 

from AF, PF and AD rats. As shown in Fig. 3A and B, Ki67 immuno-labeling was higher 

in the pituitary of FAE rats.  Similarly, the nuclear P53 immuno-labeling was also 

elevated in the pituitary of FAE rats (3C and D).   

    The expression levels of various oncogenes (FGFR4, PTTG and MMP9) in the 

pituitaries were also determined. FGFR4 is a member of the FGF family, which plays an 

important role in the pituitary gland organogenesis, proliferation of the pituitary 

progenitor cells during embryonic development, and is widely expressed in human 

invasive pituitary adenoma (Abbass, et al. 1997; Ericson, et al. 1998; Ezzat, et al. 2002; 

Norlin, et al. 2000; Qian, et al. 2004). PTTG is an integrin heterodimeric receptor and 

plays a beneficial role in gathering the cell membrane with the extracellular matrix. 
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Overexpression of PTTG protein has been found in a variety of cancers such as colorectal 

cancer, breast cancer and invasive ovarian cancer.  PTTG has also been identified to play 

a role in prolactinoma formation (Fong, et al. 2012; Gao, et al. 2016; Horwitz, et al. 2003; 

Panguluri, et al. 2008; Salehi et al. 2008; Shah, et al. 2012; Zhou, et al. 2014). Matrix 

metalloproteinase (MMPs) are zinc dependent proteinase enzymes that contribute to 

tissue homeostasis, organ development, and cancer progression by digestion of 

extracellular matrix to allow tumor cells to penetrate the basement membrane and migrate 

to other parts of the body.  Some studies have shown that the invasive grade of human 

pituitary adenoma overexpresses MMP9. Furthermore, MMP9 overexpression has been 

found in several types of metastatic cancer such as liver cancer, breast cancer and ovarian 

cancer (Gong, et al. 2008; Gultekin, et al. 2015; Hussaini, et al. 2007; Kamat, et al. 2006; 

Mete et al. 2012; Pellikainen, et al. 2004; Shchors, et al. 2013; Sillanpaa, et al. 2007).  

We measured the expression of these oncogenes in the pituitary by using both 

immunostaining procedures for protein and real-time PCR procedures for gene 

expression. As can be seen in Figure 3, FAE pituitaries had increased protein (E, F) and 

gene expression levels of FGFR4 (G) as compared to control rat pituitaries.  Fetal 

alcohol-exposed pituitaries also showed increased protein and mRNA levels of PTTG 

(Fig. 3H, I, J) and MMP9 (Fig. 3K, L, M).  These biochemical data together with 

histopathological data shown in Fig. 2 support the notion that FAE rat pituitaries develop 

aggressive prolactinomas following estrogen treatment.  
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4- Identification of stem-like cells in the pituitary tumors of fetal alcohol-exposed 

rats 

The presence of adult pituitary stem cells (PSCs) has been described in murine systems 

by comprehensive cellular profiling and genetic lineage tracing experiments. PSCs are 

thought to maintain multipotent capacity throughout life and give rise to all hormone-

producing cell lineages, playing a role in pituitary gland homeostasis. Additionally, PSCs 

have been proposed to play a role in pituitary tumorigenesis, in both adenomas and 

adamantinomatous craniopharyngiomas (Gao et al. 2017; Manoranjan, et al. 2016). 

Recently, a role for PSCs in the formation of aggressive pituitary tumors has been 

proposed (Garcia and Kapcala 1995; Luciano et al. 1985) In this study, pituitary tumor 

sections from AF, PF and AD rats were stained for the stem cell markers SOX2, CD133 

and OCT4 and corresponding mRNA levels were measured by qRT-PCR.  The pituitary 

tumor sections from AF animals demonstrated increased staining for SOX2, CD133 and 

OCT4 as compared to those in control groups (Fig. 4A, B, D, E, G, H). Fetal-alcohol 

exposed pituitaries also showed increased mRNA levels of SOX2 (Fig. 4C), CD133 (Fig. 

4E) and OCT4 (Fig. 4H).  These data suggest that pituitary tumors of FAE rats contain 

more PSCs.     

Discussion  

    Overall, the data presented here indicate that FAE results in increased levels of 

pituitary weights, pituitary PRL and plasma PRL, reflecting greater growth of 

prolactinomas in FAE offspring exposed to estrogen. The higher growth of prolactinomas 

in FAE offspring could be related partly to increased production of estrogen, as we have 
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found increased levels of pituitary aromatase and plasma estrogen in AF rats. We also 

found that long-term estrogen treatment induces large, hemorrhagic and spreading 

tumors, higher levels of hemorrhage-associated genes and proteins (PTTG, FGF4 and 

MMP-9) and multipotency genes and proteins (SOX2, Oct4 and CD133) in tumors of AF 

rats. These data provide evidence for the development of aggressive prolactinomas in the 

pituitary after estrogen treatment in FAE female rats. 

    Pituitary tumors are the second most common intracranial tumor and account for 

around 20% of all types of intracranial tumors (Meij et al. 2002; Mete et al. 2012; 

Selman, et al. 1986). Although pituitary tumors are usually benign and treatable, their 

invasiveness and aggressiveness behavior poses a major challenge for clinicians. Even 

with new surgical techniques such as radiological and MRI diagnoses, histological 

findings and some biochemical analyses, it is hard to detect the penetration of the tumor 

cells to the surrounding tissue such as dura, nasal cavity and diaphragm. Furthermore, 

some pituitary tumors have inheritance features to relapse and regrow in more aggressive 

patterns or may show metastatic behavior (Lillehei, et al. 1998; Meij et al. 2002; Mete et 

al. 2012; Partington, et al. 1994). Since pituitary tumors are commonly benign, we predict 

that maternal alcohol exposure reprograms the pituitary to develop aggressive tumors in 

the offspring. Our conclusion that pituitary tumors of FAE rats are more responsive to 

develop aggressive pituitary tumors is based on the following: First, FAE pituitaries are 

large and hemorrhagic. The macroscopic appearance of pituitary tumor from AF animals 

represents soft and loosely formed tumor as compared to the control groups. Second, we 

have used most of the reliable IHC markers that characterize aggressive pituitary 

adenoma.  For example, we used Ki67 as a marker that is a nuclear antigen and expresses 
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in the S, G1, G2 and M phase, but not in the G0 phase or in quiescence cells. Increased 

Ki67 expression might be associated with metastatic and malignant variety of cancers 

(Gerdes, et al. 1984; Parkins, et al. 1991a; Parkins, et al. 1991b). The reliability of Ki67 

labeling index in pituitary tumor is different from other tumor types. The Ki67 labeling 

index varies between <1% to as high as 23% (Salehi et al. 2009) and counting 3% and 

higher as the threshold to diagnose the pituitary invasiveness. Our data reveals that Ki67 

labeling index was >4. A strong correlation between Ki67 labeling index and pituitary 

invasive adenoma with 97% specificity and 73% sensitivity has been found in several 

studies (Daita and Yonemasu 1996; Iuchi, et al. 2000; Jaffrain-Rea, et al. 2002; Landolt 

et al. 1987; Thapar et al. 1996a; Wolfsberger, et al. 2004; Zhao, et al. 1999). Thus, these 

data strongly support our prediction that FAE enhances invasive pituitary adenoma. We 

also used P53 as one of the biomarkers of aggressive pituitary tumors. P53 labeling index 

is well known as an indicator for malignancy and metastasis in different types of cancers. 

In a study examining the relationship between P53 expression and invasiveness, P53 

expression was nondetectable in non-invasive adenoma, 15% in invasive adenoma and 

100% in carcinoma (Hentschel, et al. 2003; Thapar et al. 1996b). In our experiment, we 

found FAE pituitaries have P53 labeling index <30, which also supports our notion that 

FAE increases the incidence of invasive pituitary adenoma. The pituitary tumor tissues of 

offspring exposed to alcohol during embryonic life also expressed higher levels of the 

oncogenes PTTG, FGF4 and MMP-9, PTTG is multifunctional pro-oncogene that plays 

several functions in tumor development such as cell transformation, DNA repair, DNA 

replication, angiogenesis and control of gene expression. Overexpression of PTTG in 

tumor tissue correlates strongly with cancer invasion, metastases and poor prognosis 
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(Dominguez, et al. 1998; Hamid, et al. 2005; Shibata, et al. 2002; Solbach et al. 2004). 

PTTG overexpression through nuclear binding factors leads to activated FGF expression, 

which positively correlates with the invasion of pituitary adenoma (Horwitz et al. 2003; 

McCabe, et al. 2003). In addition, MMP9, a proteolytic enzyme known to be upregulated 

in invasive prolactinoma and pituitary carcinoma (Ceylan, et al. 2011; Gong et al. 2008; 

Kawamoto, et al. 1996a; Kawamoto, et al. 1996b; Liu, et al. 2005; Paez Pereda, et al. 

2000; Turner, et al. 2000a) is also upregulated in the pituitary of FAE offspring. Hence, 

increased MMP9, PTTG and FGFR4 levels in the tumor identify an aggressive 

phenotype.   

    Recently, a role for stem cells in the formation of aggressive pituitary tumors has been 

proposed. Pituitary stem cells expressing the transcription factor SOX2 are able to 

contribute to the generation of new hormone-producing cells during postnatal life. 

Furthermore, it has been shown in mice  with forced up-regulation of the SOX2-positive 

pituitary stem cells by transgenic approaches stimulates a transient burst of proliferation, 

and subsequently induces tumorigenesis in a non-cell autonomous manner (Andoniadou 

2016). Recent studies also showed that cells expressing CD133 in pituitary adenomas 

partially exhibit stem cell properties (Xu et al. 2009). Oct4 and Sox2 are two typical 

embryonic stem cell markers and are established markers of pituitary stem cells (Chang, 

et al. 2017).  Their existence in pituitary adenomas has also been demonstrated (Gao et al. 

2017; Garcia-Lavandeira et al. 2012; Orciani et al. 2015). Additionally, rat prolactinoma 

cells also contained OCT4- and SOX2-positive cells (Gao et al. 2017). Therefore, our 

results showing the increase in SOX2, CD133 and OCT-4 in the pituitary tumors of FAE 
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rats suggest that these cells express stem cell markers which may contribute to their 

aggressiveness.  
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Figure 1.  Effects of fetal alcohol exposure on the immunoreactivity of pituitary prolactin 

(PRL)  (A, B) and aromatase  (C, D), pituitary PRL mRNA level (E), aromatase mRNA 

level (F), plasma estrogen level (G), pituitary estrogen receptor (αESR) mRNA level (H) 

plasma PRL level (I) and pituitary weight (J) in female rats.  Fetal alcohol-fed (AF), pair-

fed (PF) and ad libitum-fed (AD) rats were used during the adult period (90 days) on the 

day of estrus. Data are mean ± SEM (n = 6-8) and were analyzed using one-way analysis 

of variance (ANOVA) with the Newman-Keul posthoc test. *, p<0.05, **, p<0.01 and 

***, p<0.001 between AF and controls (AD, PF). 
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Figure 2. Effects of fetal alcohol exposure on estrogen-induced changes in pituitary 

weight, plasma PRL level and pituitary histopathologies.  Fetal alcohol-fed (AF) or 

control-fed (PF, AD) rats were ovariectomized and implanted with a β-estradiol implants 

at 60 days of age and used after 60 (E2-60 d), 90 days (E2-90 d) or 120 days (E2-120 d) 

for measurements of pituitary weight (A-C) and plasma PRL (D-F). Data are mean ± 

SEM (n = 6-8) and were analyzed using one-way analysis of variance (ANOVA) with the 

Newman-Keul posthoc test; *, p<0.05, **, p<0.01 and ***, p<0.001 between AF and 

controls (AD, PF). Representative photomicrographs of the pituitaries (G) and 

histopathology of tumors (H). evaluated following histological staining using 

Haematoxylin and Eosin by a pathologist (Magnification X10).  
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Figure 3. Characterization of the expression of tumor aggressiveness markers in the 

pituitary of fetal alcohol exposed rats. Pituitary tumor tissues of AF, PF and AD rats were 

stained for Ki67, P53, FGF4, PTTG or MMP9 using histochemical techniques.  

Photomicrographs of these tumor aggressiveness markers are shown on the left panels 

(A, C, E, H, K) and the percentage of positive stained cells  shown on the right panels (B, 

D, F, I, L).. The magnification 10X for Ki67 and 20X for the rest (P53, FGF4, PTTG or 

MMP9). The levels of FGF4, PTTG and MMP9 mRNAs are shown in panels G, J and M, 

respectively. Data are expressed as mean ± SEM (n= 6-8) and were analyzed using one-

AD AF 
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way analysis of variance (ANOVA) with the Tukey’s multiple comparisons posttest. *, 

p<0.05, **, p<0.01 and ***, p<0.001 between AF and controls (AD, PF) or indicated by 

a bar on the top of the graphs.  

 

 

Figure 4. Characterization of the expression of pituitary stem cell (PSC) markers in the 

pituitary of fetal alcohol exposed rats. Photomicrographs of these PSC markers are shown 

on the left panels (A, D, G) and the percentage of the positively stained cells shown on 

the right panels (B, E, H). The pictures are 20X magnification. The level of SOX2, OCT4 

or CD133 mRNAs are shown in panels C, F and I, respectively. Data are expressed as 

mean ± SEM (n= 6-8) and were analyzed using one-way analysis of variance (ANOVA) 

with the Tukey’s multiple comparisons post-test. *, p<0.05, **, p<0.01 and ***, p<0.001. 
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Chapter 3  

Pituitary tumors from alcohol-exposed animals contain a cell population that 

displays stem-like properties with high invasive and metastatic potential 

Abstract 

Data from the previous chapter showed that pituitaries of fetal alcohol-exposed (FAE) 

rats develop large prolactinomas with aggressive tumor phenotypes. In cases of 

malignancy and aggressive tumors, stem and progenitor–like cells (cancer stem cells; 

CSC) serve a critical role in the tumor microenvironment and in the processes of cancer 

cell proliferation, migration, invasion and angiogenesis. The evidence for the existence of 

CSCs in rat pituitary tumors needs to be elucidated. In this study, we tested whether FAE 

enhances the population of CSCs and aggressive prolactinomas in the pituitary in 

response to estradiol. Pregnant Fischer 344 rats were fed between gestational days 7 and 

21 with a liquid diet containing alcohol (AF), or fed ad libitum with rat chow (AD). At 60 

days of age, female offspring were ovariectomized and received a subcutaneous estradiol 

implant. Rats were sacrificed 4 months after the estradiol implants were placed. Tertiary 

pituispheres were generated form pituitary tissue and used for determination of stemness 

and tumorigenic potential.  Expression levels of mRNA and protein for genes related to 

multipotency (OCT4, NANOG, KLF4, SOX2, CD133, CD44, nestin and CD34) were 

significantly higher in pituispheres of AF animals compared to expression levels in 

pituitspheres of AD animals.   Cells generated from pituispheres isolated from AF 

animals showed higher cell proliferation, migration and colony formation rates as 

compared to control groups.  These data provide evidence that FAE may potentially 

promote the development of aggressive pituitary tumors in estrogen-treated animals.  
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Introduction  

    Tumorigenesis is considered a multistep process and understanding the molecular 

pathways responsible for initiation and progression is important in developing and 

applying effective therapeutics (Vogelstein and Kinzler 1993). Some critical hallmarks of 

cancer development involve the tumor acquiring sustained proliferative signaling, 

replicative immortality, and activating invasion and metastasis. The acquisition of 

specific “hallmarks” is widely accepted to be fundamental in cancer development 

(Hanahan and Weinberg 2000). Acquisition of “stemness” is also an important hallmark 

of cancer development.   

    Cancer stem cells (CSCs) are a small subset of cells within a tumor that have the 

distinct ability to self-renew and seed the heterogeneous populations which comprise the 

majority of the tumor (Marsden, et al. 2009). CSCs are proposed to promote tumor 

initiation and progression and have been implicated in chemoresistance and tumor relapse 

suggesting they drive an aggressive disease state (Hanahan and Weinberg 2011). CSCs 

do not necessarily originate from stem cell populations in normal tissue and can come 

from differentiated cancer cells populations that have acquired plasticity (Visvader and 

Lindeman 2008). Although the origins of CSC populations are not fully understood, the 

activation of an epithelial-to-mesenchymal transition (EMT) has been shown to confer 

stem-like properties on cancer cells (Cordenonsi, et al. 2011; Lei, et al. 2008; Mani, et al. 

2008; Qiao, et al. 2012; Yu, et al. 2012). EMT occurs when a cell loses its epithelial 

characteristics, in particular cell-cell contacts and polarity, and gains a mesenchymal 

phenotype, allowing the cell to escape the epithelial layer, acquire motility, evade 

apoptotic cues, and invade the basement membrane (Gilchrist, et al. 2002; Hay 1995; 
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Thiery 2002). Overexpression of factors that promote EMT, such as transcription factors 

Twist and Snail, or cytokines like TGFβ, can promote tumor-initiating populations (Mani 

et al. 2008; Pirozzi, et al. 2011; Qiao et al. 2012; Thiery 2002). CSCs can be identified 

and isolated by distinct cell markers, similar to normal stem cell populations, however the 

expression of these markers varies depending on context. In the pituitary tumor, stem 

cells express OCT4, Nanog, Klf4, CD44, Sox2, Sox9, CXCR4, Nestin, S100 (Chen et al. 

2009; Chen et al. 2005; Gleiberman et al. 2008; Goodell, et al. 1996; Krylyshkina, et al. 

2005; Lepore, et al. 2005) and correspond with tumor aggressiveness (see chapter 2 for 

discussion). In this chapter, we demonstrate the existence of stem/progenitor cells in the 

pituitary tumors of FAE rats and show that these cells have invasive and metastatic 

properties.  

 

Materials and methods  

Preparation of the anterior pituitary gland for cell isolation  

The methods of FAE, ovariectomy and estrogen treatment have been described in 

Chapter 2. Fischer 344 rats were administered AD or AF treatments (6/group) and the 

experiment was repeated three times.  Three offspring from each dam were implanted 

with estradiol capsules for four months to promote pituitary tumor formation. The 

animals were killed by decapitation. Under sterile conditions in the hood the skull was 

removed using a bone cutter and placed in a sterile dish containing sterile 1X PBS. The 

gland was cut into two transverse sections. One-half was placed into a specimen cup and 

processed for IHC as described below.  The anterior pituitary gland was excised from the 

other half and put in a 15 ml conical tube containing 10 ml HBSS with reduced calcium 

(Sigma-Aldrich; catalog #H6136) for further analyses as described below. 
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Isolation and culture of pituitary cells 

The pituitary cell culture method was adapted from several published methods 

(Andoniadou et al. 2012; Chen et al. 2005; Fauquier et al. 2008; Gaston-Massuet et al. 

2011; Gleiberman et al. 2008). Pituitary tissue from three offspring per dam was 

combined. The tissue was first washed several times to remove all the blood and then 

digested using collagenase (0.5%; Sigma-Aldrich; catalog #C9891) and DNAase (0.5%; 

Sigma-Aldrich; catalog #D4263) in HBSS for 15 min at 37ºC with frequent pipetting 

using a glass pasture pipette. The reaction was stopped by adding equal volumes of 

DMEM/F12 medium (Sigma-Aldrich; catalog #D2906) with 5% FBS (Gibco). The 

suspension was centrifuged at 3000 rpm for five minutes to collect the pellet. Each 

pituitary isolation representing tissue from three offspring yielded more than 500,000 

cells and the viability was >85%. Cell counting was done using a hemocytometer and the 

cell viability was measured by methylene blue exclusion. 

 

Generation of pituispheres 

    In order to determine if the pituitary cells have stem cell-like properties, the freshly 

dissociated cell pellet was prepared in growth medium (10 cells/µl) and plated on an 

ultralow attachment plate (9.5 cm²; Corning 6 wells plates; catalog #3471) at 500 µl/well. 

Cells were maintained at 37ºC and 5% CO2. Growth medium contained DMEM/F12 

medium, 0.5% BSA, B27 serum supplement (1:50; Life technology) and bFGF (20 

ng/ml; Sigma), EGF (20 ng/ml; Sigma), glutamine (200 mM; Life Technology) and N2-

supplements (Life technology). The culture was fed by adding small amounts of fresh 

growth medium every day, and the medium was changed every 3 days. After 7-14 days, 
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the spheres started growing. Spheres were trypsinized after another 7–14 days and 

passaged to evaluate secondary sphere formation. The cells from the dissociated spheres 

were collected in a 15 ml conical tube and centrifuged at 3000 rpm for 5 minutes. Then 3 

ml warm filtered trypsin (0.25% EDTA trypsin; Gibco Invitrogen) was added and tubes 

were kept in a water bath at 37ºC for 5 minute then mechanically dissociated by using a 

glass pasture pipette or 1 ml pipette. The trypsin reaction was stopped by adding an equal 

volume of DMEM/F12 medium with 0.5% BSA. Sometimes the spheres were big and 

hard to dissociate. In such cases spheres were incubated with cold trypsin at 4ºC for 20-

25 min and then mechanically dissociated using a pasture pipette, and trypsin reaction 

stopped by adding equal volume of DMEM/F12 with 0.5% BSA. The cell suspension 

was spun down at 3000 rpm for five minutes, cell pellet was collected and cells were 

plated in a new ultralow attachment 6 well plate at 2000-2500 cells/well. This process 

was repeated with secondary spheres to generate tertiary spheres. These cells were 

trypsinized and used for in vitro and in vivo assays described below.  A portion of the 

cells were frozen down and stored in liquid nitrogen. Tertiary spheres were successfully 

generated with pituitary cells from all 12 animals.  

Immunofluorescent staining (IFC)  

Pituitary cells derived from tertiary pituispheres were plated on lab-tech chamber slides 

and stained for various stem cell markers using IFC. Cells on culture slides were first 

washed three times with cold 1X PBS for removing culture medium, fixed with cold 4% 

PFA for 30 min, washed three times with 1X PBS and permeabilized and blocked with 

Triton X-100 (0.5% and 2.5% Horse serum in PBS) for one hour. Cells were then 

incubated with primary antibody (antibody information is listed in Table 1) overnight at 
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4C, washed three times with 1X PBS, and incubated with either Alexafluor 488 or 

Alexafluor 594 secondary antibody (Life Technologies) for 60 minutes at room 

temperature. Cells were counterstained with DAPI (Vector Laboratories) and imaged 

using a Nikon fluorescence microscope.  

Cell proliferation by BrdU growth assay 

Proliferation of cells isolated from tertiary pituispheres was tested using a BrdU Cell 

Proliferation Assay Kit #6813 (Cell Signaling Technology, Boston, MA) according to the 

manufacturer’s protocol. 2500 cells per well were plated on a 96-well plate in 

quadruplicate for each pituisphere isolation. 

 

Soft agar colony formation assay 

To assess tumor cell colony formation, the CytoSelect 96-Well Cell Transformation 

Assay CBA-130 (Cell Biolabs, Inc. San Diego, CA) was used according to the 

manufacturer's instructions. Briefly, cells derived from pituispheres were seeded in soft 

agar at a density of 1000 cells per well in the presence of growth factors in triplicate. 

After 7 days of incubation at 37°C in 5% CO2, colony formation was quantified by 

solubilizing soft agar, lysing cells, and incubating cell lysates with the CyQUANT GR 

Dye (Cell Biolabs Inc.). Fluorescence was measured using a TECAN fluorescent reader 

with a 485/538 nm filter set and 530 nm cutoff. The number of transformed cells was 

counted according to the manufacturer’s instructions. Some wells were used for staining 

after seven days.  In this case, wells were washed with 1X PBS and fixed with 4% PFA 

for 30 minutes, then washed three times with 1X PBS, stained using crystal violet, and 

visualized with the Nikon microscope.   
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Cell migration and invasion assays 

To assess tumor cell migration, the CytoSelect 96-well cell migration assay kit CBA-106 

(Cell Biolabs Inc.) was used according to the manufacturer’s protocol. Briefly, cells were 

suspended in DMEM-serum free medium, and 10,000 cells were added to the top 

chambers of the 96-well cell migration plates. Five replicate wells were plated for each 

pituisphere isolation. Complete media was added to the bottom chambers as attractant. 

Twenty-four hours after incubation, migrating cells were detached from the underside of 

the membrane using cell detachment solution, lysed with lysis buffer and stained with 

CyQuant GR dye solution. Fluorescence intensity was determined with a TECONIC plate 

reader at 485/535 nm. 

 

Tumor xenograft study 

To determine if the pituitary cells derived from tertiary spheres could form tumors in 

vivo, NOD/SCID mice were used. After trypsinization of the AF and AD spheres, the 

cells were mixed with equal volumes of Matrigel Basement Membrane Matrix cat# 

356237. The final injection volume was 200 µl/2X10
6
. Mice were transplanted from each 

of six cell preparations prepared from the pituitary tissue of AF and each of five cell 

preparations prepared from AD animals. After the tumors start growing, tumor volumes 

were measured every other day. Tumor long length (L) and short length (S) were 

measured using a Vernier caliper and tumor volume was calculated using the formula (S
2
 

X L/2) X body weight.  
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Results  

1. Fetal alcohol exposed pituitaries contain higher numbers of aggressive and 

proliferative stem-like cells  

    Pituitary tissue from AF (n=6) and AD animals (n=5) were dissociated and cultured on 

ultralow attachment plates to track progenitor/stem cell characteristics. Under these 

conditions, pituitary cells rapidly (within 7 days) formed spheres (Fig. 1 A). Cells 

isolated from both AD and AF tertiary pituispheres were able to grow rapidly in culture 

conditions, but the growth rate of cells isolated from AF pituispheres was several-fold 

greater than that of cells isolated from AD pituispheres (Fig. 1B). To determine whether 

these cells express stem cell-related transcription factors, we measured mRNA levels of 

Sox2, NANOG, OCT4, CD44, CD133, Nestin, CD34 and Klf4 genes. Pituispheres of 

both AF and AD rats expressed all stem cell-related transcription factors, but mRNA 

levels of these genes were higher in AF cells than those in AD cells (Fig. 1C).  

Immunostaining also demonstrated elevated expression of stem cell-related transcription 

factors in AF pituispheres compared with AD pituispheres (Fig. 1D and E). These data 

suggest that estrogen-induced pituitary tumors display progenitor or stem-like properties, 

and further indicate that pituitary tissue from FAE animals contain more proliferative 

stem-like cells.  

 

2- Pituispheres of fetal alcohol exposed rats have significant migration and 

metastatic abilities and tumorigenic properties  

    The colony formation assay is one of the in vitro assays that examine the ability of 

cells to form colonies in semisolid agar. We compared the ability of pituitary cells 
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derived from pituispheres of AF and AD rats to form colonies in soft agar under normal 

growth conditions. As shown in Fig. 2A, cells derived from pituispheres of AF rats 

formed colonies at a four-fold higher rate than those of AD rats, suggesting that these 

cells have a signature of aggressive behavior. We have also determined the invasive and 

migration properties of the pituisphere-derived cells using the Boyden chamber assay, 

which mimics the ability of the cells to penetrate the extracellular matrix to migrate to 

others part of the organ or body. Figure 2A shows that migration rates of AD cells were 

very low, while migration rates of AF tumor cells were many fold higher (Fig. 2B), 

suggesting that AF cells from pituispheres cells have high migration ability.  

    It has been suggested that tumor progenitor cells or stem-like cells cannot be 

considered as cancer stem cells unless they are able to sustain the neoplasm (Hanahan 

and Coussens 2012; Hanahan and Weinberg 2011; Kreso and Dick 2014). Therefore, we 

studied tumor growth potential of AF and AD cells cultured from pituispheres in 

immunodeficient mice (NOD/SCID). In fact, AF tumor cells, but not AD tumor cells, 

successfully generated tumors in immunodeficient hosts (Fig. 2C). Additionally, similar 

to results of in vitro (Fig. 1B) assays, cells cultured from AF pituispheres rapidly grew in 

immunodeficient hosts (Fig. 2D).  These data suggest that AF tumor cells have cancer 

stem cell-like properties and have the ability to renew and generate new tumor bulk in 

immunodeficient hosts. 
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Discussion  

    In this study we have shown that pituitary tissue obtained from Fischer 344 rats 

exposed to alcohol in utero and treated with chronic estrogen treatment contains a cell 

population that gives rise to pituispheres under in vitro conditions.  Also, pituispheres, 

particularly from FAE rats, express higher levels of various stem cell and tumor 

aggressiveness markers. Cells isolated from pituispheres of AF rats had the ability to self-

renew and exhibited rapid proliferation. Furthermore, they were able to form colonies and 

migrate under in vitro conditions. Cells generated from AF pituispheres also successfully 

generated tumors when transplanted in NOD/SCID mice. These data suggest that FAE 

promotes the development of a stem cell niche within the pituitary tumor to increase the 

aggressiveness of the tumor. 

Previous studies have shown the existence of pituitary stem cells or pituitary 

progenitor cells in pituitary adenomas (Chen et al. 2014; Florio 2011; Tunici and Yu 

2009; Zhou, et al. 2013). Using known progenitor/stem cell markers like Sox2, NANOG, 

OCT4, CD44, CD133, Nestin, CD34 (Andoniadou et al. 2007; Camper 2011; Carreno, et 

al. 2017; Chen et al. 2009; Chen et al. 2005; Fauquier et al. 2008; Gaston-Massuet et al. 

2011; Gleiberman et al. 2008; Lepore et al. 2005; Mertens et al. 2015), we demonstrated 

that pituispheres of FAE rats express various stem cell markers.  We also showed that  

cells derived from pituispheres of FAE rats have the ability to migrate, form colonies and 

develop tumors in immmunodeficient mice. Several studies have shown that tumor 

recurrence, tumor invasion and tumor resistance to chemotherapy are associated with the 

high proliferation rate of the tumor stem cells or tumor progenitor cells population (Dai, 

et al. 2017; Min, et al. 2015; Pastrana, et al. 2011; Smart, et al. 2013). Cancer stem cells, 
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a small subset of cells within a tumor, have the ability to self-renew and are suggested to 

promote tumor initiation and progression and have been implicated in driving a more 

aggressive disease state (Chen, et al. 2012; Hanahan and Coussens 2012; Hanahan and 

Weinberg 2000, 2011). We show here that pituitary cells of AF rats had the ability to 

self-renew and develop into solid tumors when transplanted in NOD/SCID mice. 

Therefore, these cells represent highly proliferative tumor progenitor cells. Together 

these data suggest that embryonic alcohol exposure programs the pituitary stem cells to 

develop invasive and aggressive pituitary adenoma under the influence of estrogen. 
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Figure1: Characterization of pituispheres generated from the anterior pituitary of fetal 

alcohol exposed (AF) or control (AD) rats. Pituispheres were obtained from AF and AD 

treated rats and maintained in cultures with growth factors. (A) Images of pituispheres 

from AF and AD rats that were formed after 7 days in cultures in ultralow attachment 

plates in serum-free growth medium. (B) Brdu cell proliferation assay. Pituitary cells 

derived from AF and AD pituispheres were cultured in serum free media 2500 cells/well 

in 96 well plates up to 72hrs. The cell number in the figure refers to the cells positive for 

Brdu incorporation. Data were analyzed by two-way ANOVA (treatment × time). A 

significant time × treatment effect on cells proliferation was noted for AF cells 

(**P<0.001), and post hoc comparisons shows AF cells show more proliferation at the 

24, 48 and 72 hrs time points (C) Expression levels of various stem cell marker genes 

(OCT4, Nanog, KLF4, SOX2, CD133, CD44, Nestin and CD34) in pituispheres of AF 

and AD rats for each gene, expression levels were compared between AD and AF cells 

by Student’s t test (**P<0.01, ***P<0.001). (D) and (E) Representative photographs of 

immunofluorescent staining of stem cell-associated transcription factor proteins in AF  

(D) and AD (E) pituispheres. The magnification shown is 10X. 
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Figure 2: Determination of cell colony formation, migration and tumorigenic ability of 

pituispheres of fetal alcohol exposed rats (AF) and control rats (AD) treated with 

estradiol for four months. Pituispheres were obtained from individual AF and AD treated 

rats and maintained in cultures with serum-free growth medium for several generations.  

(A) Colony formation in soft agar plates of cells derived from AF and AD pituispheres 

(top) and the number of transformed cells counts (bottom). Data are expressed as mean ± 

SEM (n=5-6) and were analyzed using unpaired Student’s t test. * P<0.05, **P<0.01, 

***, p<0.001 between AF and AD. (B) Cell migration rate of pituitary cells of AF and 

AD. Data are expressed as mean ± SEM (n=5-6) and were analyzed using unpaired 

Student’s t test. **P<0.01 between AF and AD (C) Representative photos of xenograft 

mice injected with pituitary tumor cells (5 x10
6
 in the right flank area) generated from 

fetal alcohol exposed rats (AF) or from control rats (AD). (D) Changes in tumor volumes 
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in xenograft mice injected with AF (n=6) and AD pituispheres (n=5). Data were analyzed 

by two-way ANOVA (treatment × time). A significant time × treatment effect on tumor 

growth was noted for AF cells (**P<0.001), and post hoc comparisons shows that AF 

cells show xenograft tumor growth at the 7, 10 and 15 day time points. 
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Table 1 Antibody information 

 

Antibody Cat number Vendor information 

Ki67  Abcam-15580 Abcam  

P53  Abcam, PAb 240 Abcam  

PTTG  PTTG Antibody (H-160) Santa Cruz 

FGF4 SC, 9006 Santa Cruz  

MMP9  Ab38898 Abcam  

SOX2 MBS462135 MyBiosource  

Nanog ab106465  Abcam 

CD44  Ab 5640s Abcam 

KLF4 Anti-KLF4 (ab72543) Abcam 

CD133 anti-CD133 antibody  MyBiosource  

TSH  AB976 Millipore  

Growth hormone  BAF1566 R and D system  

Prolactin  AF1112 R and D system  

Aromatase  ab18995 Abcam  

ESR1  ab32063 Abcam  

 



69 
 

 
 

Table 2 primer sequences  

Primers  Sequences  

FGF4 Forward ACATCGTTATCAACGGCAGC 

FGF4 Reverse  GTCTTCTTCCTCTGCTTCGG 

PTTG Forward  GTGCCAACATCAACAAACGA 

PTTG Reverse GCATTGAGGAAGGCTGGAAGA 

MMP9 Forward  CGGATCCCCCAACCTTTACC 

MMP9 Reverse  AGGTCAGAACCGACCCTACA 

αESR Forward  TCGGGAATGGCCTTGTTG 

αESR Reverse  AGCTGCGGGCGATTGA 

SOX2  Forward AGAACTAGACTCCGGGCGAT 

SOX2  Reverse ACCCAGCAAGAACCCTTTCC 

Nanog Forward TGCATTTGTCTGAGCTGGGTA 

Nanog Reverse TGGTATGGAGTAGGGTGGGT 

OCT4 Forward GGGGACATCTTGGGTTGGAG 

OCT4 Reverse   AGTAGAGCAGTGGGGGTAGG 

KLF4 Forward TGTGACTATGCAGGCTGTGG 
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KLF4 Reverse GTGTGGGTCATGTCCACGAT 

Sca1 TGAGGATGGACACTTCTCACAC 

Sca1  GAACATTGCAGGACCCCAGA 

CD34 Forward AGGTTAGGCCCGAGTGTTTG 

CD34 Reverse TAAGGGTCTTCACCCAGCCT 

Nestin Forward CTGTGGGTGTCAGTGGTCTC 

Nestin Reverse TTAGAGCACCCACCTCCTGT 

S100 Forward AGCTTCTCTGTCTACCCTCCT 

S100 Reverse TCTTCGTCCAGCGTCTCCAT 

Pit-1 Forward CTGTGGTAGCCATGTGTGGT 

Pit-1 Reverse   TATTCACATATATGATGGCCTCTCT 

SF-1 Forward CCACCACCGTCTCTCATGTC 

SF-1 Reverse AGGCGTACTTCCCAGGTACT 

CD44 Forward  CTACCCCTGAAACACCACCC 

CD44 Reverse  TTAGCGCCGCTCTTAGTGCT 

CD133 Forward  ACCAAGGAGGTCGCCATCTA 

CD133 Reverse  CGAGTCCTTGTCTGCTGGTT 
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GH Forward  GGCATTTGCCACCTCCTTTG 

GH Reverse  GGCATTTGCCACCTCCTTTG 

PRL Forward  ACCGTGTGGTCATGCTTTCT 

PRL Reverse  AGCCGCTTGTTTTGTTCCTC 

TSH Forward  GGAGCATATGGTGAGGACAGG 

TSH Reverse  TGGCTCCGTATAGCCACTCA 

CYP19A1 Forward  ACTCTACCCACTCAAGGGCA 

CYP19A1 Reverse  AGTAGTTTGGCTGTGGCTCC 
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Conclusions and Future Directions  

   It is widely accepted that exposure to adverse environmental conditions and lifestyle 

choices during pregnancy can result in fetal programming that underlies disease 

susceptibility in adulthood. Fetal alcohol-exposed offspring display many behavioral and 

physiological abnormalities including neuroendocrine-immune functions, which often 

persist into their adult life. Previous research conducted in our lab supports the hypothesis 

that alcohol exposure during gestation leads to increased susceptibility to pituitary 

tumorigenesis in a rodent model. I found that alcohol exposure during gestation leads to 

increased plasma estrogen and pituitary aromatase mRNA expression in rodent model of 

fetal alcohol exposure. Therefore, we tested whether fetal alcohol exposure increases the 

susceptibility to estrogen-induced pituitary prolactin-secreting tumors (prolactinomas), a 

commonly occurring pituitary tumor in humans.  

    A review of the literature on the effect of adult alcohol exposure and in utero alcohol 

exposure provided evidence for increased incidence of prolactinoma development. Some 

of the clinical cases have found chronic or binge alcohol exposure elevated plasma 

prolactin level. Animal model studies also showed that both acute and chronic alcohol-

exposure increased plasma prolactin and pituitary proliferation labeling index. However, 

there are limited studies conducted to determine the effect of fetal alcohol exposure on 

the pituitary tumor development, in particular pituitary prolactinoma development. 

    In Chapter 2 I showed that fetal alcohol exposed animals had increased levels of 

pituitary weight, pituitary prolactin (PRL), plasma PRL, pituitary aromatase, and plasma 

estrogen. I also showed that estradiol treatment time-dependently increased pituitary 
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weight more in fetal alcohol exposed animals than in control animals. After 120 days of 

estradiol treatment, I found both fetal alcohol exposed rats and control rats developed 

large pituitary tumors, but pituitary tumors in fetal alcohol exposed rats are hemorrhagic 

and showed expansion to the surrounding tissue. Pituitary tumor from alcohol exposed 

animals also showed marked cell proliferation and elevated expression of genes and 

proteins related hemorrhage (PTTG, FGF4 and MMP-9), and multipotency (SOX2, Oct4 

and CD133). These data suggest that fetal alcohol exposure may promote development of 

aggressive tumors.  

    Chapter 3 summarized the evidence of existence of stem cells in pituitary tumors of 

alcohol-exposed animals. This evidence came from the observation that pituispheres 

obtained from fetal alcohol exposed rats expressed elevated levels of multipotency 

markers (OCT4, NANOG, KLF4, SOX2, CD133, CD44, nestin and CD34) and showed 

higher cell proliferation, migration and colony formation rates and developed tumors in 

immune-compromised mice. These data provide evidence that fetal alcohol exposure rats 

potentially develop larger and possibly aggressive pituitary tumor.  

        Future studies should focus on the role of epigenetic mechanisms involved in 

alcohol-specific expression of genes related to Wnt signaling and stemness (possibly by 

using CHIP). An understanding of the mechanisms involved in increased pituitary 

tumorigenesis in fetal alcohol-exposed animals would ultimately lead to better prevention 

and treatment strategies for aggressive pituitary tumors. 
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