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ABSTRACT OF THE DISSERTATION

The Minimal Parabolic Eisenstein Distribution on the

Double Cover of SL(3) over Q.

by Edmund Karasiewicz

Dissertation Director: Professor Stephen D. Miller

We begin a study of the Fourier Coefficients of a minimal parabolic Eisenstein distri-

bution on the double cover of SL(3) over Q. The central problem in the computation

of the Fourier coefficients is a computation of certain exponential sums twisted by the

splitting map s : Γ1(4) → {±1}, which appear after unfolding the integral defining

the Fourier coefficients. In [11], Miller provides a formula for s; unfortunately, this

formula does not appear conducive to the computation of the exponential sums; how-

ever, while considering a similar computation over number fields containing the 4-th

roots of unity, Brubaker-Bump-Friedberg-Hoffstein [5] successfully computed the non-

degenerate Fourier coefficients of a minimal parabolic Eisenstein series using a formula

for an analog of s in terms of Plücker coordinates. These coordinates are well suited

to the computation of the exponential sums and so our main objective is a proof that

Miller’s formula for s can be written in terms of Plücker coordinates. With this new

formula for s we can compute the Fourier coefficients of our Eisenstein distribution.

The calculations of these Fourier coefficients will be addressed in a forthcoming work.
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Chapter 1

Introduction

This dissertation begins a study of the Fourier coefficients of the minimal parabolic

Eisenstein series on the double cover of SL(3) over Q. This study will be broken into

two parts. The first part, which makes up the contents of this dissertation, focuses

on studying the splitting map (see Section 3.4). The second part, which will appear

in a forthcoming work, utilizes the study of the splitting to execute the Fourier coeffi-

cient computation. It is worth mentioning that this Fourier coefficient computation is

achieved using the technique of automorphic distributions. Although it is not necessary

to use distributions to address this computation, the use of automorphic distributions

should be advantageous for certain applications of these results.

To begin, we introduce the metaplectic Eisenstein series and briefly indicate where

the splitting enters into the Fourier coefficient computation. Let G̃ = S̃L(3,R), the

double cover of G = SL(3,R). Let NR be equal to the group of 3× 3 upper triangular

unipotent matrices with coefficients in the ring R and let BR be the group of 3 × 3

upper triangular matrices with coefficients in the ring R; when R = R we may omit the

subscript. The discrete subgroup Γ1(4) ⊆ G (defined on line (2.2)) can be embedded

into G̃ via the map S : Γ1(4) ↪→ S̃L(3,R), where S(γ) = (γ, s(γ)) and s : Γ1(4)→ {±1};

the map s will be called the splitting map of Γ1(4) and it is introduced in Section 3.4.

Let Γ∞ = Γ1(4) ∩ N(Z). Finally, τ̃λ is a particular element of the principal series

representation Ṽ −∞λ,φ (defined in Subsection 2.1.3).

The metaplectic Eisenstein distribution Ẽ(g̃, λ) is a vector valued automorphic dis-

tribution on G̃ = S̃L(3,R); for certain complex vectors λ ∈ C3 the Eisenstein series

satisfies the equation

Ẽ((g̃, λ)) =
∑

γ∈Γ∞\Γ1(4)

τ̃λ(S(γ)g̃).
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The (m1,m2)-th Whittaker distribution is defined to be∫
NZ\NR

Ẽ(ng̃, λ)ψ−1
m1,m2

(n)dn, (1.1)

where ψm1,m2 is a one dimensional character of NZ\NR. As usual, each Whittaker distri-

bution is most easily computed after the Eisenstein series is broken up into incomplete

sums indexed by the Bruhat cells. Let Ẽw denote the partial Eisenstein series with

respect to the Bruhat cell NwB. Specifically,

Ẽw((g̃, λ)) =
∑

γ∈Γ∞\Γ1(4)
γ∈NwB

τ̃λ(S(γ)g̃).

Roughly speaking, unfolding the integral (1.1) (with E replaced by Ew) yields a Dirich-

let series whose coefficients are exponential sums twisted by the splitting s. When w is

the long element of the Weyl group the exponential sums take on the form

∑
γ∈Nw`B

γ∈Γ∞\Γ1(4)/Γ∞

s(γ)e
2πi(m1

B1
A1

+m2
B2
A2

)
. (1.2)

Miller [11], using the work of Banks-Levy-Sepanski [1], provides a formula for s, but

this formula is not well suited to the computation of (1.2). (However, Miller’s formula

can be used to execute this computation when w is not the long element.) In [5],

Brubaker-Bump-Friedberg-Hoffstein compute the non-degenerate Fourier coefficients

of an Eisenstein series on the n-fold cover of SL(3) over a number field K containing

the 2n-th roots of unity; in the case of double covers this means that the base field

must contain the 4-th roots of unity so their work does not apply when working over Q.

The Brubaker-Bump-Friedberg-Hoffstein formula for s in terms of Plücker coordinates

(defined in Section 2.1.2) is convenient when it comes to computing the exponential

sums appearing in the Fourier coefficient computation; unfortunately the formula does

not hold over Q, the case in which this Eisenstein series can be related to moment

problems for quadratic Dirichlet L-series. The main result of Chapter 3 provides a

formula for Miller’s splitting in terms of Plücker coordinates. The most interesting

case, which will be described in the next theorem, occurs when γ is in the big Bruhat

cell.
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Theorem 1. Let γ ∈ Γ1(4). Suppose that the Plücker coordinates of γ are given by

(4A1, 4B1, C1, 4A2, 4B2, C2), such that A1 > 0, A2 6= 0, and A2 is divisible by fewer

powers of 2 than A1 is. Let D = (A1, A2), D1 = (D,B1), D2 = D/D1, and let

ε =
(

−1
−B1/D1

)
. Then

s(γ) =

(
−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
. (1.3)

(see Section 3.6 for notation)

Although the statement of the previous theorem appears to have restrictive assump-

tions, the identities of Section 3.5 reduce the general situation to the case of the theorem.

If −1 is assumed to be a square, then this formula essentially matches the the

formula of Brubaker-Bump-Friedberg-Hoffstein [5]. Another interesting feature of this

formula is the appearance of ε. The term involving ε will equal 1 when (A1, A2) is odd,

but need not when (A1, A2) is even.

We conclude the introduction with a brief outline of the contents of each chap-

ter. Chapter 2 collects notation and basic computations that will be used throughout

the remainder of this dissertation. Most of the material contained in this chapter is

fairly standard. Subsection 2.2.2 provides one notable exception. This subsection in-

troduces the Banks-Levy-Sepanski 2-cocycle [1] and collects some basic properties of

the 2-cocycle. The choice of a 2-cocycle defines a multiplication on S̃L(3,R) and thus

plays an important role in the determination of the splitting s.

In Chapter 3 we study the splitting s. The main result of this section provides a

formula for the splitting in terms of Plücker Coordinates as seen in Theorem 1. This

result is achieved by studying the effect of certain symmetries on s. Additionally, it

is established that s satisfies a type of twisted multiplicativity. The formula for the

splitting in terms of Plücker coordinates provides us a means to execute the compu-

tation of the Fourier coefficients of the metaplectic Eisenstein series. However, these

computations will be addressed in a forthcoming work.
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Chapter 2

Notation, Conventions, and Basic Computations

2.1 Notation

2.1.1 SL(3,R) and S̃L(3,R)

In this section the notation related to SL(3,R) and S̃L(3,R) is established. As a set

S̃L(3,R) ∼= SL(3,R) × {±1}. As a topological space S̃L(3,R) is given the nontrivial

covering space topology whose existence is guaranteed by the fact that the fundamen-

tal group of SL(3,R) is isomorphic to Z/2Z. We will indicate how to determine the

fundamental group of SL(3,R) once some notation has been established.

In this dissertation, the group law on S̃L(3,R) is defined using the Banks-Levy-

Sepanski 2-cocycle, σ : SL(3,R) × SL(3,R) → {±1}, constructed in [1] and recalled in

Subsection 2.2.2. With the 2-cocycle the group multiplication is defined by

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2σ(g1, g2)). (2.1)

The covering group S̃L(3,R) fits into the exact sequence

1→ {(1,±1)} → S̃L(3,R)
π−→ SL(3,R)→ 1,

where the map π is given by (g, ε) 7→ g and (1,±1) is contained in the center of S̃L(3,R).

The following list establishes some notation for some subgroups of SL(3,R) and
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S̃L(3,R):

G = SL(3,R) , G̃ = S̃L(3,R)

B =

{(
a b c
0 e f

0 0 1
ae

)
|a, e 6= 0

}
, B̃ =

{((
a b c
0 e f

0 0 1
ae

)
,±1

)
|a, e 6= 0

}
B− =

{(
a 0 0
d e 0
g h 1

ae

)
|a, e 6= 0

}
, B̃− =

{((
a 0 0
d e 0
g h 1

ae

)
,±1

)
|a, e 6= 0

}
N =

{(
1 x z
0 1 y
0 0 1

)}
, Ñ =

{((
1 x z
0 1 y
0 0 1

)
, 1
)}

T =

{( t1 0 0
0 t2 0
0 0 1

t1t2

)
|ti ∈ R×

}
, T̃ =

{(( t1 0 0
0 t2 0
0 0 1

t1t2

)
,±1

)
|ti ∈ R×

}
A =

{(
a 0 0
0 b 0
0 0 1

ab

)
|a, b > 0

}
, Ã =

{((
a 0 0
0 b 0
0 0 1

ab

)
, 1

)
|a, b > 0

}
M =

{(
ε1 0 0
0 ε2 0
0 0 ε1ε2

)
|ε1, ε2 = ±1

}
, M̃ =

{((
ε1 0 0
0 ε2 0
0 0 ε1ε2

)
,±1

)
|ε1, ε2 = ±1

}
K = SO(3) , K̃ = Spin(3)

Γ = Γ1(4) = {γ ∈ SL(3,Z)|γ ≡
(

1 ∗ ∗
0 1 ∗
0 0 1

)
(mod 4)} , Γ∞ = NR ∩ SL(3,Z). (2.2)

Note that with the above notation B̃ = π−1(B), but the analogous relation does not

hold for A or N . This is because the Banks-Levy-Sepanski 2-cocycle is defined so that

A and N split with respect to S̃L(3,R). To simplify notation

((
a 0 0
0 b 0
0 0 1

ab

)
, 1

)
will be

written

(
a 0 0
0 b 0
0 0 1

ab

)
, and

((
1 x z
0 1 y
0 0 1

)
, 1
)

will be written
(

1 x z
0 1 y
0 0 1

)
.

In [11], Miller constructs a map S : Γ1(4) ↪→ S̃L(3,R) such that S(γ) = (γ, s(γ)),

where s(γ) ∈ {±1}. This map S is a splitting of Γ1(4) into S̃L(3,R) (i.e π◦S =id). The

definition of the map s, which by abuse of terminology will also be called the splitting,

is defined in section 3.4.

The following list establishes some notation for elements of SL(3,R):

t(a, b, c) =
(
a
b
c

)
, n(x, y, z) =

(
1 x z
0 1 y
0 0 1

)
wα1 =

(
0 −1 0
1 0 0
0 0 1

)
, wα2 =

(
1 0 0
0 0 −1
0 1 0

)
,

wα1wα2 =
(

0 0 1
1 0 0
0 1 0

)
, wα2wα1 =

(
0 −1 0
0 0 −1
1 0 0

)
,

and w` = wα1wα2wα1 = wα2wα1wα2 =
(

0 0 1
0 −1 0
1 0 0

)
.

The last five elements listed above and the identity matrix constitute a complete set of

representatives for W = N(T )/T , the Weyl group of SL(3,R).
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A few comments are in order. The representatives of the Weyl group listed above

are those defined in Section 3 of [1]. These representatives are used in the formula for

of the 2-cocycle, which can be found in Section 4 of their previously cited paper. Also

note that w`Bw` = B− and w`Nw` = N−. Occasionally, if H is a subgroup of B, the

notation Hop = w`Hw
−1
` may be used.

Let a be the Lie algebra of traceless 3 × 3 diagonal matrices with real entries. For

X ∈ sl(3,R), let exp(X) =
∑∞

n=0
Xn

n! be the exponential map and let log denote its

inverse on A.

The map K × A × N → SL(3,R), given by (k, a, n) 7→ kan is a diffeomorphism.

This matrix factorization is called the Iwasawa decomposition. Define the maps κ :

SL(3,R)→ K, H : SL(3,R)→ a, and n : SL(3,R)→ N such that g 7→ (κ(g), exp(H(g)), n(g))

is the inverse of the map (k, a, n) 7→ kan.

The Iwasawa decomposition can be used to prove that π1(SL(3,R)) ∼= Z/2Z. The

subgroups A and N are contractible spaces and the Iwasawa decomposition provides a

diffeomorphism between SL(3,R) and K × A ×N . Thus π1(SL(3,R)) ∼= π1(K) and it

is well known that π1(SO(3)) ∼= Z/2Z.

The definition of the Whittaker distributions involves integration over Γ∞\N ∼=set

[0, 1]3. Specifically, each coset of Γ∞\N has a unique representative n(x, y, z) such that

0 ≤ x, y, z < 1. The invariant measure of N will descend to the quotient Γ∞\N and is

given by Lebesgue measure on [0, 1]3. Thus in terms of coordinates dn = dxdydz.

2.1.2 Plücker Coordinates

In this section let Γ = SL(3,Z) and recall the notation of Subsection 2.1.3 and that

w` =

(
0 0 1
0 −1 0
1 0 0

)
.

In the case of SL(2,R), the Fourier coefficient computation begins by observing

that the coset space {( 1 n
0 1 ) |n ∈ Z} \SL(2,Z) is parameterized by (c, d) ∈ Z × Z such

that (c, d) = 1. Specifically the bijection is given by the map (c, d) 7→
(
a b
c d

)
, where

a, b ∈ Z such that ad − bc = 1. Similarly, in the case of SL(3,R) we will be interested

in an analogous parameterization for Γ∞\Γ. This can be found in [3, Ch 5]. The
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correspondence is recalled for convenience, but first some notation is introduced.

The Plücker coordinates of Γ∞\Γ are defined presently. Given

(
a b c
d e f
g h i

)
∈

SL(3,R), define six parameters as follows:

A′1 = −g, A′2 = −(dh− eg)

B′1 = −h, B′2 = (di− fg)

C ′1 = −i, C ′2 = −(ei− fh)

(2.3)

Note that these parameters satisfy

A′1C
′
2 +B′1B

′
2 + C ′1A

′
2 = 0,

which arises from

det

((
g h i
d e f
g h i

))
= 0.

Now the parameterization of N\SL(3,R) may be stated.

Theorem 2. ([3, Ch 5]) The map taking

(
a b c
d e f
g h i

)
∈ SL(3,R) to (A′1, B

′
1, C

′
1, A

′
2, B

′
2, C

′
2)

defines a bijection between the coset space N\SL(3,R) and the set of all

(A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2) ∈ R6 such that: A′1C

′
2 +B′1B

′
2 +C ′1A

′
2 = 0, not all of A′1, B

′
1, C

′
1

equal 0, and not all of A′2, B
′
2, C

′
2 equal 0. Furthermore, a coset in N\SL(3,R) contains

an element of Γ if and only if A′1, B
′
1, C

′
1 are coprime integers and A′2, B

′
2, C

′
2 are coprime

integers.

Versions of this result hold for other congruence subgroups. In particular, Γ∞\Γ1(4)

can be identified with (A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2) ∈ Z6|A′1C ′2 +B′1B

′
2 + C ′1A

′
2 = 0,

(A′i, B
′
i, C
′
i) = 1, A′j ≡ 0 (mod 4), B′j ≡ 0 (mod 4), C ′j ≡ −1 (mod 4)

 .
(2.4)

In certain cases it is advantageous to divide out the factors of 4 dividing Ai and Bi.

This leads to an equivalent parameterization of Γ∞\Γ1(4). Let

A′1 = 4A1, A′2 = 4A2,

B′1 = 4B1, B′2 = 4B2,

C ′1 = C1, C ′2 = C2.

(2.5)

Using these modified parameters we have that Γ∞\Γ1(4) can be identified with (4A1, 4B1, C1, 4A2, 4B2, C2) ∈ Z6|A1C2 + 4B1B2 + C1A2 = 0,

(Ai, Bi, Ci) = 1, Cj ≡ −1 (mod 4)

 .
(2.6)
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2.1.3 Principal Series

The following discussion establishes the preliminaries needed for the definition of the

Eisenstein distribution. A complete treatment of automorphic distributions can be

found in [13] and [12]. Bate [2] provides an explicit exposition of some of these ideas in

the context of S̃L(2,R) principal series representations. This dissertation will primar-

ily be concerned with SL(3,R) and S̃L(3,R) principal series representations and the

following discussion introduces notation and addresses some technical points.

Let λ = (λ1, λ2, λ3) , ρ = (1, 0,−1) ∈ a′C, and define

V∞λ = {f ∈ C∞(SL(3,R))|f(gb−) = exp((λ− ρ)(H(b−1
− )))f(g), for all b− ∈ B−},

Vλ = {f ∈ L2
loc(SL(3,R))|f(gb−) = exp((λ− ρ)(H(b−1

− )))f(g), for all b− ∈ B−},

V −∞λ = {f ∈ C−∞(SL(3,R))|f(gb−) = exp((λ− ρ)(H(b−1
− )))f(g), for all b− ∈ B−}.

The group G acts by left translation on each of the three preceding spaces, π(h)(f)(g) =

f(h−1g). These spaces are called the smooth, locally L2, and distributional principal

series representation spaces, respectively. In the definition of V −∞λ the equality is

understood in the sense of distributions. Note that

V∞λ ⊂ Vλ ⊂ V −∞λ .

Let f1 ∈ Vλ and f2 ∈ V−λ, define the pairing (·, ·)λ : V−λ × Vλ → C, by

(f1, f2)λ =

∫
K/M

f1(k)f2(k)dk, (2.7)

where K = SO(3), the integration is taken over a fundamental domain of K/M , and

dk is the Haar measure of K. By [10, Theorem 3], if h ∈ G, f1 ∈ V−λ, and f2 ∈ Vλ,

then (π(h)f1, f2)λ = (f1, π(h−1)f)λ.

For us, distributions will be dual to smooth measures, and thus can be thought of

as generalized functions in which the action of the distribution on the measure is given

by integration of their product over the full space. Thus, the pairing can be extended

to V −∞λ on the right. Restriction from V−λ to its smooth vectors results in a pairing

V∞−λ × V
−∞
λ → C. Under this pairing V −∞λ may be identified with the dual of V∞−λ;
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this duality is to be understood in the context of topological vector spaces, thus some

comments about topology are in order.

The map induced by restriction to K defines a vector space isomorphism between

V∞−λ and C∞(K). The family of norms ||∂αφ||u = supk∈K{|∂αφ(k)|} define a topology

on C∞(K) which can be transferred to V∞−λ using the previous isomorphism. The dual

V −∞λ can be given the strong topology (sometimes called the polar topology) [14, §19].

With respect to these topologies V −∞λ can be identified with the continuous dual of V∞−λ.

Additionally, V∞λ is dense in V −∞λ , and sequential convergence in V −∞λ with respect

to the strong topology is equivalent to sequential convergence with respect to the weak

topology [14, §34.4].

The pairing just described focuses on the compact model of the principal series

representations. The Eisenstein distribution considered in this dissertation will be more

amenable to study using the non-compact model of the principal series representation

which we describe presently.

Let w ∈ W . As wNB− is open and dense in SL(3,R), restriction from SL(3,R) to

wN defines an injection V∞λ ↪→ C∞(wN) and the pairing is compatible with this injec-

tion in the following sense. Let F : SL(3,R) → C, such that F (gb−) = e2ρH(b−)F (g).

Then, by a slight modification of Consequence 7 in [9],∫
K
F (k)dk =

∫
N
F (wn)dn. (2.8)

Since wNB−/B− is a dense open subset of G/B− ∼= K/M , the identity captures the

idea that removing sets of measure zero will not affect the value of the integral. As

f1 ∈ Vλ and f2 ∈ V−λ implies that f1(gb−)f2(gb−) = exp(2ρH(b−))f1(g)f2(g), we apply

this identity to Equation 2.7 to establish a bridge between the pairings of principal series

in the compact and noncompact pictures. Specifically,

(f1, f2)λ =
1

8

∫
N
f1(wn)f2(wn)dn,

and so the pairing can be realized as an integration over the non-compact space N .

When dealing with distributions some care must be taken for two reasons. First,

restricting distributions to closed submanifolds need not be meaningful. For f ∈ V −∞λ
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restriction to wN can be made rigorous. Informally, this is due to f being smooth

in the B− variables and wNB− being open in SL(3,R). Second, a distribution cannot

necessarily be recovered from its restriction to a dense open subset. This trouble can be

remedied with a partition of unity in general, but for the distributions Ew the support

will be contained inside w−1w`NB− for some element of the Weyl group. These two

points together justify restriction of f ∈ V −∞λ to wN . Again, these points are addressed

completely in [13], [12].

Let δ(0,0,0) be the Dirac delta function at (0, 0, 0) ∈ R3. The vector τ ∈ V −∞λ ,

characterized by

τ
(
w`

(
1 x z
0 1 y
0 0 1

)
b−

)
= exp((λ− ρ)(H(b−1

− )))δ(0,0,0)(x, y, z),

is used to construct an Eisenstein distribution on SL(3,R). The next proposition collects

some of τ ’s basic properties.

Proposition 3. Let τ ∈ V −∞λ be as above. Then:

1. τ is right N−-invariant.

2. supp(τ) = w`B− = Bw`.

3. τ is left N -invariant.

Proof: The first two properties follow immediately from the definition of τ . For

the final claim let f ∈ V∞−λ. By the definition of τ ,

(f, τ)λ =

∫
N
τ(w`n(x, y, z))f(w`n(x, y, z))dxdydz = f(w`).

On the other hand,

(f, π(n)τ)λ = (π(n−1)f, τ)λ = f(nw`) = f(w`),

where the last equality follows as w`nw` ∈ N−. Thus, π(n)τ = τ . �

To construct the metaplectic principal series one additional input is needed. Let
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φ : M̃ → SL(2,C) be the representation defined by((
1 0 0
0 1 0
0 0 1

)
,−1

)−1
7→

(−1
−1

)((
1 0 0
0 1 0
0 0 1

)
, 1
)−1

7→ ( 1
1 )((−1 0 0

0 −1 0
0 0 1

)
,−1

)−1
7→

( −i
−i

)((−1 0 0
0 −1 0
0 0 1

)
, 1
)−1

7→
(

i
i

)((
1 0 0
0 −1 0
0 0 −1

)
,−1

)−1
7→

(−i
i

)((
1 0 0
0 −1 0
0 0 −1

)
, 1
)−1

7→
(
i
−i
)((−1 0 0

0 1 0
0 0 −1

)
,−1

)−1
7→

( −1
1

)((−1 0 0
0 1 0
0 0 −1

)
, 1
)−1

7→
(

1
−1

)
.

(2.9)

The kernel of the previous map is trivial and so it follows that M̃ is isomorphic to

{(±1
±1

)
,
(±i

∓i
)
,
( ±1
∓1

)
,
( ±i
±i

)}
;

this group is isomorphic to the quaternion group Q8 = {±1,±i,±j,±k} and the repre-

sentation is the unique two dimensional representation of Q8. Additionally,

φ((m,−ε)) = −φ((m, ε)), as can be seen from the definition of φ.

The ideas considered in the case of SL(3,R) can be adapted to S̃L(3,R). Let λ, ρ ∈

a′C, where ρ = (1, 0,−1). Let

Ṽ∞λ,φ = {f ∈ C∞( ˜SL(3,R))2|f(g̃m̃an−) = exp((λ− ρ)(H(a−1)))φ(m̃−1)f(g̃),

for all m̃an− ∈ M̃AN−},

Ṽλ,φ = {f ∈ L2
loc(SL(3,R))2|f(g̃m̃an−) = exp((λ− ρ)(H(a−1)))φ(m̃−1)f(g),

for all m̃an− ∈ M̃AN−},

Ṽ −∞λ,φ = {f ∈ C−∞(SL(3,R))2|f(g̃m̃an−) = exp((λ− ρ)(H(a−1)))φ(m̃−1)f(g),

for all m̃an− ∈ M̃AN−}.

Note that in this case the vectors in the principal series representations are vector

valued.
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Define the pairing, (·, ·)λ,φ : Ṽλ,φ × Ṽ−λ,φ−1 → C, by

(f1, f2)λ,φ =

∫
K̃/M̃

f1(k)f2(k)dk̃, (2.10)

where the integration is taken over a fundamental domain of K̃/M̃ and dk̃ is the Haar

measure of K̃ ∼= SU(2) ∼= Spin(3), a maximal compact subgroup of S̃L(3,R). Note that

K̃ is the double cover of SO(3). As in the case of SL(3,R) this pairing can be written

as integration in the non-compact model (recall line (2.8)) and (2.10) induces a pairing

(·, ·)λ,φ : Ṽ∞−λ,φ−1 × Ṽ −∞λ,φ → C.

The element τ̃ ∈ Ṽ −∞λ,φ , characterized by

τ̃
(

(w`, 1)
(

1 x z
0 1 y
0 0 1

)
m̃an−

)
= exp((λ− ρ)(H(a−1)))φ(m̃−1)

 δ(0,0,0)(x, y, z)

0

 ,
will be used to construct a metaplectic Eisenstein distribution on S̃L(3,R).

Proposition 4. Let τ̃ ∈ Ṽ −∞λ,φ be as above. Then:

1. τ̃ is right Ñ−-invariant.

2. supp(τ̃) = (w`, 1)B̃− = B̃(w`, 1).

3. τ̃ is left Ñ -invariant.

Proof: The proof is identical to that of Proposition 3. �

Now we can define the metaplectic Eisenstein distribution as

Ẽ((g, ε), λ) =
∑

γ̃∈Γ̃∩Ñ\Γ̃

π(γ̃−1)τ̃((g, ε)) (2.11)

where

π((
(

0 0 1
0 −1 0
1 0 0

)
, 1))−1τ̃(

(
1 x z
0 1 y
0 0 1

)
m̃an−) = e(λ−ρ)(a−1)φ(m̃−1)

[
δ0(x)δ0(y)δ0(z)

0

]
and λ = (λ1, λ2, λ3). Standard arguments show that the sum is convergent when the

real part of λ1 − λ2 and λ2 − λ3 is sufficiently large.
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To provide some context for the study of the splitting that will follow, we will state

a result that identifies the point at which the splitting obstructs further computation.

Let

S(A1, A2) = {γ ∈ Γ1(4)|γ has Plücker coordinates of the form (4A1, ∗, ∗, 4A2, ∗, ∗)},

(2.12)

Σ(A1, A2;m1,m2)
def
=

∑
γ∈Γ∞\S(A1,A2)/Γ∞

s(γ)e
2πi(m1

B1
A1

+m2
B2
A2

)
, (2.13)

ane let

ψ(
(

1 x z
0 1 y
0 0 1

)
) = ψm1,m2(

(
1 x z
0 1 y
0 0 1

)
) = e2πi(m1x+m2y). (2.14)

Proposition 5. Let f =
[
f1
f2

]
∈ Ṽ∞−λ,φ−1. Then

(f(g̃),

∫
NZ\NR

Ẽw`(ng̃)ψ−1(n)dn)λ,φ

=
( ∑
A1>0
A2>0

|4A1|−1−λ1+λ2 |4A2|−1−λ2+λ3Σ(A1, A2;m1,−m2)

− i
∑
A1>0
A2<0

|4A1|−1−λ1+λ2 |4A2|−1−λ2+λ3Σ(A1, A2;m1,−m2)
)

×
[ ∫

R3 f1

(
n(x,y,z)

((−1 0 0
0 1 0
0 0 −1

)
,1

))
ψ(n(x,y,z))dxdydz

0

]
+
(
i
∑
A1<0
A2>0

|4A1|−1−λ1+λ2 |4A2|−1−λ2+λ3Σ(A1, A2;m1,−m2)

+
∑
A1<0
A2<0

|4A1|−1−λ1+λ2 |4A2|−1−λ2+λ3Σ(A1, A2;m1,−m2)
)

×
[

0∫
R3 f1

(
n(x,y,z)

((−1 0 0
0 1 0
0 0 −1

)
,1

))
ψ(n(x,y,z))dxdydz

]
This proposition will be proved in a future work.

The computation of the exponential sums Σ(A1, A2;m1,m2) requires an understand-

ing of the splitting map s. The main objective of this dissertation is to provide a method

for computing s that will facilitate the computation of the exponential sums.
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2.2 Basic Computations

2.2.1 Kronecker Symbol

If a, b ∈ R×, then the Hilbert Symbol is defined by

(a, b)R =


1, if a or b > 0

−1, if a and b < 0.

(2.15)

Let n ∈ Z6=0 with prime factorization n = εpe11 . . . pe`` , where ε = ±1. If k ∈ Z the

Kronecker Symbol is defined by(
k

n

)
=

(
k

ε

)(
k

p1

)e1
. . .

(
k

p`

)e`
,

where
(
k
pi

)
is the Legendre symbol when pi is an odd prime,

(
k
ε

)
= (k, ε)R, and

(
k

2

)
=


0, if k is even

1, if k ≡ ±1(mod 8)

−1, if k ≡ ±3(mod 8).

The formula can be extended to n = 0 by

(
k

0

)
=


1, if k = ±1

0, otherwise.

The following proposition collects some facts about the Kronecker Symbol. These

results can be found in [8].

Proposition 6. (Properties of the Kronecker Symbol) Let a, b,m, n ∈ Z, ε = ±1,

and let n′ and m′ denote the odd part of n and m, respectively.

1. If ab 6= 0, then
(
a
n

) (
b
n

)
=
(
ab
n

)
.

2. If mn 6= 0, then
(
a
m

) (
a
n

)
=
(
a
mn

)
.

3. If n > 0 and a ≡ b (mod m), where m =


4n, if n ≡ 2 (mod 4)

n, otherwise

, then

(a
n

)
=

(
b

n

)
.
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4. If a 6≡ 3 (mod 4) and m ≡ n (mod b), where b =


4|a|, if a ≡ 2 (mod 4)

|a|, otherwise

, then

(
a

m
) = (

a

n
).

5. (
−1

n

)
= (−1)

n′−1
2 and

(
2

n

)
= (−1)

(n′)2−1
8 .

6. (Quadratic Reciprocity) If gcd(m,n) = 1, then(m
n

)( n
m

)
= (n,m)R(−1)

(m′−1)(n′−1)
4

7. (
(−1
m

)

n ) = (−1)(m
′−1
2

)(n
′−1
2

) = ((−1
m ), (−1

n ))R.

2.2.2 2-cocycle

This section begins with a formula for the Banks-Levy-Sepanski 2-cocycle [1] as pre-

sented in Miller [11] and then goes on to collect some facts about the 2-cocycle that

will be used in subsequent computations.

Recall the Plücker coordinates introduced in (2.1.2) and let g ∈ SL(3,R) with

Plücker coordinates (A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2).

Let

X1(g) = det(g), (2.16)

X2(g) =


−A′2, if A′2 6= 0

B′2, if B′2 6= 0 and A′2 = 0

−C ′2, otherwise

(2.17)

X3(g) =


−A′1, if A′1 6= 0

−B′1, if B′1 6= 0 and A′1 = 0

−C ′1, otherwise

(2.18)

∆(g) =

(
X1(g)/X2(g) 0 0

0 X2(g)/X3(g) 0
0 0 X3(g)

)
(2.19)
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It is worth noting that the signs of the Weyl group elements w from Section 2.1.1 are

chosen so that ∆(w) = e.

If g1, g2 ∈ G such that g1 = naw1 . . . wkn
′ is the Bruhat decomposition of g1, then

in Section 4 of [1], Banks-Levy-Sepanski show that the 2-cocycle σ satisfies the formula

σ(g1, g2) = σ(a,w1 . . . wkn
′g2)σ(w1, w2 . . . wkn

′g2) . . . σ(wk−1, wkn
′g2)σ(wk, n

′g2),

(2.20)

where each factor can be computed using the following rules

σ(a, h) =σ(a,∆(h)), for a diagonal,

σ(wα, h) =σ(∆(wαh)∆(h),−∆(h)),

σ(t(a1, a2, a3), t(b1, b2, b3)) =(a1, b2)(a1, b3)(a2, b3).

Some simple identities involving σ are collected in the next lemma.

Lemma 7. (Banks-Levy-Sepanski [1])

σ(n1g1, g2n2) = σ(g1, g2).

σ(g1n, g2) = σ(g1, ng2).

σ(n, g) = σ(g, n) = 1

σ(g, a) = 1, when a ∈ A.

Proof: The first three identities follow from Lemma 4 in Section 3 of [1]. The fourth

identity follows from the fact that since we are working over R the Steinberg symbol

may be taken to be the Hilbert symbol defined on line (2.15), and the combination of

Theorem 7 a) in [1] and the second to last equation in Section 4 of [1]. �
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Chapter 3

The Splitting

This chapter contains a study of the splitting Γ1(4) → S̃L(3,R), where γ 7→ (γ, s(γ))

and s : Γ1(4)→ {±1} is the map defined on line (3.37) in Section 3.4. An understand-

ing of this map is necessary to complete the computation of the Fourier coefficients

of the metaplectic Eisenstein distribution. Miller [11] provided a formula for s that

involves a non-unique matrix factorization; however, it appears difficult to complete

the Fourier coefficient computation using this formula. Thus, this chapter sets out to

rewrite Miller’s formula in terms of Plücker coordinates which are better suited to this

Fourier coefficient computation; this decision is motivated by the success of Brubaker-

Bump-Friedberg-Hoffstein’s use of these coordinates in [5].

3.1 Block Parameters

Any γ ∈ Γ can be written as

γ = n
(
a1 b1 0
c1 d1 0
0 0 1

)(
a2 0 b2
0 1 0
c2 0 d2

) ( 1 0 0
0 a3 b3
0 c3 d3

)
. (3.1)

where n ∈ N and all of the other factors are in Γ. Note that this factorization is non-

unique. The parameters ai, bi, ci, di will be called block parameters. In [11], Miller

proves that Γ1(4) is maximal in SL(3,Z) such that there exists a splitting homomor-

phism Γ1(4)→ S̃L(3,R) and provides a formula for this splitting homomorphism using

equation (3.1) and the 2-cocycle of Banks-Levy-Sepanski [1].

Theorem 2 (above) shows how Plücker coordinates can be used to provide a de-

scription of Γ∞\Γ. By relating the block parameters and the Plücker coordinates, this

description can be used to identify a unique matrix representative of Γ∞\Γ in terms of
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the block parameters. Proposition 8 below makes the relationship between block param-

eters and Plücker coordinates explicit, and Proposition 9 shows how this relationship

can be used to pick a unique representative of Γ∞\Γ using the block parameters.

Proposition 8. If γ ∈ Γ1(4) has block parameters given by

γ = n
(
a1 b1 0
c1 d1 0
0 0 1

)(
a2 0 b2
0 1 0
c2 0 d2

) ( 1 0 0
0 a3 b3
0 c3 d3

)
,

then γ has Plücker coordinates given by

A′1 = −c2, B′1 = −d2c3, C ′1 = −d2d3

A′2 = −(c1c3 − d1c2a3), B′2 = c1d3 − d1c2b3, C ′2 = −d1d2.
(3.2)

Proof: Multiplying on the left by n will not change the Plücker coordinates of γ, so

suppose that

γ =
(
a1 b1 0
c1 d1 0
0 0 1

)(
a2 0 b2
0 1 0
c2 0 d2

) ( 1 0 0
0 a3 b3
0 c3 d3

)
.

Multiplying the matrices on the right hand side of this equation leads to the equation

γ =

(
a1a2 b1a3+a1b2c3 b1b3+a1b2d3
c1a2 d1a3+c1b2c3 d1b3+c1b2d3
c2 d2c3 d2d3

)
.

Now we compute the Plücker coordinates and find that

A′1 = −c2, B′1 = −d2c3, C ′1 = −d2d3

A′2 = −(c1c3 − d1c2a3), B′2 = c1d3 − d1c2b3, C ′2 = −d1d2.

�

Note that a1, b1, a2, b2 do not appear in any of the expressions.

Proposition 9. The coset of Γ∞\Γ with Plücker coordinates (A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2)

is represented by the matrix(
a1 b1 0

c1
−C′2

(B′1,C
′
1)ε

0

0 0 1

)(
a2 0 b2
0 1 0
−A′1 0 (B′1,C

′
1)ε

) (
1 0 0
0 a3 b3

0
−B′1

(B′1,C
′
1)ε

−C′1
(B′1,C

′
1)ε

)
,

where

1. ε =
(

−1
(B′1,C

′
1)

)
.

2. a3 is the smallest positive integer satisfying a3 ≡ d−1
3 (mod c3), such that

d1c2a3−A′2
c3

∈ 4Z.
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3. ai (i 6= 3) is the smallest positive integer satisfying ai ≡ d−1
i (mod ci).

4. c1 =
d1c2a3−A′2

c3
.

5. bj =
ajdj−1
cj

for j = 1, 2, 3.

The appearance of ‘smallest’ in items two and three is a choice made to ensure

uniqueness.

Proof: Let γ ∈ Γ with Plücker coordinates (A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2) ∈ Z6 such that

A′1C
′
2 +B′1B

′
2 + C ′1A

′
2 = 0 and (A′i, B

′
i, C
′
i) = 1 for i = 1, 2. Write

γ = n
(
a1 b1 0
c1 d1 0
0 0 1

)(
a2 0 b2
0 1 0
c2 0 d2

) ( 1 0 0
0 a3 b3
0 c3 d3

)
.

Using line (3.2), the block parameters may be expressed as follows:

c2 = −A′1, d2 =

(
−1

(B′1, C
′
1)

)
(B′1, C

′
1), c3 =

−B′1
d2

, d3 =
−C ′1
d2

d1 =
−C ′2
d2

, c1
−B′1
d2
≡ −A′2 (mod

A′1C
′
2

d2
= d1c2).

The equations above do not contain enough information to specify a unique represen-

tative in an orbit of Γ with respect to the left action of Γ∞. As the Plücker coordinates

already provide a bijection with Γ∞\Γ, by observing how changing the block parameters

affect the Plücker coordinates a unique representative can be identified.

Assume the Plücker coordinates (A′1, B
′
1, C

′
1, A

′
2, B

′
2, C

′
2) are fixed. This determines

d1, c2, d2, c3, d3 ∈ Z such that (c2, d2) = (c3, d3) = 1, c2, c3 ≡ 0(mod 4), and d1, d2, d3 ≡

1(mod 4). Consider the expression for A′2 in line (3.2). As (c3, d1c2) divides A′2, there

are integers c1 and a3 that satisfy that equation. Several different integral choices of c1

and a3 will result in the same value for A′2. Take a3 to be the smallest positive integer

satisfying a3 ≡ d−1
3 (mod c3) and c1 ∈ 4Z. Such a pair of integers exist as any γ with

the given Plücker coordinates provides a solution to that equation with the desired

congruence conditions. This solution can be shifted to ensure that a3 is positive and

minimal subject to the congruence conditions. The relation (A′2, B
′
2, C

′
2) = 1 implies

that (c1, d1) = 1. Similarly, take ai (i 6= 3) to be the smallest positive integer satisfying

ai ≡ d−1
i (mod ci).
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Define bi to be aidi−1
ci

. Finally we must be check that this choice for b3 is consis-

tent with the expression for B′2. The equation A′1C
′
2 + B′1B

′
2 + C ′1A

′
2 = 0 becomes

d1c2d2((a3d3 − b3c3) − 1) = 0, when the block parameters are substituted in for the

Plücker coordinates. When c2 6= 0 it follows that the two equations defining b3 are

consistent. When c2 = 0 it follows that B′2 does not depend on b3 and so no conflict

can arise. �

3.2 Symmetries of Plücker Coordinates

Understanding the effect of certain matrix operations on the space Γ∞\Γ1(4) will pro-

vide a mechanism to reduce the general determination of s, in terms of Plücker coordi-

nates, to that of a more specific case. The reductions are discussed in section 3.7. The

current section collects the relevant symmetries.

Proposition 10. Let M ∈ SL(3,R) with Plücker coordinates

(4A1, 4B1, C1, 4A2, 4B2, C2), n = n(x, y, z) ∈ N , S2 = t(1,−1, 1), and S3 = t(1, 1,−1).

Then:

1. nMn−1 has Plücker coordinates

(4A1, 4B1− 4A1x,C1− 4B1y+ 4A1(xy− z), 4A2, 4B2 + 4A2y, C2 + 4B2x+ 4A2z).

2. S3MS3 has Plücker coordinates

(−4A1,−4B1, C1,−4A2, 4B2, C2).

3. S2MS2 has Plücker coordinates

(4A1,−4B1, C1, 4A2,−4B2, C2).

4. w`M
−tw` has Plücker coordinates

(4A2,−4B2, C2, 4A1,−4B1, C1).

5. Let M ∈ Γ1(4). If D divides (A1, A2), D1 = (D,B1), D = D1D2, and T =

t(1, D−1
2 , D−1) then TMT−1 ∈ SL(3,Z) has Plücker coordinates

(4A1/D, 4B1/D1, C1, 4A2/D, (4B2)/D2, C2).
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Furthermore, TMT−1 ∈ Γ1(4) if and only if D2 divides B2.

The proof is straightforward matrix algebra and will be omitted. The last symmetry

is the most important in terms of the reduction step and we would like to make a few

comments about D2 and its relation to B2. As D divides (A1, A2), D1 = (D,B1),

D = D1D2, and A1C2 + 4B1B2 +C1A2 = 0 we see that D2 divides 4B2. Thus it could

be the case that D2 divides 4B2 and D2 does not divide B2. In this case 4B2/D2 is no

longer divisible by 4 and TMT−1 can only be shown to live in SL(3,Z). On the other

hand, if D2 divides B2, then TMT−1 will be an element of Γ1(4). Now if D is odd

then D2 divides B2 and TMT−1 ∈ Γ1(4). We will apply this result when D is odd, but

many of the technical aspects of the computation of the splitting in terms of Plücker

Coordinates are directly related to this failure of D2 to divide B2 in general.

3.3 Some Results on Double Coset Spaces

This section describes some structural features of the set Γ∞\Γ1(4)/Γ∞. This double

coset space is important for two reasons. First, the map s : Γ→ {±1} is left and right

Γ∞ invariant and so it naturally descends to a map with domain Γ∞\Γ1(4)/Γ∞. Second,

certain subsets of Γ∞\Γ1(4)/Γ∞ index exponential sums appearing in the computation

of the Fourier coefficients of the metaplectic Eisenstein distribution. This section begins

with some notation and simple observations. Then an explicit description of the sets

indexing the aforementioned exponential sums is provided. Finally, the main result in

this section, Proposition 12, is proved. This proposition shows that the sets indexing

the exponential sums exhibit a multiplicative structure.

Let

S(A1, A2) = {γ ∈ Γ1(4)|γ has Plücker coordinates of the form (4A1, ∗, ∗, 4A2, ∗, ∗)}.

(3.3)

Note that these sets are left Γ∞-invariant and that Γ1(4) =
∐

(A1,A2)∈Z2 S(A1, A2).

Recall the Plücker coordinates of the coset space Γ∞\Γ1(4) as described in Theorem 2.

By the left Γ∞-invariance of S(A1, A2), the Plücker coordinates can be passed to the

space Γ∞\S(A1, A2), and Γ∞\Γ1(4) =
∐

Γ∞\S(A1, A2). The notation and calculations
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from section 3.2 provide maps Ad(S) : S(A1, A2) → S(−A1,−A2) given by M 7→

SiMS−1
i , φ : S(A1, A2)→ S(A2, A1) given by M 7→ w`M

−tw`, and Ad(n) : S(A1, A2)→

S(A1, A2) given by M 7→ nMn−1, where n ∈ Γ∞. Simple computations show that these

maps respect the left and right action of Γ∞, thus they descend to maps on the double

coset spaces.

When A1, A2 6= 0, the next proposition establishes that unique representatives of

the double coset space Γ∞\S(A1, A2)/Γ∞ are given by elements of

S(A1, A2)
def
= {(4A1, 4B1, C1, 4A2, 4B2, C2) ∈ Z6|A1C2 + 4B1B2 + C1A2 = 0,

(Ai, Bi, Ci) = 1, Cj ≡ −1(mod 4),
B1

A1
,
B2

A2
,
C2

4A2
∈ [0, 1)}. (3.4)

Proposition 11. Let A1, A2 6= 0 and let γ ∈ S(A1, A2) with Plücker coordinates

(4A1, 4B1, C1, 4A2, 4B2, C2). Then there is a unique n ∈ Γ∞ such that the Plücker

coordinates of γn live in S(A1, A2). This induces a bijective map

Γ∞\S(A1, A2)/Γ∞ → S(A1, A2).

Proof: The result follows from Theorem 2 describing the Plücker coordinates, the

description of the action of Ad(n) on the coordinates in section 3.2, and the identity

(
1 x z
0 1 y
0 0 1

)
=
(

1 x 0
0 1 y
0 0 1

)(
1 0 z
0 1 0
0 0 1

)
.

Specifically, given M ∈ S(A1, A2) the above factorization of the unipotent matrix

shows that there is a unique element n ∈ Γ∞ such that the Plücker coordinates of Mn

are in the set S(A1, A2). �

Now we turn to the main result of this section; the sets Γ∞\S(A1, A2)/Γ∞ exhibit

a multiplicative structure. This result is essentially an application of the Chinese Re-

mainder Theorem.

Proposition 12. Let A1, α1 > 0, A2, α2 6= 0, suppose that (A1A2, α1α2) = 1, A1, A2

are odd, and suppose that A1α1 +A2α2 ≡ 0 (mod 4). Let µ = ( −1
−A1A2

). Then

Γ∞\S(A1α1, A2α2)/Γ∞ ∼= Γ∞\S(A1, µA2)/Γ∞ × Γ∞\S(α1,−µα2)/Γ∞.
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The bijection is induced by the map

(4A1α1, 4B1, C1, 4A2α2, 4B2, C2) 7→

((4A1, 4B1, C1, µ4A2, 4B2, γC2),

(4α1, 4B1,
(−1

A2

)
A2C1,−µ4α2,−

(−1

A2

)
µ4B2,−µ

(−1

A2

)
A1C2)), (3.5)

where:

1. C1 = −A1γC2−4B1B2

µA2
.

2. γ is the smallest positive integer such that γ ≡ 1 (mod 4) and γ ≡ α1 (mod A2).

Proof: To establish this bijection, we will construct a map

φ : Γ∞\S(A1α1, A2α2)/Γ∞ → Γ∞\S(A1, µA2)/Γ∞ × Γ∞\S(α1,−µα2)/Γ∞

and a map

ψ : Γ∞\S(A1, µA2)/Γ∞ × Γ∞\S(α1,−µα2)/Γ∞ → Γ∞\S(A1α1, A2α2)/Γ∞

such that φ and ψ are inverses. To describe this map and its inverse, we will need an

integer γ ∈ Z such that γ ≡ 1 (mod 4) and γ ≡ α1 (mod A2) (A2 must be odd for

this step). To avoid ambiguities we will stipulate that γ is the least positive integer

satisfying these conditions. It will be useful to write γ = α1 + `A2 for some integer `.

We begin with the construction of φ. Let

(4A1α1, 4B1, C1, 4A2α2, 4B2, C2) ∈ S(A1α1, A2α2). Consider

((4A1, 4B1, C1, µ4A2, 4B2, γC2),

(4α1, 4B1,

(
−1

A2

)
A2C1,−µ4α2,−

(
−1

A2

)
µ4B2,−µ

(
−1

A2

)
A1C2)), (3.6)

where

C1 =
−A1γC2 − 4B1B2

µA2
.

This will be the value of φ once we adjust for cosets. For this to be a sensible defini-

tion we must show that this pair of 6-tuples resides in Γ∞\S(A1, µA2)×Γ∞\S(α1,−µα2).

At this point is will be a good idea to recall that
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S(A1, A2) = {(4A1, 4B1, C1, 4A2, 4B2, C2) ∈ Z6|A1C2 + 4B1B2 + C1A2 = 0,

(Ai, Bi, Ci) = 1, Cj ≡ −1(mod 4),
B1

A1
,
B2

A2
,
C2

4A2
∈ [0, 1)}, (3.7)

and the bijection of Proposition 11. First we will show that

(4A1, 4B1, C1, µ4A2, 4B2, γC2) ∈ Γ∞\S(A1, µA2). This involves showing the following

six conditions are satisfied:

1. A1γC2 + 4B1B2 + C1µA2 = 0

2. C1 ∈ Z

3. C1 ≡ −1 (mod 4)

4. γC2 ≡ −1 (mod 4)

5. (A1, B1, C1) = 1

6. (µA2, B2, γC2) = 1

First we show that A1γC2 + 4B1B2 + C1µA2 = 0. The definition of C1 was made so

that this equation would hold.

Second we show that C1 ∈ Z. Recall that γ = α1 + `A2. Additionally, we will use

the relation A1α1C2 + 4B1B2 +A2α2C1 = 0 which is a consequence of the assumption

that (4A1α1, 4B1, C1, 4A2α2, 4B2, C2) ∈ S(A1α1, A2α2). Thus

C1 = −A1γC2−4B1B2

µA2
(def of C1)

= µα2
−A1α1C2−4B1B2

A2α2
− µ`A1C2 (γ = α1 + `A2)

= µα2C1 − µ`A1C2. (A1α1C2 + 4B1B2 +A2α2C1 = 0)

(3.8)

Therefore C1 is an integer. For later reference we record the identity

C1 = µα2C1 − µ`A1C2. (3.9)

Third we show that C1 ≡ −1 (mod 4). Since C2 ≡ −1 (mod 4),γ ≡ 1 (mod 4), and

µ = ( −1
−A1A2

), it follows that

C1 =
−A1γC2 − 4B1B2

µA2
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≡−A1(1)(−1)µ(A2)−1 ≡ −1 (mod 4),

as desired.

Fourth we show that γC2 ≡ −1 mod 4. This follows as γ ≡ 1 (mod 4) and C2 ≡ −1

(mod 4).

Fifth we show that (A1, B1, C1) = 1. Recall that C1 = µα2C1 − µ`A1C2. This

implies that (A1, B1, C1) = (A1, B1, µα2C1). We can show that (A1, B1, µα2C1) = 1 as

(A1, α2) = 1 and (A1α1, B1, C1) = 1.

Sixth we will show that (µA2, B2, γC2) = 1. This follows as (A2α2, B2, C2) = 1,

γ ≡ α1 (mod A2), and (A2, α1) = 1.

Having verified the six conditions we can conclude that

(4A1, 4B1, C1, µ4A2, 4B2, γC2) ∈ Γ∞\S(A1, µA2).

Now we will show that

(4α1, 4B1,
(
−1
A2

)
A2C1,−µ4α2,−

(
−1
A2

)
µ4B2,−µ

(
−1
A2

)
A1C2)) ∈ Γ∞\S(α1,−µα2). This

involves showing the following five conditions are satisfied:

1. α1(−µ
(
−1
A2

)
A1C2) + 4(B1)(−µ

(
−1
A2

)
B2) + (−µα2)(

(
−1
A2

)
A2C1) = 0

2.
(
−1
A2

)
A2C1 ≡ −1 (mod 4)

3. −µ
(
−1
A2

)
A1C2 ≡ −1 (mod 4)

4. (α1, B1,
(
−1
A2

)
A2C1) = 1

5. (−µα2,−µ
(
−1
A2

)
B2,−µ

(
−1
A2

)
A1C2) = 1

The first condition follows as

α1(−µ
(
−1

A2

)
A1C2) + 4(B1)(−µ

(
−1

A2

)
B2) + (−µα2)(

(
−1

A2

)
A2C1)

= −µ
(
−1

A2

)
(A1α1C2 + 4B1B2 +A2α2C1) = 0.

The last equality follows as (4A1α1, 4B1, C1, 4A2α2, 4B2, C2) ∈ S(A1α1, A2α2).

Second we show that
(
−1
A2

)
A2C1 ≡ −1 (mod 4). This follows as

(
−1
A2

)
A2 ≡ 1 (mod

4) and C1 ≡ −1 (mod 4).
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Third we will show that−µ
(
−1
A2

)
A1C2 ≡ −1 (mod 4). This follows as−µ

(
−1
A2

)
A1 =(

−1
A1

)
A1 ≡ 1 (mod 4) and C2 ≡ −1 (mod 4).

Fourth we will show that (α1, B1,
(
−1
A2

)
A2C1) = 1. To see this note that

(A1α1, B1, C1) = 1 and (A2, α1) = 1.

Fifth we will show that (−µα2,−µ
(
−1
A2

)
B2,−µ

(
−1
A2

)
A1C2) = 1. To see this note

that (A2α2, B2, C2) = 1 and (A1, α2) = 1.

Having verified the five conditions we can conclude that

(4α1, 4B1,

(
−1

A2

)
A2C1,−µ4α2,−µ

(
−1

A2

)
4B2,−µ

(
−1

A2

)
A1C2) ∈ Γ∞\S(α1,−µα2).

Putting everything together we find that the pair of 6-tuples

((4A1, 4B1, C1, µ4A2, 4B2, γC2),

(4α1, 4B1,

(
−1

A2

)
A2C1,−µ4α2,−

(
−1

A2

)
µ4B2,−µ

(
−1

A2

)
A1C2)), (3.10)

is an element of Γ∞\S(A1, µA2) × Γ∞\S(α1,−µα2). Now we can apply the canonical

map from Γ∞\S(·, ·) to Γ∞\S(·, ·)/Γ∞. Let

φ : Γ∞\S(A1α1, A2α2)/Γ∞ → Γ∞\S(A1, µA2)/Γ∞ × Γ∞\S(α1,−µα2)/Γ∞

be the map constructed above.

To establish the bijection we construct the inverse map ψ. Consider

((4A1, 4b1, c1, µ4A2, 4b2, c2), (4α1, 4β1, γ1,−µ4α2, 4β2, γ2)) ∈ S(A1, µA2)×S(α1,−µα2).

Using the bijection between S(·, ·) and Γ∞\S(·, ·)/Γ∞ described in Proposition 11, we

will identify this element of S(A1, µA2)× S(α1,−µα2) with its corresponding element

in Γ∞\S(A1, µA2)/Γ∞ × Γ∞\S(α1,−µα2)/Γ∞. Let

ψ(((4A1, 4b1, c1, µ4A2, 4b2, c2), (4α1, 4β1, γ1,−µ4α2, 4β2, γ2))

= (4A1α1, 4B1, C1, 4A2α2, 4B2, C2). (3.11)

We define Bi, Ci presently. Define B1 to be the integer such that B1 ≡ b1 (mod A1),

B1 ≡ β1 (mod α1), and such that B1/A1α1 ∈ [0, 1). Define B2 to be the integer such
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that B2 ≡ b2 (mod A2), B2 ≡ −µ
(
−1
A2

)
β2 (mod α2), and such that B2/A2α2 ∈ [0, 1).

The definition of C2 will be a bit more involved.

For the definition of C2 we begin by rewriting the congruence conditions of the

previous paragraph as equalities; specifically, b1 = B1 − xA1, b2 = B2 + yµA2, β1 =

B1 − x′α1, and β2 = −µ
(
−1
A2

)
B2 + y′(−µ)α2, where x, y, x′, and y′ ∈ Z. Let C2 be

defined to be the unique integer satisfying C2 ≡ γ−1(c2 − 4B2x) (mod 4A2), C2 ≡

−µ
(
−1
A2

)
A−1

1 (γ2 − 4(−µ
(
−1
A2

)
)B2x

′) (mod 4α2), and C2/4A2α2 ∈ [0, 1). For later we

record two more equalities; let z, z′ ∈ Z such that c2 = γC2 + 4B2x − 4µA2z and

γ2 = −µ
(
−1
A2

)
A1C2 − 4µ

(
−1
A2

)
B2x

′ + 4µα2z
′. Finally define C1 = −A1α1C2−4B1B2

A2α2
.

Let us take a moment to describe the heuristic that suggests the definition of C2.

If ψ is to be the inverse of φ, based on the right action of Γ∞, we expect that c2 =

γC2 + 4B2x − 4µA2z, where γ ∈ Z is defined as in the statement of the proposition

and z is some integer. Thus C2 ≡ γ−1(c2 − 4B2x) (mod 4A2). Similarly, we expect

that γ2 = −µ
(
−1
A2

)
A1C2 − 4µ

(
−1
A2

)
B2x

′ + 4µα2z
′. Thus C2 ≡ −µ

(
−1
A2

)
A−1

1 (γ2 −

4(−µ
(
−1
A2

)
)B2x

′) (mod 4α2).

Now we return to the proof. We must show that (4A1α1, 4B1, C1, 4A2α2, 4B2, C2) ∈

S(A1α1, A2α2). This involves showing that the following six conditions are satisfied:

1. A1α1C2 + 4B1B2 +A2α2C1 = 0

2. C2 ≡ −1 (mod 4)

3. (A2α2, B2, C2) = 1

4. C1 ∈ Z

5. C1 ≡ −1 (mod 4)

6. (A1α1, B1, C1) = 1

First we show that A1α1C2 +4B1B2 +A2α2C1 = 0. The definition of C1 was picked

so that this equality would be satisfied.

Second we show that C2 ≡ −1 (mod 4). By the definition of C2, we have C2 ≡

γ−1(c2 − 4B2x) ≡ γ−1c2 ≡ −1 (mod 4), as desired.
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Third we show that (A2α2, B2, C2) = 1 as

(A2α2, B2, C2) = (A2, B2, C2)(α2, B2, C2) = (A2, b2, c2)(α2, β2, γ2) = 1.

Fourth we will show that C1 = −A1α1C2−4B1B2
A2α2

is an integer. Since

C2 ≡ γ−1(c2− 4B2x) (mod 4A2), B1 = b1 +xA1, and B2 ≡ b2 (mod A2) it follows that

A1α1C2 + 4B1B2 ≡ A1α1(γ−1(c2 − 4b2x)) + 4(b1 + xA1)b2)) (mod A2). (3.12)

From the congruence γ ≡ α1(mod A2) we see that

(3.12) ≡ (A1c2 + 4b1b2) (mod A2). (3.13)

We can complete this calculation by observing that since (4A1, 4b1, c1, µ4A2, 4b2, c2) ∈

S(A1, µA2) it follows that A1c2 + 4b1b2 + µA2c1 = 0 so

(3.13) ≡ 0 (mod A2). (3.14)

Now we will show that −A1α1C2−4B1B2 is divisible by α2. We will use the following

identities: C2 ≡ −µ
(
−1
A2

)
A−1

1 (γ2 − 4(−µ
(
−1
A2

)
)B2x

′) (mod 4α2), β1 = B1 − x′α1, and

β2 = −µ
(
−1
A2

)
B2 + y′(−µ)α2. The first and third identities can be combined to show

that

C2 ≡− µ
(
−1

A2

)
A−1

1 (γ2 − 4(−µ
(
−1

A2

)
)B2x

′)

≡− µ
(
−1

A2

)
A−1

1 (γ2 − 4β2x
′) (mod α2).

Now if we consider A1α1C2 + 4B1B2, we can rewrite this quantity using the equations

for B1 and B2, and the new expression for C2 to get

A1α1C2 + 4B1B2 ≡ −µ
(
−1

A2

)
(α1(γ2 − 4β2x

′) + 4(β1 + x′α1)β2) (mod α2). (3.15)

The terms involving the product α1β2 cancel and we are left with

(3.15) ≡ −µ
(
−1

A2

)
(α1γ2 + 4β1β2) (mod α2). (3.16)

Now (4α1, 4β1, γ1,−µ4α2, 4β2, γ2) ∈ S(α1,−µα2) implies that α1γ2+4β1β2−µα2γ1 = 0

so

(3.16) ≡ 0 (mod α2). (3.17)
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As (A2, α2) = 1, we can put the two divisibility results from lines (3.14) and (3.17)

together to see that C1 is an integer.

Unfortunately, to continue we will require two additional identities involving C1.

The first is

C1 =
γ1 + 4B1y

′ + 4α1(−x′y′ − z′)(
−1
A2

)
A2

. (3.18)

The second is

C1 =
c1 +B1y −A1(xy + z)− µ`A1C2

µα2
. (3.19)

We postpone the proof of these identities for the moment.

Fifth we show that C1 ≡ −1 (mod 4). As γ1 ≡ −1 (mod 4) and A2 is odd this result

follows by considering the identity C1 = γ1+4B1y′+4α1(−x′y′−z′)(
−1
A2

)
A2

.

Sixth we show that (A1α1, B1, C1) = 1. We begin by observing that (A1α1, B1, C1) =

(A1, B1, C1)(α1, B1, C1). To see that (α1, B1, C1) = 1 recall that B1 = β1 + x′α1,

C1 = γ1+4B1y′+4α1(−x′y′−z′)(
−1
A2

)
A2

, and (A2, α1) = 1. These results imply that

(α1, B1, C1) = (α1, β1 + x′α1,
γ1 + 4B1y

′ + 4α1(−x′y′ − z′)(
−1
A2

)
A2

) = (α1, β1, γ1) = 1.

It remains to show that (A1, B1, C1) = 1. By the second identity for C1 we have

C1 = c1+B1y−A1(xy−z)−µ`A1C2

µα2
. As (A1, α2) = 1 we see that (A1, B1, C1) = (A1, B1, c1 +

B1y) = (A1, B1, c1). As b1 = B1 − xA1 we see that (A1, B1, c1) = (A1, b1, c1). Since

(4A1, 4b1, c1, µ4A2, 4b2, c2) ∈ S(A1, µA2), and (A1, b1, c1) = 1 and so (A1, B1, C1) = 1.

Next we will prove the two equalities involving C1. First we address equation (3.18),

−A1α1C2 − 4B1B2

A2α2
=
γ1 + 4B1y

′ + 4α1(−x′y′ − z′)(
−1
A2

)
A2

. (3.20)

Since β1 = B1 − x′α1,

A2α2RHS((3.20)) =

(
−1

A2

)
α2(γ1 + 4B1y

′ + 4α1(−x′y′ − z′)) (3.21)

=

(
−1

A2

)
(γ1α2 + 4β1α2y

′ − 4α1α2z
′). (3.22)

Before addressing the left hand side of the equality, recall that

−µ
(
−1

A2

)
A1C2 = γ2 + 4µ

(
−1

A2

)
B2x

′ − 4µα2z
′.
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Thus,

A2α2LHS((3.20)) =−A1α1C2 − 4B1B2

=α1(µ

(
−1

A2

)
γ2 + 4B2x

′ −
(
−1

A2

)
4α2z

′)− 4B1B2

=α1(µ

(
−1

A2

)
γ2 −

(
−1

A2

)
4α2z

′) + 4B2(α1x
′ −B1). (3.23)

As β1 = B1 − x′α1 we have

(3.23) =α1(µ

(
−1

A2

)
γ2 −

(
−1

A2

)
4α2z

′)− 4B2β1

=α1µ

(
−1

A2

)
γ2 − α1

(
−1

A2

)
4α2z

′ − 4B2β1. (3.24)

Next we can replace B2 using the equality β2 = −µ
(
−1
A2

)
B2 + y′(−µ)α2 to get

(3.24) =α1µ

(
−1

A2

)
γ2 − 4

(
−1

A2

)
α1α2z

′ − 4(−µ
(
−1

A2

)
β2 −

(
−1

A2

)
y′α2)β1

=µ

(
−1

A2

)
(α1γ2 + 4β1β2)− 4

(
−1

A2

)
α1α2z

′ + 4

(
−1

A2

)
y′α2β1. (3.25)

Next we apply the identity α1γ2 + 4β1β2 − µα2γ1 = 0 to see that (3.22) is equal to

(3.25). Thus

−A1α1C2 − 4B1B2

A2α2
=
γ1 + 4B1y

′ + 4α1(−x′y′ − z′)(
−1
A2

)
A2

,

as desired.

Now we address equation (3.19),

−A1α1C2 − 4B1B2

A2α2
=
c1 +B1y −A1(xy + z)− µ`A1C2

µα2
.

Recall that γ = α1 + `A2. From this expression for γ it follows that

µα2C1 =
−A1α1C2 − 4B1B2

µA2
=
−A1γC2 − 4B1B2

µA2
− µ`A1C2. (3.26)

Now as γC2 = c2 − 4B2x+ 4µA2z it follows that

A1γC2 + 4B1B2 + µA2c1 =A1(c2 − 4B2x+ 4µA2z) + 4B1B2 + µA2c1 (3.27)

=A1c2 + 4B1B2 + µA2c1 − 4A1B2x+ 4µA1A2z. (3.28)
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Now by using the equations b1 = B1−xA1, b2 = B2+yµA2, and A1c2+4b1b2+c1µA2 = 0

it follows that

(3.28) =A1c2 + 4(b1 + xA1)(b2 − yµA2) + c1µA2 − 4A1(b2 − yµA2)x+ 4µA1A2z

=(A1c2 + 4b1b2 + c1µA2)− 4b1yµA2 + 4µA1A2z

=− 4b1yµA2 + 4µA1A2z (3.29)

After another application of b1 = B1 − xA1 we get

(3.29) =− 4µB1A2y + 4µA1A2(xy + z). (3.30)

Thus we have shown that

A1γC2 + 4B1B2 + µA2c1 = −4µB1A2y + 4µA1A2(xy + z). (3.31)

By combining lines (3.26) and (3.31) it follows that

µα2(
−A1α1C2 − 4B1B2

A2α2
) = c1 + 4B1y − 4A1(xy + z)− µ`A1C2. (3.32)

Note that the lack of symmetry between the two expressions for C1, which can

be found on lines (3.18) and (3.19), is the consequence of the appearance of γ in the

following congruence C2 ≡ γ−1(c2 − 4B2x) (mod 4A2), and the absence of γ in the

congruence C2 ≡ −µ
(
−1
A2

)
A−1

1 (γ2 − 4(−µ
(
−1
A2

)
)B2x

′) (mod 4α2)

Finally we must show that the maps φ and ψ are inverses. We begin by computing

ψ ◦ φ. Let (4A1α1, 4B1, C1, 4A2α2, 4B2, C2) ∈ S(A1α1, A2α2). The image of this point

under the map φ is

((4A1, 4B1, C1, µ4A2, 4B2, γC2),

(4α1, 4B1,

(
−1

A2

)
A2C1,−µ4α2,−

(
−1

A2

)
µ4B2,−µ

(
−1

A2

)
A1C2)), (3.33)

where

C1 =
−A1γC2 − 4B1B2

µA2
.

Now let x, x′, y, y′, z, z′ ∈ Z such that

((4A1, 4B1−4A1x, C1−4B1y+4A1(xy−z), µ4A2, 4B2 +µ4A2y, γC2 +4B2x+µ4A2z),
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(4α1, 4B1 − 4α1x
′,

(
−1

A2

)
A2C1 − 4B1y

′ + 4α1(x′y′ − z′),

− µ4α2,−
(
−1

A2

)
µ4B2 − µ4α2y

′,−µ
(
−1

A2

)
A1C2 −

(
−1

A2

)
µ4B2x

′ − µ4α2z
′))

is an element of S(A1, µA2) × S(α1,−µα2). Now the image of this element under the

map ψ is

(4A1α1, 4B
∗
1 , C

∗
1 , 4A2α2, 4B

∗
2 , C

∗
2 ),

where the definitions ofB∗1 ,C∗1 , B∗2 , and C∗2 can be found in the two paragraphs following

line (3.11). We claim that there are integers x∗, y∗, z∗ such that right multiplication of

(4A1α1, 4B
∗
1 , C

∗
1 , 4A2α2, 4B

∗
2 , C

∗
2 ) by n(x∗, y∗, z∗) will equal

(4A1α1, 4B1, C1, 4A2α2, 4B2, C2).

Let us begin with B∗1 and B∗2 . We know that

B1 ≡ B1 −A1x ≡ B∗1 (mod A1)

and

−
(
−1

A2

)
µB2 ≡ −

(
−1

A2

)
µB2 − µA2y

′ ≡ −
(
−1

A2

)
µB∗2 (mod A2).

Considering the analogous congruences modulo α1 and α2 leads to the relations

B1 ≡ B∗1 (mod α1) and B2 ≡ B∗2 (mod α2).

Now Bi/(Aiαi) ∈ [0, 1) and B∗i /(Aiαi) ∈ [0, 1). Therefore, by the Chinese Remain-

der Theorem B1 = B∗1 and B2 = B∗2 .

Similarly,

C∗2 ≡γ−1((γC2 + 4B2x+ µ4A2z)− 4B2x)

≡C2 (mod 4A2)

and

C∗2 ≡− µ
(
−1

A2

)
A−1

1 ((−µ
(
−1

A2

)
A1C2 − µ

(
−1

A2

)
4B2x

′ − µ4α2z
′) + µ

(
−1

A2

)
4B2x

′)

≡C2 (mod 4α2).
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Again C2/(4A2α2) ∈ [0, 1) and C∗2/(4A2α2) ∈ [0, 1), so the Chinese Remainder Theorem

implies that C∗2 = C2. From this we can conclude that C∗1 = C1 as well and thus

ψ ◦ φ = id.

The last thing that we must check is that φ ◦ ψ = id. Consider

((4A1, 4b1, c1, µ4A2, 4b2, c2), (4α1, 4β1, γ1,−µ4α2, 4β2, γ2)) ∈ S(A1, µA2)×S(α1,−µα2).

Let

ψ(((4A1, 4b1, c1, µ4A2, 4b2, c2), (4α1, 4β1, γ1,−µ4α2, 4β2, γ2))

= (4A1α1, 4B1, C1, 4A2α2, 4B2, C2), (3.34)

where B1, C1, B2, C2 are defined as in the two paragraphs following line (3.11). Let the

image of this element under the map φ be

((4A1, 4B1−4A1x, C1−4B1y+4A1(xy−z), µ4A2, 4B2 +µ4A2y, γC2 +4B2x+µ4A2z),

(4α1, 4B1 − 4α1x
′,

(
−1

A2

)
A2C1 − 4B1y

′ + 4α1(x′y′ − z′),

− µ4α2,−
(
−1

A2

)
µ4B2 + µα2y

′,−µ
(
−1

A2

)
A1C2 −

(
−1

A2

)
µ4B2x

′ − µ4α2z
′)),

where x, x′, y, y′, z, z′ ∈ Z such that this pair of 6-tuples is an element of S(A1, µA2)×

S(α1,−µα2).

Now

B1 ≡ b1 (mod A1) and B1 ≡ B1 −A1x (mod A1).

Furthermore, b1/A1 ∈ [0, 1) and (B1 −A1x)/A1 ∈ [0, 1), thus b1 = B1 −A1x.

Similarly,

B1 ≡ β1 (mod α1) and B1 ≡ B1 − α1x
′ (mod α1).

Furthermore, β1/α1 ∈ [0, 1), and (B1 − α1x
′)/α1 ∈ [0, 1) thus β1 = B1 − α1x

′.

We may consider the analogous comparisons using B2. In particular,

B2 ≡ b2 (mod A2) and B2 ≡ B2 + µA2y (mod A2).

Since b2/(µA2) ∈ [0, 1), and (B2 +µA2y)/(µA2) ∈ [0, 1) it follows that b2 = B2 +µA2y.
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Next we have

B2 ≡ −µ
(
−1

A2

)
β2 (mod α2) and − µ

(
−1

A2

)
B2 ≡ −µ

(
−1

A2

)
B2 + µα2y

′ (mod α2).

Since β2/(−µα2) ∈ [0, 1), and (−µ
(
−1
A2

)
B2 + µα2y

′)/(−µα2) ∈ [0, 1), it follows that

β2 = −µ
(
−1
A2

)
B2 + α2y

′.

Now we will show that γC2+4B2x+µ4A2z = c2 and −µ
(
−1
A2

)
A1C2µ−

(
−1
A2

)
B2x

′−

µα2z
′ = γ2. In the first case note that

C2 ≡ γ−1(c2 − 4B2x)(mod 4A2) (3.35)

and

C2 ≡ γ−1((γC2 + 4B2 + µ4A2z)− 4B2x)(mod 4A2). (3.36)

Since c2/(µ4A2) ∈ [0, 1) and (γC2 + 4B2 + µ4A2z)/(µ4A2) ∈ [0, 1) it follows that

γC2 +B2x+ µA2z = c2.

Similarly,

C2 ≡ −µ
(
−1

A2

)
A−1

1 (γ2 + 4µ

(
−1

A2

)
B2x

′)(mod 4α2)

and

C2 ≡ −µ
(
−1

A2

)
A−1

1 ((−µ
(
−1

A2

)
A1C2 −

(
−1

A2

)
µ4B2x

′ − µ4α2z
′)

+ 4µ

(
−1

A2

)
B2x

′)(mod 4α2).

As γ2/(−µ4α2) ∈ [0, 1) and (−µ
(
−1
A2

)
A1C2−

(
−1
A2

)
µ4B2x

′−µ4α2z
′)/(−µ4α2) ∈ [0, 1)

it follows that γ2 = −µ
(
−1
A2

)
A1C2 −

(
−1
A2

)
µ4B2x

′ − µ4α2z
′.

From this we can conclude that c1 = C1−4B1y+4A1(xy−z) and γ1 =
(
−1
A2

)
A2C1−

4B1y
′ + 4α1(x′y′ − z′). Finally we see that φ ◦ ψ = id. �

3.4 The Splitting in Terms of Block Parameters

This brief section recalls the formula for the splitting in terms of block parameters, as

shown in [11]. Suppose that γ ∈ Γ and

γ = n
(
a1 b1 0
c1 d1 0
0 0 1

)(
a2 0 b2
0 1 0
c2 0 d2

) ( 1 0 0
0 a3 b3
0 c3 d3

)
,
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where each
(
ai bi
ci di

)
∈ Γ1(4) ⊆ SL(2,Z). Then

s(γ) =

(
c1

d1

)(
c2

d2

)(
c3

d3

)
sNA(γ), (3.37)

where

sNA(γ) =



(c1, d1) , c1, c2 6= 0, c3 = 0

(c1c2(c1c3 − d1c2a3), c1a3)(a3, c2c3) , c1, c2, c3, c1c3 − d1c2a3 6= 0

(c2a3, c1a3)(a3, c2c3) , c1, c2, c3 6= 0, c1c3 − d1c2a3 = 0

(a3, c2c3) , c1 = 0, c2, c3 6= 0

1 , otherwise.

(3.38)

A few remarks are in order. First, note that this formula shows that s is left Γ∞-

invariant. Second, note that s is not a group homomorphism, but rather that s(γ1γ2) =

s(γ1)s(γ2)σ(γ1, γ2). Finally recall that 4A2 = −(c1c3 − d1c2a3).

3.5 Symmetries of the Splitting

This section describes how the map s is affected by some of the symmetries described

in section 3.2. These symmetries arise from automorphisms of Γ1(4) that preserve Γ∞,

and thus induce an action on the space of double cosets, Γ∞\Γ1(4)/Γ∞.

3.5.1 Conjugation

The simplest automorphisms that preserve Γ∞ are given by conjugation by elements of

Γ∞. This action will leave the splitting unchanged.

Proposition 13. Let γ ∈ Γ1(4) and n ∈ Γ∞. Then s(nγn−1) = s(γ).

Proof: Consider s(nγn−1). From ‘The Guide for the Metaplexed’ [11] it follows that s

is left Γ∞ invariant. Thus it is sufficient to consider s(γn) where γ ∈ Γ1(4) and n ∈ Γ∞.

Now by the definition of the splitting s(γn) = s(γ)s(n)σ(γ, n). By results from ‘The

Guide for the Metaplexed’ [11] and Banks-Levy-Sepanski [1], s(n) = 1 and σ(γ, n) = 1.

Therefore s(γn) = s(γ) and it follows that s(nγn−1) = s(γ). �
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In addition to the left Γ∞-invariance of s, the proof of this result shows that s

is right Γ∞-invariant as well; therefore, s is well defined on the double coset space

Γ∞\Γ1(4)/Γ∞. Next consider conjugation by the elements S2 = t(1,−1, 1) and S3 =

t(1, 1,−1) defined in Section 3.2. The results included in the next Proposition are not

exhaustive, but rather only include symmetries that will be used in the sequel.

Proposition:

s(S3γS3) =


(c1a3,−1)s(γ) , c1, c2, c3 6= 0, A2 = 0

s(γ) , otherwise

If A1, A2 6= 0. Then

s(S2γS2) = −sign(A1A2)s(γ).

Proof: Let S = S3. If γ = nγ1γ2γ3, then

Sγ1S = γ1,

Sγ2S =
(

a2 0 −b2
0 1 0
−c2 0 d2

)
,

Sγ3S =
( 1 0 0

0 a3 −b3
0 −c3 d3

)
.

From the formula for s, contained in section 3.4, it follows that

s(SγS) =


(c1a3,−1)s(γ) , c1, c2, c3 6= 0, A2 = 0

s(γ) , otherwise .

Now let S = S2. If γ = nγ1γ2γ3, then

Sγ1S =
(

a1 −b1 0
−c1 d1 0

0 0 1

)
,

Sγ2S = γ2,

Sγ3S =
( 1 0 0

0 a3 −b3
0 −c3 d3

)
.

From the formula for s, contained in section 3.4, it follows that

s(SγS) =



sign(d1)s(γ) , c1, c2 6= 0, c3 = 0

− sign(a3) sign(c1c2(−A2)) sign(c1a3)s(γ) , c1, c2, c3, A2 6= 0

sign(a3)s(γ) , c1 = 0, c2, c3 6= 0

s(γ) , otherwise
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=



sign(d1)s(γ) , c1, c2 6= 0, c3 = 0

− sign(A1A2)s(γ) , c1, c2, c3, A2 6= 0

sign(a3)s(γ) , c1 = 0, c2, c3 6= 0

s(γ) , otherwise .

To finish the proof we will show that sign(d1) = − sign(A1A2) when c1, c2 6= 0, c3 =

0, and sign(a3) = − sign(A1A2) when c1 = 0, c2, c3 6= 0. Let us begin with the case

where c1, c2 6= 0, c3 = 0.

In this case, by (3.2) we know that c3 = 0 implies that 4A2 = d1(−A1)a3 and a3 = 1.

Thus we see that sign(d1) = − sign(A1A2).

In the second case, by 3.2 c1 = 0 implies that 4A1 = d1c2a3 and d1 = 1. Thus we

see that sign(a3) = − sign(A1A2).

�

3.5.2 Cartan Involution Composed with the Long Element

Proposition: Let γ ∈ Γ1(4) with Plücker coordinates (4A1, 4B1, C1, 4A2, 4B2, C2).

Consider the involution φ : γ 7→ w`γ
−tw−1

` . When A1 and A2 are not equal to 0

s(φ(γ)) = (−A1,−A2)s(γ).

When A1, B2 6= 0 and A2 = 0,

s(φ(γ)) = (−A1, B2)s(γ).

A similar result holds on the other cells, but these identities will not be needed.

Proof: By the formula in Section 3.4, if γ = nγ1γ2γ3, then

s(γ) = s(γ1)s(γ2)s(γ3)σ(γ1, γ2γ3)σ(γ2, γ3).

Similarly,

s(φ(γ)) = s(φ(γ1))s(φ(γ2))s(φ(γ3))σ(φ(γ1), φ(γ2)φ(γ3))σ(φ(γ2), φ(γ3))
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(Note that φ(Γ∞) = Γ∞ is needed in this computation). Direct calculation shows that

φ(γ1) = φ
((

a1 b1 0
c1 d1 0
0 0 1

))
=

( 1 0 0
0 a1 b1
0 c1 d1

)
,

φ(γ2) = φ
((

a2 0 b2
0 1 0
c2 0 d2

))
=

(
a2 0 −b2
0 1 0
−c2 0 d2

)
,

φ(γ3) = φ
(( 1 0 0

0 a3 b3
0 c3 d3

))
=

(
a3 b3 0
c3 d3 0
0 0 1

)
.

These computations show that s(φ(γ1)) = s(γ1), s(φ(γ3)) = s(γ3), and s(φ(γ2)) =(
−c2
d2

)
=
(
c2
d2

)
= s(γ2). The second to last equality follows as d2 ≡ 1 (4).

It remains to compute σ(γ1, γ2γ3)σ(γ2, γ3)σ(φ(γ1), φ(γ2)φ(γ3))σ(φ(γ2), φ(γ3)). First

note that the computation of σ(γ2, γ3) can be found in Proposition 4.2 in [11]. Specifi-

cally, Miller proves that

σ(γ2, γ3) =


(a3, c2c3), c2, c3 6= 0

1, otherwise.

(3.39)

Next we compute σ(φ(γ2), φ(γ3)). If c3 = 0, then γ3 ∈ N and σ(φ(γ2), φ(γ3)) = 1.

Assume that c2 6= 0 and c3 6= 0.

σ(φ(γ2), φ(γ3)) =σ
((

a2 0 −b2
0 1 0
−c2 0 d2

)
,
(
a3 b3 0
c3 d3 0
0 0 1

))
=σ

((
c−1
2

1
−c2 d2

)
,

(
a3
c3 a

−1
3

1

))
=σ

((
c−1
2
−1
−c2

)
wα1wα2wα1 ,

(
1

−d2
c2

1
1

)(
a3
c3 a

−1
3

1

))
=σ

((
c−1
2
−1
−c2

)
wα1wα2wα1 ,

(
a3
c3 a

−1
3

1

)(
1 ∗ ∗

1 ∗
1

))
=σ

((
c−1
2
−1
−c2

)
wα1wα2wα1 ,

(
a3
c3 a

−1
3

1

))
(3.40)

These five equalities follow from applications of the identity

σ(n1g1n2, g2n3) = σ(g1, n2g2) and basic matrix algebra. The next three equalities follow

from the definition of σ.

(3.40) =σ

((
c−1
2
−1
−c2

)
, wα1wα2wα1

(
a3
c3 a

−1
3

1

))
σ

(
wα1 , wα2wα1

(
a3
c3 a

−1
3

1

))
× σ

(
wα2 , wα1

(
a3
c3 a

−1
3

1

))
σ

(
wα1 ,

(
a3
c3 a

−1
3

1

))
=σ

((
c−1
2
−1
−c2

)
,

(
1
a−1
3

a3

))
σ

((
1
a−1
3

a3

)(
a−1
3

1
a3

)
,

(
−a−1

3
−1
−a3

))
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× σ
((

a−1
3

1
a3

)(
a−1
3

a3
1

)
,

(
−a−1

3
−a3

−1

))
× σ

((
a−1
3

a3
1

)(
c−1
3

c3
1

)
,

(
−c−1

3
−c3

−1

))
=(c2, a3)2(−1, a3)2(a3,−a3)2(a3,−1)(a3c3,−c3)(a3c3,−1)2 (3.41)

The final steps follow from properties of the Hilbert Symbol.

(3.41) = (a3,−1)(a3c3,−c3) = (a3,−1)(a3,−c3)(c3,−c3) = (a3, c3)

If either c2 or c3 is equal to 0, then σ(φ(γ2), φ(γ3)) = 1. Thus

σ(φ(γ2), φ(γ3))σ(γ2, γ3) =

{
(a3,c2), c2,c3 6=0

1, otherwise.

However, if c3 = 0 it follows that a3 = 1 so if fact we have

σ(φ(γ2), φ(γ3))σ(γ2, γ3) = (a3, c2) (3.42)

It remains to consider σ(γ1, γ2γ3) and σ(φ(γ1), φ(γ2)φ(γ3)). In Proposition 4.2 in [11],

Miller proves that

σ(γ1, γ2γ3) =


(c1c2(−A2), c1a3), c1, c2, A2 6= 0

(c2a3, c1a3), c1, c2 6= 0, A2 = 0

1, otherwise.

Now we will compute σ(φ(γ1), φ(γ2)φ(γ3)). Note that if c1 = 0, then this 2-cocycle

is equal to 1. Thus assume that c1 6= 0. As aj ≡ 1 (4), thus aj 6= 0. In the following

computation let

α = the first nonzero quantity among c2,
−A2
c1a2

, 1
a2a3

,

β = the first nonzero quantity among−A2
c1
, 1
a3
,

δ = the first nonzero quantity among− c2a3,
1
a2
,

h =

( a2a3
−A2
c1

a−1
3

−c2a3 a−1
2

)
.

Then using the identity σ(n1g1n2, g2n3) = σ(g1, n2g2) and matrix algebra it follows

that

σ(φ(γ1), φ(γ2)φ(γ3)) =σ
(( 1

a1 b1
c1 d1

)
,
(

a2 −b2
1

−c2 d2

)(
a3 b3
c3 d3

1

))
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=σ

((
1

−c−1
1

c1 d1

)
,

(
a2a3 a2b3 −b2
c3 d3
−c2a3 −c2b3 d2

))
=σ

((
1

−c−1
1

c1 d1

)
,

( a2a3
c3 a−1

3

−c2a3 a−1
2

)( 1
b3
a3

−b2
a2a3

1
b2c3
a2
1

))

=σ

((
1

−c−1
1

c1 d1

)
,

( a2a3
c3 a−1

3

−c2a3 a−1
2

))
. (3.43)

Now factor the matrix in the first entry using the SL(2,R) Bruhat decomposition on

the lower right 2× 2 block and apply the identity σ(n1g1n2, g2n3) = σ(g1, n2g2) to see

that

(3.43) =σ

((
1
c−1
1

c1

)(
1
−1

1

)( 1

1
d1
c1
1

)
,

( a2a3
c3 a−1

3

−c2a3 a−1
2

))
=σ

((
1
c−1
1

c1

)(
1
−1

1

)
,

(
1

1
d1
c1
1

)( a2a3
c3 a−1

3

−c2a3 a−1
2

))
=σ

((
1
c−1
1

c1

)(
1
−1

1

)
,

( a2a3
−A2
c1

a−1
3

d1
c1a2

−c2a3 a−1
2

))

=σ

((
1
c−1
1

c1

)(
1
−1

1

)
,

( a2a3
−A2
c1

a−1
3

−c2a3 a−1
2

)(
1

1 ∗
1

))

=σ

((
1
c−1
1

c1

)(
1
−1

1

)
,

( a2a3
−A2
c1

a−1
3

−c2a3 a−1
2

))
. (3.44)

Recall the definition of ∆ from subsection 2.2.2. Now the definition of σ shows that

(3.44) =σ

((
1
c−1
1

c1

)
,
(

1
−1

1

)( a2a3
−A2
c1

a−1
3

−c2a3 a−1
2

))

× σ

((
1
−1

1

)
,

( a2a3
−A2
c1

a−1
3

−c2a3 a−1
2

))

=σ

((
1
c−1
1

c1

)
, wα2h

)
σ(wα2 , h)

=σ

((
1
c−1
1

c1

)
,∆(wα2h)

)
σ(∆(wα2h)∆(h),−∆(h))

=σ

((
1
c−1
1

c1

)
,

(
1
α

α
β

β

))

× σ

((
1
α

α
β

β

)( 1
α

α
δ
δ

)
,

(
−1
α
−α
δ
−δ

))

=(c1, β)(βδ,−δ). (3.45)

The last two equalities follow from properties of the Hilbert Symbol.

(3.45) =(c1, β)(β,−δ)
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=(−c1δ, β)

Thus,

σ(φ(γ1), φ(γ2)φ(γ3))σ(γ1, γ2γ3) = (α, βc1δ). (3.46)

If we combine lines (3.42) and (3.46) and use the fact that A1 6= 0 we get

σ(φ(γ2), φ(γ3))σ(γ2, γ3)σ(φ(γ1), φ(γ2)φ(γ3))σ(γ1, γ2γ3)

= (c2, a3)(c2, βc1(−c2a3)) = (c2, βc1). (3.47)

Remember that this equation is only valid if c1 6= 0. If c1 = 0, then as mentioned above

σ(φ(γ1), φ(γ2)φ(γ3))σ(γ1, γ2γ3) = 1 and so we get

σ(φ(γ2), φ(γ3))σ(γ2, γ3)σ(φ(γ1), φ(γ2)φ(γ3))σ(γ1, γ2γ3) = (c2, a3). (3.48)

If A1, A2, c1 6= 0, then by line (3.47) we get

(a3,−A2)(−A1,−A1A2a3) = (−A1,−A2).

If A1, A2 6= 0, c1 = 0, then d1 = 1 and A2 = −A1a3. In this case line (3.48) gives

(c2, a3) = (−A1,−A1A2) = (−A1,−A2).

If A2 = 0, Then c1, c3 6= 0 and c1c3 = d1c2a3. If additionally, A1, B2 6= 0, then by

line (3.47) we have

σ(φ(γ1), φ(γ2)φ(γ3))σ(γ1, γ2γ3) = (c2, a3c1) = (c2, c2c3d1) = (c2,−c3d1)

= (−A1,−C2B1) = (−A1,−C2(4B1B2)B2) = (−A1, C
2
2A1B2) = (−A1, B2).

�

3.6 The Splitting in Terms of Plücker Coordinates

Theorem 14. Let γ ∈ Γ1(4) with Plücker coordinates (4A1, 4B1, C1, 4A2, 4B2, C2) such

that A1 > 0, and A2/(A1, A2) ≡ 1 (mod 2). Let D = (A1, A2), D1 = (D,B1), D2 =

D/D1, and let ε =
(

−1
−B1/D1

)
. Then s(γ) =(

−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
. (3.49)
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The proof of this theorem occupies the next two sections. Section 3.7 contains

a reduction step that reduces the computation to the case where D is a power of 2.

In Section 3.8 a nice representative of the double coset Γ∞γΓ∞ is identified and the

computation is executed using this representative.

A few remarks are in order regarding the formula for the splitting. First, this formula

can be used to derive the value of the splitting on any input using the symmetries of

Section 3.5. This point will be discussed more throughly in Section 3.8. Second, if −1 is

assumed to be a square then this formula essentially reduces to the formula of Brubaker-

Bump-Friedberg-Hoffstein [5]. One notable difference is that the roles of Ai and Ci are

swapped. Third,
(
−ε

−A1A2

)
= 1 when A1 and A2 are odd. This follows as A1 ≡ −A2

(mod 4); this congruences is a consequence of the equation A1C2 + 4B1B2 +C1A2 = 0

and the congruences Ci ≡ −1 (mod 4).

3.7 The Splitting: The Reduction

Proposition 15. Let γ ∈ Γ1(4) with Plücker Coordinates (4A1, 4B1, C1, 4A2, 4B2, C2),

such that A1, A2 6= 0. Suppose that D divides (A1, A2). Let D1 = (D,B1) and let

D2 = D/D1. Suppose that D2 divides B2. Let S =

(
1 0 0
0 D−1

2 0

0 0 D−1

)
. Then SγS−1 ∈ Γ1(4)

with Plücker Coordinates (4A1/D, 4B1/D1, C1, 4A2/D, 4B2/D2, C2) and

s(γ) = s(SγS−1)

(
D1

C1

)(
D2

C2

)
. (3.50)

Proof: As the Plücker coordinates satisfy the previously mentioned divisibility condi-

tions, γ is of the form ( a11 a12 a13
D2a21 a22 a23
Da31 D1a32 a33

)
.

If γ is factored into blocks, then

γ = n
(

a1 b1 0
D2c1 d1 0

0 0 1

)(
a2 0 b2
0 1 0
Dc2 0 d2

) ( 1 0 0
0 a3 b3
0 D1c3 d3

)
.

Recall the definition of S(A1, A2) from line (3.3). Using Proposition 10 we see that

γ ∈ S(A1D,A2D) is mapped into S(A1, A2) via conjugation by the matrix

S =

(
1 0 0
0 D−1

2 0

0 0 D−1

)
.
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Explicitly,

Sγ1S
−1 =

(
a1 D2b1 0
c1 d1 0
0 0 1

)
,

Sγ2S
−1 =

(
a2 0 Db2
0 1 0
c2 0 d2

)
,

Sγ3S
−1 =

( 1 0 0
0 a3 D1b3
0 c3 d3

)
.

Using Miller’s formula for the splitting as described in Section 3.4,

s(SγS−1) =s(Sγ1S
−1)s(Sγ2S

−1)s(Sγ3S
−1)

× σ(Sγ1S
−1, Sγ2γ3S

−1)σ(Sγ2S
−1, Sγ3S

−1)

=

(
c1

d1

)(
c2

d2

)(
c3

d3

)
σ(Sγ1S

−1, Sγ2γ3S
−1)σ(Sγ2S

−1, Sγ3S
−1)

=

(
c1D2

d1

)(
c2D

d2

)(
c3D1

d3

)(
D2

d1

)(
D

d2

)(
D1

d3

)
× σ(Sγ1S

−1, Sγ2γ3S
−1)σ(Sγ2S

−1, Sγ3S
−1)

=s(γ)

(
D2

−C2/d2

)(
D

d2

)(
D1

−C1/d2

)
=s(γ)

(
D1

−C1

)(
D2

−C2

)
.

The fourth equality follows from formula (3.38) paired with the fact that conjugation

by S only scales the block parameters by positive numbers. Thus the nonarithmetic

factor remains unchanged and it follows that

s(γ) = s(SγS−1)

(
D1

C1

)(
D2

C2

)
.

�

3.8 The Splitting: The Reduced Case

This section contains the computation of the splitting when (A1, A2) = 2`. By com-

bining this formula with the reduction step, the transformation of the formula for the

splitting in terms of block parameters into a formula in terms of Plücker coordinates

will be complete.
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If the reduction step could be applied with D = (A1, A2), the computation would

be more straightforward. Unfortunately, (A1, A2) is not always a valid choice in the

reduction step as conjugation by the prescribed matrix, S, may result in a matrix that

does not reside in Γ1(4). Only the prime 2 can cause this trouble (This is proved

in a remark after Proposition 10.), so the reduction step of Section 3.7 can be used

to remove the odd part of the GCD of A1 and A2. So suppose D = (A1, A2) = 2`.

By applying the symmetries of Section 3.2 we can impose the additional constraints

A1 > 0, and A2/2
` ≡ 1 (mod 2); the calculations of Section 3.5 describe the effect

of these symmetries on the value of the splitting. Specifically, the Cartan involution

composed with conjugation by the long element can be used to swap A1 and A2; thus,

if A2 is more even than A1 they can be swapped; if the new A1 is negative, then

conjugation by t(1, 1,−1) will flip the sign of A1. Thus the computation in the general

case can be reduced to that of the special case just described. The evaluation of the

splitting in this special case is the content of the following proposition.

Proposition 16. Let γ ∈ Γ1(4) with Plücker coordinates (4A1, 4B1, C1, 4A2, 4B2, C2)

such that A1 > 0, and A2/(A1, A2) ≡ 1 (mod 2). Let D = (A1, A2) = 2`, D1 = (D,B1),

D2 = D/D1, and let ε =
(

−1
−B1/D1

)
. Then s(γ) =(

−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
. (3.51)

Proof: Let γ ∈ Γ1(4) have Plücker Coordinates (4A1, 4B1, C1, 4A2, 4B2, C2). Let

Bj = 2δjbj , where j = 1, 2, and (2, bj) = 1. Let ε =
(
−1
−b1

)
=
(
−1
−B1

)
.

The splitting and the extra conditions on A1 and A2 are right Γ∞-invariant. Thus

multiplication on the right by an element of Γ∞ can be used to reduce the computation

to that of a representative with still more favorable properties. If x, z ∈ Z, then

γn(2δ1+2x, 0, z) has Plucker Coordinates (4A1, 4B1, C1, 4A2, 4B2, C2) where

B1 = B1 − (2δ1+2x)A1, (3.52)

B2 = B2, , (3.53)

and

C2 = C2 − 4B2(2δ1+2x)− 4A2z. (3.54)
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The factor of 2δ1+2 in front of x ensures that ord2(B1) = ord2(B1) and B1 ≡ B1(mod 4).

Now we will specify certain congruences conditions (limiting the possible choices for x

and z) that will aid in our computation of the splitting. Using the Chinese Remainder

Theorem, choose x ∈ Z subject to the conditions

B1 ≡ B1 (mod 2δ1+2A1),

B1 ≡ 1 (mod A2/2
`),

B1 < 0.

Choose z ∈ Z subject to the conditions

C2 ≡ 1 (mod B1/2
δ1),

C2 ≡ C2 − 4B22δ1+2x (mod 4A2),

C2 < 0.

The Chinese Remainder Theorem can be applied to the above system of congruences

because B1 ≡ 1 (mod A2/2
`). This more suitable representative will be used to compute

the splitting.

By Proposition 9, γn(2δ1+2x, 0, z) can be factored so that it has block parameters

c2 = −4A1 , d2 = ±(B1, C1) = ±(B1,
A1C2+4B1B2
−A2

),

c3 = −4B1/d2 , d3 = −C1/d2 = A1C2+4B1B2
A2d2

,

d1 = −C2/d2 , −B1
d2
c1 = −A2 + −C2

d2
(−A1)(a3),

(3.55)

where a3 > 0. Note that (B1, A2/2
`) = (B1, C2) = 1. Therefore d2 = 1 as (A1,B1, C1) =

1.

By equation (3.38),

sNA(γ) =


(c1(−A1)(−A2), c1) , c1 6= 0

1 , c1 = 0,

as c2, c3 6= 0 and a3 > 0. However, (c1(−A1)(−A2), c1) = (−A1A2, c1). If A1A2 < 0,

this is equal to 1. If A1A2 > 0, this is equal to sign(c1). However, we have A1A2 > 0,

B1 < 0, C2 < 0, and a3 > 0. Additionally, in these new coordinates −B1c1 = −A2 +

(−C2)(−A1)a3 as d2 = 1. Thus sign(c1) < 0.
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Recall that A1 > 0. Thus if A2 < 0, then sNA(γ) = 1. If A2 > 0, then sNA(γ) = −1

when c1 6= 0 and sNA(γ) = 1 when c1 = 0. However, c1 = 0 implies that A2 < 0. Thus

in either case sNA(γ) = −sign(A2).

The computation of the arithmetic part remains. The arithmetic part of the split-

ting is given by
(
−A1
d2

)(
−B1/d2
−C1/d2

)(
c1

−C2/d2

)
. The computation begins by noting that

(B1/2
δ1 , A2) = 1, and d2 = 1. Thus,(
−A1

d2

)(
−B1/d2

−C1/d2

)(
c1

−C2/d2

)
=

(
ε2δ1

−C1

)(
−εB1/2

δ1

sign(A2)[(A1/2`)C2 + 4(B1B2/2`)]

)(
−εB1/2

δ1

sign(A2)A2/2`

)(
c1

−C2

)
. (3.56)

The decision to introduce ε =
(
−1
−B1

)
in the previous line will allow us to apply the

statement in Proposition 6 having to do with periodicity in the bottom entry in a

future part of this computation. In addition, using the equation involving c1 in line

(3.55) leads to

(3.56) =

(
ε2δ1

−C1

)(
−εB1/2

δ1

sign(A2)(A1/2`)C2

)(
−εB1/2

δ1

sign(A2)A2/2`

)
×
(
−B1

−C2

)(
−A2 + (−C2)(−A1)(a3)

−C2

)
. (3.57)

The next equality follows as −C1 ≡ 1 (mod 4) and −C2 > 0.

(3.57) =

(
2δ1

−C1

)(
−εB1/2

δ1

sign(A2)(A1/2`)C2

)(
−εB1/2

δ1

sign(A2)A2/2`

)(
−B1

−C2

)
×
(

sign(A2)A2/2
`

−C2

)(
2`

−C2

)
. (3.58)

The next step follows from quadratic reciprocity.

(3.58) =

(
2δ1

C1

)(
−εB1/2

δ1

sign(A2)(A1/2`)C2

)(
−εB1/2

δ1

sign(A2)A2/2`

)(
−B1

−C2

)
(

−C2

sign(A2)A2/2`

)(
2`

C2

)
. (3.59)

Now replace the C2 appearing in the top entry using the equation A1C2+4B1B2+C1A2 =

0 and use periodicity in the top entry to see that

(3.59) =

(
2δ1

C1

)(
−εB1/2

δ1

sign(A2)(A1/2`)C2

)(
−εB1/2

δ1

sign(A2)A2/2`

)(
−B1

−C2

)
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×
(

A1/2
`

sign(A2)A2/2`

)(
4B1B2/2

`

sign(A2)A2/2`

)(
2`

C2

)
. (3.60)

Next rearrange the terms and use that B1 < 0 and A1 > 0 to get

(3.60) =

(
A1/2

`

A2/2`

)(
−εB1/2

δ1

sign(A2)(A1/2`)

)(
(4B1B2/2

`)(−εB1/2
δ1)

sign(A2)A2/2`

)(
−B1/2

δ1

C2

)
×
(
−εB1/2

δ1

C2

)(
2δ1

C1

)(
2l+δ1

C2

)
. (3.61)

Next consider the terms involving C2 to get

(3.61) =

(
A1/2

`

A2/2`

)(
−εB1/2

δ1

sign(A2)(A1/2`)

)(
(4B1B2/2

`)(−εB1/2
δ1)

sign(A2)A2/2`

)
×
(

(−εB1/2
δ1)(−B1/2

δ1)

C2

)(
2δ1

C1

)(
2l+δ1

C2

)
=

(
A1/2

`

A2/2`

)(
−εB1/2

δ1

sign(A2)(A1/2`)

)(
(4B1B2/2

`)(−εB1/2
δ1)

sign(A2)A2/2`

)(
2δ1

C1

)(
ε2l+δ1

C2

)
.

(3.62)

The remaining equalities follow from basic properties of the Kronecker Symbol.

(3.62) =

(
A1/2

`

A2/2`

)(
−εB1/2

δ1

sign(A2)(A1/2`)

)(
−ε2δ1+2−lB2

sign(A2)A2/2`

)(
2δ1

C1

)(
ε2l+δ1

C2

)
=

(
ε

sign(A2)C2

)(
A1/2

`

A2/2`

)(
−εB1/2

δ1

A1/2`

)(
−ε2δ1+2−lB2

sign(A2)A2/2`

)(
2δ1

C1

)(
2l+δ1

C2

)
=

(
ε

sign(A2)C2

)(
A1/2

`

A2/2`

)(
−εB1/2

δ1

A1/2`

)(
−εB2/2

δ2

sign(A2)A2/2`

)
×
(

2δ1

C1

)(
2l+δ1

C2

)(
2δ1+δ2+2−l

sign(A2)A2/2`

)
(3.63)

The next line shows that the formula remains the same when the modified Plücker

coordinates are switched back to the original Plücker coordinates using the equations

of lines (3.52), (3.53), and (3.54). The switch for B1 and B2 is direct, but it appears

that some care is needed when dealing with C1 and C2. The case when ` > 0 is

straightforward as Ci ≡ Ci(mod 8) for i = 1, 2. Unfortunately, this need not be true

when ` = 0.

Supposing that ` = 0 there will be two cases to consider: δ1 = 0 and δ1 6= 0. If δ1 = 0

both exponents will be 0 and there is nothing to show. The last case to consider is when

` = 0 and δ1 > 0. In this case A1C2 +C1A2 ≡ 0(mod 8) and A1C2 + C1A2 ≡ 0(mod 8).

As A1, A2 are odd, C1C2 ≡ C1C2(mod 8). Thus
(

2δ1
C1

)(
2δ1
C2

)
=
(

2δ1
C1

)(
2δ1
C2

)
. Therefore,
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(3.63) =

(
ε

sign(A2)C2

)(
A1/2

`

A2/2`

)(
−εB1/2

δ1

A1/2`

)(
−εB2/2

δ2

sign(A2)A2/2`

)
×
(

2δ1

C1

)(
2l+δ1

C2

)(
2δ1+δ2+2−l

sign(A2)A2/2`

)
. (3.64)

Now the computation will bifurcate. Case 1 will consist of δ1 ≤ l and Case 2 will

consist of δ1 > l.

Case 1: If δ1 ≤ l then D1 = (2`, B1) = 2δ1 and D2 = 2l−δ1 . Thus,(
−B1/2

δ1

A1/2`

)
=

(
−B1/D1

A1/2`

)
,(

−εB2/2
δ2

sign(A2)A2/2`

)(
2δ1+δ2+2−l

sign(A2)A2/2`

)
=

(
−ε4B2/D2

sign(A2)A2/2`

)
,(

2δ1

C1

)(
2l+δ1

C2

)
=

(
2δ1

C1

)(
2l−δ1

C2

)
=

(
D1

C1

)(
D2

C2

)
.

Case 2: If δ1 > l then D1 = (2`, B1) = 2` and D2 = 1. Thus,(
−B1/2

δ1

A1/2`

)
=

(
−B1/D1

A1/2`

)(
2δ1−l

A1/2`

)
,(

−εB2/2
δ2

sign(A2)A2/2`

)(
2δ1+δ2+2−l

sign(A2)A2/2`

)
=

(
−ε4B2/D2

sign(A2)A2/2`

)(
2δ1−l

sign(A2)A2/2`

)
,(

2δ1

C1

)(
2l+δ1

C2

)
=

(
2δ1

C1

)(
2l−δ1

C2

)
=

(
D1

C1

)(
D2

C2

)(
2δ1−l

C1

)(
2δ1−l

C2

)
.

Finally we must show that(
2δ1−l

A1/2`

)(
2δ1−l

−A2/2`

)(
2δ1−l

C1

)(
2δ1−l

C2

)
= 1. (3.65)

To see this note that δ1 > l implies that δ1 > 0. Thus (A1/2
`)C2 + C1(A2/2

`) ≡

0 (mod 8) or equivalently, (A1/2
`)C2 ≡ −C1(A2/2

`) (mod 8). Thus equation (3.65)

holds and Case 2 is complete.

In either case the arithmetic part of the splitting is given by

sA(γ) =

(
ε

sign(A2)C2

)(
A1/D

A2/D

)(
−εB1/D1

A1/D

)(
−ε4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
.

After incorporating the non-arithmetic factor and groupings the ε terms and the −1

terms together the formula simplifies to

s(γ) =

(
−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
.
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At this point we can combine Proposition 15 and Proposition 16 to prove Theorem

14.

Proof of Theorem 14: Let γ ∈ Γ1(4) with Plücker coordinates

(4A1, 4B1, C1, 4A2, 4B2, C2) such that A1 > 0, and A2/(A1, A2) ≡ 1 (mod 2). Let

D = (A1, A2), D1 = (D,B1), D2 = D/D1, and let ε =
(

−1
−B1/D1

)
. Let D′, D′1, and

D′2 denote the odd part of D, D1, and D2 respectively. Let S = t(1, (D′2)−1, (D′)−1).

Since SγS−1 has Plücker coordinates (4A1/D
′, 4B1/(D1)′, C1, 4A2/D

′, 4B2/(D2)′, C2),

Proposition 15 shows that s(γ) = s(SγS−1)
(
D′1
C1

)(
D′2
C2

)
. Let ε′ =

(
−1

−B1/(D′1)

)
and note

that ε′ = ε. Since (A1/D
′, A2/D

′) is even we can apply Proposition 16 to evaluate

s(SγS−1). In particular, we have

s(SγS−1) =

(
−ε′

−(A1/D′)(A2/(D′)

)(
(A1/D

′)/(D/D′)

(A2/D′)/(D/D′)

)(
(B1/D

′
1)/(D1/D

′
1)

(A1/D′)/(D/D′)

)
×
(

4(B2/D
′
2)/(D2/D

′
2)

sign(A2/D′)(A2/D′)/(D/D′)

)(
(D1/D

′
1)

C1

)(
(D2/D

′
2)

C2

)
=

(
−ε′

−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)
×
(

4B2/D2

sign(A2)A2/D

)(
(D1/D

′
1)

C1

)(
(D2/D

′
2)

C2

)
.

As s(γ) = s(SγS−1)
(
D′1
C1

)(
D′2
C2

)
and ε = ε′ we have

s(γ) =

(
−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)(
D1

C1

)(
D2

C2

)
.

�

A few remarks are in order. First, remember that this formula only holds when

A1 > 0 and ord2

(
A1
A2

)
≥ 0. The other cases may be described using symmetries of s as

indicated at the beginning of this section. Second, ε =
(
−1
B1

)
during the computation

in the reduced case. Thus, ε =
(

−1
−B1/D1

)
in the general case and not

(
−1
B1

)
, which is

only true in the reduced case. Third, when (A1, A2) is odd, then both A1 and A2 must

be odd since A1 + A2 ≡ 0 (mod 4). So it follows that
(

ε
−A1A2

)
= 1. Therefore, ε only

influences the value of the splitting when (A1, A2) is even.

At this point, we would like to reiterate why we set out to prove Theorem 14. Recall
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that

Σ(A1, A2;m1,m2) =
∑

γ∈Γ∞\S(A1,A2)/Γ∞

s(γ)e
2πi(m1

B1
A1

+m2
B2
A2

)
.

This was first introduced on line (2.13). The Fourier coefficients of the metaplectic

Eisenstein series are built out of certain Dirichlet series, and when A1, A2 6= 0, the

exponential sums, Σ(A1, A2;m1,m2), appear as coefficients of some of these Dirichlet

series. Theorem 14 allows us to write Σ(A1, A2;m1,m2) in the following explicit form.

Recall line (3.4),

S(A1, A2) = {(4A1, 4B1, C1, 4A2, 4B2, C2) ∈ Z6|A1C2 + 4B1B2 + C1A2 = 0,

(Ai, Bi, Ci) = 1, Cj ≡ −1(mod 4),
B1

A1
,
B2

A2
,
C2

4A2
∈ [0, 1)}. (3.66)

We have seen in Proposition 11 that S(A1, A2) is in bijection with Γ∞\S(A1, A2)/Γ∞,

so when A1 and A2 satisfy the hypothesis of Theorem 14 it follows that

Σ(A1, A2;m1,m2) =
∑

S(A1,A2)

(
−ε
−A1A2

)(
A1/D

A2/D

)(
B1/D1

A1/D

)(
4B2/D2

sign(A2)A2/D

)

×
(
D1

C1

)(
D2

C2

)
e

2πi(m1
B1
A1

+m2
B2
A2

)
. (3.67)

This expression is still a bit unwieldy, but the result of the next section shows that

it is enough to consider the case were A1 = pk, and A2 = ±p`. With this final reduction

the exponential sum Σ(A1, A2;m1,m2) can be computed explicitly; this computation

will be the content of a forthcoming paper.

3.9 Twisted Multiplicativity

Proposition 17. Let A1, α1 ∈ Z>0, A2, α2 ∈ Z such that A1, A2 are odd,

(A1A2, α1α2) = 1, A1α1 + A2α2 ≡ 0 (mod 4), and α2
(α1,α2) ≡ 1 (mod 2). Let µ =(

−1
−A1A2

)
. Then with respect to the map from Proposition 12,

φ : S(A1α1, A2α2)→ S(A1, µA2)× S(α1,−µα2), the following holds:

s(γ) = s(π1(φ(γ)))s(π2(φ(γ)))

(
α2

(−1
A1

)A1

)(
α1

A2

)
, (3.68)

where πi is the projection onto the i-th factor.
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Note that the visible asymmetry in the formula is a result of the asymmetry con-

tained in the hypotheses. In particular, since α1 > 0,
(

α1
±A2

)
=
(
α1
A2

)
.

Proof: Recall the map

(A1α1, B1, C1, A2α2, B2, C2)

φ7→ ((A1, B1, C1, µA2, B2, γC2),

(α1, B1,

(
−1

A2

)
A2C1,−µα2,−

(
−1

A1

)
B2,

(
−1

A1

)
A1C2)).

Let D = (A1α1, A2α2), d = (A1, A2), and δ = (α1, α2). Then D = (A1α1, A2α2) =

(A1, A2)(α1, α2) = dδ, as (Ai, αj) = 1. Similarly, define D1 = (D,B1), d1 = (d,B1),

and δ1 = (δ,B1). Again D1 = d1δ1. Let D2 = D
D1

, d2 = d
d1

, and δ2 = δ
δ2

. Note that

D2 = d2δ2. Let ε =
(

−1
−B1/D1

)
, ε1 =

(
−1

−B1/d1

)
, and ε2 =

(
−1

−B1/δ1

)
.

Begin with the formula of the splitting described in Theorem 14,

s(γ) =

(
−ε

−A1α1A2α2

)(
A1α1/D

A2α2/D

)(
B1/D1

A1α1/D

)
×
(

4B2/D2

sign(A2α2)A2α2/D

)(
D1

C1

)(
D2

C2

)
=

(
−ε

α1µα2

)(
A1α1/D

A2α2/D

)(
B1/D1

A1α1/D

)
×
(

4B2/D2

sign(A2α2)A2α2/D

)(
D1

C1

)(
D2

C2

)
.

The second equality above follows as A1 + µA2 ≡ 0 (mod 4).

s(π1(φ(γ))) =

(
−ε1

−A1µA2

)(
A1/d

µA2/d

)(
B1/d1

A1/d

)
×
(

4B2/d2

sign(µA2)µA2/d

)(
d1

C1

)(
d2

γC2

)
=

(
A1/d

µA2/d

)(
B1/d1

A1/d

)(
4B2/d2

sign(µA2)µA2/d

)(
d1

C1

)(
d2

γC2

)
.

Again the second equality above follows as A1 + µA2 ≡ 0 (mod 4).

s(π2(φ(γ)))

=

(
−ε2

−α1(−µα2)

)(
α1/δ

−µα2/δ

)(
B1/δ1

α1/δ

)

×

−4
(
−1
A2

)
µB2/δ2

sign(α2)α2/δ

( δ1

A2C1

)(
δ2

A1C2

)
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Next we consider the product of the analogous terms in the formula of each splitting.

First consider the terms involving ε.

(
−ε

α1µα2

)(
−ε2

−α1(−µα2)

)
=

(
εε2

α1µα2

)
=


(
−1
d1

)
α1µα2

 . (3.69)

Consider the terms involving A1, A2, α1, or α2.(
A1α1/D

A2α2/D

)(
A1/d

µA2/d

)(
α1/δ

−µα2/δ

)
=

(
(A1/d)(α1/δ)

(A2/d)(α2/δ)

)(
A1/d

µA2/d

)(
α1/δ

−µα2/δ

)
=

(
(A1/d)

(α2/δ)

)(
(A1/d)

(A2/d)

)(
(α1/δ)

(α2/δ)

)(
(α1/δ)

(A2/d)

)(
A1/d

µA2/d

)(
α1/δ

−µα2/δ

)
=

(
A1/d

(α2/δ)

)(
α1/δ

A2/d

)(
A1/d

µ

)(
α1/δ

−µ

)
=

(
A1/d

(α2/δ)

)(
α1/δ

A2/d

)
. (3.70)

The last equality above follows as A1, α1 > 0. Next consider the terms involving B1.(
B1/D1

A1α1/D

)(
B1/d1

A1/d

)(
B1/δ1

α1/δ

)
=

(
B1/(d1δ1)

A1/d

)(
B1/(d1δ1)

α1/δ

)(
B1/d1

A1/d

)(
B1/δ1

α1/δ

)
=

(
δ1

A1/d

)(
d1

α1/δ

)
. (3.71)

Now we consider the terms involving B2.

(
4B2/D2

sign(A2α2)A2α2/D

)(
4B2/d2

sign(µA2)µA2/d

)−4
(
−1
A2

)
µB2/δ2

sign(α2)α2/δ


=

(
4B2/(d2δ2)

sign(A2)A2/d

)(
4B2/(d2δ2)

sign(α2)α2/δ

)(
4B2/d2

sign(A2)A2/d

)−4
(
−1
A2

)
µB2/δ2

sign(α2)α2/δ


=

(
δ2

A2/d

) −µ
(
−1
A2

)
d2

sign(α2)α2/δ

 . (3.72)

Next consider the terms involving C1 or C1.(
D1

C1

)(
d1

C1

)(
δ1

A2C1

)
=

(
d1

C1

)(
d1

C1

)(
δ1

A2

)



53

=

(
C1C1

d1

)(
δ1

A2

)
=

(
C1(µC1α2)

d1

)(
δ1

A2

)
=

(
µα2

d1

)(
δ1

A2

)
. (3.73)

The second equality above follows from an application of Quadratic Reciprocity and

noting that C1C1 ≡ 1 (mod 4) and d1 > 0. The third equality above follows from the

identity for C1 on line (3.9). Finally consider the terms involving C2.

(
D2

C2

)(
d2

γC2

)(
δ2

A1C2

)
=

(
d2

γ

)(
δ2

A1

)
=

(
γ

d2

)(
δ2

A1

)
=

(
α1

d2

)(
δ2

A1

)
. (3.74)

The third equality above follows from an application of Quadratic Reciprocity and

noting that γ ≡ 1 (mod 4) and d2 > 0. The last equality follows as γ ≡ α1 (mod A2).

Now the task is to simplify the product of lines (3.69)-(3.74). This quantity is given

by
(
−1
d1

)
α1µα2

( A1/d

(α2/δ)

)(
α1/δ

A2/d

)(
δ1

A1/d

)(
d1

α1/δ

)(
δ2

A2/d

)

×

 −µ
(
−1
A2

)
d2

sign(α2)α2/δ

(µα2

d1

)(
δ1

A2

)(
α1

d2

)(
δ2

A1

)
.

The terms will be rearranged and then simplified. The equalities between some lines

will involve multiple steps.
(
−1
d1

)
α1µα2

(A1/d

α2/δ

)(
α1/δ

A2/d

)(
δ2

A2/d

)(
δ1

A1/d

)(
δ1

A2

)

×
(

d1

α1/δ

)(
µα2

d1

)(
δ2

A1

)
(
−1
A1

)
d2

sign(α2)α2/δ

(α1

d2

)
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=


(
−1
d1

)
α1µα2

(A1/d1

α2/δ

)(
α1/δ1

A2/d

)(
δ1

A1

)(
δ1

A2/d

)(
δ2

A1

)

×
(

d1

α1/δ

)
(
−1
A1

)
α2/δ

(µα2

d1

)(
α1

d2

)
(
−1
A1

)
d2

sign(α2)


=


(
−1
d1

)
α1µα2

(A1/d1

α2/δ

)(
α1

A2/d

)(
δ

A1

)

×

 d1(
−1
α1/δ

)
α1/δ


(
−1
A1

)
α2/δ

(µα2

d1

)(
α1

d2

)
(

(
−1

A1

)
, sign(α2))

=


(
−1
d1

)
α1µα2

(A1/d1

α2/δ

)
(

(
−1

A1

)
, sign(α2))

(
α1

A2/d1

)

×
(
δ

A1

)
(
−1
α1/δ

)
α1/δ

d1


(
−1
A1

)
α2/δ

(µα2

d1

)
. (3.75)

The third equality combines two terms with α1 in the top position and uses quadratic

reciprocity. The next chain of equalities follows from basic properties of the Kronecker

Symbol.

(3.75) =


(
−1
d1

)
α1µα2

(A1/d1

α2/δ

)
(

(
−1

A1

)
, α2)

(
α1

A2/d1

)(
δ

A1

)

×


(
−1
α1/δ

)
α1

d1


(
−1
A1

)
α2/δ

(µα2/δ

d1

)

=


(
−1
d1

)
α1µα2


(
−1

A1/d1

)
A1/d1

α2/δ

 (

(
−1

A1

)
, α2)

(
α1

A2

)(
δ

A1

)

×


(
−1
α1/δ

)
d1


(
−1
d1

)
α2/δ

(µα2/δ

d1

)

=


(
−1
d1

)
α1µα2

 α2/δ(
−1

A1/d1

)
A1/d1

 (

(
−1

d1

)
, α2)

(
α1

A2

)(
δ

A1

)

×


(
−1
α1/δ

)
d1


(
−1
d1

)
α2/δ

(µα2/δ

d1

)
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=


(
−1
d1

)
α1µα2

 α2/δ(
−1

A1/d1

)
A1

 (

(
−1

d1

)
, α2)

(
α1

A2

)(
δ

A1

)

×


(
−1
α1/δ

)
d1


(
−1
d1

)
α2/δ

( µ

d1

)

=


(
−1
d1

)
α1µα2

 α2(
−1
A1

)
A1

 (

(
−1

d1

)
, α2)2

(
α1

A2

)
(
−1
α1/δ

)
d1


×


(
−1
d1

)
α2/δ

( µ

d1

)
. (3.76)

Now we rearrange the terms and apply the identity

(
(−1
a )
b

)
= (
(−1
a

)
,
(−1
b

)
) to get

(3.76) =

 α2(
−1
A1

)
A1

(α1

A2

)
(
−1
d1

)
α1µα2


(
−1

µα1/δ

)
d1


(
−1
α2/δ

)
d1

 . (3.77)

Finally, another application of the identity

(
(−1
a )
b

)
= (

(−1
a

)
,
(−1
b

)
) completes the

computation.

(3.77) =

 α2(
−1
A1

)
A1

(α1

A2

)
(
−1
d1

)
α1µα2


(
−1

µα1α2

)
d1


=

 α2(
−1
A1

)
A1

(α1

A2

)
.

�

3.10 The Splitting on Other Cells

The content of Section 3.6 is a description of the splitting map on the big cell. However,

the computation of the degenerate Fourier coefficients requires an understanding of the

splitting on the other cells as well. This section collects the description of s on the

smaller Bruhat cells. Recall that

wα1 =
(

0 −1 0
1 0 0
0 0 1

)
,

wα2 =
(

1 0 0
0 0 −1
0 1 0

)
.
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Proposition 18. Let γ ∈ Γ1(4) with Plücker Coordinates (A1, B1, C1, A2, B2, C2).

Then:

Cell (A1, B1, C1, A2, B2, C2) s(γ)

B (0, 0,−1, 0, 0,−1) 1

Bwα1B (0, 0,−1, 0, B2, C2)
(
B2
−C2

)
Bwα2B (0, B1, C1, 0, 0,−1)

(
−B1
−C1

)
Bwα1wα2B (0, B1, C1, A2, B2, C2)

(
A2/B1

−C2

)(
−B1
−C1

)
Bwα2wα1B (A1, B1, C1, 0, B2, C2) (−A1, B2)

(
−A1/B2

−C1

)(
B2
−C2

)
Bw`B (A1, B1, C1, A2, B2, C2) Equation (3.51)

Proof:

Case 1: B

Γ1(4)∩B consists of upper triangular unipotent matrices with integer coefficients. Thus

the splitting is trivial on this cell.

Case 2: Bwα1B

In this cell A1 = B1 = A2 = 0 and C1, B2 6= 0. Thus by Proposition 8

c2 =c3 = 0

d2 =d3 = 1

c1 =B2

d1 =− C2.

Thus

γ = n
(
a1 b1 0
B2 −C2 0
0 0 1

)
n′,

where n, n′ ∈ Γ∞. By the left and right Γ∞-invariance of s, assume that

γ =
(
a1 b1 0
B2 −C2 0
0 0 1

)
.

As c2 = 0 the nonarithmetic factor will be equal to 1, by equation (3.38). Thus by

equation (3.37)

s(γ) =

(
B2

−C2

)
.
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Case 3: Bwα2B

A similar analysis shows that

s(γ) =

(
−B1

−C1

)
.

Case 4: Bwα1wα2B

Similarly,

s(γ) =

(
A2/B1

−C2

)(
−B1

−C1

)
.

Case 5: Bwα2wα1B

This case appears to be less straightforward and will utilize the symmetry of s with

respect to the Cartan involution composed with the conjugation by the long element.

Recall the computations of section 3.5. It was shown that s(φ(γ)) = (−A1, B2)s(γ). By

combining this identity with the result of case 4 it follows that

s(γ) = (−A1, B2)

(
−A1/B2

−C1

)(
B2

−C2

)
.
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