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Collisions of heavy ion nuclei at relativistic speeds (close to the speed of light), sometimes
referred to as the “little bang”, can recreate conditions similar to the early universe. This
high temperature and very dense form of matter, now known to consist of de-confined quarks
and gluons is named the quark gluon plasma (QGP). An early signature of the QGP, both
theorized and seen in experiments, was the aspect of “jet quenching” and understanding
that phenomenon will be the main focus of this thesis. The concept behind quenching
is that a high energetic quark or gluon jet undergoes significant energy loss due to the
overall structure modifications related to its fragmentation and radiation patterns as it
traverses the medium. The term jet, parameterized by a fixed lateral size or the jet radius,
represents the collimated spray of particles arising from an initial parton. In this thesis,
Runl experimental data from pp and heavy ion collisions at the CERN LHC is analyzed
with the CMS detector. Analysis steps involved in the measurement of the inclusive jet
cross section in pp, pPb and PbPb systems are outlined in detail. The pp jet cross section
is compared with next to leading order theoretical calculations supplemented with non

perturbative corrections for three different jet radii highlighting better comparisons for
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larger radii jets. Measurement of the jet yield followed by the nuclear modification factors
in proton-lead at 5.02 TeV and lead-lead collisions at 2.76 TeV are presented. Since pp data
at 5.02 TeV was not available in Runl, an extrapolation method is performed to derive a
reference pp spectra. A new data driven technique is introduced to estimate and correct for
the fake jet contribution in PbPb for low transverse momenta jets. The nuclear modification
factors studied in this thesis show jet quenching to be attributed to final state effects, have
a strong correlation to the event centrality, a weak inverse correlation to the jet transverse
momenta and an apparent independence on the jet radii in the kinematic range studied.
These measurements are compared with leading theoretical model calculations and other
experimental results at the LHC leading to unanimous agreement on the qualitative nature
of jet quenching. This thesis also features novel updates to the Monte Carlo heavy ion event
generator JEWEL (Jet Evolution With Energy Loss) including the boson-jet production
channels and also background subtraction techniques to reduce the effect of the thermal
background. Keeping track of these jet-medium recoils in JEWEL due to the background
subtraction techniques significantly improves its descriptions of several jet structure and

sub-structure measurements at the LHC.
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1

Introduction and Motivation

“Begin at the beginning,” the King said, gravely, “and go on till you come to an
end; then stop.”

— Lewis Carroll; Alice in Wonderland

1.1 The big bang and the early universe

The early universe has proven itself notoriously difficult and elusive to physicists who seek
to understand its beginning and evolution. The current theory of universe formation begins
with the big bang followed by a period of rapid inflation, corresponding to about a few pico
seconds or an energy scale of ~ 10'°[GeV /c] [1] as shown in Fig 1.1. As the universe begins
to expand and cool, elementary particles begin to start forming from the high temperature
vacuum leading to nucleons such as protons/neutrons. These nucleons then start interacting
with other elementary particles (such as electrons) and start to form nuclei. At this epoch,
the photons are no longer in thermal equilibrium with normal matter and the universe
becomes photo-transparent leading to the famed cosmic microwave background (CMB) [2].
Our conventional (microwave, visible and radio) telescopes are limited in their ability to
see beyond the CMB and study the early formation of the universe [3]. Recent results
from LIGO [4] with gravitational wave astronomy has the potential to see past the CMB
and therefore generated a lot of excitement in the general community but the field is in
its infancy. One way to recreate the conditions after the big bang, especially the particle

physics epoch, is by colliding heavy element nuclei at relativistic speeds in particle colliders.
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Figure 1.1: Cartoon description of the universe timeline starting from the big bang till the
present. The particle era is expected to have formed around a few microseconds. Figure

courtesy Particle Data Group, LBNL.

1.2 The little bang and relativistic heavy ion collisions

Relativistic heavy ion collisions at the CERN Large Hadron Collider (LHC) in Geneva,
Switzerland and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab-
oratory (BNL), Long Island USA, provide the necessary conditions to recreate the particle
epoch in the early universe. Studying how the collision remnants evolve using particle detec-
tors such as trackers, calorimeters, muon chambers, time of flight counters etc. tantamount
to understanding how fundamental particles navigate the primordial universe.

A simulation of a single heavy ion collision in shown in Fig: 1.2, with the help of the
MADAI framework [5], split up into three panels; before the collision (top), immediately

after (middle) and 10-15 femtoseconds after the collision (bottom). Before the collision, we
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Figure 1.2: Snapshots of a heavy ion collision shown in three different time stamps via the
MADALI [5] simulation package. The particles are color coded with red as baryons, blue as
mesons and white, yellow and green as antiparticles, strange mesons and strange baryons
respectively. Top panel shows the lorentz contracted nuclei just before the collision followed
by the middle panel which is just after the collision and the bottom panel is after about

10-15 femtoseconds after the collision.



see lorentz contracted nuclei in the direction of the beam (along the z axis as shown in the
bottom left of the panels). After the collision, we see the formation of all kinds of particles
and the whole system expanding reminiscent of a blast wave type pattern. It is by the
reconstruction of these final state particles that we are able to extract the properties of the

state of matter immediately after the collision.
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Figure 1.3: Cartoon representation of the QCD phase diagram showing the baryon chemical
potential on the x axis and the temperature on the y axis. The white line and yellow dot
represents a first order and possible second order phase transition respectively. The region
probed by LHC and RHIC are shown in the yellow and blue shaded regions. Figure courtesy

BNL



In the collisions of heavy ions at relativistic speeds, the immediate aftermath can be
composed of fundamental particles such as quarks or gluons, deconfined and moving around
in whats now know as the quark gluon plasma (QGP) [6]. The path taken by the deconfined
quarks/gluons (henceforth referred to as partons) to color neutral hadrons constitutes a
quantum chromo dynamics (QCD) phase transition, first proposed in the early 70s [7] as
shown in Fig: 1.3. In heavy ion collisions at the LHC, the baryon density is very low and and
the temperature is high since the nucleons in the incoming beams at the LHC go through
each other with minimal billiard-ball like contact. The area of the phase diagram being
studied by the LHC is shown in the green shaded region in Fig: 1.3. On the other hand,
RHIC has the capability to collide different particle species at a variety of beam energies (the
lower the beam energy, the more probable it is to have direct collisions between nucleons
in the beam) leading to a wider coverage in the phase diagram. A recent physics review of
QCD phase diagram can be found here [8]. The edges of the phase diagram correspond to
different physical states of matter (as mentioned below) with the yellow dot in the middle
representing a possible second order phase transition which is still the matter of current
research and an open question probed via the Beam Energy Scan (BES) at RHIC (see

ref. [9] for a recent review of the physics from BES).
e top left (high temperature and low baryon density): Early universe
e top right (high temperature and high baryon density): QGP
e bottom right (low temperature and high baryon density): Neutron stars

e bottom left (low temperature and low baryon density): Hadron gas.

1.3 Jet quenching and thesis overview

Parton energy loss was one of the predicted signatures of the QGP [10, 11, 12] with the
amount of energy loss per distance travelled in the medium being a direct inference on the

QGP properties. With the QGP being very short lived, it is not possible to study this



particular signature in a laboratory, wherein one can shoot particles at it and study the
energy loss. Rather, we use ultra-relativistic heavy ion collisions since both the QGP and
the hard scattered partons are created around the same time with the parton traversing
the medium in its path. By comparing such heavy ion collisions with proton-proton colli-
sions, in similar parton kinematics, one can extract qualitative features of its energy loss
or quenching. Experimentally, one cannot measure or detect individual partons, jets or
collections of particles arising from a parton are used as first order proxies. Jets are ideal
probes of the QGP since they are essentially involve both the hard scale (from the hard
scattering) and the soft scale (from the QGP interactions). While there are other signatures
of the QGP,