
HIERARCHICAL FRAMEWORKS FOR
EFFICIENT PREHENSILE REARRANGEMENT

WITH A ROBOTIC MANIPULATOR

BY

ATHANASIOS KRONTIRIS

A dissertation submitted to the

School of Graduate Studies—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Kostas E. Bekris

and approved by

New Brunswick, New Jersey

October, 2017

ABSTRACT OF THE DISSERTATION

Hierarchical Frameworks for

Efficient Prehensile Rearrangement

with a Robotic Manipulator

by Athanasios Krontiris

Dissertation Director: Kostas E. Bekris

Rearranging multiple objects is a critical skill for robots so that they can effectively

deal with clutter in human spaces. This is a challenging problem as it involves com-

binatorially large, continuous C-spaces involving multiple movable bodies and complex

kinematic constraints. This work aims to identify ways of decomposing such problems

into a hierarchy of challenges that can be addressed effectively individually, while their

composition can provide a solution to the overall instance.

The first direction for such a hierarchical decomposition aims to take advantage

of developments in the multi-robot community, where there are efficient solvers for

the “pebble motion on a graph” problem. Unlabeled rearrangement problems with a

robotic manipulator are decomposed into a sequence of subproblems, each one of which

can be viewed as a “pebble motion on a graph” problem. The labeled case, however, is

not easily decomposed to a “pebble motion on a graph” problem instances.

To deal with general object rearrangement, including both the labeled and the unla-

beled case, this work builds on top of prior work that was able to compute solutions for

labeled monotone instances through a backtracking search process. Monotone instances

ii

are those where every object needs to be transferred at most once to achieve a desired

arrangement. This thesis extends the backtracking process to a method that addresses

many non-monotone challenges. In order to solve the non-monotone cases the method

is using solutions to the Minimum Constraint Removal (MCR) path problem so as to

transfer each object to its target. An MCR path minimizes the number of constraints

that need to be removed from the path of an object. This work then utilizes the mono-

tone or the non-monotone backtracking search process as local connection primitives

in the context of a higher-level task planner, which operates similar to a Probabilistic

Roadmap Method (PRM), that searches the space of object placements. It is shown that

the integration of these primitives with the higher-level planner achieves probabilistic

completeness guarantees for the general object rearrangement problems.

To improve the efficiency of the above hierarchical framework, this work introduces

approximate but significantly faster primitives for monotone and non-monotone rear-

rangement instances. The methods avoid backtracking search by building a dependency

graph between objects given solutions to the Minimum Constraint Removal (MCR) path

planning problem to transfer each object to its target. From this graph, the approach

discovers the order of moving objects by performing topological sorting. These new ap-

proximate but fast primitives that do not need backtracking search are incorporated in

a higher-level incremental search algorithm for general rearrangement planning, which

operates similar to a Bi-directional Rapidly-exploring Random Tree (Bi-RRT). Given a

start and a goal object arrangement, tree structures of reachable new arrangements are

generated by using the new and fast approximate primitives as an expansion procedure.

These methods have been evaluated in simulation using models of robotics manipu-

lators, such as a Baxter or a Motoman robot arm, in order to study their capability in

solving difficult instances of rearrangement problems. This work compares the different

alternatives in terms of success ratio, running time, scalability and path quality.

Overall, this work aims to emphasize the benefit of using more powerful primitives,

which are reasoning about the combinatorial and the underlying multi-object nature

of the rearrangement problem, in the context of high-level task planning for robotic

manipulation.

iii

Acknowledgements

At this moment of accomplishment I am greatly indebted to my research adviser, Dr.

Kostas E. Bekris, who accepted me as one of his first Ph.D. students and offered me his

mentorship, support and enthusiasm. This work would not have been possible without

his guidance, dedication, his motivation and encouragement on daily basis, even through

late nights, weekends and vacations, from the first day of our collaboration till the last

day of delivering this work. Under his guidance I successfully overcome many difficulties,

learn a lot and I became a successful researcher and scientist. His zeal for perfection,

passion and dedication has always inspired me to do more. For all of these, I sincerely

thank you Dr. Kostas E. Bekris for stood next to me through this journey.

I would like to thank each of my committee members, Jingjin Yu, Mubbasir Kapadia,

and Mehmet R. Dogar, for dedicating their time to the review and consideration of this

work.

I would also like to thank each and every PRACSYS lab member I have worked

with. Ilias Apostolopoulos, Andrew Dobson, Alexis Oyama, Yanbo Li, James Marble,

Ryan Luna, Andrew Kimmel, Zakary Littlefield, Rahul Shome, Justin Cardoza, Colin

Rennie, Shaojun Zhu, Zacharias Psarakis, Hristian Courtev, Nick Stiffler and the ex-

ternal member Shuai Han. Your presents, support and great skill were important for

me to survive through the long deadlines and the long nights we spend together in the

lab.

I would also like to thank my external collaborators, Professor Jingjin Yu where

our research was always in parallel and eventually I had the honor to collaborate with

him on a paper. Professor Mubbasir Kapadia for his guidance and support on our joint

project.

I would like to thank the DHS CCICADA Center of Excellence at Rutgers University

iv

for their generous financial and intellectual support. I would especially like to thank the

CCICADA director Fred Roberts for his support and his efforts on our joint project,

along with all member of CCICADA who helped with their ideas and especial thanks to

Brian Ricks, Aditya Chukka and Han Meng for their dedication towards the completion

of the joint project.

I also thank my loved ones and my friends (too many to list here but you know who

you are!) for providing support and friendship that I needed through this long journey.

To my beloved sister in law, Evita, that she has given birth and she is about to give

birth again to the two newest members of the Krontiris family. Our little Erina and

her sister have brought a lot of happiness to our family.

To my brothers Giannis and Tasos that have never left my side and are very special.

I could not imagined having better brothers. I am always happy to see them at the

airport waiting to pick me up and take me back home.

Finally, I would like to thank my parents for all their love and moral support

throughout my life. Thank you both for giving me strength to reach for the stars

and chase my dreams. You are always there for me.

v

Dedication

This thesis is dedicated to my parents, Dimitris and Katerina Krontiris.

For their endless love, support, and encouragement.

Thank you for helping me to grow and become the person I am today.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

1. Introduction . 1

1.1. Objective Statement . 3

1.2. Dissertation Overview and Contributions 3

2. Related Literature . 10

2.1. Planning among Movable Obstacles . 10

2.2. Minimum Constraint Removal Path . 10

2.3. Multi-robot Motion Planning . 11

2.4. Manipulation Planning . 12

2.5. Task and Motion Planning . 13

2.6. Sampling-based Methods for Motion Planning 14

2.6.1. Sampling-based Planning Primitives 16

2.6.2. Probabilistic Roadmap Methods 18

2.6.3. Random Tree Methods . 19

3. Problem Setup and Notations . 20

3.1. Unlabeled vs Labeled Problem . 23

3.2. Monotone vs Non-Monotone Problem 24

3.3. Minimum Constraint Removal Paths for Manipulation Planning 25

3.3.1. The case of manipulation . 26

3.4. Manipulation Primitives . 28

vii

4. Solving Unlabeled Rearrangement Problems Using Pebble Graphs . 30

4.1. Unlabeled Rearrangement Planning . 31

4.1.1. Manipulation Pebble Graphs . 32

Signatures in a Pebble Graph . 34

4.1.2. Building a Super-Graph . 34

Constructing Super-Nodes . 35

Connecting Super-Nodes . 35

Building the Graph Using Incremental Approach 37

Answering Queries on the Super-Graph 38

4.1.3. Smoothing Solution . 38

4.2. Evaluation . 40

4.2.1. Randomized Grid Evaluation . 40

4.2.2. Non-monotone Benchmark Evaluation 43

4.3. Discussion . 44

5. A Probabilistically Complete Hierarchical Framework for General Ob-

ject Rearrangement . 46

5.1. Rearrangement Primitives . 47

5.1.1. A Primitive for Monotone Rearrangements 48

5.1.2. Extension to Non-Monotone Challenges using Minimum Con-

straint Removal Paths . 51

5.2. A Hierarchical, Graph-theoretic Approach 59

5.2.1. Top-level Search over Transition Rearrangement States 60

5.2.2. Conditions for Probabilistic Completeness for Single Pick and Place 62

5.2.3. Conditions for Probabilistic Completeness using More Expressive

Primitives . 66

5.2.4. Faster Search over Arrangement Space can be also Complete . . 70

5.3. Evaluation . 73

5.3.1. Physical Experiment . 73

viii

5.3.2. Simulated Setup . 74

Benchmark: RSS Challenge for the Baxter robot 75

Benchmark: “grid@tabletop” . 77

Benchmark: “grid@shelf” . 79

5.4. Discussion . 82

6. A Fast Incremental Search Framework for General Object Rearrange-

ment . 85

6.1. Discovering the Constraint Graph . 86

6.2. Fast Approximate Rearrangement Primitives 88

6.2.1. Fast, Approximate Monotone Rearrangement Primitive (fmRS) . 88

6.2.2. A Faster Non-Monotone Rearrangement Primitive (fplRS) . . . 89

6.3. An Incremental Search Approach . 94

6.3.1. Partial Solutions . 97

6.4. Evaluation . 99

6.5. Discussion . 109

7. Computationally Efficient Implementation 110

7.1. Implementation of the Manipulation Planning Framework 110

7.1.1. Preprocessing . 112

7.1.2. Query Resolution . 113

7.2. Implementation Aspects of the Search Process 114

7.2.1. Sampling nodes . 114

7.2.2. Finding neighboring states . 114

7.3. Implementation of Minimum Constraint Removal Algorithm 115

8. Conclusions . 119

8.1. Statement of Contributions . 119

8.2. Important Open Questions for Future Work 123

References . 126

ix

1

Chapter 1

Introduction

Rearrangement is a computationally hard problem because of the size of the corre-

sponding configuration space (C-space) and the involved kinematic constraints. A

complete method must operate in the Cartesian product of the robot’s and the objects’

C-spaces. The problem becomes harder when the objects are placed in tight spaces,

such as shelves, where the arm has limited maneuverability. In these situations, a robot

needs to carefully displace objects to reach previously unreachable items. For instance,

in manufacturing, where multiple products may need to be orderly arranged on factory

floors or grocery stores. Many manipulation challenges are not always directly solvable

but may require a robot to first change the environment.A robotic assistant may need

to rearrange objects when tidying up a home or rearrange objects in a fridge when

retrieving a refreshment from a fridge which is unreachable.

Figure 1.1: A rearrangement example where a Baxter robotic arm needs to arrange
objects so that they form the letters PHD.

This work focuses on these combinatorial and geometric aspects of rearrangement.

Several other issues arise in the real-world, such as accurate estimation of object loca-

tions and robust execution of grasps, which are not the focus of this effort.

Certain instances, however, are easier to tackle. This was the realization behind a

motivating work for manipulation among movable obstacles [110]. This previous work

describes a backtracking search method for detecting the sequence of objects to be

2

moved so as to reach a desirable, previously unreachable object. The adaptation of

this method to rearrangement problems, referred here as “monotone Rearrangement

Solver” (mRS), addresses monotone instances, where each object needs to be moved at

most once for a solution. Furthermore, mRS depends on exhaustive backtracking search

to detect the right order with which objects need to be transferred. This search can be

slow when many of the potential orderings result in failure as an exponential number

of them need to be considered.

Figure 1.2: Cases of non-monotone problems that some objects have to be displaced in
order to find a solution. (Left) Object A is occluded by object B and C, which makes
object A unreachable from the robot. (Right) Overlapping between initial with final
poses. As a result the task of placing the objects at their final poses it is not trivial.

Rearrangement problems are not always an easy problem, where the objects have to

be moved only once. Occlusions of objects (Fig.1.2(left)) , or overlaps between initial

and final poses (Fig.1.2(right)) are problems that can easily arose in such tasks. The

harder instances require some objects to be placed in intermediate positions before

moved to their target. These problems are recognized as non-monotone challenges.

There are recent approaches for rearrangement that can deal with the non-monotone

case under certain conditions [51, 106, 40, 72]. One method simplifies the problem

by requiring that all objects are unlabeled, i.e., interchangeable and can occupy any

pose in their final arrangement [72]. An alternative imposes a grid for placing the

objects and then uses techniques, such as answer-set programming [51]. Others view the

rearrangement problem as an instance of general integrated task and motion planning

[106] and, in this context, they evaluate good heuristics for integrated planning [40].

3

1.1 Objective Statement

The objective of this work is to propose methods for efficiently solving hard instances

of general object rearrangement problems through grasping using a single robotic

arm. Specifically, hard problems correspond to:

1. non-monotone instances, where an object needs to be grasped multiple times to

achieve the final arrangement;

2. unique, labeled objects, which need to occupy specific poses in the final arrange-

ment;

3. tight, cluttered spaces, where it is not easy to displace objects to free space and

bring them back to the desired arrangement. This is critical for static arms but

also for minimizing the motion of mobile manipulators.

1.2 Dissertation Overview and Contributions

The outline and the main contributions of this work will be explained in greater detail

in this section. The first part of the manuscript focuses on solving unlabeled rearrange-

ment problems. As it is going to be explained later in section 3.1, these problems are

slightly easier given that objects can occupy any pose in the final arrangement. How-

ever, this method could solve only problems with geometrically similar objects. The

second part of this work that is comprised by chapters 5 and 6 is dealing with harder

problems, where each object has a specific final pose in the final arrangement. Chapter

5 argues probabilistic completeness for solving rearrangement problems, while chapter

6 provides fast methods for hard rearrangement instances.

Chapter 2 introduces the basic concepts and foundational work in the areas of

algorithmic motion planning, multi-body motion planning, robot task planning, manip-

ulation planning and rearrangement planning. It begins by reviewing the most related

work, planning among Movable Obstacles. Then it presents the minimum constraint

removal path that is heavily used in this work. That chapter also introduces the basic

4

idea of multi-robot motion planning in the context of rearrangement planning. More-

over, it explains the basic concepts and terminology of task, motion, and manipulation

planning and how these are related to rearrangement planning. Finally, the chapter

concludes with a review about two important sampling-based motion planning algo-

rithms the Probabilistic Roadmap Method (PRM) [61] and Rapidly-exploring Random

Tree (RRT) [80]. Both algorithms have been used in order to search the arrangement

space in order to find a solution. The PRM method is also used for searching in the

configuration space for a valid collision-free path for the motion of the manipulator.

Chapter 3 presents the problem setup and explains the notation that this work

uses through this manuscript. Most importantly, though, this chapter defines the dif-

ferent categories of a rearrangement problem. The first separation is based on the final

arrangements. An arrangement can be either unlabeled, which means that the objects

can occupy any pose in the final arrangement, or labeled, where each object has a spe-

cific final pose. A rearrangement problem can also be categorized based on how many

times the robot needs to move an object before the object reaches its final pose. A

problem will be called monotone if each object is transferred at most once, otherwise

non-monotone. For non-monotone problems, at least one object will have to move to

an intermediate pose before reaching its final pose. Finally, this chapter describes the

motion planning primitives that the algorithms used in order to move the manipulator.

Chapter 4 proposes a method for efficiently computing manipulation paths to re-

arrange similar objects in a cluttered space, fig.1.3. Rearrangement is a challenging

problem as it involves combinatorially large, continuous configuration spaces due to the

presence of multiple bodies and kinematically complex manipulators. This work lever-

ages ideas from multi-robot motion planning and manipulation planning to propose

appropriate graphical representations for this challenge. These representations allow to

quickly reason whether manipulation paths allow the transition between entire sets of

object arrangements without having to explicitly store these arrangements. The pro-

posed method also takes advantage of precomputation given a manipulation roadmap

for transferring a single object in the space. The approach is evaluated in simulation for

a realistic model of a Baxter robot and executed on the real system, showing that the

5

Figure 1.3: In order for Baxter to grasp the object at the back of the shelf, the other
objects need to be rearranged.

method solves complex instances and is promising in terms of scalability and success

ratio.

Contributions: This work can efficiently compute manipulation paths to re-

arrange similar objects in cluttered spaces, by integrating combinatorial multi-robot

planning and manipulation planning. Continuous rearrangement challenges are ab-

stracted as discrete pebble graph problems, i.e. Manipulation Pebble Graphs (MPG). In

addition, the framework is able to deal with non-monotone problems, where multiple

grasps of an object are needed in order to find a solution to the problem. Such problems

are challenging for alternative methodologies.

Chapter 5 presents a probabilistically complete method for solving hard rearrange-

ment problems. Rearranging multiple objects is a critical skill for robots so that they

can effectively deal with clutter in human spaces. This is a challenging problem as it

involves combinatorially large, continuous C-spaces including multiple movable bodies

and complex kinematic constraints. This work initially revisits an existing backtracking

search method for detecting the sequence of objects to be moved so as to reach a desir-

able, previously unreachable object. Following similar ideas with this motivating work,

two powerful rearrangement primitives that could solve monotones and non-monotones

rearrangement problems, are proposed. This chapter aims to emphasize the benefit

of using more powerful rearrangement primitives in the context of task planning for

object rearrangement than an individual pick-and-place. A traditional local planner

6

Figure 1.4: Success ratio given 30 minutes of computation when using an individual
pick-and-place action as a local planner in a PRM-like task planner for rearranging objects
in a shelf.

would be an individual pick-and-place, where a single object is displaced between two

nodes. Fig.1.4 shows that the success ratio of solving rearrangement problems using

pick-and-place goes down quickly as the number of objects increases. The key insight

is that the proposed powerful local planners, especially the non-monotone primitive,

can solve hard instances more reliable, faster and with better path quality, i.e., fewer

objects grasped during the rearrangement. Experiments in simulation using a model of

a Baxter robot arm show the capability of solving difficult instances of rearrangement

problems and evaluate the methods in terms of success ratio, running time, scalability

and path quality.

Contributions: The first contribution is a method that addresses many non-

monotone challenges (plRS), which is an extension of the monotone rearrangement

primitive (mRS). The monotone rearrangement primitive was the result of adapting the

backtracking search algorithm [110]. In order to solve the non-monotone cases, the

method is using the minimum constraint removal paths (MCR) to transfer each object to

its target. An MCR path minimizes the number of constraints that need to be removed

from the path of an object. The second contribution is the use of either the monotone

or of the new non-monotone method as a local connection primitives in the context

of a higher-level task planner that searches the space of object placements and which

provides probabilistic completeness guarantees. This chapter also provides the analysis

7

Figure 1.5: In this problem the manipulator has to remove a beer can from a shelf,
where the can is obstructed by an object. The can needs to be placed on the table
while all the other objects should be placed back in their original positions.

that argues the existence of probabilistic completeness for the integration of a task

planner that searches the space of object arrangements.

Chapter 6 addresses the limitations of the previous framework for solving rear-

rangement problems, using backtracking search, and proposes an approximate but

significantly faster alternative for general rearrangement instances while maintaining

probabilistic completeness properties. The method defines a dependency graph be-

tween objects given minimum constraint removal paths (MCR) to transfer each object

to its target. From this graph, the approach discovers the order of moving objects by

performing topological sorting without backtracking search. The approximation arises

from the limitation to consider only MCR paths, which minimize, however, the number

of conflicts between objects. In order to efficiently solve non-monotone instances, these

primitives are incorporated in a higher-level incremental search algorithm for general

rearrangement planning, which operates similarly to Bi-RRT. Given a start and a goal

object arrangement, tree structures of reachable new arrangements are generated by us-

ing any of the primitives as an expansion procedure. The integrated solution achieves

probabilistic completeness for the general non-monotone case and based on simulated

experiments it achieves very good success ratios, solution times and path quality relative

to alternatives.

8

Contributions: The first contribution of this work is the introduction of new

methods for solving rearrangement instances by taking advantage of recent algorithmic

insights [115, 47, 67]. The proposed methods, “fast monotone Rearrangement Solver”

(fmRS) and “fast non-monotone Rearrangement Solver” (fplRS) avoid backtracking

search given the following observation: if the paths for transferring the objects are

fixed, then one can easily compute the sequence of moving objects without collisions -

if one exists [115]. In particular, the sequence is the output of topological sorting on

a “constraint graph” with objects as nodes and directed edges indicating the ordering

dependence between objects. The fixed paths are computed using “minimum constraint

removal” (MCR) paths [47] for minimizing the number of collisions with other objects.

The second contribution is the adaptation of both the original monotone solver based

on backtracking search (mRS) and the new fast monotone solver (fmRS) so that they

return a partial solution when no complete solution is found. This involves moving as

many objects as possible towards the target arrangement. Given the partial formulation

of the rearrangement primitives, it is possible to use them in a high-level task planner

as an expansion step from an initial arrangement instead of a connection between

two arrangements. This allows for the efficient use of such methods in the context of

higher-level search procedures similar to Bi-RRT [80, 79], where two tree data structures

originating at the start and goal arrangements are built. The tree nodes correspond to

object arrangements and are connected with edges, which are monotone rearrangement

paths. The integrated solution achieves probabilistic completeness, efficiency and high

success ratios.

Chapter 7 shares all the implementation details for a computationally efficient

implementation. The object rearrangement is a challenging problem involving multiple

movable bodies and complex kinematic constraints. However, it is possible to pre-build

roadmaps for the manipulation motion given the static geometry. These roadmaps will

help to have a fast manipulation planning framework. Building all these roadmaps

thought it is not easy. This chapter discusses the implementation of primitives that

will affect the performance of the high-level task planners. In order to further speed

up the detection of the path a variation of bounded path length approach [67, 70] for

9

computing “minimum constraint removal ” (MCR) path [47] is used as an alternative.

This methodology bounds the length of paths that it searches.

Finally, Chapter 8 restates the key contributions of the work, summarizes open

questions and proposes interesting directions for future investigation. Furthermore, it

cites the potential for this work to inform future investigation of these methods.

10

Chapter 2

Related Literature

Rearrangement planning [10, 92] relates to various lines of work in the robotics litera-

ture.

2.1 Planning among Movable Obstacles

A related and important challenge for mobile systems is the problem of navigation

among movable obstacles (NAMO). Early on it was shown that NAMO is NP-hard

[120] and later on it was confirmed that this is the case even for simpler instance that

involves only unit square obstacles [30]. Due to problem complexity, most efforts have

focused on efficiency [20, 91] and provide completeness results only for subclasses of

the problem [108, 109]. A probabilistically complete solution for NAMO was eventually

provided [116], but it can only be applied to lower dimensional robots (2-3 DOFS) and

corresponds to uninformed brute force search. More recently, a decision-theoretic frame-

work for NAMO has also been presented, which deals with the inherent uncertainty in

both perception and control of real robots [82].

2.2 Minimum Constraint Removal Path

Related challenges to the problem considered in this work are disconnection proving,

excuse-making and minimum constraint removal problems. The applications of discon-

nection proving correspond primarily to feasibility algorithms that try to detect if a

solution exists given certain constraints in the environment [8, 15, 87, 124]. Neverthe-

less, this is a computationally expensive operation, where practical solutions are limited

to low-dimensional or geometrically simple configuration spaces. A related challenge

is to consider excuse-making in symbolic planning problems. In these approaches the

11

“excuse” is used to change the initial state to a state that will yield a feasible solution

[43].

MCR formulations can be useful in the context of navigation among movable obstacles

(NAMO), [108, 109, 120], as well as manipulation in cluttered environments [34], where

it is necessary to evacuate a set of obstacles for an agent to reach its target. Such

challenges were shown to be hard if the final locations of the obstacles are unspecified

and PSPACE-hard when specified [120]. It is even NP-hard for simple instances with

unit square obstacles [30]. Thus, most efforts have dealt with efficiency [20, 91] and

provide completeness results only for problem subclasses [108, 109]. NAMO challenges

relate to the Sokoban puzzle, for which search methods and proper abstractions have

been developed [14, 93].

Similar work to the computation of MCR paths has addressed violating low priority

tasks for multi-objective tasks specified in terms of LTL formulas [98]. An iteratively

deepening task and motion planning method uses similar ideas in order to add and

remove constraints on motion feasibility at the task level [26].

In the minimum constraint removal problem, the goal is to minimize the number

of constraints that have to be displaced in order to yield a feasible path [48, 47, 67].

Different approaches have been proposed in the related literature. A computationally

infeasible approach that searches all possible paths, as well as a faster greedy, but

incomplete strategy were presented together with the formulation of the problem in the

context of robotics challenges [48, 47]. The minimum constraint removal problem is

proven to be NP-hard, even when the obstacles are restricted to being convex polygons

[38].

2.3 Multi-robot Motion Planning

A motivation for the current work is to utilize progress in discrete solvers for multi-

robot motion planning [71, 115, 84, 118, 122] in the context of rearrangement planning.

Multi-robot motion planning is itself a hard problem, and coupled, complete approaches

typically do not scale well with additional robots, even though there are methods that

12

decrease the number of effective DOFs [5]. On the other hand, decoupled methods, such

as priority-based schemes [114] or velocity tuning [81], trade completeness for efficiency.

A related line of work in algorithmic theory deals with “pebble motion on graphs”

problems, where pebbles need to move from an initial to a goal vertex assignment on

a graph [66, 17]. Testing the feasibility of such problem instances can be answered in

linear time [6, 44], inspiring a recent method for continuous multi-robot motion planning

[104]. The first method for solving unlabeled cases employs sampling-based planners

and reduces multi-robot planning into a sequence of discrete pebble problems, such that

movement of the pebbles quickly translate to valid robot motions. The first part of the

current work is motivated by this approach and defines “rearrangement pebble graphs”

(MPGs) to solve manipulation challenges.

2.4 Manipulation Planning

The focus of this work is on building solutions for high-DOF robotic arms and solve

manipulation challenges. Such problems can be approached with a multi-modal “ma-

nipulation graph” abstraction that contains “transit” and “transfer” paths [2, 1, 103].

The graph can be constructed through a sampling-based process [61, 80]. The current

work follows a similar formalization and applies it appropriately to the case of multi-

ple similar movable objects towards achieving an efficient solution. The current work

is also utilizing asymptotically optimal near-optimal sampling-based planners for the

computation of the manipulation graph [33, 86], i.e., roadmap spanners of PRM∗ [58].

Tree sampling-based planners have also been used successfully in the context of ma-

nipulation planning [12, 13]. A variety of approaches exist for manipulation planning

beyond sampling-based planners, which could also be employed in the context of the

proposed methods, such as heuristic search [23], or optimization-based methods, such

as CHOMP [125, 63]. The focus of the current thesis is more on the combinatorial

challenges that arise from reasoning about multiple objects and not the actual manip-

ulation method. In this process, this work is making significant use of heuristic search

primitives over sampling-based roadmaps. The output of the current algorithm could

13

also potentially be integrated with methods like CHOMP to improve the quality of the

computed solution. There is also significant effort that focuses on identifying appro-

priate grasps in complex scenes [11, 22] but the current thesis does not focus on this

aspect of the challenge.

The above manipulation efforts deal with moving and grasping individual objects.

Manipulation planning among multiple movable obstacles has been considered before

for “monotone” problems where each obstacle can be moved at most once [110, 88].

The solutions in the current work can reason about more complex challenges.

Manipulation planning among multiple movable obstacles has been considered for

“monotone” problems where each obstacle can be moved at most once [110, 88]. Non-

monotone instances are recognized as hard rearrangement challenges. There are recent

approaches for rearrangement that can deal with non-monotone instances under certain

conditions [51, 106, 40, 72, 92]. One method simplifies the problem by requiring that

all objects are unlabeled, i.e., interchangeable and can occupy any pose in a final ar-

rangement [72]. An alternative method imposes a grid for placing the objects and then

uses techniques, such as answer-set programming [51]. The current work, however, can

reason about more complex challenges. Assembly planning is also solving similar multi-

body problems but the focus there is on separating a collection of parts and typically

the robot path is ignored [121, 45, 111]. Another paradigm for dealing with cluttered

scenes involves non-prehensile manipulation, such as pushing objects [25, 34]. The cur-

rent solution could potentially be extended to include such actions but the focus in this

work is on grasping primitives.

2.5 Task and Motion Planning

Solving complex problems require the integration of task and motion planning. There

are cases where the task planner is calling the motion planner directly for just feasibility

checks for an individual task action [35]. However, most of the times the communication

between the task and motion planner is more intense, where more advanced methods

are needed. Several methods by extending Hierarchical Task Networks (HTN) [39]

14

with geometric primitives, introduced a new hierarchical combined task and motion

planner [29, 42], where the symbolic planner backtracks at the geometric level to detect

different geometric solutions. Similar to Hierarchical Task Networks (HTN) idea, several

approaches are using a Satisfiability Modulo Theories (SMT) [28] solver to generate

task and motion plans using a static graph [89, 119]. Formulating the task and motion

planning problem as a satisfiability modulo theories (SMT) problem will result in a

probabilistically complete algorithm [26], where the algorithm will iteratively increase

the plan depth and the motion planning timeouts until it finds a solution to the problem.

Rearrangement planning can be seen as an instance of integrated task and motion

planning, which can be seen as an important step towards solving more complex, cog-

nitive challenges in robotics and especially in manipulation [18, 95, 106, 40]. Many

approaches employ a high-level symbolic planner [56, 37]. For instance, geometric con-

straints can be incorporated into the high-level language [36], or it is possible to plan in

the cross product of the high-level symbolic reasoning and the low-level configurations

[18]. Multi-modal roadmaps can deal with the combination of both discrete and con-

tinuous parameters [15, 49, 50], which is also useful for the current challenge. Recent

methods generate heuristics for symbolic manipulation planning with lazily-expanded

roadmaps [40], or discover a symbolic language for manipulation on the fly [65]. Some

methods are splitting the rearrangement problem into two types of actions, in order

to deal separately with the objects and the robot and be able to use non-prehensile

interactions between the arm and the objects. The current method deals only with

prehensile interactions.

2.6 Sampling-based Methods for Motion Planning

Informally, motion planning is the process by which a robot system uses an internal

representation of its environment to compute a sequence of controls to actuate the

system, so as to move the robot system from an initial position to a target position

while remaining safe, i.e., avoiding collisions.

Algorithms dealing with the motion planning problem generally operate in the

15

robotic system’s configuration space (C), where a point in this space is called a config-

uration q.

Definition 1 (Configuration q). A configuration is the parameterization of a robotic

system’s degrees of freedom, where this set of parameters fully specifies the location of

every rigid body geometry of the robotic system.

The configuration space can be partitioned into two sets: the invalid or the obstacle set

Cinv where the robotic system is violating constraints of the problem, i.e. collision with

obstacles, and the collision-free space, Cfree, where the robotic system’s configuration is

valid and safe. These two partitions cover the whole configuration space, C = Cfree∪Cinv.

A complete algorithm for solving the motion planning problem, known as the Pi-

ano Mover’s Problem, was presented in the thesis of Canny [19]. Even this simple

version of the problem is PSPACE− HARD [96], where the difficulty of the problem scales

exponentially with the number of degrees of freedom of the robotic system. This algo-

rithm also introduced the concept of a roadmap, a graph data structure that maintains

connectivity in the Cfree space. The algorithm, however, is impractical, similar to other

early methods that attempted to leverage Cfree approximations [16, 83, 57].

Other approaches not explored in this work approach the problem from different

directions. Some approaches apply a grid discretization over the configuration space

and perform discrete search directly [107]. Another paradigm designed to solve these

problems is based on artificial potential fields [62, 55, 41], though complete versions

of this methodological approach are difficult to apply in general configuration spaces

[64, 99]. A similar technique that solved difficult problems took a stochastic approach

to avoid local minima [7, 75]. The difficulties faced by these methods and the advent of

efficient collision checking primitives would motivate the development of sampling-based

motion-planning approaches.

Sampling-based motion planning techniques provide efficient solutions in practice,

even for high-dimensional, geometrically complex problems [76, 78, 21]. Two primary

families of planners have emerged. Probabilistic Roadmap Methods (PRMs) preprocess

16

a robot configuration space (C -space) to create a multi-query structure [61, 60]. Tree-

based planners, such as the Rapidly-exploring Random Tree (RRT) are suited to rapid

single-query planning, especially for dynamic systems [77, 79]. There are also meth-

ods that lie somewhere between, in order to reap the advantages of both algorithmic

approaches [94, 3]. In general, these methods rely on several primitives to construct a

planning structure in the configuration space, which are explained next.

2.6.1 Sampling-based Planning Primitives

As implied by the name, these methods employ some sampling method to generate

free configurations in the configuration space. There has been success in the field with

several approaches to sampling, though most commonly these methods are leveraged

using uniform random samplers.

In the current work, the sampling module will have to sample a configuration point

in the arrangement space. This means that multiple poses, equal to the number of the

objects in the specific instance, will be selected and placed as a single point. In order

for the point, i.e. arrangement, to be valid the selected poses must be collision-free

between them.

Traditionally, these approaches are applied to find shortest paths through the con-

figuration space according to a distance function.

Definition 2 (Distance Function). The distance function d(·, ·) takes two configurations

in C and returns a real value, i.e., d(qi, qj) → R, which expresses the distance of the

two configurations in the absence of obstacles.

Given that a sample in the current work represents an arrangement of objects, the

distance function will measure the distance between each pose in order to define the

distance between two configurations. For example for the arrangements α and α′ the

distance will be
∑
∀o∈α d(α[o], α′[o]).

In order to construct the planning structure in Cfree, sampling-based methods rely

on being able to accept or reject samples based on whether a configuration is safe.

That is, the approach leverages a method which determines whether configuration q

17

lies within Cfree or Cinv . Prototypically, these methods rely on the availability of a

collision checker to determine the validity of samples, but the general term for such a

module is a validity checker.

Definition 3 (Validity Checker). Given an individual configuration q, a validity checker

returns whether q lies within Cfree or Cinv.

The validity checker will have to check if the objects on the selected poses are in

collision both with the static obstacles and the objects between them. Only if both of

these checks are collision-free then the sample is a valid sample.

The following section will outline Probabilistic Roadmap Methods, which produce

a planning structure that is a graph. Samples drawn within Cfree will be added as

nodes, but in order to build the planning structure, the sampled configurations must

be connected by edges. This is typically accomplished with the aid of a local planner.

Definition 4 (Local Planner). Given configurations qbegin, qend, a local planner L(·, ·)

returns the optimal path between the configurations in the absence of obstacles, i.e.,

L(qbegin, qend) → πL, where πL(t) → C and t ∈ [0, 1], satisfying πL(0) = qbegin and

πL(1) = qend.

Typically, a straight line between qbegin and qend in C is used for local planning.

In order to add local paths as edges in the planning structure, it must be that for

all q ∈ L(qbegin, qend), q ∈ Cfree. While there exist efficient and complete methods for

checking if an entire path lies entirely within Cfree [101], a sampling-based process is

commonly used as an approximation.

In the current setup, the “straight” line between the two sample will be the rear-

rangement of the objects from the one arrangement, i.e. qbegin, to the final arrangement,

i.e. qend. For connecting these two samples rearrangement primitives will be used that

will be explained in detail in sections 5.1 and 6.2. This work aims to emphasize the

benefit of using more powerful connection primitives in the context of building a graph

representation in order to solve object rearrangement problems, than an individual

pick-and-place.

18

2.6.2 Probabilistic Roadmap Methods

Algorithm 1: PRM(n)

1 V ← ∅;E ← ∅;
2 for i = 1 . . . n do
3 v ← SAMPLE();
4 V ← V ∪ v;
5 Vnear ← NEAR(V, v);
6 for u ∈ Vnear do
7 if π(v, u) ∈ Cfree then
8 E ← E ∪ {π(v, u)};

9 return G = (V,E);

One of the first popular sampling-based motion planning methods, in order to con-

struct a roadmap in Cfree, was the Probabilistic Roadmap Method (PRM) [61]. The

high-level operations of PRM are outlined in Algorithm 1. For a set number of iterations

n (Line 2), the algorithm samples a configuration in Cfree (Line 3) and adds it as a

node to the roadmap (Line 4). It then tries to connect it with a local path to a set of

k-closest neighbors among the existing nodes (k-PRM) (Lines 5,6). If any local path lies

entirely within Cfree (Line 8), an edge is added to the roadmap (Line 9). The advantages

of the method lie in its simplicity, and generality while scaling to higher-dimensional

problem instances than other competing methods were capable of. While strict com-

pleteness and path non-existence cannot typically be proven for the PRM, probabilistic

completeness can be provided instead.

Definition 5 (Probabilistic Completeness). Let (Cfree, qstart, qgoal) be a motion planning

problem that admits a continuous trajectory π : [0, 1] → Cfree subject to π(0) = qstart

and π(1) = qgoal. Then, an algorithm ALG that runs for n iterations is probabilistically

complete if the probability that ALG returns a solution to the motion planning problem

converges to 1 as n tends to infinity.

This was originally proven for d-dimensional manifolds [59, 52], for non-holonomic

robots [112], and then later for a broad class of problems [73].

The PRM framework has been adapted so as to solve a variety of different challenges

19

beyond the basic motion planning problem, involving multiple robots [100], manip-

ulation planning [90], assembly planning [111], planning for flexible objects [74] and

bioinformatics applications [4].

In this work the PRM framework is used as high-level task planner in order to solve

object rearrangement problems [68, 72]. A PRM-like roadmap is constructed in the

arrangement space in order to find a solution path and connect the initial with the final

arrangement. Chapter 5 will give in details how the PRM framework is being used and

how is proven to be probabilistically complete for the object arrangement problem.

2.6.3 Random Tree Methods

An extremely popular alternative to roadmap-based methods explore the C-space by

incrementally propagating from existing nodes in the planning structure to grow a

tree. One such common and popular method is the Rapidly-exploring Random Tree

(RRT) approach [80]. This method is commonly employed due to the inherent “Voronoi

Bias” it exhibits. That is, the tree is automatically biased toward quickly growing

toward unexplored regions of the space. Around the same time, a similar tree-based

approach was proposed that probabilistically biases the expansion of these trees toward

unexplored regions of the space [53, 54].

These methods tend to be more efficient in quickly answering individual motion

queries and they can be easily applied to problems involving robot dynamics because

they do not depend on the existence of a steering method that exactly connects two

configurations of the system. Such a steering function is typically required in the

construction of a roadmap. Furthermore, by definition they already return sparse data

structures, as a tree is minimally sparse; however, it does not ensure that the number

of nodes in this tree remains low.

Chapter 6 will use the RRT framework again as a high-level task planner in order to

deal with object rearrangement problems. The incremental propagation idea maintains

good connectivity of the graph which is important for rearrangement problems. A

variation of the method is used, Bi-RRT, where a tree is growing for both the initial

point and the final point. More details will be presented in section 6.3.

20

Chapter 3

Problem Setup and Notations

Consider a 3D workspace W, which contains static obstacles. There is also a set of k

movable rigid-body objects O. Each object oi ∈ O can acquire a pose pi ∈ P ⊆

SE(3), i.e., a pose pi specifies both the three dimensional position and orientation of a

movable object oi. This work uses the set of stable poses Ps ⊂ P corresponding to the

placement of the objects on a horizontal surface, i.e., Ps ≡ SE(2).

Beyond the objects, the workspace also contains a robotic arm R, which is able to

move the objects. The robot acquires arm configurations q ∈ Q, which together with

the static parameters of the arm fully specify the 3D volume occupied by the robot.

Given the pose pi of an object oi, the notation q(pi, e) will denote a grasping arm

configuration, i.e., a configuration that allows the robotic arm’s end effector to grasp

object oi placed at pose pi, where the pose of the end effector relative to the object’s

pose is denoted as e ⊆ SE(3). One way to compute a grasping configuration is through

the use of inverse kinematics. Given a redundant manipulator, there may be multiple

arm configurations that manage to grasp an object at a specific pose pi but they are

uniquely differentiated by the relative end effector pose e.

The state space X = Q×A of the rearrangement problem is the Cartesian product

of the arm’s configuration space Q and the space of object arrangements A. The

collision-free subset Xfree ⊂ X does not allow collisions between the arm and objects,

among the objects and between the static obstacles and the arm or objects. The set

Xfree does allow intersections between the surface of the arm and the surface of the

movable objects, so that grasps can take place.

There are k + 1 types of collision-free states of interest for robot rearrangement

problems:

21

Figure 3.1: The relevant subsets of collision-free states for rearrangement problems and
the motion planning primitives (i.e., transit and transfer paths) used by the algorithms
in this thesis.

i) Stable states X0: These are collision-free states where all objects stably rest on

surfaces without external forces applied to them beyond gravity.

ii) Grasping states Xi ∈ Xg for each object oi, where i ∈ [1, k]: These are collision-

free states where the object oi ∈ O is grasped by the arm’s end effector and the other

objects stably rest.

Then, valid states Xv correspond to the union of stable and grasping states, i.e., Xv =

∪i∈[0,k]Xi. The subset of grasping states Xi for an object oi, which are also stable, are

defined as the transition states Xti for the object oi, i.e., Xti = X0 ∩Xi. In a transition

state for object oi, the object oi is both grasped and stably resting on a surface, while

the remaining objects are stably resting. The union of all such states is the set of

transition states Xt = ∪i∈[1,k]Xti . The topology of Xfree for the rearrangement problem

is illustrated in Figure 3.1.

A transit path π0 ∈ Π0 : [0, 1]→ (Q, α) ⊂ X0 is a sequence of stable states, where

the arrangement of objects α remains the same and the sequence of arm configurations

along π0 follows a continuous function. The following discussion will assume a motion

planning primitive:

TRANSIT(qI , qF , α)→ Π0,

22

which computes a transit path so that the arm moves between arm configurations qI

and qF in a collision-free manner given object arrangement α.

A transfer path for object oi: π
i ∈ Πi : [0, 1]→ Xi, where i ∈ [1, k], is a sequence of

grasping states for object oi. The poses of all other objects {Oroi} remain the same but

the pose pi of object oi changes in a continuous manner. The arm’s configuration also

changes in a continuous manner so that it always corresponds to a grasping configuration

q(pi, e) for the same relative end effector pose e along πi. The following discussion will

assume a motion planning primitive:

TRANSFER(oi, pI , pF , e, α)→ Πi,

which computes a valid path for the arm to transfer the object oi from pose pI to pose

pF , while grasping the object with a relative end effector pose e. This path is collision-

free given the poses of the remaining objects specified by α[O r oi]. It has to be that

pI = α[oi]. The actual implementation of the transit and transfer primitives will be

discussed in Chapter 7.

A legal transition between a transit path π0 and a transfer path πi can occur

as long as π0(1) = πi(0) ∈ Xti . Similarly, the transition between a transfer path πi

to a transit path π0 is legal as long as πi(1) = π0(0) ∈ Xti . This means that a legal

transition arises if the last state of the first path and the first state of the following

path correspond to the same transition state for the object moved by the transfer path.

A rearrangement path π ∈ Π : [0, 1] → Xv is a sequence of valid rearrangement

states, which can be decomposed into an alternating sequence of transit and transfer

sub-paths π = {π01, π
g1
1 , π

0
2, π

g2
2 , . . .}, where gj ∈ [1, k], so that all the transitions between

subpaths are legal.

Definition 6 (Prehensile Single-Arm Rearrangement Problem). Consider a

workspace W that contains a robot arm R and a set of k movable objects O. Given

an initial state x0 = (q0, α0) ∈ X0 (Fig.1.1 first) and a final state x1 = (q1, α1) ∈ X0

(Fig.1.1 last), compute a solution rearrangement path π ∈ Π : [0, 1] → Xv such that

π(0) = (qI , αI) and π(1) = (qF , αF). The path is an alternating sequence of transit and

transfer states. The types of states along path π change only when π(s) ∈ Xt.

23

3.1 Unlabeled vs Labeled Problem

The rearrangement problems can be split into two categories based on the initial and

target arrangements, the unlabeled and labeled problems.

Figure 3.2: Initial and final arrangement of 6 objects. Each object can occupy any of
the final poses.

An unlabeled arrangement α ∈ A of k objects specifies a k-combination of poses

{p1, . . . , pk}, where pi ∈ P and results in a collision-free placement of the objects in

W. Permutations of α are indistinguishable, since the objects are unlabeled. In an

unlabeled problem the final arrangement does not specify the final pose for each of the

k objects. A problem is considered solved when all the final poses are occupied by an

object.

Figure 3.3: Initial and final arrangement of 6 objects. Each object has a specific final
pose, that need to occupy in order to consider the problem solved.

A labeled arrangement α ∈ A specifies the k poses {p1, . . . , pk} for all the objects

in O. Then, the notation α[O′ ⊆O] will indicate the poses that the objects O′ ⊆ O

occupy according to the arrangement α. The notation αF [O] (Fig.3.3 right) specify the

24

final pose for each individual object. Each object can be place on any of these poses,

temporarily. However, the problem is solved only when each object occupies the final

pose that is assigned by the final arrangement to this object.

3.2 Monotone vs Non-Monotone Problem

Figure 3.4: Left: A monotone problem where the robot could easily solve by first moving
object B to its final pose following by object A. Right: A non-monotone problem, where
the robot will have to move object A to an intermediate pose before move it to its final
pose.

The rearrangement problems can also be categorized based on how many times an

object has to be transferred before a solution to the problem is found. These two

categories depict in figure 3.4. The monotone problems are in general easier problems

given that the robot needs to find the correct order to move the object to their final

location.

Definition 7 (Monotone Rearrangement Problem). A rearrangement problem is called

monotone when the solution path, from an initial αI arrangement to a final αF ar-

rangement, will have at most k transfer subpaths, where each object is transferred at

most once (Fig. 3.4 (left))

Frequently, there will be overlaps between initial and final poses. This does not

mean, necessarily that the problem is not a monotone problem. However, there are

many cases (Fig.3.4(right)) where the robot will have to move an object to an in-

termediate pose before bringing it to its final pose. These problems will be called

25

Figure 3.5: An example of a graph embedded in a space with constraints. The dark
areas correspond to regions with constraints, which if removed they allow for a feasible
path along the graph.

non-monotone and in general are harder problems, because an intermediate pose has

to be detected.

Definition 8 (Non-monotone Rearrangement Problem). A rearrangement problem is

called non-monotone when in order to find a solution at least one object will have to

move to any intermediate pose before reaching its final pose (Fig.3.4 (right)).

3.3 Minimum Constraint Removal Paths for Manipulation Planning

Frequently, motion planning challenges do not have a solution, given the presence of

constraints in the environment. In scenarios where the path is blocked by movable ob-

jects, the minimum constraint removal problem asks for the minimum set of constraints,

which if they removed from the scene, then a feasible solution exists.

Consider a graph G(V, E) that represents the connectivity of a state space. Each

node corresponds to a state of the manipulator, while an edge expresses a local trajec-

tory between two states. The weight of an edge is set equal to the distance between the

two nodes defining the edge in the manipulator’s state space. Moreover, it is possible

to define for each edge e ∈ E a set of constraints ce. The objective is to compute a

26

path on G that minimizes the number of constraints that the path traverses. Figure 3.5

describes a relevant setup.

Definition 9 (Constraints). All the objects that are blocking the path π of the object oi

to its final pose αF [oi] will be called “constraints” of the path π, πB(π).

The constraints along a path π(v, u) = {e1, . . . , en} will be denoted as πB(π(v, u))

and correspond to the union of the constraints along the edges of the path: πB(π) =

∪icei .

Definition 10 (MCR: Minimum Constraint Removal Path [47]). Consider the state

space X = Q × A, k obstacle regions O1, · · · , Ok ⊂ X and endpoints qs,qf ∈ X. Also,

c(q) determines the set of obstacles violated at configuration q : c(q) = {i|q ∈ Q}. A

configuration qf is reachable from qs if there exists a continuous path y ∈ X starting at

qs and ending at qf . A minimum constraint path (MCR) is the path between qs and qf

that minimizes the number of violated obstacle regions.

3.3.1 The case of manipulation

Consider the following setup in a 3D workspace:

• A robotic manipulator, that is able to acquire configurations q ∈ Q, where Q is

the manipulator’s configuration space.

• A set of static obstacles S. Given the presence of S it is possible to define the

subset of Q that does not result in collisions with the static obstacles: Qfree.

• A set of movable rigid-body objects O, where each object oi ∈ O can acquire a

pose pi ∈ SE(3).

• A target object o, which is located in a starting pose ps ∈ SE(3) and needs to be

transferred to a target pose pt ∈ SE(3). The target object o does not belong in

the set O.

Given the pose p of object o, it is possible to define a grasping configuration q(p) ∈ Q

for the manipulator. For instance, this can be achieved through the use of inverse

27

kinematics. The underlying manipulation challenge considered here is to find a path for

the robot manipulator, which starts from a given grasping configuration q(ps) ∈ Qfree

for the start pose ps of object o and transfers the object to a target pose pt given a

grasping configuration q(pt) ∈ Qfree. The relative pose between the robot’s end-effector

and the object - i.e., the grasp - is the same given the arm configuration/object pose

pairs (q(ps), ps) and (q(pt), pt), so no in-hand manipulation is necessary to transfer the

object.

Beyond the static geometry, the problem is further complicated by the presence of

the movable objects O. Each object oi ∈ O at pose pi defines a subset of manipulator

configurations Qoi ⊂ Qfree that result in a collision between object oi and the manipu-

lator or the transferred object o given the grasp. The focus is on situations where there

is no solution path that takes the manipulator carrying the object o from q(ps) to q(pt)

without intersecting any of the sets Qoi , where oi ∈ O. In this context, the objective is

then adapted so as to identify the minimum set of movable objects oi that need to be

removed from the scene so as to be able to solve the original manipulation objective.

To deal with this objective and along the lines of the abstract MCR problem definition,

this work assumes that a graph structure in the collision-free configuration space Qfree

of the manipulator, i.e., a roadmap, is computed first in order to compute paths for the

manipulator. This can be done either by using sampling-based planners that sample

nodes and edges of a roadmap in the configuration space, such as with a PRM approach

or other sampling-based planners [61, 80, 13, 2], or search-based methods that implicitly

consider a discretization of the configuration space and directly search over it [24].

Such a roadmap for the manipulator can be seen as the equivalent to the graph

G(V, E) considered in the abstract MCR definition. The nodes V of the roadmap corre-

spond to configurations of the manipulator in Qfree and the edges E to straight-line

paths in Qfree that connect pairs of nodes. The roadmap can be used to search for

transfer paths for the object o by placing the object at the end-effector given the grasp

defined according to q(ps) to q(pt) during query resolution. Then, traversing an edge e

of the graph G(V, E), corresponds to a sequence of motions for the manipulator carrying

the object o, which are collision-free with the static geometry S but may intersect a

28

subset of the Qoi configuration sets.

Intersections with one of the Qoi along an edge e ∈ E are equivalent to the edge

e having a constraint that needs to be avoided in the context of MCR. The set of

constraints of an edge e of the roadmap will be denoted as ce, and correspond to the

set of objects in O that cause a collision with the manipulator or the carried object o

along the edge e. An example is shown in Figure 3.5, where a graph is embedded in the

configuration space Qfree and the gray regions correspond to constraints arising from

different movable obstacles.

Then, similar to the abstract problem, the objective is to find the path π =

{e1, . . . , en} along the graph G(V, E) storing manipulator configurations, which has the

minimum number of constraints. This path will correspond to the minimum number

of objects O that need to be removed in order for the manipulator to be able to move

the object oi from pose ps to pose pti.

Note that a solution to this MCR problem can be easily applied both to the computa-

tion of transit and transfer paths. In transit problems, the manipulator is not holding

an object and needs to move between two configurations in Qfree. The experimental

evaluation of this work includes both transit and transfer challenges.

3.4 Manipulation Primitives

As mentioned before the low-level motion primitives that will be used in this work are

TRANSIT and TRANSFER. However, most of the methods require from the manipulator

to return to its initial configuration after a successful transfer. For convenience this

work will use the manipulation primitive pick and place path

Definition 11 (pick and place path). π ∈ Π : [0, 1] → Xv is a sequence of a transit,

transfer and again a transit path, where the transitions between the subpaths are legal.

The following discussion will assume the manipulation primitive

PICK AND PLACE(o, q, p0, p1, c)→ Xv

which computes a collision-free path for the manipulator to pick an object o from the

29

position p0, transfer it to the position p1 and finally, return the arm back to its initial

state q, while respect the constraints c.

Given that the manipulator is moving among movable objects that can be considered

constraints, a collision-free path might not exist. However, a valid path with constraints

might be feasible. For that reason most of the algorithm will use MCR paths in order to

find a solution, i.e. the manipulation primitive minimum constraint removal pick

and place path will be used when the algorithm is able to deal with constraints.

Definition 12 (minimum constraint removal pick and place path). The minimum

constraint removal pick and place path

MCR PICK AND PLACE(o, q, p0, p1, c)→ Xv

will return a similar path to move the object o from position p0 to p1 while respects

the constraints c. The difference between the two manipulation primitives is that the

second one will return a path with the minimum number of constraints if a collision-free

path does not exist.

Similarly, the motion primitives TRANSIT and TRANSFER will also use the MCR method,

in order to compute a solution path. This way both MCR TRANSIT and MCR TRANSFER

will return a path with the minimum number of objects that have to be relocated in

order to get a feasible path.

30

Chapter 4

Solving Unlabeled Rearrangement Problems Using Pebble

Graphs

The focus of this chapter is on the case when the target objects are geometrically

similar and interchangeable. A key challenge in developing practical algorithms for

such problems is the size of the search space. A complete method must operate in the

Cartesian product of the configuration spaces of all the objects and the robot. This work

deals primarily with these combinatorial and geometric aspects and proposes motion

planning methods that return collision-free paths for manipulating rigid bodies.

The approach reduces the continuous, high-dimensional rearrangement problem into

several, discrete rearrangement challenges on “manipulation pebble graphs” (MPGs).

The inspiration comes from work in algorithmic theory on “pebble graphs” [6] and

related recent contributions in multi-robot motion planning [104]. The transfer of the

idea of pebble graphs to the problem of rearrangement is not trivial. The presence of

a manipulator in rearrangement planning induces additional constraints relative to the

previous work on multi-robot motion planning [104], which required the development of

different solutions for the connection of MPGs. The current work builds on top of work

in manipulation planning [103] so as to allow for the efficient use of “pebble graphs” in

the context of a manipulator rearranging similar objects.

The nodes of an MPG correspond to potential stable poses for the objects. Edges

indicate that there is a path for the manipulator to transfer an object between the poses,

even if all other nodes are occupied. For most interesting queries, it is difficult to find a

single pebble graph that contains both the start and the goal arrangement and solves the

problem. It is helpful to generate multiple such graphs and identify transitions between

them to find a solution. MPGs have the benefit that they can implicitly represent an entire

31

set of object arrangements over the set of stable poses that they correspond to. Only

once a sequence of pebble graph transitions that solve the problem has been found, does

the algorithm need to extract the sequence of object placements and the corresponding

arm paths. The encapsulation of multiple object arrangements within an individual

graph helps with the combinatorial aspects of rearrangement. Furthermore, the method

can effectively utilize precomputation. For a known workspace and geometry for the

objects, it is possible to precompute a manipulation graph and perform many expensive

collision checking operations offline.

The approach can efficiently address many rearrangement challenges, albeit with

certain concessions. For instance, it must be possible to retract the arm to a safe

configuration from every stable grasped pose in a solution sequence. Furthermore, this

chapter deals only with similar geometry, interchangeable objects. Nevertheless, given

the motivating work in multi-robot motion planning [104], it is possible to extend the

proposed framework to dissimilar objects.

4.1 Unlabeled Rearrangement Planning

A naive approach to solve unlabeled rearrangements would be to build a manipulation

graph [1] in the entire X. This is intractable, however, as the dimensionality increases

with the number of objects. The idea here is to abstract out the motion of the ma-

nipulator and then reason directly about the movement of objects between different

stable poses in Ps. Reasoning about the movement of multiple objects can take place

over discrete graphical representations so as to take advantage of linear-time path plan-

ning tools for rearranging unlabeled “pebbles” on a graph from an initial to a target

arrangement [6].

A sampling approach can be used to define graphs where nodes correspond to stable

poses in Ps and edges correspond to collision-free motions of the arm that transfer an

object between stable poses. If such a graph is connected and contains all the poses

from the initial and target arrangements, then a discrete solver can be used to define a

solution in the continuous space as long as placing objects in different poses does not

32

Figure 4.1: Each edge on an MPG is the combination of a reaching, transferring and
retracting path. Edges can be constrained by other nodes of the MPG.

cause collisions [6].

It may be difficult or even impossible, however, to construct a single such graph that

directly solves the problem. For example, the poses in the initial and target arrange-

ments could be already overlapping, or it may not be possible to ensure connectivity

with collision-free motions of the arm. Motivated by work in the multi-robot motion

planning literature [104], the current work considers multiple such graphs, referred to

as “manipulation pebble graphs” (MPGs), as shown in Fig.4.1B.

4.1.1 Manipulation Pebble Graphs

MPGs are built so that the objects are placed in collision-free, stable poses. They have at

least k poses and b additional poses as nodes (called “blanks”). The extra nodes allow

the rearrangement of k objects on the MPGs. The poses used in an MPG are defined as a

pumped arrangement.

Definition 13 (Pumped Arrangement). A pumped arrangement αP is a set of n = k+b

poses where: (a) These poses are collision-free, stable poses (i.e., subset of Ps); (b) No

two objects will collide if placed on any two poses of the pumped arrangement.

Definition 14 (Manipulation Pebble Graph (MPG)). An MPG is a graph GP (αP , EP),

where the set of nodes is a pumped arrangement αP . The set of edges EP corresponds

to pairs (p, p′) ∈ αP , for which the manipulator can transfer objects between poses p, p′

33

without collisions, given that potentially every other pose of αP is occupied.

Algorithm 2 describes the construction of an MPG. The algorithm receives as input a

“safe” configuration of the manipulator qRs , which is one that does not interfere with the

objects placed on any stable poses, and typically is a retracted arm configuration. The

algorithm also needs the size of the MPG, i.e., the parameters k and b. The algorithm

will return an MPG and a set of additional constrained edges Ec together with the poses

that block them. The constrained edges are edges that are not added in the MPG.

The algorithm starts by selecting a non-intersecting set of k + b poses that create

a pumped arrangement (Line 1). For each pair of poses p and p′, a path has to be

computed that allows the manipulator to move an object from p to p′. This path

consists of three segments as shown in Fig. 4.1:

i) A path for the arm from its safe configuration qRs to a transition state xtp ∈ Xt

for pose p.

ii) A path that transfers the object from xtp ∈ Xt to a state xtp′ ∈ Xt for p′.

iii) A retraction path from xtp′ back to qRs .

Algorithm 2: CREATE MPG(qRs , k, b)

1 VP ← SAMPLE VALID PUMPED ARRANGEMENT(k + b);
2 EP ← ∅, Ec ← ∅;
3 for p, p′ ∈ VP and p 6= p′ do
4 π ← MCR PICK AND PLACE(o, qRs , p, p

′, VP);
5 if is valid(π) then
6 EP ← EP ∪ ((p, p′), π);

7 else
8 πB ← COMPUTE CONSTRAINTS(π);
9 Ec ← Ec ∪ ((p, p′), π, πB);

10 return {GP (VP , EP), Ec}

For each edge, the algorithm aims to compute a “minimum constraint removal path”

given that objects may be placed in all poses but p′. The “minimum constraint removal

path” is computed heuristically by searching for a path that is within a bound of the

shortest path [67] ignoring the other poses and which minimizes conflicts with the

34

other poses. If the computed path is collision-free, then an edge (p,p′) is added to the

MPG (Line 6), which stores the corresponding path. In case the “minimum constraint

removal path” π collides with objects on other poses of the MPG, the edge (p,p′) is not

added. The algorithm identifies these potential collisions and stores them in a set of

constraints πB (Line 8). Such edges with constraints are stored in the data structure

Ec (Line 9). The algorithm returns the MPG GP (VP , EP) and the set Ec of constrained

edges. The use of Ec is described later on.

Signatures in a Pebble Graph

Objects within each connected component of an MPG can be safely rearranged, since

MPG’s edges correspond to valid motions of the manipulator regardless of object place-

ment on the graph’s node. A discrete solver [6] can be used to achieve all feasible

arrangements, given an MPG’s connectivity. There is no need to explicitly store all

the possible arrangements over an MPG, since the “signature” of an arrangement α is

sufficient to describe all reachable rearrangements.

Definition 15 (Signature). A signature, σGP (α) is the number of objects contained in

each connected component of MPG GP according to an arrangement α.

4.1.2 Building a Super-Graph

It is also possible to move objects between poses belonging to different MPGs if the

MPGs share at least k poses that can be simultaneously occupied by objects, given the

corresponding signatures.

These observations give rise to a super-graph structure, where each super-node

corresponds to an MPG and a signature. Super-edges correspond to transitions between

such super-nodes. The initial and target arrangements define two such super-nodes.

Then the approach generates and connects super-nodes (i.e., MPGs and signatures) until

the initial and target arrangement are connected on the super-graph. At that point,

the rearrangement problem is solved and the necessary motions of the manipulator can

be extracted along the path connecting the initial and target nodes on the super-graph.

35

Constructing Super-Nodes

All arrangements in an MPG with the same signature are reachable from each other, i.e.,

if σGP (α) = σGP (α′), then there is some sequence of transitions and a corresponding

path for the manipulator, π, which brings α to α′, and vice versa.

Definition 16 (super-node). A super-node is an MPG and a signature σ shared by a set

of reachable arrangements of objects on the MPG.

Definition 17 (Sibling nodes). Sibling nodes correspond to super-nodes with the same

MPG but different signature.

Algorithm 3: CREATE SUPERNODES(H(VH , EH), qRs , k, b)

1 {GP , Ec} ← CREATE MPG(qRs , k, b);
2 Σ← GENERATE SIGNATURES(GP);
3 Vn ← ∅;
4 for σ ∈ Σ do
5 vH ← (GP , σ), Vn ← Vn ∪ vH ;
6 VH ← VH ∪ vH ;
7 CONNECT NODE(H, vH);

8 CONNECT SIBLINGS(H, Vn, Ec);

Algorithm 3 takes as an argument the existing super-graph H(VH , EH) and adds

new super-nodes and edges. It needs to be aware of the safe configuration qRs , and the

size of the MPGs it will construct: n = k + b. When this function completes, the new

“sibling” nodes will be in the super-graph and appropriately connected with edges.

The algorithm begins by constructing a random, valid MPG (Line 1). Then, it com-

putes all possible signatures that the generated MPG can attain (Line 2), i.e., for GP2 in

Fig.4.2, the possible signatures are {3,0},{2,1},{1,2}. A new super-node vH is created

using the created MPG and one of the signatures (Line 5). When vH is added in the

super-graph H, the functions CONNECT NODE and CONNECT SIBLINGS try to connect vH

with other super-nodes (Lines 8, 9).

Connecting Super-Nodes

The super-nodes in H have two different ways to connect to each other.

36

Figure 4.2: CONNECT NODE: both MPGs share the shaded positions (A,B,C). (left) The
nodes are connected since both signatures allow the three common positions to contain
an object. (right) The nodes cannot be connected, since on G′P1 it is not possible to
place objects both on B and C.

(A) CONNECT NODE connects super-nodes created by a new MPG with super-nodes

created using previous, different MPGs. The function first identifies whether super-node

vH shares at least k common poses with an existing super-node. If true, the method

checks whether both super-nodes can achieve placing k objects on the k common poses

given the super-nodes’ signatures (Fig. 4.2). If they both can, an edge is added between

the two super-nodes, which represents a context switch between two arrangement sub-

problems. This switch is feasible because only the b unoccupied poses of the first MPG

will be replaced with the b unoccupied poses of the other MPG, while the k objects will

have to stay in their current positions.

Algorithm 4: CONNECT NODE(H(VH , EH), vH)

1 for v′H ∈ VH do
2 pc ← COMMON POSITIONS(vH , v

′
H);

3 if |pc| ≥ k then
4 if CAN ASSIGN(poses, vH , v

′
H) then

5 EH ← EH ∪ (vH , v
′
H);

(B) CONNECT SIBLINGS connects “sibling” super-nodes by using the constraint edges

Ec to switch between different signatures on the same MPG. The algorithm connects

super-nodes only if there is a motion that allows transition between signatures of the

“siblings” (Fig. 4.3). The arm is able to follow a constrained edge in Ec if the constrain-

ing poses can be emptied given the super-node’s signature. For all constrained edges,

37

Figure 4.3: CONNECT SIBLINGS: Nodes with same MPG but different signatures. The
constrained (dashed) edge is not in the MPG. (left) An edge is added since an object can
be moved along the edge given constraint (C,D). (right) The edge is not added since
pose D cannot be emptied.

the algorithm finds the connected components of the MPG that this edge is connecting.

If the connected components are different and the edge is feasible given the signature,

then this edge can be used for potential connections between two “siblings”. An edge

is feasible if the poses that constrain the edge and the target pose p′ of the constrained

edge can be emptied given the signature of vH . Furthermore, it must be possible to

bring an object to the source pose p of the edge. Moving along such edges results in a

change of signature relative to that of vH and the new signature σn can be computed.

Then an edge is created that connects the two “siblings” in the super-graph.

Algorithm 5: CONNECT SIBLINGS(H(VH , EH), Vn, Ec)

1 for vH ∈ Vn do
2 for e ∈ Ec do
3 {Fromcc, T occ} ← FIND COMPONENTS(vH , e);
4 if Fromcc 6= Tocc and EDGE IS FEASIBLE(vH , e) then
5 σn ← COMPUTE NEW SIGNATURE(vH , e);
6 v′H ← FIND SIBLING(vH , σn);
7 if v′H exists then
8 EH ← EH ∪ (vH , v

′
H);

Building the Graph Using Incremental Approach

Generating new super-nodes can take place in a fashion similar to a bidirectional

sampling-based tree planner. The proposed approach first generates two super-nodes of

38

size k for the initial and target arrangements. The b “blank” poses are unnecessary for

these nodes. Then, k poses are selected from an already existing super-node to be used

as poses for the new MPG. These poses can be occupied by objects given the signature

of the selected super-node. An additional k poses are sampled for the new MPG. Alg.3

will generate all the “siblings” super-node for the new MPG that will be added in the

super-graph and attempt connections with existing super-nodes. The process repeats

until the initial and target super-nodes are in the same connected component.

Answering Queries on the Super-Graph

For each super-node, there exists a way to move between all possible arrangements on

the corresponding MPG that have the same signature. The actual paths that accomplish

these rearrangements are not explicitly stored. Only during the query phase, when a

graph search returns a solution sequence of super-nodes that connects the start and

target arrangements, the algorithm computes solutions to the pebble motion problem

within each MPG.

The super-graph path is transformed into a manipulation path by solving discrete

graph problems [6] on individual MPGs given start and final arrangements on them

according to information stored on the hyper-edges. Since the MPG contains edges which

have safe motions for the manipulator, any arrangement produced by the approach will

be feasible for the robotic arm if it follows the sequence of actions that were used to

validate the edge. The start arrangement on the MPG is simply the latest arrangement

the objects have reached in the previous MPG. The end arrangement is stored on the

edges of the super-graph. For connections between nodes generated from the same

MPG, the edges involve a motion and have the constraints associated with this motion

encoded. The end configuration is such that those constraints are satisfied.

4.1.3 Smoothing Solution

Figure 4.4 shows examples of smoothing the solution path. The colored disks represent

occupied poses. The uncolored discs represent the safe configuration qRs . The edges

connecting the nodes represent the trajectory taken by the manipulator to move the

39

Figure 4.4: A: A path decomposed into reaching, transferring and retracting motions.
B: If the arm grasps the same object twice, then the intermediate stable state is removed.
C: Redundant movements of objects can be removed.

objects. A trajectory can be separated into distinct sequences of transit to grasp from

qRs , transfer an object between poses (p,p′), and retract to qRs , as shown in Figure 4.4A.

Phase 1 - Consecutive, Identical Grasps: The smoothing process first looks for con-

secutive grasps of the same object in a solution sequence. If such pairs of grasps exist,

the intermediate stable pose is removed, along with any redundant states, as shown in

Figure 4.4B. This has the effect of removing motions, such as raising and lowering the

object, which are unnecessary when consecutively grasping the same object.

Phase 2 - Standard Trajectory Smoothing: Each reaching, transferring and retract-

ing sequence is smoothed by checking for shortcuts between pairs of states. If these

shortcuts exist, they replace their corresponding intermediate trajectory.

Phase 3 - Maximizing Consecutive Grasps: The solution returned by the algorithm

is conservative. This can potentially lead to redundant movements of objects. The

trajectory that moves an object ox from position pi to pi+1 can be represented as

pix → pi+1
x . The trajectory sequence:

{pia → pi+1
a , pjb → pj+1

b , pi+1
a → pi+2

a },

contains an intermediate placement of oa at pose pi+1
a , before eventually moving it to

pi+1
a (Figure 4.4C). If, i) oa can be moved from pose pia to pose pi+2

a with a collision free

path, while ob is at pose j and ii) the trajectory pjb → pj+1
b is collision free given that oa is

at pose pi+2
a , then the original trajectory can be replaced with {pia → pi+2

a , pjb → pj+1
b }.

These phases can be repeated, starting from phase 1, to continually improve the

path quality. Once the smoothing phases are complete, phase 2 can be applied over

the entire trajectory, resulting in the final smoothed solution. In practice, a single

40

application of each phase and a final application of phase 2 are sufficient.

4.2 Evaluation

The proposed algorithm was evaluated in a simulation environment to determine its

scalability and showcase the class of difficult non-monotone problems it can solve. These

are challenges which require an object to be grasped multiple times in order to be

solved. Such problems are challenging for state-of-the-art approaches. A 7-DOF arm

of a Baxter robot is used in the simulation. The solution paths were executed on a

Baxter robot in open loop trials. The identical objects being rearranged are cylinders

with height 14cm and radius 4cm. A brute-force approach has not been evaluated in

comparison since a search on the combined configuration space of the manipulator and

the objects quickly becomes intractable.

Different types of rearrangement problems are considered. These problems include

a) environments with random initial configurations to a final grid rearrangement of the

objects in a shelf, and b) two non-monotone problems with k = 3, 4 (Figure 4.5). The

execution time and the length of the solution trajectory have been measured. These

metrics are reported for different values of b, i.e., the number of “blank” poses in the

MPGs. An informed pre-computed roadmap GR, as described in section 7.1, has been

used in the implementation. A trial is deemed a failure if the method cannot find a

solution within the time limit of 600 seconds. The simulations were performed on a

machine running on an Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz.

4.2.1 Randomized Grid Evaluation

For the first set of experiments, objects are placed randomly on a shelf-like environment,

reachable by the manipulator. The mutually exclusive initial pose of the objects is

selected as a random set of non-intersecting poses for every trial. The dimensions of

the shelf prevent the grasping of the objects from the top. This causes objects to

be occluded by other objects in front of them. These properties of the environment

make the solution to a rearrangement challenge non-trivial. For a given number of

41

Figure 4.5: Average length of the trajectory before and after smoothing (bars) and
average solution time (line) for the randomized grid for different values of k and b.

objects, the goal arrangement is a uniform grid formation on the shelf and the same

goal arrangement is used for a value of k. For every pair of k and b, 10 trials are

executed. Experiments for 2, 3, 4, 6, or 8 objects were performed. For a specific number

of objects, k, values of b, which are tested, are 1, 2, 3, and 4. The manipulation roadmap

used for these experiments employed 20 different poses and computed 517 vertices and

6032 edges.

Execution time: Fig. 4.5 shows that the algorithm achieves a high success ratio in

the randomized grid setup for k = 2, 3, 4, 6. Trials with 8 objects could not finish within

the stipulated limit of 600s. k = 8 causes an increase in the problem complexity. The

case with 8 objects is constrained by the size of the shelf in terms of the availability

of free poses on the shelf and free volume required to move. This affects the motion

planning complexity for pose connections. The relatively sparse roadmap used in the

experiment helps the running time of the individual motion planning problems, but in

a constrained space, the solution to the rearrangement problem is not always achieved

within the time limit.

The value of b seems to have a significant role in the execution time for the same

k, as illustrated in Fig.4.5. b = 1 seems to deteriorate the algorithm’s running time

for higher values of k. This is a result of a very slow rate of exploration of the poses

42

available on the shelf for rearrangement, due to only one empty pose available in the MPG.

However, the connectivity in an MPG is maximized. High values of b introduce a high

combinatorial component of k objects in k + b poses in every MPG and the connectivity

of the MPG decreases. For every value of k, the value of b with the best performance in

terms of execution time indicates this trade-off.

Figure 4.6: The number of edges in the super-graph over the number of super-nodes
for k = 6 and b = 1.

Connectivity: The key feature of the algorithm is the way it constructs the super-

graph from the super-nodes. The connectivity of this super-graph is crucial in finding

the solution to the rearrangement problem. Fig.4.6 shows the rate at which new edges

are created, with the introduction of every new super-node, for the different trials for

the randomized grid experiment with k = 6,b = 1. The random trials corresponding

to the best values of b for every k = 2, 3, 4, 6 from Fig.4.5 are analyzed for the number

of super-nodes that were required for finding the solution and the time taken, Fig.4.7.

Complex solutions are efficiently discovered with short execution times. For k = 6,b = 4,

the solution grasps every object 2.67 on average times over all the trials.

Solution quality: The quality of the solution in the randomized grid experiment, is

shown in Fig. 4.5. The value of b = 1 introduces a low exploration rate, which increases

the length of the solution. The conservative solution trajectories are shortened by an

average of 48%.

43

Figure 4.7: The amount of time taken and size of the super-graph required to achieve
the solution, for different runs of the randomized grid problem and different values of
k and b .

4.2.2 Non-monotone Benchmark Evaluation

The second set of experiments consists of two non-monotone benchmark problems. For

the first problem, 4 objects are placed on a platform which resembles the shelf with the

sides removed, figure 4.8. The goal arrangement requires the two front objects to be

moved at least twice. The trials are performed for different values of b = 1, 2, 3, 4. The

same roadmap as before is used.

Figure 4.8: The figure on the left-top shows the initial arrangement of the non-monotone
benchmark with 4 objects. The left bottom image indicates the intended goal positions.
The problem involves 4 objects on a platform which resembles the shelf with the sides
removed. The wall in the center at the front makes both the initial and goal positions of
two of the objects inaccessible. The goal positions require the two objects in the front
to necessarily be moved at least twice. The figure on the right shows the performance
of the algorithm for the benchmark. Average length of the trajectory before and after
smoothing (bars) and average solution time (line).

44

For the second benchmark, 3 objects are placed on a shelf with two static obstacles

that form a narrow cavity between them (Fig.4.9(top left)). Because of the smaller k

only values of b = 1, 2, 3 are tested. The second benchmark is solved on a roadmap with

684 vertices, 9628 edges and 30 poses. The bigger roadmap, used in this benchmark, is

necessary to deal with the constraining nature of the problem. Increasing the size of the

roadmap and the number of poses greatly helps in making more constrained problems

solvable. The results of this benchmark are depicted in figure 4.9.

Figure 4.9: Average length of the trajectory before and after smoothing (bars) and
average solution time (line) for the second non-monotone benchmarks. In this problem
the manipulator has to change the arrangement of the objects from a triangle to a line
arrangement.

4.3 Discussion

The method proposed in this chapter solves rearrangement problems for similar ob-

jects, using a high DOF robot arm, including non-monotone instances that are hard to

address with existing methods [110]. Precomputation using a manipulation graph can

be appropriately utilized to achieve fast solution times.

The current algorithm does not address objects with different labels or geometries.

The motivating work on pebble graphs [104], however, provides a framework to extend

the current approach to the case of different objects. Furthermore, the current imple-

mentation takes advantage of grasp symmetries about the Z axis for cylindrical objects

placed upright. Dealing with general grasps and general resting poses for the objects

needs further investigation. There are also interesting variations that can be explored

45

in relation to different ways for connecting super-nodes that may not require the two

nodes to share k poses.

The paths computed in the simulation have been tested in open-loop (for known

initial and target object arrangement) on a real Baxter system arranging cylindrical

objects in a shelf. Long paths that involve multiple grasps were unsuccessful as the

robot’s path deviated due to errors from the computed one. Future efforts will focus on

the computation of robust rearrangement trajectories and their robust execution given

appropriate sensing input [82].

46

Chapter 5

A Probabilistically Complete Hierarchical Framework for

General Object Rearrangement

The method presented in chapter 4 can solve both monotone and non-monotone prob-

lems under the assumption that all objects are unlabeled. This means that they are

interchangeable and can occupy any pose in their final arrangement. While unlabeled

problems occur frequently in applications, it is similarly important to be able to solve

cases where the objects are labeled and could be dissimilar, i.e., each object has to

acquire a unique final pose in the target, final arrangement.

This chapter presents a framework for solving hard instances of general object re-

arrangement. It initially revisits an existing backtracking search approach (mRS) for

manipulation among movable obstacles [110]. This method can be used to solve mono-

tone labeled challenges. Then, this chapter presents the extension of the backtracking

search approach [110] to a similar backtracking-search strategy that addresses many la-

beled non-monotone challenges (plRS) [68]. In order to solve the non-monotone cases,

the method is using a solution to the minimum constraint removal path planning prob-

lem (MCR) [47, 70]. Solutions to MCR are used to compute the intermediate placement of

objects in the context of non-monotone solutions. An MCR path minimizes the number

of constraints that need to be removed from the path of an object. Every time the

method considers an object with a blocked path to its goal, it tries to clear the path

by finding appropriate intermediate poses for blocking objects.

The objective of this chapter is to achieve probabilistic completeness guarantees by

employing either the monotone (mRS) or of the new non-monotone method (plRS) as a

local connection primitive in the context a higher-level task planner. The higher-level

planner searches the space of object placements. This integration demonstrates the

47

Figure 5.1: An example of a challenge considered in the accompanying simulated ex-
periments: 16 objects are manipulated by a Baxter arm from an initial arrangement to
a final one, where the letters RSS are spelled.

benefit of using more powerful connection primitives in the context of task planning for

object rearrangement than an individual pick-and-place.

Simulated experiments using a model of a Baxter arm evaluate the methods in a va-

riety of non-monotone, labeled rearrangement problems, including setups in restricted,

tight spaces, such as objects in shelves. The experiments show that the non-monotone

primitive can solve problems not easily addressable by other alternatives. The experi-

ments also reveal the required computation time for finding a solution, the scalability as

the number of objects increases and resulting path quality of the methods. Smoothing

is used to further improve the quality of the path followed by the arm for a rearrange-

ment solution given additional computation time. The methods are evaluated in terms

of success ratio, running time, scalability and path quality.

5.1 Rearrangement Primitives

This section presents two rearrangement primitives that under certain conditions can

provide a solution for connecting two object arrangements. The advantage over an

individual pick and placeof using these primitives as local planners in a higher-level

task planner is that they can connect arrangements that have more than one object in

a different pose. Pick and place can only connect arrangements that differ only by a

single object pose [40, 106]. The non-monotone extension is more powerful but more

computationally expensive than the monotone primitive, which is experimentally shown

to be advantageous.

48

5.1.1 A Primitive for Monotone Rearrangements

This section focuses on a previously proposed approach for manipulating objects [110],

which deals with monotone problem instances.

For such problems, the algorithm [110] performs a backtracking search in the space

of possible orders of transferring objects directly to their final poses. Fig. 5.2 (right)

shows possible orders considered given object B is moved first for the scene of Fig.

5.2(left). One of the branches in the search tree results in a solution. In the context of

the algorithm for manipulation purposes, between each pair of transfer paths, there is

a transit path that allows the arm to switch between objects. There is also an initial

and final transit path that allows the manipulator to reach the first object and retract

after completing the transfer of the last object.

Figure 5.2: (left) An example of two arrangements for four objects (initial: light colored,
final: darker colored) and a possible order that allows their monotone rearrangement
for linear paths. (right) Corresponding backtracking search.

The “monotone Rearrangement Search” algorithm (mRS) is described in Alg. 6

and is an adaptation of the existing manipulation approach for clearing a path to an

unreachable object [110]. The original approach was searching backward to clear a path

to an unreachable object but in the case of rearrangement the two search directions are

equivalent and forward search is easier to understand. The method receives:

• the workspace W and the robot R,

• the set of objects OR (“remaining objects”) not yet moved to their final pose

along the current branch of the search tree,

49

• an object o to be transferred,

• the manipulator’s last configuration q,

• the current and final arrangements: αC and αF .

Algorithm 6: mRS(W,R,OR, o, q, αC , αF)

1 πN ← TRANSIT(q, q(αC [o], e), αC);
2 πM ← TRANSFER(o, αC [o], αF [o], e, αC);
3 if (πU ← {πN | πM}) is collision free then
4 αC [o]← αF [o];
5 if OR == ∅ then
6 return πU ;

7 for each or ∈ OR do
8 π ← mRS(W,R,OR r or, or, q(αF [o], e), αC , αF);
9 if π 6= ∅ then return {πU | π};

10 return ∅;

Given a start configuration q for the arm and the first object o to be transferred, the

algorithm first aims to find a transit path πN to grasp the object at its current (initial)

location αC [o] (line 1 - path πN) and then transfer it to αF [o] (line 2 - path πM). These

paths must be collision-free (line 3), given the poses of the other objects in the current

arrangement αC . If such paths πN and πM are found for object o, then the object is

moved (line 4). If all of the objects have been moved to the pose according to the final

arrangement αF (line 5), then the method terminates as a solution path πU has been

found, which concatenates πN and πM (line 6). If there are objects that still have not

reached their final pose, the method is called recursively for each one of them as the

first to be transferred next (lines 7-8). If any of these calls is successful, a solution has

been found and the path πU for object o can be appended to the existing solution path

(line 9). If no paths were found for object o, or if all the recursive calls to move the

remaining objects fail, then the process returns failure (line 10). This means that the

current branch of the backtracking search failed to give a solution. The method needs

to be initially called for all possible objects, i.e., call ∀ o : mRS(o, qI ,O r o, αI , αF).

The overall solution path returned by mRS can be decomposed into TRANSIT and

50

TRANSFER sub-paths. Given this decomposition, it is straightforward to argue the algo-

rithm’s (probabilistic) completeness for monotone rearrangement problems.

Lemma 1. Assuming completeness for the TRANSIT and TRANSFER primitives, the mRS

algorithm is complete for monotone challenges.

Proof. For a monotone problem, there is a solution path that contains a single transfer

for each object where it is moved from its initial to its final pose. Between these transfer

paths, the robot executed transit paths. This means that the path can be decomposed

into a sequence of TRANSFER and TRANSIT sub-paths for each object. The mRS method

will exhaustively consider all possible orders for transferring the objects to their final

arrangement. Given the assumption that the TRANSIT and TRANSFER sub-paths are

complete, then the method is also complete.

The above lemma can also be extended to the case of probabilistic completeness,

given a small variation to the algorithmic process. For instance, the TRANSIT and

TRANSFER paths can be computed given access to an underlying probabilistic roadmap

for the robotic arm. Then a higher-level loop can call the mRS algorithm and when it

fails it can increase the size of the corresponding roadmap through a sampling process

and then call mRS again until a solution is found.

Corollary 1. Assuming that the TRANSIT and TRANSFER primitives are computed with

the aid of a probabilistically complete sampling-based roadmap planner for the robotic

arm (e.g., PRM), then consecutive calls to the mRS algorithm and extending the sampling-

based roadmap corresponds to a probabilistically complete solution for monotone chal-

lenges.

The method fails if it is necessary to find an intermediate position for an object

so as to solve the problem. In the worst case, the method needs to visit a complete

search tree and it has to call the TRANSIT and TRANSFER primitives a factorial number

of times, i.e., the number of all possible permutations of the movable objects in the

scene. While this is a bad asymptotic performance - the problem is hard after all - in

practice, the backtracking search can return early, i.e., as soon as a solution has been

51

found. Even if it fails, the number of calls is quite smaller than the worst case, as most

branches will fail early.

Figure 5.3: An easy table top example where the monotone algorithm will fail.

This method already solves tabletop tasks where the arm can use overhand grasps at

both the initial and final poses as long as there is no overlap between these poses. But

this requirement is not satisfied by all tabletop challenges, since frequently there will

be overlap between the initial and final poses of objects in a tabletop setup (Fig.5.3).

Moreover, for objects placed in a tight environment, such as shelves, the arm’s

maneuverability is limited and overhand grasps are frequently impossible. In these

setups, non-monotone challenges arise easily. Consider Fig. 5.4 (left), referred here as

“simplified Towers of Hanoi”, where B and C need to be placed in intermediate poses so

that A reaches its final pose. A setup like this one can arise when a manipulator has to

reach occluded objects in shelves or move them between bins while keeping them in the

same order. Such non-monotone challenges motivate the development of the following

method.

5.1.2 Extension to Non-Monotone Challenges using Minimum Con-

straint Removal Paths

This section extends the previous approach to the case that an object’s path to its final

pose is blocked. In many cases, it is possible to easily evacuate the blocking objects

Ob. Specifically, the method employs a subroutine that searches for a monotone path of

52

Figure 5.4: (left) A non-monotone challenge: 3 objects from the left shelf must be
transferred to the right shelf in the same order. (right) The corresponding search tree
starting with object A for plRS. Every time an object cannot be moved to its final pose,
the remaining objects need to clear its path.

the blocking objects Ob so as evacuate the path of the blocked object. By clearing the

path of the blocked object so that it reaches its final pose, there is going to be progress

towards the solution of the problem. If one by one the objects move to their final pose

without disturbing the objects that are already in their final pose, then the problem

will be solved [85]. While the subroutine does not guarantee that it will always find a

solution when one exists, experiments suggest that many non-monotone rearrangement

problems are addressable in this manner.

For instance, consider the “simplified Towers of Hanoi” example of Fig. 5.4 and

the case object A is at the top of the search tree. The path for A’s to reach its final

pose is obstructed by B and C. Then, a subproblem arises (the top triangle in Fig. 5.4

(right)): “Move B and C to intermediate poses that allow the transfer of object A to its

final pose”. In this example, the problem can be resolved regardless of the order with

which objects B and C are considered. For instance, if B is selected, it can move to the

front/open part of the second bin, given A’s path as a constraint. But then it is blocked

by C. Then C needs to evacuate both A’s and B’s paths and moves further up the

second bin. This results in the arrangement at the top right corner of Fig. 5.4 (right).

On the other hand, if C is selected to evacuate first, it can move to the front/open part

53

of the second bin. Nevertheless, A is still blocked by B, which must also be moved to

an intermediate pose. Given the same reasoning, B should select the same front/open

part of the second bin, where C has been placed. As a result, C will be blocking B.

Since C is not at its final pose, it can be relocated to a new intermediate pose, such as

further up the second bin. This will open the spot for B and will result in the same

arrangement as before, i.e., that shown in Fig. 5.4 top right corner.

Once object A is moved to its final pose, objects B and C still have not reached

their goal. Then, there are two possible orders to consider. Either B moves first (left

subtree) or C moves first (right subtree). If B moves first, the resulting problem is

monotone and this branch leads to success based on the standard backtracking search

approach. If C moves first, then its path is blocked by B and another subproblem

is defined (the lower right triangle in Fig. 5.4 (right)): “Move B to an intermediate

position so that C can then move to its final pose”. Once B moves back to the first bin

so as to clear C’s path, as is shown in the Figure, the subproblem for C is solved. But

this branch fails since C is at its goal and blocks the path of B.

Given that objects already on their final pose, OP , should not move again, the

proposed approach considers these objects as obstacles. All the objects OR that are

not on their final pose, i.e., αC [OR] 6= αF [OR] and are blocking the path π of the object

oi to its final pose αF [oi] are viewed as potentially avoidable constraints, which need to

be minimized. For this reason the idea of a minimum constraint removal path [47, 46, 70]

will be used in order to minimize the number of objects that overlap with the path that

the manipulator will follow to transfer the target object to its final pose. Figure 5.5

provides a comparison between the shortest path ignoring the other movable objects

and the minimum constraint removal path. It shows that the minimum constraint path

(MCR) will collide only with two objects, which means that a rearrangement algorithm

will have to detect intermediate poses only for these two blocking objects. On the other

hand, the shortest path will go through almost all of the objects. As a result, if the

shortest path is considered, then an intermediate pose for all the objects in the scene

has to be detected in order to move the target object.

All the transit and transfer paths that are computed for this algorithm will be

54

Figure 5.5: A minimum constraint removal challenge. (Dashed line) The shortest path
that ignores obstacles can be computed quickly but will return many obstacles as con-
straints. (Solid line) It is more expensive to compute the path that returns the minimum
number of obstacles as constraints.

MCR paths, i.e., MCR TRANSIT and MCR TRANSFER, where a fast approximation for the

computation of MCR paths is used [70] and which is explained later on in this thesis. In

this way, the algorithm aims to minimize the number of intermediate poses needed in

order to evacuate potential object “constraints”. The “piecewise linear non-monotone

Rearrangement Search” algorithm (plRS) is given in Alg. 7 and directly extends its

monotone counterpart.

The plRS method has two differences from mRS:

• The MCR TRANSIT and MCR TRANSFER paths for object o must be collision-free

only with objects that have been already moved to their final pose, i.e., in the

set O \ OR. The remaining objects OR constitute constraints in the context of

minimum constraint removal paths [47].

• It does not directly return failure if the path of object o to its final pose αF [o] is

in collision with one of the remaining objects OR (lines 10-16).

The first part of the plRS algorithm is similar to the monotone counterpart mRS (lines

1-9). In the case the path πU for the target object o is not collision-free (line 10), the

algorithm considers a blocking object ob along πU (line 11). If ob has not been moved to

its final pose, i.e., it is in the list of “remaining objects” OR (line 12), then a subroutine

CLEAR is called to clear o’s path from object ob (line 13). The CLEAR function receives

55

Algorithm 7: plRS(W,R,OR, o, q, αC , αF)

1 πN ← MCR TRANSIT(q, q(αC [o], e), αC [O \ OR], αC [OR]);
2 πM ← MCR TRANSFER(o, αC [o], αF [o], e, αC [O \ OR], αC [OR]);
3 if (πU ← {πN | πM}) is collision free then
4 αC [o]← αF [o];
5 if OR == ∅ then
6 return πU ;

7 for each or ∈ OR do
8 π ← plRS(W,R,OR r or, or, q(αF [o], e), αC , αF);
9 if π 6= ∅ then return {πU | π};

10 else
11 ob ← a blocking object along πU ;
12 if ob ∈ OR then
13 {p, e, αC , π′} ← CLEAR(OR \ ob, ob, q, αC , πU);
14 if π′ 6= ∅ then
15 π ← plRS(W,R,OR, o, q(p, e), αC , αF);
16 if π 6= ∅ return {π′ | π};

17 return ∅;

the path πU of object o as a constraint to be avoided. If the subproblem of CLEAR can

be solved and ob can evacuate o’s path (line 14), then the plRS algorithm is called again

for the object o (line 15), so as to try again to move it along its path. If this eventually

succeeds - by potentially making additional calls to CLEAR- the path is returned (line

16).

Alg. 8 provides the CLEAR function, which first finds an intermediate pose p for the

calling object o and the corresponding path πU to bring o to the intermediate pose p

(line 1). The intermediate pose must:

• Be collision-free with the current arrangement αC [O \ OR] of objects that have

reached their final pose,

• Not collide with the swept volume of the input constraint paths πB; these are the

paths of objects that need to be cleared by object o.

Among all the possible poses that satisfy the above requirements, the approach

selects the one for which it can compute a minimum constraint removal path from the

current arm configuration q given all objects in OR. If there are multiple poses with

56

paths that have the same number of minimum constraints, the method returns the one

corresponding to the shortest path among them. Section 7.3 will describe how these

reachability computations can be accelerated using precomputation.

Algorithm 8: CLEAR(OR, o, q, αC , πB)

1 {p, e, πU} ← INTERMEDIATE POSE(αC [O \ OR], πB, q);
2 if πU is collision free then
3 αC [o]← αF [o];
4 return {p, e, αC , πU};
5 else
6 ob ← a blocking object along πU ;
7 if ob ∈ OR then
8 {p′, e′, αC , π′} ← CLEAR(OR \ ob, ob, q, αC , πU ∪ πB);
9 if π′ 6= ∅ then

10 {p, e, αC , π} ← CLEAR(OR, o, q(p′, e′), αC , πB);
11 if π 6= ∅ return {p, e, αC , π′|π};

12 return ∅;

If a collision-free path πU to an intermediate pose p is found (line 2), the object is

moved there (line 3), and its pose p, the updated assignment αC and the corresponding

path πU are returned (lines 3-4). Otherwise, the path is blocked by another object and

the function is called recursively for the blocking object, similar to the operation of the

plRS algorithm itself (lines 5-11).

Below is a discussion of the plRS approach’s properties. The first point to note is

that plRS will at least solve all monotone problem instances.

Lemma 2. Algorithm plRS will succeed for all problems that mRS succeeds, as long as

both methods are called for all possible objects as the first object to be moved .

Proof. When the permutation of objects that results in a solution for mRS is considered,

the MCR TRANSIT and MCR TRANSFER subroutines of plRS will always return the same

collision-free paths as the TRANSIT and TRANSFER subroutines used by mRS. Then, the

first part of the plRS (lines 3-9) will result in the same solution as mRS.

plRS may return a different, potentially lower quality solution than mRS, since plRS

may try to resolve a branch with a non-monotone solution although other branches may

57

provide a monotone one.

The mRS approach from the previous section cannot solve tabletop challenges where

there is an overlap between the initial and final poses (Fig. 5.3). In order to find a

solution for this kind of problems, it is necessary to detect at least one intermediate

pose for the involved objects. It is possible to argue that plRS can solve a large set of

problems where objects are placed on a table-top and reachable with overhand grasps,

i.e., in situations where when the arm grasps objects, there is no collision between the

arm and the remaining objects.

Proposition 1. plRS can solve all rearrangement challenges (W,R,OR, o, q, αC , αF)

where all k objects are accessible with overhand grasps under the following sparsity

requirement for the setup: There are at least k − 1 discrete intermediate poses, which

allow each of any k − 1 objects to be placed in the corresponding intermediate poses so

that no collisions arise among the objects in the intermediate poses or with objects in

the initial and final poses.

Figure 5.6: In order to solve this

problem two out of the three ob-

jects have to move to an interme-

diate pose.

Proof. Given these assumptions, every time that

the algorithm considers the k-th object, even if

its path to its final pose is blocked, the algorithm

will always be able to evacuate the k − 1 block-

ing objects from this path to the set of intermedi-

ate collision-free poses. Given the overhand grasp

setup, an object ob can block another object’s o

path only when ob is (partially) occluding object’s

o final pose. In this situation, CLEAR will select

the intermediate pose for ob and will not be called

recursively.

Figure 5.6 depicts an example of a worst case setup where k − 1 objects have to

move to intermediate poses in order to solve the problem. Given that the intermediate

poses are collision-free among themselves and with all the final poses CLEAR will be able

58

to find an intermediate pose for all the blocking objects. The monotone primitive mRS

will not be able to solve this problem.

This property still leaves a large set of non-monotone challenges for which it is not

possible to argue that the algorithm will find a solution. In particular, scenarios that

the objects are not accessible with overhand grasps will generate more constraints. The

interactions between the objects are not only constraints arising from the final poses.

For example, in a shelf, the volume of the hand will generate additional constraints

between the objects. For the non-monotone problem depicted in Fig. 5.7 (left) plRS

will fail. When object A is considered first, object B needs to be cleared. But object B

is not reachable by the arm. When object B is considered to be moved first, the search

tree in Fig. 5.7 (right) shows that A can be cleared from object B’s path but then A

cannot reach its own target. Solving such challenges relates to complete multi-robot

planning [115, 84, 118, 122, 104], which is itself hard.

Complete methods will end up coupling objects and try to plan in a composite

space, which increases computational cost. For many of these challenges, the recursive

nature of CLEAR helps in resolving the problem without too much search effort. The

recursion results in a quadratic number of calls to transfer/transit primitives in the

worst case for each edge of the backtracking search. This is still significantly less than

considering all possible permutations if one considered all possible orders for moving

the blocking objects. The question is whether this overhead is justified in practice given

the increased capability of the approach to resolving problems. The recursive nature of

CLEARis practically helping in addressing a wide set of non-monotone instances as the

accompanying experimental section shows (section 5.3).

It is understood, however, that is difficult to address the general case using a com-

plete rearrangement primitive. The following section introduces the idea of a hierar-

chical approach, where the above primitives are considered as local planners within

a higher-level task planner that searches the space of possible object arrangements.

The benefit of these primitives is they provide good connectivity in the space of object

arrangements.

59

Figure 5.7: (left) An example problem where the non-monotone extension of the back-
tracking search approach fails. (right) The corresponding search tree given object B
as the first object. The subproblem of finding an intermediate pose for A succeeds but
then object A cannot reach its final pose.

5.2 A Hierarchical, Graph-theoretic Approach

The main idea here is to limit the search for a solution in the valid subset of the state

space Xv and focus the search process on identifying transfer paths that allow the arm

to rearrange objects. This is achieved in a hierarchical manner. The top-level algo-

rithm searches globally the space of object arrangements by constructing a graphical

representation that expresses which pairs of arrangements are reachable to each other

using rearrangement primitives. This top-level method does not explicitly identify the

motions of the arm that achieve the corresponding rearrangement. This is the respon-

sibility of a connection rearrangement primitive between pairs of similar, “neighboring”

arrangements. The similarity is defined based on a distance estimate in the space of

object arrangements. If the connection primitive can connect all possible pairs of ob-

ject arrangements in an efficient manner, then there would be no need for the top level

search process. The proposed hierarchical approach integrates the available incomplete

connection primitives in a higher-level search process that achieves probabilistic com-

pleteness. This section describes the top-level algorithm for searching in the space of

object arrangements and its properties.

60

Figure 5.8: The hierarchical approach for solving rearrangement problems. A rear-
rangement primitive is used as a local planner for a high-level task planner.

5.2.1 Top-level Search over Transition Rearrangement States

The top-level search process can be performed in many different ways. For instance, it is

possible to use heuristic search [40], or follow an incremental sampling-based algorithm,

such as RRT [80]. Here a roadmap, similar to sampling-based roadmap methods, such

as PRM [61] is built, which simplifies the reasoning about the coverage of the underlying

state space and opens the door for potential path quality arguments. The method is

referred to as REARRANGE PRM and is summarized in Alg. 9.

The algorithm constructs a graph G(V,E) where nodes v ∈ V correspond to tran-

sition rearrangement states of the form x = (q(α[oi]), α) ∈ Xti for some i ∈ [1, k]. In

these states, all the objects are stably resting and the arm is grasping one of them.

Edges e ∈ E correspond to local rearrangement paths between such transition states.

The algorithm is provided the specification of a “prehensile single-arm rearrangement

problem“, i.e., the workspace W, the robot specification R, the set of movable objects

O and the start and goal states (qI , αI) and (qF , αF).

After the initialization of the graph (line 1), the method constructs the set of nodes

that correspond to possible start and goal object arrangements, where the arm may

be grasping one of the objects (lines 2-8). In particular, for every object o ∈ O, the

61

Algorithm 9: STATE BASED REARRANGE PRM(W,R,O, qI , αI , qF , αF)

1 G ← {V ← {∅}, E ← {∅}};
2 for each o ∈ O do
3 qstart = q(αI [o]);
4 if TRANSIT(qI , qstart, αI) then
5 V ← V ∪ { (qstart, αI) };
6 qend = q(αF [o]);
7 if TRANSIT(qend, qF , αF) then
8 V ← V ∪ { (qend, αF) };

9 while ((Π, vstart, vend)← FIND PATH(G, αI , αF)) == ∅ do
10 αrand ← SAMPLE STABLE ARRANGEMENT(W,O,G);
11 for each o ∈ O do
12 q = q(αrand[o]);
13 if COLLISION FREE(W,R,O, q, αrand) then
14 vnew ← (q, αrand);
15 V ← V ∪ {vnew};
16 Vnear ← NEAR STATE(G, vnew);
17 for vnear ∈ Vnear do
18 π ← CONNECT STATES(W,R,O, q, vnew, vnear);
19 if π 6= ∅ then
20 E ← E ∪ { ((vnew, vnear), π) };

21 qstart = vstart.q; qend = vend.q;
22 Π← TRANSIT(qI , qstart, αI) | Π | TRANSIT(qend, qF , αI);
23 return Π;

method identifies whether it is feasible to move the arm from its initial configuration

qI to a grasping configuration q(αI [oi]) given the initial arrangement αI (lines 3-5). If

this is possible, then the corresponding transition state, where the arm is grasping that

object in the initial arrangement is added as a node. The same process is repeated

for the final arrangement (lines 6-8), as long as it is possible to retract the arm from

grasping an object o ∈ O in the final arrangement to the final arm configuration qF .

The main loop of the algorithm (lines 9-20) searches for intermediate arrangement

states that will allow connecting any of the nodes corresponding to the initial and final

arrangements on the roadmap. In particular, the function FIND PATH corresponds to

a multi-start, multi-goal A∗ search on the graph G between all the initial and final

states (line 9). For as long as no path has been found, the algorithm samples a stable

arrangement for the objects, i.e., one where all of them rest stably (line 10). For

62

each object, the method considers the corresponding grasping arm configuration (lines

11-12) and evaluates whether this is reachable by the robot and collision-free given

the workspace and the sampled arrangement αrand (lines 13). If it is reachable and

collision-free, then it is possible to define the transition state where the objects are in

the arrangement αrand and the arm configuration allows the robot to grasp object o.

This state is stored as a node vnew in the roadmap (line 14-15) and a set of neighboring

nodes/states Vnear are identified based on a distance estimate in the space of object

arrangements (line 16). For each one of these nodes vnear ∈ Vnear, the method attempts

to connect vnew and vnear directly using the primitive CONNECT STATES (lines 17-18).

This is the lower-level primitive that is responsible to compute the actual manipulation

path that allows moving between two neighboring object arrangements. If a local path

π is found, then an edge between vnew and vnear is added to the roadmap (lines 19-20).

This edge also stores the local rearrangement path π on the graph.

Once the function FIND PATH finds a manipulation path Π between the initial and

final poses, it also returns that actual start vstart and end state vstate along the corre-

sponding path. These are used in order to compute the transit paths that allow the

arm to move from qI to the initial grasping state and from the final grasping state to

qF , which is then properly appended to Π so as to return the final solution (lines 21-23).

5.2.2 Conditions for Probabilistic Completeness for Single Pick and

Place

The following discussion will first consider the integration of the above search process

with an individual pick and place primitive and argue that under certain conditions it

is possible to argue probabilistic completeness guarantees for this integration. A single

pick and place action corresponds to a TRANSIT and a TRANSFER path for a single object

o. The focus is on describing the conditions for Algorithm 9 to achieve probabilistic

completeness for rearrangement problems using pick and place actions.

Consider a rearrangement problem (W,R,O, qI , αI , qF , αF), which has a solution

path π with clearance properties as defined below in Assumption 1. Note that by

definition the solution path can be decomposed into an alternating sequence of transit

63

and transfer sub-paths π = {π01, π
g1
1 , π

0
2, π

g2
2 , . . .}, where gj ∈ [1,m], so that all the

transitions between subpaths are legal. In the context of rearrangement problems, the

assumed clearance involves both object arrangements and the robot’s motion.

Assumption 1. For the rearrangement problem (W,R,O, qI , αI , qF , αF) there is a

solution path π, for which if the poses of objects in the initial, final and any intermediate

transition states along path π are disturbed by at most a certain distance δO, there is

still a solution π′ for that rearrangement problem. Moreover, all transit subpaths π0i and

transfer subpaths πgii , gi ∈ [1,m] for the arm have a clearance δR from collision states.

This implies that the solution path π has δ = f(δO, δR) clearance in the state space X

of the problem.

Figure 5.9: If there is a path to connect the states xi and xi+1, then there will also be
a path to connect x̂i and x̂i+1.

For any solution path π that satisfies the above assumption, denote all the cor-

responding intermediate transition states after the application of each transit π0i and

transfer subpath πgii as xi. The solution path based on states will be

π = {x0, . . . , xi, xi+1, . . . , xm}

, where xF = xm. The path between states xi and xi+1 corresponds to a TRANSIT and

a TRANSFER path for an object oi.

The corresponding arrangements αi and αi+1 for the states xi and xi+1 will differ

only by a single pose. With a random sampler it is possible to sample x̂i ∈ Bδ(xi) and

x̂i+1 ∈ Bδ(xi+1). This does not mean, however, that x̂i and x̂i+1 will differ only by one

pose. They could differ up to k poses, since all the objects may be moved.

64

Algorithm 10: SAMPLE NEAR ARRANGEMENT(W,O,G(V, E))

1 (qrand, αrand)← (q, α) ∈ V;
2 oq ← {o|qrand(αrand[o])};
3 αnew ← αrand;
4 αnew[oq]← {p|p /∈ αrand};
5 return αnew;

Instead of the abstract sampler SAMPLE STABLE ARRANGEMENT used in Algorithm 9,

a special sampler is considered here: SAMPLE NEAR ARRANGEMENT(W,O,G), in order to

restrict the sampling process and achieve desirable properties using a pick and place

primitive. The special sampler (Alg.10) will select randomly a node (line 1) that con-

tains an arrangement αrand and a grasping configuration for the object oq at the pose

αrand[oq] (line 2). Then it will generate a new object arrangement that differs only by

one pose from the randomly selected object arrangement αrand (lines 3-4). When a

state x̂i ∈ Bδ(xi) is selected as input for SAMPLE NEAR ARRANGEMENT there is a positive

probability that it will sample the object arrangement α̂i+1 that differs only by one

pose from α̂ and also is in the vicinity of αi+1 that corresponds to xi+1.

Lemma 3. Given Assumption 1 and SAMPLE NEAR ARRANGEMENT, Algorithm 9 has a

probability lower bounded by a positive value ρδ > 0 to sample states x̂i ∈ Bδ(xi) for

all the intermediate transition states xi, where i ∈ [0,m], along a solution path π with

clearance δ.

Proof. The action between states xi and xi+1 is a single pick and place. This means

that the object arrangements of these states will differ by a single pose. Without loss

of generality assume:

αi[oi] 6= αi+1[oi] and αi[O \ oi] = αi+1[O \ oi]. (5.1)

The state x̂0 = x0 is already in the set of graph nodes. As an inductive step, assume

state x̂i ∈ Bδ(xi) is already sampled. Given the sampler SAMPLE NEAR ARRANGEMENT it

is possible to generate x̂i+1, where

α̂i[oi] 6= α̂i+1[oi] and α̂i[O \ oi] = α̂i+1[O \ oi]. (5.2)

65

Since all the poses for the arrangement α̂i ∈ x̂i will be within the vicinity of the

arrangement αi ∈ xi, then it is also true that α̂i[O \ oi] ∈ BδO(αi[O \ oi]).

Given Eqs. 5.1 and 5.2, the objects O\ oi will be in the vicinity of the arrangement

αi+1 ∈ xi+1, i.e., α̂i+1[O \ oi] ∈ BδO(αi+1[O \ oi]). Because the objects O \ oi will be

in the same poses for states xi and xi+1 as well as states x̂i and x̂i+1. Furthermore,

x̂i ∈ Bδ(xi). Eventually, a state x̂i+1 expanded from x̂i using SAMPLE NEAR ARRANGEMENT

will be sampled, where α̂i+1[oi] will be in the vicinity BδO(αi+1[oi]), which means that

x̂i+1 ∈ Bδ(xi+1). This shows that the method will eventually sample all the intermediate

transition states xi of the solution path π, given the sampler SAMPLE NEAR ARRANGEMENT.

As mentioned before tow states xi and xi+1 of the solution path π differ only in

the pose of a single object. This means that a pick and place action will work between

these two states and the object oi will be moved from its initial pose αi[oi] to the pose

αi+1[oi].

Lemma 4. Since a “pick and place” action for object oi allows to transition between

two consecutive states xi and xi+1 of the solution path π, it will also work for the states

x̂i and x̂i+1 if:

• x̂i ∈ Bδ(xi),

• x̂i+1 ∈ Bδ(xi+1) and âi+1[o] =

 BδO(αi+1[o]), o = oi;

α̂i[o], o ∈ O \ oi.

Proof. Given lemma 3 the method will be able to sample all the intermediate states x̂i

along the solution path π̂. The sampled states will be in the vicinity BδO of the original

states. Given assumption 1 the pick and place action will be able to work between the

states x̂i and x̂i+1 because it was able to work between the states xi and xi+1 and all

the objects are within distance δO.

Theorem 1. The high-level task planner STATE BASED REARRANGE PRM (Alg.9) with the

following components:

66

• CONNECT STATES: a simple pick and place consisting by a TRANSFER and a TRANSIT

path for the manipulator to grasp an object and move it to a new pose;

• SAMPLE STABLE ARRANGEMENT: the incremental sampler SAMPLE NEAR ARRANGEMENT

and

• NEAR STATE: searches all the nodes and returns as neighbors all the nodes that

differ by a single pose.

will find a solution to the rearrangement problem (W,R,O, qI , αI , qF , αF) with proba-

bility reaching 1 as the number of samples increases, if a solution exists.

Proof. Given a prehensile rearrangement problem (W,R,O, qI , αI , qF , αF) consider a

solution path π. The solution path can be decomposed into a sequence of segments

{π1, π2, . . . , πm}, where each πi corresponds to a TRANSIT and a TRANSFER operation.

Denote the object moved during path segment πi as oi. The start state of πi is xi =

(qi, αi) and the final state is xi+1 = (qi+1, αi+1), where qi = q(αi[oi]) (and q0 = qI).

The algorithm will eventually sample states in the vicinity BδO of all the states along

the solution path (lemma 3), and can connect these states using the simple pick and

place action (lemma 4). Thus, it will generate a solution path π̂ in every case.

5.2.3 Conditions for Probabilistic Completeness using More Expres-

sive Primitives

The previous subsection gave the proof that a high-level task planner using single pick

and place is complete for rearranging problems. However, this method needs a special

sampler for this argument to work. Furthermore, it requires a very large number of

samples before it can achieve a solution as it has to densely sample in the vicinity of

a solution path. Section 5.1 presented primitives where two states xi and xj can be

connected even if they do not differ by a single position of an object o.

Given the previously used decomposition, the solution path π is split into a sequence

of TRANSIT and TRANSFER sub-paths. Along the solution path π there could be two

states xi and xj , which differ up to k poses. If each object is moved at most once

67

Figure 5.10: Along the solution path π there are states that can be connected using a
local rearrangement primitive.

between the two states, then the states xi and xj can be connected with a path πij ,

which corresponds to a solution achieved by the monotone primitive. The path πij

provides a sequence of TRANSIT and TRANSFER sub-paths for rearranging the objects

from the initial state xi to the final state xj . The sequence can be detected by the

monotone primitive and can connect directly the states xi and xj .

Given a more powerful primitive, it is possible to define a new decomposition of the

solution path, into a sequence of local rearrangement sub-paths, fig.5.10. Each ARRANGE

sub-path will be the solution of a local rearrangement problem between two neighboring

states.

Lemma 5. If two states xi and xj along the solution path π for the rearrangement

problem can be connected with a primitive that is complete for monotone problems,

then the states x̂i ∈ Bδ(xi) and x̂j ∈ Bδ(xj) can also be connected using the same

primitive.

Proof. If the two states xi and xj can be connected with a monotone path πij , then

the path πij can be decomposed into a sequence of pick and place sub-paths {xl, xl+1}.

The object arrangements of the states xl and xl+1 will differ only by a single pose for

an object ol. The pose of object ol in the state xl will have to be the same as in the

xi state, while the one in xl+1 will have to be the same as in the xj state since the πij

path is monotone. In other words, the object arrangement of a state xl will have some

poses of objects borrowed from state xi and the remaining one will come from xj .

68

Then, for states x̂i ∈ Bδ(xi) and x̂j ∈ Bδ(xj), it is possible to define the monotone

path π̂ij , which involves the same sequence of pick and place actions as the path πij

and can be decomposed in a similar sequence of pick and place sub-paths {x̂l, x̂l+1}.

Each one of the states x̂l is guaranteed to be in the vicinity of Bδ(xl). Given that states

xi and xj satisfy the desirable clearance properties, the state xl is also satisfying them,

implying that state x̂l is a valid state. Given that the primitive is assumed complete for

monotone problems and all the intermediate states are valid, then the states x̂i ∈ Bδ(xi)

and x̂j ∈ Bδ(xj) can be connected with the corresponding primitive.

Theorem 2. The high-level task planner STATE BASED REARRANGE PRM (Alg.9), using

as:

• CONNECT STATES: any primitive that is complete for monotone problems,

• SAMPLE STABLE ARRANGEMENT: a random sampler and

• NEAR STATE: all roadmap nodes are returned as neighbors,

will find a solution to the rearrangement problem (W,R,O, qI , αI , qF , αF) with proba-

bility reaching 1 as the number of samples increases, if a solution exists.

Proof. Given a prehensile rearrangement problem (W,R,O, qI , αI , qF , αF) consider a

solution path π. The solution path can be decomposed into a sequence of segments

{π1, π2, . . . , πm}, where each πi corresponds to a monotone path, i.e., a path that can

be found by the primitives of Section 5.1.

The random sampling method will sample with positive probability states in the

vicinity Bδ of the states on the solution path. Given lemma 5 the primitive solver

that is being used in this high-level task planner will be able to connect these states.

Moreover, given that the algorithm will try to connect a new sampled state with all the

existing states will generate the solution path π in every case.

69

Similar proof holds for the non-monotone primitives given the lemma 2, which says

that a non-monotone primitive will work the same way as the monotone primitive in

all the monotone cases. As a result, the STATE BASED REARRANGE PRM is complete when

using any monotone or non-monotone primitive as connection function.

Note that Theorem 2 does not require the previous special sampler, which was used

in the case of the pick and place connection primitive. Instead, a naive random sampling

process in the arrangement space is sufficient. This means that the algorithm is going to

need fewer samples in order to sample all the states along a solution path π. This way

the algorithm STATE BASED REARRANGE PRM does not have to sample all the different

pick and place actions in order to connect two states. Instead, states that differ up

to k poses can be connected. Nevertheless, the near function of Theorem 2 seems to

be more expensive, since the algorithm needs to try connections with all the existed

samples. Experimentally, it is shown that it is beneficial to try connections with few

neighboring samples instead of trying to sample all the states along a solution path.

A reasonable concern is why should one use the rearrangement search primitives

since it is possible to show probabilistic completeness even for a pick and place local

planner. For a pick and place to succeed, however, it has to be that the two arrange-

ments are different only by a single pose. This relates to the probability of sampling the

right sequence of arrangements in PRM. Sampling in continuous space for two arrange-

ments of k objects that have the same k−1 poses has probability 0. On the other hand,

the proposed primitives can work successfully in connecting pairs of arrangements that

do not share any pose. For instance, the mRS primitive will succeed, if there is a δ-ball

around each arrangement αi along a segment π′i so that for all α′i in the δ-ball: i) the

path segment π′i connecting arrangements α′i−1 to α′i is also part of a solution path π′,

and ii) the path segment π′i remains monotone. The probability a local segment π′i to

be monotone has positive probability.

The issue with pick and place can be addressed by restricting the problem to a

discrete set of poses and give up on probabilistic completeness, which is actually a

practical way of taking advantage of preprocessing. Alternatively, one can consider

a tree-based approach instead of the PRM, where given an input arrangement a new

70

arrangement is generated with the pick and place primitive. The problem is, however,

that the number of possible new arrangements that can be generated at each step of

the algorithm is small, i.e., equal to the number of objects k. On the other hand, the

rearrangement search primitives can connect a continuum of arrangement pairs.

The resulting trade-off is computational in nature. Consider a different decompo-

sition of the same solution π into segments {π̂1, π̂2, . . . , π̂n}, where each segment p̂ii

corresponds to a monotone subproblem. Such a decomposition exists because the ini-

tial pick and place decomposition exists and is also monotone. The length of the pick

and place decomposition m is typically significantly greater than the length n of the

monotone one, which in turn is greater than a decomposition to subproblems of plRS.

This means that a significantly larger number of arrangements needs to be sampled and

connected until the pick and place sequence is found. On the other hand, there is an

increased cost of generating a monotone segment π′i versus generating a pick and place

segment πi, since it involves evaluating a larger number of transit/transfer paths. This

cost has to be also paid for failed connection attempts. As the experiments accompa-

nying this work show this tradeoff turns out to be in favor of the more expressive and

computationally expensive connection primitives.

5.2.4 Faster Search over Arrangement Space can be also Complete

Algorithm 9 will generate a lot of nodes that are not needed for the solution of the

problem. This is because each node corresponds to an object arrangement and a grasp

for an individual object, e.g., x = (q(α[o]), α). For each sampled arrangement of k

objects, the method generates up to k new nodes for the graph, where the arm grasps a

different object in each case. A more efficient search process is possible, which samples

only objects arrangements and not problem states. For a pair of object arrangements,

it is possible to evaluate whether they can be connected by assuming a safe arm config-

uration qRs and trying to use one of the primitives to move the arm from qRs back to the

same safe configuration qRs . This simplification works under the following assumption.

Assumption 2. There is a solution path with grasps q(α[o]) that are reachable from the

configuration qRs of the robot. The configuration qRs will be called a “safe configuration”.

71

Figure 5.11: All the grasp states are reachable from the safe configuration qRs of the
robot. As a result, the robot can start from the safe configuration grasp an object from
an initial pose, transfer it to a final pose and then return back to the safe configuration.

The above assumption also means that all the generated grasps from the algorithm

will be reachable from qRs . See Fig.5.11 for a related illustration.

Algorithm 11 depicts how REARRANGE PRM will work when sampling takes place only

in the arrangement space. This new algorithm will construct a graph with fewer nodes,

which searches over the arrangement space. It has the same completeness properties

with the previous high-level algorithm under assumption 2.

Theorem 3. The high-level task planner REARRANGE PRM (Alg.11), using as:

• CONNECT STATES: any primitive that is complete for monotone problems, where

the initial and the final configuration of the robot is the same,

• SAMPLE STABLE ARRANGEMENT: a random sampler and

• NEAR STATE: all roadmap nodes are returned as neighbors,

will find a solution to the rearrangement problem (W,R,O, qI , αI , qF , αF) with proba-

bility reaching 1 as the number of samples increases, if a solution exists, given that all

the grasp states are reachable to the safe configuration qRs of the robot.

72

Algorithm 11: REARRANGE PRM(W,R,O, qRs , αI , αF)

1 G ← {V ← {αI , αF }, E ← {∅}};
2 while ((Π, vstart, vend)← FIND PATH(G, αI , αF)) == ∅ do
3 αrand ← SAMPLE STABLE ARRANGEMENT(W,O);
4 V ← V ∪ {αrand};
5 Vnear ← NEAR(G, αrand);
6 for αnear ∈ Vnear do
7 π ← CONNECT(W,R,O, qRs , αrand, αnear);
8 if π 6= ∅ then
9 E ← E ∪ {(αrand, αnear), π};

10 return Π;

Proof. Given a prehensile rearrangement problem (W,R,O, qI , αI , qF , αF) consider a

solution path π. The solution path can be decomposed into a sequence of segments

{π1, π2, . . . , πm}, where each πi corresponds to a monotone path, i.e., a path that can

be discovered by the primitives of Section 5.1.

Each of these component paths will start and end with the safe configuration qRs .

Given assumption 2 all the grasps that are used in the solution path can be connected

to the safe configuration. This means that the rearrangement primitive will be able to

start and end from the safe configuration for the next segment πi of the solution path.

The method using a random sampler will sample with positive probability states in

the vicinity Bδ of the states on the solution path. Given lemma 5 the rearrangement

primitive solver that is being used in this high-level task planner will be able to connect

these states. Then the configuration of the manipulator will end up in the safe configu-

ration, qRs . Moreover, given that the algorithm will try to connect a new sampled state

with all the existing states will generate the solution path π in every case.

Theorem 3 shows that if the available grasps for the algorithm are all connected to a

safe configuration qRs , then the algorithm will be able to find the solution. Considering

only grasps that are reachable from qRs results in a computationally more efficient

search.

73

5.3 Evaluation

This section evaluates the proposed algorithmic framework through the aid of a simula-

tion environment. The experiments in the simulation environments focus on scalability

issues and the ability of the algorithms to solve difficult non-monotone problems in-

cluding in tight environments with limited free space. Furthermore, the methods are

demonstrated on a physical platform. The physical experiment illustrates the ease with

which the proposed methods can be used on a real system.

5.3.1 Physical Experiment

Figure 5.12: The “RSS challenge” solved by a single arm of a Yaskawa Motoman
SDA10F robot equipped with a UniGripper vacuum tool. The images from left to
right depict the process of rearranging the target objects so as to achieve the desired
configuration of the “RSS challenge”.

An arm of a Yaskawa Motoman SDA10F robot is used for the physical experiment.

The arm has 7 joints, while the robot also provides a torsional degree of freedom. The

arm is carrying a UniGripper vacuum tool. This end-effector provides an additional,

wrist-like degree of freedom and is using suction to attach to and carry objects. The

experiment involves sixteen cubic objects placed in front of the robotic arm on a flat

surface. While the objects have the same geometry, they are uniquely identified. Ini-

tially, the objects are randomly placed on the table and a solution path is computed in

order to transfer the objects to the desired target arrangement. For the example shown

in Fig. 5.12, the target arrangement is to form the letters RSS with the sixteen objects.

The robot is provided the initial poses of the objects, the target arrangement as

well as the static geometry. Then, a solution path is computed using the non-monotone

algorithm (plRS). The robot executes the computed path by employing the architecture

74

described in the previous section. This allows to reason about the sequence of object

arrangements that give rise to the solution as well as the motion of the arms. For the

performed physical experiments the robot was able to solve the problem in an open-

loop manner and engage/disengage the end-effector when necessary in order to move

the objects to new locations.

The non-monotone algorithm (plRS) came up with a solution for this problem in

1.39 seconds. However, the execution time was about 18 minutes. Given that the path

is executed in an open-loop manner the robot is using half of its maximum speed in

order to be more robust. The robot had to move 20 objects, where 5 of them moved to

an intermediate location before getting to their target.

The solution path has only one redundant step. In order to free the target pose of

the moving object, the algorithm had to select an intermediate pose for the blocking

object. The new intermediate pose was blocking the target pose of the next moving

object. However, it is not possible for the algorithm to respect all the future objects

when detects intermediate pose for a blocking object.

5.3.2 Simulated Setup

In terms of a more comprehensive evaluation of alternative approaches to rearrangement

problems, three different simulated workspaces are considered where a model of a Baxter

arm is used to move objects around. The Baxter arm has seven degrees of freedom and

utilizes a parallel gripper in order to grasp and move objects. The “grid@tabletop”

space is shown in Figure 5.13 (left), the “grid@shelf” space is shown in Figure 5.13

(right)) and the “RSS challenge” for the Baxter robot was illustrated in Figure 1.1.

The “RSS challenge” involves six, eleven or sixteen boxes placed on a tabletop.

Initially, the arrangement is random and the objective is to form the characters: “R”,

“RS” and “RSS”. The “grid@tabletop” benchmark places four, ten and sixteen cubic

objects on a tabletop. The “grid@shelf” challenge has two, six and ten cylinders placed

on a shelf that limits the arm’s reachability and does not allow overhand grasps. In

both the “grid@tabletop” and the “grid@shelf” instances, the objective is to rearrange

the objects from a random to a grid arrangement.

75

Figure 5.13: (left) The “grid@tabletop” problem. An initial and the final arrangement
of the objects on the table. (right) The “grid@shelf” problem. An initial and the final
arrangement of the objects inside the shelf.

Four different methods are evaluated in these setups. First, the rearrangement

primitives: (a) mRS and (b) plRS are considered. Then, two versions of the hierarchical

scheme are considered, where the function CONNECT of the high level REARRANGE PRM is

utilizing either the (c) mRS or the (d) plRS approach. The time limit provided to the

methods was 10 mins. 10 experiments were performed for each combination of method

and environment. All the statistics beyond success ratio are reported over the successful

runs.

Benchmark: RSS Challenge for the Baxter robot

Figure 5.14 provide the results for the “RSS challenge” using a simulated Baxter robot

for the four alternative methodologies. For six objects, all the methods with the ex-

ception of the monotone primitive were able to find a solution in all instances, Fig.5.14

top. As the number of objects increases, however, there is limited space for the objects

to be placed and there is high probability for two objects to overlap each other’s final

positions. For that reason, the success rate of the monotone solver goes down quickly

with additional objects. The non-monotone solver, however, manages to solve all in-

stances. In terms of computation time, there is an increase for plRS as the number of

objects increases but overall it performs satisfactorily across the board.

The hierarchical schemes based on REARRANGE PRM resemble the computation times

of the primitives they employ (Figure 5.14 middle). For the case with the six objects,

all the examples were monotone and all the algorithms found the monotone solution.

For eleven objects, the REARRANGE PRM using the monotone primitive (mRS), improves

76

Figure 5.14: (Top) The success ratio, (Middle) the computation time , (Bottom) the
number of object transfers for each algorithm out of 10 runs for the “RSS challenge”
with the simulated Baxter robot. The results is the average number among 10 runs.

77

upon the success ratio of the primitive by itself. For sixteen objects, however, it does

not have the time to solve all of the problems with sixteen objects as the monotone

primitive cannot easily connect two randomly sampled arrangements resulting in a

highly disconnected arrangement space. The non-monotone primitive is effective in

this case and can quickly provide a solution. As a result, the REARRANGE PRM using

the non-monotone primitive (plRS) could solve all the problems and return a similar

solution.

The number of objects that each algorithm had to transfer is shown in figure 5.14

bottom. It is easy, again, to realize that the examples with 6 objects were monotone

problems because on average all the algorithms had to move 6 objects. For the other

problems the plRS and the REARRANGE PRM using plRS transferred more objects because

the combination of the high-level planner REARRANGE PRM and the primitive could solve

the most difficult problems that require to detect multiple intermediate poses and move

multiple objects to these intermediate poses.

Benchmark: “grid@tabletop”

Figure 5.15, provides the results for “grid@tabletop” for the four rearrangement al-

gorithms. In this example, there are many partial overlaps between final poses and

intermediate or initial poses. This affects the performance of the monotone method,

which was not able to solve any problem with sixteen objects. In addition, the interac-

tions between the poses affect the running time for the non-monotone primitive (plRS),

which is successful across all challenges but needs to search over a large number of

possible orders to find one that works.

The REARRANGE PRM method using the monotone primitive mRS could solve all the

problems up to ten objects, but found solutions only for 20% of the problems with

sixteen objects (Figure 5.15 top). The non-monotone solvers run slightly slower in the

smaller examples. This is because they spend a little bit more effort to find intermedi-

ate poses for a non-monotone solution instead of searching if there is an easy monotone

solution. For the same reason, the REARRANGE PRM using the monotone primitive mRS

78

Figure 5.15: (Top) The success ratio, (Middle) the computation time (Bottom) he
number of object transfers for each algorithm out of 10 runs for the “grid@tabletop
challenge” with the simulated Baxter robot. The results is the average number among
10 runs.

79

is faster than the REARRANGE PRM that uses the non-monotone primitive plRS. Nev-

ertheless, the REARRANGE PRM with mRS is significantly slower when there are sixteen

objects, where it could solve only 20% of the problems. These are the easiest problems.

Restricting the comparison only in this set, the REARRANGE PRM using plRS can solve

them faster and more efficiently in terms of solution quality.

Similar to the previous benchmark the non-monotone primitive and the high-level

planner REARRANGE PRM using the non-monotone primitive (plRS) could connect imme-

diately the initial arrangement with the target arrangement. These algorithms found

a solution for all the problems by moving some extra objects to intermediate poses.

However, the monotone solver could solve all the problems with the four object, but

could not solve any problem with sixteen objects. The REARRANGE PRM using the mono-

tone primitive also has low success ratio and had to move more objects than the non-

monotone algorithms before finding a solution to the problems with sixteen objects.

The non-monotone solvers run slightly slower in the smaller examples (Fig.5.15 mid-

dle). The difference is more significant in the larger-scale examples, but the monotone

solver fails in most cases there. The running time of the REARRANGE PRMs using non-

monotone methods tracks those of the primitives as they typically succeed because first

connection works, given that the non-monotone algorithm solved all the problems.

The high number of transfers for the REARRANGE PRM using mRS (Fig.5.15 bottom)

is because the algorithm had to solve many sub-problems until it finds a solution. For

the same reason the computation time is three orders of magnitude more than the

non-monotone methods, Fig.5.15 middle. plRS on average had to move 6 objects on

an intermediate pose before returns a solution to a problem with 16 objects for the

“grid@tabletop challenge”.

Benchmark: “grid@shelf”

The results for the last challenge, “grid@shelf”, are shown in the Figure 5.16. Here the

arm has reduced reachability and is not able to use overhand grasps. As the number of

objects increases, the monotone solvers’ success ratio goes down very quickly, because

there are more occluded objects that need to be moved to intermediate poses in order

80

to find a solution. The non-monotone primitive has better success ratio despite the

difficulty of the challenge and the limited reachability. Nevertheless, its success ratio

and running time deteriorate as well, especially with 10 objects in the shelf. Moreover,

the plRS primitive has to search a lot before identifying that it cannot return a solution.

Using the non-monotone primitives within REARRANGE PRM results in higher success

rate (Figure 5.16 top). When the algorithm tries to find a solution for the examples

with eight objects in the shelf, then only the version with the plRS manages to solve

all the problems but one. The monotone primitive failed to report a solution in almost

all of the problems. With regards to running time, the non-monotone primitive plRS

appears to be faster than the REARRANGE PRM scheme using the plRS (Fig.5.16 middle),

but it can solve only half of the problems in the shelf. These are the easier examples

and for that reason, these examples need less number of transfers (Fig.5.16 bottom).

Harder problems, which only the proposed integration of the sampling-based planner

with the non-monotonic primitive could solve, require more search in the arrangement

space and more transfers in order to get a solution.

For the last benchmark, the REARRANGE PRM using the non-monotone primitive could

solve almost all the problems. This algorithm is moving the most objects out of all the

other algorithms (Fig.5.16 bottom) because it could solve the most difficult problems

that require to detect multiple intermediate poses and move multiple objects to these

intermediate poses. For the problems with six objects, the REARRANGE PRM that uses

the monotone primitive could solve all the problems, but had to move more objects in

order to find the solution. The reason for these extra moves is the intermediate nodes

in the high-level graph that the algorithm has to visit. The problems are not monotone

and the algorithm had to generate more nodes that are connected with a monotone

path to the initial arrangement and the final arrangement.

81

Figure 5.16: (Top) The success ratio, (Middle) the computation time (Bottom) he num-
ber of object transfers for each algorithm out of 10 runs for the “grid@shelf challenge”
with the simulated Baxter robot. The results is the average number among 10 runs.

82

5.4 Discussion

The focus of the current work has been on showing the potential of combining sampling-

based algorithms with strong local primitives to solve hard object rearrangement prob-

lems. The first step was a new algorithmic primitive for object rearrangement that is

able to practically solve many non-monotone instances. It extends a previously devel-

oped technique for monotone problems [110] and utilizes principles from the multi-robot

planning literature [85, 71] as well as efficient solutions to the Minimum Constraint Re-

moval path problem [46, 47, 67]. This non-monotone primitive is integrated with a

higher-level planner in the context of a hierarchical framework, which operates to a

similar function to a probabilistic roadmap (PRM). This work shows that the proposed

integration achieves probabilistic completeness by searching the space of possible ob-

ject arrangements. It uses the proposed non-monotone primitive as a local planner to

locally connect pairs of object arrangements, which constitute nodes of the high-level

PRM planner. Simulated experiments show that the proposed primitive solves many

non-monotone challenges by itself. The integration with the higher-level task planner

results in an improved solution in terms of success ratio, path quality and scalability,

especially in setups in tight spaces and with limited reachability for the manipulator,

such as shelves. Typically, few arrangements are sampled by the high-level planner to

solve relatively hard instances when the primitive is failing to find a solution directly.

The provided simulation experiments make use of objects of similar geometry for

which it is easy to quickly identify grasps. This allows performing helpful precomputa-

tion towards fast resolution of rearrangement queries. The framework itself, however,

does not depend on such assumptions and can be applied in general setups with objects

of varying geometry given a primitive for effectively detecting appropriate grasps. Fur-

thermore, there are many different algorithmic choices for integrating sampling-based

planners with local primitives in the context of object arrangement. For instance, in-

stead of sampling different object arrangements and trying to connect them with a local

primitive, similar to the way a PRM algorithm works, one can consider an incremental

approach, similar to a bidirectional RRT. In this case, the local primitive does not have

83

to exactly connect two object arrangements. Instead, it can partially extend an initial

arrangement towards a target one. Preliminary indications with a bidirectional RRT

and a fast, partial extension primitive, show promise in significantly reducing compu-

tation time while utilizing a similar hierarchical framework [69]. In the context of such

incremental approaches, it is easy to apply heuristics for guiding the search process

and solving the problem faster. For the hierarchical framework proposed in this work,

heuristics can be introduced in the form of a biased sampling process at the high-level

PRM planner.

Another useful objective in the context of object rearrangement is to identify the set

of problems which are directly addressable by primitives similar to the non-monotone

one proposed here and which do not require the proposed more general, hierarchical

approach. One can look for inspiration in methods rooted in multi-robot planning

and especially those, which can provide optimality guarantees [118, 105, 123]. This

can lead to the development of solutions, which under certain conditions, can provide

high-quality paths. In the context of the proposed, hierarchical and sampling-based

framework, it is similarly important to consider the conditions under which it can

asymptotically converge to optimal solutions. There has been recent work in the area

of asymptotic optimality for manipulation task planning [117], which utilizes sampling-

based algorithms. This work can indicate a direction of how the proposed framework

can achieve such an objective while remaining computationally efficient.

Future efforts should also focus on the computation of robust rearrangement trajec-

tories, given actuation and observation noise, as different manipulation operations have

a different probability of being successful in practice. There has been some work in

hierarchical decision-theoretic planning tools for related problems [82], which motivate

further work in this area. Similarly, tight integration with perception for detecting

objects is necessary for the real-world adoption of rearrangement algorithms in target

applications. Furthermore, the current work has not considered rearrangement prob-

lems where physics can play a critical role, such as stacking challenges [113]. At a

combinatorial level, the algorithmic primitives developed as part of this work can still

be helpful in such setups but need to be integrated with processes that reason about

84

the feasibility of manipulation actions, given physical constraints.

An interesting extension of the framework would involve the use of two arms. In

this case, one arm can grasp a blocking object in order to clear the scene, while the

second object can reach for a previously blocked object. The current setup can also be

integrated with non-prehensile primitives. Operations, such as pushing, can be consid-

ered as the actions for transferring the objects in the environment [25, 34]. Similarly,

it can also be extended to the case of mobile manipulation [40], where the robot is able

to make use of additional free space that is accessible only once the robot navigates

to it. Cloud computing can be considered as a practical way to improve performance

through parallelization and share knowledge between different solutions [9].

85

Chapter 6

A Fast Incremental Search Framework for General Object

Rearrangement

In the previous chapter, it was shown that an extension of the monotone solver mRS,

could solve non-monotone problems. The method plRS could deal with harder prob-

lems, but could not solve all the problems in limited time. Probabilistic completeness

for object rearrangement was proven by using a task planner that builds a graph in the

space of object arrangements. The task planner works similar to PRM∗ [58, 61] and used

the plRS algorithm for connecting pairs of object arrangements [68]. Building such a

PRM-like roadmap requires that the local planner can frequently connect two randomly

sampled arrangements. But this is often not possible given the size of the search space

even with a powerful local planner.

This chapter focuses on finding more efficient solutions for hard instances of general

object rearrangement. The first criterion is to use fast rearrangement primitives

that can solve many rearrangement problems. By taking advantage of recent algo-

rithmic insights [115, 47, 67] a “fast monotone Rearrangement Solver” (fmRS) and “fast

non-monotone Rearrangement Solver” (fplRS) avoid backtracking search are proposed.

While the procedure is incomplete, even for monotone instances, it has a high success

ratio and significant computational benefits.

The second criterion in order to have fast solutions is to maintain good con-

nectivity for the graph in the arrangement space. The rearrangement primitives can

be adapted and return a partial solution when no complete solution is found. This

involves moving as many objects as possible towards the target arrangement. Given

the partial formulation of the rearrangement primitives, it is possible to use them in

a high-level task planner as an expansion step from an initial arrangement instead of

86

Figure 6.1: A toy example of the towers of Hanoi. The manipulator needs to transfer
all the objects with the same order from the left shelf to the center shelf. It can also
use as extra free area the top shelf.

a connection two arrangements. This allows the efficient use of such methods in the

context of higher-level search procedures similar to Bi-RRT [80], where two tree data

structures originating at the start and goal arrangements are built.

6.1 Discovering the Constraint Graph

Solving a rearrangement challenge means finding the combination of paths that will

move the objects to their final poses without colliding with the other objects. However,

finding these paths requires searching over all possible orders of moving the objects

one after the other. This is how the original mRS and the extension plRS achieved

via backtracking search. This chapter proposes fixing the paths of the objects to the

“minimum constraint removal” (MCR) paths [47] for constructing the “constraint graph”.

An MCR path minimizes the number of collisions with other objects. The benefit of such

paths is that they introduce the minimum number of constraints in the “constraint

graph”. While the MCR problem itself is hard, reasonable and efficient approximations

are available [47, 70, 67].

Definition 18 (Constraint graph). The nodes of the constraint graph correspond to

objects o ∈ O and an edge (oi → oj) expresses the constraint that oj needs to be moved

before oi in the execution sequence. In particular, constraints are defined in the following

way:

• If object oi’s initial pose αI [oi] collides with the MCR path Π[oj] for object oj, then

oi has to move first, i.e., oj → oi.

87

• If object oi’s final pose αF [oi] collides with the MCR path Π[oj] for object oj, then

oj has to move first, i.e., oi → oj

Figure 6.2: (left) An example of two arrangements of four objects (Initial: filled disk,
final: empty circle). (right) The constraint graph generated by these examples given
the MCR paths. Top case: A monotone solution has been found. Bottom case: A cycle
arises.

If the “constraint graph” has no cycles given the MCR transfer paths, it means that

the problem is monotone and the order with which the objects can be moved, without

collisions, is given by a topological sorting on the “constraint graph” (Fig.6.2(top)). If

the graph contains cyclical dependencies (Fig.6.2(bottom)) then the problem is non-

monotone and the fmRS will not be able to give a solution for this instance. The “fast

non-monotone Rearrangement Solver” (fplRS) will try to decouple the objects that

causing cyclical dependencies, by moving some of these objects to intermediate poses.

88

6.2 Fast Approximate Rearrangement Primitives

This section presents two rearrangement primitives as local planners within a higher-

level task planner to search the space of possible object arrangements and solve problems

like the one in Fig. 6.1. The benefit of these primitives is they can connect an individual

arrangement to a relatively large number of different ones. This is an advantage over

pick and place, which can only connect arrangements that differ only by a single object

pose [40, 106]. Exhaustively searching for all possible orders can result in long solution

times and does not scale well with the number of objects in the scene. There is a way,

however, to approximate this process, while avoiding backtracking search. This section

presents approximate versions for both the monotone and the non-monotone primitives.

6.2.1 Fast, Approximate Monotone Rearrangement Primitive (fmRS)

Exhaustively searching for all possible orders can result sometimes in long solution

times and does not scale well as the number of objects increases in the scene. The

proposed method, “fast monotone Rearrangement Solver” (fmRS), avoids backtracking

search given the following observation: if the paths for transferring the objects are

fixed, then one can easily compute the sequence of moving objects without collisions -

if one exists [115]. In particular, the sequence is the output of topological sorting on

a “constraint graph” which is a directed graph that defines the monotone execution

sequence of moving objects O so as to solve a rearrangement problem.

Algorithm 12 shows the new rearrangement primitive that avoids the backtracking

search while solves many monotone rearrangement problems. As mentioned above this

is an approximate method that if it can find a solution to a monotone problem then it

will find it faster than the method using backtracking search (mRS). Moreover, the new

method will be able to return failure of finding a solution faster than mRS.

First, for each pair of initial αI [o] and final αF [o] poses for an object o ∈ O, the

new faster approach computes the “minimum constraint removal” (MCR) path [47, 70]

(line 1,2). The corresponding routine computes the path with the minimum set of

constraints that need to be removed from the problem to find a good quality solution,

89

Algorithm 12: fmRS(W,R,O, q, αI , αF)

1 for each o ∈ O do
2 Π[o]← MCR PICK AND PLACE(o, q, αI [o], αF [o], αI [O r o] ∪ αF [O r o]);

3 Gc ← (V ← {O}, E ← {∅});
4 for each oi ∈ V do
5 for each oj ∈ V r oi do
6 if (αI [oi] ∈ Π[oj]) then
7 E ← E ∪ {oj → oi};
8 if (αF [oi] ∈ Π[oj]) then
9 E ← E ∪ {oi → oj};

10 if (Gc is DAG) then
11 L ← TOPOLOGICAL SORT(Gc);
12 return

⊕
o∈LΠ[o];

13 return ∅;

for the manipulator to grasp the object from its initial position αI [o] and transfer it

to its final position αF [o]. When computing such a path for an object o ∈ O, the

constraints correspond both to the initial and final placements of all other objects in

Or{o}. Given such paths for all the objects, it is then possible to compute a “constraint

graph” [115] (lines 3-9), as explained above.

If there is no cycle in the constraint graph (Fig.6.2 top), then it is a Directed Acyclic

Graph (DAG), (line 10) and it is possible to compute an ordering, using topological

sort (line 11). For that ordering, the committed MCR paths can be used to solve the

monotone problem without the need for search (line 12). If it is not a DAG (Fig.6.2

bottom), then it is not possible to solve the problem with MCR paths, by moving the

objects at most once.

6.2.2 A Faster Non-Monotone Rearrangement Primitive (fplRS)

The idea in this chapter is to explore the space of arrangement using a higher level task

planner. In order to achieve that a fast primitive for connecting the nodes is needed.

Speed is not the only criterion though, the primitive needs to successfully connect

two arrangements most of the times. Although the previously described algorithm

can find a solution, while avoiding the backtracking search, it still moves the objects

90

monotonically. As it is mentioned before, the monotone primitive frequently cannot

find a solution even for simple tabletop examples (fig.5.3).

However, there is a way to approximate the non-monotone solution using the same

idea of constructing a “constraint graph”. The main difference with the monotone

primitive is that the non-monotone algorithm will not give up if there is a cycle in the

“constraint graph”. Instead, it will try to decouple and move some of the objects to

intermediate positions, until the cycle is resolved and the graph is a Directed Acyclic

Graph. The Algorithm 13 describes the methodology that has been followed to solve

this problem.

Algorithm 13: fplRS(W,R,O, q, αI , αF)

1 {Π,Gc,ΠMCR} ← fmRS(W,R,O, q, αI , αF);
2 if (Gc is not DAG) then
3 GSC ← STRONG COMPONENTS(Gc);
4 L ← TOPOLOGICAL SORT(GSC);
5 αC ← αI ;
6 for each w ∈ L do
7 if (|w| == 1) then
8 π′ ←

MCR PICK AND PLACE(w.Ow, q, αC [w.Ow], αF [w.Ow], αC [O r w.Ow]);

9 else
10 α′F [O r w.Ow]← αC [O r w.Ow];
11 α′F [w.Ow]← αF [w.Ow];
12 π′ ← SOLVE CYCLE(O,Gc, ∅, q,w, αC , α′F ,ΠMCR);

13 if (π′ == ∅) then
14 return ∅;
15 Π← Π⊕ π′;
16 αC [w.Ow]← αF [w.Ow];

17 return Π;

First, the algorithm will check if the problem is monotone, where a call to fast

monotone solver will be enough. The version of the monotone method that it is used

here will also return the “constraint graph” and the set of the minimum constraint

paths that are computed for all the objects (line 1). If the monotone method could not

find a solution, because the graph is not a DAG, the new non-monotone method will

try to resolve the conflicts between the objects that are forming a cycle of dependencies

91

in the “constraint graph”. Intermediate poses will be selected for the objects that are

forming the cycle of dependencies until the cycle is resolved (line 2-16). In case that

the graph is a DAG, but the fmRS could not solve the problem, then the fast non-

monotone method will not be able to find a path either. This is because both of these

rearrangement primitives are fast approximate methods that will not guarantee to find

a solution if one exists.

Definition 19 (single node). When a strong component in the constraint graph contains

an individual object, |w| = 1.

Definition 20 (coupled node). A cycle in the “constraint graph” will form a strong

component. A coupled node will contain all the objects involved in the cycle of depen-

dencies, |w| > 1.

The function STRONG COMPONENTS creates a new graph, GSC , where each node will be

either a “single node” with an individual object or a “coupled node” which will contain

more than one object (fig.6.3 right) (line 3). Using the topological sort function a new

order is created, where the algorithm will use to expand the nodes (line 4). If the new

node w is a single node (line 7), a new MCR path is computed for the corresponding

object. This path respects the current poses of all objects (lines 8). Given that it is

time for this object to move and that is in a single node, it means that the path to

its final pose π already exists in the ΠMCR, returned by fmRS. However, this path had

to respect both the initial and the final poses of all the objects. The current path is

computed with respect the current pose of each object.

To compute paths for the objects on a “coupled node”, the method first sets as the

final pose of all objects not belonging to the “coupled node” their current pose (line

10). For all the objects in the “coupled node”, the final pose remains the same (line

11). For the objects inside the “coupled node”, the function SOLVE CYCLE is used to try

to resolve the cycle (line 12). The paths for the objects in the “coupled node” are now

less constrained than those computed by the original fmRS (where paths are constrained

both by the initial and final object poses) because the algorithm considers as obstacles

only the current positions of those objects not in the “coupled node”.

92

Figure 6.3: Left: A constraint graph with 5 objects. Objects A, B and C are forming
a cyclical dependency, as a result this graph is not a DAG. Center: The non-monotone
case that is causing this constraint graph. Right: A new constraint graph where all the
objects that forming a cycle are included in a “set” node.

If there is a path to move the objects inside the “coupled node”, then the method

will aggregate the final path and will move the objects, in this “coupled node”, to their

final pose (lines 15-16). Otherwise, the algorithm could not detect a path to solve the

cycle, thus will not be able to solve the problem either and it will return ∅ (lines 13-14).

In order to deal with non-monotone cases, the method has to resolve the cycles in

the “constraint graph”. Algorithm 15, that is described later in this section, tries to

find a way to resolve such cycles and move all the objects inside a cycle to their final

pose. In order to achieve that it will have to decouple the objects by moving the object

with the most constraints to an intermediate pose, and it will continue until the cycle is

resolved. Eventually, the objects that are placed on an intermediate pose will be moved

to their final pose.

Algorithm 14: DECOUPLE(O,OP , o, q,w, αC , αF ,ΠMCR)

1 OR ← w \ {o ∪ OP };
2 P ← AVAILABLE POSES(αC [O] ∪ αF [OR] ∪ΠMCR[OR]);
3 for (each p ∈ P) do
4 if (PICK AND PLACE(o, q, αC [o], p, αC) 6= ∅) then
5 if (PICK AND PLACE(o, q, p, αF [o], αF [OR] ∪ αC [O \ OR]) 6= ∅) then
6 return p;

7 return ∅;

The DECOUPLE function (Alg.14) will detect the intermediate pose for the given

object o. OP are the objects inside the cycle that are already in an intermediate pose,

93

while OR represents the objects inside the cycle that will be moved after the object o,

future objects (line 1). The set of available poses for the object o are all the poses that

do not interfere with:

• The current poses of all the objects, αC [O],

• The final poses from all the future objects inside the cycle, αF [OR], and

• The computed paths for moving the future objects to their final pose, ΠMCR[OR].

Algorithm 15: SOLVE CYCLE(O,Gc,OP , q,w, αC , αF ,ΠMCR)

1 Π← ∅;
2 L ← CONSTRAINT ORDER(w);
3 for each o ∈ L do
4 pI ← DECOUPLE(O,OP , o, q,w \ o, αC , αF ,ΠMCR);
5 if (pI 6= ∅) then
6 pprev ← αC [o];
7 π′ ← PICK AND PLACE(o, q, αC [o], pI , αC [O \ o]);
8 αC [o]← pI ;
9 π ← ∅;

10 if (w \ o is DAG) then
11 L ← TOPOLOGICAL SORT(w);
12 π ←

⊕
o∈LΠMCR[o];

13 else
14 π ← SOLVE CYCLE(O,Gc,OP ∪ o, q,w \ o, αC , αF ,ΠMCR);

15 if (π 6= ∅) then
16 π′′ ← PICK AND PLACE(o, q, pI , αF [o], αC [O \ o]);
17 if (π′′ 6= ∅) then
18 αC [o]← αF [o];
19 return π′ ⊕ π ⊕ π′′;

20 αC [o]← pprev;

21 return ∅;

Given these constraints, the algorithm will detect the available intermediate poses

for the object o to move (line 2). Out of all these poses, the first pose p that the

manipulator will be able to:

• Pick the object o from its initial pose, place it to this intermediate pose, while

respects the current poses of all the other objects (line 4).

94

• Pick the object from the intermediate pose and place it to its final pose, while

respects the final poses of the future objects (αF [OR]), that will be moved after

the object o is transferred to its intermediate pose and the current pose of all the

other objects (αC [O \ OR]) (line 5).

will be the intermediate pose for the blocking object o (line 6). If such a pose

does not exist, then the object o cannot be decoupled, given these minimum constraint

removal paths (line 7).

As mentioned before the Algorithm 15 recursively tries to resolve a cycle. First of

all the algorithm has to detect the object o inside the cycle with the most constraints.

The function CONSTRAINT ORDER will return an order of objects where the object with

the higher number of constraints will be first (line 2). Following the order of this list

and using the DECOUPLE function the algorithm will detect an intermediate pose for the

selected object (line 4). If the there is no intermediate pose for this specific object the

algorithm will check the next object in the list.

If there is an intermediate pose, the object o will be moved there (lines 6-9). If

the “constraint graph” is a DAG, after this move, then the algorithm will move all the

objects to their final pose (lines 10-12) and finally will move the object o to its final

pose (lines 15 - 19). If the “constraint graph” is not a DAG after moving the object o

to the intermediate pose, the algorithm recursively will try to solve the new cycle (lines

13-14). If eventually the cycle is resolved and a path is returned with the objects on

their final pose, the objects on the intermediate poses will also move to their final pose

(lines 15-19).

The algorithm will search over all the possible orders in order to solve the cycle.

If all the orders fail the algorithm will return an empty path which means that the

algorithm could not find a solution.

6.3 An Incremental Search Approach

Both of these algorithms are fast but approximate methods. This means that it is easy

to generate problems where none of these methods will be able to give a solution. For

95

Figure 6.4: A bi-directional tree in the space of object arrangements.

the monotone method it is easy to generate a problem that will make the algorithm to

fail, e.g. the initial pose of an object blocks the final pose of a different object and vice

versa (fig.5.3). The non-monotone algorithm may also fail to solve a non-monotone

case. This is because the methods are using a pre-specified set of paths for all the

objects.

An idea in a previous work of the authors [68] was to use rearrangement primi-

tives, like the fmRS method, as local planners within higher-level processes that search

the space of object arrangements. The benefit of such monotone solvers is that they

can provide a way to connect an arrangement to a larger set of neighboring arrange-

ments relative to a pick and place action, which is the typical low-level primitive for

manipulation task planning [40, 106].

The high-level search process can be performed in many different ways, e.g., follow-

ing a general heuristic search approach, as in related work [40], or in a PRM-like fashion

[68], by building a graph of object rearrangements. In the latter case, edges could be

constructed by calling a rearrangement primitive to connect pairs of arrangements. A

drawback for a PRM-like task planner is that for hard problems, i.e. multiple objects

that could reduce the maneuverability of the manipulator and its ability to grasp all

the objects, the probability of connection between two arbitrary arrangements using a

rearrangement primitive is still low.

96

It is preferable, if after the approach samples an arrangement, a local path between a

pair of arrangements is generated. To achieve this, instead of trying to exactly connect

a new sampled arrangement with existing ones in the graph, it is better to extend an

existing arrangement towards a new sampled point. This idea is closer to the operation

of incremental sampling-based tree planners, such as a Bi-directional RRT (Bi− RRT)

[80], which is summarized in Alg. 16 for use in rearrangement planning.

Algorithm 16: Bi− RRT(W,R,O, q, αI , αF)

1 TI ← {VI ← {αI}, EI ← {∅}};
2 TF ← {VF ← {αF }, EF ← {∅}};
3 while (Π← FIND PATH(TI , TF , αI , αF)) == ∅ do
4 αrand ← SAMPLE STABLE ARRANGEMENT();
5 αnear ← NEAR STATE(TI , αrand);
6 {π, αpartial} ← CONNECT STATES(W,R,O, q, αnear, αrand);
7 EI ← EI ∪ {(αnear, αpartial), π};
8 αnear ← NEAR STATE(TF , αpartial);
9 {π, α} ← CONNECT STATES(W,R,O, q, αnear, αpartial);

10 EF ← EF ∪ {(αnear, α), π};
11 return Π;

The high-level planner builds a bi-directional tree (as in Fig.6.4), where nodes cor-

respond to object arrangements. The two trees start with the initial and final arrange-

ments αI and αF correspondingly as their only nodes (line 1-2). Edges correspond to

local rearrangement paths that will be computed by a rearrangement primitive, such

as fmRS. While the problem is not solved (line 3), the method samples new random

arrangements αrand (line 4). Then, based on a distance estimate in the space of arrange-

ments, the closest neighboring arrangement αnear in the starting tree (TI) is returned

(line 5). In order to compute distances between arrangements, the sum of distances

between the placement of objects in the two arrangements is used. A connection is

attempted between the neighbor and the random arrangement (lines 6) with a rear-

rangement primitive search algorithm.

In the spirit of the original Bi− RRT algorithm, it is not necessary to exactly connect

αnear with αrand. Instead, it is sufficient if the method makes some progress away from

αnear in the space of arrangements and a new αpartial is linked to the tree (line 7). The

closest neighboring arrangement αnear is discovered in the other tree (TF) (line 8) and

97

a similar extension of this tree is also performed (lines 9-10).

By extending a new arrangement from αnear and not connect it to αrand, the algo-

rithm is able to frequently generate edges. The first time the two trees connect, the

algorithm will return a solution. It is beneficial to consider such a bi-directional solver

rather than a single-tree expansion. It may be that the problem is more constrained at

the initial arrangement and the tree from the target arrangement will be able to expand

easier. A bi-directional tree tends to achieve better and faster coverage of the space.

6.3.1 Partial Solutions

The rearrangement primitives have been defined so that they connect exactly two ar-

rangements. Here, this requirement is relaxed so that these processes can be used as

effective extension operations for the high-level Bi− RRT task planner. This means it

should be possible to return a best effort partial solution where just some of the objects

are moved. This section describes how all the rearrangement primitives could return a

partial solution.

It is easy to make mRS [68] return a partial solution by remembering the maximum

depth the algorithm has managed to achieve during the backtracking search. In each

iterative call, the algorithm needs to keep track of the maximum depth and the cor-

responding sequence. At the end of the search process, the algorithm either succeeds

to connect the two arrangements or a partial solution corresponding to the best effort

to connect the two arrangements is returned together with the resulting arrangement.

However, it is not trivial to return a partial solution from a non-monotone rearrange-

ment primitive. The non-monotone rearrangement primitive, plRS [68], is trying to

solve the problem by searching through possible ways of moving the objects to inter-

mediate poses, in order to come up with a solution. Thus, there is no a criterion when

the search should stop and return a partial solution.

There is also a way to get a partial solution from both the fast primitives, i.e. fmRS

and fplRS. For instance, in Fig. 6.2 (bottom), object D can be moved to its target

regardless of the cycle (A, B, C). The proposed partial fmRS starts from sink nodes of

the constraint graph, moves the corresponding objects to their target, removes the nodes

98

from the graph and continues for as long as it is possible to move objects. Furthermore,

it tries to decouple cycles whenever possible given that higher priority objects have

moved and different MCR paths can be computed. Alg. 17 describes the algorithm,

which extends the previous fmRS, follows similar idea with fplRS and operates over the

resulting constraint graph Gc.

Algorithm 17: partial fmRS(W,R,O,Gc, q, αC , αF)

1 {Π,Gc,ΠMCR} ← fmRS(W,R,O, q, αI , αF);
2 if (Gc is not DAG) then
3 GSC ← STRONG COMPONENTS(Gc);
4 L ← TOPOLOGICAL SORT(GSC);
5 Π← ∅;
6 for each w ∈ L do
7 if (|w| == 1) then
8 π′ ←

MCR PICK AND PLACE(w.Ow, q, αC [w.Ow], αF [w.Ow], αC [O r w.Ow]);

9 else
10 α′F [O r w.Ow]← αC [O r w.Ow];
11 α′F [w.Ow]← αF [w.Ow];
12 π′ ← fmRS(W,R,O, q, αC , α′F);

13 if (π′ 6= ∅) then
14 Π← Π⊕ π′;
15 αC [w.Ow]← αF [w.Ow];

16 return Π;

First, the algorithm will try to solve the problem using fmRS (line 1). If the “con-

straint graph” is not DAG this algorithm will not be able to solve the problem, but it

is allowed to return a partial solution (line 2). This allows turning Gc into a directed

acyclic graph (DAG), where each node will be a strongly connected component. These

nodes may include many interdependent objects (line 3), e.g., objects (A, B, C) in

Fig. 6.2 (bottom) will be in a “coupled node”. It is then possible to apply topological

sorting over the resulting DAG (line 4). The final path is initialized to be empty (line

5). Following similar ideas as fplRS algorithm, move the objects inside each node w of

the graph GSC based on the topological order L (line 6). Each of these nodes can be

one of the following:

• A “single node” (line 7), where a new MCR path is computed for the corresponding

99

object (line 8). This path respects the current poses of all objects. Objects with

higher priority in the DAG’s topological order can be in either their initial or final

poses, depending on whether the partial solution managed to transfer them or

not. All the objects with lower priority must be at their initial poses.

• A “coupled node” (line 9), where a new set of paths for each object in this node

has to be computed. The method first sets as the final pose of all objects not

belonging to the component their current pose (line 10). For all the objects in

the component, the final pose remains the same (line 11). Given this new final

arrangement, the algorithm will call again fmRS to try to solve the cycle. The

objects inside the “coupled node” are less constrained to move than the original

fmRS (where paths are constrained both by the initial and final object poses),

because the algorithm considers as obstacles only the current positions of those

objects not in the “coupled node”.

In either case, if a path is found for the current node (line 13), the path is appended

to the current solution (line 14) and the objects are transferred to their final pose (line

15). Otherwise, the objects corresponding to w remain at their current pose. If there is

at least one object moved to its final pose, then the method returns the corresponding

partial solution.

6.4 Evaluation

Experimental Setup: The methods have been tested in 2 simulated workspaces with

a model of a Baxter arm: “grid@tabletop” (Fig. 6.5 (left)), “grid@shelf” (Fig. 6.5

(right)). The “grid@tabletop” benchmark places 4, 10 and 16 objects on a tabletop.

The “grid@shelf” challenge has 2, 6 and 10 cylinders placed in a shelf that limits the

arm’s reachability and does not allow overhand grasps. In both cases, the objective

is to rearrange the objects from a random to a grid arrangement. Eleven different

methods are tested, in two different test cases. First, single runs of the rearrangement

primitives are tested: (a) mRS [68], (b) plRS [68], (c) fmRS [69], (d)fplRS (Top figures

of Fig.6.6-Fig.6.11) then all the primitives replace the function CONNECT of the high

100

level REARRANGE PRM (Middle figures of Fig.6.6 - Fig.6.11). Finally, the rearrangement

primitives that can return partial solutions (a) mRS, (b) fmRS, (c) PICK AND PLACE

replace the function CONNECT of an incremental search high level planner Bi− RRT

(Bottom figures of Fig.6.6 - Fig.6.11). The time limit provided to the methods was 10

mins. 10 experiments were performed for each combination of method and environment.

All the results are collected over the successful runs.

Figure 6.5: (top) The “grid@tabletop” problem. An initial and the final setup. (bot-
tom) The “grid@shelf” problem. An initial and the final setup.

Results for the “grid@tabletop challenge”: Figure 6.6 provides the success ratio

of all the methods for the “grid@tabletop” challenge.In this example, there are many

partial overlaps between final poses and intermediate or initial poses. This affects the

results of the monotone methods, where they could not solve any problem with 16

objects. In addition, affects the results for the fplRS. Although, it is an approximate

method found a solution to all the problems except one case with 14 and one case with

16 objects on the table. This is because the minimum constraint paths are generated

only ones and the algorithm does not search over different paths or orders. In figure

6.6 middle figure shows the success ratio when the REARRANGE PRM method is using

the rearrangement primitives. The REARRANGE PRM method found solutions for all the

problems up to sixteen objects, however, the success ratio of the method while using the

monotone primitive (mRS) drops quickly as the number of objects increases. As a result,

found solutions only for 20% of the problems with sixteen objects. The bottom figure

(fig. 6.6) provides the success of the incremental search algorithm (Bi− RRT) while

using as CONNECT function a rearrangement primitive. The success ratio drops only when

the algorithm is using the monotone primitive (mRS). The rest of the rearrangement

primitives were able to solve all the instances.

101

Figure 6.6: The success ratio for each approach out of 10 runs for the “grid@tabletop
challenge”.

102

Figure 6.7 provides the computation time for all the methods for the “grid@tabletop”

challenge, while figure 6.8 provides the path quality of the methods. The top figure

shows the computation time for the rearrangement primitives. The plRS method was

successful across all the instances but needs to search over a large number of possi-

ble orders to find one that works. On the other hand, fplRS could return solutions

faster, when it was possible to find a solution. In addition, figure 6.8 (top) shows that

fplRS solutions are efficient in terms of path quality than plRS. The middle figure at

fig.6.7 shows the computation time for the REARRANGE PRM method. The fast mono-

tone primitive fmRS could search the rearrangement space more, given that it could

return a solution faster. As a result, it could solve all the problems up to 16 objects

on the table. The non-monotone solvers run slightly slower in the smaller examples.

This is because they spend a little bit more effort to find intermediate poses for a non-

monotone solution instead of searching if there is an easy monotone solution. For the

same reason, the REARRANGE PRM using the monotone primitive mRS is faster than the

REARRANGE PRM that uses the non-monotone primitive plRS. This is not the same when

the REARRANGE PRM uses the fast rearrangement primitives. Using the fmRS primitive

is the slowest option because the algorithm will fail to connect more arrangements, as

a result the REARRANGE PRM will need to search more for possible solutions in the re-

arrangement space. The best option for REARRANGE PRM is to use the fplRS primitive,

which could detect the solution of a non-monotone problem faster and more efficiently

in terms of solution quality than plRS. The bottom figure (Fig.6.7) shows the results

from the Bi− RRT method. Using a simple pick and place primitive gave solutions to all

the problems, however, the fast rearrangement primitive (fmRS) could return a solution

faster and more efficiently in terms of how many objects had to be moved. These results

are more obvious in larger-scale examples, where the Bi− RRT using fmRS manages to

solve all the hard problems in less than 2.7 seconds on average.

Results for the “grid@shelf challenge”: Figures 6.9, 6.10 and 6.11 provides the

results of all the methods for the “grid@shelf” challenge. Here the arm has reduced

reachability and is not able to use overhand grasps. As the number of objects increases,

the monotone solvers’ success ratio goes down quickly. The non-monotone primitives

103

Figure 6.7: The computation time for each approach out of 10 runs for the
“grid@tabletop challenge”.

104

Figure 6.8: The number of transfers the manipulator had to execute in order to solve
the problem, for each approach out of 10 runs for the “grid@tabletop challenge”.

105

have better success ratio despite the difficulty of the challenge and the limited reach-

ability. However, the ratio and the running time are not that good especially with 10

objects in the shelf. Moreover, the plRS has to search a lot before return that cannot

find a solution.

Using the non-monotone primitives within REARRANGE PRM results in even better

success rate (figure 6.9 middle). When the algorithm tries to find a solution for the

examples with 10 objects in the self, then only the version with the fplRS manages to

solve all the problems. The simple plRS algorithm found solution only for half of the

cases, and run out of time for the rest of them, while the monotone primitives failed

to report a solution. In regards to running time, the fplRS is an order of magnitude

faster than the common plRS. The reason for this behavior is, that it takes more time

for plRS to find a solution and connect two arrangements in the arrangement space.

The REARRANGE PRM that uses as primitive the fplRS algorithm does not spend a lot

of time to connect two arrangement, as a result, can search the space faster than the

method that uses as primitive the plRS method. In addition, the suggested method

returns better paths with less number of transfers. The higher number of moves at the

“grid@shelf challenge” with 10 objects is because this method manages to solve harder

problems that require more transfers in order to get a solution.

The bottom picture at the figures 6.9, 6.10 and 6.11 shows the results from the

Bi− RRT method while using the monotone rearrangement primitives, i.e. mRS and

fmRS, the non-monotone primitive, plRS and a simple pick and place primitive. The

combination of Bi− RRT with fmRS could solve up to 12 objects in the shelf. The other

method that could solve 20% of these hard problems is the combination of Bi− RRT

with PICK AND PLACE. In addition, while fmRS is in use, the Bi− RRT method could

find a solution faster with better path quality. At the bottom graph in figure 6.10, it

appears that Bi− RRT using fmRS is slower than Bi− RRT with simple pick and place,

but this is because the first combination could solve harder instances that need more

time to search the arrangement space before return a solution.

106

Figure 6.9: The success ratio for each approach out of 10 runs for the “grid@shelf
challenge”.

107

Figure 6.10: The computation time for each approach out of 10 runs for the “grid@shelf
challenge”.

108

Figure 6.11: The number of transfers the manipulator had to execute in order to solve
the problem for each approach out of 10 runs for the “grid@shelf challenge”.

109

6.5 Discussion

This chapter proposes a primitive for rearrangement, which provides improved connec-

tivity among object arrangements relatively to pick-and-place actions. The method

extends an existing technique [110] to non-monotone problems. It is integrated with a

higher-level planner, which uses the proposed primitive as a local planner to connect

object arrangements, and achieves probabilistic completeness. Experiments show that

the proposed primitive solves many non-monotone challenges by itself. The integration

with the higher-level task planner results in the most efficient solution in terms of suc-

cess ratio, path quality and scalability, especially in setups with limited reachability,

such as shelves. Typically, few arrangements are sampled by the high-level planner to

solve relatively hard instances when the primitive is failing by itself.

The method should be tested with different geometry objects, general grasps and

object poses, which in principle it can already address. A more formal study of plRS’s

properties is also desirable, as well as task planning alternatives to PRM. Preliminary

indications with a bidirectional RRT show reduced computation time and similar per-

formance between the primitives. For RRT, it makes sense to generate versions of the

primitives that do not connect two arrangements but partially extend an initial ar-

rangement towards a target one.

Using two arms can simplify a problem, as one of them can grasp an object to clear

the scene and the other can perform transfers. The current setup can also be integrated

with non-prehensile [25, 34] and mobile manipulation [40]. Pushing can easily replace

some grasps. Mobility does not significantly alter the combinatorial aspects of the

problem. Cloud computing can also be considered to improve performance through

parallelization [9]. An alternative but important direction is to adapt complete but

efficient multi-robot planning algorithms in the context of manipulation [118, 105].

Future efforts should also focus on the computation of robust rearrangement trajectories

given actuation and observation noise.

110

Chapter 7

Computationally Efficient Implementation

Object rearrangement is a challenging problem as it involves combinatorially large,

continuous C-spaces with multiple movable bodies and complex kinematic constraints.

To significantly speed up online query resolution, it is possible to pre-built the transfer

and transit roadmaps for the arm given the static geometry. These graphs can be used

during the online query resolution in order to compute collisions with other objects.

The high-level task planner will work as a traditional probabilistic roadmap, where a

correct implementation of sampling the nodes and finding the closest neighbors will

result in a more efficient search process. While important in many applications, the

Minimum Constraint Removal path (MCR) is harder than searching for the shortest path.

In this work an approximate bounded path length approach of MCR is used [67] that is

computationally more efficient and returns paths with number of constraints close to

the exact approach [47, 46].

7.1 Implementation of the Manipulation Planning Framework

In this work, a core manipulation framework has been implemented and is used from

all the algorithms (figure 7.1). This manipulation framework knows how to move the

manipulator in the space in order to resolve tasks. The coordinator of the manipula-

tion framework is the manipulation task planner. Under the manipulation task planner,

there is a set of motion planners that can detect valid paths for the manipulator when-

ever the task planner has a request. One motion planner is used for the transit paths,

where the motion planner can find collision-free paths for the manipulator in X0, where

the manipulator does not hold anything, and k motion planners for the different trans-

fer modes, one for each different type of objects. The motion planners for the transfer

111

Figure 7.1: Implementation of manipulation planning framework. The core of this
framework consists from the manipulator task planner that controls the transit and
the k transfer motion planners. For the experiments, the core manipulation framework
is always the same and the rearrangement primitive is the proposed monotone/non-
monotone algorithms. The high-level task will use the rearrangement primitives in
order to solve the problem. In this work REARRANGE PRM is taking the role of the high-
level task planner.

modes can find collision-free paths inside Xi for each object oi that the manipulator is

grasping.

The core manipulation framework is capable of answering queries about the different

motion planning primitives, TRANSIT, TRANSFER, PICK AND PLACE. Given the motion

planning primitive, the manipulation task planner will use the correct motion planners

in order to compose a plan for the manipulator. The returned path will be a collision-

free path that solves the task that the planner above requested.

In this work, above the core manipulation framework lives the rearrangement prim-

itive that represents the proposed algorithms, mRS, plRS. The rearrangement primitive

works in the rearrangement space and will ask from the core manipulation framework

queries such as transit the arm, transfer this object to this position p or even pick the

object from the pose p0 and place it to the position p1. The rearrangement primitive

has as input an initial arrangement and a final arrangement for the objects, were based

112

on the strategy of each individual algorithm it will move the objects from the initial to

the final arrangement.

The high-level task planner can be any search algorithm, over the arrangement

space. A state point in the arrangement space corresponds to an arrangement of the

objects in the workspace. The high-level task planner will select which two arrangement

would like to connect and it will request from the rearrangement primitive to find a

path that brings the objects from the initial to the final arrangement. In this work,

the sampling based algorithm REARRANGE PRM, described in section 5.2.4, is used as the

high-level.

As mentioned before all the proposed algorithms in this work will be using the core

manipulation framework in order to move the manipulator to an appropriate location.

The algorithm on-line will be asking for solutions to motion planning primitives. In

order to speed up online query resolution, it is possible to preprocess a scene given the

arm’s placement, the static obstacles and the geometry of the movable obstacles.

7.1.1 Preprocessing

The first step is the sampling of a discrete set of useful stable poses P̂ reachable by

the arm for the movable obstacles. These are poses that can provide transition states.

For each pose, multiple grasps for the end-effector are sampled. Then through inverse

kinematics, it is possible to get the corresponding arm configurations.

These configurations are used as seeds during the generation of sampling-based

roadmaps [58]. One roadmap is built for each mode of the rearrangement problem. One

roadmap is constructed for the transit mode, which corresponds just to the arm moving

in the environment and avoiding collisions with the obstacles. Then, one roadmap is

built for each transfer mode and corresponds to the arm grasping one of the objects.

If all of the k movable objects have different geometries, then k transfer roadmaps

are generated, plus one transit roadmap (fig. 7.1) If multiple objects share the same

geometry, they can use the same roadmap. Thus, for geometrically similar objects, a

single pair of roadmaps is sufficient.

Then, it is possible to precompute collision information and minimize the cost of

113

collision checking during the on-line phase. Objects are placed in the poses P̂ and

then for each edge of the roadmap, the set of object poses that lead into collisions

is discovered and stored. This type of precomputation is similar to the “conditional

reachability graph” data structure [40].

7.1.2 Query Resolution

During the on-line operation of the methods, every time that a TRANSIT, a TRANSFER or

a PICK AND PLACE primitive is executed, a multi-goal A∗ algorithm is executed on the

corresponding precomputed roadmaps [27, 31]. The multiple goals for theA∗ correspond

to multiple potential grasps for the pose of the object. During this process, when an edge

of the roadmap is explored, instead of performing collision checks, the set of colliding

poses for the edge discovered during the precomputation is tested against the poses in

the current arrangement αC . If there is any overlap, then the edge is in collision. In

the case of the non-monotone primitives, the same information can also facilitate the

computation of minimum constraint removal paths.

If the poses corresponding to the initial and final arrangement of a prehensile ma-

nipulation problem are known during the off-line phase, then no actual collision checks

need to be performed during on-line query resolution. Otherwise, collision checking

needs to be performed only for these poses. Any pose that is used as an intermediate

free pose in INTERMEDIATE POSE or for SAMPLE ARRANGEMENT can come from the list of

precomputed poses.

Considering only the precomputed poses affects the method’s probabilistic com-

pleteness as it will have to operate over only a discrete set of poses. To provide with

probabilistic completeness in this setup, if the algorithm fails to find a solution given the

precomputation, then the set of considered poses for the objects needs to be augmented

on-line.

114

7.2 Implementation Aspects of the Search Process

Similar to the traditional probabilistic roadmap method, the performance of the REARRANGE PRM

algorithm depends on the implementation of the following primitives:

7.2.1 Sampling nodes

The top-level algorithm splits the process of sampling nodes into two steps. First, a

stable collision-free arrangement αrand is found for the objects and then a collision-free

grasping arm configuration q(αrand[o]) for one of the objects o is identified for the arm.

The simplest way to select object poses in the arrangement αrand is via uniform

sampling. A biased sampling process can also be used in order to accelerate the solu-

tion to a specific challenge. For instance, object poses either from the initial aI or the

goal aF arrangement can be selected with a certain frequency in order to increase the

probability of connecting arrangements with the initial or goal states. The accompany-

ing implementation uses this biased sampling process with a 5% frequency of selecting

the pose of an object as it appears in the initial or the goal arrangement.

Given an arrangement αrand, there could be multiple arm configurations of the

form q(αrand[o]), which achieve to grasp an object o ∈ O, for a redundant manipulator.

Inverse kinematics solvers can be used in order to identify different solutions and gener-

ate different such grasping configurations. The accompanying implementation considers

cylindrical objects and specifies a certain type of relative end effector grasp e so that the

arm grasps the center of the cylinder. All grasps that are symmetrical to the cylinder’s

long axis are valid.

7.2.2 Finding neighboring states

The NEAR primitive computes the neighboring states Vnear to the newly sampled state

vnew. This function depends on the selection of an appropriate distance metric between

transition rearrangement states as well as the identification of the number of neighbors

that should be returned. For the distance metric, an estimation of the number of nec-

essary transfers between two input arrangements can be potentially used. For instance,

115

the problem can be relaxed and the number of overlapping poses between the initial

and goal arrangement can be counted. In addition, if the rearrangement primitive can

solve only monotone problems, then states with overlapping poses, where a swap of

two objects has to happen (Fig.7.2), will not be returned as neighboring states. These

problems have a solution only if an object moves to an intermediate pose, something

that a monotone rearrangement primitive cannot detect. The accompanying implemen-

tation uses the sum of the distances between poses as an estimation of selecting the

near neighboring states.

Figure 7.2: If the light colored positions correspond to an initial arrangement, while the
dark colored positions correspond to the final arrangement, then a monotone solver will
not be able to solve any of these examples. In this case if the high-level task planner
is using a monotone rearrangement primitive the NEAR function will not return these
nodes as neighboring states.

The value from PRM∗ [58] and a linear search for closest neighbors was used. If path

quality is not a priority, then if two arrangements are already in the same connected

component, then they do not need to be connected. Alternatively, a roadmap spanner

can be applied where only useful edges in terms of path quality are considered [86].

An efficient implementation of this top-level approach will also consider of directly

attempting to connect start and goal states before generating intermediate states to

solve problems. This is not shown in Algorithm 1 for brevity purposes.

7.3 Implementation of Minimum Constraint Removal Algorithm

While important in many applications, the MCR challenge is harder than searching for the

shortest path. The issue arises because MCR paths do not satisfy dynamic programming

properties. In particular, a subset of an optimal solution is not necessarily an optimal

116

solution itself. In the process of computing a MCR path, a configuration q will be

visited by different paths because each path can have a different combination of violated

obstacle regions.

In most of the applications, and specifically in the manipulation, the search space

is significantly larger than the space that the approach needs to search in order to find

a reasonable MCR path. The method for computing the MCR path can waste a lot of

time searching away from the solution before moving towards the target. In this work,

a variation of bounded path length approach [67, 70] for computing MCR is used as

an alternative. This methodology bounds the length of paths that it searches given a

multiple of the shortest path length in a constraint-free version of the state space.

Figure 7.3: Left: A case where the Bounded-Length algorithm will not waste a lot of
time to check the collision free areas, before start moving towards the target. Right: If
the algorithm has more time to search for the optimal MCR, it will increases the depth
limit of the search relative to the shortest path.

This work is using a bounded-Length version of the exact approach method [67] for

computing the MCR path. However, this is an approximate method that it is faster than

both the exact and greedy algorithms, with some tradeoffs on the number of constraints

computed. The approximate version is shown in Algorithm 18. This version allows to

incrementally increase the depth limit of the search until there is convergence to the

true optimal MCR.

Alg.18 works similar to the “exact” approach. The method uses a priority queue,

which prioritizes search elements that have a low number of constraints |c|. A small

evaluation function f is utilized in order to break ties between the nodes. While the

117

Algorithm 18: BL MCR(G(V, E), qs, qf , threshold)

1 Q← NEW ELEMENT(qs, ∅, ∅, 0);
2 while Q not empty do
3 utop ← Q.pop();
4 if utop.v == qf then
5 return utop.π;

6 for each vneigh ∈ Adj(G, utop.v) do
7 π ← utop.π | e(utop.v, vneigh);
8 if |π| < threshold then
9 c← utop.c ∪ e(utop.v, vneigh).c;

10 if IS NEW SET(vneigh.C, c) then
11 f ← |π|+ h(vneigh, qf);
12 Q← NEW ELEMENT(vneigh, π, c, f);

13 return ∅;

queue is not empty (line 2), the algorithm will pop the highest priority search element

utop (line 3). If this node is the target node qf (line 4), then the algorithm will return

the path stored in the search element (line 5). Otherwise, all the adjacent graph nodes

vneigh of utop.v are considered (line 6). The main difference from the “exact” approach

is that the BL MCR approach first checks if the path has length greater than the threshold

(lines 7-8). If the path is within the threshold, then the function IS NEW SET (line 10)

will check:

• If there is a constraint set c′ ∈ C, where c′ ⊂ c then the algorithm returns false

and the node is not added in Q.

• If there is a constraint set c′ ∈ C, where c ≡ c′, then the algorithm will compare

the f values. If the new f ′ value is smaller than the existing one, IS NEW SET

returns true.

• If there is a constraint set c′ ∈ C, where c ⊂ c′ then the set c′ will be replaced

by c and the method returns true.

• If none of the above is true, then the algorithm will return true and c will be

added in the C list of the graph node.

If IS NEW SET detects that the constraints set includes new constraints, then the

118

algorithm will create a new search element and update the corresponding node, using

the NEW ELEMENT function (lines 11-12). For speed purposes, each graph node can keep

track of the different sets of constraints, C, for each path that has reached the node,

and the corresponding evaluation functions f .

BL MCR with a small threshold will be able to search through short length paths

that violate constraints fast without concentrating time searching through constraint-

free nodes far from the shortest paths. Of course, the algorithm cannot guarantee the

optimal MCR path, but in practice, it returns good solutions, close to those of the exact

approach for MCR and with paths that are of known length relative to the shortest.

119

Chapter 8

Conclusions

This work is presented as a framework for solving object rearrangement using a robotic

manipulator. The focus has been on hard instances of general object rearrangement,

which correspond to:

• Non-monotone problems,

• Unique, labeled objects,

• In tight and cluttered environments.

Moreover, this work showing the potential of combining sampling-based algorithms

with strong local primitives to solve the hard object rearrangement problems. This

work makes contributions towards a fully automated warehouse where robots could

rearrange and pick objects from a shelf. The methods provide formal guarantees on

the success ratios, solution times and path quality. The final result of this work is a

scalable and fast framework which utilizes sampling-based motion planning algorithms

with powerful rearrangement primitives in order to probabilistically complete methods

for solving hard instances of general object rearrangement instances.

8.1 Statement of Contributions

The main contributions of this work are spread across the chapters 4, 5, 6 and 7. It be-

gins with solving unlabeled rearrangement problems, continues by solving labeled gen-

eral rearrangement problems and ends with showing that it is possible to have efficient

and fast methods with probabilistic completeness guarantees for solving rearrangement

problems.

120

Figure 8.1: Barky is able to solve all the rearrangement problems using the methods
described in this work. Left: a monotone problem. Middle: A non-monotone problem,
Right: Pick the object ‘A’ located behind the objects ‘B’ and ‘C’

Beginning in chapter 4, the main idea was to reduce the continuous, high-dimensional

rearrangement problem into several discrete rearrangement challenges on “manipulation

pebble graphs” (MPGs). This idea was inspired by work in algorithmic theory on “pebble

graphs” [6] and related contributions in multi-robot motion planning [104]. However,

the transfer of the pebble graph idea was not trivial. The presence of a manipulator

induces additional constraints. These extra constraints required the development of dif-

ferent solutions for the connection of MPGs. Formally, the main contributions of chapter

4 can be summarized as follows :

• Integration of combinatorial multi-robot planning and manipulation planning for

efficient computation of manipulation paths to rearrange similar objects in clut-

tered spaces.

• Continuous rearrangement challenges are abstracted as discrete pebble graph

problems, i.e. Manipulation Pebble Graphs (MPGs).

• This method is able to solve non-monotone problems, where objects can be

grasped more than once.

The experimental results showed the scalability and the class of difficult non-monotone

problems this method was able to solve. Although this method was able to deal with

the problem of dimensionality and solve cluttered problems, including multiple movable

objects and a high degree of freedom robotic manipulator, it suffered by the limitation

of solving labeled rearrangement problems. Meaning that the solution could not enforce

specific poses for each moving object. While that was a known problem, it motivates

121

the contributions of the rest of the work.

In particular, chapter 5 aims to still provide solutions for non-monotone problems in

clutter environments but doing that for labeled cases as well. The first step was a new

algorithmic primitive for object rearrangement that is able to practically solve many

non-monotone instances. It extends a previously developed technique for monotone

problems [110] and utilizes principles from the multi-robot planning literature [85, 71]

as well as efficient solutions to the Minimum Constraint Removal path problem [46,

47, 67, 70] This non-monotone primitive is integrated with a higher-level planner in

the context of a hierarchical framework, which operates to a similar function to a

probabilistic roadmap (PRM). This work shows that the proposed integration achieves

probabilistic completeness by searching the space of possible object arrangements. It

uses the proposed non-monotone primitive as a local planner to locally connect pairs of

object arrangements, which constitute nodes of the high-level PRM planner. Formally,

the main contributions of chapter 5 can be summarized as follows:

• Extends the monotone solver [110] to solve some non-monotone problems.

• Achieve completeness by integrating these rearrangement primitives with a higher-

level planner in the context of a hierarchical framework.

Simulated experiments show that the proposed primitive solves many non-monotone

challenges by itself. The integration with the higher-level task planner results in an

improved solution in terms of success ratio, path quality and scalability, especially in

setups in tight spaces and with limited reachability for the manipulator, such as shelves.

Typically, few arrangements are sampled by the high-level planner to solve relatively

hard instances when the primitive is failing to find a solution directly.

Given the idea of the hierarchical framework where the rearrangement primitives

are utilized as local planners in a high-level task planner, chapter 6 proposes a faster ap-

proach for solving general object rearrangement problems. The two important findings

were the requirement of a fast rearrangement primitive and the maintenance of good

connectivity for the graph structure of the high-level planner. The proposed solution

in chapter 6 trades completeness for efficiency by avoiding exhaustive search. Instead,

122

it commits to using only “minimum constraint removal” paths for the objects, based

on which it is possible to quickly figure out whether a monotone solution exists. This

trade-off proves to be beneficial when using rearrangement primitive as a subroutine in

a Bi-RRT task planner in the space of general object arrangements. The integration of

the fast primitive with this task planner results in a method that a) is probabilistically

complete, b) exhibits higher success ratios and computational performance relative to

the alternatives, as well as c) better solution paths. The contribution of the chapter 6

can be summarized as follows:

• Define a fast primitive for solving monotone rearrangement problems.

• Extend the fast primitive for solving and non-monotone rearrangement problems.

• Allow the monotone rearrangement primitives to return partial solutions.

• Use the primitive as a local planner in an incremental search algorithm for gen-

eral rearrangement planning (similar to Bi-RRT) to solve general problems and

guarantee probabilistic completeness, efficiency and high success ratios.

The provided simulation experiments make use of objects of similar geometry for

which it is easy to quickly identify grasps. This allows performing helpful precomputa-

tion towards fast resolution of rearrangement queries. The framework itself, however,

does not depend on such assumptions and can be applied in general setups with objects

of varying geometry given a primitive for effectively detecting appropriate grasps. Fur-

thermore, there are many different algorithmic choices for integrating sampling-based

planners with local primitives in the context of object arrangement. Chapter 7 shows

all these implementation details and how the framework is implemented in order to take

advantage of the similarity of the objects. While it can easily be shown that the limi-

tation of using similar objects, it is not a framework limitation but an implementation

limitation. Along with the details about the implementation chapter 7 presents and the

contributions for the “minimum constraint removal” path, where this work is massively

using. Finding the “minimum constraint removal” paths (MCR) is a computationally

hard problem in the general case as such paths do not exhibit dynamic programming

123

properties. This work presents and uses approximate solutions that bound the path

length of the considered path seem to provide a desirable trade-off in terms of return-

ing solutions with a low number of constraints, relatively short path lengths and low

computation time.

8.2 Important Open Questions for Future Work

This work provides several contributions towards having a fast and efficient framework

that could deal with all the cases of rearrangement. However, there are still many open

avenues for investigation and further improvements. The method should be tested

with different geometry objects, general grasps and object poses, which in principle

it can already address. A more formal study of the integration of RRT with the fast

rearrangement primitives is also desirable. The high-level planners are selecting the

nearest arrangement based on the distance between the poses, i.e. L-infinity in order to

compute the accumulative distance between the poses of the two arrangements. More

investigation about a good distance function between two arrangements is needed and

it will improve the connectivity of the high-level planner.

Another useful objective in the context of object rearrangement is to identify the set

of problems which are directly addressable by primitives similar to the non-monotone

one proposed here and which do not require the proposed more general, hierarchical

approach. One can look for inspiration in methods rooted in multi-robot planning and

especially those, which can provide optimality guarantees [118, 105, 123]. Moreover,

recent development of a method that is dealing with high-quality paths can already

minimize the number of pick-and-place actions and minimize also the distance that

is traveled by the end-effector [102]. This can lead to the development of solutions,

which under certain conditions, can provide high-quality paths with optimality guar-

antees while solving object rearrangement problems. In the context of the proposed,

hierarchical and sampling-based framework, it is similarly important to consider the

conditions under which it can asymptotically converge to optimal solutions. There has

been recent work in the area of asymptotic optimality for manipulation task planning

[117], which utilizes sampling-based algorithms. This work can indicate a direction of

124

how the proposed framework can achieve such an objective while remaining computa-

tionally efficient.

Future efforts should also focus on the computation of robust rearrangement trajec-

tories under the presence of uncertainty, which can arise from pose estimation processes

[97], as different manipulation operations have a different probability of being success-

ful in practice. There has been some work in hierarchical decision-theoretic planning

tools for related problems [82], which motivate further work in this area. Similarly,

tight integration with perception for detecting objects is necessary for the real-world

adoption of rearrangement algorithms in target applications.

Other interesting directions include: a) Multiple arms collaborating [32] to rearrange

objects. Using multiple arms could be helpful as one of the arms can grasp an object

to clear the scene for the other arm to perform a transfer. This way problems as in

figure 5.3 can be solved as monotone problems, as one of the hands can be used as an

intermediate pose. b) Non-prehensile actions [25, 34]. Non-prehensile actions can also

be useful, especially in clutter environment where the free space might not be sufficient

for the robotic arm to grasp an object. In such cases, the robot will have to push

some objects in order to create more space. c) Mobile manipulation [40]. Although this

extension is irrelevant with the current work’s problem setup, it is still a valid extension

for object rearrangement problems. This work is trying to solve rearrangement problems

in cluttered environment. With a mobile base, the manipulator can utilize more space

and the solution to a rearrangement problem became easier, but more time-consuming

given that the robot will have to travel. d) Dealing with symbolic goal conditions,

where conditions should be satisfied before the robot is able to find a solution. This

can involve stacking challenges [26, 113] where the robot has to place objects on top of

each other and physics can play a critical role. At a combinatorial level, the algorithmic

primitives developed as part of this work can still be helpful in such setups but need to be

integrated with processes that reason about the feasibility of manipulation actions given

physical constraints. It is interesting to evaluate how different object placements may

result in different probability of success during real-world execution. From a system’s

point of view, it is interesting to investigate how to quickly compute such rearrangement

125

paths through the use of cloud-based computation [9].

126

References

[1] R. Alami, J.-P. Laumond, and T. Siméon. Two Manipulation Planning Algo-
rithms. In J.-P. Laumond and M. Overmars, editors, Algorithms for Robotic
Motion and Manipulation. A. K. Peters, Wellesley, MA, 1997.

[2] R. Alami, T. Siméon, and J.-P. Laumond. A Geometrical Approach to Planning
Manipulation Tasks. In Proc. of International Symposium on Robotics Research,
pages 113–119, 1989.

[3] R. Alterovitz, S. Patil, and A. Derbakova. Rapidly-exploring roadmaps: Weighing
exploration vs. refinement in optimal motion planning. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), Shanghai, China, 2011.

[4] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, J.-C. Latombe, and C. Varm.
Stochastic Roadmap Simulation: An Efficient Representation and Algorithm for
Analyzing Molecular Motion. Journal of Computational Biology, 10:257–281,
2003.

[5] B. Aronov, M. de Berg, A. F. van den Stappen, P. Svestka, and J. Vleugels.
Motion Planning for Multiple Robots. Discrete and Computational Geometry,
22(4):505–525, 1999.

[6] V. Auletta, A. Monti, D. Parente, and G. Persiano. A Linear Time Algorithm
for the Feasibility of Pebble Motion on Trees. Algorithmica, 23:223–245, 1999.

[7] J. Barraquand and J.-C. Latombe. Robot Motion Planning: A Distributed Rep-
resentation Approach. IJRR, 10(6):628–649, Dec. 1991.

[8] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen. Disconnection proofs for
motion planning. In IEEE International Conference on Robotics and Automation,
volume 2, pages 1765–1772, 2001.

[9] K. E. Bekris, R. Shome, A. Krontiris, and A. Dobson. Cloud Automation: Pre-
computing Roadmaps for Flexible Manipulation. IEEE Robotics and Automation
Magazine (Special Issue on Emerging Advances and Applications in Automation),
2015.

[10] O. Ben-Shahar and E. Rivlin. Practical Pushing Planning for Rearrangement
Tasks. IEEE Transactions on Robotics and Automation, 14(4), August 1998.

[11] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. J. Kuffner. Grasp
Planning in Complex Scenes. In Proc. of IEEE-RAS International Conference on
Humanoid Robots, 2007.

127

[12] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner. Manipulation Plan-
ning on Constraint Manifolds. In Proc. of the IEEE Intern. Conf. on Robotics
and Automation (ICRA), 2009.

[13] D. Berenson, S. S. Srinivasa, and J. J. Kuffner. Task Space Regions: A Frame-
work for Pose-Constrained Manipulation Planning. The International Journal of
Robotics Research (IJRR), 30(12):1435–1460, 2012.

[14] A. Botea, M. Muller, and J. Schaffer. Using Abstraction for Planning in Sokoban.
Computers and Games, pages 360–375, 2002.

[15] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock. Multi-step Motion Planning for
Free-Climbing Robots. In Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2004.

[16] R. Brooks and T. Lozano-Pérez. A Subdivision Algorithm in Configuration Space
for Findpath with Rotation. In IJCAI, pages 799–803, 1983.

[17] G. Calinescu, A. Dumitrescu, and J. Pach. Reconfigurations in Graphs and Grids.
SIAM Journal on Discrete Mathematics, 22(1):124–138, 2008.

[18] S. Cambon, R. Alami, and F. Gravot. A Hybrid Approach to Intricate Motion,
Manipulation, and Task Planning. International Journal of Robotics Research,
(28), 2009.

[19] J. Canny. The Complexity of Robot Motion Planning. PhD thesis, MIT, Cam-
bridge, MA, 1988.

[20] P. C. Chen and Y. K. Hwang. Practical Path Planning Among Movable Obstacles.
In Proc. of the IEEE Intern. Conf. on Robotics and Automation, pages 444–449,
1991.

[21] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations. MIT Press, Boston, MA, 2005.

[22] M. Ciocarlie, K. Hsiao, G. E. Jones, S. Chitta, R. B. Rusu, and I. A. Sucan.
Towards Reliable Grasping and Manipulation in Household Environments. In
International Symposium on Experimental Robotics (ISER), 2010.

[23] J. B. Cohen, S. Chitta, and M. Likhachev. Search-based Planning for Manipula-
tion with Motion Primitives. In Proc. of the IEEE Intern. Conf. on Robotics and
Automation (ICRA), 2010.

[24] J. B. Cohen, S. Chitta, and M. Likhachev. Single- and dual-arm motion planning
with heuristic search. International Journal of Robotic Research, 33(2):305–320,
2014.

[25] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman. Push Planning for Object
Placement on Cluttered Table Surfaces. In Proc. of the IEEE Intern. Conf. on
Intelligent Robots and Systems (IROS), 2011.

128

[26] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental
task and motion planning: A constraint-based approach. In Robotics: Science
and Systems (RSS), 2016.

[27] D. Davidov and S. Markovitch. Multiple-Goal Heuristic Search. Journal of Arti-
ficial Intelligence Research, pages 417–451, 2006.

[28] L. De Moura and N. Bjørner. Satisfiability modulo theories: introduction and
applications. Communications of the ACM, 54(9):69–77, 2011.

[29] L. De Silva, M. Gharbi, A. K. Pandey, and R. Alami. A new approach to combined
symbolic-geometric backtracking in the context of human-robot interaction. In
2014 IEEE International Conference on Robotics and Automation (ICRA), pages
3757–3763. IEEE, 2014.

[30] E. Demaine, J. O’Rourke, and M. L. Demaine. Pushpush and push-1 are NP-hard
in 2D. In Proc. of the 12th Canadian Conf. on Computational Geometry, pages
211–219, 2000.

[31] A. Dobson and K. E. Bekris. Improved Heuristic Search for Computing Sparse
Data Structures for Motion Planning. In Symposium on Combinatorial Search
(SoCS), Prague, Czech Republic, 2014.

[32] A. Dobson and K. E. Bekris. Planning Representations And Algorithms For
Prehensile Multi-Arm Manipulation. In IROS, 2015.

[33] A. Dobson, A. Krontiris, and K. E. Bekris. Sparse Roadmap Spanners. In Work-
shop on the Algorithmic Foundations of Robotics (WAFR), 2012.

[34] M. R. Dogar and S. S. Srinivasa. A Framework for Push-Grasping in Clutter. In
Robotics: Science and Systems (RSS), 2011.

[35] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic
attachments for domain-independent planning systems. In Towards service robots
for everyday environments, pages 99–115. Springer, 2012.

[36] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Integrating Symbolic and
Geometric Planning for Mobile Manipulation. Denver, CO, 2009. IEEE Interna-
tional Workshop on Safety, Security and Rescue Robotics (SSRR), IEEE.

[37] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining
High-Level Causal Reasoning with Low-Level Geometric Reasoning and Motion
Planning for Robotic Manipulation. In IEEE Internation Conference on Robotics
and Automation (ICRA), pages 4575–4581, 2011.

[38] L. H. Erickson and S. M. LaValle. A Simple, but NP-Hard Motion Planning
Problem. In AAAI Conference on Artificial Intelligence, 2013.

[39] K. Erol, J. Hendler, and D. S. Nau. Htn planning: Complexity and expressivity.
In AIII, volume 94, pages 1123–1128. Springer, 1994.

[40] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. Ffrob: An efficient heuristic
for task and motion planning. In International Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2014.

129

[41] S. Ge and Y. Cui. Dynamic Motion Planning for Mobile Robots using Potential
Field Method. Autonomous Robots, 13:207–222, 2002.

[42] M. Gharbi, R. Lallement, and R. Alami. Combining symbolic and geometric plan-
ning to synthesize human-aware plans: toward more efficient combined search. In
IROS, pages 6360–6365. IEEE, 2015.

[43] M. Gobelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel. Coming up
with good excuses: What to do when no plan can be found. In International
Conference on Automated Planning and Scheduling, 2010.

[44] G. Goraly and R. Hassin. Multi-Color Pebble Motion on Graphs. Algorithmica,
58(3):610–636, 2010.

[45] D. Halperin, J.-C. Latombe, and R. H. Wilson. A General Framework for Assmbly
Planning: the Motion Space Approach. Algorithmica, 26(3-4):577–601, 2000.

[46] K. Hauser. The Minimum Constraint Removal Problem with Robotics Applica-
tions. In Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012.

[47] K. Hauser. Minimum Constraint Displacement Motion Planning. In Robotics:
Science and Systems (RSS), 2013.

[48] K. Hauser. The minimum constraint removal problem with three robotics appli-
cations. The International Journal of Robotics Research, 2013.

[49] K. Hauser and J.-C. Latombe. Multi-Modal Planning in Non-Expansive Spaces.
International Journal of Robotics Research (IJRR), 29(7):897–915, 2010.

[50] K. Hauser and V. Ng-Thow-Hing. Randomized Multi-Modal Motion Planning
for a Humanoid Robot Manipulation Task. International Journal of Robotics
Research, 2011.

[51] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu. Geometric Rearrangement of
Multiple Moveable Objects on Cluttered Surfaces: A Hybrid Reasoning Approach.
In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[52] D. Hsu, L. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin. On Finding
Narrow Passages with Probabilistic Roadmap Planners. In WAFR, Houston,
TX, 1998.

[53] D. Hsu, J.-C. Latombe, and R. Motwani. Path Planning in Expansive Configura-
tion Spaces. In IEEE Intl. Conf. on Robotics and Automation (ICRA), volume 3,
pages 2719–2726, Albuquerque, NM, Apr. 1997.

[54] D. Hsu, J.-C. Latombe, and R. Motwani. Path Planning in Expansive Con-
figuration Spaces. Int. Journal of Computational Geometry and Applications,
9(4-5):495–512, 1999.

[55] Y. K. Hwang and N. Ahuja. A Potential Field Approach to Path Planning. TRA,
8(1):23–32, Feb. 1992.

130

[56] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical Task and Motion Planning in
the Now. In IEEE International Conference on Robotics and Automation (ICRA),
2011.

[57] S. Kambhampati and L. S. Davis. Multiresolution Path Planning for Mobile
Robots. JRA, 2(3):135–145, Sept. 1986.

[58] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Motion
Planning. International Journal of Robotics Research (IJRR), 30(7):846–894,
June 2011.

[59] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe. Analysis of Probabilistic
Roadmaps for Path Planning. IEEE TRA, 14(1):166–171, 1998.

[60] L. E. Kavraki and J.-C. Latombe. Probabilistic Roadmaps for Robot Path Plan-
ning, pages 33–53. John Wiley, 1998.

[61] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
Transactions on Robotics and Automation, 12(4):566–580, 1996.

[62] O. Khatib. Real-time Obstacle Avoidance for Manipulators and Mobile Robots.
IJRR, 5(1):90–98, 1986.

[63] J. King, M. Klingensmith, C. Dellin, M. Dogar, P. Velagapudi, N. Pollard, and
S. S. Srinivasa. Pregrasp Manipulation as Trajectory Optimization. In Robotics:
Science and Systems (RSS), 2013.

[64] D. Koditschek. Robot Planning and Control via Potential Functions. In The
Robotics Review 1, pages 349–367. MIT Press, 1989.

[65] G. Konidaris, L. Kaelbling, and T. Lozano-Perez. Constructing Symbolic Rep-
resentations for High-Level Planning. In Association for the Advancement of
Artificial Intelligence (AAAI) conference, 2014.

[66] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating Pebble Motion on
Graphs, the Diameter of Permutation Groups, and Applications. In Foundations
of Computer Science (FOCS), pages 241–250, 1984.

[67] A. Krontiris and K. E. Bekris. Computational Tradeoffs of Search Methods for
Minimum Constraint Removal Paths. In Symposium on Combinatorial Search
(SoCS), Dead Sea, Israel, 2015.

[68] A. Krontiris and K. E. Bekris. Dealing with difficult instances of object rear-
rangement. In Robotics: Science and Systems (RSS), Rome, Italy, July 2015.

[69] A. Krontiris and K. E. Bekris. Efficiently solving general rearrangement tasks:a
fast extension primitive for an incremental sampling-based planner. In IEEE
International Conference on Robotics and Automation (ICRA), Sweden, 2016.

[70] A. Krontiris and K. E. Bekris. Tradeoffs in the computation of minimum con-
straint removal paths for manipulation planning. Advanced Robotics Journal (ac-
cepted), 2017.

131

[71] A. Krontiris, R. Luna, and K. E. Bekris. From feasibility tests to path planners
for multi-agent pathfinding. In Symposium on Combinatorial Search (SoCS -
2013), Leavenworth, WA, USA, 07/2013 2013.

[72] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K. E. Bekris. Rearranging
similar objects with a manipulator using pebble graphs. In IEEE Humanoids,
Madrid, Spain, 2014.

[73] A. M. Ladd and L. E. Kavraki. Measure Theoretic Analysis of Probabilistic Path
Planning. IEEE TRA, 20(2):229–242, Apr. 2004.

[74] F. Lamiraux and L. E. Kavraki. Planning Paths for Elastic Objects Under Manip-
ulation Constraints. International Journal of Robotics Research, 20(3):188–208,
2001.

[75] F. Lamiraux and J.-P. Laumond. On the Expected Complexity of Random Path
Planning. In ICRA, pages 3306–3311, 1996.

[76] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

[77] S. LaValle. Rapidly-exploring random trees: A new tool for path planning, 1998.

[78] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[79] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. WAFR, 2000.

[80] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-
tional Journal of Robotics Research (IJRR), 20:378–400, May 2001.

[81] S. Leroy, J.-P. Laumond, and T. Siméon. Multiple Path Coordination for Mobile
Robots: A Geometric Algorithm. In International Joint Conference on Artificial
Intelligence, pages 1118–1123, 1999.

[82] M. Levinh, J. Scholz, and M. Stilman. Hierarchical Decision Theoretic Plan-
ning for Navigation Among Movable Obstacles. In Proc. of the Workshop on the
Algorithmic Foundations of Robotics, 2012.

[83] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers, pages 108–120, 1983.

[84] R. Luna and K. E. Bekris. Efficient and Complete Centralized Multi-Robot Path
Planning. In International Conference on Intelligent Robots and Systems (IROS),
2011.

[85] R. Luna and K. E. Bekris. Push and Swap: Fast Cooperative Path-Finding
with Completeness Guarantees. In International Joint Conferences in Artificial
Intelligence (IJCAI-11), pages 294–300, Barcelona, Spain, July 2011.

[86] J. Marble and K. E. Bekris. Asymptotically Near-Optimal Planning with Proba-
bilistic Roadmap Spanners. IEEE Transactions on Robotics, 29(2):432–444, 2013.

132

[87] Z. McCarthy, T. Bretl, and S. Hutchinson. Proving Path Non-Existence using
Sampling and Alpha Shapes. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2563–2569, 2012.

[88] P. Mike, V. Hwang, S. Chitta, and M. Likhachev. Learning to Plan for Con-
strained Manipulation from Demonstrations. In Robotics: Science and Systems
(RSS), 2013.

[89] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki. Smt-based
synthesis of integrated task and motion plans from plan outlines. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 655–662.
IEEE, 2014.

[90] C. Nielsen and L. E. Kavraki. A Two-Level Fuzzy PRM for Manipulation Plan-
ning. In IEEE/RSJ IROS, pages 1716–1722, Japan, 2000.

[91] D. Nieuwenhuisen, A. Frank van der Stappen, and M. H. Overmars. An Effec-
tive Framework for Path Planning amidst Movable Obstacles. In Proc. of the
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2006.

[92] J. Ota. Rearrangement Planning of Multiple Movable Objects. In Prof. of the
IEEE Intern. Conference on Robotics and Automation (ICRA), 2004.

[93] A. G. Pereira, M. R. P. Ritt, and L. S. Buriol. Finding Optimal Solutions to
Sokoban Using Instance Dependent Pattern Databases. In Symposium on Com-
binatorial Search (SoCS), 2013.

[94] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-
Based Roadmap of Trees for Parallel Motion Planning. IEEE TRA, 21(4):587–
608, 2005.

[95] E. Plaku and G. Hager. Sampling-based Motion Planning with Symbolic, Ge-
ometric, and Differential Constraints. In IEEE International Conference on
Robotics and Automation (ICRA), 2010.

[96] J. H. Reif. Complexity of the Generalized Mover’s Problem. In FOCS, pages
421–427, 1979.

[97] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza. A Dataset For Improved
Rgbd-Based Object Detection And Pose Estimation For Warehouse Pick-And-
Place. IEEE RA-L - also at ICRA, 2016.

[98] L. I. Reyes Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli, and D. Rus.
Incremental sampling-based algorithm for minimum-violation motion planning.
In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pages
3217–3224. IEEE, 2013.

[99] E. Rimon and D. Koditschek. Exact Robot Navigation Using Artificial Potential
Functions. IEEE Transactions on Robotics and Automation, 8(5):501–518, Oct.
1992.

133

[100] G. Sánchez and J.-C. Latombe. On Delaying Collision Checking in PRM
Planning: Application to Multi-Robot Coordination. International Journal of
Robotics Research, 21(1):5–26, 2002.

[101] F. Schwarzer, M. Saha, and J.-C. Latombe. Adaptive Dynamic Collision Checking
for Single and Multiple Articulated Robots in Complex Environments. IEEE
Transactions on Robotics, 21(3):338–353, 2005.

[102] H. Shuai, N. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu. High-quality table-
top rearrangement with overhand grasps: Hardness results and fast methods.
In Robotics: Science and Systems (RSS), Cambridge, MA, 07/2017 2017. [Best
Student Paper Award Finalist], [Best Student Paper Award Finalist].

[103] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manipulation Planning
with Probabilistic Roadmaps. International Journal of Robotics Research (IJRR),
(23), 2004.

[104] K. Solovey and D. Halperin. k-Color Multi-Robot Motion Planning. In Pro-
ceedings of the 10th International Workshop on the Algorithmic Foundations of
Robotics (WAFR), pages 191–207, 2012.

[105] K. Solovey, O. Salzman, and D. Halperin. Finding a Needle in an Exponen-
tial Haystack: Discrete RRT for Exploration of Implicit Roadmaps in Multi-
Robot Motion Planning. In Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2014.

[106] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined
Task and Motion Planning through an Extensible Planner-Independent Interface
Layer. In IEEE International Conference on Robotics and Automation (ICRA),
2014.

[107] A. Stentz. The Focused D* Algorithm for Real-Time Replanning. 1995.

[108] M. Stilman and J. Kuffner. Navigation among Movable Obstacles: Realtime
Reasoning in Complex Environments. In Journal of Humanoid Robotics, pages
322–341, 2004.

[109] M. Stilman and J. J. Kuffner. Planning Among Movable Obstacles with Artificial
Constraints. In Proc. of the Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2006.

[110] M. Stilman, J. Schamburek, J. J. Kuffner, and T. Asfour. Manipulation Planning
Among Movable Obstacles. In IEEE International Conference on Robotics and
Automation, 2007.

[111] S. Sundaram, I. Remmler, and N. M. Amato. Disassembly Sequencing Using a
Motion Planning Approach. In IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 1475–1480, Washington, D.C., May 2001.

[112] P. Švestka. Robot Motion Planning using Probabilistic Road Maps. PhD thesis,
Utrecht University, the Netherlands, 1997.

134

[113] M. Toussaint. Logic-Geometric Programming: An Optimization-based Approach
to Combined Task and Motion Planning. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI 2015), 2015.

[114] J. van den Berg and M. Overmars. Prioritized Motion Planning for Multiple
Robots. In International Conference on Intelligent Robots and Systems (IROS),
pages 430–435, 2005.

[115] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized Path Planning
for Multiple Robots: Optimal Decoupling into Sequential Plans. In Robotics:
Science and Systems (RSS), 2009.

[116] J. van den Berg, M. Stilman, J. J. Kuffner, M. Lin, and D. Manocha. Path
Planning Among Movable Obstacles: A Probabilistically Complete Approach. In
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2008.

[117] W. Vega-Brown and N. Roy. Asymptotically optimal planning under piecewise-
analytic constraints. In International Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2016.

[118] G. Wagner, M. Kang, and H. Choset. Probabilistic Path Planning for Multiple
Robots with Subdimensional Expansion. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2012.

[119] Y. Wang, N. Dantam, S. Chaudhuri, and L. Kavraki. Task and motion policy
synthesis as liveness games. In International Conference on Automated Planning
and Scheduling (ICAPS). AAAI, 2016.

[120] G. Wilfong. Motion Planning in the Presence of Movable Obstacles. In Proc.
of the 4th Annual Symp. of Computational Geometry, pages 279–288, New York
City, NY, USA, 1988. ACM.

[121] R. H. Wilson and J.-C. Latombe. Geometric Reasoning about Mechanical As-
sembly. Artificial Intelligence Journal, 71(2):371–396, 1994.

[122] J. Yu and S. M. LaValle. Multi-agent Path Planning and Network Flow. In
Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012.

[123] J. Yu and S. M. LaValle. Optimal multi-robot path planning on graphs: Complete
algorithms and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–
1177, 2016.

[124] L. Zhang, Y. Kim, and D. Manocha. A Simple Path Non-Existence Algorithm
using C-Obstacle Query. In Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2008.

[125] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A.
Bagnell, and S. S. Srinivasa. CHOMP: Covariant Hamiltonian Optimization for
Motion Planning. International Journal of Robotics Research (IJRR), 2013.

