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For context-aware systems in indoor work settings, several types of sensors 

have been applied to capture work activities. We introduce and present a 

sensing platform and object motion detection system using a hidden Markov 

Classifier based on a UHF RFID system. Backscattered signal strength of 

passive UHF RFID tags as a sensor is used for providing information on the 

movement and identity of work objects. As the read range of passive UHF 

RFID broadens up to 12 meters compared to 1-meter range of HF RFID, 

passive tags have been used for many applications such as tracking medical 

devices and objects of daily living. The RF communication link between the 

reader antenna and tags for indoors exhibits intermittent loss of signal 

reception due to antenna orientation mismatch and breakpoints within the 
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antenna coverage area. We propose a design of a sensing platform for 

tracking objects using a UHF RFID system with passive tags that provides 

continuous signal reception over the coverage area. We first investigated 

causes of power loss for passive tags and then designed a sensing platform 

solution using antenna diversity. The causes of tag’s power loss were 

eliminated with angle and spatial diversity methods that can cover an 

arbitrary area of interest. We implemented this design in an indoor setting of 

a trauma resuscitation room and evaluated it by experimental measurement 

of signal strength at different points and angles in the area of interest. Our 

sensing platform supported complete coverage and uninterrupted 

interrogation of tags as they moved in the area of interest. We conclude that 

this sensing platform will be suitable for uninterrupted object tracking with 

UHF RFID technology in generic indoor spaces. In addition to the sensing 

platform, we design an object motion detection system using passive UHF 

RFID tags attached on medical objects. To use the signal strength for 

accurate detection of object movement we propose a novel hidden Markov 

model with continuous observations, RSSI preprocessor, frame-based data 

segmentation, and motion-transition finder. We use the change in 

backscattered signal strength caused by tag’s relocation to reliably detect 

movement of tagged objects. To maximize the accuracy of movement 

detection, an HMM-based classifier is designed and trained with dynamic 
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settings, and different object types. We deployed an RFID system in a 

hospital trauma bay and evaluated our approach with data recorded in the 

trauma room during 28 simulated resuscitations performed by trauma teams. 

Our motion detection system shows 89.5% accuracy in this domain. 
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1. Introduction 

For context-aware systems in indoor work settings, several types of sensors 

have been applied to capture work activities [1][2][3]. Among the sensors 

radio-frequency identification (RFID) technology has been used in a variety of 

areas for its primary function of identifying objects [4][5][6][7]. Additionally, 

a secondary function of object tracking emerged based on the received signal 

strength indication (RSSI). A new emerging research area is activity 

recognition with passive RFID. Our study focuses on motion detection of 

medical objects as a basis for activity recognition in a trauma bay. The fast-

paced, high-risk environment of trauma resuscitation can benefit from a 

context-aware system, where context refers to the currently performed 

activity. While most active devices and instruments in a trauma bay such as 

patient monitoring system, pulse oximeters, and anesthesia machines 

provide valuable information with physiological data [8], passive devices and 

tools such as bag-valve mask (BVM), cervical collar, CO2 detector and etc. 

need additional sensors to provide information on themselves for the context-

aware system [9]. Detecting the motions and identifications of passive objects 

in the bay can serve as reliable information sources for current tasks and 

team activities because most medical objects are uniquely associated with 
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different tasks [10]. 

The passive RFID tag is one of the sensors that has been used in hospital 

environments for detecting the status of medical objects due to its more 

advantageous aspects than other sensors such as active RFID tags and 

computer vision. Passive RFID technology provides better features for 

dealing with different shapes and sizes of objects in medical settings. Because 

a passive tag operates without batteries, it has a very simple structure, 

requires no maintenance, and is cost-effective and readily applicable to most 

items including disposable ones. Computer vision has similar characteristics 

but raises privacy concerns and is less sensitive to small and randomly 

oriented objects of various shapes than RFID technology whose primary 

function is identifying objects [11][12]. In the studies [8][13][14][15][16], 

passive RFID tags are applied to detect the presence of medical objects in the 

room and not capable of providing information on being used. Moreover these 

systems are intrusive and require medical staffs to wear RFID readers. In 

passive RFID systems, continuous reader signal is required because passive 

RFID tags harvest energy from the interrogation radio signal of a reader to 

activate. Discontinuities in the reader signal within the working range will 

cause power loss of the tags. In object tracking applications, it is critical that 

passive tags receive activation power continuously from the reader signal. If 
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readers cannot provide passive tags with proper power, the tags will not 

activate and not respond to reader’s interrogation, making the direct tracking 

difficult. As the working range of UHF RFID is expanded up to 12 meters 

compared to 1 meter of high frequency (HF) RFID, UHF signals have suffered 

more for signal discontinuities within the coverage. Several studies have 

indicated power loss of the passive UHF RFID tags [9][17][18][19]. 

In this thesis, we present a sensing platform and a motion detection system 

for passive objects in a trauma bay using passive RFID technology. Our 

sensing platform design focuses on providing continuous signal reception for 

tracking objects based on RSSI which is the received signal strength 

information on backscatter from a passive tag at the reader. The motion 

detection system uses a hidden Markov model-based classifier and provides 

information on moving and stationary states of passive medical objects used 

on a patient bed of a trauma bay. We describe detailed challenges, 

contributions, designs and performance analysis in separated sections for the 

sensing platform and the motion detection system. 

 

1.1 Sensing Platform 

A UHF RFID reader radio system is a transceiver which transmits and 
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receive signals simultaneously using the same frequency [20][21]. We 

investigated the causes of power loss for passive tags and provided a sensing 

platform solution using angle and spatial diversity of antennas. We applied 

this platform to a crowded indoor setting of a trauma resuscitation room. The 

fast-paced, high-risk hospital environments such as trauma resuscitation and 

surgical operation can benefit from context-aware systems that recognize and 

analyze currently performed activities. Other studies have used passive RFID 

tags for tracking medical objects as part of a context-aware system, but 

provided no specific sensing platforms to deal with power loss of passive tags 

[13][22][23][24]. 

In the sensing platform of this thesis, we examine the causes of tag’s power 

loss in indoor environments and present a platform based on a UHF RFID 

system to provide sensing free of power loss for UHF passive tags. Our key 

design aim is to provide uninterrupted reader signal over the area of interest 

with a nonintrusive system. The reader antennas or other related devices of 

an RFID system should not be in the paths of people’s work and equipment 

movement. The long range of UHF tags allows us to install RFID reader 

antennas on the room ceiling.  
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1.1.1 Challenges 

To provide uninterrupted reader signal, we investigated the main challenges 

causing the power loss: human occlusion, indoor multipath fading, and 

antenna orientation mismatch between the reader antennas and tags. First, 

because the radio signals of an RFID system cannot penetrate human body, 

tags occluded by people are rarely activated. To secure different paths of the 

reader signal, we employed multiple reader antennas located at the room 

ceiling. The number and exact locations of those antennas are calculated by 

accounting for the orientation mismatch and the breakpoints. Second, the 

orientation mismatch causes power loss, leaving passive tags inactivated and 

unable to provide information to the reader. Because the tag antenna is 

directional, there is power attenuation due to the orientation mismatch 

between the reader and the tag. Complete orientation mismatch will result in 

zero power delivered to the tag. We introduced angle diversity to prevent the 

power loss from the orientation mismatch. Third, the breakpoints also 

account for power loss of passive tags. Indoor radio signals undergo scattering, 

multipath, and delay spread, and the effects of these propagations include 

constructive and destructive interference [25][26][27]. While the constructive 

interference strengthens the radio signal, the destructive interference often 

makes deep fades, called “breakpoints,” in which tags become undetectable 
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even within the working range [11][25][28]. To cover this effect, we 

investigated breakpoints and introduced antenna diversity by arranging 

reader antennas at different angles over the area of interest. To address the 

above challenges and develop a sensing platform, we first modeled the 

workspace in our laboratory, because the actual workspace cannot be used for 

time-consuming system development. We used a commercial off-the-shelf 

(COTS) system which includes an RFID reader, reader antennas and passive 

UHF tags. 

 

1.1.2 Contributions 

The sensing platform makes three contributions. First, using simulation and 

experimental measurements we characterized power loss problems and 

demonstrated that a single antenna cannot continuously track tags within its 

own range due to breakpoints and orientation-mismatch problems. Second, 

we presented a sensing platform design of a UHF RFID system with angle 

and spatial diversity as a solution to the power loss problems and applied it 

to a crowded indoor space. We then empirically verified the sensing platform 

by measuring RSSI at different locations and angles within the area of 

interest. Third, we successfully addressed power loss problems with 
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continuous RFID data acquisition, eliminating power loss over the area of 

interest. This sensing platform with small modifications will be suitable for 

uninterrupted object tracking with UHF RFID technology in generic crowded 

indoor spaces. 

 

1.2 Object Motion Detection System  

Our objection motion detection system provides information on moving and 

stationary states of passive medical objects attached with RFID tags. 

Important properties of our system are nonintrusive operation and 

preserving the privacy of medical teams. For the nonintrusive and privacy-

preserving system, we employ the passive UHF RFID tags, whose working 

range is up to 12 meters. This long range allows RFID reader antennas to be 

mounted onto the ceiling above the work are. The maximum range of 12 

meters is sufficient to interrogate tags from the reader antenna on the ceiling 

since the height of ceiling is typically no more than 4 meters. To detect 

movement of medical objects, the received signal strength indication (RSSI) 

of the tag is used. RSSI is RFID reader measurement of the power in received 

radio signals from an RFID tag. Since the strength of the received signal 

varies with the location and orientation of the tag [29][30][31][32], RSSI is a 
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good indicator for detecting movement of tagged objects. When tag’s location 

or angle are changed relative to the reader antenna, the tag's RSSI at the 

new location will be different from that at the previous location. 

 

1.2.1 Challenges 

When developing a practical system, there are substantial challenges 

involved: (1) RSSI measurement tends to be significantly affected by the 

thermal noise at the reader side which results in ambiguous measurement 

because RSSI directly depends on weak backscattered signal power from the 

tag. The power of the backscattered signal is typically 107 to 105 W at the 

reader [9]. (2) Although the distribution of RSSI is often assumed as 

Gaussian [22][33], practically measured RSSI distributions are different from 

Gaussian due to unpredictable indoor propagations that encumber accurate 

calculation [34][35][36][37][38]. These varying distributions should be 

addressed in stochastic processing on RSSI. (3) RSSI measurement from a 

fast-moving tag over a short interval yields insufficient information on a 

moving state because the RFID system suffers from severe query-loss [39][40] 

resulting in lacking of the number of data samples to process noisy RSSI. (4) 

The device diversity in RSSI measurement causes extra magnitude in RSSI. 
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Different RFID tags, readers and antennas, even from the same vendor, have 

different characteristics. Making calibration factors of a number of those 

devices for each characteristic requires a great deal of handwork. Thus the 

diversity factors in RSSI measurement should be addressed when using RSSI 

from multiple devices. (5) Trauma rooms are crowded with people moving 

around the area of interest, causing interference to radio signals [10] and 

resulting in noisy RSSI. 

We developed a detection system to tackle the above challenges. To tackle 

Challenge (1) and (2), investigating distributions of RSSI and read rates of 

multiple tags in the area of interest, the patient bed, we designed RSSI 

preprocessor to reduce the variance of RSSI distribution introduced by the 

thermal noise and indoor propagation and make RSSI distribution closely 

follow Gaussian. Due to Challenge (3) we focus on relative change in RSSI 

caused by its relocation, rather than absolute values from the moving tag. We 

introduce frame based segmentation of RSSI data to detect RSSI change and 

use it for observations of the HMM classifier. Since the HMM classifier 

makes movement detection on a frame basis, we develop motion-transition 

finder to determine the exact movement time within a frame based period. To 

tackle Challenge (4) we create a feature to compensate diversity terms for 

hidden Markov classifiers. We use difference of RSSI based on a frame basis 
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rather than using absolute RSSI values. By differentiating RSSI values of 

two consecutive frames, common extra magnitude of each frame RSSI 

introduced by diversity factors can be eliminated. To tackle Challenge (5) we 

develop an HMM classifier based on machine learning. In addition to the 

interference, each of medical objects has its own usage and frequency of being 

used, so we create different parameters of the classifier for each object by 

training in the presence of the interference caused by human moving and 

environment. Then we develop an augmented HMM classifier from the naive 

one to increase detection performance further.   

 

1.2.2 Contributions 

We make the following contributions: First, we investigate distributions of 

RSSI in the indoor environment and find out that the distributions randomly 

vary with locations and have large variances. We propose RSSI preprocessor 

that process RSSI to be reliable in detecting tag’s motion and make accurate 

approximations to the Gaussian distribution for statistical processing. Second, 

for the detection system we present a novel method of constructing hidden 

Markov models with continuous observations, introducing frame based data 

segmentation and motion-transition finder. The method results in a decrease 
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in detection error rate by 10.8% compared to naive HMM. Third, we install 

an RFID system in a hospital trauma bay and evaluate the detection system. 

This result indicates that the passive UHF RFID tag is a new source of 

providing not only identification of medical objects but also information on 

their movement for context-aware systems in hospital settings. 

 

 

2. Background and Related Work 

2.1 Sensing Platform 

A study on radio wave propagation and backscatter communication link in an 

office environment using a network analyzer showed deep fades 

(“breakpoints”) even within a line-of-sight [41]. They demonstrated that a 

simple statistical channel model in general does not hold for indoor 

propagation. Another study evaluated the minimum activation power of the 

tag (10 dBm) using a anechoic chamber and showed that the signal strength 

of each UHF RFID channel (50 channels in the range 902.75 – 927.25 MHz) 

met the 10 dBm turn-on threshold [42]. Based on their results, we localized 

the breakpoints by measuring the RSSI values in the area of interest and 

checking if the tag was below the turn-on threshold and did not respond to 
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interrogation. We used these breakpoint locations as a design parameter of 

our sensing platform.  

Tag’s signal power attenuation from orientation mismatch between the tag 

and reader antenna have been examined [43][44]. These studies, however, 

provided no design solutions for tag’s power loss. Our three-dimensional 

visualization of their model showed that far-below-the-activation power of the 

tag at certain angles causes complete power loss, which we also verified 

experimentally. As a result, in an indoor environment there are breakpoints 

and orientation mismatches within a line-of-sight that cause tag’s power loss 

in the coverage of a reader antenna. 

Previous studies using passive RSSI ranging applied a single reader antenna 

to cover tags in the antenna range [10][24][26][27]. A single antenna is, 

however, inadequate to sense tags at all distances from the antenna due to 

the orientation mismatch and breakpoints, and it is not able to provide 

continuous tag reading even for tags within its coverage area. On the other 

hand, studies that used multiple antennas analyzed the dependence of 

application performance accuracy on different configurations of redundant 

antennas to determine the proper positions and number of antennas to cover 

the area of interest [22][39]. However, they did not analyze power loss of a 

tag nor designed a sensing platform systematically using the antenna 
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specification. We also used multiple antennas for the area of interest. We, 

however, investigated radio specification of an RFID antenna and the causes 

of power loss of passive tags, and provided a sensing platform. 

 

2.2 Object Motion Detection System  

In activity and motion recognition several types of sensor such as vision 

[45][46], accelerometer [47], and RFID tag [8][16] have been used. Although 

vision-based sensors are not intrusive to medical teams and provides rich 

contextual information, they raise privacy concerns in the medical domain of 

our context [22]. Compared to RFID tags whose information is affected by 

indoor propagation, physical accelerometer data are earned directly though 

hardwire, so accelerometers are not subject to indoor propagation. They 

however require batteries and circuitry to work with considerable sizes, 

resulting in inapplicable to sensitive and small medical objects. Thus the 

passive RFID tag is decided to use in our system. 

In hospital settings for context-aware systems, some of studies used passive 

RFID tags to detect the presence of medical staff and objects [8], phase of 

surgical operation [13], nursing activity [14], and clinical intervention [16] 

but they detect only the presence of tags in their applications without 
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detecting the movement of objects. When it comes to deciding that objects are 

used or not, there is no way to detect it with information on the presence. 

There are some studies on detecting the movement of RFID tagged objects. A 

study [29] uses sliding windows and sample mean comparison with tag’s read 

rates instead of RSSI. With made-up scenarios they shows, an accuracy of 94% 

for stationary objects without human presence and moving around the area of 

interest but the algorithm works poorly for moving objects showing 40 - 65% 

accuracy. Another study [22] uses a sliding window, multiple RFID antennas 

and data interpolation and achieves a relatively low accuracy of 80% with 

people moving around the area of interest.   

To increase the accuracy for crowded surroundings, we design and construct 

a hidden Markov model classifier with continuous observations (RSSI) that 

can be trained for interference from surroundings. Instead of using sliding 

window, we develop motion-transition finder for exact detection time and 

frame based data segmentation to provide uncorrelated observations to the 

HMM classifier. To statically deal with continuous observations and reduce 

the variances of noisy RSSI, we investigate distributions, read rates, query 

missing rates of RSSI and then develop RSSI preprocessor. Our approach 

achieves an accuracy of 89.5% with four people moving from actual medical 

activities. Novel designs of HMM classifier and RSSI preprocessor maximizes 
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the system accuracy in dynamic settings with human moving and improves 

by about 10.8% in crowded settings compared to naive HMM. 

 

3. RFID Technology for Medical settings 

RFID systems consists of tags and readers. RFID tags and readers have to 

use the same frequency to be able to communicate. Tags are divided into 

three different types by the frequency band, low frequency, high frequency 

and ultra high frequency. According to battery use, RFID systems have also 

two categories, passive and active systems. We examine RFID technology and 

find applicable RFID systems for medical settings.      

 

3.1 Passive RFID Frequencies 

The most common frequencies at which RFID systems operate in the field are 

low frequency (LF), high frequency (HF), and ultra-high frequency (UHF) 

bands. Radio waves behave differently at different frequencies so there are 

advantages and disadvantages in using each band. For example, low-

frequency RFID systems which use long wave length have slow data rates 

and short read ranges but better capabilities of reading on metal or liquid 

surfaces. High-frequency RFID systems which use short wave length have 
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fast data rates and long read ranges but are more affected by interference 

from metal and liquid materials. However with recent RFID technologies, it 

is possible to use UHF RFID systems on liquids and metals [48]. 

 

Low Frequency (LF) RFID System 

The LF band frequencies are 120-150 KHz. RFID systems in the band have 

short read ranges of 10 cm and slower data transfer speeds than higher 

frequency systems but are less sensitive to radio wave interference. 

 

High Frequency (HF) RFID System 

The HF band frequency is 13.56 MHz. HF systems have read ranges between 

10 cm and 1 m. Data transfer speed and radio wave interference are 

moderate.  

 

Ultra High (UHF) Frequency RFID System 

The UHF band frequencies are 865-868 MHz in Europe and 902-928 MHz in 

North America. UHF systems have long read ranges up to 12 m and faster 

data transfer speeds than LF and HF systems but most sensitive to materials 

and interference. However there are different UHF tags to work on different 

materials [49][50][51][52][53][54]. 
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3.2 Passive and Active RFID System 

Active RFID System 

Typically, active RFID tags have a long life battery that will last a few years 

to transmit information and run the microchip’s circuitry [55] and the range 

of the active systems is up to 100m. Active RFID systems consist of tags, 

readers and antennas and typically operate in UHF band. Due to the battery 

and circuitry the active tags are bigger in size than passive tags and used on 

large objects such as rail cars and big reusable containers with longer ranges 

[48]. 

 

Passive RFID System 

Unlike active RFID systems, in passive RFID systems, the tags have no 

battery and are powered by a radio signal from readers. With no battery, the 

passive tags have only a tag chip and antenna and are inexpensive, small in 

size, and easy to be made in different sizes and shapes depending on 

applications. 

 

In medical settings, the detecting system should be nonintrusive and RFID 
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tag’s size and shape should be applicable to a variety of medical tools and 

objects. Thus in this study, a passive UHF RFID system is used due to its 

long rage and small size.  

 

 

4. System Model 

Our system is designed to detect the motion of medical objects around and on 

the patient bed in a trauma bay and comprises two parts, a sensing platform 

that allows continuous data acquisitions from passive UHF tags attached on 

medical objects, and an HMM-based classifier that provides information on 

moving and stationary states of passive medical objects under noisy 

environments. This section describes key design aspects of the system with 

challenges. 

 

4.1 Sensing Platform Configuration 

This section presents a platform based on a UHF RFID system to provide 

sensing free of power loss for UHF passive tags in indoor spaces. We focus on 

power loss of tags in indoor environments caused by natural phenomena. We 

investigated the causes of power loss for passive tags and provided a sensing 
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platform solution using angle and spatial diversity of antennas. We applied 

this platform to a crowded indoor setting. Other studies have used passive 

RFID tags for tracking medical objects as part of a context-aware system, but 

provided no generic sensing platforms to deal with power loss of passive tags 

[13][16][22][56]. Our key design aim of sensing platform is to provide 

uninterrupted reader coverage over the area of interest. For a nonintrusive 

system, the reader antennas or related devices should not be in the way of 

people’s work and equipment movement. The long range of UHF tags (12 

meters) allows installing RFID reader antennas on the room ceiling. To 

provide uninterrupted reader signal, we investigated the main challenges 

causing the power loss: human occlusion, indoor multipath fading, and 

antenna orientation mismatch between the reader antennas and tags. 

Because the radio signal of an RFID system is absorbed by human body, tags 

behind people receive insufficient power for activation. To provide alternative 

paths for the signal power from the reader to the tag, multiple reader 

antennas are introduced and located at the room ceiling. We found the 

minimum number and proper locations of those antennas dealing with 

orientation mismatch and the breakpoints. Another cause of power loss of the 

tag is orientation mismatch. It makes the tag inactivated and unable to 

provide information to the reader even though there is no human occlusion. 
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Because a certain direction of the tag gets close to zero gain, complete 

orientation mismatch will result in lack of activation power for the tag. We 

combined angle diversity to the multiple antennas to prevent the power loss 

from the orientation mismatch. The breakpoints are also another cause of 

power loss of passive tags. Indoor radio propagation introduces constructive 

and destructive interference. While the constructive interference enhances 

reader radio signal power, the destructive interference generates deep fades, 

called “breakpoints,” in which tags become undetectable even within the 

working range. We investigated breakpoints and introduced antenna 

diversity by arranging reader antennas at different angles over the area of 

interest. 

In the next sections, we address all the challenges above and design a sensing 

platform in detail.  

 

4.1.1 Human Occlusion 

One of impediments to tracking objects used in work with passive RFID tags 

is human occlusion. When objects are used during work, it is likely that the 

direct radio signals of reader antennas will be blocked by people, rendering 

passive tags unreadable. Because the direct line-of-sight radio signal carries 
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the most power to activate passive tags but cannot penetrate human body, 

occluded tags receive insufficient energy to activate. Full occlusion causes 

loss of signal from tags, while partial occlusion weakens the signal strength 

and results in flawed information reads. To address these issues, we placed 

reader antennas where it would most likely have greatest visibility of tags 

used: on the ceiling above the area of interest. To verify this choice, we 

observed the work of trauma teams during trauma resuscitation, and found 

that the ceiling area just above the patient bed best ensured a line-of-sight 

between reader antennas and tagged medical objects. 

 

4.1.2 Power Loss from Antenna Orientation Mismatch 

In typical work scenarios, tagged objects could be oriented in any direction of 

three-dimensional space. Passive RFID tags harvest energy from radio 

signals of the RFID reader for their operation. The angle between the tag and 

reader antenna is at random, and tags could become unreadable at certain 

angles due to power loss from antenna orientation mismatch. If there is a 

significant power loss in harvesting energy, tags cannot activate and respond 

to the reader interrogation. If the tag antenna is directional [57][58][59] and 

the short side of tag is perpendicular to reader’s antenna axis, the power 
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received by the tag tends to be zero (Figure 1 (a)). The tag parallel to reader’s 

antenna axis receives the maximum power from the reader (Figure 1 (b)). 

 

Z Y

X

Reader 
Antenna (b) No power loss(a) Power loss

θ 

Y'
Y'

 
Figure 1. Power loss due to the orientation mismatch between a tag and a 
reader antenna. (a) The tag perpendicular to the reader antenna receives a 
minimum power, close-to-zero. (b) The tag parallel to the reader antenna 
receives the maximum power of reader signal regardless of rotation on the x-
axis. 
 

The one-way power loss factor (PLF) [20] and power loss in dB are: 

where  is the angle between the reader antenna axis and the direction of 
tag’s long side (Figure 1 (a)). 

 
We modeled the three-dimensional power loss versus orientation using 

 Power Loss Factor (PLF) = cos() (1) 

 Power Loss (PL) in dB =  )cos(log20   (2) 
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Equation 2. The color of each patch of the torus in Figure 2 indicates the 

power attenuation in dB for each direction of RF signal from the reader 

antenna. In the short-side direction of the tag, the power loss is more than 

20 dB while there is no power loss in the long-side direction of the tag. 
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Figure 2. Three-dimensional model of power loss due to antenna orientation 
mismatch using Eqn.2. The long-side direction of the tag receives the most 
power and received power in the tag’s short-side direction is attenuated by 
more than 20 dB. 
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We measured in our laboratory the received signal strength at different tag 

orientations (Figure 3). All measurements were performed at the same 

distance of 2 meters from the reader antenna, repeated 150 times for each 

orientation, and averaged. Zero RSSI is obtained at orientations around 90, 

making the tag unreadable due to complete power loss. 

 

 
Figure 3. Received signal strength vs. the tag’s rotation relative to the reader 
antenna. 
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To compensate for zero values of PLF, another reader antenna needs to be 

placed at an angle different from that between the tag and the first antenna. 

The antennas should be at different angles to avoid the situation when the 

tag is perpendicular to both reader antennas simultaneously. There are 

omnidirectional RFID tags that are insensitive to orientation. They have 

bigger square antennas compared to slim rectangular antennas of directional 

RFID tags. However, due to the square shape and larger size, omnidirectional 

tags may be difficult or impossible to attach to small objects. 

 

4.1.3 Breakpoints 

Another source of signal loss for passive tags is due to breakpoints. 

Breakpoints occur because of multipath fading and cannot be avoided in 

natural indoor environments [18][25][41]. When a tag is located in a 

breakpoint, it may be unreadable even within the radio range of the reader 

antenna. A tag outside of breakpoints usually produces between 90% to 100% 

query response rate (Figure 4). A tag within a breakpoint receives insufficient 

signal power to activate and produces low RSSI values and low query 

response rates, below 50% and down to 0%, depending on how deep the tag is 

within a breakpoint. 
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To analyze multipath fading [18][19][60][61][62], some studies have used 

microcell modeling with a ray-based approach [63][64]. A typical ray-based 

model for the received power is [28]: 

 

where  is the wavelength of the RFID frequency, Pr and Pt are respectively 
the received and transmitted powers, hr, ht are the heights of the reader and 
tag antennas, gr, gt are the antenna gains, and d is the distance between the 
tag and reader antenna. 

 

 

Query response rate = readerthebyattemptsqueryofnumberThe
tagthefromresponsesofnumberThe
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Figure 4. Query response rates for a tag outside of and inside breakpoints 
(zero values of RSSI indicate no response). (a) Interrogating a tag outside of 
breakpoints produces all non-zero RSSI values with 100% query response. 
(b) Interrogating a tag inside a breakpoint produces mostly zero RSSI values 
with 16% query response. 

 
 

In our sensing platform scenario, reader antennas are attached to the ceiling 

and tags are attached to objects used during work, and both antenna types 

have fixed gains. Thus, hr, ht, gr, and gt are invariable and Equation 4 can be 

simplified to Equation 5: 
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where A and B are constants,  is the wavelength of the RFID frequency, Pr 
and Pt are respectively the received and transmitted powers, d is the distance 
between the tag and reader antenna. 

 
 

In this model, the parameters that affect the breakpoint locations are the 

operating frequency and the distance between a tag and a reader antenna. 

Based on Equation 5, we modeled the breakpoints in Figure 5 according to 

the distance between the antenna and the tag, with frequencies of 902 and 

928 MHz (passive UHF RFID frequency band in the United States is between 

902–928 MHz [65]). The UHF RFID band is divided to 50 channels and one of 

the 50 channels is used randomly for 0.4 seconds. Note that the frequency 

differences in the UHF RFID band have almost no effect on the location of 

breakpoints (Figure 5). 
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Figure 5. Breakpoints with UHF RFID frequencies of 902 and 928 MHz 
obtained using the analytical model (Equation 5). The breakpoints are the 
locations below the minimum activation power indicated by a horizontal line. 
 

This model, however, does not account for reflections and defections by small 

objects and assumes that scatter is produced by large flat surfaces such as 

walls [9] and the breakpoints could be inconsistent from the actual 

breakpoints for indoors environment with furniture and other objects. 

Therefore, we estimate breakpoints by measuring RSSI values in the area of 
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interest. From the examination of the human occlusion the reader antenna is 

supposed to be located on the ceiling area right above the working area, a 

patient bed, for the setting. We measured RSSI values with the reader 

antenna at four different locations that make angle diversity for tackling the 

antenna orientation mismatch problem. The four locations are right above 

one third and two third of two long sides of the working area rectangle. The 

measurement of the signal strength is taken within the area of interest to 

track tagged objects with uninterrupted reading of passive RFID tags. Figure 

6 shows RSSI versus distance from the four observed locations; zero RSSI 

values indicate breakpoints. Figure 7 indicates how a reader antenna and tag 

are located in this measurement. Because antenna heights and gains are 

fixed and only the antenna location of the working area is changed within the 

area of interest, the varying of the breakpoints from the four observed 

locations remains within 8 cm. Experimentally measured breakpoints from 

the four locations appear at 0.28 and 1.08 meters with a tolerance of ±4 cm. 

From this measurement we then define the locations of breakpoints and the 

reader antenna coverage on the patient bed height level to design the sensing 

platform. The location of breakpoints is 0.28 m from the reader antenna and 

the antenna coverage is considered to be 1.01 m (Figure 9 (b)). We include a 

margin for stability because the distance between the end of the second 
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breakpoint (110 cm) and the actual coverage boundary (130 cm) is quite short 

with close-to-zero-power areas. Due to breakpoints one antenna for one zone 

does not fully cover its reading range and another antennas are need to 

compensate each other’s breakpoints. Breakpoints can be avoided by spatial 

diversity that employs multiple antennas at different positions. The next 

section describes our sensing platform design that tackles the above 

impediments for using passive UHF RFID. 
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Figure 6. Measured RSSI versus the tag distance from the origin right under 
the reader antenna from the setup ( Figure 7 ).  
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Figure 7. The setup for measuring RISS is molded as a trauma bay. The 
reader antenna is on the ceiling at 2.65 m high, facing down to the floor. The 
tag is at 0.76 m above the ground and moved horizontally over the distance of 
up to 1.3 m away from the origin. 
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4.2 Sensing Platform Design 

As mentioned, physical phenomena and human occlusion during the handling 

of tagged objects hinder continuous reading of passive RFID tags. These 

impediments constrain the location of reader antennas to the ceiling area and 

require antenna diversity to mitigate the power loss from orientation 

mismatch and breakpoints. Another constraint is the distance between the 

reader antenna and the area of interest because the coverage area of 

interrogation signal is proportional to the distance to the tag (Figure 8). 

Single-room indoor environments usually restrict the coverage area. For 

example, at 1.9 m distance between the reader antenna on the ceiling and 

RFID tags on a desk, the coverage area is a circle of radius 1 m. Our 

theoretical solution for antenna configuration is derived to meet the following 

requirements: 

 

R1: The area of interest should be completely covered by at least two 

antennas to achieve (i) angle diversity and eliminate orientation mismatch of 

the reader and tag antennas, and (ii) spatial diversity to eliminate 

breakpoints. 

 

R2: Breakpoint regions of different antennas must not overlap to avoid 
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any remaining breakpoints. 

 

R3: The number of antennas should be minimized because of cost and 

esthetic reasons. 

 

Although our method works for any shape of the area of interest, for 

simplicity we assume a rectangular area of length ℓ and width w (Figure 9 

(a)); in our target domain of trauma resuscitation ℓ is 2 m and w is 0.75 m. 

The beam pattern of a reader antenna is cone-shaped (Figure 8) [66], and 

that all reader antennas have identical coverage (1.01 m radius) and 

breakpoints (single circle of 0.28 m radius), as shown in Figure 9 (b). To meet 

Requirements R1–R3 under the given assumptions and parameters, we use a 

geometric approach in determining the adequate number and positions of the 

reader antennas. Given the identical characteristics of reader antennas, any 

irregular positioning of antennas would require more than necessary 

antennas (violating Requirement R3) or would have gaps in coverage 

(violating Requirement R1). It follows that only a regular positioning of 

antennas would meet all the requirements (Figure 10 (a)). There are three 

regular tilings of the plane [67]: the triangular tiling, the square tiling, and 

the hexagonal tiling, which can be obtained by composition of triangular tiles 
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(Figure 10 (c)). It is known that the hexagonal tiling (and, by extension, the 

triangular tiling) produces the densest circle packing in the plane [67], which 

means that it packs the greatest number of antennas of all regular tilings. To 

meet Requirement R3, we chose the square tiling to cover the area of interest 

which produces the least dense circle packing. Therefore, we met 

Requirements R1–R3, addressing the problems of breakpoints and 

orientation mismatch (Figure 10 (d)). 

 

 

No power outside 
of beam

Radiation Angle θ 

Reader
Antenna

D (distance)

DRadius  )2/tan(

 

Figure 8. Radio signal Radiation approximation for a directional reader 
antenna. 
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Figure 9.  (a) The size of the patient bed. (b) Top view of reader’s antenna 
coverage with one breakpoint. 
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Figure 10. (a) Regular tiling of an area of interest to eliminate breakpoints by 
covering with at least two antennas for spatial diversity. (b) Shaded coverage 
area achieved using four antennas in a rectangular tiling. (c) Shaded 
coverage area achieved using four antennas in a triangular tiling, which 
combined makes hexagonal tiling. (d) Four antennas arranged in rectangular 
tiling cover the whole working area with at least two antennas, achieving 
antenna diversity with a sufficient margin. 
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4.3 Experimental Results 

4.3.1 Hardware Setup for the Sensing Platform 

We built the sensing platform using commercial off-the-shelf (COTS) 

equipment from Alien Technology which include an RFID reader ALR-9900, 

four circularly polarized antenna ALR-9611-CRs and passive UHF tag ALN-

9740. The operating frequency range of the system is 902.75 – 927.25 MHz 

with frequency hopping. The number, spacing and dwell time of hopping 

channels are 50, 500 KHz, and <0.4 seconds, respectively. The power of RF 

transmitter is ≤30 dBm. The reader antenna dimensions, gain and beam 

width are 28.419.54.3 cm, 6 dBi max, and 40. The dimensions and read 

range of the tag are 98.212.30.08 mm and up to 12 m [43]. The RFID 

reader and a desktop computer were connected with network cables to a 

router for TCP/IP communication. The reader provided RSSI and ID of 

passive tags and was not capable of detecting phase of tag’s signal. The 

communication protocol between the reader and the passive tags is the EPC 

Class-1 Generation-2 standard [68]. The sensing platform developed in our 

lab (Figure 10 (d)) was deployed in trauma bay of a Level 1 trauma center 

(Figure 11). The four antennas were attached on the ceiling at 2.65 m height, 

facing down to the floor, 75 cm apart from each other along each horizontal 
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Figure 11. Trauma bay floor plan with four antennas on the ceiling. RSSI was 
measured at Points A, B and C to verify our design for angle diversity. 
 

 

4.3.2 Experimental Results of Angle Diversity 

To verify the antenna angle diversity for the area of interest around the 

patient bed, we measured how RSSI’s depends on tag’s orientation at points 

A, B and C (Figure 11). Points A and B were chosen within the area of 

interest at the greatest distance from the diversity antennas. Angle 

differences at larger distances are smaller, which means that points A and B 
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were the worst-case points for angle diversity. Point C was chosen so that two 

antennas (#1 and #2) and the tag were lying on a line, although the tag was 

at a lower height. Point C was also in the range of antennas #3 and #4 

(Figure 11), which were other diversity antennas for this point. Since other 

points in the area of interest were relatively symmetrical to the reader 

antennas (Figure 11), Points A, B and C represented all the worst-case points 

for angle diversity. Figure 12 shows how RSSI depends on tag orientation at 

these three points. The RSSI was measured 150 times at orientation 

increments of five degrees and then averaged. Zero RSSI indicated zero 

power due to complete power loss from antenna orientation mismatch. None 

of zero RSSI angles at Points A, B and C overlapped. Therefore, our sensing 

platform eliminated zero-power points for all orientations of the tag in the 

area of interest. 
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Figure 12. RSSI as function of tag rotation at Points A, B and C from reader 
antennas #1 and #2 (Figure 11). Zero degrees indicates that the tag’s long 
side pointed to the reader antenna #1, as in Figure 1(b). 
 

 

4.3.3 Experimental Results of Covering Breakpoints 

We measured the four circular breakpoints in the area of interest (the patient 

bed) covered by the four antennas (Figure 10 (d)). The measurements were 

obtained so that one antenna at a time was activated and a tag was moved 

along the y-axis on a grid (Figure 13) over the patient bed, with tag’s long 

side facing the active antenna. For each location, query response rate was 

acquired with 500 trials. Breakpoints were identified as the points where the 
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measured query response rate (Equation 3) was below 25%. Finally, all four 

antenna centers were aligned, and their breakpoints superimposed to specify 

the maximum areas of breakpoints. The furthest breakpoints occurred at 

about 36 cm from an antenna (Figure 13). Therefore, if the distance between 

antennas is greater than 72 cm, there will be no overlaps of breakpoints. 

Because in our sensing platform (Figure 10 (d)) the antennas are at 75 cm 

apart from each other, their breakpoints did not overlap and Requirement R2 

was fully met. 

Note that the widest breakpoints appeared about 8 cm wide along the central 

direction of each antenna beam (Figure 13), facing the center of the patient 

bed (Figure 10 (d)). The breakpoints on edge directions of the bed were sparse 

and narrow. The bed edges were less affected with breakpoints, because they 

experienced fewer reflected radio signals than the central area of the bed. 
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Figure 13. The breakpoints measured from the four antennas on the patient 
bed (Figure 10 (d)) are overlapped. Each antenna is located in the origin 
labeled with a box “Antenna”. Each error bar indicates the width of a 
breakpoint. 
 

4.4 Discussion 

The experimental results at different locations and angles in the area of 

interest show that power interruption of the tag is covered by angle and 

spatial diversity methods. We conclude that this design of the sensing 

platform will provide continues object tracking without losing power of the 
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tags in indoor environments. 

 

4.5 Analysis and Processing of RSSI 

We use received signal strength indication (RSSI) of passive UHF tags for 

detecting the motion of medical objects. RSSI is a power measurement at the 

reader device of a received radio signal from a tag. Because the strength of 

the received power depends on the distance between a reader antenna and a 

tag, RSSI is a good indicator of moving objects. However, in a system based 

on passive RFID tags, estimation of RSSI for mapping the power strength to 

distance is inherently low accuracy [11][12][69] because RSSI relies on the 

weak backscattered signal power that is easily affected by the thermal noise 

on the receiver side. As a result, the practically measured RSSI has 

considerable large variances [33][63]. In this section RSSI is analyzed and 

processed to use in an HMM classifier. 

 

4.5.1 RSSI Read Rate with Varying Tag-set Size 

We studied the effects of different tag-set sizes on read rates and query-

missing rates (Equation 6) because we are tracking multiple objects in the 

area of interest simultaneously.  
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We used an Alien Technology reader that provides RSSI in a 16-bit resolution, 

covering a maximum read range of 12 meters. Based on observations of our 

target domain (trauma resuscitation), we found that up to ten tagged objects 

can be used simultaneously in the work area (patient bed). Many more 

tagged objects may be present in the room, but are normally kept outside of 

the work area to avoid clutter. Therefore, relatively a small number of objects 

are within the coverage of antennas focused on the work area. EPC Class-1 

Generation-2 standard [70] supports a multi-access method for multiple-tags 

interrogation using a variation of slotted Aloha protocol [71]. The read rate is 

the number of tag interrogations per second. Queries might be missed 

because of collisions when multiple tags respond simultaneously and errors 

in wireless backscatter communication.  

We dispersed a set of tags randomly in the area of interest (around 2 meters 

from the reader antenna), aligned tag antennas parallel to the reader 

antenna to maximize the read rate, and left the tags stationary. The reader 

was commanded 1,000 times to interrogate all tags within the range. As the 

 

Query-missing rate = reader by the attemptsquery  ofnumber  The
 tag thefrom responses missing ofnumber  The

 (6) 
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tag-set size increased, the total number of reads per second initially increased, 

but then decreased around the tag-set size of 30, while the read rate per 

single tag monotonously decreased (Figure 14). We observed a decrease from 

30.8 interrogations per second with a single tag to 14.2 per second with 10 

tags. Query-missing rates for tag-set sizes up to 10 tags appeared not to 

depend on the tag-set size and remained below 3% (see Figure 14, units on 

the right side of the chart). Reading rates for larger tag-set sizes, with 50, 100 

or more tags, are very low, but as noted earlier, such large tag-sets usually do 

not appear within the work area. This results show that how many RSSI data 

can be obtained with varying tag-set size in a fixed time period. 
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Figure 14. Read rates and query-missing rates according to the number of 
tags at around 2 meters from the reader antenna. Note the read-rate units on 
the left side and query-missing-rate units on the right side of the chart. 
 

 

4.5.2 RSSI Distribution 

We investigated the distributions of measured RSSI data and then process 

RSSI to use in our classifier. Figure 15 shows the noise level of the RSSI 

values. The RSSI samples were captured from a tag at a single distance in a 

real trauma bay. The maximum fluctuation is about 60% of its mean. Figure 
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16 is the power spectrum of raw RSSI values acquired from a stationary tag 

and shows the noise of the RSSI is crowded mostly around the DC level. The 

tag read rate is 30 / second. In practice, two sets of RSSI data taken at two 

adjacent locations largely overlap because of noisy RSSI characteristics. 

When mapping RSSI values with respect to tag’s location, such overlap 

results in detection errors and inability to differentiate a location form 

another location. Figure 18 (a) shows two measured RSSI data distributions, 

each averaged over 18 locations. For example, using raw RSSI data the error 

probability for the detection of a 5 cm movement is 0.38, which is close to the 

maximum error probability of 0.5. This big error rate due to the large 

distribution of RSSI is one of challenges to use noisy RSSI in location 

mapping. We tackle the challenge in the section after Probability Distribution 

of RSSI. 
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Figure 15. RSSI values from a stationary tag captured in a real trauma bay. 
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Figure 16. The power spectrum of RSSI values from a stationary tag 
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In order to use RSSI in a classifier system, a predictable probability 

distribution of RSSI is required. Probability distributions play a great role in 
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of interest which is a patient bed and drew their frequency distributions in 

Figure 17. While a few of the distributions look like Gaussian, the others are 
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probability distributions of RSSI regardless of locations and take care of the 

large distributions of RSSI by processing RSSI in the next section. 

 

 

 

Figure 17. Distributions of measured RSSI at different locations in the area 
of interest (9 locations out of 18 are shown), where each set contains 10,000 
samples. The bell curves are fitted Gaussian distributions. 
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4.5.4 RSSI Processing 

We observed that RSSI distributions in the area of interest are very large for 

cm-location mapping and the probability distributions are not unique and 

unpredictable due to varying from one location to another location. Because a 

hidden Markov model classifier requires probability distributions of 

observations (RSSI) to compute the most-likely corresponding sequence of 

state, the probability distributions of RSSI in any location of the area of 

interest should be known.     

 

The desired properties for the RSSI after processed in our context are: (a) The 

lag of the processing is predicable; (b) The processing should not smear out 

sharp transitions in the data; (c) The processing must work for nonlinearly 

moving objects in crowded rooms; (d) the processing should reduce the RSSI 

distributions; and (e) the processing should provide predictable probability 

distributions. 

 

To meet the properties, we applied the Central Limit Theorem (CLT) as a 

RSSI preprocessor. The CLT allows obtaining accurate approximations to the 

Gaussian distribution associated with sums of random variables [72]. As the 

sample size N increases (typically N  30), the distribution of the sample 
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averages, x , converges to the normal distribution [73] (Equation 7 - 9). 

 

 

where x1, ..., xN are random variable samples with mean x and variance 2x.  

 

Another advantageous property of the sample average x  is to reduce the 

variance by a factor of N. Each RSSI read is a random variable with a mean 

that represents the received power strength. Equations 10 and 11 show that 

the variance of the sample average of noisy RSSI is proportional to one over 

the number of subset samples: 
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where n  is the number of inputs, S(i) is a RSSI value without noise, V(i) is a 
uncorrelated Gaussian random noise with zero mean and variance 2

v  in raw 
RSSI, and S(i) + V(i) represents noisy raw RSSI. 
 

With increasing sample size N the RSSI variance decreases at a rate of N/1 . 

However the sample size N needs to be balanced because short RSSI 

transitions from fast movements might be averaged out. We found that the 

minimum required distance for detecting object’s motion is 5 cm by observing 

trauma resuscitations which is our application domain.  With setting a 

condition that the overlap of processed RSSI distributions at two 5-cm-apart 

locations is close to zero (less than 1%) we determined that the minimum 

sample size ( =N ) equals 110 by calculating the overlap with processed RSSI. 

Figure 18 (b) shows that the overlapped processed RSSI values are 0.88% 

with the sample size 110. The smallest read rate for the tag-set size up to 10 

is 14 reads/sec (Figure 14), so approximately 8 seconds are needed to read at 

least 110 samples. Therefore, we used an 8-second window for RSSI 

preprocessor. In the cases of fewer than 10 tags in the range there should be 

more than 110 samples in an 8-second window and this will results in 

smaller overlap areas than that from 110 samples. Figure 19 shows the 

     22
2

222
2

2 11...1
21ˆ vvvvvv n

n
nn n

 
 

(11) 



55 

 

 

 

 

processed RSSI distributions with the sample size of 110. Unlike the 

measured RSSI distributions (Figure 17), the processed RSSI distributions at 

all locations make very close approximations to the Gaussian distribution, 

because of the CLT. The standard deviations of the estimated RSSI data are 

between 0.8% and 5.8% of the mean, an average of 2.3%. The estimator 

reduces the standard deviation of measured RSSI to 14.6%. The variance of 

processed RSSI is reduced to 14.6% of the variance of measured RSSI and the 

distribution of processed RSSI is Gaussian. We used processed RSSI for our 

detection system as an input. 

 

 

Figure 18. Distributions of measured RSSI and processed RSSI from 18 pairs 
of different locations, shown as bell curves. In both charts, the left bell curve 
shows distribution averaged from 18 locations used in Figure 17 and the 
right curve shows distribution from 18 tandem locations, each 5 cm apart 
from the original. The decision boundary (thick dotted line) is set to be the 
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midpoint of the means of two distributions. (a) The measured RSSI data 
distributions overlap by 38%. (b) The distributions of processed RSSI values 
overlap only by 0.88%. 
 

 

Figure 19. Processed RSSI distributions at the locations corresponding to 
those in Figure 17 using the preprocessor with N = 110. The bell curves are 
fitted Gaussian distributions.  
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4.5.5 RSSI Segmentation 

Because an instant of RSSI is a random variable, to apply stochastic 

processes a certain period time of RSSI is required. There are two typical 

data segmentations, overlapping and non-overlapping. We use non-

overlapping segments, “frames”, (Figure 20) of processed RSSI as the 

observations to an HMM classifier, which makes decisions at each frame-time 

instant. Then, motion-transition finder searches within the selected frame for 

the exact time of transition from stationary to moving state. In contrast to 

frame-based segmentation, a sliding-window segmentation  

Figure 21) can makes decisions at each sample time instant. It, however, 

shares most of the data within the adjacent windows and produces highly 

correlated information, making it difficult to detect the differences between 

two consecutive windows.  

 

 

1 2 3 4 5 6 87 9 ··· 
Frame 1 Frame 2

Processed RSSI

 

Figure 20. Frame based (non-overlapping) segmentation of time series data. 
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Figure 21. Sliding window (overlapping) based segmentation of time series 

data. 

 

4.5.6 Transition Detection 

The advantage of frame based segmentation is that consecutive data frames 

have no correlation introduced from the segmentation but the frame 

segmentation produces less accurate decision point in time than the sliding 

window. In the case of sliding window (Figure 21), data segmentations are 

generated at every instant of data and detection can be made at the same 

time. In the frame segmentation, data segmentations are generated at a 

multiple data instant period and detection cannot be made at a single instant 

data time. Thus we introduce a motion-transition finder to find the exact 
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detection time.  

Each frame is fed to the HMM classifier as an observation and the HMM 

classifier marks each frame with either “moving” or “stationary” state. Then 

motion-transition finder searches for the exact start and end time of state 

transition. Figure 22 shows a set of frames used by motion-transition finder, 

with “stationary” frames and “moving” frames. We use two line segments for 

curve fitting, because in stationary states the processed RSSI can be fitted 

with a horizontal line, and in moving states after a stationary state it can be 

fitted with a linear line. The first segment is a horizontal line corresponding 

to the mean value of the first stationary frame. The segment after or before a 

stationary state is a linear line connecting the horizontal lines representing 

the moving states. The connecting pint of two fitted lines indicates the exact 

start and end times (in seconds) of the state transition (i.e., the beginning 

and the end of object movement). 
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Figure 22. A set of frames for motion-transition finder and a fitting curve. 
 

 

4.6 HMM Classifier 

 

4.6.1 Naive Hidden Markov Model (NHMM) 

We first designed a NHMM (Figure 23 (a)) that makes decisions whether the 

tagged object is moving or stationary and then introduced Augmented Hidden 
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Markov Model (AHMM) and Simplified AHMM (SAHMM). Given NHMM, 

the Viterbi Algorithm [74] is used to find the most likely state sequence 

through the trellis (Figure 23 (b)) by maximizing the probability of the most 

probable state sequence (Equation 12 - 14).  
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Figure 23. (a) State diagram of the Naive hidden Markov model; I(x|) is the 
emission probability distribution where o is the observation (Equation 15). (b) 
Trellis form the Viterbi Algorithm to compute the most-likely corresponding 
sequence of state. 
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where Tt 1 , to = observation, i, = {stationary state, moving state},   = 
initial probabilities of  , ,ia = probabilities of transitioning from i to , and 
the most likely state sequence = )(tq . 
 

 

All the parameters of NHMM are defined and explained as follows. 

Observations 

Our system is based on RSSI which can vary with diversity of reader antenna 

gain and tag antenna gain associated with device hardware. Those devices’ 

diversity causes additional magnitudes in RSSI measurement but the 

additional magnitudes are different with different tags and reader antennas. 

By subtracting RSSI values from the same tag on a frame basis, we eliminate 

the common additional magnitude of each frame RSSI introduced by the 

diversity. Because RSSI is provided in a logarithmic scale (dBm), the 

 
   )|()1( toIv     (Initial State) (12) 
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additional magnitude is added to RSSI as a constant number. For instance, 

the difference of sample means of RSSI values from a stationary tag tends to 

be zero regardless of an extra magnitude in RSSI values from the device 

diversity. Thus, we define NHMM observations to be the difference between 

the mean RSSI values of the current frame and the predecessor frame: 

where t is the frame based time and mt is the mean of processed RSSI values 
in frame t. 
 

The emission probabilities in the states 

Processed RSSI is a Gaussian random variable and any liner transformation 

of processed RSSI produces another Gaussian random, variable. Thus tm  

( tm
 ,

tm
 ), 1tm  ( 1tm

 , 1tm
 ) and to  ( 1


ttt mmo  ,

1


ttt mmo  ) are Gaussian random variables (Equation 16) 
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where (x) is a delta function. 

 

Because the probability distribution of the input function follows a Gaussian, 

it is possible to represent analytically the continuous observations for 

emission probabilities of an HMM as a Gaussian distribution. Using the 

Gaussian distribution of the observations the emission probabilities of 

observations in the stationary state and moving state are defined: 

 

An emission probability of observation to  in the stationary state defined as 

)|( stationarytoI   follows Gaussian ( 0
to

 ,
1


ttt mmo  ). In the 

stationary state, 
to

  is zero because of 1


tt mm  .  

  

An emission probability of observation to  in the moving state defined as 

)|( movingtoI   follows Gaussian ( 1


ttt mmo  , 1


ttt mmo  ).   

 

The mean and standard deviation in each state are decided and optimized 

with training data sets.  
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Optimality criterion 

The target to detect is whether an object moving. False positive error 

generates false information on the motion of moving while false negative 

error results in losing the motion information. Both types of errors should be 

minimized. In our context, sizes of the positive (moving) and negative 

(stationary) classes are different. The number of the stationary states 

overruns the number of the moving states since objects are more likely in 

stationary. We use Matthew's Correlation Coefficient (MCC) [75] (Equation 

17 - 20) as an optimality criterion for our HMM classifier because it works 

with skewed class imbalance and takes into account both false positive and 

false negative errors [76].  

 

 N = TN + TP + FN + FP (17) 

 
S = 	

TP + FN
N  (18) 

 
P = 	

TP + FP
N  (19) 

 
MCC =	

TP
N − 	S	 × P

ඥPS	(1 − s)(1 − P)
 (20) 
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Where TP is the number of true positives, TN is the number of true negatives, 
FP is the number of false positives and FN is the number of false negatives. 
 

 

Initial and transition probabilities 

By supervised training, initial and transition probabilities are learned from 

respective frequencies of state transitions from training data sets. 

 

4.6.2 Augmented Hidden Markov Model (AHMM) 

With the property that reducing the variance of a RSSI distribution 

contributes to lowering the overlapping area of distributions of different RSSI 

sets which results in errors (Figure 18), we design AHMM (Figure 24) to 

reduce the variance of the observation (Equation 16) in the stationary states. 

In a period of frames in which the stationary state keeps continuing, each 

mean of the frame data converges the mean of the period data and 1tm  can 

be replaced with 1ˆ tm . The observation of continuing stationary states is: 

 
1ˆ  ttt mmo  (21) 
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where k is the number of continuing stationary states.  

 

By processing multiple stationary frames, the variance of averaged 1ˆ tm is 

reduced, so the observation variance in continuing stationary states, 

)( 2
ˆ

22
1


ttt mmo   becomes smaller than the observation distribution in 

Equation 16. By the CLT, upon further increasing k, 2
ˆ 1tm

  converges zero, so 

the observation distribution in continuing stationary states can be reduced to 

2
tm

 . Figure 25 shows an experimental result. The stationary state continues, 

on average, variances of 1ˆ tm  are reducing quickly below 2
1

15.0



tm

 at 8th 

continuing stationary state. The used RSSI values are taken ten thousand 

times from a stationary tag at the nine locations (Figure 17). Figure 24 shows 

the states of AHMM to reduce the observation variance in the stationary 

states. In each stationary state, 1ˆ tm  is updated using Equation 22 and 

results in reduced variances of the observation. 
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Figure 24. The state diagram of AHMM. 
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Figure 25. The ratio of variance of 1ˆ tm to 1tm  as the stationary state 
continues. RSSI data are taken at the same nine locations as in Figure 17. 
 

 

 

4.6.3 Simplified AHMM (SAHMM) 

The critical impediment in realization of AHMM is to train a number of 

states since supervised training is used in our context. To yield stable 
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parameters of all the fine stationary states, the training requires much more 

training data and ground truths involving a great amount of fine handwork. 

Thus, we simplify a number of the stationary states of AHMM to a single 

stationary state for feasible training while keep the property of reducing the 

observation distribution. Thus SAHMM has one stationary state and one 

moving state as in NHMM but uses the same observations of AHMM. 

 

Observations 

We use the observations to AHMM defined in Equation 21 and 22 from the 

previous section. As the stationary state continues, 1ˆ tm  can be determined 

with 1tm  and 2ˆ tm , that is from the previous stationary state, without 

using all the history of m: 

where k  is the number of continuing stationary states (Figure 24). 

 

Thus the observation to SHMM can be realized in a functional form with tm , 

1tm  and 2ˆ tm  without using additional memories and further history of 

data. 

 kmkmm ntt /))1(ˆ(ˆ 121    (23) 
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Emission probabilities of the states 

Emission probabilities )|( movingOI   and )|( stationaryOI   remain unchanged 

as in AHMM, while with training data sets, the variance of the emission 

probabilities is trained. 

 

Initial and transition probability distributions 

By supervised training, those distributions also remain unchanged as in 

NHMM. 

 

5. System Evaluation 

5.1 Individual Component Evaluation 

In this section, we show how each component of the detection system works 

with three experimental scenarios (Figure 26 – Figure 28). Those scenarios 

consist of the cases of four people moving around, one person moving and 

monotonous increment of RSSI with respect to human interference and 

detectable RSSI changes. Our area of interest is the patient bed in a trauma 

resuscitation room, surrounded by a medical team treating the patient 
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(Figure 11). In the scenario of four people moving around the bed, much 

bigger ripples in stationary-state RSSI values were observed compared to the 

scenario with one person moving (Figure 27). NHMM and SAHMM were 

trained using a set of RSSI values from the first scenario (Figure 26), and 

applied to all three scenarios. Because of the training set with heavy ripples, 

both SAHMM and NHMM might miss small changes in RSSI value (Figure 

28). Due to the reducing-variance characteristics of SAHMM, it detects all the 

movements in Figure 26 except for the smallest movements (Figure 28). 

NHMM, however, misses most of the smallest changes (Figure 28). 
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Figure 26. A scenario with random tag movement and four people moving 
randomly in the area of interest, (a) Spiky lines show measured RSSI values, 
the smooth line shows processed RSSI, and rectangular boxes show the exact 
transition times from motion-transition finder with SAHMM outputs; 
(b) Detection output of ASHMM; (c) Detection output of NHMM at each 
frame instant. 
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Figure 27. A scenario with random tag movement and one person moving in 
the area of interest. Charts (a) – (c) have the same meaning as in Figure 26. 
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Figure 28. A scenario with the tag’s rotating to produce small RSSI 
increments in monotone and one person moving in the area of interest. 
Charts (a) – (c) have the same meaning as in Figure 26. 
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point to the patient bed from different viewing angles. These antennas allow 

to integrate tags at all directions and also produce RSSI in any cases that 

medical staffs might obscure one of the antennas’ line-of-sight RFID signals 

resulting in degrading signal strength and an insufficient data set in number. 

The RFID readers and a desktop computer are connected to a router for 

TCP/IP communication. The reader has a local clock and offers a timestamp 

in a millisecond resolution for each RSSI read. The timestamp is used for the 

fixed frame in time. Two different types of passive UHF tags are used for 

different materials of medical objects. One type is ALN-9740 for non-metallic 

objects, its dimensions are 98.212.30.08 mm and the read range is up to 12 

m. The other type is Confidex Steelwave Micro II for metallic objects such as 

laryngoscope and its dimensions and read range are 38134.5 mm and up 

to 5 m on metal. The communication protocol used between the readers and 

the passive tags is the EPC ClASS-1 Generation-2 standard. 

 

5.3 Tagged Passive Medical Objects  

Nine passive medical objects are selected and tagged, mostly used on and 

near to the patient bed in resuscitations such as bag valve mask (BVM), 

collar, laryngoscope, ETtube (ETT), Stethoscope, Fluid bag, IV start kit, IV 
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tubing, and thermometer (Figure 29). 

 

 

Figure 29. The tagged passive medical objects; from upper left, ETT, IV start 
kit, thermometer and stethoscope. From lower left, laryngoscope, collar, IV 
tubing, fluid bag and BVM. 
 

 

5.4 Data Collection and Ground Truth Data 

With the deployment of the RFID system, RFID data and surveillance video 

are recorded during 28 simulated resuscitations, each about 20 minutes long. 

The recorded surveillance videos are used to make ground truth data. There 

are four resuscitation scenarios and each one was preformed seven times by 

different trauma teams. The average number of medical staffs moving around 
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the area of interest is four in the resuscitations. The scenarios include High-

speed motor vehicle collision, pedestrian struck at approx 20 mph, restrained 

passenger in head-on collision and pedestrian struck in a parking lot, 

involving the nine passive medical objects for treatments such as 

endotracheal intubation, administration of fluids and mediations, 

temperature control and ET-tube insertion. 

 

5.5 Experimental Results 

From the 28 resuscitations, 20 resuscitations, each five resuscitations from 

four different scenarios, are taken at random and used for training NHMM 

and SAHMM and eight resuscitations are used for evaluations. The results 

are shown in Figure 30. Each of tagged objects has distinctive usage and 

moving characteristic so detection accuracies are slightly different. RSSI data 

are extracted according to tag’s ID and the antenna and feed to the detection 

system with distinct parameters. Data from different antennas might 

produce contrastive detections. Then the detection with a higher data rate is 

taken because better signal reception results in higher data rates. 

 

SAHMM shows 10.8% improvement in accuracy on average compared to 
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NHMM. The object movement is identified with 89.5% accuracy on average 

by SAHMM. The stethoscope shows the lowest accuracy of 72.4% from the 

fact that most radio signals from the tag are absorbed by human body 

resulting in low data rates. In general, medical staffs carry stethoscopes on 

the chest or around the neck when not in-use so human body can absorbs 

both signals from a reader antenna and backscattered signals from a tag 

attached on the stethoscope. This absorbing effect results in missing RSSI 

reads and a low accuracy. 
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Figure 30. Motion detection performance of classifiers. (a) Results from 
SAHMM. (b) Results from NHMM. 
 

 

6. Conclusion 

Applications of UHF RFID passive tags have expanded from simply 

indentifying objects to tracking objects in various work and home settings. 

However, uninformed configurations of reader antennas may experience 
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power loss at tags even within their coverage area, rendering them 

inadequate for continuous tracking of tags. We identified the causes of the 

power loss as breakpoints and antennas angle mismatch between the reader 

and a randomly oriented tag. Breakpoints are created from indoor radio 

signal propagation and cannot be avoided. We presented a UHF RFID 

sensing platform that addresses the power loss problems using angle and 

spatial diversity. Our design provides uninterrupted coverage of the area of 

interest, eliminating the power loss problems and allowing continuous 

tracking of tags. We applied this sensing platform in a hospital trauma bay. 

We measured RSSI and query response rates for breakpoints and angle 

mismatch, and found no points with significant power loss. We conclude that 

this sensing platform provides uninterrupted tracking of RFID-tagged objects 

in indoor settings.  

Having the sensor platform designed we present a detection system for 

providing information on moving and stationary motion of passive medical 

objects being used in the area of interest using UHF RFID technology. The 

novel methods to achieve a high accuracy are RSSI preprocessor, SAHMM 

classifier, frame based segmentation and motion-transition finder. The RSSI 

preprocessor reduces the variance of RSSI distribution introduced by the 

thermal noise and makes accurate approximations to the Gaussian 
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distribution. To detect tagged object’s motion, we use RSSI change of the tag 

based on its relocation with frame based segmentation of RSSI data. The 

motion-transition finder determines the exact movement time within a frame 

based period. SAHMM is trained for crowded settings with human moving 

and the movement and in-use frequency of each tagged object to maximize its 

detection accuracy tackling environmental interference. Proposed SAHMM 

increases the detection accuracy by 10.8% compared to NHMM. Our system 

is evaluated with RSSI data recorded in an actual trauma bay in simulated 

resuscitations performed by trauma teams and shows 89.5% accuracy with 

human moving around the area of interest. From this result we expect that 

passive UHF RFID technology can be a promising method to provide 

information on both the movement and identification of passive medical 

objects for context-aware systems. 
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