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ABSTRACT OF THE DISSERTATION

Exploiting Multispectral and Contextual Information to Improve
Human Detection

By JINGJING LIU

Dissertation Director:

Dimitris N. Metaxas

Human detection has various applications, e.g., autonomous driving car, surveillance system,

and retail. In this dissertation, we first exploit multispectral images (i.e., RGB and thermal

images) for human detection. We extensively analyze Faster R-CNN for the detection task

and then model multispectral human detection into a fusion problem of convolutional net-

works (ConvNets). We design four distinct ConvNet fusion architectures that integrate two-

branch ConvNets on different stages of neural networks, all of which yield better performance

compared with the baseline detector. In the second part of this dissertation, we leverage

instance-level contextual information in crowded scenes to boost performance of human detec-

tion. Based on a context graph that incorporates both geometric and social contextual patterns

from crowds, we apply progressive potential propagation algorithm to discover weak detections

that are contextually compatible with true detections while suppressing irrelevant false alarms.

The method significantly improves the performance of any shallow human detectors, obtaining

comparable results to deep learning based methods.
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Chapter 1

Introduction

1.1 Background

The goal of human detection is to localize human in the physical world. There exists a bunch

of techniques using different kinds of signals to localize people. Some signal modalities, as

audio [1] and Wi-Fi signals [2], are out of the scope of our work. In this dissertation, we are

focusing on the vision-based human detection that aims at predicting image locations of human

objects by using computer vision techniques: given images (visible or invisible), the task of

human detection is to generate bounding boxes (each one is represented by 4 image coordinates)

for human hypotheses and their corresponding detection confidences. To be noticed, some

researchers categorize human detection into people detection and pedestrian detection which

have different assumptions and technical focuses. In general, people detection places extra

emphasis on static images with human instances of various poses and layouts, while pedestrian

detection assumes human objects are upright (walking or standing). Besides, motion patterns

are frequently exploited in pedestrian detection to improve the performance [3]. We do not

distinguish people detection and pedestrian detection in this dissertation.

Human detection has various applications in real-life, such as autonomous driving, video

surveillance and retail (in Figure. 1.1). For instance, it is a principle component of autonomous

driving systems which require the functionality of avoiding human hitting. It is very useful es-

pecially in urban areas where people are walking around or crossing streets. The localizations

of people in surrounding areas could help the autopilot in planning safe driving paths. Besides,

based on detected people, surveillance systems could automatically discover the occurrence of

abnormal events, e.g., abandoned object and street fighting. By looking at the appearance of

detected people, the intelligent surveillance system could also find out suspects according to
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(a) Autonomous driving (b) Surveillance (c) Retail

Figure 1.1: Applications of human detection techniques in real-life applications.

visual descriptions. In checkout-free stores, such as Amazon Go [4], results of human detec-

tion would be fundamental inputs for action recognition module. By recognizing the actions

of a specific custom, a back-end system can automatically and simultaneously check out the

products picked up by that person. Besides, the visual attributes of detected customs could

also help in recognizing their identities, which enables the system to charge money from the

right person. Moreover, potential customs and their shopping interest could be discovered by

investigating how long they stay by a specific product.

1.1.1 Challenges

Despite various applications, many challenges have prevented current artificial vision systems

from approaching human-level perception ability on identifying human objects in images [5]

(as shown in Figure. 1.2), which include:

Appearance. Because of different clothing and carry-ons, people have highly diverse

appearances. A good human detector should be capable of capturing these visual com-

plexities, in order to discriminate human instances against a cluttered background. As a

result, effective image representations and powerful classifiers are required.

Pose. Different from rigid objects, the human object is more articulated. They would

have different poses and layouts in images, due to actions they are performing. Different

camera views would also lead to people of various poses in images. Generally speaking,

one unified and rigid human detector cannot cover these pose variants. For instance, a

human detector trained with upright human samples apt to fail in detecting a person lying

on a floor.
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(a) Appearance (b) Pose

(c) Occlusion (d) Lighting (e) Scale

Figure 1.2: Challenges of vision-based human detection.

Occlusion. In many application scenarios of human detection, e.g., in stations, streets,

and grocery stores, we could observe lots of occlusions happening between people and

people, or between people and other background objects. It is likely that the lower body

or the left shoulder of a person is occluded in the image. A human detector should be

robust to occlusions and output high detection confidence for a human instance even if it

is partially invisible.

Scale. It is also called image resolution problem. First of all, human instances of small

image scales have very low image resolutions. In other words, it is difficulty to extract

informative visual features from these small image areas to represent human objects.

Additionally, image features from different scales would have distinct visual statistics,

which can bring challenges to a single detector in validating human instances of various

scales, even if feature transformations are applied before the final classification.

Lighting. As we introduced above, human detection is a key technique for many around-

the-clock applications, e.g., self-driving car and video surveillance. Currently, most of

the human detectors are using color images in detecting people. These detectors work

well on daytime images captured under good lighting. Nevertheless, on night time im-

ages with human instances of bad visibility, these detectors would possibly be incompe-

tent. Even on daytime images, traditional human detector would mistake people standing
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Low-level 
sensing Pre-processing Feature extraction and 

transformation
Prediction, 
recognition

Feature engineering:

Figure 1.3: The conventional pipeline of human detection.

in shadow as background. Such defect cuts these approaches off from real applications.

Thereby, some other image sensing (e.g., infrared images) robust to lighting has to be

considered, in particular, when human detection is applied in 24-hour applications.

1.1.2 Conventional Pipeline

As a canonical case of the generic object detection problem, in the past decades, human de-

tection has attracted consistent attention from the computer vision community. To improve the

detection performance, researchers have proposed a bunch of methods to handle the challenges

mentioned above and have significant improvement in recent years [6, 7, 9, 8, 10]. Basically,

the pipeline of these conventional methods consist several key components, as shown in Fig-

ure. 1.3, including low-level sensing, preprocessing, feature engineering, and recognition.

Low-level sensing. According to the number of cameras used in imaging, human detection

can be categorized into monocular human detection [11] and binocular human detection [12].

With stereo estimation [13, 14], depth information can be leveraged into this problem. Beyond

color cameras, other types of sensors have also been extensively used in human detection, such

as depth camera [15] (e.g., Kinect), thermal camera [16, 17], and Lidar [18, 19]. Compared to

RGB cameras, these sensors are less sensitive to bad lightings while the imaging from these

sensors is short of visual details.

Preprocessing. It is traditional to perform some image preprocessing before the feature extrac-

tion step, such as scaling, contrast enhancement, and color normalization. Scaling is commonly

applied in preprocessing to detect people of low image resolutions. It is usually implemented

by bilinear interpolation of pixel values. By doing these, visual features, e.g., Histogram of

Gradient features [6], can be extracted from small image areas, since the extraction of most

visual features relies on receptive fields of minimum image size (e.g., 64). Actually, even for

some deep neural networks (DNNs) based detectors, e.g., R-CNN detection [20], image scaling
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is also a necessary step. Contrast enhancement is a transformation of the sensory representation

which makes the value of imaging signal cover a wider range, such that the regions of transi-

tion (e.g., edges) could be selectively emphasized [21]. We know that edges are very useful

low-level visual features to represent human instances. Color normalization has been used to

remove all intensity values from the image while preserving color values. With respect to hu-

man detection, especially in video surveillance, it is important to remove shadows or lighting

changes on the same color pixels and then extract consistent visual features [22].

Feature engineering is typically composed by feature extraction and transformation. The pur-

pose of feature engineering is to convert an image region into a visual representation (a vector or

a matrix). Ideally, such image representation of human should invariant to scale, rotation, light

change, partial occlusion. A bunch of visual features have been proposed and extensively study

for human detection, such as Haar-like features [23], histogram of oriented gradient (HOG)

feature [6], local binary pattern (LBP) feature [24], integrated channel feature (ICF) [25], and

spatial-pooled features [26]. Although achieving good performance, these handcrafted fea-

tures need delicate design and they cannot leverage the power of large training data. During

the past five years, vision and machine learning communities have witnessed great success of

deep learning for speech recognition [27], image classification [28], and general object detec-

tion [20]. Deep neural networks have also introduced into human detection field [29, 30, 31].

We will give more details of the related work in Chapter 2.

Recognition. A human instance could be represented by a holistic feature vector or a part-

based model. With global representations, different classifiers have been introduced to improve

the performance of human detection, e.g., linear support vector machine (SVM) [6], random

forest [32, 33], and AdaBoost classifier [23]. In general, better classifier leads to superior per-

formance, in terms of detection accuracy and testing time. Some others proposed elastic models

to represent human, based on a composition of several body parts. These part-based models,

e.g., pictorial structure (PS) model [34], deformable part model (DPM) [7], and regionlet de-

tector [35], are robust to partial occlusion and pose variations in detection.

Post-processing. Non-maximum suppression (NMS) [36] is commonly applied to the original

outputs of a human detector, which could remove bounding boxes that significantly overlap
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Figure 1.4: Plots of ROC curve and Miss rate vs. FPPI curve.

each other. It is a very important post-processing step, in order to avoid double detections

which are regarded as false positives. NMS is a greedy algorithm, the parameter of which is set

empirically and is usually sensitive to the density of people in images. In some scenarios, NMS

would remove some true detections. Therefore, instead of using NMS, some others modeled

post-processing as an optimization problem, e.g., quadratic unconstrained binary optimization

(QUBO) [37] or Latent SVM [38], which has demonstrated better performance in crowd scenes.

1.1.3 Evaluation Methodology

In terms of performance evaluation, Interaction-over-Union (IoU) is conventionally used in

validating whether a detection is a true positive or a false positive. A human hypothesis is

regarded as one true detection when the IoU against any ground truth annotation (represented by

bounding box) is larger than a threshold (e.g., 0.5). Otherwise, it is a false positive. The target

of a human detector is to recall all true detections from images, in the meanwhile, ignoring any

false positives. Apparently these two goals are exclusive and a good detector should balance

the trade-off between the precision and the recall. Here, we introduce several evaluation criteria

commonly used to assess a human detector.
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F1-Score is a measurement which considers both the precision and the recall of detection out-

puts. The traditional F1-Score is the harmonic mean of precision and recall (as shown in Equa-

tion 1.1), while its variants with different focuses have also developed [39] .

F1-Score = 2× precision× recall
precision + recall

(1.1)

Receiver operating characteristic (ROC) curve is created by plotting the true positive rate

against the false positive rate at various confidence threshold settings, as illustrated in Fig-

ure 1.4(a). It provides another access to investigate the comprehensive performance of a human

detector. For instance, the area under the ROC curve (AUC) is frequently employed to compare

different detectors. Additionally, ROC curve is also a useful reference in selecting the possibly

optimal threshold. Such threshold is employed to distinguish true detections from false alarms,

which could achieve the best trade-off between the precision and the recall.

Log-average miss rate (MR) was first proposed in [40], based on the miss rate versus false

positive per image (FPPI) curve, as shown in Figure 1.4(b). It is the average value of the 10

evenly sampled miss rates in the FPPI range [0.01, 1] which is considered as the most significant

range in practice. MR is widely used to compare different human detectors on public pedestrian

datasets, e.g., INRIA pedestrian dataset [6] and Caltech-USA pedestrian dataset [41].

1.2 Contributions of the Dissertation

1.2.1 Human Detection by Deep Learning with Color-Thermal Imaging

Thermal imaging is helpful in detecting people under bad lighting, e.g., standing in a shadow or

at night time. It becomes more essential when human detection is applied in around-the-clock

applications, such as self-driving systems. Most previous methods built human detectors by

using color or thermal imaging independently, while ignoring the complementary potential be-

tween them. Thereby, it is necessary to study leveraging both color and thermal images (called

multispectral image in this dissertation) simultaneously in constructing a human detector.

We exploit deep learning algorithm for multispectral human detection, which is the cutting-

edge technology for a series of computer vision problems. We first show promising results on
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human detection by using Faster R-CNN [42] with color images. Afterward, we thoroughly in-

vestigate the potential improvement for human detection by taking advantage of multispectral

images rather than using only one image modality. We provide the more reliable ground truth

for the test set of the KAIST multispectral pedestrian dataset (KAIST) [43] which is the largest

multispectral pedestrian benchmark so far. The improved annotation brings in new discoveries

on our proposed models and could further facilitate researcher to make more convincing con-

clusions. Along with the improved annotations of KAIST, we extensively study four distinct

fusion architectures of deep convolutional neural network (ConvNet). Detections and propos-

als are evaluated in various scenarios, in terms of different lightings, scales, and occlusions.

Our best fusion model significantly reduces the miss rate of baseline method Faster R-CNN by

16.2%, yielding 24.7% overall miss rate on KAIST. These results introduce useful insights into

multispectral human detection. Besides, we discuss the bottleneck of the current framework,

indicating some directions for future research.

1.2.2 Graph-Based Context Modeling to Optimize Human Detection

Exploiting contextual cues has been a key idea to improve human detection in crowded scenes.

We develop a new framework to address the challenges for human detection by putting people

in a global context and modeling their interactions, since in a crowded scene people usually

form groups where they interact with each other, both geometrically and socially [44, 37]. By

given the outputs of any underlying detector, our method could optimize the detections by

enhancing true detection and suppressing false positives.

The main contribution of this approach is the application of graph-based label propagation

to exploit contextual information for human detection. Compared to the structured learning

framework which models contextual interactions only between local neighbors [45, 37, 46],

our approach is clearly advantageous in that the graph-based propagation make interactions

between any two nodes possible. Such a capability allows our approach to discover challeng-

ing weak human instances, even if they are not close to any strong detection. Based on the

proposed context graph, we apply label propagation to discover weak detections contextually

compatible with true (strong) detections while removing irrelevant false alarms. Four kinds

of contextual information that incorporate both geometric and social contextual patterns are
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used to construct the context graph, which are spatial context, scale context, social context,

and layout context. We further propose a greedy-like technique, namely progressive potential

propagation, to instance human hypotheses as true detections iteratively.

1.3 Outline of the Dissertation

The dissertation is organized as follows.

In Chapter 2, we review the relevant work on human detection, including conventional

methods and DNN-based approaches. Human detectors with infrared input are discussed in-

dependently. Methods that facilitate deep learning with multiple modality fusion are also in-

cluded.

In Chapter 3, we propose the multispectral deep neural networks which improves human

detection with both color and thermal inputs. Extensive experiments are introduced, reported

on the improved annotation of KAIST multispectral pedestrian dataset.

In Chapter 4, we propose the graph-based context modeling to enhance weak true detections

and to suppress false positives, considering several contextual cues. The task is further modeled

as an optimization problem which is solved by a greedy algorithm.

Finally, Chapter 5 contains the conclusions and several possible directions for the future

research.
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Chapter 2

Related Work

In this chapter, we briefly discuss some relevant work of this dissertation. We first introduce

conventional human detectors, grouping them into three categories of different research fo-

cuses. Second, recent effort on deep neural network (DNN) based human detection is studied.

Besides, we investigate some human detectors that take an infrared image as the input. Finally,

we review how multimodal information is exploited in previous methods which leverage deep

learning to tackle with different data sources.

2.1 Conventional Human Detection

Conventional people detectors localize human instances in color images, using vision tech-

niques before deep learning introduced. We categorize these methods into three groups, each

of which has different technical focuses.

Image Representation. To build up a robust human detector, the image representation of peo-

ple has to be competent of differentiating human instance with other background. Such visual

features should be invariant to different appearances, poses, scales, and dynamic light chang-

ing. Viola et al. [23] proposed Haar-like wavelet features and took advantage of the integral

image for rapid feature computation. Based on such Haar-like feature, Sabzmeydani et al. [47]

learned shapelet as mid-level features, which are more informative than low-level features in

discriminating pedestrian from non-pedestrian objects. Dollár et al. [48] proposed an exten-

sion of [23], namely integral channel feature (ICF), where Haar-like features are computed

over multiple channels of visual data, including LUV color channels, gray scale channel, gra-

dient magnitude, and gradient magnitude quantized by orientation. Some variants of ICF were

also developed to achieve better performance, such as aggregated channel feature (ACF) [25],

SquaresChnFtrs filter [10], and LDCF filter [49]. Leibe et al. [50] employed SIFT feature [51]
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to capture the local structure of pedestrian and then applied Hough voting to localize people.

Ma et al. [24] learned discriminative local binary pattern (LBP) feature in personal albums for

human detection. Contour information is also very useful in depicting human objects. Zhao et

al. [52] used head-shoulder shape detector to generate human hypotheses. Leibe et al. [50] in-

troduced chamfer matching [53] to add global shape constraint in verifying human detections.

Most modern detectors used some form of gradient of histogram as human feature, derived

from the pioneering work in [6] which proposed the histogram of oriented gradient (HOG) fea-

ture. For instance, Wang et al. [54] combined HOG with LBP feature in their human detector.

Besides, nearly all part-based models used HOG feature to represent body parts [7, 55].

After feature extraction, different classifiers are trained to distinguish human from back-

ground objects, e.g., linear SVM [6], random forest [32, 33], partial least squares analysis [56],

and AdaBoost classifier [23, 57, 47]. Reviews of more related methods could be found in these

nice surveys [9, 58].

Elastic Model. To deal with partial occlusions and poses, different elastic human model has

been proposed, including pictorial structure (PS) model [34], hierarchical part-template match-

ing model [59], DPM model [7], poselet detector [55, 60], flexible mixture model of parts [61],

and regionlet detector [35]. In general, these models represent human with a mixture of body

parts and implement detection by a bunch of part detectors. The kinematic dependencies be-

tween parts were commonly modeled by spatial constraints [34, 61, 61] or hierarchical part

tree [59]. Depending on whether a whole body is first detected or not, these methods can fur-

ther be separated into two categories: top-down [59, 62, 34, 7, 61, 35] and bottom-up [55, 60].

Top-down methods score each human hypothesis by considering both the detection score of

each part and their deformation cost with respect to the location of the hypothesis. In opposite,

bottom-up methods first detect body parts and then project the locations of these parts to a point

which represent the center of a human body.

Context Modeling. Context here refers to the information beyond the visual features of a hu-

man instance. Ding et al. [63] have discovered that the enlarged image area of human which

covers some background performs better in detecting people [63]. Image features extracted

from such enlarged area could boost detection confidences and improve the localization capa-

bility of a human detector. A similar idea has also been exploited in [64] which used deep neural
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network for human detection. Ouyang et al. [65] trained different human detectors, according

to different layouts of occluded people, exploiting context from nearby human instances. How-

ever, these methods leveraged context information implicitly from low-level features, ignoring

explicit context on instance-level which has achieved promising results on generic object de-

tection [45, 66]. In fact, we could observe different kinds of contextual interactions between

human instances, especially in crowd scenes, such as spatial proximity and scales similarity.

Yan et al. [38] modeled the appearance and spatial interaction between human hypotheses as

a maximum a posteriori (MAP) problem and approximated a solution by a greedy algorithm.

Rujikietgumjorn [37] formulated multiple pedestrian detection as the quadratic unconstrained

binary optimization (QUBO), which modeled spatial interactions into a quadratic loss func-

tion. Idrees et al. [67] incorporated scale information in Markov Random Field (MRF), in

order to enforce a locally-consistent scale prior. Stewart et al. [68] modeled the instance-level

interactions in the hidden units of long short-term memory (LSTM) [69] and predicted human

hypotheses in one image in a sequential manner.

2.2 Infrared Image Based Human Detection

As mentioned in Chapter 1, infrared (IR) cameras are insensitive to bad lightings. There have

been a couple of human detectors that exploited IR images as input. Despite different modality

from RGB images, most of these detectors were inspired by methods developed for visible

imaging. Actually, nearly all of these IR-based detectors used conventional image features to

represent people, such as image density [70], LBP features [71, 72], HOG features [71, 73,

74, 75, 76, 77], shape template [16, 78], and ICF features [77], along with various classifiers.

DPM [7] was also introduced in [75, 76], for the purpose of handling occlusions and poses.

Overall, IR-based human detectors haven shown robust performance during night time, yet

neglecting the complementary potential between infrared and visible channels that would boost

detection results further.

Recently, researchers are becoming interested in devising human detectors by multispec-

tral (color and infrared images) images rather than one image modality. Krotosky et al. [79]

generated five-channel images by registering color, disparity and infrared inputs, and extracted



13

HOG feature from each channel to train a multispectral human detector. The similar idea was

applied in [80], where gradient-based features were combined with a part-based model. Lee

et al. [81] used thermal images to extract foreground image areas regarded as proposals of hu-

man instances. González et al. [82] studied the accuracy gain of different shallow models by

using multispectral inputs. The most relevant work was proposed in [83]. They introduced the

R-CNN framework [20] for multispectral human detection and employed the ACF+T+THOG

detector [43] in both training and testing to generate human proposals. However, end-to-end

training of ConvNet-based detector is worth to probe, and we need to investigate more fusion

architectures that could employ multispectral inputs better.

2.3 Deep Neural Network Based Human Detection

As achieving great success in many computer vision tasks, deep neural network (DNN) has

also been introduced to build human detectors. One pioneer work on pedestrian detection

was proposed in [29], which trained convolutional neural networks (ConvNets) layer by layer

using unsupervised learning. Then convolutional features from multiple stages and scales were

extracted from warped sliding windows for classification. In [84], Ouyang et al. modeled

visibility relationships among pedestrians using DNNs, which improved the visual confidences

of human parts. Tian et al. [85] trained 45 independent part detectors with weakly annotated

humans, in order to handle partial occlusions. Tian et al. [86] improved human detection by

learning high-level features from DNNs along with multiple tasks, including people attribute

prediction. Angelova et al. [87] built DNNs cascades that filtered candidates by tiny DNNs

and speed up detection to 15 frame per second. Li et al. [88] proposed scale-aware DNNs

with a scale gate function, which sent human hypotheses of different image sizes into different

networks for classification.

Recent DNN-based methods (e.g., [30, 5]) formulated human detection as a classifica-

tion problem. Generally speaking, these methods followed R-CNN framework [20] which

were consisted of two components (stages): a proposal generator and a ConvNet-based clas-

sifier. At the first stage, an external human detector is first applied to the image, generat-

ing human proposals represented by bounding boxes. Then these proposals are passed into



14

ConvNets at the second stage, to extract deep features for classification. Along with this re-

search stream, many external human detectors and ConvNet architectures have been examined.

Hosang et al. [30] tested different proposal generators, e.g., ACF [25], SquaresChnFtrs [10],

Katamari [10], and SpatialPooling+ [26], combined with two ConvNet models, i.e., Cifar-

Net [30] and AlexNet [28]. They discovered that better proposals and deeper neural networks

would lead to better performance of human detection. Zhang et al. [5] studied more proposal

generators, i.e., LDCF [49] and Checkerboards [89], and compared the VGG16 model [90]

with AlexNet sequentially, validating Hosang’s observation.

Apparently, these methods rely on the qualities of proposals produced by an external human

detector. These proposals not only decide the testing phases but also influence the qualities of

training samples. In other words, a good proposal generator should produce hard negatives for

training and enough positives for testing. Inevitably, the external human detectors largely affect

the final performance of ConvNet-based detector. Differently, Faster R-CNN framework [42]

trains ConvNets-based detectors in an end-to-end fashion. Compared to R-CNN, Faster R-CNN

reduces the testing time by 250 times, only requiring 0.2 seconds in implementing detection on

an image of 600 pixels. Faster R-CNN was first applied to pedestrian detection in [91] and

further improved in [31] to tackle small human instances and negative hard examples.

2.4 Deep Learning with Multimodal Inputs

It is an essential challenge in many vision problems to integrate multimodal data sources. A

bunch of DNN-based multimodal models have been developed, involving in data sources of dif-

ferent modalities, such as image vs. audio [92], image vs. text [93, 94], image vs. video [95, 96],

etc. In [92], Naiam et al. learned a hidden layer from deep belief networks (DBNs) which rep-

resented the shared features of videos and audios. A similar network has also been applied

in [93], to tolerate modality missing in image classification and retrieval. Wang et al. [94]

imposed structure-preserving constraints into their similarity objective function for images and

texts, achieving better phrase localizations in images. For video recognition, Simonyan et

al. [95] proposed the two-stream ConvNets that simultaneously incorporated spatial and tem-

poral information, while the optical flow ConvNet was combined with the key-frame based
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ConvNets. The combination of color and depth images has also been exploited for 3D object

classification [97] and 3D object detection [98] by using deep ConvNets. Most of the afore-

mentioned methods used two-branch networks and then fused features from different channels

at the very end. In other words, they implemented last feature layer fusion [97, 98, 94, 99] or

confidence fusion [95]. Karpathy et al. [96] discussed more fusion schemes for video classifi-

cation, integrating key frame features with video segment based features .

DNNs-based multispectral human detection has not been studied thoroughly. This problem

is different from other vision problems in that, in some cases of unusual lighting, features

extracted from color or thermal images could not work well independently for human detection.

As a result, decision fusion at the very end stage seems not the straightforward solution for

multispectral human detection. It is worthy of studying how color and thermal images could be

fused properly in DNNs, in order to obtain ‘optimal’ synergy for human detection.
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Chapter 3

Multispectral Deep Neural Networks

3.1 Introduction

Human detection is the principal technique for various applications, such as surveillance, track-

ing, autonomous driving, etc. However, many challenges, including occlusion, low image reso-

lution, and cluttered background, prevent artificial vision systems from approaching human-

level perception ability on identifying human objects [5]. To improve the performance of

human detection, researchers have proposed abundant methods to handle these challenges,

focusing on designing discriminative visual features [6, 100, 8, 101], devising robust human

classifiers [7, 102, 33, 103], and leveraging context information [104, 105]. Although people

have made numerous effort in this area and have achieved significant improvement in recent

years [9, 10], there still exists an insurmountable gap between the current machine intelligence

and the requirement of around-the-clock applications. Particularly, most of the current human

detectors explored color images captured under good lighting and are thereby very likely to fail

on images captured at night, due to the bad visibility of human instances. Such defect would cut

these approaches off from the real applications, e.g., self-driven car and surveillance system.

In fact, the aforementioned difficulty not only exists in human detection but also presents

in many other vision problems that have to handle cases with bad lighting. To deviate such

inherent drawback of visible imaging, researchers are becoming to take advantages of invisi-

ble imaging captured by sensors of different spectrum, including depth cameras (time-of-flight,

or near-infrared, e.g., Kinect) and thermal cameras (long-wavelength infrared). Since ambi-

ent lighting has less effect on thermal imaging compared with near-infrared imaging, thermal

cameras are widely used in various vision problems, such as saliency detection [106], human

tracking [107], face recognition [108], and activity recognition [109]. When it comes to hu-

man detection, thermal images usually present clear silhouettes of people [110, 111] which
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Figure 3.1: Yellow bounding boxes indicate detection failures with one image channel. Top and
middle: the thermal images capture human shapes even in bad lighting, while the corresponding
color images are messed up. Bottom: with bright background, color image provides more
distinctive visual features for the pedestrians (standing on stairs) against background objects;
in such scenario, human silhouettes in the thermal image are ambiguous.

is known as discriminative visual features in differentiating human objects from other back-

ground objects [52]. On the other hand, fine visual details of human objects (e.g., clothing) are

missing in thermal images which are useful in detecting human. Besides, a bright background

would corrupt the thermal imaging of human in some cases during daytime [112]. As shown

in Figure 3.1, if only one image modality is exploited for detection, human instances of yellow

bounding boxes would be mistaken as background. Based on these observations, it is not dif-

ficult to conclude that one image modality (either color or thermal) cannot capture the image

characteristic of human objects well.
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In some sense, color and thermal image channels provide complementary information in

depicting pedestrians. Therefore, it is reasonable to expect that when one image modality does

not work or it is indecisive, the other one could help in the detection task; information from

the two channels would lead to more reliable decisions on validating human hypotheses. Nev-

ertheless, most of previous approaches (e.g., [71, 74, 78, 72]) that considered infrared imaging

for human detection only leveraged one image modality, without investigating both visible and

non-visible modalities simultaneously. Some very recent research has shown that multispectral

image 1 outperforms RGB image on pedestrian detection [80, 43, 82]. However, nearly all of

these methods used hand-crafted image features to represent people, e.g., histogram of oriented

Gradient (HOG) [6] and aggregated channel feature (ACF) [8, 49], and trained shallow models

to distinguish human objects with backgrounds, such as linear SVM and random forest, etc.

In fact, compared to deep convolutional neural networks (ConvNets), handcrafted features and

shallow models restrict these multispectral detectors from obtaining better performance.

During the past five years, vision and machine learning community have witnessed great

success of deep neural networks (DNNs) [113] applied to image classification [28] and generic

object detection [114]. Therefore, it becomes very natural and appealing to exploit the effec-

tiveness of DNNs for multispectral human detection. Apparently, multispectral detection is a

vision problem with multimodal inputs. Actually, there have been a couple of vision applica-

tions, involving in multimodal inputs, e.g., action recognition [95], image classification [93],

computer-aided diagnosis [115]. DNNs have shown significant achievement on these tasks by

using multimode inputs than a single modality. However, it is still unknown how color and

thermal images can be fused properly in DNNs to achieve the ‘best’ detection performance .

As shown in Figure 3.1, color and thermal images could help each other in different sce-

narios. They have consensus on detecting human to some extent, but not always. Thereby, it

is not straightforward to make the most of the multispectral DNNs for human detection. Deep

ConvNet was firstly introduced for multispectral pedestrian detection in [83]. In this work,

Wagner et al. followed R-CNN [114] framework and studied several fusion architectures based

1In this dissertation, the multispectral image refers to the image of color and thermal channels.
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on AlexNet [28]. However, such 2-step training pipeline requires external approaches to gen-

erate proposals, which is not competitive as end-to-end training of object detectors (we will

discuss more in Section 3.2 on R-CNN). Consequently, it needs more effort to explore the

end-to-end training framework for human detection, which could most effectively utilize both

color and thermal images. In addition, other architectures of deep ConvNets should also be

extensively investigated.

In our work, we adopt Faster R-CNN [42] as our vanilla ConvNet, which consists of a

Region Proposal Network (RPN) and a Fast R-CNN detection network [116]. Faster R-CNN

model uses RPN to generate proposals, rather than using an external proposal generator. Since

RPN shares convolutional features with Fast R-CNN network, it does not need much extra com-

putational overload. Such property also facilitates the end-to-end training of an object detector.

Compared to R-CNN, Faster R-CNN has demonstrated superior performance on generic object

detection [117], in terms of speed and accuracy. We validate our vanilla ConvNet on Caltech

pedestrian benchmark [40] by training a human detector with color input and achieve state-of-

art miss rate, outperforming R-CNN.

Now the question is whether multispectral images could ameliorate human detection with

a substantial degree, even when a strong ConvNet-based detector is used. To quantitatively

analyze the potential gain rather than taking it as granted, we train two separate ConvNet-based

detectors using color and thermal images, respectively. Afterward, the study is implemented

on KAIST multispectral pedestrian dataset (KAIST) [43]. Based on the detection results of

the 2, 252 testing image, we reveal that there is a large margin in improving human detection

by leveraging multispectral images, especially for around-the-clock applications. The problem

of multispectral human detection then becomes to exploring the most effective deep ConvNet

architecture that utilizes color and thermal images simultaneously. We treat this challenge as a

ConvNet fusion problem. Motivated by the assumption that fusions on different DNNs stages

would lead to distinct detections, we carefully design four ConvNet fusion architectures upon

our vanilla ConvNet and then provide extensive experiments on these fusion models.

The primary contribution of this work is fourfold:

• We first report pedestrian detection results of Faster R-CNN on Caltech pedestrian bench-

mark, achieving a state-of-art performance (17% miss rate).
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• We improve the ground truth of KAIST test set of 2, 252 images, with more annotations

on valid human instances and less incorrect background labeling. KAIST dataset is the

largest multispectral pedestrian benchmark so far. The improved annotation brings in

new discoveries on our proposed models and could further facilitate researcher to make

more convincing conclusions.

• We carefully design four distinct ConvNet fusion architectures that integrate two-branch

ConvNets on different DNNs stages, corresponding to information fusion on low level,

middle level, high level, and confidence level. All these models outperform the strong

baseline detector (i.e., Faster R-CNN) on KAIST dataset. Our best fusion model signif-

icantly reduces the miss rate of Faster R-CNN by 16.2%, yielding 24.7% overall miss

rate on KAIST test set.

• Along with the improved annotations on KAIST, we extensively study the four ConvNet

fusion models. Detections and proposals are evaluated in various scenarios, in terms of

different lightings, scales, and occlusions. These results introduce useful insights into

multispectral human detection. We discover that different fusion models are preferred

in diverse scenarios. Discussion on the bottleneck of the current framework is also con-

tained, inspiring some directions for future work.

3.2 Vanilla ConvNet

Most of deep ConvNet based human detectors followed R-CNN framework [30, 5]. The

pipeline of R-CNN based human detector is illustrated in Figure 3.2. Basically, these detectors

contains two stages. At stage one, an external proposal generator (e.g., selective search [118]

and Edge boxes [119]) is used to produce proposals, each of which corresponds to an image

region. To achieve high recall, about 2, 000 proposals are typically generated. At stage two,

R-CNN classify the 2, 000 proposals into different object categories by using deep ConvNet.

Overall, R-CNN based detectors are very time-consuming. First of all, selective search at stage

one commonly takes around 2 seconds to produce 2, 000 proposals. Moreover, convolutions

on 2, 000 image regions requires a huge amount of computational time since computation on

overlapped image regions is indeed redundant.
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(a) Stage one

region warped region CNN features

Human.(0~1)

no Human.(0~1)

classify region

(b) Stage two

Figure 3.2: Pipeline of R-CNN based human detector. (a) Stage one: generate human propos-
als. (b) Stage two: classify image regions of proposal as human object or not.

Inspired by the recent success on generic object detection, we consider starting with Faster

R-CNN [42] and verify its performance on Caltech pedestrian benchmark [40]. Faster R-

CNN model consists of a Region Proposal Network (RPN) and a Fast R-CNN detection net-

work [116]. Literally, RPN is used to generate proposals. As shown in Figure 3.3(a), it is a

fully convolutional network that shares features with the detection network. On top of VGG16

model [90], an additional 512× 3× 3 filter is applied, to generate one 512-d feature for every

pixel location (x, y) on the last convolutional feature map. To be noticed, each 3 × 3 convo-

lutional filter corresponds to a local area of the original image. Then these 512-d features are

used to decide whether their corresponding local images belong to an object or not. Besides, a

regression model is also introduced using the 512-d features as well, in order to obtain propos-

als of better localizations. In more detail, for an anchor (x, y, w, h) on the last feature map, the

regression model outputs (dx, dy, dw, dw), which could shift and resize the original anchor.

As illustrated in Figure 3.3(a), features from the red image areas could infer the proposal of

dotted blue bounding box. To deal with multiple object sizes and layouts, anchors of 3 scales

(8 × 8, 16 × 16, 32 × 32) and 3 ratios (0.5, 1, 2) are considered at each pixel location (x, y).

After ranking all of these local image areas, anchor locations of top objectness (typically 300)

are regarded as proposals.

As we mentioned before, the receptive field of features in RPN commonly corresponds to

the local part of an object. For example, it is possible that the feature of a left shoulder is used

to deduce whether a true human exists and to infer the whole body location. Obviously, RPN in

Faster R-CNN just thoroughly provides human candidates. In order to achieve better detections,

refined feature have to be extracted which captures more object area for making decision. For
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(a) Region Proposal Network (RPN). Red bounding box shows the receptive field of one 3× 3
filter. Blue bounding box indicates the image region mapped by one square anchor, which is
further shifted and resized after regression (the dotted blue bounding box).
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(b) Fast R-CNN detection network. RoI pooling layer can be regarded as one variant of
max pooling layer. It first divides a feature field into a grid of 7× 7 cells and the maximum
value in each cell is extracted.

Figure 3.3: Framework of Faster R-CNN.

this reason, proposals from RPN are passed into the Fast R-CNN detection network.

Fast R-CNN detection network was first proposed in [116], as shown in Figure 3.3(b),

whose core part is the RoI (Region of Interest) pooling layer. Given the locations of proposals,

RoI pooling layer projects the features of the last convolutional feature map into fixed size (i.e.,

512× 7× 7) . Different from SPPNet [120], RoI pooling layer is differentiable, which enables

back-propagation during training. Being connected to two more fully-connected layers, these

features are used in differentiating a proposal as a human object or not. A regression model is

also employed, targeting better localization results.

Compared to its methodological ancestries (i.e., R-CNN [114]) that rely on independent

proposal generators, Faster R-CNN generates proposals by RPN. Thereby, Faster R-CNN model

trains ConvNet-based detector in an end-to-end fashion, which is getting appreciated by re-

searchers due to its superior performance. More importantly, RPN shares features with detec-

tion network, which enables nearly cost-free region proposals. Consequently, Faster R-CNN

takes 0.2 seconds to detect objects on an image of 600 pixels, while R-CNN based detectors

require around 50 seconds. Moreover, compared to R-CNN pipeline (e.g., [30, 5]) that has to
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resize proposals, RoI Pooling layer extracts the features of a fixed size for any proposals, thus

Faster R-CNN could handle human objects of arbitrary sizes.

Implementation details: We adapt the original Faster R-CNN model with a few twists and

use it as our vanilla ConvNet. First of all, we remove the fourth max pooling layer of the very

deep VGG16 model. Since each max pooling layer down samples feature map by half, such

modification results in a four times lager feature map. This is encouraged by the observations

in [88] that larger feature maps are beneficial to detecting human of small image sizes. Besides,

original Faster R-CNN uses reference anchors of multi-scale (×3) and multi-ratios (×3) to

predict locations of region proposals. Given the typical aspect ratio of people (they are upright

most of the time), we discard the anchor ratio 0.5 in our vanilla ConvNet, to accelerate the

training and testing of RPN.

Caltech×10 training set is used for fine-tuning. We exclude occluded, truncated, and small

(< 50 pixels) pedestrian instances, resulting in around 7, 000 training images. Since Faster R-

CNN regards one image as a training mini-batch, these 7, 000 images are guaranteed to contain

at least one valid pedestrian instance, such that each mini-batch includes positive samples for

training. Proposals of intersection-over-union (IoU) with any ground truth annotation larger

than 0.5 are regarded as positive training samples, otherwise, as negative samples. The vanilla

network is initialized by the VGG16 model pre-trained on ImageNet database [121]. We fix the

parameters of the first two convolutional layers of the VGG16 model and fine-tune other layers

with Stochastic Gradient Descent (SGD). Since the lower layer extracts low-level features, such

as, edges, corners, and lines, we speculate that the first two layers pre-trained with millions of

images have been well trained for this task. Hence, it is unnecessary to update them further.

Following the alternative training routine of Faster R-CNN, we fine-tune the networks for about

6 epochs. Learning rate (LR) of parameters is set to 0.001 at first and then reduced to 0.0001

after 4 epochs. Single image scale (600 pixels) is employed, without using image pyramids nor

feature pyramids.

Comparison of Detections: We compare our vanilla ConvNet (denoted as FasterRCNN in

Figure 3.4) with some other methods reported on Caltech test set, including HOG [6], DBN-

Mut [84], SpatioPooling [101], LDCF [49], Katamari [10], Checkerboards+ [89], TA-CNN [86],

FastRCNN [116], and DeepParts [85]. For FastRCNN, we use ACF pedestrian detector [8] to
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Figure 3.4: Comparison of detection results reported on the test set of Caltech pedestrian bench-
mark. Our vanilla ConvNet achieved 17% MR.

produce human proposals which are used to train and test Fast R-CNN detection network. A

low threshold (i.e.,−50) is set for ACF detector, in order to gain high recall of proposal. We use

IoU on ground truth to validate detections, i.e., a hypothesis of IoU larger than 0.5 is regarded

as true positive (TP). Detection performance is then measured by log-average miss rate (MR)

over the range of [10−2, 100] (as discussed in Chapter 1.1.3) under reasonable configuration [9].

Lower MR indicates better results. It is easy to conclude from Figure 3.4 that our vanilla Con-

vNet beats most of the state-of-art approaches that depend on sophisticated features crafting or

network designs. With completely data-driven and end-to-end training, we achieve 17% MR,

which is lower than the ConvNet-based methods, such as DBN-Mut (48%), TA-CNN (21%),

and FastRCNN (20%). One leading performance (12% MR) on this benchmark is reported by

DeepParts detector which is an assembly of 45 ConvNets-based part detectors. Apparently,

this method requires much more computational overhead than our vanilla network. Besides,

annotations on body parts are needed in training.

Given its state-of-art performance and other important advantages, e.g., end-to-end training

and capability of handling human instances of arbitrary sizes, in our paper, the vanilla ConvNet

is used as the fundamental ConvNet architecture in designing multispectral detectors.
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(a) (b) (c) (d)

Figure 3.5: Improved annotation of selected frames from KAIST×30 test set, compared to
the original ones. (a) Removed pedestrians labeling that are background objects; (b-d) Addi-
tional annotations (either pedestrian, people or person?) of valid human objects, with tighter
bounding boxes.

3.3 Complementary Potential

Intuitively, color and thermal channels offer complementary visual information. However, a

quantitative study on such complementary potential is necessary, in order to approximate the

improvement by leveraging both color and thermal images for human detection. In this section,

we answer two following questions: 1) when strong ConvNet-based detectors are involved,

whether color and thermal images still provide complementary information. 2) To what extent

the improvement should be expected by using such multispectral inputs. These analyses are

implemented on KAIST multispectral pedestrian dataset (KAIST) [43], while ground truth of

test images are corrected. Without doubts, better annotations are critical in making credible

comparisons and convincing conclusions.

3.3.1 Improved Annotations of KAIST Test Set

As a standard routine, 2, 252 test images are sampled from test videos of KAIST bench-

mark with 30-frame skips [43]. We denote them as KAIST×30 test set. Each pedestrian in

KAIST×30 test set was annotated by using Piotr’s Computer Vision Toolbox [122]. However,

only human instances in selected video frames were manually labeled, while the ground truth

bounding boxes of others were yielded by interpolations between annotations in consequential

frames. In short, not all of images in KAIST×30 test set were manually annotated by human.
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Figure 3.6: Interface of annotation tool.

Therefore, some problematic annotations can be found in KAIST×30 test set, e.g., missing an-

notation of valid human instances and incorrect labeling on background objects, as illustrated

in the top row of Figure 3.5. Obviously, such mistakes in ground truth would lead to error-prone

evaluations on human detectors.

To obtain reliable ground truth, we develop an annotation tool in MATLAB which enables

us to manually label every image in KAIST×30 test set, rather than skipping some of them.

The interface of our annotation tool is demonstrated in Figure 3.6. Both color and thermal

images are simultaneously displayed to annotators since some human instances of bad lighting

are hardly observable in one image modality. Annotations of each image are listed on the left

and illustrated on the images. The chosen human instance is shown in green bounding box for

checking, while others in gray. Following the annotation protocol proposed in [43], each human

instance is labeled as one of the four categories: pedestrian, people, cyclist, and person?. We

add missing labeling, remove incorrect annotation, and refine ground truth bounding boxes

of human objects in KAIST×30 test set. Their occlusion levels are also double-checked. To

be noticed, the qualities (tightness) of bounding boxes influence the assessment of pedestrian

detectors, with regard to localization capabilities.

The statistical differences between the original annotations of KAIST×30 test set and our

improved ones are presented in Figure 3.7. In terms of categories, the improved annotation

has 1, 145 more pedestrian, 183 more people, 28 more cyclist, and 151 person? instances. In
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Figure 3.7: Statistical differences between the original and our improved annotations. The
numbers of annotations, in terms of categories. Blue bars represent the original annotation, and
green bars as additional human instance in our annotation.

fact, people, cyclist, and person? instances are also critical to fair comparison since human

objects of these categories have to be ignored in the evaluation. If their annotation is missing,

detections on these instances would be mistakenly regarded as false positives. With regard

to scale, as shown in Figure 3.8(b), we have 583 new medium pedestrians, 603 additional far

pedestrians. Besides, 42 near pedestrians are removed due to tighter bounding boxes2. Such

scale definition helps in evaluating human detectors on detecting instances of different image

resolutions. Figure 3.5 (bottom row) shows the enhanced ground truth of human instance in

some sample frames, compared to the original annotations (top row) released by [43].

Eventually, we have 3, 390 pedestrian, 597 people, 90 cyclist, and 177 person? instances

on KAIST×30 test set. The 3, 390 pedestrians include 2, 383 instances from daytime images,

and the other 1, 007 captured at night time. As illustrated in Figure 3.8, we have 261 near,

2, 295 medium, and 834 far pedestrian instances. Moreover, 1, 400 frames out of the 2, 252

ones have pedestrian annotations, among which about 1, 000 frames contain 1− 2 pedestrians

and 38 images have more then 8 pedestrian instances3. The improved annotation of KAIST×30

test set are used in all the following evaluations.

2The scale criteria of KAIST is different from Caltech benchmark: far (less than 45 pixel), medium (45 − 115
pixel), near (115 pixel or more).

3We released the improved annotations of KAIST×30 to vision community for future use:
http://paul.rutgers.edu/ jl1322/multispectral.htm
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Figure 3.8: Statistics of improved annotation on KAIST×30 test set. (a) Numbers of pedestrian
instances of different scales. (b) Number changes of pedestrian instances, in terms of Near,
Medium, and Far scales. (c) Height (unit: pixel) distribution of pedestrian instances. (d)
Number of pedestrians per frame.

3.3.2 Complementary Potential

To study the complementary potential between color and thermal channels, we first train two

separate human detectors with either color or thermal images, depending on our vanilla Con-

vNet, namely FasterRCNN-C and FasterRCNN-T. The training set of KAIST (more details on

this dataset will be given in Section 3.5) is used in fine-tuning these two ConvNets. Scheme of

training these two detectors is similar to that in Section 3.2.

We only consider detections of more than 0.5 confidence scores in this potential analysis.

Detections of IoUs with any ground truth (GT) larger than 0.5 are regarded as true positives

(TPs), otherwise as false positives (FPs). Multiple detections on the same human are treated

as FPs. In Table 3.1, we enumerate the numbers of GTs, TPs, and FPs of FasterRCNN-C and



29

GT TP(C,T) TP(C) TP(T) FP(C,T) FP(C) FP(T)
All 3, 390 1, 149 440 634 85 973 780

Day 2, 383 917 403 307 73 562 604

Night 1, 007 232 37 327 12 411 176

Table 3.1: Detections performed by FasterRCNN-C and FasterRCNN-T pedestrian detectors.
Numbers of ground truths (GTs), true positives (TPs), and false positives (FPs) are reported on
KAIST×30 test set, in terms of all-day, daytime, and night time images.

FasterRCNN-T, in terms of all-day, daytime, and night time images. TP(C,T) denotes pedestri-

ans detected by both of the two detectors. TP(C) and TP(T) represent pedestrians exclusively

detected by FasterRCNN-C or FasterRCNN-T. Analogously, we have FP(C,T), FP(C), and FP(T)

for false alarms.

In general, color and thermal images provide complementary information on human detec-

tion, even when strong ConvNet-based detectors are employed. The two detectors have 1, 1149

mutual true detections, while 440 and 634 human hypotheses are regarded as TPs by color and

thermal input, respectively. Without a doubt, color and thermal images have consensuses to

a substantial extent on validating true pedestrian instances. In contrast, the number of shared

FPs is relatively fewer, while each imaging modality individually brings in many FPs. It seems

color and thermal images have controversy in identifying false alarms.

We can also observe different performances of the detectors on daytime and night time im-

ages. During daytime, color image works better than the thermal. As in Table 3.1, color-based

detector captures more TPs (1, 302 vs.1, 224), while mistaking fewer FPs (635 vs.677). The

result is anticipated since during daytime most pedestrians are in good lighting, except some

extreme cases (standing in shadow). Thermal imaging is apt to be corrupted by hot background

during daytime, resulting in slightly worse performance. Differently, color channels struggle

with night time images on pedestrian detection. It captures significantly fewer TPs, compared

to the thermal-based detector (269 vs.559), yet bringing in more FPs (423 vs.188). Clearly, the

thermal channel is more competent in detecting people under bad lighting or during night time.

Based on the detection results shown in Table 3.1, we can make an extreme assumption:

if all true detections from FasterRCNN-C and FasterRCNN-T were kept and only shared false

alarms were retained, then the detection rate can be increased from 46.9% to 65.6%, while the

FPPI (false positives per image) will be reduced from 0.470 to 0.04. We would say there is
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Figure 3.9: Different stages in a ConNet. Features at different stages correspond to various
levels of semantic meaning and fine visual details.

a large improvement margin in recalling more true detections and excluding false alarms by

leveraging both color and thermal images. Therefore, we should pay serious attention to the

improvement potential that would be raised for human detection by using multispectral images.

3.4 Multispectral ConvNet

The question now is how a good multispectral human detector could be achieved that explores

the most complementary visual information from color-thermal image pairs. It can be con-

cluded from Table 3.1 that, in order to obtain more true detections, we need the ‘union’ of de-

tections from color- and thermal-based detectors. In the meanwhile, their ‘intersection’ could

significantly suppress false positives. Unfortunately, we cannot achieve these two goals at the

same time. Thereby, a desired multispectral human detector should balance such trade-off when

making decisions on human hypotheses.

Basically, a ConvNet-based detector is composed of several stages: the input stage, the

convolutional stage (a series of convolutional layers), the fully-connected stage, and the deci-

sion stage, as shown in Figure 3.9. Recent research on deep convolutional networks revealed

that features at different stages corresponding to various levels of semantic meanings. Features

from higher level layers carry with more semantic meaning, while losing fine visual details.

Visualizations of convolutional filters in [123] clearly show their semantic differences. We

conjecture that fusion at different stages would lead to distinct detection results. Therefore, the

multispectral human detection task turns out to be a ConvNet fusion problem, which studies

various architectures of fusion model to approach best detection synergy.
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C1
3× 3× 3× 64 + ReLU
64× 3× 3× 64 + ReLU

P1 2× 2 max pooling

C2
64× 3× 3× 128 + ReLU
128× 3× 3× 128 + ReLU

P2 2× 2 max pooling

C3
128× 3× 3× 256 + ReLU
256× 3× 3× 256 + ReLU
256× 3× 3× 256 + ReLU

P3 2× 2 max pooling

C4
256× 3× 3× 512 + ReLU
512× 3× 3× 512 + ReLU
512× 3× 3× 512 + ReLU

C5
512× 3× 3× 512 + ReLU
512× 3× 3× 512 + ReLU
512× 3× 3× 512 + ReLU

F6 (512× 7× 7)× 4096

F7 4096× 4096

Table 3.2: Details of our vanilla ConvNet. Convolutional filters are denoted in form of
Dimension×H×W×Number. For layer F6, 512 × 7 × 7 represented the dimension of fea-
ture after RoI pooling layer.

In this work, we make thorough inquiries on four distinct fusion models designed upon

our vanilla ConvNet, while each fusion model represents a multispectral human detector. We

denote them as Early Fusion, Halfway Fusion, Late Fusion, and Score Fusion. Basically, these

fusion models are two-branch ConvNets which merge at some point of the network, as illus-

trated in Figure 3.10, such that features of different levels of semantic meaning are fused. To

facilitate following explanations on these fusion models, we symbolize our vanilla ConvNet as

C1 - P1 - C2 - P2 - C3 - P3 - C4 - C5 - F6 - F7. To make this dissertation self-contained, we list

details of these layers in Table 3.2. To be noticed, each convolutional component is followed

by a non-linear activation function, i.e., rectified linear unit (ReLU) [124].

Early Fusion concatenates feature maps of color and thermal branches immediately after the

second convolutional layers (C2). We reuse the convolutional filters in C1 and C2 of the VGG16

model without fine-tuning, similarly to the training protocol of Faster R-CNN. The reason is we

think fine-tuning of C1 and C2 layers with thousands of training images would hit over-fitting.

Vanishing gradient problem during back-propagation would also affect the convergence of C1

and C2 layers. Besides, filters in C1 and C2 were pre-trained by millions of neural images,
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Figure 3.10: Explored ConvNet fusion models to leverage color and thermal images for mul-
tispectral pedestrian detection, i.e., Early Fusion, Halfway Fusion, Late Fusion, and Score
Fusion. These fusion models correspond to low-level feature fusion, middle-level feature fu-
sion, high-level feature fusion, and confidence-level fusion, respectively. Magenta box in each
model represent layers (or scores) immediate after fusion. For the sake of conciseness, ReLU
layers and dropout layers are hidden from view in this figure. (Best viewed in color.)

which are powerful in extracting low-level features, even when thermal inputs are given.

After feature concatenation, we introduce the Network-in-Network (NIN) [125, 126], which

is indeed a 256×1×1×128 convolutional layer followed by ReLU. Here, 256 is the dimension

of the concatenated feature map; 1 × 1 is the filter size; 128 is the number of filters. Clearly,

NIN reduces the dimension of the concatenated layer to 128. Consequently, filters of other

layers in the pre-trained VGG16 model can be reused in initialization. Besides, NIN applies

ReLU on the linear combinations of features from color and thermal branches, which could

enhance the discriminability of local patches. Since C2 captures low-level visual features, such

as corners, lines, line segments, etc., we expect Early Fusion model fuses features at low level.

Halfway Fusion also executes fusion at the convolutional stage. Different from Early Fusion,

it places the fusion module after the fourth convolutional layers (C4). NIN (512× 1× 1× 256

convolutional layer + ReLU) is also used after feature concatenation, for the same reasons as

discussed above. Compared to features from the C2 layer, C4 extracts features of more semantic

meaning, while retaining some visual details.
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Figure 3.11: Pipelines of different schemes applicable to Score Fusion model. (a) Parallel
scheme. (b) Cascade scheme.

Late Fusion concatenates features of last fully-connected layers (F7). In image classifica-

tion [28] or face recognition [127], F7 feature conventionally stands for the new visual repre-

sentation. Therefore, we say Late Fusion model executes high-level feature fusion. Concate-

nated features (8, 192-d) are then used in the softmax classifier to identify human objects. To

be noticed, Early Fusion and Halfway Fusion execute branch merging before RPN, such that

they can directly use the C5 features to generate proposals. In contrast, fusion in Late Fusion

model happens after RPN. In order to make a fair comparison, RPN in Late Fusion model also

concatenates C5 features of the color and thermal branches to predict human proposals.

Score Fusion merge detection confidences from color and thermal branches with equal weights

(i.e., 0.5). There exist two schemes applicable for Score Fusion, as shown in Figure 3.11. (I)

Parallel scheme. We first generate proposals by using concatenated C5 features, similarly to

that in Late Fusion model. Then, each proposal collects detection confidences from the parallel

color and thermal branches, while regression results are also merged. (II) Cascade scheme. We

get detections from color images at the first step and then use them as proposals for the other

ConvNet detector, such that we could obtain their corresponding scores by thermal inputs. The

similar process is executed again to start with detections from thermal images. At the end, non-

maximum suppression (NMS) is applied to all detections from color and thermal channels,

in order to avoid double detections. Since we employ RoI Pooling layer, when C5 feature

maps from the two ConvNets are computed, detection at the second step can be accomplished
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without extra computational overload. In practice, we find cascade scheme performs better

than the parallel one. Hence, unless otherwise specified, we refer Score Fusion to the one with

cascade scheme.

3.5 Experiments

Dataset: KAIST multispectral pedestrian dataset (KAIST) [43] contains 95, 328 aligned color-

thermal frame pairs, with 103, 128 dense annotations on 1, 182 unique pedestrians. We sample

images from training videos with 2-frame skips, and finally, obtain 7, 095 training images with

qualified pedestrians (the same criteria as discussed in Section 3.2). KAIST×30 test set con-

tains 2, 252 images, among which 1, 455 images were captured during daytime and the other

797 from night time. Some statistics on KAIST×30 test set can be found in Section 3.3.1.

Implementation Notes: Parameters in all the four ConvNet fusion models are initialized by

the pre-trained VGG16 model, except newly introduced layers. For instance, in Early Fusion

and Halfway Fusion models, weights of NINs are initialized by Gaussian distributions. Parallel

branches in the fusion models do not share weights. The two branches in Early Fusion, Halfway

Fusion, and Late Fusion are trained simultaneously. In Score Fusion, the two branches are

trained by color and thermal images, respectively. In fact, Score Fusion is a cascade model

consisted of FasterRCNN-C and FasterRCNN-T detectors. All the models are fine-tuned with

SGD for 4 epochs with LR 0.001 and 2 more epochs with LR 0.0001.

3.5.1 Evaluation of Detection

We evaluate the proposed four ConvNet fusion models on KAIST×30 test set, compared to

FasterRCNN-C and FasterRCNN-T reported in Section 3.3.2, as well as ACF-C-T detector [8].

The ACF-C-T detector used 10-channel aggregated features constructed by both color and ther-

mal images [43]. Comparisons of these detectors are presented in Figure 3.12, in terms of

various subsets suggested by [43].

Day and night. The reasonable subset includes non-/partially occluded pedestrians of heights

more than 55 pixels, which is divided into reasonable day and reasonable night. In general,

detectors with single image modality obtain worse results than fusion models. Overall, we
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46.02% FasterRCNN−C

42.01% FasterRCNN−T
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(e) Medium scale
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(f) Far scale
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33.50% FasterRCNN−C
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(g) No occlusion
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74.49% ACF−C−T

72.54% FasterRCNN−C
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(h) Partial occlusion
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82.35% ACF−C−T

77.63% FasterRCNN−C

69.20% FasterRCNN−T

76.24% Early Fusion

66.56% Halfway Fusion

69.69% Late Fusion

67.77% Score Fusion

(i) Heavy occlusion

Figure 3.12: Miss rates versus false positive per-image curves shown for various subsets of
the data. Lower curves indicate better performance; the log-average miss rate (MR) for each
detector is shown in plot legends. (a-c) Performance w.r.t. time (computed for no or partial
occluded pedestrians of 55 pixels or more). (d-f): Performance w.r.t. scale (computed for
non-occluded pedestrians). (g-i): Performance under varying levels of occlusion (computed for
pedestrians of 55 pixels or more).
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achieve 24.7% MR on KAIST×30 test set with Score Fusion. Such conclusion is different

from our published work in [91] due to the improved annotations.

It is easy to conclude from Figure 3.12(b) that FasterRCNN-C outperforms FasterRCNN-

T on the daytime images. This means color imaging is more competent than the thermal in

differentiating human objects against backgrounds when environmental illumination is good.

Compared to FasterRCNN-C and FasterRCNN-T, all the fusion models produce significantly

better detection results. Among the four ConvNet fusion models, Score Fusion achieves the

lowest overall MR (21.3%) that is 8% lower than FasterRCNN-C, showing the most effective

synergy for multispectral pedestrian detection. We speculate that, during the daytime, both

of color and thermal modalities work well. Decision-level fusion could perform the best in

boosting true detections (both votes pedestrian) and suppressing false positives (both votes

background). Unfortunately, color channels suffer on night time images due to bad lighting.

As shown in Figure 3.12(c), FasterRCNN-C even works worse than the ACF-C-T detector

(64.8% vs. 56.2%). It is clear that FasterRCNN-T outperforms other detectors on night time

images and the thermal channel seems to be dominant in the fusion models. We speculate that

for night time images, semantic noises and decision mistakes from the color channels are very

difficult to thoroughly eliminate through fusion.

Scales. In this experiment, we examine the detectors on the pedestrians of different image

sizes, i.e., near (115 pixels∼), medium (45 ∼ 115 pixels), and far (∼ 45 pixels). These subsets

only contain non-occluded pedestrians. As shown in Figure 8(d)∼(f), the thermal detector out-

performs the color detector, especially for near pedestrians (10.9% vs. 25.1%). Fusion models

can further reduce the miss rate, while Score Fusion works the best for near and medium pedes-

trians. For the far subset, Halfway Fusion obtains lowest miss rate. We believe that color and

thermal detectors make consistent decisions to some degree on near and medium pedestrian

instances. As a result, Score Fusion works the best. When color and thermal channels are con-

troversial in identifying far human objects, Halfway Fusion could implicitly temper mistakes

of the two modalities, thereby achieving the lowest MR (75.8%).

Occlusions. These subsets contain pedestrians of varying levels of occlusions, i.e.no occlusion,

partial occlusion (∼ 50% occluded), and heavy occlusion (50% ∼ occluded). Score Fusion

beats other detectors on non-occlusion and partial-occlusion pedestrians, while Halfway Fusion
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Figure 3.13: Detection samples. Red bounding boxes denote detections. Yellow arrows in-
dicate false positives and green ellipses represent miss detections. First row: detections by
FasterRCNN-C detector. Bottom two rows: first two (daytime images) by Score Fusion de-
tector, the others (night time images) Halfway Fusion detector, illustrated in both color and
thermal images.

model works the best for heavy-occluded pedestrians. Our deduction is similar to the one above

involved in scale that the compatibility of color and thermal imaging decides the choice of the

proper fusion model.

Some detection samples are presented in Figure 3.13. Detections with confidences large

than 0.5 are illustrated. Obviously, compared to the color image based detector, our multispec-

tral human detectors achieve more true detections, especially when some pedestrians are in bad

external illumination. Meanwhile, false alarms are also removed.

3.5.2 Evaluation of Proposals

We also assess the proposals generated by RPNs in different detectors, with respect to recalls.

We considered the RPNs of FasterRCNN-C and FasterRCNN-T in comparison, as well as the

ACF-C-T pedestrian detector. The comparisons performed on the KAIST×30 test is shown

in Figure 3.14. To have a deeper understanding of the proposals, recalls are evaluated under

different criteria, i.e., under various image scales and occlusion levels.

Recall vs. number of proposals: On the reasonable subset, given IoU 0.5 and fixed number of
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Figure 3.14: Miss rates versus false positive per-image curves shown for various subsets of the
data. Lower curves indicate better performance; the log-average miss rate for each detector
is shown in plot legends. (a-c) Performance w.r.t. time (computed for no or partial occluded
pedestrians of 55 pixels or more). (d-f): Performance w.r.t. scale (computed for non-occluded
pedestrians). (g-i): Performance under varying levels of occlusion (computed for pedestrians
of 55 pixels or more).
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Figure 3.15: Comparison of 300 pedestrian proposals reported on reasonable subset of
KAIST×30 test set dataset: Recall vs.IoU.

proposals, RPNs of fusion models obtain higher recall than the RPNs using one image modal-

ity. For instance, Halfway Fusion model achieves 94.1% recall with 50 proposals. By contrast,

FasterRCNN-T obtains 88.1% of and 84.7% for FasterRCNN-C. In other words, fusion models

could reach the same recall with fewer proposals. This is very useful in practice since fewer

proposals could save time in classification. Overall, Halfway Fusion gets 90% recall with 30

proposals, while FasterRCNN-C and FasterRCNN-T require around 80 proposals to achieve

a competitive recall. This result indicates that fusion models retrieve more true detection and

we believe such improvement benefits the classification step. It is also notable that the perfor-

mances of the RPNs in the three fusion models do not have much difference.

Without surprise, color imaging works better than the thermal in generating human pro-

posals from daytime images (as shown in Figure 3.14(b)), while thermal imaging turns out to

outperform the color on night time images. From Figure 3.14(d), we can observe that thermal

channel works best on near pedestrians. This is because local body configuration extracted

by thermal imaging is more useful in inferring global locations of human objects, rather than

visual details. In Figure 3.14(e) and 3.14(f), fusion performs better than single image modality,

while both color and thermal channels play important roles. To be mentioned, the minimum

scale of anchor we use is 8×8, corresponding to image area of 64×64 pixel. Apparently, such

scale cannot capture small human instances well. Consequently, the recall on far instances is
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(a) Max pooling layer (b) Rgression model

Figure 3.16: Merits of deep convolutional networks for human detection. (a) Max pooling
layer. The maximum value in each cell (e.g., 2×2) is picked up and used in forward- and back-
propagation. (b) Regression model. Yellow bounding box represents receptive filed of deep
feature, which can be deformed to the green one by a regression model. Obviously, the green
bounding box has better localization on the person in the middle of the image.

relative lower. A possible solution is using more scales for anchors (e.g., 5 × 5), which would

be interesting to investigate. According to Figure 3.14(g)- 3.14(i), fusion models could obtain

nearly 100% recall, even with partial occlusion. While the occlusion ratio is larger than 0.5,

the recall still keeps at an acceptable level.

Recall vs. IoU: The comparison of experimental results is illustrated in Figure 3.15. Given 300

proposals from RPN, fusion models obtain around 97% recall at IoU 0.6, which is better than

FasterRCNN-C (90.0%) and FasterRCNN-T (95.0%). With 100 proposals, Halfway Fusion

model accomplishes comparative recalls against FasterRCNN-T with 300 proposals. Clearly,

fusion models produce proposals with better overlaps on true detections. These proposal of bet-

ter localizations would lead to more human-relevant convolutional features since these feature

are pooled according to the locations of proposals.

3.6 Discussions

3.6.1 Merits of Deep ConvNets

Convolutional filters capture local visual structures and feature correlations. However, not all

of the visual information is useful in human detection. By using ReLU (activation function) and

max pooling, task-independent features can be discarded or suppressed. Equation 3.1 shows

the operation of ReLU. Apparently, neurons with negative values in the network will not be
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Figure 3.17: Deep feature extracted through a series of convolutional layers and max pooling
layers. Only human object related features are activated.

fired and their connections with the classification stage are cut off. These neurons are regarded

of carrying irrelevant information, and would not have the influence on the final decision. Be-

sides, compared to the logistic sigmoid function used previously, ReLU is more practical in

back-propagation, since fired neurons get constant gradients in activation layers,. Such advan-

tage would accelerate the training convergence of a deep neural network. Some other activation

functions, such as LeakyReLU [128] and ELU [129], do not have non-zero response on nega-

tive value domain. They were proposed for training very deep networks (e.g., ResNet [130]).

Although negative signal cannot be cut off completely, compared to positive neural response,

they are still suppressed to a substantial extent.

y = max(0, x) (3.1)

Figure 3.16(a) shows the operation of a max pooling layer. The maximum value in each cell

(e.g., 2 × 2) is picked up and used in forward- and back-propagation. These values represent

the most informative features in identifying human objects. By leveraging a large scale of

training data, the most common and robust visual features of human can be extracted from

deep ConvNet, as illustrated in Figure 3.17. Such features could capture the visual complexity

of human samples in training images, which are robust to various appearances and poses to a

certain extent.

Another advantage of deep ConvNets we use in this work is the application of regression

models. As shown in Figure 3.16(b), even the original location of a human hypothesis is not

accurate, possibly due to partial occlusion, a well trained regression model can deform the
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Figure 3.18: Some examples from KAIST×30 test set, showing mismatches in the aligned
color-thermal image pairs. The mismatches could be observed according to the image margins
of green and red lines.

bounding box to an image area that better matches the ground truth. Since at the training stage

of Faster R-CNN image areas of IoU larger than 0.5 with a ground truth annotation are regarded

as positive samples, the deformation (from (x, y, w, h) to (x + dx, y + dy, w + dw, h + dh))

can be learned. We speculate that deep features trained with regression loss would carry some

layout information (e.g., orientations of body and limbs), which is useful in inferring the whole

body area by given locations of parts.

3.6.2 Some Bottlenecks

We have validated our proposed model on multispectral human detection through extensive ex-

periments, demonstrating promising results on KAIST pedestrian benchmark. However, there

exist some issues in this work, which prevent current framework from obtaining better results.

We believe the future research solving these issues could further improve the performance of

multispectral pedestrian detection.

Alignment of multispectral image. As mentioned in [112], one important issue in multispec-

tral detection is the registration of images from different sensors. Color-thermal image pairs in

KAIST have been aligned using hardware-based calibration approach [43]. However, we still

observe mismatches in the registered pairs, as shown in Figure 3.18. Such mismatching would

definitely affect the training of fusion models, although it is hard to make a quantitative anal-

ysis. For instance, a local patch belonging to a human body in the color image is actually the

background in the thermal image. On the other hand, error in alignment could result in wrong

decisions during testing, especially for pedestrians of small image sizes. Since each detection
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is validated by IoU (usually 0.5), misaligned annotations would mistake a indeed true detection

as a false alarm. Consequently, alignment of multispectral imaging is a crucial preprocessing

for pedestrian detection, which requires more attention.

Adaptive weights for color and thermal channels. Recall that Score Fusion model merges

two detection confidences with equal weights (0.5 vs. 0.5). Actually, we can regard FasterRCNN-

T as a spatial case of Score Fusion model which gives 0 weight to the detections based on color

inputs. Figure 3.14(b) and 3.14(c) demonstrate that Score Fusion works best for daytime im-

ages, while FasterRCNN-T for night time images. Imagine that we have a component in Score

Fusion model that could adaptively adjust weights for detection confidences of color and ther-

mal branches, the overall performance of Score Fusion can be further improved. Inspired by

this idea, we have tried an auxiliary ConvNet that takes convolutional features from color and

thermal images as input. We expect this network to output adaptive weights for detections com-

ing from color and thermal images. However, the learned auxiliary ConvNet even deteriorated

the detections of Score Fusion. More efforts could be put in this direction. Besides, we are

thinking, a lighting sensor may also help in this scenario rather than an autonomous algorithm.

Scales. Our proposed models achieve worse performance on pedestrians of small image sizes,

compared to near and medium instances, as shown in Figure 3.12(f) and Figure 3.14(f). Re-

cently, there are several methods working on this problem which used scale dependent pooling

strategies [131, 64] or Generative Adversarial Network [132]. It is worthy of indicating that

these approaches can be seamlessly incorporated into our current framework, which can make

our human detectors perform better on pedestrians of small sizes.

3.7 Summary

In this chapter, we have focused on leveraging deep convolutional neural networks for mul-

tispectral (color and thermal images) human detection. Our multispectral detectors were de-

signed based on Faster R-CNN framework, which achieved the state-of-art performance on

Caltech pedestrian benchmark. We have devised four ConvNet fusion architectures that fused

two-branch ConvNets at different stages, corresponding to low-level, middle-level, high-level
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feature fusion, and confidence fusion. All of them have yielded better detection results, com-

pared to the baseline detector, i.e., Faster R-CNN detector. Through extensive experiments, we

have validated three hypotheses: 1) End-to-end learning of ConvNet-based human detector is

superior to the R-CNN framework that replies other independent human detectors. 2) Based

on deep ConvNets, multispectral imaging still demonstrates better capability of detecting hu-

man objects in various conditions, rather than using color or thermal images only. 3) Although

achieving good performance, different fusion models are preferred in different scenarios, which

should be further investigated with more training and testing data. Given the improved annota-

tion, our trained detector obtained overall 24.7% MR on KAIST, showing great improvement

in this area.
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Chapter 4

Graph-based Context Modeling

4.1 Introduction

Vision-based human detection has witnessed great advances recent years, a bunch of approaches

such as deformable part model (DPM) [7], poselets [55] and deep convolutional neural net-

work (ConvNet) [20]. Although these approaches and their variants have achieved tremendous

promising results, the problem still remains quite challenging when it comes to the scenario

where cluttered background, various occlusions and large pose variations exist. Despite these

difficulties, some research effort has exploited contextual cues in a scene to improve human

detection in adverse conditions. For example, two-person or multiple-person classifiers were

built directly in several approaches [54, 65] to handle partial occlusion. Other approaches

[45, 66, 46] explored pairwise spatial relationships between local neighbors to boost detection

performance, under the framework of structured prediction.

Inspired by the above approaches, we develop a new framework to address the challenges

of human detection by putting people in a global context and modeling their interactions. In a

crowded scene, people usually form group, where they interact with each other both geomet-

rically and socially [44, 37, 46, 133]. A group of people, either queuing, sitting or walking

together, indicate spatial closeness and similar scales (Figure 4.1). There also exist strong so-

cial patterns in the group such as facing (i.e., two people face each other) and following (i.e.,

people stand or sit side by side).

To effectively leverage the geometric and social contexts in crowds, we propose a unified

framework for human detection that integrates visual recognition with graph-based context

modeling. We formulate the detection task as an optimization problem where the goal is to find

a maximum set of human hypotheses that agrees on both visual detections and their contextual

interactions in an image. While such optimization problem is theoretically intractable, we show
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Figure 4.1: Context-drive label propagation for people detection. (a) Grouped people tend to
present spatial closeness and similar scales (image from VOC 2012 for illustration). There also
exist social interactions in a group such as facing and following (e.g., the two people on the
left stand side by side). (b) A context graph captures the interaction strength between human
hypotheses (or detections). Each node here is a human hypothesis from an underlying detector.
True detections are colored as either red (high confidence) or green (low confidence) while
false alarms as blue. A bold edge indicates mutual attraction between two nodes, i.e. they
are contextually compatible. Oppositely a dotted edge suggests an opposite relationship, i.e.
repulsion. Our approach applies label propagation to boost up weak detections (greed nodes)
while suppressing irrelevant false alarms.

that it can be approximately addressed by label propagation [134] in a progressive way. Label

propagation was originally proposed for predicting unlabeled instances based on annotations

of labeled data [134]. It propagates labels to data iteratively by instance similarity. In our case,

true detections are supposed to be contextually compatible with each other, but inconsistent

with false alarms. This suggests that strong detections with high confidence can boost up weak

ones by spreading rewards through contextual proximity and meanwhile penalize false positives

according to contextual incompatibility, in a similar spirit to label propagation.

More specifically, our approach starts by taking input from an underlying detector, possibly

with a large number of false alarms. We build a context graph that exploit contextual infor-

mation available in a scene (spatial, scale, social, and overlap cues) for label propagation. For

the purpose of rewarding true detections as well as suppressing irrelevant false alarms, our ap-

proach enables the graph to spread both positive and negative contextual potentials along edges

in the context graph, which depends on contextual attraction and repulsion. As a result, con-

textually compatible human hypotheses get reinforced by receiving positive potentials during

the propagation while false alarms are contained due to being negated by their incompatibility
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with true detections. The idea of our proposed context graph is illustrated in Figure 4.1. If we

start with a strong detection of scored by 10 (in a red circle), the context graph then enhances

the detection scores of the true human instances, e.g., from 5 to 7, and decrease the scores of

fake human illusions to negative values.

Compared to the structured output learning framework that models contextual interactions

only between local neighbors [45, 37, 46], our approach is clearly advantageous in that the

graph-based propagation make interactions between any two nodes possible. Such a capability

allows our approach to discover challenging weak human instances, even if they are not close

to any strong detection, as illustrated later in Figure 4.10. We would also like to point out

that Conditional Random Fields (CRFs) [135] methods while being another option for contex-

tual modeling, are less suitable for our problem. This is largely because capturing long-range

interactions requires fully connected CRFs, which need expensive inference mechanisms or

strong assumptions such as Gaussian edge potentials [136] that does not fit our problem. Be-

sides, modeling of fully connected CRFs requires large-scale training data and fine annotations

covering contextual interactions.

Since we do not have truly ’labeled’ data to start with, we further design a greedy-like in-

ference similar to the approximation for structured output learning [45, 46], which iteratively

adds the best hypothesis with the most potential gain at each time to initialize a new round of

propagation. The process repeats until convergence when no new hypothesis can be instanced.

Hence, this work presents a unified framework of graph-based label propagation to exploit con-

textual information for human detection. The main contribution of our approach is threefold:

• We devise the context graph which simultaneously considers four contextual informa-

tion, e.g., spatial proximity, scale consistency, social interaction, and layout. The con-

text graph could spread award (positive potential) and punishment (negative potential)

between vertices in the graph, such that weak detection can be reinforced, with false

alarmed suppressed.

• We propose the progressive inference algorithm to approximately solve the optimization

problem modeled for human detection, including the potential propagation algorithm

which computes the contextual potential of each human hypothesis obtained through a
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pre-defined context graph.

• We validate our approach on two challenging crowd datasets, one for detecting people

with variations in pose and size, and the other for pedestrian detection in low-resolution

images. Our experimental results confirm that the proposed method can significantly

improve human detection in crowded scenarios, achieving performance comparable to

the state of the art approaches reported in the literature.

This chapter is organized as follows. In Section 4.2, we describe an optimization prob-

lem formulated to leverage both unary detection confidences and contextual information for

human detection in crowded scenes. Our approach models people interactions by constructing

a context graph, which is introduced in Section 4.3. We propose a greedy-like method to ap-

proximately solve the optimization problem, in Section 4.4. Experimental results and ablation

analysis will be presented in Section 4.5.

4.2 Problem Formulation

Given an image, let X = {xi, i = 1 : m} be a set of m human hypotheses generated by an

underlying people detector. We purposely set a low detection threshold to allow for more true

detections in X, which unfortunately also gets many more undesirable false alarms. Therefore,

our task is to find a subset of X that covers as many as possible true detections, meanwhile

with the fewest false alarms brought in. Mathematically, we aim at seeking an indicator vector

Y = {y1, y2, ..., ym}T ∈ {0, 1} (1 means true people detection, otherwise background or other

objects) that maximizes a potential function Ψ(X,Y), such that the visual detections agree on

the contextual setting of the image. We define the potential function as follows:

Ψ(X,Y) =

m∑
i=1

yiψ
u(xi) + α

m∑
i=1

yiψ
c(xi,X,Y) (4.1)

where ψu(·) is the unary potential that utilizes the original detection score of a hypothesis in our

case. ψc(·) represents the total contextual potentials (support) of a human hypothesis received

from others. α is a constant number balancing these two terms. In previous approaches such

as proposed in [45, 46, 37], ψc(xi,X,Y) represents the support of a hypothesis received from

its neighbors. For example, Desai et al. [45] modeled 6 contextual patterns based on relative
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spatial locations of two hypotheses. While this proves effective in some cases, it lacks a way

to model interactions beyond the 6 spatial patterns. Instead of pre-specifying local spatial

relationships, in our approach, we implicitly model the contextual interaction between any two

human hypotheses via a context graph G. Thus we have,

ψc(xi,X,Y) , ψG(xi,Y) (4.2)

where ψG(xi,Y) measures how much contextual potential hypothesis xi can obtain from vali-

dated human hypotheses (reflected by Y) based on G. We drop X in ψG here for clarity. While

contextual confidence in previous methods [45, 46, 37] can be regarded as a linear combination

of interactions between a node and its local neighbors, our graph-based context modeling en-

ables a node to interact with any node in the graph in a nonlinear way through label propagation,

effectively and efficiently.

4.3 Context Graph

A context graph in our approach is an undirected graph G = (V,E) used for label propagation,

where V corresponds to a set of human hypotheses and E indicates the strength of contextual

interaction between any pair of hypotheses. While our focus is to reward human hypotheses

contextually consistent to true detections, suppressing false alarms is equally important during

label propagation as our input contains a substantial number of errors. For such a purpose, we

consider two types of strengths when constructing G: attraction e+ and repulsion e−. Here

attraction measures contextual compatibility between two hypotheses while repulsion relates

to contextual inconsistency.

In our approach, we deliberate 4 types of contextual cues, namely scale, spatial, layout

and social context, and denote their attraction strengths with e+sc, e+sp, e+la , and e+so, respectively.

Similarly, their repulsion strengths are denoted by e−sc, e−sp, e−la , and e−so. We further define the

overall attraction strength e+(i, j) between hypothesis xi and xj by

e+i,j = min
(
e+sc, e

+
sp, e

+
la , e

+
so
)

(4.3)

and their overall repulsion strength by

e−i,j = max
(
e−sc, e

−
sp, e

−
la , e

−
so
)

(4.4)
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Finally, the context graph is represented by a symmetric matrix G ∈ Rm×m, where Gi,j =

e+i,j − e−i,j . To be noticed, Gi,j may have negative values, i.e., edges in the context graph

would have negative weights, through which repulsion can be spread from true detections to

false alarms. The ‘min’ operation in Equation (4.3) implies the attraction of two hypotheses is

low whenever one of the contextual attractions is weak since we expect giving reliable awards

to human hypotheses of contextual compatibility which are more likely to be true detections.

Differently, the ‘max’ operation in Equation (4.4) indicates any incompatible pattern should

lead to high repulsion. Recall that the underlying detector would bring more false alarms than

true positives. In order to remove these false positives from final detections, the ‘max’ operation

would spread the strictest punishment to hypotheses of contextual inconsistency.

4.3.1 Feature Representation of G

We describe below the feature representation for each type of context considered in our paper.

These features will be further mapped to a value between 0 and 1 to indicate the strength of the

contextual interaction.

Spatial context. Two observations motivate us to exploit spatial context. 1) People coexist

nearby in crowd scenes. 2) People usually occupy comfortable zones. The first observation

helps in boosting human hypotheses close to a true detection, while the second one could infer

unreasonable detections (e.g., double detections). Here, the image distance d(xi, xj) between

two hypotheses xi and xj is used to represent spatial context. To eliminate the effects of image

resolution and camera perspective, d(xi, xj) is further normalized by two additional items:

fsp(xi, xj) =
2d(xi, xj)

hi + hj
·max

(
hi
hj
,
hj
hi

)
(4.5)

where hi and hj are the image heights of hypothesis xi and xj . hi/hj compensates camera

perspective as this ratio can sort of reflect the depth change of the two hypotheses. Here, we

use the ‘max’ operation to obtain symmetric feature. The sum of hi and hj further normalizes

the distance into the unit of human height, which counterbalances different image resolutions.

Scale context. We assume people roughly have the same height and most of them rest on

the ground plane, when using scale context. The idea of scale context is demonstrated in

Figure 4.2(a). Given the image location of the horizontal line (green line) and the scale of a
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(a) Motivation

 
 

 
 

(b) Variable

Figure 4.2: Scale context. (a) Motivation. The scale of the blue hypothesis is clearly contro-
versy to that of others (in yellow). (b) Illustration of variables used in computing scale context.
v0: image location of the horizon line; hi: image height of a person; yi: physical height of a
person; yc: physical height of the camera; vi: image location of a person.

true detection (red bounding box), we can impose a scale prior for each hypothesis in the image.

Apparently, in this case, the blue hypothesis does not coincide with such prior. Therefore, it

should be regarded as a false alarm.

The scale context is approximated by the height (under world coordinate system) ratio of

two hypotheses. The first step is to estimate the image location of the horizon line v0. We

apply the method in [137], while the involved variables are illustrated in Figure 4.2(b). By

assuming all hypotheses are all grounded and upright, the physical height of hypothesis xi can

be represented as yi = hiyc/(vi − v0), where hi and vi encode the physical height and image

location of xi, respectively. yc is the camera height. Consequently, given any two detections,

we can obtain a value pair (v0(hi − hj), hivj − hjvi). With multiple (≥ 3) strong detections

of high confidences, v0 can be easily estimated by least square fitting. Then the physical height

ratio of two hypotheses xi and xj can be defined as:

fsc(xi, xj) = min

(
hi(vj − v0)
hj(vi − v0)

,
hj(vi − v0)
hi(vj − v0)

)
(4.6)

where the ‘min’ operation guarantees fsc ∈ (0, 1]. In other words, if fsc is close to 1, the two

hypotheses have similar scale (physical height).

Social context. We can observe different kinds of social interaction between people and here

we model three of them, i.e., following in line, following in queue, and facing each other, as

shown in Figure 4.3. These social interactions among human hypotheses are measured in virtue

of pose and body (or head) orientations. Obviously, in these interactions, the body orientation
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(a) Following in line

 

(b) Following in queue

  

(c) Facing each other

Figure 4.3: Social context. Each circle represents one human hypothesis; arrows illustrate
body (head) orientations. We model three kinds of social interaction patterns between any two
hypotheses, i.e., (a) following in line, (b) following in queue and facing each other, which can
be indicated by their body (head) orientations.

of a person indicates the position of another. As shown in the bottom row of Figure 4.3, consid-

ering a pair of hypotheses, ∠θ represents the included angle of body orientations; ∠θi and ∠θj

are the included angles of head orientations and the connecting line of two hypotheses. A small

∠θ indicates the following pattern, while small ∠θi and ∠θj exhibit a facing pattern. Estimation

of body (or head) orientations takes advantage of poselet activation vector (PAV) [138], which

is capable of handling both profile and back views. Besides, we also train a pose classifier

(standing vs. sitting) as a RBF-kernel SVM with 1200-dim PAV. The 2-dim probability output

p of this classifier is then used to evaluate pose similarity. Finally, the strongest orientation

pattern is used to represent social context, thus we have:

fso(xi, xj) = min(∠θ,max(∠θi,∠θj))× ||pi − pj ||2 (4.7)

Layout context. Typically, detections partially overlapping (IoU < 0.5) true detections are

treated as false positives. In order to remove them, conventional approaches used non-maximum

suppression (NMS). NMS is a greedy search algorithm, which is controlled by a threshold to

tolerate crowd of high density in images. However, NMS cannot deal with cases as illustrated

in Figure 4.4, where the overlapped areas between these false positives and true detections only

occupy a small ratio (typically 0 < IoU ≤ 0.3). To further exclude these false positives, we

use the overlap ratio of two bounding boxes to express their layout compatibility following the
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Figure 4.4: Result samples of orientation estimation on ground truth annotations. Magenta
lines represent head orientations, while the cyan is for body orientation.

conventional approaches [37, 139]:

fla = (Bi ∩Bj)/(Bi ∪Bj) (4.8)

where Bi and Bj are bounding boxes of xi and xj , respectively.

4.3.2 Model Parameter Fitting

We adopt a data-driven approach to learn a mapping function F : f → e for each contextual

pattern, using 120 images from Structured Group Dataset SGD [133] that are independent of

the evaluation subset. Since these images were captured at bus stops, classrooms, cafeterias,

conferences, libraries, and parks, the contextual information between human beings in these

images can help in estimating the parameters of our mapping functions. The PAV features are

applied to the ground truth annotations at first, to obtain poses and orientations for modeling

social context. Basically, we use the Gaussian kernels to model mapping functions F , which

has been widely used in constructing affinity graph [134, 140]. Parameters of these mapping

functions are estimated by fitting data to the distributions of the 4 context patterns, which are

illustrated in Figure 4.5. Single Gaussian is approximated by computing mean and variance,

while Gaussian mixture model (GMM) is estimated by expectation maximization (EM) [141].

We model the spatial attraction e+sp as a 2-component Gaussian distribution, as shown in

Equation 4.9, which corresponds to a maximum influence around 0.4 human height and van-

ishes after 1.5. When fsp < 0.1, i.e., we set e+sp = 0 since people are commonly not quite

close to each other due to comfortable zone. The two ranges [0.1, 0.3) and [0.3, 1.5) represent
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Figure 4.5: Feature distributions of the four contexts.

different probabilities of human coexistence. In other words, a hypothesis is more likely to be

a true detection if it is in the neighborhood of a valid human instance. When fsp < 0.1, we set

e−sp = 1 for the reason discussed above. However, we cannot conclude that a hypothesis is not a

true positive when it is remote from any valid instances. Consequently, for fsp ≥ 0.1, we have

e−sp = 0.

e+sp =



0, if fsp < 0.1

exp (− (0.4−fsp)2

0.22
), if 0.1 ≤ fsp < 0.3

exp (− (0.4−fsp)2

0.72
), if 0.3 ≤ fsp < 1.5

0, otherwise

e−sp =

 1− e+sp, if fsp < 0.1

0, otherwise

(4.9)
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For scale attraction e+sc, we fit it a Gaussian function in the range of [0, 0.8], shown in

Equation 4.10. Clearly, we have e+sc → 1 if fsc → 1, i.e., two hypotheses are compatible to

each other if they have similar scales. To counteract height differences of individuals and mild

errors of detection bounding boxes, we set e+sc = 1 when fsc ∈ [0.8, 1]. Since compatibility and

inconsistence of scale context are mutually exclusive, we let e−sc = 1− e+sc.

e+sc =

 exp (− (0.8−fsc)2

0.22
), if 0 < fsc < 0.8

1, otherwise

e−sc = 1− e+sc

(4.10)

In Equation 4.11, the attraction strength of social context is set to 1 if fso ≥ π/6, since we

assume strong social interaction happening between two human hypotheses in such scenario.

In range [π/6, π], e+so is modeled as a Gaussian function of fso. Similarly to e−sp, weak social

context does not indicate existence of false positives. Hence, we have e−so = 0.

e+so =

 1, if fso < π/6

exp (− (fso−π/6)2
(π/6)2

), if fso ≥ π/6

e−so = 0

(4.11)

The layout context e+la is also defined as piecewise-defined function, as shown in Equa-

tion 4.12. When fla is small, two human hypotheses are more likely to coexist with partial

overlap; thereby, we set e+la close to 1. Otherwise, large repulsion should be configured be-

tween two hypotheses, i.e., e−la → 1, in order to keep a stronger detection, in the meanwhile,

ignoring the other.

e+la =


1, if fla < 0.4

exp (− (0.4−fla)
2

0.22
), if 0.4 ≤ fla < 0.8

0, otherwise

e−la = 1− e+la

(4.12)

Note that scale and overlap contexts are deductive patterns, i.e., they are discriminative to

tell whether a hypothesis is true or not. For instance, if a hypothesis goes against true detections

with regard to scale (small e+sc), then a strong repulsion should be given (large e−sc). On the

opposite, spatial and social cues are not deductive, suggesting that we cannot infer whether or
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not a hypothesis is invalid, even if it is remote from true detections or no social interactions are

observed. To sum up, we have four mapping functions for the contextual features exploited in

this method, as shown in Equation 4.13.

Fsp : fsp ∈ (0,+∞)→ esp ∈ [0, 1]

Fsc : fsc ∈ (0, 1]→ esc ∈ [0, 1]

Fso : fso ∈ [0, π]→ eso ∈ [0, 1]

Fla : fla ∈ [0, 1]→ ela ∈ [0, 1]

(4.13)

4.4 Progressive Potential Propagation

Label propagation has been widely used in graph-based semi-supervised learning (GSSL) [134,

142] to perform transductive inference. We employ label propagation in our problem to esti-

mate confidence obtained from contextual information while with several specific modification.

Besides, since we do not have any ‘labeled’ data in our case, we propose a greedy-like tech-

nique, namely progressive potential propagation, to iteratively verify one hypothesis as a true

detection in one run and use it for propagation in the next.

4.4.1 Potential Propagation

Given a context graph G, the first question arising is how the contextual potential ψG(xi,Y)

(i ∈ [1 : m]) in Equation (4.2) can be obtained. Suppose that we have a label vector Y ∈ Rm

for m hypotheses, we first initialize a potential vector Z ∈ Rm as Y. Since the contextual po-

tential of hypothesis xi is targeted, we set zi = 0 to avoid self-reinforcement (defined in [134]).

Under such a setting, a hypothesis xj(j ∈ [1 : m]) can be seemed as labeled when yj 6= 0 and

unlabeled otherwise. Intuitively, strong true detections is more robust in propagating potential,

therefore we need to re-weight the context graph G. We apply logistic regression to normalize

the unary score ψu(xj)(j ∈ [1 : m]) into wj ∈ (0, 1), which can be regarded as the true de-

tection probability of hypothesis xj ; we set wj = 1 if yj = 1, since yj = 1 means validated

true detection. Then each column of G is re-weighted by wj , i.e., G′·j = wjG·j . Matrix G′ is

further row-normalized such that Gij = Gij/
∑

k |G′ik|, which is critical for the convergence of

the propagation algorithm. We summarize the potential propagation algorithm in Algorithm 1.
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Algorithm 1 Potential propagation for ψG(xi,Y)

1: Input: given G,Y.
2: Output: ψG(xi,Y)
3: Initialize Z = Y, zi = 0
4: Obtain G by re-weighting and row-normalization
5: while Z does not converge do
6: Z← GZ
7: Z = max(Z, 0)
8: ∀j ∈ [1 : m], j 6= i, if yj = 1, zj = 1,
9: end while

10: ψG(xi,Y)← GZ

In line 6, the potential is propagated based on G and the potential vector Z in the previous

iteration. In line 7, we reset all negative elements in potential vector Z back to zero, to cut

off the potential defused by false alarms. The reason behind is: even there is a strong exclu-

sion between a false positive and a hypothesis, it would be still hard to determine whether the

hypothesis is a true detection or a false alarm. True detections definitely expose repulsions

to false positives. However, since false alarms are heterogeneous, they probably also appear

intense exclusive patterns. Similar to [134], in line 8, we replenish elements with initial value

1. The propagation algorithm repeats from line 6 to line 8 until Z converges. One more propa-

gation is executed in line 10, in order to output the ψG(xi,Y) with both positive and negative

contextual potential.

4.4.2 Progressive Inference

Given the contextual potential ψG(xi,Y), it is still NP-hard to optimize the objective func-

tion in Equation (4.1). We thus combine the potential propagation algorithm with a greedy

forward search, aiming at a sub-optimal Ŷ = maxY Ψ(X,Y). Different from conventional

graph-based propagation with fixed ‘labeled’ instances, we progressively validate unconfirmed

hypotheses and propagate their potential in next run. Such approximation is similar to learning

structured output, which has been applied in [45, 46]. Let St = {i|yi = 1, i ∈ [1 : m]} denote

the confirmed set of hypotheses at t iteration. We define the potential change by instancing
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Algorithm 2 Progressive inference for Ŷ,Ŝ

1: Input: given G, X
2: Output: Ŷ, Ŝ
3: Initialize Y = 0 and S0 = Ø
4: First instance i∗ = arg maxi ψ

u(xi), set S1 = {i∗}.
5: while4(xi) > 0 do
6: ∀i ∈ [1 : m], yi 6= 1, i∗ = arg maxi4(xi) (Algorithm1)
7: Update Y: yi∗ = 1
8: St+1 ← St ∪ i∗
9: t+ 1← t

10: end while
11: Ŷ ← Y, Ŝ ← St

hypothesis xi as follows:

4(xi) = Ψ(X,Y(St ∪ i))−Ψ(X,Y(St))

= ψu(xi) + α

ψG(xi,Y(St)) +
∑
j∈St

ψG(xj ,1(i))

 (4.14)

where ψu(xi) is the unary potential; ψG(xi,Y(St)) measures the contextual potentials hypoth-

esis xi obtains from instanced hypotheses in St; Y(St) is the label vector that yk = 1, if k ∈ St

and 0 otherwise;
∑

j∈St ψG(xj ,1(i)) represents potentials that hypothesis xi imposes onto in-

stance(s) in St, where 1(i) is an indicator vector with only ith element equals 1 and others

are 0s. These two terms can be achieved by using potential propagation algorithm proposed in

Section 4.4.1. Then we devise our progressive inference algorithm as detailed in Algorithm 2.

The algorithm starts with an empty set S and a zero vector Y. We select the first hypoth-

esis according to unary potential only. During each iteration, we instance one unconfirmed

hypothesis with the largest potential change 4(xi) defined in Equation (4.14), and update St

and Y accordingly. The algorithm runs line 6 to 9 repetitively and instance one hypothesis in

each iteration, until adding any other detections could not enhance the total potential Ψ(X,Y).

Obviously, by growing St alternatively, contextual potentials from true detections are progres-

sively propagated. An illustration of the progressive inference with potential propagation is

shown in Figure 4.6. When the algorithm ceases, the hypotheses in Ŝ are regarded as true

detections while others as false alarms. We further rescore all detections by summing up their
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…

Iteration 1 Iteration 2 Iteration 3 Detections

Figure 4.6: Illustration of progressive inference with potential propagation (image from VOC
2012). Iteration 1 selects the first hypothesis (green bounding box) and propagates contextual
potentials (positive or negative) to others in the image. A red bounding box indicates a hypoth-
esis getting positive potentials while a blue one receives negative potentials. The darkness of
colors shows the amounts of their contextual potentials. After iteration 1, the algorithm picks
the hypothesis with the highest potential change composed of both unary and contextual po-
tentials and then starts the second iteration with 2 instanced human hypotheses. The process
repeats until no hypothesis has a positive potential gain. In this example, our algorithm ends in
8 iterations, resulting in 8 true detections.

unary and contextual potentials, i.e., we have,

ψ′(xi) = ψu(xi) + α

ψG(xi, Ŷ) +
∑
j∈Ŝ

ψG(xj ,1(i))

 (4.15)

where ψ′(xi) could be positive or negative. After rescoring, value 0 is further used as the cutoff

threshold to differentiate true detections and false alarms (as shown in Figure 4.8). Although

the value of this operational point is fixed, the detection confidences of human hypotheses are

adaptive to images of different detection outputs. As a result, our method is more flexible to

detecting human in images of different scenarios. Differently, a traditional human detector

(e.g., in [55, 7]) needs a threshold of fixed value to decide whether a detection is true or not.

Without a doubt, an empirical setting of this threshold value would not be applicable to every

testing image, which hurts the performance of human detection in practice.

4.5 Experimental Results

4.5.1 Datasets

We evaluate our proposed approach on two public datasets: Structured Group Dataset (SGD)1

[133] and ETH pedestrian dataset (ETH) [143]. SGD presents people with variant poses and

layouts while ETH contains only pedestrians in low image resolution.

1http://cvgl.stanford.edu/projects/groupdiscovery/

http://cvgl.stanford.edu/projects/groupdiscovery/
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There is a total of 599 images in SGD, taken from 6 scenarios (bus stops, classrooms, cafe-

terias, conferences, libraries, and parks). Crowds in different scenes show various layouts, e.g.,

queuing, standing in line, sitting in a circle, etc. More than 5, 000 people were annotated with

tight bounding boxes, torso orientations, and poses (sitting or standing). We randomly choose

20 images from each scenario to form a training subset of 120 images for fitting model param-

eters (Section 4.3.1) and learning the pose classifier. Images without sufficient information for

horizon line estimation are excluded, leading to 308 images totally for evaluation.

ETH is a standard benchmark for pedestrian detection, containing videos captured in urban

settings by a pair of cameras mounted on a chariot. In our experiments, we explore all left video

sequences from “Setup 1”, which include 1, 804 images and a total of 14, 167 annotated human

instances down to a size of about 48 pixels. All these 1, 804 images were used for evaluation.

4.5.2 Experimental Setup

Our approach can take input from any detector. On SGD dataset, we choose poselet [55] as the

underlying detector for its good ability of handling pose variations. On ETH, DPM (LatSvm-

V2) [7] is used to verify our proposed method. Parameter α in Equation (4.1) weighs the con-

textual potential over unary scores. Since detection scores of different detectors are normally

not within the same range, α needs to be empirically determined for each underlying detector

used in our approach. In our experiments, we set α to 3.0 for poselet, and 10.0 for DPM, respec-

tively. For evaluation purpose, we use the popular PASCAL interaction-over-union (IoU) as the

measurement to verify the correctness of a human hypothesis. Unless otherwise specified, we

set IoU as 0.5 for reporting performance.

We first briefly evaluate the performance of pose classification and body orientation estima-

tion on the SGD dataset. Over 379 test images, the method [138] achieves an overall accuracy

of 84.27% (standing: 81.64%; sitting: 86.41%) for pose classification and a mean error of

20.7◦ for body orientation estimation. Some examples of orientation estimation are demon-

strated in Figure 4.7. Magenta lines represent the head orientations of the human instances

and the cyan ones indicate the body orientations. It can be observed that the estimated orienta-

tions are accurate enough in capturing their social interactions. The results suggest that reliable

social context can be integrated into the contextual graph by using these orientations .
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Figure 4.7: Some samples of orientation estimation on ground truth annotations. Magenta lines
represent head orientations, while the cyan ones are for body orientation.

Method Recall Precision F1-score
Proposed 0.6686 0.7829 0.7212

Poselet
0.6686 0.7037 0.6857
0.6280 0.7829 0.6969

Table 4.1: Evaluation on SGD: recalls and precisions of our proposed method at the operational
point in comparison with poselet detector.

4.5.3 Results

Performance on SGD. We validate our approach with 6, 161 human hypotheses from pose-

let that are above a unary detection threshold of 0.5, and compared the results with those of

poselet [55], and DPM (LatSvm-V2 [7]).As shown in Figure 4.8, our approach outperforms

the baseline detector, demonstrating the effectiveness of context modeling. Poselet is improved

from 0.669 to 0.684 with regard to average precision (AP).

To further understand the improvement, we report in Table 4.1 the precisions and recalls

corresponding to the default operational point of our approach (red dot in Figure 4.8). At the

same recall, our approach yields a much higher precision (78.3% vs. 70.4%) than the baseline

detector, i.e., poselet, while at the same precision, it improves the recall by 4.1% (66.9% vs.

62.8%).

Performance on ETH. We use DPM as the underlying detector for our approach due to its
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Proposed: IoU 0.50 (AP 0.6836)
Poselet: IoU 0.50 (AP 0.6691)
DPM: IoU 0.50 (AP 0.5951)

Figure 4.8: Recall-precision curves of different approaches on SGD dateset. The operational
point of our approach (at the cutoff threshold of 0.0) is marked as a red dot on the corresponding
curve.

better performance on ETH. The threshold of DPM is set to −0.9, generating a total of 41, 744

pedestrian hypotheses as inputs to our approach. PAV features for predicting pose and body ori-

entations are extracted based on their bounding boxes. In addition to poselet and DPM (LaSvm-

V2), other pedestrian detection methods, such as HOG [6], ConvNet [144], MultiSDP [145],

JointDeep [146], Roerei [147], SDN [148], Franken [149], and SpatioPooling [150] are in-

cluded for comparison, following the evaluation routine in [41]2. These detectors, except HOG

and DPM, are top methods proposed recently for pedestrian detection. As can be seen in Fig-

ure 4.9, using DPM as the underlying detector (Proposed–DPM), our approach is as compara-

tive as SDN, achieving a log-average miss rate of 43% and performing better than other deep

learning methods including ConvNet, MultiSDP, and JointDeep. The results are encouraging

as our method is built upon some well-developed detectors without requiring massive training

data and computational training time. We also apply our approach to a strong detector, i.e.,

Proposed–SDN. The results show that our approach can further reduce the miss rate of SDN

from 41% to 39%.

2http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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Figure 4.9: Overall performance on ETH dateset in terms of miss rates and false positives per
image.

Sampled Detections We illustrate a few sampled detections by our proposed approach in Fig-

ure 4.10, in which correct detections from the underlying detectors are colored as red while

additional detections discovered by our approaches marked as green. These results clearly

demonstrate the efficacy of our approach in context modeling. In the second image, we observe

a child (marked with a yellow bounding box) incorrectly being suppressed by our approach

due to scale inconsistency, since we assume people have roughly equal heights. The last image

indicates two false alarms in our approach, which actually highly resemble a human.

4.6 Discussions

4.6.1 Ablation Study

We perform an ablation study on the SGD dataset to understand the contribution of each con-

textual cue considered in our approach, in regards of average precision. We single out one cue

each time and reported the performance in Table 4.2. Apparently, removing any single cue

from the context graph leads to deteriorative results, suggesting that all the cues are helpful for

people detection. Among them, overlap context contributes most to the final performance as it
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Figure 4.10: Sampled detections by our proposed approach. Correct detections from the un-
derlying detector are colored as red while detections discovered by our approaches marked as
green. Red arrows point out some failed cases in our approach.

Dataset Baseline -Scale -Spatial -Social -Overlap All
SGD 0.6691 0.6632 0.6702 0.6755 0.6620 0.6836

Table 4.2: Effects of different contextual patterns, in regards of average precision. Contextual
information was discarded respectively.

acts as a primary force in suppressing false alarms.

As described in Section 4.4.2, our algorithm iteratively picks the best ‘true detection’ with

the largest potential gain at each iteration, and then in the next run uses it as a ‘labeled’ instance

to propagate contextual potential to other unconfirmed hypotheses. To validate the effective-

ness of such a progressive fashion, we compare it with a ‘threshold-based’ method that only

does potential propagation once using high-confidence hypotheses, since strong hypotheses are

usually associated with true detections.

As can be seen in Table 4.3, a large threshold (e.g., 20) leads to fewer ‘labeled’ data sam-

ples, thus is incompetent to suppress false alarms (lower precision). Oppositely, a small thresh-

old (e.g., 1) would take many false positives as ‘labeled’ data that would propagate potentials

improperly to true detections (lower recall). As a comparison, our progressive inference is

adaptive and can grasp a good trade-off between precision and recall.
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Method Proposed
Threshold

20 10 5 1 −∞
F1-score 0.7212 0.6482 0.6971 0.7115 0.7029 0.6894
Recall 0.6686 0.7293 0.7047 0.6814 0.6036 0.5728

Precision 0.7829 0.5834 0.6896 0.7444 0.8414 0.8656

Table 4.3: Performance comparisons of our progressive inference and the threshold-based ap-
proach on SGD, in terms of F1-score at the default operational point.

4.6.2 Differences against Conventional GSSL

As discussed above, the motivation of our method is similar to that of conventional graph-based

semi-supervised learning (GSSL). However, there are several critical differences between our

method and the conventional GSSL.

1. Typically, GSSL uses similarities (e.g., Euclidean distance) between data samples to con-

struct an affinity graph. Here, we model the instance-level contextual interaction as the

‘similarity’ to propagate potential, resulting in the context graph.

2. GSSL employs annotated data samples as seeds to propagate labeling. In our detection

problem, we do not have any labeled hypothesis. Since we assume strong detections

in crowd scenes are indeed valid human instances, we start potential propagation using

these strong detections as pseudo annotated seeds.

3. The conventional assumption of GSSL is that both positive and negative data samples

have been labeled, such that unlabeled instances would receive either positive and nega-

tive potential. However, false positives (could be regarded as negative) in human detec-

tion can be used to infer the existence of neither true detections nor false alarms. In order

to propagate negative labeling, we design edges of negative weights in the context graph,

by introducing contextual repulsion.

4. In GSSL, the final labeling of unannotated samples only rely on their neighborhood.

However, the inputs of our method are detections from an underlying detector. Thereby,

the unary detection confidences cannot be ignored. Our method is different from GSSL

that we formulate human detection as an optimization problem, which simultaneously

leverages both unary and contextual confidences.
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4.7 Summary

In this chapter, we have proposed a novel approach to improve human detection in crowded

scenes by exploring contextual cues. Our approach have modeled people interactions through a

context graph, via attraction and repulsion built up on both geometric and social cues available

in crowded scenarios. Four kinds of contextual information have been employed, including

spatial context, scale context, social context, and layout context. Then, potential can be pro-

gressively spread by label propagation, such that contextually compatible human hypotheses

would be reinforced by receiving positive potentials while false alarms would be contained due

to being negated by contextual incompatibility. We have shown results comparable to state of

the art on two public datasets for people and pedestrian detection. With a human detector of a

shallow model, our method has achieved comparative results to deep ConvNet based detector.

Besides, our method has reduced the miss rate of SDN detector [148] by %2, indicating its

flexibility to any underlying human detector.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The dissertation has exploited multispectral and contextual information for human detection.

First, we have employed multispectral images (color and thermal channels) for human de-

tection. Rather than using handcrafted image features, we have used features extracted from

deep convolutional neural networks (ConvNets) to represent human objects. Faster R-CNN

framework has been first investigated for human detection, which has achieved state-of-art

results on Caltech pedestrian benchmark. We have leveraged Faster R-CNN as our vanilla

network and our study on such vanilla network has shown that there exists promising com-

plementary potential between RGB and thermal images. We have modeled the multispectral

human detection a fusion problem of deep ConvNets. Motivated by the hypothesis that fusion

at different stages of neural networks would lead to distinct detections, we have proposed four

fusion models, i.e., Early Fusion, Halfway Fusion, Late Fusion, and Score Fusion, correspond-

ing to low-level, middle-level, high-level feature fusions and confidence fusions. Based on the

corrected annotations of KAIST multispectral pedestrian benchmark, our fusion models have

all yielded better detection results, compared to human detectors of using one single image

modality. Overall, the Score Fusion model has achieved the best performance on multispectral

human detection, due to cascade structure. In the context of feature fusion, Halfway Fusion has

obtained the lowest MR, indicating that middle-level feature fusion performs better than low-

level and high-level feature fusion. We have also demonstrated experimental results in terms of

various scales and occlusion levels, giving more insights on human detection of exploiting color

and thermal images simultaneously. Besides, we have also discussed why deep ConvNets work

better than handcrafted features for human detection and have mentioned several bottlenecks

of current multispectral detection pipeline.
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In the second part of this dissertation, we have proposed a unified framework that improves

human detection by leveraging the instance-level contextual information extracted in crowd

scenes. In order to model the contextual interactions between human hypotheses generated

from any underlying detector, we have exploited four kinds of contexts, i.e., spatial context,

scale context, social context, and layout context. The context graph has been developed, con-

sidering both contextual compatibility and inconsistency in the four contexts. Since both pos-

itive and negative potentials can be propagated through the graph, our method has shown the

capability of boosting weak true detection, in the meanwhile, suppressing false positives. Hu-

man detection has been formulated an optimization problem, the optimum of which has been

approximated by the proposed progressive potential propagation. Our method has achieved

promising results on two public datasets. The experimental results have demonstrated that the

performance of a shallow human detector improved by our approach is comparable to some

deep ConvNet based detectors.

5.2 Directions of Future Work

5.2.1 Better Multispectral Image

Multispectral images of a higher resolution would definitely improve the human detection per-

formance. However, if high-resolution multispectral images are exploited, the trade-off be-

tween accuracy and computational complexity of the human detector should be investigated.

Regression based deep ConvNet detectors (e.g., YOLO [151]) or single shot detector (e.g.,

SSD [152]) could be considered which have shown preliminary results on generic object detec-

tion. Besides, image alignment is another crux for multispectral human detection, especially in

detecting people of small image sizes. We have shown mismatching between color and thermal

images in KAIST benchmark which are aligned based on hardware design. Such misalignment

could be tempered through camera calibration or image registration (e.g., key point matching

or disparity estimation). Additionally, the raw image of a thermal camera has relatively low

contrast. Although thermal image enhancement has been studied in [153], it is more interesting

to develop task-specific enhancement techniques similar to the idea of saliency detection, i.e.,

only potential image areas are enhanced.
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5.2.2 Smarter Fusion Scheme

In our multispectral deep ConvNets, we assume that fusions of features at different network

stages would lead to distinct detection performance. In our fusion models, the concatenations

of convolutional features are predefined. For instance, Halfway Fusion model connects the

fourth layer of the color branch to the fourth one of the thermal. However, an interesting

question arises: how is the performance if we combine low-level features from color images

with middle-level features extracted from thermal inputs? Since thermal imaging is good at

capturing global shape while color channels carry more visual detail, it is possible that such

fusion works better. The idea of recurrent rolling convolution [154] could be applied here to let

a recurrent scheme adaptively learn the fusion.

5.2.3 More Information Modalities

Beyond the thermal channel, in fact, there is some other information we can leverage for human

detection. If images are captured by fixed cameras, we can exploit additional motion patterns,

e.g., moving foreground extraction (such as in [155]) or optical flow. With a binocular camera,

stereo estimation can be regarded as a ‘depth’ prior in human detection. Besides, dense Lidar

signal can also be used to verify human instance. Recently, we have witnessed great improve-

ment of semantic segmentation. It would be worthy of trying to fuse color images and semantic

masks for human detection.

5.2.4 Deeper Context Model

Deep learning has been employed for context modeling for human detection, such as LSTM [68].

Besides, deep reinforcement learning has also applied to object detection, showing promising

results in localization [156, 157]. However, these methods designed the policies and actions of

their agents individually based on the deep features of each single object. If we have semantic

masks (such as sky, road, grown, tree, and building), detections of objects of several categories

(such as car and traffic sign), better deep reinforcement learning approach can be developed for

human detection, by using the high-level context information.
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[157] M. Bellver, X. Giró-i Nieto, F. Marqués, and J. Torres, “Hierarchical object detection
with deep reinforcement learning,” arXiv preprint arXiv:1611.03718, 2016.


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Background
	Challenges
	Conventional Pipeline
	Evaluation Methodology

	Contributions of the Dissertation
	Human Detection by Deep Learning with Color-Thermal Imaging
	Graph-Based Context Modeling to Optimize Human Detection

	Outline of the Dissertation

	Related Work
	Conventional Human Detection
	Infrared Image Based Human Detection
	Deep Neural Network Based Human Detection
	Deep Learning with Multimodal Inputs

	Multispectral Deep Neural Networks
	Introduction
	Vanilla ConvNet
	Complementary Potential
	Improved Annotations of KAIST Test Set
	Complementary Potential

	Multispectral ConvNet
	Experiments
	Evaluation of Detection
	Evaluation of Proposals

	Discussions
	Merits of Deep ConvNets
	Some Bottlenecks

	Summary

	Graph-based Context Modeling
	Introduction
	Problem Formulation
	Context Graph
	Feature Representation of G
	Model Parameter Fitting

	Progressive Potential Propagation
	Potential Propagation
	Progressive Inference

	Experimental Results
	Datasets
	Experimental Setup
	Results

	Discussions
	Ablation Study
	Differences against Conventional GSSL

	Summary

	Conclusions and Future Work
	Conclusions
	Directions of Future Work
	Better Multispectral Image
	Smarter Fusion Scheme
	More Information Modalities
	Deeper Context Model


	References

