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ABSTRACT OF THE DISSERTATION

Algorithmic Information, Fractal Geometry, and Distributed

Dynamics

By NEIL J. LUTZ

Dissertation Director:

Rebecca N. Wright

This dissertation applies two distinct algorithmic perspectives to questions in the field of

fractal geometry and dynamics.

In Part I, we establish connections between algorithmic information theory and classi-

cal fractal geometry. Working in Euclidean spaces, we characterize Hausdorff and packing

dimensions in terms of relativized Kolmogorov complexity, and we develop conditional di-

mensions. These tools give rise to new dimensional bounding techniques, which we apply to

problems in fractal geometry. Most significantly, we prove that a classical dimension bound

for intersections of Borel sets holds for arbitrary sets, and we give a new lower bound on

the Hausdorff dimension of generalized Furstenberg sets.

In Part II, we use ideas from distributed computing and game theory to study dynamic

and decentralized environments in which computational nodes interact strategically and

with limited information. We exhibit a general non-convergence result for a broad class of

dynamics in asynchronous settings. For uncoupled game dynamics, in which preferences

are private inputs, we give new bounds on the recall necessary for self stabilization to an

equilibrium.
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Chapter 1

Introduction

For studying the intricate, irregular patterns exhibited by real-world systems—both natural

and computational—fractal geometry and dynamical system theory constitute a powerful

framework that has yielded advances throughout the sciences [89, 32]. Fractal geometry

provides tools for analyzing sets that have non-trivial structure at every scale, for which

“standard” geometry is inadequate. Dynamical system theory considers the trajectories

over time of a system’s state, under iterative (or continuous) application of some transition

function. Even simple transition functions often induce complex dynamics that map out

highly irregular, fragmented sets—i.e., fractal sets. In this dissertation, we use ideas and

methods from theoretical computer science to examine both fractal geometry and dynamic

behavior.

First, we view the points in fractal sets as infinite data objects with varying degrees

of incompressibility or algorithmic information density, which allows us to analyze those

sets using tools from algorithmic information theory. Second, we regard certain classes of

dynamical systems as distributed computational systems, in which the system state reflects

the local states of many computational (and potentially strategic) agents, whose individual

behaviors induce a global transition function. Drawing on techniques from distributed com-

puting and game theory, we show how environmental uncertainty can prevent the systems

from stabilizing to a single state.

Fractal dimensions are critical tools for studying fractal sets and dynamical systems [89].

Classical fractal dimensions, among which Hausdorff dimension [48] is the first and most

important, emerged from geometric measure theory nearly a century ago as refinements of
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notions of measure that enable quantitative classifications of sets with zero volume [33]. In

2000, J. H. Lutz [64] showed that Hausdorff dimension can be simply characterized using

betting strategies called gales and that this characterization can be effectivized in order to

quantitatively classify non-random infinite data objects according to their level of algorith-

mic “unpredictability.” The same dimension was later characterized by Mayordomo [79]

using Kolmogorov complexity [57], a measure of algorithmic information. This effective

Hausdorff dimension and other, related algorithmic dimensions have been applied to mul-

tiple areas of computer science and have proven especially useful in algorithmic information

theory [39, 83, 28].

In Part I, we exploit the connection between algorithmic and classical dimensions in the

other direction, i.e., to apply algorithmic information theoretic methods and intuition to

classical fractal geometry in Euclidean spaces. Our primary tool in this effort is a point-

to-set principle, Theorem 2, in which we use relativization to characterize the classical

Hausdorff dimension of any set in Rn in terms of the effective Hausdorff dimensions of its

individual points. In Chapter 2, we define these concepts, present our point-to-set principle

(along with its counterpart for packing dimension), and show that this principle gives rise

to a new, pointwise technique for dimensional lower bounds. As a second major tool for

algorithmic information theoretic investigations of classical fractal geometry, we develop

conditional dimensions in Chapter 3, thereby filling a gap in effective dimensional theory.

These dimensions are analogous to conditional Kolmogorov complexity and conditional

entropy, and they allow us to analyze the part of a point’s dimension that is “independent”

of another point. We show that our conditional dimensions are robust, obey useful chain

rules, and interact correctly with mutual dimensions.

Our first application of the tools developed in Chapters 2 and 3 is to planar Kakeya sets

in Chapter 4. A Kakeya set in Rn is one that contains a unit-length line segment in every

direction. Besicovitch [8, 9] showed that such a set can have zero volume, and the famous

Kakeya conjecture asserts that every Kakeya set in Rn must have Hausdorff dimension n.
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We apply our point-to-set principle to give a new, algorithmic information theoretic proof

of Davies’s 1971 theorem [22] stating that this conjecture holds for n = 2. Our proof is very

different from Davies’s proof and entails showing that if a ∈ R is algorithmically random,

then for all b ∈ R and almost all x ∈ R, the point (x, ax + b) has effective Hausdorff

dimension 2.

In Chapter 5, we study a more general class of sets and use the point-to-set principle

and conditional dimension to derive the first new theorem in classical fractal geometry to

be proven using algorithmic dimensions, an improved lower bound on the Hausdorff dimen-

sion of generalized Furstenberg sets. Sets of Furstenberg type generalize Kakeya sets in R2;

instead of containing segments in every direction, they contain α-(Hausdorff)-dimensional

subsets of lines in every direction, for some parameter α ∈ (0, 1]. While Davies’s theo-

rem gives the minimum Hausdorff dimension of Kakeya sets in R2, the minimum Haus-

dorff dimension of Furstenberg sets is an important open question [107, 55]. Molter and

Rela [81] generalized the class further by requiring α-dimensional subsets of lines in only a

β-dimensional set of directions, for some second parameter β ∈ (0, 1]. They showed that

any such set has Hausdorff dimension at least α+ max{β/2, α+β− 1}. In Theorem 37, we

give a lower bound of α+ min{β, α}, which constitutes an improvement whenever α, β < 1

and β/2 < α.

This theorem corresponds to a more general lower bound on the effective Hausdorff

dimension of the point (x, ax + b). Proving this pointwise bound is the main technical

challenge of Chapter 5, requiring us to introduce a new technique for bounding effective

dimensions and is, on its own, a significant result in computable analysis. As a corollary, it

resolves a well-known open question by showing that, although the set of all points in R2

with effective Hausdorff dimension 1 is connected [104], that set does not contain any line.

We apply the point-to-set principle and conditional dimensions once again in Chapter 6

to derive dimensional bounds on intersections and Cartesian products of arbitrary sets in

Rn. In doing so, we exhibit another new theorem, Theorem 38: a general lower bound on
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Hausdorff dimension for the intersection of two sets. This theorem was previously known

to hold for Borel sets [30], but our algorithmic information theoretic approach allows us

to eliminate that restriction. It also greatly simplifies the proof of a known bound on the

Hausdorff dimension of product sets. The proofs in Chapter 6 are short and intuitive,

further demonstrating the strength and versatility of our approach for reasoning about

fractal geometry.

In part II, we turn our attention to decentralized dynamics. Dynamic environments

where decision makers repeatedly interact arise in a variety of settings, such as Internet pro-

tocols, large-scale markets, social networks, and multi-processor computer architectures [53].

Study of these environments lies at the boundary of game theory and distributed comput-

ing, as the decision makers are both strategic entities with individual economic preferences

and computational entities with limited resources, working in a decentralized and uncer-

tain environment. To understand the long-term global behaviors that result from these

interactions—the dynamics of these systems—we draw on ideas from both disciplines. We

focus primarily on systems in which the decision makers, or computational nodes, are deter-

ministic and have bounded recall, meaning that their behavior is based only on the “recent

history” of system interaction. We investigate these dynamics under two types of distributed

environmental uncertainty: asynchrony and uncoupledness.

To study the effects of asynchrony, we describe in Chapter 7 a formal model of asyn-

chronous interaction and present a general impossibility result for asynchronous environ-

ments, showing that a large and natural class of bounded-recall dynamics can fail to converge

whenever the dynamics possess at least two possible points of convergence the dynamics. To

prove this result, we employ a valency argument (a now-standard technique in distributed

computing theory [72, 35]); we also show that this theorem is essentially tight. We then

discuss the connections of this work to the impossibility of resilient consensus (the famous

result of Fisher, Lynch, and Paterson [36]) and its implications for game dynamics.

We consider bounded-recall dynamics in environments that are uncoupled [45], meaning
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that nodes’ behaviors are determined by decentralized private inputs, in Chapter 8. For

game dynamics, these inputs represent each player’s private preferences, of which the other

players are initially ignorant. The global objective is for these players to self stabilize,

reaching equilibrium from arbitrary initial conditions despite having no prior knowledge

of each other’s preferences. We show that deterministic historyless dynamics fail to self

stabilize over any non-trivial state space in this setting, then present deterministic bounded-

recall dynamics that guarantee self stabilization. We also extend results of [46] to give a

complete characterization of the state spaces over which randomized historyless dynamics

can self-stabilize.

We summarize the results of this dissertation in Chapter 9 and describe several specific

directions for future investigations, including some that are already in progress [71, 25]. In

particular, there is reason to believe that the research agendas addressed in Parts I and II

will soon intersect more directly by geometrically analyzing decentralized dynamics. One

natural link is provided by recent work of Babichenko, et al. [5] on constructing Kakeya

sets—which provided the original motivation for and first application of our algorithmic

dimensional methods—using strategies in discrete pursuit games. Among the future direc-

tions we describe is a geometric approach to asynchronous schedules, yielding an alternative

path to applying the techniques of Part I to the systems of Part II.



Part I

Algorithmic Information and

Fractal Geometry

6
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Chapter 2

Classical and Algorithmic Fractal Dimensions

This chapter describes connections between algorithmic and classical dimensions in Eu-

clidean spaces. These connections will form the basis of our applications of algorithmic

information theory to fractal geometry in Chapters 4, 5, and 6. The central message of

this chapter is a pair of useful point-to-set principles by which the existence of a single

high-dimensional point in a set E ⊆ Rn implies that the set E has high dimension.

Roughly fifteen years after the mid-twentieth century development of the Shannon in-

formation theory [96] of probability spaces, Kolmogorov [57] recognized that Turing’s math-

ematical theory of computation could be used to refine the Shannon theory to enable the

amount of information in individual data objects to be quantified. The resulting the-

ory of Kolmogorov complexity, or algorithmic information theory, is now a large enterprise

with many applications in computer science, mathematics, and other sciences [62]. Kol-

mogorov [57] proved the first version of the fundamental relationship between the Shannon

and algorithmic theories of information, and this relationship was made precise by Levin’s

coding theorem [60, 61]. (Solomonoff [99] and Chaitin [17, 18]) independently developed

Kolmogorov complexity at around the same time as Kolmogorov with somewhat different

motivations.)

At the turn of the present century, J. H. Lutz [63, 64] showed that Hausdorff’s [48]

theory of fractal dimension is an older theory of information that can also be refined using

Turing’s mathematical theory of computation, thereby enabling the density of information

in individual infinite data objects, such as infinite binary sequences or points in Euclidean

spaces, to be quantified. The resulting theory of effective fractal dimensions is now an
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active enterprise with a growing array of applications [28].

How can the dimensions of individual points—dimensions that are defined using the

theory of computing—have any bearing on classical problems of geometric measure theory?

The problems that we have in mind here are problems in which one seeks to establish

lower bounds on the classical Hausdorff dimH(E) (or packing dimension dimP (E)) of a set

E ⊆ Rn. Such problems involve global properties of sets and make no mention of algorithms.

The key to bridging this gap is relativization. Specifically, our point-to-set principle

for Hausdorff dimension states that, in order to prove a lower bound dimH(E) ≥ α, it

suffices to show that, for every A ⊆ N and every ε > 0, there is a point x ∈ E such

that dimA(x) ≥ α − ε, where dimA(x) is the effective Hausdorff dimension of x relative

to the oracle A. We also present an analogous principle for classical packing dimension

and relativized effective packing dimension. Before proving these principles, we begin by

defining classical fractal dimensions and their algorithmic counterparts.

2.1 Classical Fractal Dimensions

We now define, for sets E ⊆ Rn, the Hausdorff dimension dimH(E), and its dual, the packing

dimension dimP (E). Although there are more primitive alternatives with simpler definitions

(e.g., box-counting dimension), three desirable properties have made Hausdorff dimension

the most standard notion of fractal dimension since it was introduction by Hausdorff in 1919.

First, it is defined on every set in Rn. Second, it is monotone: if E ⊆ F , then dimH(E) ≤

dimH(F ). Third, it is countably stable: if E =
⋃
i∈NEi, then dimH(E) = supi∈N dimH(Ei).

These three properties also hold for packing dimension, which was defined much later,

independently by Tricot [103] and by Sullivan [101].

Notation. For E ⊆ Rn, diam(X) = supx,y∈X |x− y| is the diameter of E. For x ∈ Rn and

ρ > 0, Bρ(x) = {y ∈ Rn : |x− y| < ρ} is the open ball of radius ρ around x.

Definition (Hausdorff [48]). Let E ⊆ Rn. For δ > 0, define Uδ(E) to be the collection of
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all countable covers of E by sets of positive diameter at most δ. That is, for every cover

{Ui}i∈N ∈ Uδ(E), we have E ⊆
⋃
i∈N Ui and diam(Ui) ∈ (0, δ] for all i ∈ N. For all s ≥ 0,

define

Hs
δ (E) = inf

{∑
i∈N

diam(Ui)
s : {Ui}i∈N ∈ Uδ(E)

}
.

1. The s-dimensional Hausdorff outer measure of E is

Hs(E) = lim
δ→0+

Hs
δ (E) .

2. The Hausdorff dimension of E is

dimH(E) = inf {s > 0 : Hs(E) = 0} .

Definition (Tricot [103] and Sullivan [101]). Let E ⊆ Rn. For δ > 0, define Vδ(E) to be

the collection of all countable packings of E by disjoint open balls of diameter at most δ.

That is, for every packing {Vi}i∈N ∈ Vδ(E) and every i ∈ N, we have Vi = Bεi(xi) for some

xi ∈ E and εi ∈ (0, δ/2], and for every j ∈ N \ {i}, Vi ∩ Vj = ∅.

For all s ≥ 0, define

P sδ (E) = sup

{∑
i∈N

diam(Vi)
s : {Vi}i∈N ∈ Vδ(E)

}
,

and let

P s0 (E) = lim
δ→0+

P sδ (E) .

1. The s-dimensional packing measure of E is

P s(E) = inf

{∑
i∈N

P s0 (Ei) : E ⊆
⋃
i∈N

Ei

}
.

2. The packing dimension of E is

dimP (E) = inf {s : P s(E) = 0} .

Notice that defining packing dimension in this way requires an extra step of optimization

compared to Hausdorff dimension. For every set E ⊆ Rn, we have dimH(E) ≤ dimP (E),

with equality when E is very “regular.” More properties and details about classical fractal

dimensions may be found in standard references such as [78, 32, 100].
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2.2 Kolmogorov Complexity and Dimensions of Sequences

Hausdorff and packing dimensions are defined similarly in the Cantor space of infinite

binary sequences, and it was shown by J. H. Lutz [63] that Hausdorff dimension can be

characterized in this space using betting strategies called gales, which generalize martingales.

By requiring these gales to be constructive (i.e., upper semicomputable), the same author

defined a constructive version of Hausdorff dimension. Unlike classical Hausdorff dimension,

the constructive version is nonzero on some singleton sets and thus assigns a meaningful

dimension to individual infinite binary sequences [64]. In this work, instead of using the

original gale definition, we use a later characterization based on Kolmogorov complexity,

which we now define.

Definition. The conditional Kolmogorov complexity of a string σ ∈ {0, 1}∗ given a string

τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{|π| : U(π, τ) = σ} ,

where U is a fixed universal prefix machine and |π| is the length of π. The Kolmogorov

complexity of σ is K(σ) = K(σ|λ), where λ is the empty string. We write U(π) for U(π, λ).

When U(π) = σ, the string π is called a program for σ.

The quantity K(σ) is also called the algorithmic information content of σ. Routine

coding extends this definition from {0, 1}∗ to other discrete domains, so that the Kolmogorov

complexities of natural numbers, rational numbers, tuples of these, etc., are well defined

up to additive constants. Detailed discussions of prefix Turing machines and Kolmogorov

complexity appear in the books [62, 83, 28] and many papers.

The first identity below, which we take as a definition here, was proven as a theorem

by Mayordomo [79]. The second was proven by Athreya, Hitchcock, J. H. Lutz, and May-

ordomo [2], after first constructivizing packing dimension using gales.

Definition (Mayordomo [79] and Athreya, et al. [2]). Let w be an infinite binary sequence,

and for r ∈ N, let w�r denote the length-r prefix of w.
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1. The effective Hausdorff dimension of w is

dim(w) = lim inf
r→∞

K(w�r)
r

.

2. The effective packing dimension of w is

Dim(x) = lim sup
r→∞

K(w�r)
r

.

Recall that K(σ) is the algorithmic information content of σ ∈ {0, 1}∗. Similarly, the

ratio K(w�r)/r may be described as the algorithmic information density of w ∈ {0, 1}∞

at precision r ∈ N. This ratio might not converge as r → ∞, but it is easy to see that it

has asymptotes in the interval [0, 1]. Hence, dim(w) and Dim(w) are the lower and upper

asymptotic densities of the algorithmic information in w.

Note that these dimensions are more precisely called constructive dimensions, as they

originally were, because other effectivizations (e.g., computable dimensions, polynomial

time dimensions, and finite-state dimensions) have also been investigated. Since only the

Σ0
1 effectivizations are discussed in this work, we use the above terminology, which has

become common in the literature.

2.3 Dimensions of Points in Euclidean Spaces

Effective Hausdorff and packing dimensions were extended to Euclidean spaces by J. H. Lutz

and Mayordomo [67]. In this setting, the precision parameter r defines a neighborhood in

which we find a rational point of minimal complexity. Applications of these dimensions in

Euclidean spaces appear in [67, 40, 68, 27, 41].

Definition. For x ∈ Rn and r ∈ N, the Kolmogorov complexity of x at precision r is

Kr(x) = min{K(q) : q ∈ Qn ∩B2−r(x)} , (2.3.1)

where B2−r(x) is the open ball with radius 2−r and center x.
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We note that Kr(x) = K(x�r) + o(r), where x�r is the binary expansion of x, truncated

r bits to the right of the binary point. However, it has been known since Turing’s famous

correction [105] that binary notation is not a suitable representation for the arguments and

values of computable functions on the reals. (See also [106].) Hence, in order to make

our definitions useful for further work in computable analysis, we formulate complexities

and dimensions in terms of rational approximations. This relationship between these two

formulations is addressed more formally in Section 5.1.

We will frequently use the fact that Kr(x) is only linearly sensitive to the precision r.

Lemma 1. (Case and J. Lutz [15]) There is a constant c ∈ N such that for all n, r, s ∈ N

and x ∈ Rn,

Kr(x) ≤ Kr+s(x) ≤ Kr(x) +K(r) + ns+ as + c , (2.3.2)

where as = K(s) + 2 log(d1
2 log ne+ s+ 3) + (d1

2 log ne+ 3)n+K(n) + 2 log n.

Usually, we will treat n as a constant and only require a less precise version of the

inequalities (2.3.2), namely,

Kr+s(x) = Kr(x) +O(s+ log r) .

Definition (J. H. Lutz and Mayordomo [67]). Let x ∈ Rn.

1. The effective Hausdorff dimension, or simply dimension of x is

dim(x) = lim inf
r→∞

Kr(x)

r
.

2. The effective packing dimension, or strong dimension of x is

Dim(x) = lim sup
r→∞

Kr(x)

r
.

For x ∈ Rn, it is easy to see that

0 ≤ dim(x) ≤ Dim(x) ≤ n ,
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and it is known that, for any two reals 0 ≤ α ≤ β ≤ n, there exist uncountably many points

x ∈ Rn satisfying dim(x) = α and Dim(x) = β [2]. We will also consider points in Rn that

are (Martin-Löf) random [75].

Definition. A point x ∈ Rn is random if there exists c ∈ N such that, for all r ∈ N,

Kr(x) ≥ nr − c .

It is well known that (Lebesgue) almost every point x ∈ Rn is random [62], and it is

immediate from definitions that if x ∈ Rn is random, then dim(x) = Dim(x) = n.

2.4 From Points to Sets

We now establish our point-to-set principles relating algorithmic dimensions of points to

classical dimensions of sets. To formulate these principles, we use relativization. All the

algorithmic information concepts in Sections 2.2–2.3 can be relativized to an arbitrary oracle

A ⊆ N by giving the Turing machine in their definitions oracle access to A. Relativized

Kolmogorov complexity KA
r (x) and relativized dimensions dimA(x) and DimA(x) are thus

well defined. Moreover, the results of Section 2.3 hold relative to any oracle A.

Theorem 2 (Point-to-set principle for Hausdorff dimension). For every set E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) .

Three things should be noted about this principle. First, while the left-hand side is

the classical Hausdorff dimension, which is a global property of E that does not involve

the theory of computing, the right-hand side is a pointwise property of the set that makes

essential use of relativized algorithmic information theory. Second, as the proof shows,

the right-hand side is a minimum, not merely an infimum. Third, and most crucially, this

principle implies that, in order to prove a lower bound dimH(E) ≥ α, it suffices to show

that, for every A ⊆ N and every ε > 0, there is a point x ∈ E such that dimA(x) ≥ α− ε.1

1The ε here is useful in general but is not needed in some cases, including our proof of Theorem 22 below.
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For the (≥) direction of this principle, we construct the minimizing oracle A. The oracle

encodes, for a carefully chosen sequence of increasingly refined covers for E, the approximate

locations and diameters of all cover elements. Using this oracle, a point x ∈ Rn can be

approximated by specifying an appropriately small cover element that it belongs to, which

requires an amount of information that depends on the number of similarly-sized cover

elements. We use the definition of Hausdorff dimension to bound that number. The (≤)

direction can be shown using results from [67], but in the interest of self-containment we

prove it directly.

Proof of Theorem 2. Let E ⊆ Rn, and let d = dimH(E). For every s > d we have Hs(E) =

0, so there is a sequence {{U t,si }i∈N}t∈N of countable covers of E such that diam(U t,si ) ≤ 2−t)

for every i, t ∈ N, and for every sufficiently large t we have

∑
i∈N

diam(U t,si )s < 1 . (2.4.1)

Let D = N3×(Q∩(d,∞)). Our oracle A encodes functions fA : D → Qn and gA : D → Q

such that for every (i, t, r, s) ∈ D, we have

fA(i, t, r, s) ∈ B2−r−1(u)

for some u ∈ U t,si and ∣∣gA(i, t, r, s)− diam(U t,si )
∣∣ < 2−r−4 . (2.4.2)

We will show, for every x ∈ E and rational s > d, that dimA(x) ≤ s.

Fix x ∈ E and s ∈ Q∩(d,∞). If for any i0, t0 ∈ N we have x ∈ U t0,si0
and diam(U t0,si0

) = 0,

then U t0,si0
= {x}, so fA(i0, t0, r, s) ∈ B2−r(x) for every r ∈ N. In this case, let M be a prefix-

free Turing machine with oracle access to A such that, whenever U(ι) = i ∈ N, U(τ) = t ∈ N,

U(ρ) = r ∈ N, and U(σ) = q ∈ Q ∩ (d,∞),

M(ιτρσ) = fA(i, t, r, q) .

Now for any r ∈ N, let ι, τ , ρ, and σ be witnesses to K(i0), K(t0), K(r), and K(s),

respectively. Since i0, t0, and s are all constant in r and |ρ| = o(r), we have |ιτρσ| = o(r).
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Thus KA
r (x) = o(r), and dimA(x) = 0. Hence assume that every cover element containing

x has positive diameter.

Fix sufficiently large t, and let U t,six be some cover element containing x. Let M ′ be

a prefix-free Turing machine with oracle access to A such that whenever U(κ) = k ∈ N,

U(τ) = ` ∈ N, U(ρ) = r ∈ N, and U(σ) = q ∈ Q ∩ (d,∞),

M ′(κτρσ) = fA(p, `, r, q) ,

where p is the kth index i such that gA(i, t, r, q) ≥ 2−r−3.

Now fix r ≥ t− 1 such that

diam(U t,six ) ∈
[
2−r−2, 2−r−1

)
.

Notice that gA(ix, t, r, s) ≥ 2−r−3. Hence there is some k such that, letting κ, τ , ρ, and σ

be witnesses to K(k), K(t), K(r), and K(s), respectively,

M ′(κτρσ) ∈ B2−r−1(u) ,

for some u ∈ U t,six . Because diam(U t,six
)
< 2−r−1 and x ∈ U t,six , we have

M ′(κτρσ) ∈ B2−r(x) .

Thus

KA
r (x) ≤ K(k) +K(t) +K(s) +K(r) + c ,

where c is a machine constant for M ′. Since s is constant in r and t < r, Observation 10

tells us that this expression is K(k) + o(r) ≤ log(k) + o(r). By (2.4.1), there are fewer than

2(r+4)s indices i ∈ N such that

diam(U t,si ) ≥ 2−r−4 ,

hence by (2.4.2) there are fewer than 2(r+4)s indices i ∈ N such that gA(i, t, r, s) ≥ 2−r−3,

so log(k) < (r + 4)s. Therefore KA
r (x) ≤ rs+ o(r).
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There are infinitely many such r, which can be seen by replacing t above with r+ 2. We

have shown

dimA(x) = lim inf
r→∞

KA
r (x)

r
≤ s ,

for every rational s > d, hence dimA(x) ≤ d. It follows that

min
A⊆N

sup
x∈E

dimA(x) ≤ d .

For the other direction, assume for contradiction that there is some oracle A and d′ < d

such that

sup
x∈E

dimA(x) = d′ .

Then for every x ∈ E, dimA(x) ≤ d′. Let s ∈ (d′, d). For every r ∈ N, define the sets

Br =
{
B2−r(q) : q ∈ Q and KA(q) ≤ rs

}
and

Wr =
∞⋃
k=r

Bk .

There are at most 2ks+1 balls in each Bk, so for every r ∈ N and s′ ∈ (s, d),

∑
W∈Wr

diam(W )s
′

=

∞∑
k=r

∑
W∈Bk

diam(W )s
′

≤
∞∑
k=r

2ks+1(21−k)s
′

= 21+s′ ·
∞∑
k=r

2(s−s′)k ,

which approaches 0 as r → ∞. As every Wr is a cover for E, we have Hs′(E) = 0, so

dimH(E) ≤ s′ < d, a contradiction.

Using similar techniques, we now establish the point-to-set principle for packing dimen-

sion.

Theorem 3 (Point-to-set principle for packing dimension). For every set E ⊆ Rn,

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .
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Proof. Let E ⊆ Rn, and let d = dimP (E). For every s > d we have P s(E) = 0, so there is

a cover
{
Esj
}
j∈N for E such that

∑
j∈N

lim
δ→0+

P sδ (Esj ) < 1 . (2.4.3)

For every r, j ∈ N, let {
V r,s,j
i

}
i∈N ∈ V2−r−2(Esj )

be a maximal packing of Esj by open balls of radius exactly 2−r−2 (and higher-indexed balls

of radius 0).

Let D = N3× (Q∩ (d,∞)). Our oracle A encodes a function fA : D → Qn such that for

every (i, j, r, s) ∈ D we have

fA(i, j, r, s) ∈ V r,s,j
i .

We will show, for every x ∈ E and rational s > d, that DimA(x) ≤ s.

Let M be a prefix-free Turing machine with oracle access to A such that, whenever

U(ι) = i ∈ N, U(κ) = j ∈ N, U(ρ) = r ∈ N, and U(σ) = q ∈ Q ∩ (d,∞),

M(ικρσ) = fA(i, j, r, s) .

Fix x ∈ E and s ∈ Q ∩ (0,∞), and let k ∈ N be such that x ∈ Esk. Notice that by our

choice of packing, for every r ∈ N there must be some ir ∈ N such that

V r,s,k
ir

⊆ B2−r(x) .

Thus, for every r ∈ N, letting ι, κ, ρ, σ testify to K(ir), K(k), K(r), and K(s), respectively,

M(ικρσ) = fA(ir, k, r, s)

∈ V r,s,k
ir

⊆ B2−r(x) ,

hence KA
r (x) ≤ K(ir) + K(k) + K(r) + K(s) + c, where c is a machine constant for M .

Because k and s are constant in r, K(r) = o(r), and K(ir) ≤ log ir + o(r), we have

KA
r (x) ≤ log ir + o(r) .
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By (2.4.3),

lim
δ→0+

P sδ (Esk) < 1 ,

so there is some R ∈ N such that, for every r > R, P s2−r(E
s
k) < 1. Then for every r > R,

∑
i∈N

diam(V r,s,k
i )s < 1 ,

hence there are fewer than 2(r+2)s balls of radius 2−r−2 in the packing, and log ir < (r+2)s.

We conclude that KA
r (x) ≤ rs+ o(r) for every r > R, so

dimA(x) = lim sup
r→∞

KA
r (x)

r
≤ s .

Since this holds for every rational s > d, we have shown DimA(x) ≤ d and thus

min
A⊆N

sup
x∈E

DimA(x) ≤ d .

For the other direction, assume for contradiction that there is some oracle A and d′ < d

such that

sup
x∈E

DimA(x) = d′ .

Then for every x ∈ E, DimA(x) ≤ d′. Let s ∈ (d′, d). For every k ∈ N, define the set

Ck =
⋃{

B2−k(q) : q ∈ Q and KA(q) ≤ ks
}
,

and for every i ∈ N, define

Ei =
∞⋂
k=i

Ck .

For r ≥ i, consider any packing in V2−r (Ei). Let Bε(x) be an element of the packing,

and let k = d− log εe. Then k ≥ r + 1 > i, so Bε(x) ⊆ Ei ⊆ Ck. In particular x ∈ Ck,

meaning that there is some q ∈ Q such that KA(q) ≤ ks and x ∈ B2−k(q). As 2−k ≤ ε, we

also have q ∈ Bε(x). Thus, every packing element of radius at least 2−k contains a (distinct)

member of the set {q ∈ Q : KA(q) ≤ ks}. It follows that for every k ≥ r + 1, the packing

includes at most 2ks+1 elements with diameters in the range [21−k, 22−k).
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Now let s′ ∈ (s, d). For every i ∈ N and r ≥ i, we have

P s
′

2−r(Ei) = sup

{∑
j∈N

diam(Vj)
s′ : {Vj}j∈N ∈ V2−r(Ei)

}

≤
∞∑

k=r+1

2ks+1(22−k)s
′

= 21+2s′ ·
∞∑

k=r+1

2(s−s′)k .

This approaches 0 as r →∞, so P s
′

0 (Ei) = 0. Observe now that

E ⊆
⋃
i∈N

Ei .

Thus,

P s
′
(E) ≤

∑
i∈N

P s
′

0 (Ei) = 0 ,

meaning that dimP (E) ≤ s′ < d, a contradiction. We conclude that for every oracle A,

sup
x∈E

DimA(x) ≥ d .

2.5 Classical Pointwise Dimensions of Measures

As we have seen, effective Hausdorff and packing dimension are fundamentally pointwise.

There is also a classical notion of pointwise dimensions of measures, which is central to the

study of fractals and dynamics. In this section, we describe a connection between these two

formulations of pointwise dimension. We then use this connection to compare Theorems 2

and 3 to classical pointwise characterizations of Hausdorff and packing dimensions.

In the classical setting, pointwise dimensions are defined for a given measure according

to its (lower and upper asymptotic) rate of decay around x.
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Definition. For any locally finite measure µ on Rn, the lower and upper pointwise dimen-

sion of µ at x ∈ Rn are

dimµ(x) = lim inf
ρ→0

logµ(Bρ(x))

log ρ

Dimµ(x) = lim sup
ρ→0

logµ(Bρ(x))

log ρ
,

respectively [31].

As Young [111] notes, these limits are unchanged if ρ is replaced by any sequence {ρr}r∈N

satisfying ρr ↓ 0 and log ρr+1/ log ρr → 1. In particular, the sequence {2−r}r∈N may be used.

Also, this definition in no way relies on additivity, so it applies equally well to outer measures

and semimeasures.

We relate these two notions of pointwise dimension by defining an outer measure κA on

Rn for any given oracle set A ⊆ N. For every E ⊆ Rn,

κA(E) = 2−K
A(E) ,

where, following Shen and Vereschagin [97],

KA(E) = min
q∈E∩Qn

KA(q) .

This minimum is taken to be infinite when E ∩ Qn = ∅. It is easy to see that κA is also

subadditive and monotonic, and that κA(∅) = 0. Since KA is non-negative, κA is finite.

Observation 4. For every oracle set A ⊆ N and all x ∈ Rn,

dimκA(x) = dimA(x) .

DimκA(x) = DimA(x) .

This fact is closely related to (and was observed independently of) an unpublished

remark by Reimann [91] stating that dim(x) is equal to the pointwise dimension at x of

Levin’s [61] universal lower semicomputable continuous semimeasure.
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Pointwise dimensions of measures give rise to global dimensions of measures, which

we now briefly comment on. In classical fractal geometry, the global dimensions of Borel

measures play a substantial role in studying the interplay between local and global properties

of fractal sets and measures.

Definition. For any locally finite Borel measure µ on Rn and x ∈ Rn, the lower and upper

Hausdorff and packing dimension of µ are

dimH(µ) = sup{α : µ({x : dimµ(x) < α}) = 0}

DimH(µ) = inf{α : µ({x : dimµ(x) > α}) = 0}

dimP (µ) = sup{α : µ({x : Dimµ(x) < α}) = 0}

DimP (µ) = inf{α : µ({x : Dimµ(x) > α}) = 0} ,

respectively [31].

Extending these definitions to outer measures, we may consider global dimensions of

the outer measures κA. For every A ⊆ N, κA is supported on Qn and dimA(p) = 0 for all

p ∈ Qn, which implies the following.

Observation 5. For every A ⊆ N,

dimH(κA) = DimH(κA) = dimP (κA) = DimP (κA) = 0 .

In light of Observation 4, the point-to-set principles of Theorems 2 and 3 may be con-

sidered members of the family of results, such as Billingsley’s lemma [10] and Frostman’s

lemma [37], that relate the local decay of measures to global properties of measure and

dimension. Useful references on such results include [12, 50, 78].

Among classical results, this principle is most directly comparable to the weak duality

principle of Cutler [20] (see also [31]), which expresses Hausdorff and packing dimensions

in terms of lower and upper pointwise dimensions of measures. For nonempty E ⊆ Rn, let

P(E) be the collection of Borel probability measures on Rn such that the E is measurable

and has measure 1, and let E be the closure of E.
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Theorem 6 (Cutler [20]). For every nonempty E ⊆ Rn,

1. dimH(E) = inf
µ∈P(E)

sup
x∈E

dimµ(x) .

2. dimP (E) = inf
µ∈P(E)

sup
x∈E

Dimµ(x) .

By defining the family of outer measures A = {κA : A ⊆ N}, Theorems 2 and 3 can be

restated in a form that is even more similar to Theorem 6, as

1. dimH(E) = inf
µ∈A

sup
x∈E

dimµ(x) .

2. dimP (E) = inf
µ∈A

sup
x∈E

Dimµ(x) .

Notice, however, that the collections over which the infima are taken in these two results,

A and P(E), are disjoint and qualitatively very different. In particular, A does not depend

on E. Whereas the global dimensions of the measures in P(E) are closely tied to the

dimensions of E [31], Observation 5 shows that the outer measures in A all have trivial

global dimensions.

2.6 Mutual Dimensions

Mutual dimensions were developed very recently, and Kolmogorov complexity was the start-

ing point. The relationship between effective dimensions and Kolmogorov complexity led

to the development of a dimensional analogue to a second algorithmic information theoretic

quantity, mutual information.

Definition. The mutual (algorithmic) information between two strings σ, τ ∈ {0, 1}∗ is

I(σ : τ) = K(σ)−K(σ|τ) .

Again, routine coding extends K(σ|τ) and I(σ : τ) to other discrete domains. Dis-

cussions of K(σ|τ), I(σ : τ), and the correspondence of K(σ), K(σ|τ), and I(σ : τ) with

Shannon entropy, Shannon conditional entropy, and Shannon mutual information appear

in [62].
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In parallel with the definitions of Kolmogorov complexity and effective dimensions in

Euclidean spaces, Case and J. H. Lutz [15] lifted the definition of I(p : q) for rational points

p and q in Euclidean spaces in two steps to define the mutual dimensions between two

arbitrary points in (possibly distinct) Euclidean spaces.

Definition (Case and J. H. Lutz [15]). Let x ∈ Rm, y ∈ Rn, and r ∈ N.

1. The mutual information between x and y at precision r is

Ir(x : y) = min {I(p : q) : p ∈ B2−r(x) ∩Qm and q ∈ B2−r(y) ∩Qn} .

2. The lower mutual dimension between x and y is

mdim(x : y) = lim inf
r→∞

Ir(x : y)

r
.

3. The upper mutual dimension between x and y is

Mdim(x : y) = lim sup
r→∞

Ir(x : y)

r
.

Observation 7. For all x ∈ Rn,

1. dim(x) = mdim(x : x).

2. Dim(x) = Mdim(x : x).

Case and J. H. Lutz also showed that mutual dimensions are preserved under bi-Lipschitz

computable bijections. Combined with Observation 7, this implies that effective Hausdorff

and packing dimensions are preserved by such bijections. This is a Euclidean-space version

of a fact that was shown in Cantor space by Reimann.

Lemma 8 (Reimann [92], Case and J. H. Lutz [15]). If f : Rm → Rn is computable and

bi-Lipschitz, then dim(x) = dim(f(x)) and Dim(x) = Dim(f(x)) for all x ∈ Rm.

Other useful properties of these mutual dimensions, especially including data processing

inequalities, appear in [15].
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Chapter 3

Conditional Dimensions

In this chapter we develop conditional dimensions, which fill a gap in effective dimension

theory. The fundamental quantities in Shannon information theory are the entropy (in-

formation content) H(X) of a probability space X, the conditional entropy H(X|Y ) of a

probability space X given a probability space Y , and the mutual information (shared infor-

mation) I(X;Y ) between two probability spaces X and Y [19]. The analogous quantities in

Kolmogorov complexity theory are the Kolmogorov complexity K(u) of a finite data object

u, the conditional Kolmogorov complexity K(u|v) of a finite data object u given a finite

data object v, and the algorithmic mutual information I(u : v) between two finite data

objects u and v [62]. The above-described dimensions dim(x) and Dim(x) of a point x in

Euclidean space (or an infinite sequence x over a finite alphabet) are analogous by limit

theorems [79, 2] to K(u) and hence to H(X). Case and J. H. Lutz have recently developed

and investigated the lower and upper mutual dimensions mdim(x : y) and Mdim(x : y),

which are densities of the algorithmic information shared by points x and y in Euclidean

spaces [15] or sequences x and y over a finite alphabet [16]. These mutual dimensions are

analogous to I(u : v) and I(X;Y ).

What is conspicuously missing from the above account is a notion of conditional di-

mension. To remedy this, we first define the conditional Kolmogorov complexity Kr(x|y) of

x ∈ Rm given y ∈ Rn at precision r ∈ N. This is a “conditional version” of the Kolmogorov

complexity Kr(x) of x at precision r defined in Chapter 2. We use this conditional Kol-

mogorov complexity to develop the lower conditional dimension dim(x|y) of x given y and

its dual, the upper conditional dimension Dim(x|y) of x given y, where x and y are points
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in Euclidean spaces. We prove that these conditional dimensions are well behaved and that

they have the correct information theoretic relationships with the previously defined dimen-

sions and mutual dimensions. These conditional dimensions are used in Chapters 4 and 5

and (like the conditional entropy and conditional Kolmogorov complexity that motivate

them) are very likely to be useful in future investigations.

3.1 Definitions

Definition. Let x ∈ Rm and y ∈ Rn.

1. For q ∈ Qn and r ∈ N, the conditional Kolmogorov complexity of x at precision r

given q is

K̂r(x|q) = min {K(p|q) : p ∈ Qm ∩B2−r(x)} . (3.1.1)

2. For r, s ∈ N, the conditional Kolmogorov complexity of x at precision r given y at

precision s is

Kr,s(x|y) = max
{
K̂r(x|q) : q ∈ Qn ∩B2−s(y)

}
. (3.1.2)

Intuitively, the maximizing argument q is the point near y that is least helpful in the

task of approximating x. Note that Kr,s(x|y) is finite, because K̂r(x|q) ≤ Kr(x) + O(1).

When the precision parameters are equal, we abbreviate Kr,r(x|y) by Kr(x|y).

We define conditional dimensions in parallel with the definitions of effective dimensions

and mutual dimensions in Chapter 2.

Definition. Let x ∈ Rm and y ∈ Rn.

1. The lower conditional dimension of x given y is

dim(x|y) = lim inf
r→∞

Kr(x|y)

r
.

2. The upper conditional dimension of x given y is

Dim(x|y) = lim sup
r→∞

Kr(x|y)

r
.
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The use of the same precision bound r for both x and y makes our conditional dimensions

appear arbitrary and “brittle.” We will show in Theorem 15 that this is not the case.

In the remainder of this chapter, we derive properties of conditional Kolmogorov com-

plexity and conditional dimensions in Euclidean spaces. In particular, we show:

• K̂r(x|q) and Kr,s(x|y) are only linearly sensitive to the precision parameters r and

s (Lemmas 13 and 14), and our definitions of conditional dimensions are therefore

robust (Theorem 15).

• The correct relationships to mutual information and mutual dimension hold (Theo-

rem 16 and Corollary 17).

• These quantities obey chain rules (Theorem 18 and Corollary 19).

• Conditional Kolmogorov complexity and dimension are bounded below by relative

Kolmogorov complexity and dimension (Lemma 20 and Corollary 21).

In deriving these properties, we will make use of the following four observations about

Kolmogorov complexity in Euclidean spaces.

Observation 9. For every open ball B ⊆ Rm of radius 2−r,

B ∩ 2−(r+b 1
2

logmc+1)Zm 6= ∅ .

For a ∈ Zm, let |a| denote the distance from the origin to a.

Observation 10. There is a constant c0 ∈ N such that, for all j ∈ N,

K(j) ≤ log(1 + j) + 2 log log(2 + j) + c0 .

Observation 11. There is a constant c ∈ N such that, for all a ∈ Zm,

K(a) ≤ m log(1 + |a|) + ε(|a|) ,

where ε(t) = c+ 2 log log(2 + t).
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Observation 10 holds by a routine technique [62]. The proof of Observation 11 is also

routine:

Proof. Fix a computable, nonrepeating enumeration a0, a1, a2, . . . of Zm in which tuples

aj appear in nondecreasing order of |aj |. Let M be a Turing machine such that, for all

π ∈ {0, 1}∗, if U(π) ∈ N, then M(π) = aU(π). Let c = c0 + cM + m + d2 logme + 2, where

c0 is as in Observation 10 and cM is an optimality constant for M .

To see that c affirms Observation 11, let a ∈ Zm. Let j ∈ N be the index for which

aj = a, and let π ∈ {0, 1}∗ testify to the value of K(j). Then M(π) = aU(π) = aj = a, so

K(a) ≤ KM (a) + cM ≤ |π|+ cM = K(j) + cM .

It follows by Observation 10 that

K(a) ≤ log(1 + j) + 2 log log(2 + j) + c+ cM . (3.1.3)

We thus estimate j.

Let B be the closed ball of radius |a| centered at the origin in Zm, and let Q be the

solid, axis-parallel m-cube circumscribed about B. Let B′ = B ∩ ZM and Q′ = Q ∩ Zm.

Then

j ≤ |B′| − 1 ≤ |Q′| − 1 ≤ (2|a|+ 1)m − 1 ,

so (3.1.3) tells us that

K(a) ≤ m log(2|a|+ 1) + 2 log log(1 + (2|a|+ 1)m) + c+ cM

≤ m log(2|a|+ 2) + 2 log(m log(2|a|+ 4)) + c+ cM .

Since

m log(2|a|+ 2) = m+m log(1 + |a|)

and

log(m log(2|a|+ 4)) = logm+ log(1 + log(2 + |a|))

≤ logm+ 1 + log log(2 + |a|) ,
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it follows that K(a) ≤ m log(1 + |a|) + ε(|a|).

Observation 12. For every r, n ∈ N, x ∈ Rn, and q ∈ Qn,

Kr(x+ q) = Kr(x) +O(1) .

Proof. Let M be a self-delimiting Turing machine such that M(πκ) = U(π)+U(κ) whenever

U(π), U(κ) ∈ Qn. If π is a witness to Kr(x) and κ is a witness to q, then M(πκ) = p + q

for some p ∈ B2−r(x), so M(πκ) ∈ B2−r(x+ q). Thus

Kr(x+ q) ≤ Kr(x) +K(q) + c ,

where c is a machine constant for M . Since K(q) is constant in r, we have Kr(x + q) ≤

Kr(x) +O(1). Applying the same argument with −q replacing q completes the proof.

3.2 Linear Sensitivity to Precision Parameters

Lemma 13 (Linear Sensitivity of K̂r(x|q) to r). There is a constant c1 ∈ N such that, for

all x ∈ Rm, q ∈ Qn, and r,∆r ∈ N,

K̂r(x|q) ≤ K̂r+∆r(x|q) ≤ K̂r(x|q) +m∆r + ε1(r,∆r) ,

where ε1(r,∆r) = 2 log(1 + ∆r) +K(r,∆r) + c1.

Proof. Let M be a Turing machine such that, for all π1, π2, π3 ∈ {0, 1}∗ and q ∈ Qn, if

U(π1, q) = p ∈ Qm, U(π2) = (r,∆r) ∈ N2, and U(π3) = a ∈ Zm, then M(π1π2π3, q) =

p + 2−r
∗
a, where r∗ = r + ∆r +

⌊
1
2 logm

⌋
+ 1. Let c1 = c + cM + 3m + m

⌊
1
2 logm

⌋
+⌈

2 log(3 +
⌊

1
2 logm

⌋
)
⌉
, where c is the constant from Observation 11 and cM is an optimality

constant for M .

To see that c1 affirms the lemma, let x, q, r, and ∆r be as given. The first inequality

holds trivially. To see that the second inequality holds, let π1, π2 ∈ {0, 1}∗ testify to the

values of K̂r(x|q) and K(r,∆r), respectively. Let B = B2−r(x), B′ = B2−(r+∆r)(x) and
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p = U(π1, q), noting that p ∈ Qm ∩ B. Applying Observation 9 to the ball B′ − p tells us

that

(B′ − p) ∩ 2−r
∗
Zm 6= ∅ ,

i.e., that

B′ ∩ (p+ 2−r
∗
Zm) 6= ∅ .

So fix a point p′ ∈ B′∩(p+2−r
∗Zm), say, p′ = p+2−r

∗
a, where a ∈ Zm, and let π3 ∈ {0, 1}∗

testify to the value of K(a). Then

M(π1π2π3, q) = p′ ∈ Q ∩B′ ,

so

K̂r+∆r(x|q) ≤ K(p′|q)

≤ K̂M (p′|q) + cM

≤ |π1π2π3|+ cM .

By our choice of π1, π2, and π3, this implies that

K̂r+∆r(x|q) ≤ K̂r(x|q) +K(r,∆r) +K(a) + cM . (3.2.1)

We thus estimate K(a).

Since

|a| = 2r
∗ |p′ − p|

≤ 2r
∗
(|p′ − x|+ |p− x|)

< 2r
∗
(

2−(r+∆r) + 2−r
)

= 21+b 1
2

logmc (1 + 2∆r
)
,

Observation 11 tells us that

K(a) ≤ m log
(

1 + 2b
1
2

logmc (1 + 2∆r
))

+ ε(|a|)

≤ m log
(

2∆r+3+b 1
2

logmc
)

+ ε(|a|) ,
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i.e., that

K(a) ≤ m∆r + 3m+m
⌊

1
2 logm

⌋
+ ε(|a|) , (3.2.2)

where

ε(|a|) ≤ c+ 2 log log
(

2 + 21+b 1
2

logmc (1 + 2∆r
))

≤ c+ 2 log log
(

2∆r+3+b 1
2

logmc
)

= c+ 2 log
(
∆r +

⌊
1
2 logm

⌋
+ 3
)

≤ c+ 2 log
(
(1 + ∆r)

(
3 +

⌊
1
2 logm

⌋))
= c+ 2 log(1 + ∆r) + 2 log

(
3 +

⌊
1
2 logm

⌋)
.

It follows by (3.2.1) and (3.2.2) that

K̂r+∆r(x|q) ≤ K̂r(x|q) +m∆r + ε1(r,∆r) .

Lemma 14 (Linear Sensitivity of Kr,s(x|y) to s). There is a constant c2 ∈ N such that, for

all x ∈ Rm, y ∈ Rn, and r, s,∆s ∈ N,

Kr,s(x|y) ≥ Kr,s+∆s(x|y) ≥ Kr,s(x|y)− n∆s− ε2(s,∆s) ,

where ε2(s,∆s) = 2 log(1 + ∆s) +K(s,∆s) + c2.

Proof. Let M be a Turing machine such that, for all π1, π2, π3 ∈ {0, 1}∗ and q ∈ Qn, if

U(π1) = (s,∆s) ∈ N2 and U(π2) = a ∈ Zm, then M(π1π2π3, q) = U(π3, q + 2−s
∗
a), where

s∗ = s+ ∆s+
⌈

1
2 log n

⌉
. Let c2 = c+ cM + 3n+n

⌊
1
2 log n

⌋
+ 2

⌈
2 log(3 +

⌊
1
2 log n

⌋
)
⌉
, where

c is the constant from Observation 11 and cM is an optimality constant for M .

To see that c2 affirms the lemma, let x, y, r, s, and ∆s be as given The first inequality

holds trivially. To see that the second inequality holds, let B = B2−s(y), B′ = B2−(s+∆s)(y),

and q ∈ Qn ∩B. It suffices to prove that

K̂r(x|q) ≤ Kr,s+∆s(x|y) + n∆s+ ε2(s,∆s) . (3.2.3)
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Let π1 ∈ {0, 1}∗ testify to the value of K(s,∆s). Applying Observation 9 to the ball

B′ − q tells us that

(B′ − q) ∩ 2−s
∗
Zn 6= ∅ ,

i.e., that

B′ ∩ (q + 2−s
∗
Zn) 6= ∅ .

So fix a point q′ ∈ B′ ∩ (q + 2−s
∗Zn), say, q′ = q + 2−s

∗
a, where a ∈ Zn. Note that

K̂r(x|q′) ≤ Kr,s+∆s(x|y). (3.2.4)

Let π2, π3 ∈ {0, 1}∗ testify to the values of K(a) and K̂r(x|q′), respectively, noting that

U(π3, q
′) = p for some p ∈ Qm ∩B2−r(x). Then

M(π1π2π3, q) = U(π3, q
′) = p ∈ Qm ∩B2−r(x) ,

so

K̂r(x|q) ≤ K(p|q)

≤ KM (p|q) + cM

≤ |π1π2π3|+ cM .

By our choice of π1, π2, and π3, and by (3.2.4), this implies that

K̂r(x|q) ≤ Kr,s+∆s(x|y) +K(a) +K(s,∆s) + cM . (3.2.5)

We thus estimate K(a).

Since

|a| = 2s
∗ |q′ − q|

≤ 2s
∗
(|q′ − y|+ |q − y|)

< 2s
∗
(s−(s+∆s) + 2−s)

= 21+b 1
2

lognc(1 + 2∆s) ,
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Observation 11 tells us that

K(a) ≤ n log(1 + 21+b 1
2

lognc(1 + 2∆s)) + ε(|a|)

≤ n log(2∆s+3+b 1
2

lognc) + ε(|a|) ,

i.e., that

K(a) ≤ n∆s+ 3n+ n
⌊

1
2 log n

⌋
+ ε(|a|), (3.2.6)

where

ε(|a|) ≤ c+ 2 log log(2 + 21+b 1
2

lognc(1 + 2∆s))

≤ c+ 2 log log(2∆s+3+b 1
2

lognc)

= c+ 2 log(∆s+ 3 +
⌊

1
2 log n

⌋
)

≤ c+ 2 log
(
(1 + ∆s)(3 +

⌊
1
2 log n

⌋
)
)

= c+ 2 log(1 + ∆s) + 2 log(3 +
⌊

1
2 log n

⌋
) .

It follows by (3.2.5) and (3.2.6) that (3.2.3) holds.

Theorem 15. Let s : N→ N. If |s(r)− r| = o(r), then, for all x ∈ Rm and y ∈ Rn,

dim(x|y) = lim inf
r→∞

Kr,s(r)(x|y)

r
,

and

Dim(x|y) = lim sup
r→∞

Kr,s(r)(x|y)

r
.

Proof. Assume the hypothesis. Define s−, s+ : N→ N by

s−(r) = min{r, s(r)}, s+(r) = max{r, s(r)} .
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Lemma 14 tells us that, for all x ∈ Rm and y ∈ Rn,

Kr,s−(r)(x|y) ≥ Kr,r(x|y)

≥ Kr,s+(r)(x|y)

≥ Kr,s−(r)(x|y)−O(s+(r)− s−(r))− o(r)

= Kr,s−(r)(x|y)−O(|s(r)− r|)− o(r)

= Kr,s−(r)(x|y)− o(r) .

Since

Kr,s−(r)(x|y) ≥ Kr,s(r)(x|y) ≥ Kr,s+(r)(x|y) ,

it follows that ∣∣Kr,s(r)(x|y)−Kr,r(x|y)
∣∣ = o(r) .

The theorem follows immediately.

3.3 Relationships to Mutual Information and Dimensions

Theorem 16. For all x ∈ Rm and y ∈ Rn,

Ir(x : y) = Kr(x)−Kr(x|y) + o(r) .

Proof. Let Bx = B2−r(x)∩Qm and By = B2−r(y)∩Qn. Let p0 and q0 be K-minimizers for

Bx and By, respectively, such that

Ir(x : y) = I(p0 : q0) + o(r) . (3.3.1)

These exist by Theorem 4.6 of [15]. Then

Kr(x)−Kr(x|y) = min
p∈Bx

K(p)−max
q∈By

min
p∈Bx

K(p|q)

≥ min
p∈Bx

K(p)− min
p∈Bx

max
q∈By

K(p|q)

= min
p∈Bx

K(p)− min
p∈Bx

K(p|q0) + o(r) ,
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by Lemma 4.2 and Observation 3.7 of [15].

= K(p0)− min
p∈Bx

K(p|q0) + o(r)

≥ K(p0)−K(p0|q0) + o(r)

= I(p0 : q0) + o(r)

= Ir(x : y) + o(r) .

For the other direction, let p1 ∈ Bx be such that

K(p1|q0) = min
p∈Bx

K(p|q0) .

By Lemma 4.5 of [15],

I(p0 : q0) ≥ K(p1)−K(p1|p0,K(p0))−K(p1|q0,K(q0)) + o(r)

≥ K(p1)−K(p1|p0,K(p0))−K(p1|q0) + o(r) . (3.3.2)

Now

K(p0) +K(p1|p0,K(p0)) + o(r) = K(p0, p1)

= K(p1) +K(p0|p1,K(p1)) + o(r)

≤ K(p1) +K(p0|p1) + o(r)

= K(p1) + o(r) ,

by Corollary 4.4 of [15]. So

K(p1)−K(p1|p0,K(p0)) ≥ K(po) + o(r) ,
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thus by (3.3.2),

I(p0 : q0) ≥ K(p0)−K(p1|q0) + o(r)

= K(p0)− min
p∈Bx

K(p|q0) + o(r)

= Kr(x)− min
p∈Bx

K(p|q0) + o(r)

≥ Kr(x)−max
q∈By

min
p∈Bx

K(p|q) + o(r)

= Kr(x)−Kr(x|y) + o(r) .

Then by (3.3.1), Ir(x : y) ≥ Kr(x)−Kr(x|y) + o(r), so equality holds.

Corollary 17. For all x ∈ Rm and y ∈ Rn, the following hold.

1. mdim(x : y) ≥ dim(x)−Dim(x|y).

2. Mdim(x : y) ≤ Dim(x)− dim(x|y).

3.4 Chain Rules

Theorem 18 (Chain rule for Kr). For all x ∈ Rm and y ∈ Rn,

Kr(x, y) = Kr(x|y) +Kr(y) + o(r) .

Proof. Theorem 4.10 of [15] tells us that

Ir(x : y) = Kr(x) +Kr(y)−Kr(x, y) + o(r) .

Combining this with Theorem 16, we have

Kr(x) +Kr(y)−Kr(x, y) + o(r) = Kr(x)−Kr(x|y) + o(r) .

The theorem follows immediately.
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Corollary 19 (Chain rule for dimension). For all x ∈ Rm and y ∈ Rn,

dim(x) + dim(y|x) ≤ dim(x, y)

≤ dim(x) + Dim(y|x)

≤ Dim(x, y)

≤ Dim(x) + Dim(y|x) .

3.5 Relationships to Relative Kolmogorov Complexity and Dimensions

Recall from Chapter 2 that the Kolmogorov complexity of x ∈ Rm at precision r relative

to another point y ∈ Rn is defined as Ky
r (x) := K

Ay
r (x), where Ay ⊆ N is an oracle that

encodes the binary expansions of y’s coordinates, and dimy(x) and Dimy(x) are defined

accordingly. The following lemma reflects the intuition that oracle access to y is at least as

useful as any bounded-precision estimate for y.

Lemma 20. For each m,n ∈ N there is a constant c ∈ N such that, for all x ∈ Rm, y ∈ Rn,

and r, s ∈ N,

Ky
r (x) ≤ Kr,s(x|y) +K(s) + c .

In particular, Ky
r (x) ≤ Kr(x|y) +K(r) + c.

Proof. Let m,n ∈ N, and let U be the optimal Turing machine fixed for the definition of

conditional Kolmogorov complexity. Let M be an oracle Truing machine that, on input

π ∈ {0, 1}∗ with oracle g : N→ Qn, does the following. If π is of the form π = π1π2, where

U(π1, λ) = t ∈ N, then M simulates U(π2, g(t)). Let c be an optimality constant for the

oracle Turing machine M .

To see that c affirms the lemma, let x ∈ Rm, y ∈ Rn, and r, s ∈ N. Let q = y �

(s+log
√
n), the truncation of the binary expansions of each of y’s coordinates to s+log

√
n

bits to the right of the binary point. Let πs ∈ {0, 1}∗ testify to the value of K(s), and let
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πx testify to the value of K̂r(x|q). Then

q ∈ Qn ∩B2−s(y)

and

My(πsπx) = U(πx, q) ∈ Qm ∩B2−r(x) ,

so

Ky
r (x) ≤ Ky

M,r(x) + c

≤ |πsπx|+ c

= K̂r(x|q) +K(s) + c

≤ Kr,s(x|y) +K(s) + c .

Corollary 21. For all x ∈ Rm and y ∈ Rn,

dimy(x) ≤ dim(x|y) and Dimy(x) ≤ Dim(x|y) .



38

Chapter 4

Points on Random Lines and Plane Kakeya Sets

As a first illustration of the power of the point-to-set principle for Hausdorff dimension

(Theorem 2), we use it to give a new proof of a known theorem in geometric measure

theory.

Definition. A Kakeya set in a Euclidean space Rn is a set K ⊆ Rn that contains a unit

line segment in every direction. That is, for every point z on the unit sphere Sn−1, there

exists t ∈ Rn such that {αz + t : α ∈ (0, 1)} ⊆ K.

Besicovitch [8, 9] proved that Kakeya sets can have Lebesgue measure 0 and asked

whether Kakeya sets in the Euclidean plane can have dimension less than 2 [22]. The

famous Kakeya conjecture asserts a negative answer to this and to the analogous question

in higher dimensions, i.e., states that every Kakeya set in a Euclidean space Rn has Hausdorff

dimension n.1 This conjecture holds trivially for n = 1 and was proven by Davies [22] for

n = 2. A version of the conjecture in finite fields has been proven by Dvir [29]. For Euclidean

spaces of dimension n ≥ 3, it is an important open problem with deep connections to other

problems in analysis [107, 102].

In this chapter we use Theorem 2 to give a new proof of Davies’s theorem. This proof

does not resemble the classical proof, which is not difficult but relies on Marstrand’s pro-

jection theorem [74] and point-line duality. Instead of analyzing the set K globally, our

proof focuses on the information content of a single, judiciously chosen point in K. Given a

1Statements of the Kakeya conjecture vary in the literature. For example, the set is sometimes required
to be compact or Borel, and the dimension used may be Minkowski instead of Hausdorff. Since the Hausdorff
dimension of a set is never greater than its Minkowski dimension, our formulation is at least as strong as
those variations.
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Kakeya set K ⊆ R2 and an oracle A ⊆ N, we first choose a particular line segment L ⊆ K

and a particular point (x,mx + b) ∈ L, where y = mx + b is the equation of the line con-

taining L. One might näıvely expect that for independently random m and x, the point

(x,mx+ b) must be random. In fact, this is not the case: in every direction, there is a line

that contains no random point [65]. Nevertheless, we show that dimA(x,mx + b) ≥ 2. By

our point-to-set principle, this implies that dimH(K) ≥ 2.

Theorem 22 (Davies [22]). Every Kakeya set in R2 has Hausdorff dimension 2.

Our new proof of Theorem 22 uses a relativized version of the following lemma.

Lemma 23. Let m ∈ [0, 1] and b ∈ R. Then for almost every x ∈ [0, 1],

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)

r
≤ dim(x,mx+ b) . (4.0.1)

Proof. We build a program that takes as input a precision level r, an approximation p of x,

an approximation q of mx+b, a program π that will approximate b given an approximation

for m, and a natural number h. In parallel, the program considers each multiple of 2−r in

[0,1] as a possible approximate value u for the slope m, and it checks whether each such

u is consistent with the program’s inputs. If u is close to m, then π(u) will be close to b,

so up + π(u) will be close to mx + b. Any u that satisfies this condition is considered a

“candidate” for approximating m.

Some of these candidates may be “false positives,” in that there can be values of u that

are far from m but for which up + π(u) is still close to mx + b. Thus the program is also

given an input h so that it can choose the correct candidate; it selects the hth candidate that

arises in its execution. We will show that this h is often not large enough to significantly

affect the total input length.

Formally, let M be a Turing machine that runs the following algorithm on input ρπση

whenever U(ρ) = r ∈ N, U(η) = h ∈ N, and U(σ) = (p, q) ∈ Q2:

candidate← 0
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for i = 0, 1, . . . , 2r, in parallel:

ui ← 2−ri

vi ← U(π, ui)

do atomically:

if vi ∈ R and |uip+ vi − q| < 22−r, then candidate← candidate+ 1

if candidate = h, then return (ui, vi, p) and halt

Fix m ∈ [0, 1] and b ∈ R. For each r ∈ N, let mr = 2−rbm · 2rc, and fix πr testifying to

the value of K̂r(b|mr) and σr testifying to the value of Kr(x,mx+ b).

We complete the proof with the following four claims. Intuitively, Claim 1 says that

no point in B2−r(m) gives much less information about b than mr does. Claim 2 states

that there is always some value of h that causes this machine to return the desired output.

Claim 3 says that for almost every x, this value does not grow too quickly with r, and

Claim 4 says that (4.0.1) holds for every such x.

Claim 1. For every r ∈ N, Kr(b|m) = K̂r(b|mr) + o(r).

Proof. Kr(b|m) ≥ K̂r(b|mr) by definition, since mr ∈ B2−r(m).

Let b̂ ∈ B2−r(b) be such that K(b̂|mr) = K̂r(b|mr). Then

|(b̂,mr)− (b,m)| ≤
√

2 · 2−r < 21−r ,

so

K(b̂,mr) ≥ Kr−1(b,m) = Kr(b,m) + o(r) ,

by Corollary 3.9 of [15].

Let µ testify to the value of Kr(m), and let m̂ = U(µ). Then |m̂ − m| < 2−r, so

|m̂ −mr| < 21−r. Thus once m̂ and r have been specified, there are at most four possible

values for mr. Therefore there is a self-delimiting Turing machine that takes as input µ, an

encoding of r of length o(r), and O(1) additional bits and outputs mr. We conclude that
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K(mr) ≤ Kr(m) + o(r). Therefore we have

K̂r(b|mr) = K(b̂|mr)

= K(b̂,mr)−K(mr) + o(r)

≥ Kr(b,m) + o(r)− (Kr(m) + o(r)) + o(r)

= Kr(b|m) + o(r) ,

by Theorem 18.

Claim 2. For each x ∈ [0, 1] and r ∈ N, there exists an h ∈ N such that

M(ρπrσrη) ∈ B21−r(m, b, x) ,

where U(ρ) = r and U(η) = h.

Proof. Fix x ∈ [0, 1] and r ∈ N. It is clear that for some j ∈ {0, 1, . . . , 2r}, |uj −m| < 2−r.

By the definition of Kr(b|m), uj ∈ Q ∩ B2−r(m) implies that U(πr, uj) halts and outputs

vj ∈ Q ∩ B2−r(b). U(σr) ∈ B2−r(x,mx + b) by the definition of σr, so |p − x| < 2−r. It

follows that

|(uj , vj , p)− (m,x, b)| <
√

3(2−r)2 < 21−r .

It remains to show that |uip+vj− q| < 22−r. To do so, we repeatedly apply the triangle

inequality and use the fact that x,m ∈ [0, 1]:

|uip+ vj − q| ≤ |uip+ vj − (mx+ b)|+ |mx+ b− q|

< |ujp−mx+ vj − b|+ 2−r

≤ |ujp−mx|+ |vj − b|+ 2−r

< |ujp− ujx|+ |ujx−mx|+ 21−r

≤ |p− x|+ |uj −m|+ 21−r

< 22−r .
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For every x ∈ [0, 1] and r ∈ N, define h(x, r) to be the minimal h satisfying the conditions

of Claim 2.

Claim 3. For almost every x ∈ [0, 1], log(h(x, r)) = o(r).

Proof. By the countable additivity of Lebesgue measure, it suffices to show for every k ∈ N

that the set

Dk = {x ∈ [0, 1] : ∃ infinitely many r ∈ N such that log(h(x, r)) > r/k}

has Lebesgue measure 0. For each r ∈ N, let Dk,r = {x : h(x, r) > 2r/k}. We now estimate

λ(Dk,r), the Lebesgue measure of Dk,r.

For fixed x and r, the algorithm run by the Turing machine M entails

h(x, r) ≤
∣∣{i : |uip+ vi − q| < 22−r}∣∣ .

For fixed i,

|uip+ vi − q| > |uix− uip|+ |uip+ vi − q| − 2−r

≥ |uix+ vi − q| − 2−r

> |uix+ vi − q|+ |q − (mx+ b)| − 21−r

≥ |uix+ vi − (mx+ b)| − 21−r .

That is,

{
i : |uip+ vi − q| < 22−r} ⊆ {i : |uix+ vi − (mx+ b)| − 21−r < 22−r} ,

so

h(x, r) ≤
∣∣{i : |uix+ vi − (mx+ b)| < 23−r}∣∣ .

For fixed r and i = 0, 1, . . . , 2r, define

Cri = {x ∈ [0, 1] : |uix+ vi − (mx+ b)| < 23−r} ,

For each i, if m = ui, then Cri is either [0, 1] or empty; otherwise, Cri is an interval of length

λ(Cri ) ≤ min

{
23−r

|ui −m|
, 1

}
.
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Notice that for each k = 0, . . . , 2r, there are at most 2 values of i for which

2−rk ≤ |ui −m| < 2−r(k + 1) ,

so we have ∫ 1

0
h(x, r)dx ≤

2r∑
i=0

λ(Cri )

≤ 2 +
2r∑
k=1

2
23−r

2−rk

= 2 + 24
2r∑
k=1

1

k

< r26 .

Thus, as h(x, r) > 2r/k for all x ∈ Dk,r,

λ(Dk,r) <
r26

2r/k
= r26−r/k .

This implies that
∞∑
r=1

λ(Dk,r) <∞ ,

so the Borel-Cantelli Lemma tells us that λ(Dk) = 0.

Claim 4. For every x ∈ [0, 1], if log(h(x, r)) = o(r), then

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)

r
≤ dim(x,mx+ b) .

Proof. For fixed r, Claim 2 gives

Kr−1(m, b, x) ≤ K(ui, vi, p) ≤ KM (ui, vi, p) + cM ,

where cM is an optimality constant for M . Let ρ and η testify to the values of K(r) and

K(h(x, r)), respectively. Then KM (ui, vi, p) ≤ |ρπrσrη|. By our choices of ρ, πr, σr, and η,

|ρπrσrη| = K(r) + K̂r(b|mr) +Kr(x,mx+ b) +K(h(x, r))

= K(r) +Kr(b|m) +Kr(x,mx+ b) +K(h(x, r)) + o(r) ,



44

by Claim 1. By Corollary 3.9 of [15],

lim inf
r→∞

Kr(m, b, x)−Kr(b|m)

r

= lim inf
r→∞

Kr−1(m, b, x)−Kr(b|m) + o(r)

r

≤ lim inf
r→∞

K(r) +Kr(x,mx+ b) +K(h(x, r)) + o(r)

r

≤ lim inf
r→∞

Kr(x,mx+ b)

r
+ lim sup

r→∞

K(r) +K(h(x, r)) + o(r)

r

= dim(x,mx+ b) + lim sup
r→∞

K(h(x, r))

r
.

Applying Observation 10, for some constant c,

lim sup
r→∞

K(h(x, r))

r
≤ lim sup

r→∞

log(1 + h(x, r)) + 2 log log(2 + h(x, r)) + c

r

= lim sup
r→∞

log(h(x, r)) + 2 log log(h(x, r))

r
.

If log(h(x, r)) = o(r), then this is

lim sup
r→∞

o(r) + 2 log(o(r))

r
= 0 .

The lemma follows immediately from Claims 3 and 4.

Proof of Theorem 22. Let K be a Kakeya set in R2. By Theorem 2, there exists an oracle

A such that

dimH(K) = sup
p∈K

dimA(p) .

Let m ∈ [0, 1] such that dimA(m) = 1; such an m exists by Theorem 4.5 of [64]. K

contains a unit line segment L of slope m. Let (x0, y0) be the left endpoint of such a

segment. Let q ∈ Q ∩ [x0, x0 + 1/8], and let L′ be the unit segment of slope m whose left

endpoint is (x0 − q, y0). Let b = y1 + qm, the y-intercept of L′.

By a relativized version of Lemma 23, there is some x ∈ [0, 1/2] such that dimA,m,b(x) =

1 and

lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)

r
≤ dimA(x,mx+ b) .



45

This holds because almost every x ∈ [0, 1/2] is algorithmically random relative to (A,m, b)

and hence satisfies dimA,m,b(x) = 1.

Fix such an x, and notice that (x,mx+ b) ∈ L′. Now, applying a relativized version of

Theorem 18,

dimA(x,mx+ b) ≥ lim inf
r→∞

KA
r (m, b, x)−KA

r (b|m)

r

= lim inf
r→∞

KA
r (m, b, x)−KA

r (b,m) +KA
r (m)

r

= lim inf
r→∞

KA
r (x|b,m) +KA

r (m)

r

≥ lim inf
r→∞

KA
r (x|b,m)

r
+ lim inf

r→∞

KA
r (m)

r
.

By Lemma 20, KA
r (x|b,m) ≥ KA,b,m

r (x) + o(r), so we have

dimA(x,mx+ b) ≥ lim inf
r→∞

KA,b,m
r (x)

r
+ lim inf

r→∞

KA
r (m)

r

= dimA,b,m(x) + dimA(m) ,

which is 2 by our choices of m and x.

By Observation 12,

dimA(x,mx+ b) = dimA(x+ q,mx+ b) .

Hence, there exists a point (x + q,mx + b) ∈ K such that dimA(x + q,mx + b) ≥ 2. By

Theorem 2, the point-to-set principle for Hausdorff dimension, this completes the proof.

It is natural to ask what prevents us from extending this proof to Rn for all n ≥ 2. The

point of failure in a direct extension would be Claim 3 in the proof of Lemma 23. Speaking

informally, the problem is that the total number of candidates may grow as 2(n−1)r, meaning

that log(h(x, r)) could be Ω((n− 2)r) for every x.
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Chapter 5

Dimension Spectra and Generalized Furstenberg Sets

This chapter focuses once again on the effective Hausdorff dimension dim(z) of individual

points z ∈ Rn. Given the pointwise nature of this quantity, it is natural to investigate the

dimension spectrum of a set E ⊆ Rn, i.e., the set {dim(z) : z ∈ E}. Even for apparently

simple sets, the structure of the dimension spectrum may not be obvious, as exemplified

by a longstanding open question originally posed by J. H. Lutz [80]: Is there a straight line

L ⊆ R2 such that every point on L has effective Hausdorff dimension 1?

J. H. Lutz and Weihrauch [68] have shown that the set of points in Rn with dimension

less than 1 is totally disconnected, as is the set of points with dimension greater than n−1.

Turetsky has shown that the set of points in Rn of dimension exactly 1 is connected [104],

which implies that every line in R2 contains a point of dimension 1. As we saw in Chapter 4,

J. H. Lutz and N. Lutz have shown that almost every point on any line with random slope

has dimension 2 [66], despite the surprising fact, shown by the same authors, that there are

lines in every direction that contain no random points [65]. These results give insight into

the dimension spectra of lines, but they also leave open the question of whether or not a

line in R2 can have a singleton dimension spectrum.

We resolve this question in the negative with the following theorem, a general lower

bound on the dimension of points on lines in R2. Our bound depends only on the dimension

of the description (a, b) of the line (i.e., the ordered pair giving the line’s slope and vertical

intercept) and the dimension of the coordinate x relative to (a, b).
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Theorem 24. For all a, b, x ∈ R,

dim(x, ax+ b) ≥ dima,b(x) + min
{

dim(a, b), dima,b(x)
}
.

In particular, for almost every x ∈ R, dim(x, ax+ b) = 1 + min{dim(a, b), 1}.

Since dim(0, b) ≤ min{dim(a, b), 1}, the second statement implies that every line contains

two points whose dimensions differ by at least 1, and therefore that the dimension spectrum

cannot be a singleton.

Furthermore, we apply the point-to-set principle for Hausdorff dimension (Theorem 2)

to derive a new result in classical fractal geometry from the above theorem. Recall from

Chapter 1 that Molter and Rela [81] defined (α, β)-generalized sets of Furstenberg type,

sets in R2 which contain α-dimensional subsets of lines in all of a β-dimensional set of

directions, for some parameters α, β ∈ (0, 1]. They also showed that any such set has

Hausdorff dimension at least α + max{β/2, α + β − 1}. In Theorem 37, we give a lower

bound of α+min{β, α}, which constitutes an improvement whenever α, β < 1 and β/2 < α.

The arguments in this chapter require us to work with binary expansions of reals, so we

begin in Section 5.1 by showing how those representations interact with the definitions of

Chapters 2 and 3. In Section 5.2, we use the results of Section 5.1 to give chain rules that are

slightly more precise than Theorem 18. We discuss and prove our bound on dim(x, ax+ b)

in Section 5.3, and we apply it to generalized Furstenberg sets in Section 5.4.

5.1 Initial Segments versus K-optimizing Rationals

In this section we formalize the relationship between Kr(x) and the initial segment com-

plexity K(x�r). The three lemmas in this section are proved by standard techniques.

For x = (x1, . . . , xn) ∈ Rn and r ∈ N, let x�r = (x1�r, . . . , xn�r), where each xi�r =

2−rb2rxic, the truncation of xi to r bits to the right of the binary point. For r ∈ (0,∞), let

x�r = x�dre.
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Lemma 25. For every m,n ∈ N, there is a constant c such that for all x ∈ Rm, p ∈ Qn,

and r ∈ N,

|K̂r(x|p)−K(x�r | p)| ≤ K(r) + c .

Proof. Let m,n, r ∈ N, x ∈ Rm, and p ∈ Qn. Observe that x�r ∈ B2−r
√
m(x), and therefore

K(x�r | p) ≥ K̂r−log(m)/2(x|p). Thus, by Lemma 13, there exists c1 ∈ N depending only on

m such that

K̂r(x|p) ≤ K(x�r | p) +K(r) + c1 .

For the other direction, observe that for every q ∈ Qn ∩ B2−r(x), we have x�r ∈

B2−r(1+
√
m)(q), and that B2−r(1+

√
m)(q) contains at most (2(1 +

√
m))m r-dyadic points,

i.e., points in the set

Qmt = {2−rz : z ∈ Zm} .

Let M be a Turing machine that, on input (π, p′) ∈ {0, 1}∗ × Qn, does the following. If

π = π1π2π3, with U(π1, p
′) = q ∈ Qm, U(π2) = t ∈ N, and U(π3) = k ∈ N, then M outputs

the (lexicographically) kth point in Qmr ∩B2−t(1+
√
m)(q).

Now let πq testify to K̂r(x|p), let πr testify to K(r), and let q = U(πq, p). There is some

k ≤ (2(1 +
√
m))m such that x�r is the kth point in Qmr ∩ B2−r(1+

√
m)(q); let πk testify to

K(k). Then M(πqπrπk, p) = x�r, so there is some machine constant cM for M such that

K(x�r | p) ≤ `(πq) + `(πr) + `(πk) + cM

= K̂r(x|p) +K(x) +K(k) + cM

It is well known (see, e.g., [28]) that there is some constant c2 such that

K(k) ≤ log k + 2 log log k + c2

≤ m log(2(1 +
√
m)) + 2 log(m log(2(1 +

√
m))) + c2 .

The above value depends only on m, as does cM ; let c3 be their sum. Then

K(x�r | p) ≤ K̂r(x|p) +K(r) + c3 ,
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so c = max{c1, c3} affirms the lemma.

Observing that there exists a constant c0 such that, for all m ∈ N and qm ∈ Q, |K(q)−

K(q|0)| ≤ c0, we also have the following.

Corollary 26. For every m ∈ N, there is a constant c such that for every x ∈ Rm and

r ∈ N,

|Kr(x)−K(x�r)| ≤ K(r) + c .

Corollary 27. For every m,n ∈ N, there is a constant c such that for all x ∈ Rm, y ∈ Rn,

and r, s ∈ N,

|Kr,s(x|y)−K(x�r | y�s)| ≤ K(r) +K(s) + c .

Proof. Let m,n, r, s ∈ N, x ∈ Rm, and y ∈ Rn. Let p ∈ Q2 ∩ B2−s(y) be such that

Kr,s(x|y) = K̂r(x|p). Since y�s ∈ B2−s
√
n(y), we have K̂r(x | y�s) ≥ Kr,s−log(n)/2(x|y).

Thus, by Lemma 14 there is a constant c1 (depending on n) such that K̂r(x | y�s) ≥

Kr,s(x|y) − K(s) − c1. Lemma 25 tells us that there is a constant c2 (depending on m)

such that K(x�r | y�s) ≥ K̂r(x | y�s)−K(r)− c2, so we have

Kr,s(x|y) ≤ K(x�r | y�s) +K(r) +K(s) + c1 + c2 .

For the other direction, we use essentially the same technique as was used in the proof

of Lemma 25, and we describe a Turing machine M ′ that is very similar to the machine M

used above. On every input (π, p′) ∈ {0, 1}∗×Qn such that π = π1π2π3, U(π1, p
′) = q ∈ Q,

U(π2) = t ∈ N, and U(π3) = k ∈ N, M ′ outputs U(π1, q
′), where q′ is the kth point in

Qnt ∩B2−t(1+
√
n)(p

′).

Much as before, let πx testify to K(x�r | y�s), let πs testify to K(s), and let πk testify

to K(k), where y�s is the kth point in Qns ∩B2−t(1+
√
n)(p). Then

M ′(πx, πs, πk) = U(πx, y�s) = x�r ,
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As k ≤ |Qns ∩ B2−t(1+
√
n)(p)| ≤ (2(1 +

√
n))n, there exist constants cM ′ and ck (depending

on n) such that

K(x�r | p) ≤ `(πx) + `(πs) + `(πk) + cM ′

= K(x�r | y�s) +K(s) +K(k) + cM ′

= K(x�r | y�s) +K(s) + ck + cM ′ ,

Applying Lemma 25 again, there is a constant c3 (depending on m) such that K(x�r |p) ≤

K̂r(x|p) +K(r) + c3. We conclude that

K(x�r | y�s) ≤ K(r) +K(s) + ck + cM ′ + c3 ,

therefore c = max{c1 + c2, ck + cM ′ + c3} affirms the lemma.

5.2 Approximate Symmetry of Information

Using the results of Section 5.1, it is straightforward to show that approximate symmetry

of information holds for Kolmogorov complexity in Euclidean spaces.

Lemma 28. For every m,n ∈ N, x ∈ Rm, y ∈ Rn, and r, s ∈ N with r ≥ s,

(i) |Kr(x|y) +Kr(y)−Kr(x, y)
∣∣ ≤ Om,n(log r) +On(log log ‖y‖) +Om,n(1) .

(ii) |Kr,s(x|x) +Ks(x)−Kr(x)| ≤ Om(log r) +Om(log log ‖x‖) +Om(1) .

Proof. For (i), let m,n, r ∈ N, x ∈ Rm, and y ∈ Rn. By Corollary 26,

|Kr(y)−K(y�r)| ≤ K(r) +On(1)

and

|Kr(x, y)−K((x, y)�r)| ≤ K(r) +Om,n(1) .

Notice that K((x, y)�r) = K(x�r, y�r). By Corollary 27,

|Kr(x|y)−K(x�r | y�r)| ≤ 2K(r) +Om,n(1) .
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By the symmetry of information,

K(x�r | y�r,K(y�r)) +K(y�r)−K(x�r, y�r) = Om,n(1) .

It is also true that

|K(x�r | y�r)−K(x�r | y�r,K(y�r))| ≤ K(K(y�r)) +Om,n(1)

≤ logK(y�r) + 2 log logK(y�r) +Om,n(1)

= On(log r) +On(log log ‖y‖) +Om,n(1) .

The second term is necessary because the integer part of y is not included in the truncation

length r. In sum,

|Kr(x|y) +Kr(y)−Kr(x, y)| ≤ 4K(r) +K(K(y�r)) +Om,n(1)

≤ Om,n(log r) +On(log log ‖y‖) +Om,n(1) .

The argument for (ii) is nearly identical; the only additional error is due to

K(x�r, x�s)−K(x�r) ≤ K(s) +Om(1)

≤ log r + 2 log log r +Om(1) ,

as s ≤ r.

5.3 Bounding the Dimension of (x, ax+ b)

In this section we prove Theorem 24, our general bound on the dimension of points on

arbitrary lines in R2. We first restate the theorem in the form we will prove, which is slightly

stronger than its statement above. The dimension of x in the first term is conditioned on—

instead of relative to—(a, b), and even when working relative to an arbitrary oracle A, the

last term dima,b(x) remains unchanged.

Theorem 24. (Restated) For every a, b, x ∈ R and A ⊆ N,

dimA(x, ax+ b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}
.

In particular, for almost every x ∈ R, dim(x, ax+ b) = 1 + min{dim(a, b), 1}.
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To prove this theorem, we proceed in three major steps, which we first sketch at a very

high level here. In Section 5.3.1, we give sufficient conditions, at a given precision r, for a

point (x, ax+ b) to have information content Kr(x, ax+ b) approaching Kr(a, b, x). Notice

that this is essentially the maximum possible value for Kr(x, ax+ b), since an estimate for

(a, b, x) has enough information to estimate (x, ax+ b) to similar precision. Informally, the

conditions are

(i) Kr(a, b) is small.

(ii) If ux+ v = ax+ b, then either Kr(u, v) is large or (u, v) is close to (a, b).

We show in Lemma 29 that when these conditions hold, we can algorithmically estimate

(a, b, x) given an estimate for (x, ax+b). In Section 5.3.2, we give a lower bound, Lemma 31,

on Kr(u, v) in terms of ‖(u, v) − (a, b)‖, essentially showing that condition (ii) holds. In

Section 5.3.3 we construct oracles with some desirable properties. Finally, we prove The-

orem 24 in Section 5.3.4 by showing that these oracles allow (a, b) to satisfy condition (i)

without disrupting condition (ii) or too severely lowering Kr(x, a, b).

5.3.1 Sufficient Conditions for a High-complexity Point

Suppose that x, a, and b satisfy conditions (i) and (ii) above. Then, given an estimate q for

the point (x, ax + b), a machine can estimate (a, b) by simply running all short programs

until some output approximates a pair (u, v) such that the line Lu,v = {(x, ux+ v) : x ∈ R}

passes near q. Since (u, v) was approximated by a short program, it has low information

density and is therefore close to (a, b) by condition (ii). We formalize this intuition in the

following lemma.

Lemma 29. Suppose that a, b, x ∈ R, r ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy r ≥ log(2|a|+

|x|+ 7) + 1 and the following conditions.

(i) Kr(a, b) ≤ (η + ε) r.
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(ii) For every (u, v) ∈ B1(a, b) such that ux+ v = ax+ b,

Kr(u, v) ≥ (η − ε) r + δ · (r − t) ,

whenever t = − log ‖(a, b)− (u, v)‖ ∈ (0, r].

Then for every oracle set A ⊆ N,

KA
r (x, ax+ b) ≥ KA

r (a, b, x)− 4ε

δ
r −K(ε)−K(η)−Oa,b,x(log r) .

To prove this lemma, we need the following geometric observation.

Observation 30. Let a, x, b ∈ R, r ∈ N, and (q1, q2) ∈ B2−r(x, ax+ b).

(i) If (p1, p2) ∈ B2−r(a, b), then |p1q1 + p2 − q2| < 2−r(|p1|+ |q1|+ 3).

(ii) If |p1q1+p2−q2| ≤ 2−r(|p1|+|q1|+3), then there is some (u, v) ∈ B2−r(2|a|+|x|+7)(p1, p2)

such that ax+ b = ux+ v.

Proof. Only the triangle inequality is needed. If (p1, p2) ∈ B2−r(a, b), then

|p1q1 + p2 − q2| ≤ |p1q1 + p2 − (ax+ b)|+ |ax+ b− q2|

< |p1q1 − ax|+ |b− p2|+ 2−r

< |p1q1 − p1x|+ |p1x− ax|+ 21−r

= |p1| · |q1 − x|+ |x| · |p1 − a|+ 21−r

≤ 2−r|p1|+ 2−r|x|+ 21−r

≤ 2−r(|p1|+ |x− q1|+ |q1|+ 2)

< 2−r(|p1|+ |q1|+ 3) .
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If |p1q1 + p2 − q2| < 2−r(|p1|+ |q1|+ 3), then

|p1x+ p2 − (ax+ b)| ≤ |p1| · |x− q1|+ |p1q1 + p2 − (ax+ b)|

≤ 2−r|p1|+ |p1q1 + p2 − q2|+ |q2 − (ax+ b)|

< 2−r|p1|+ 2−r(|p1|+ |q1|+ 3) + 2−r

= 2−r(2|p1|+ |q1|+ 4)

≤ 2−r(2|a|+ |x|+ 7) .

so (u, v) ∈ (p1, ax+ b− p1x) affirms (ii).

Proof of Lemma 29. Let a, b, x, r, δ, ε, η, and A be as described in the lemma statement.

Define an oracle Turing machine M that does the following given oracle A and input

π = π1π2π3π4π5 such that UA(π1) = (q1, q2) ∈ Q2, U(π2) = h ∈ Q2, U(π3) = s ∈ N,

U(π4) = ζ ∈ Q, and U(π5) = ι ∈ Q.

For every program σ ∈ {0, 1}∗ with `(σ) ≤ (ι+ζ)s, in parallel, M simulates U(σ). If one

of the simulations halts with some output (p1, p2) ∈ Q2∩B2−1(h) such that |p1q1 +p2−q2| <

2−s(|p1| + |q1| + 3), then M halts with output (p1, p2, q1). Let cM be a constant for the

description of M .

Now let π1, π2, π3, π4, and π5 testify to KA
r (x, ax+ b), K1(a, b), K(r), K(ε), and K(η),

respectively, and let π = π1π2π3π4π5.

By condition (i), there is some (p̂1, p̂2) ∈ B2−r(a, b) such that K(p̂1, p̂2) ≤ (η + ε)r,

meaning that there is some σ̂ ∈ {0, 1}∗ with `(σ̂) ≤ (η+ ε)r and U(σ̂) = (p̂1, p̂2). A routine

calculation (Observation 30(i)) shows that

|p̂1q1 + p̂2 − q2| < 2−r(|p̂1|+ |q1|+ 3) ,

for every (q1, q2) ∈ B2−r(x, ax + b), so M is guaranteed to halt on input π. Hence, let

(p1, p2, q1) = M(π). Another routine calculation (Observation 30(ii)) shows that there is

some

(u, v) ∈ B2γ−r(p1, p2) ⊆ B2−1(p1, p2) ⊆ B20(a, b)
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such that ux+ v = ax+ b, where γ = log(2|a|+ |x|+ 7).

We have ‖(p1, p2)− (u, v)‖ < 2γ−r and |q1 − x| < 2−r, so

(p1, p2, q1) ∈ B2γ+1−r(u, v, x) .

It follows that

KA
r−γ−1(u, v, x) ≤ `(π1π2π3π4π5) + cM

≤ KA
r (x, ax+ b) +K1(a, b) +K(r) +K(ε) +K(η) + cM

= KA
r (x, ax+ b) +K(ε) +K(η) +Oa,b(log r) .

Rearranging and applying Lemma 1,

KA
r (x, ax+ b) ≥ KA

r (u, v, x)−K(ε)−K(η)−Oa,b,x(log r) . (5.3.1)

By the definition of t, if t > r thenB2−r(u, v, x) ⊆ B21−r(a, b, x), which impliesKA
r (u, v, x) ≥

KA
r−1(a, b, x). Applying Lemma 1 gives

KA
r (u, v, x) ≥ KA

r (a, b, x)−Oa,x(log r) .

Otherwise, when t ≤ r, we have B2−r(u, v, x) ⊆ B21−t(a, b, x), which implies KA
r (u, v, x) ≥

Kt−1(a, b, x), so by Lemma 1,

KA
r (u, v, x) ≥ KA

r (a, b, x)− 2(r − t)−Oa,x(log r) . (5.3.2)

We now bound r − t. By our construction of M and Lemma 1,

(η + ε)r ≥ K(p1, p2)

≥ Kr−γ(u, v)

≥ Kr(u, v)−Oa,x(log r) .

Combining this with condition (ii) in the lemma statement and simplifying yields

r − t ≤ 2ε

δ
r +Oa,x(log r) ,

which, together with (5.3.1) and (5.3.2), gives the desired result.
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5.3.2 Bounding the Complexity of Lines through a Point

In this section we bound the information content of any pair (u, v) such that the line Lu,v

intersects La,b at x. Intuitively, an estimate for (u, v) gives significant information about

(a, b) whenever Lu,v and La,b are nearly coincident. On the other hand, estimates for (a, b)

and (u, v) passing through x together give an estimate of x whose precision is greatest when

La,b and Lu,v are nearly orthogonal. We make this dependence on ‖(a, b) − (u, v)‖ precise

in the following lemma.

Lemma 31. Let a, b, x ∈ R. For all u, v ∈ B1(a, b) such that ux+ v = ax+ b, and for all

r ≥ t := − log ‖(a, b)− (u, v)‖,

Kr(u, v) ≥ Kt(a, b) +Kr−t,r(x|a, b)−Oa,b,x(log r) .

In proving this lemma, we will use the following geometric observation.

Observation 32. If x ∈ R and a, b, p, q ∈ R2 satisfy (p1, p2) ∈ B2−r(a1, a2), (q1, q2) ∈

B2−r(b1, b2), and a1x+ a2 = b1x+ b2, then∣∣∣∣p2 − q2

p1 − q1
− a2 − b2
a1 − b1

∣∣∣∣ < 24+2|x|+t−r ,

whenever t = − log ‖a− b‖ and r ≥ t+ |x|+ 2.

Proof. From a1x+ a2 = b1x+ b1 we have (b2 − a2) = (a1 − b1)x, so

2−t ≤ ‖(a1, a2)− (b1, b2)‖

=
√

(a1 − b1)2(1 + x2)

= |a1 − b1|
√

1 + x2

≤ |a1 − b1|2|x| .
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Applying this fact and the triangle inequality several times,∣∣∣∣p2 − q2

p1 − q1
− a2 − b2
a1 − b1

∣∣∣∣
=

∣∣∣∣(a1 − b1)(p2 − q2)− (a2 − b2)(p1 − q1)

(a1 − b1)(p1 − q1)

∣∣∣∣
≤ |a1 − b1|(|p2 − a2|+ |q2 − b2|) + |a2 − b2|(|p1 − a1|+ |q1 − b1|)

|a1 − b1|(|a1 − b1| − |a1 − p1| − |b1 − q1|)

<
21−t(2−r + 2−r) + 21−t(2−r + 2−r)

2−t−|x| · (2−t−|x| − 2−t−|x|−2 − 2−t−|x|−2)

=
23−t−r

2−2t−2|x|−1

= 24+2|x|+t−r .

Proof. Fix a, b, x ∈ R. By Lemma 28(i), for all (u, v) ∈ B1(a, b) and every r ∈ N,

Kr(u, v) ≥ Kr(u, v|a, b) +Kr(a, b)−Kr(a, b|u, v)−Oa,b(log r) . (5.3.3)

We bound Kr(a, b)−Kr(a, b|u, v) first. Since (u, v) ∈ B2−t(a, b), for every r ≥ t we have

Br(u, v) ⊆ B21−t(a, b), so

Kr(a, b|u, v) ≤ Kr,t−1(a, b|a, b) .

By Lemma 28(ii), then,

Kr(a, b)−Kr(a, b|u, v) ≥ Kr(a, b)−Kr,t−1(a, b|a, b)

≥ Kt−1(a, b)−Oa,b(log r) .

Lemma 1 tells us that

Kt−1(a, b) ≥ Kt(a, b)−O(log t) .

Therefore we have, for every u, v ∈ B1(a, b) and every r ≥ t,

Kr(a, b)−Kr(a, b|u, v) ≥ Kt(a, b)−Oa,b(log r) . (5.3.4)

We now bound the term Kr(u, v|a, b). Let (u, v) ∈ R2 be such that ux+ v = ax+ b. If

t ≤ r < t+ |x|+2, then r− t = Ox(1), so by Lemma 14, Kr−t,r(x|a, b) = Ox(1). In this case,

Kr(u, v|a, b) ≥ Kr−t,r(x|a, b)−Oa,b,x(log r) holds trivially. Hence, assume r ≥ t+ |x|+ 2.
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Let M be a Turing machine such that, whenever q = (q1, q2) ∈ Q2 and U(π, q) = p =

(p1, p2) ∈ Q2, with p1 6= q1,

M(π, q) =
p2 − q2

p1 − q1
.

For each q ∈ B2−r(a, b) ∩Q2, let πq testify to K̂r(u, v|q). Then

U(πq, q) ∈ B2−r(u, v) ∩Q2 .

It follows by a routine calculation (Observation 32) that

|M(πq, q)− x| =
∣∣∣∣p2 − q2

p1 − q1
− b− v
a− u

∣∣∣∣ < 24+2|x|+t−r .

Thus, M(πq, q) ∈ B24+2|x|+t−r(x) ∩Q2. For some constant cM , then,

K̂r−4−2|x|−t(x|q) ≤ `(πq) + cM

= K̂r(u, v|q) + cM .

Taking the maximum of each side over q ∈ B2−r(a, b) ∩Q2 and rearranging,

Kr(u, v|a, b) ≥ Kr−4−2|x|−t,r(x|a, b)− cM .

Then since Lemma 14 implies that

Kr−4−2|x|−t,r(x|a, b) ≥ Kr−t,r(x|a, b)−Ox(log r) ,

we have shown, for every (u, v) satisfying ux+ v = ax+ b and every r ≥ t,

Kr(u, v|a, b) ≥ Kr−t,r(x|a, b)−Oa,b,x(log r) . (5.3.5)

The lemma follows immediately from (5.3.3), (5.3.4), and (5.3.5).

5.3.3 Oracle Construction

To prove Theorem 24, we will show at every precision r that there is an oracle relative

to which the hypotheses of Lemma 29 hold and Kr(a, b, x) is still relatively large. These

oracles will be based on the following lemma.
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Lemma 33. Let n, r ∈ N, z ∈ Rn, and η ∈ Q ∩ [0, dim(z)]. Then there is an oracle

D = D(n, r, z, η) satisfying

(i) For every t ≤ r, KD
t (z) = min{ηr,Kt(z)}+O(log r).

(ii) For every m, t ∈ N and y ∈ Rm, KD
t,r(y|z) = Kt,r(y|z) + O(log r) and Kz,D

t (y) =

Kz
t (y) +O(log r).

Informally, for some s ≤ r such that Ks(z) is near ηr, the oracle D encodes r bits of

z conditioned on s bits of z. Unsurprisingly, access to this oracle lowers Kt(z) to Ks(z)

whenever t ≥ s and has only a negligible effect when t ≤ s, or when r bits of z are already

known.

Our proof of this lemma uses the fact that conditional Kolmogorov complexity is essen-

tially equivalent to Kolmogorov complexity relative to a finite oracle set.1

Observation 34. For every k ∈ N and τ = (τ1, . . . , τk) ∈ {0, 1}k, define the oracle set

C(τ) =
{
j ≤ 2k : τbj/2c = 1

}
∪ {2k + 1} ⊆ N .

Then there is a constant c such that for every σ, τ ∈ {0, 1}∗,

∣∣∣K(σ|τ)−KC(τ)(σ)
∣∣∣ ≤ c .

Proof. Let π ∈ {0, 1}∗ be such that U(π, τ) = σ. Then given the oracle C(τ) and input π,

a machine can discern τ from 2`(τ) + 2 queries to C(τ) and use it to simulate U(π, τ). Let

π ∈ {0, 1}∗ such that UC(τ)(π) = σ. Likewise, given input (π′, τ), a machine can compute

any bit C(τ) queried in a simulation of UC(τ)(π).

Proof of Lemma 33. Let s = max{t ≤ r : Kt−1(z) < ηr}. Observe that

ηr ≤ Ks(z) ≤ ηr +K(s) + c .

1In fact, [28] defines conditional Kolmogorov complexity in terms of a finite oracle, using a construction
similar to the one described here.
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Let σ be the lexicographically first time-minimizing witness to K(z�r | z�s), and let A =

C(σ), as defined in Observation 34.

Suppose s ≤ t ≤ r. Then applying a relativized version of Corollary 26 and Observa-

tion 34,

KA
t (z) ≤ KA

r (z)

≤ KA(z�r) +K(r) +O(1)

≤ K(z�r |σ) +K(r) +O(1) .

There exists a Turing machine M1 that, on input (π, σ), for π ∈ {0, 1}∗, simulates

U(σ, U(π, σ)). If π is a witness to K(z�s |σ), then

M(π, σ) = U(σ, U(π, σ)) = U(σ, z�s) = z�r .

Thus, K(z�r |σ) ≤ K(z�s |σ) + cM1 , where cM1 is a constant for the description length of

M1. We now have

KA
t (z) ≤ K(z�s |σ) +K(r) +O(1)

≤ K(z�s) +K(r)

≤ Ks(z) + 2K(r) +O(1)

≤ ηr + 2K(r) +K(s) +O(1) .

For the other direction, since KA
t (z) ≥ KA

s (z) whenever t ≥ s, it is sufficient to show that
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KA
s (z) ≥ ηr. We use Corollary 26, Observation 34, and the symmetry of information:

KA
s (z) ≥ KA(z�s)−K(s)−O(1)

≥ K(z�s |σ)−K(s)−O(1)

≥ K(z�r |σ)−K(s)−O(1)

≥ K(z�r)−K(σ)−K(s)−O(1)

= K(z�r)−K(z�r | z�s)−K(s)−O(1)

≥ K(z�r, z�s)−K(z�r | z�s,K(z�s))−K(K(z�s))− 2K(s)−O(1)

= K(z�s)−K(K(z�s))− 2K(s)−O(1)

≥ Ks(z)−K(K(z�s))− 3K(s)−O(1)

= Ks(z)−O(log r) .

Since Ks(z) ≥ ηr, property (i) holds in this case.

Now suppose instead that t ≤ s ≤ r. We again use Corollary 26, Observation 34, and
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the symmetry of information.

KA
t (z) =KA(z�t)−K(t)−O(1)

=K(z�t |σ)−K(t)−O(1)

≥K(z�t |σ,K(σ))−K(t)−O(1)

=K(σ | z�t,K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(σ | z�t)−K(K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(σ | z�s, t)−K(K(z�t)) +K(z�t)−K(σ)−K(t)−O(1)

≥K(z�t) +K(σ | z�s,K(z�s))−K(σ)−K(K(z�t))− 2K(t)−O(1)

=K(z�t) +K(z�s |σ,K(σ))−K(z�s)−K(K(z�t))− 2K(t)−O(1)

≥K(z�t) +K(z�s |σ)−K(z�s)−K(K(σ))−K(K(z�t))

− 2K(t)−O(1)

≥Kt(z) +KA
s (z)−Ks(z)−K(K(σ))−K(K(z�t))

− 3K(t)− 2K(s)−O(1)

=Kt(z) +KA
s (z)−Ks(z)−O(log r) .

As we have already shown that KA
s (z) −Ks(z) = O(log r), we conclude that property (i)

holds in this case as well.

For property (ii), we again apply Corollary 26, relativized to (z,A), and Observation 34,

relativized to z, to see that

Kz,A
t (y) ≥ Kz,A(y�t)−K(t)−O(1)

= Kz(y�t |σ)−K(t)−O(1)

≥ Kz(y�t)−Kz(σ)−K(t)−O(1)

≥ Kz
t (y)−Kz(σ)− 2K(t)−O(1)

≥ Kz
t (y)−K(σ | z�r)− 2K(t)−O(1) ,
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where the last inequality is due to Lemma 20. We argue that K(σ | z�r) is at most loga-

rithmic in r.

K(σ | z�r) ≤ K(σ, s, `(σ) | z�r) +O(1)

≤ K(σ | s, `(σ), z�r) +K(s) +K(`(σ)) +O(1)

≤ K(σ | s, `(σ), z�r) +O(log r) .

To see that the first term is constant, define a Turing machineM2 that does the following.

Given input (j, k, x), M2 simulates, for every π ∈ {0, 1}k in parallel, U(π, x�j). It outputs

the first such π whose simulation halts with output x. We defined σ in such a way that

M z
2 (s, `(σ), z�r) = σ, so

K(σ | s, `(σ), z�r) ≤ cM2 ,

where cM2 is a constant for the length of M2’s description. We conclude that K(σ | z�r) =

O(log r), so Kz,A
t (y) ≥ Kz

t (y)−O(log r).

The argument for conditional complexity is essentially identical. By a relativized version

of Corollary 27 and Observation 34,

KA
t,r(y|z) ≥ Kz,A(y�t | z�r)−K(t)−O(1)

= K(y�t | z�r, σ)−K(t)−O(1)

≥ K(y�t | z�r)−K(σ | z�r)−K(t)−O(1)

≥ Kt,r(y|z)−K(σ | z�r)− 2K(t)−O(1)

≥ Kt,r(y|z)−K(σ | z�r)−O(log r) ,

and we have already shown that K(σ | z�r) = O(log r).

5.3.4 Proof of Theorem 24

Theorem 24. For every a, b, x ∈ R and A ⊆ N,

dimA(x, ax+ b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}
.

In particular, for almost every x ∈ R, dim(x, ax+ b) = 1 + min{dim(a, b), 1}.
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Proof. Let a, b, x ∈ R, and treat them as constant for the purposes of asymptotic notation

here. Let A ⊆ N,

H = Q ∩
[
0, dimA(a, b)

]
∩
[
0,dima,b(x)

)
,

and η ∈ H. Let δ = dima,b(x)−η > 0 and ε ∈ Q+. For each r ∈ N, let Dr = D(2, r, (a, b), η),

as defined in Lemma 33. We claim that for every sufficiently large r, the conditions of

Lemma 29, relativized to oracle Dr, are satisfied by these choices of a, b, x, r, δ, ε, η.

Property (i) of Lemma 33 guarantees that KDr
r (a, b) ≤ ηr+O(log r), so condition (i) of

Lemma 29 is satisfied for every sufficiently large r.

To see that condition (ii) of Lemma 29 is also satisfied, let (u, v) ∈ B1(a, b) such that

ax+ b = ux+ v and t = − log ‖(a, b)− (u, v)‖ ≤ r. Then by Lemma 31, relativized to Dr,

we have

KDr
r (u, v) ≥ KDr

t (a, b) +KDr
r−t,r(x|a, b)−O(log r) .

Therefore, by Lemma 33 and Lemma 20,

KDr
r (u, v) ≥ min{ηr,Kt(a, b)}+Kr−t,r(x|a, b)−O(log r)

≥ min{ηr,Kt(a, b)}+Ka,b
r−t(x)−O(log r)

≥ min{ηr, dim(a, b)t− o(t)}+ dima,b(x)(r − t)− o(r)

≥ min{ηr, ηt− o(t)}+ (η + δ)(r − t)− o(r)

= ηt− o(t) + (η + δ)(r − t)− o(r)

= ηr + δ · (r − t)− o(r)

≥ (η − ε)r + δ · (r − t) ,

whenever r is large enough.

For every sufficiently large r, then, the conclusion of Lemma 29 applies here. Thus, for
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constant a, b, ε, and η,

KA
r (x, ax+ b) ≥ KA,Dr

r (x, ax+ b)−O(1)

≥ KA,Dr
r (a, b, x)− 4εr/δ −O(log r)

= KA,Dr
r (x|a, b) +KA,Dr

r (a, b)− 4εr/δ −O(log r)

= KA
r (x|a, b) + ηr − 4εr/δ −O(log r) ,

where the last equality is due to the properties of Dr guaranteed by Lemma 33.

Dividing by r and taking limits inferior,

dimA(x, ax+ b) ≥ lim inf
r→∞

KA
r (x|a, b) + ηr − 4εr/δ −O(log r)

r

= dimA(x|a, b) + η − 4ε

δ
.

Since this holds for every η ∈ H and ε ∈ Q+, we have

dimA(x, ax+ b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}
.

The second part of the theorem statement follows easily, as relative to any given oracle

for (a, b), almost every x ∈ R is Martin-Löf random and therefore has dimension 1. Applying

Corollary 21, then, almost every x ∈ R has dim(x|a, b) ≥ dima,b(x) = 1.

We can now easily answer the motivating question of whether or not there is a line in

R2 on which every point has effective Hausdorff dimension 1.

Corollary 35. For every a, b ∈ R, there exist x, y ∈ R such that

dim(x, ax+ b)− dim(y, ay + b) ≥ 1 .

In particular, there is no line in R2 on which every point has dimension 1.

Proof. Theorem 24 tells us that dim(x, ax + b) ≥ 1 + min{dim(a, b), 1} for almost every

x ∈ R. For y = 0, we have dim(y, ay + b) = dim(b) ≤ min{dim(a, b), 1}.
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There are lines for which the inequality in Corollary 35 is strict. Consider, for example,

a line through the origin whose slope a is random. For every x that is random relative to a,

the point (a, ax) has dimension dim(x) + dim(a) = 2, but the origin itself has dimension 0.

5.4 Generalized Sets of Furstenberg Type

Definition. A set of Furstenberg type with parameter α is a set E ⊆ R2 such that, for every

e ∈ S1 (the unit circle in R2), there is a line `e in the direction e satisfying dimH(E∩`e) ≥ α.

Finding the minimum possible dimension of such a set is an important open problem

with connections to Falconer’s distance set conjecture and to Kakeya sets [55, 107]. The

the best known lower bound is α + max{1/2, α}, and the lower bound cannot be greater

than (3 + α)/2. According to Wolff [107], these results are due, “in all probability,” to

Furstenberg and Katznelson. The study of Furstenberg sets is also related to questions in

dynamical systems about sets that are invariant under maps of the form x 7→ px mod 1.

A major conjecture of Furstenberg on this topic was resolved very recently, independently

by Wu [108] and by Shmerkin [98]. The papers [93, 86] contain surveys of progress on

conjectures about Furstenberg sets.

Molter and Rela introduced a natural generalization of Furstenberg sets, in which the

set of directions may itself have fractal dimension.

Definition (Molter and Rela [81]). A set E ⊆ R2 is in the class Fαβ if there is some set

J ⊆ S1 such that dimH(J) ≥ β and for every e ∈ J , there is a line `e in the direction e

satisfying dimH(E ∩ `e) ≥ α.

They proved the following lower bound on the dimension of such sets.

Theorem 36. (Molter and Rela [81]) For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α+ max

{
β

2
, α+ β − 1

}
.
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We now show that Theorem 24 yields an improvement on this bound whenever α, β < 1

and β/2 < α.

Theorem 37. For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α+ min{β, α} .

Proof. Let α, β ∈ (0, 1], ε ∈ (0, β), and E ∈ Fαβ. Using Theorem 2, let A satisfy

sup
z∈E

dimA(z) = dimH(E) .

and e ∈ S1 satisfy dimA(e) = β− ε > 0. Let `e be a line in direction e such that dimH(`e ∩

E) ≥ α. Since dim(e) > 0, we know e 6∈ {(0, 1), (0,−1)}, so we may let a, b ∈ R be such

that La,b = `e. Notice that dimA(a) = dimA(e) because the mapping e 7→ a is computable

and bi-Lipschitz in some neighborhood of e. Let S = {x : (x, ax+ b) ∈ E}, which is similar

to `e ∩ E, so dimH(S) ≥ α also. We now have

dimH(E) = sup
z∈E

dimA(z)

≥ sup
z∈`e∩E

dimA(z)

= sup
x∈S

dimA(x, ax+ b) .

By Theorem 24 and Corollary 21, both relativized to A,

sup
x∈S

dimA(x, ax+ b) ≥ sup
x∈S

{
dimA,a,b(x) + min{dimA(a, b), dimA(x|a, b)}

}
≥ sup

x∈S

{
dimA,a,b(x) + min{dimA(a, b), dimA,a,b(x)}

}
≥ sup

x∈S
dimA,a,b(x) + min

{
dimA(a), sup

x∈S
dimA,a,b(x)

}
.

Theorem 2 gives

sup
x∈S

dimA,a,b(x) ≥ dimH(S) ≥ α ,

so we have shown, for every ε ∈ (0, β), that dimH(E) ≥ α+ min{β − ε, α}.
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Chapter 6

Intersections and Products of Fractals

In this chapter, we apply algorithmic dimensional techniques to bound the Hausdorff and

packing dimensions of intersections and products of fractals. Most significantly, we ex-

tend the following intersection formula, previously shown to hold when E and F are Borel

sets [30], to arbitrary sets E and F .1

Theorem 38. For all E,F ⊆ Rn, and for almost every z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} ,

where F + z = {x+ z : x ∈ F}.

This approach also yields a simplified proof of the following known product formula for

general sets.

Theorem 39 (Marstrand [74]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) .

Both of these formulas are prominent, fundamental results in fractal geometry that are

taught in typical undergraduate courses on the subject. We also use symmetric arguments

to derive the known corresponding statements about packing dimension [103, 34]. These

results are included here to showcase the versatility of this technique and its ability to

capture the exact duality between Hausdorff and packing dimensions.

1This result is closely related to the Marstrand Slicing Theorem, as stated in the excellent recent book
by Bishop and Peres [12]. The proof given there assumes that a set is Borel, but this assumption was
inadvertently omitted from the theorem statement [11].
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6.1 Intersections of Fractals

In this section we prove Theorem 38. We then use a symmetric argument to prove the

corresponding statement for packing dimension, which is known [34]. For the case where

E,F ⊆ Rn are Borel sets, Theorem 38 was shown in its present form by Falconer [30].

Closely related results, which also place restrictions on E and F , were proven earlier by

Mattila [76, 77] and Kahane [54].

Theorem 38. For all E,F ⊆ Rn, and for almost every z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} , (6.1.1)

where F + z = {x+ z : x ∈ F}.

Proof. Let E,F ⊆ Rn and z ∈ Rn. If E ∩ (F + z) = ∅, then (6.1.1) holds trivially, so

assume that the intersection is nonempty. Theorem 2 guarantees that there is some oracle

set A ⊆ N satisfying

dimH(E × F ) = sup
(x,y)∈E×F

dimA(x, y) . (6.1.2)

It also guarantees, given any ε > 0, that there is an x ∈ E ∩ (F + z) such that

dimA,z(x) ≥ dimH(E ∩ (F + z))− ε . (6.1.3)

Since (x, x− z) ∈ E × F , we have

dimH(E × F ) ≥ dimA(x, x− z)

= dimA(x, z)

≥ dimA(z) + dimA(x|z)

≥ dimA(z) + dimA,z(x)

≥ dimA(z) + dimH(E ∩ (F + z))− ε .

The above lines follow from (6.1.2), Lemma 8, Corollary 19, Corollary 21, and (6.1.3),

respectively. Letting ε→ 0, we have

dimH(E ∩ (F + z)) ≤ dimH(E × F )− dimA(z) .
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Figure 6.1: Let E and F each be Koch snowflakes, which have Hausdorff dimension log3 4 ≈
1.26. Left: For almost all rigid motions σ, the intersection E∩σ(F ) has Hausdorff dimension
at most 2 log3 4 − 2 ≈ 0.52. Right: For a measure zero set of rigid motions, the Hausdorff
dimension of the intersection may be as large as log3 4. Note that Koch curves are Borel
sets, so the new generality given by Theorem 38 and Corollary 40 is not required for this
example.

Thus, (6.1.1) holds whenever dimA(z) = n. In particular, it holds when z is Martin-Löf

random relative to A, i.e., for Lebesgue almost every z ∈ Rn [62, 75].

For the case that E and F are Borel sets, Falconer [32] notes that the intersection

formula is readily extended to rigid motions and similarities. The same argument applies

in the general case, so Theorem 38 has the following corollary.

Corollary 40. Let E,F ⊆ Rn. Let G be the group of rigid motions or the group of

similarities on Rn. Then, for almost all σ ∈ G,

dimH(E ∩ σ(F )) ≤ max{0, dimH(E × F )− n} . (6.1.4)

Proof (Following Falconer [32]). For all rotations (and all scalings) of F , Theorem 38 tells

us that (6.1.4) holds for almost all translations. Thus, (6.1.4) holds for almost all rigid

motions and almost all similarities.

A corresponding intersection formula for packing dimension has been shown for arbitrary

E,F ⊆ Rn by Falconer [34]. That proof is not difficult or long, but an algorithmic dimen-

sional proof is presented here as an instance where this technique applies symmetrically to

both Hausdorff and packing dimension.

Theorem 41 (Falconer [34]). For all E,F ⊆ Rn, and for almost every z ∈ Rn,

dimP (E ∩ (F + z)) ≤ max{0,dimP (E × F )− n} .
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Proof. As in Theorem 38, we may assume that the intersection is nonempty. Apply Theo-

rem 3 to choose an oracle set B ⊆ N such that

dimP (E × F ) = sup
(x,y)∈E×F

DimB(x, y) (6.1.5)

and, given ε > 0, a point y ∈ E ∩ (F + z) satisfying

DimB,z(y) ≥ dimP (E ∩ (F + z))− ε . (6.1.6)

Then (y, y − z) ∈ E × F , and we may proceed much as before:

dimP (E × F ) ≥ DimB(y, y − z)

= DimB(y, z)

≥ dimB(z) + DimB(y|z)

≥ dimB(z) + DimB,z(y)

≥ dimB(z) + dimP (E ∩ (F + z))− ε .

These lines follow from (6.1.5), Lemma 8, Corollary 19, Corollary 21, and (6.1.6). Again,

dimB(z) = n for almost every z ∈ Rn, so this completes the proof.

6.2 Products of Fractals

In this section we prove four known product inequalities for fractal dimensions. Inequal-

ity (6.2.1), which was stated in the introduction as Theorem 39, is due to Marstrand [74].

When E and F are Borel sets, it is simple to prove (6.2.1) by using Frostman’s Lemma,

but the argument for general sets using net measures is considerably more difficult [78, 33].

The other three inequalities are due to Tricot [103]. Reference [78] gives a more detailed

account of this history.
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Theorem 42 (Marstrand [74], Tricot [103]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) (6.2.1)

≤ dimH(E) + dimP (F ) (6.2.2)

≤ dimP (E × F ) (6.2.3)

≤ dimP (E) + dimP (F ) . (6.2.4)

Notice the superficial resemblance of this theorem to Corollary 19, the chain rule for

dimension. This similarity is not a coincidence; each inequality in Theorem 42 follows from

the corresponding line in Corollary 19. The arguments given here for (6.2.1–6.2.4) are each

similar in length to the proof of (6.2.1) for Borel sets. That is, they are quite short.

Proof. Theorem 2 guarantees, for every ε > 0, that there exist an oracle set A ⊆ N and

points x ∈ E and y ∈ F such that

dimH(E × F ) = sup
z∈E×F

dimA(z) , (6.2.5)

dimA(x) ≥ dimH(E)− ε ,

dimA,x(y) ≥ dimH(F )− ε .

Then by (6.2.5), Corollary 19 relative to A, and Corollary 21 relative to A, we have

dimH(E × F ) ≥ dimA(x, y)

≥ dimA(x) + dimA(y|x)

≥ dimA(x) + dimA,x(y)

≥ dimH(E) + dimH(F )− 2ε ,

by our choice of x and y. Since ε > 0 was arbitrary, we conclude that (6.2.1) holds.

For (6.2.2), let ε > 0 and use the point-to-set principles for Hausdorff and packing
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dimension to find B,C ⊆ N, u ∈ E, and v ∈ F such that

dimH(E) = sup
x∈E

dimB(x) ,

dimP (F ) = sup
y∈E

DimC(y) ,

dimB,C(u, v) ≥ dimH(E × F )− ε .

Since B and C minimize their respective expressions, we also have

dimH(E) = sup
x∈E

dimB,C(x) ,

dimP (F ) = sup
y∈E

DimB,C(y) .

Thus, we can apply Corollary 19 relative to B,C, after first noticing that conditioning on

another point never increases dimension.

dimH(E) + dimP (F ) ≥ dimB,C(u) + DimB,C(v)

≥ dimB,C(u|v) + DimB,C(v)

≥ dimB,C(u, v)

≥ dimH(E × F )− ε .

Again, ε was arbitrary, so (6.2.2) holds.

For (6.2.3) and (6.2.4), we use essentially the same arguments as above. By Theorem 3,

there are A′, B′ ⊆ N, x′, u′ ∈ E, y′, v′ ∈ F , and ε > 0 that satisfy

dimP (E × F ) = sup
z∈E×F

DimA′(z) ,

dimH(E) = sup
z∈E

DimB′(z) ,

dimA′(x′) ≥ dimH(E)− ε ,

DimA′,x′(y′) ≥ dimP (F )− ε ,

DimB′,C(u′, v′) ≥ dimP (E × F )− ε ,



74

where x and C are as above. We once again apply relativized versions of Corollary 19 and

Corollary 21:

dimP (E) + dimP (F ) ≥ DimB′,C(u′) + DimB′,C(v′)

≥ DimB′,C(u′|v′) + DimB′,C(v′)

≥ DimB′,C(u′, v′)

≥ dimP (E × F )− ε

≥ DimA′(x′, y′)− ε

≥ dimA′(x′) + DimA′(y′|x′)− ε

≥ dimA′(x′) + DimA′,x′(y′)− ε

≥ dimH(E) + dimP (F )− 3ε .

Letting ε→ 0 completes the proof.
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Chapter 7

Asynchronous Dynamics

We now turn our attention to the convergence of dynamics in distributed environments,

with an emphasis on game dynamics, in which individual agents have underlying incentives.

The notion of self stabilization to a “legitimate” state in a distributed system parallels that

of convergence to an equilibrium in a game. The foci, however, are very different. In game

theory, there is extensive research on dynamics that result from what is perceived as natural

strategic decision making (e.g., best- or better-response dynamics, fictitious play, or regret

minimization). Even simple heuristics that require little information or computational re-

sources can yield sophisticated behavior, such as the convergence of best-response dynamics

to equilibrium points (see [43] and references therein). These positive results for simple game

dynamics are, with few exceptions (see below), based on the sometimes implicit and often

unrealistic premise of a controlled environment in which actions are synchronous and co-

ordinated. Distributed computing research emphasizes the environmental uncertainty that

results from decentralization, but has no notion of “natural” rules of behavior. It has long

been known that environmental uncertainty—in the form of both asynchrony [36, 72] and

arbitrary initialization [26]—introduces substantial difficulties for protocol termination in

distributed systems. Our work bridges the gap between these two approaches by initiating

the study of game dynamics in distributed computing settings. Before describing our model,

we discuss the relationship of this work to several other areas.

Algorithmic game theory. Since our work draws on both game theory and computer

science, it may be considered part of the broader research program of algorithmic game

theory (AGT), which merges concepts and ideas from those two fields [85]. Three main
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areas of study in AGT have been algorithmic mechanism design, which applies concepts

from computer science to economic mechanism design [84]; the “price of anarchy,” which

describes the efficiency of equilibria and draws on approximability research [58]; and al-

gorithmic and complexity research on the computation of equilibria [87]. Analyzing the

computational power of learning dynamics in games has been of particular interest (see,

e.g., [21, 56, 6, 88]). Our work creates another link between game theory and computer sci-

ence by drawing on two previously disjoint areas, self-stabilization in distributed computing

theory and game dynamics, to explore broader classes of dynamics operating in adversarial

distributed environments.

Adaptive heuristics. Much work in game theory and economics deals with adaptive

heuristics (see [43] and references therein). Generally speaking, this long line of research

explores the “convergence” of simple and myopic rules of behavior (e.g., best-response,

fictitious-play, or no-regret dynamics) to an “equilibrium”. However, with few exceptions

(see below), such analysis has so far primarily concentrated on synchronous environments in

which steps take place simultaneously or in some other predetermined order. In this work,

we explore dynamics of this type in asynchronous environments, which are more realistic

for many applications.

Game-theoretic work on asynchronous environments. Some game-theoretic work on

repeated games considers “asynchronous moves.” Often, as in [73], this asynchrony merely

indicates that players are not all activated at each time step, and thus is used to describe

environments where only one player is activated at a time (“alternating moves”), or where

there is a probability distribution that determines which player(s) are activated at each

timestep. Other work does not explore the behavior of dynamics, but has other research

goals (e.g., characterizing equilibria, establishing folk theorems); see [59], [109], among

others, and references therein. To the best of our knowledge, we are the first to study the

effects of asynchrony (in the broad distributed computing sense) on the convergence of game

dynamics to equilibria.
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Fault-tolerant computation. We use ideas and techniques from work in distributed com-

puting on protocol termination in asynchronous computational environments where nodes

and communication channels are possibly faulty. Protocol termination in such environ-

ments, initially motivated by multi-processor computer architectures, has been extensively

studied in the past three decades [36, 7, 24, 13, 49, 95], as nicely surveyed in [72, 35]. Fis-

cher, Lynch and Paterson [36] showed, in a landmark paper, that a broad class of failure-

resilient consensus protocols cannot provably terminate. Intuitively, the risk of protocol

non-termination in that work stems from the possibility of failures; a computational node

cannot tell whether another node is silent due to a failure or is simply taking a long time

to react. Our non-convergence result, by contrast, applies to failure-free environments. In

game-theoretic work that incorporated fault tolerance concepts, [1] studied equilibria that

are robust to defection and collusion.

Self stabilization. The concept of self stabilization is fundamental to distributed com-

puting and dates back to [23] (see [26] and references therein). Convergence of dynamics

to an “equilibrium” in our model can be viewed as the self stabilization of such dynamics

(where the “equilibrium points” are the legitimate configurations). Our formulation draws

ideas from work in distributed computing (e.g., Burns’ distributed daemon model [14]) and

in networking research [38] on self stabilization.

7.1 Asynchronous Dynamic Interaction

In this section we present our model of asynchronous dynamic interaction. Intuitively, an

interaction system consists of a collection of computational nodes, each capable of selecting

actions that are visible to the other nodes. The state of the system at any time consists

of each node’s current action. Each node has a deterministic reaction function that maps

system histories to actions. At every discrete timestep, each node activated by a schedule

simultaneously applies its deterministic reaction function to select a new action, which is

immediately visible to all other nodes.
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Definition. An interaction system is characterized by a tuple (n,A, f):

• The system has n ∈ Z+ computational nodes, labeled 1, . . . , n.

• A = A1 × . . .× An, where each Ai is a finite set called the action space of node i. A

is called the state space of the system, and a state is an n-tuple a = (a1, . . . , an) ∈ A.

A history of the system is a nonempty finite sequence of states, H ∈ A`, for some

` ∈ Z+. The set of all histories is A+ =
⋃
`∈Z+

A`.

• f : A+ → A is a function given by f(H) = (f1(H), . . . , fn(H)), where fi : A+ → Ai is

called node i’s reaction function.

We now describe the asynchronous dynamics of our model, i.e., the ways that a system’s

state can evolve due to interactions between nodes. Informally, there is some initial state,

and, in each discrete time step 1, 2, 3, . . ., a subset of the nodes are activated according to

a schedule. The nodes that are activated in a given timestep react simultaneously; each

applies its reaction function to the current state to choose a new action. This updated

action is immediately observable to all other nodes.1

Definition. Let S ⊆ [n] be a set of nodes. Define the function fS : A+ → A by fS(H) =

(f̂1(H), . . . , f̂n(H)), where each function f̂i : A+ → Ai is given by

f̂i(a
0, . . . ,a`) =

 fi(a
0, . . . ,a`) if i ∈ S

a`i otherwise .

A schedule is a function σ : Z+ → 2[n] that maps each t to a (possibly empty) subset of the

computational nodes.2 If i ∈ σ(t), then we say that node i is activated at time t.

Since the reaction functions are deterministic, an initial history and a schedule com-

pletely determine the resulting infinite state sequence; we call these state sequences trajec-

tories.

1This model has “perfect monitoring.” While this is clearly unrealistic in some important real-life con-
texts, this restriction only strengthens our non-convergence result.

2[n] denotes {1, . . . , n}, and for any set S, 2S is the set of all subsets of S.
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Definition. Let H = (a0, . . . ,a`) ∈ A+ be a history, and let σ be a schedule. The (H,σ)-

trajectory of the system is the infinite sequence a0,a1,a2, . . . extending H such that for

every t > `,

at = fσ(t)(a
0, . . . ,at−1)

The history (a0, . . . ,at−1) is the length-t prefix of the (H,σ)-trajectory.

7.1.1 Fairness and Convergence

The main theorem of this chapter is an impossibility result, in which we show that an

adversarially chosen initial history and schedule can prevent desirable system behavior.

Notice that an arbitrary schedule might never allow some or all nodes to react, or might

stop activating them after some time. Hence, we limit this adversarial power (thereby

strengthening our impossibility result) by restricting our attention to fair schedules, which

never permanently stop activating any node.

Definition. A fair schedule is a schedule σ that activates each node infinitely many times,

i.e., for each i ∈ [n], the set {t ∈ Z+ : i ∈ σ(t)} is infinite. A fair trajectory is one that is

the (H,σ)-trajectory for some history H and some fair schedule σ.

We are especially interested in whether a system’s fair trajectories converge, eventually

remaining at a single state forever.

Definition. A trajectory a0,a1,a2, . . . converges to a state b if there exists some T ∈ Z+

such that, for all t > T , at = b. The system is convergent if every fair trajectory converges.

A state b is a limit state of the system if some fair trajectory converges to b.

Note that it is possible for a trajectory to visit a limit state without converging to

that state, meaning that limit states are not necessarily “stable” or “absorbing.” They

may, however, have basins of attraction, in the sense that reaching certain histories might

guarantee convergence to a given limit state.
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Definition. A history H is committed to a limit state b if, for every fair schedule σ, the

(H,σ)-trajectory converges to b. An uncommitted history is one that is not committed to

any state.

7.1.2 Informational Restrictions on Reaction Functions

This framework allows for very powerful reaction functions. We now present several possible

restrictions on the information they may use. These are illustrated in Fig. 7.1.

Our non-convergence theorem concerns systems in which the reaction functions are self-

independent, meaning that each node ignores its own past and present actions when reacting

to the system’s state. In discussing self independence, we use the notation

A−i = A1 × . . .×Ai−1 ×Ai+1 × . . .×An ,

the state space of the system when i is ignored. Similarly, for a state a, a−i ∈ A−i de-

notes (a1, . . . , ai−1, ai+1, . . . , an), and given a history H = (a0, . . . ,a`−1), we write H−i for

(a0
−i, . . . ,a

`−1
−i ). Using this notation, we formally define self independence.

Definition. A reaction function fi is self-independent if there exists a function gi : A+
−i →

Ai such that fi(H) = gi(H−i) for every history H ∈ A+.

A reaction function has bounded recall if it only depends on recent states.

Definition. Given k ∈ Z+ and a history H = (a0, . . . ,at−1) ∈ At with t ≥ k, the k-history

at H is H|k := (at−k, . . . ,at−1), the k-tuple of most recent states. A reaction function fi

has k-recall if it only depends on the k-history and the time counter, i.e., there exists a

function gi : Ak × Z+ → Ai such that fi(H) = gi(H|k, t) for every time t ≥ k and history

H ∈ At.

We sometimes slightly abuse notation by referring to the restricted-domain function gi,

rather than fi, as the node’s reaction function.

A bounded-recall reaction function is stationary if it also ignores the time counter.
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Definition. We say that a k-recall reaction function is stationary if the time counter t is

of no importance. That is, if there exists a function gi : Ak → Ai such that fi(H) = gi(H|k)

for every time t ≥ k and history H ∈ At. A reaction function fi is historyless if fi is both

1-recall and stationary. That is, if fi only depends on the nodes’ most recent actions.

While seemingly very restricted, historyless dynamics capture the prominent and ex-

tensively studied best-response dynamics from game theory (as we discuss in Section 7.3).

Historyless dynamics also encompass a host of other applications of interest, ranging from

Internet protocols to the adoption of technologies in social network.
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Figure 7.1: Shading shows the information about past and current actions available to node
3 at time t given different reaction function restrictions. Left: self-independent. Node 3 can
see the entire record of other nodes’ past actions, but not its own. The length of this record
gives the current timestamp t. Center: 2-recall. Node 3 can see only the two most recent
states. Unless the reaction function is stationary, it may also use the value of the current
timestamp. Right: self-independent and historyless. Node 3 can only see other nodes’ most
recent actions and cannot even see the value of the current timestamp.

7.2 General Non-convergence Result

We now present a general impossibility result for convergence of nodes’ actions under

bounded-recall dynamics in asynchronous, distributed computational environments.

Theorem 43. In an interaction system where every reaction function is self-independent

and has bounded recall, the existence of multiple limit states implies that the system is not

convergent.

We prove this theorem below, using a valency argument. We then show that the hy-

potheses of Theorem 43 are necessary and discuss connections of this work to the famous

result of Fischer, et al. [36] on the impossibility of resilient consensus.
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Note that system convergence is closely related to self stabilization, which is a guarantee

that the system will reach and remaining within a set of legitimate states. For a set L ⊆ A,

we say that a system self-stabilizes to L if for every fair trajectory a0,a1,a2, . . ., there is

some T ∈ Z+ such that, for every t > T , at ∈ L. Theorem 43 precludes self stabilization to

any set containing only committed states.

In proving our non-convergence result, we use the following sequence of lemmas. We first

show in Lemma 44 that it is sufficient to consider systems with 1-recall reaction functions.

Then in Lemma 45, we argue that such a system can be convergent only if every fair trajec-

tory has no committed prefix. To show the existence of a fair trajectory with no committed

prefix, we show that in any such system, uncommitted histories exist (Lemma 47), and

can be extended to a longer uncommitted histories in a way that activates any given node

(Lemma 48). This means that committed prefixes can be avoided forever on a trajectory

that activates every node infinitely many times, i.e., a fair trajectory.

Lemma 44. If there exists a convergent interaction system with multiple limit states and

bounded-recall, self-independent reaction functions, then there is also a convergent interac-

tion system with multiple limit states and 1-recall, self-independent reaction functions.

Proof. Assume that Γ = (n,A, f) is a convergent system with self-independent, k-recall

reaction functions and multiple limit states, for some k ∈ Z+. Consider a 1-recall system

Γ′ = (n,A′, f ′), where A′ = Ak1 × . . .×Akn and f ′ : A′ × Z+ → A′ is given by

f ′i((a
1
1, . . . , a

k
1), . . . , (a1

n, . . . , a
k
n), t) =

[
fi((a

1
1, . . . , a

1
n), . . . , (ak1, . . . , a

k
n), kt)

]k
.

Informally, a state in Γ′ is the transpose of a k-history for Γ. The reaction function f ′i

applies fi to this transpose and repeats the output k times. Notice that Γ′ has self-

independent reaction functions. Furthermore, if (a1, . . . , an) is a limit state of Γ, then

((a1, . . . , a1), . . . , (an, . . . , an)) is a limit state of Γ′, so Γ′ also has multiple limit states.

Let σ : Z+ → 2[n] be a fair schedule, and let H ∈ (Ak)` be a history of Γ′ for some
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` ∈ Z+. Define the schedule σ′ : Z+ → 2[n] by

σ′(t) =

 σ(t/k) t/k ∈ Z+

∅ otherwise .

Notice that σ′ is also fair. Let H ′ ∈ Ak` be the history for Γ formed by concatenating the

k-tuples in H. It is easy to see that the (H,σ)-trajectory of Γ′ converges if and only if the

(H ′, σ′)-trajectory of Γ converges. Since we assumed that Γ is convergent, it follows that Γ′

is also.

Lemma 45. Let Γ be a convergent system with self-independent, 1-recall reaction functions.

Then every fair trajectory in Γ has a committed finite prefix.

Proof. Assume there exist some history H and fair schedule σ for Γ such that the (H,σ)-

trajectory converges to a state a = (a1, . . . , an) but has no committed finite prefix. We

will construct a fair schedule σ′ such that the (H,σ′)-trajectory does not converge, giving

a contradiction.

Let u0,u1,u2, . . . be the (H,σ)-trajectory. Then there is some t0 ∈ Z+ such that ut = a

for all t ≥ t0. The fairness of σ implies that there is some t1 > t0 such that every node is

activated by σ between t0 and t1, i.e.,
⋃
t0<t<t1

σ(t) = [n]. By assumption, (u0, . . . ,ut1) is

not committed to a, which means there is some time t2 ≥ t1 and node i ∈ [n] such that

fi(a, t2) 6= ai. The fairness of σ also implies that there is some t3 > t2 such that i ∈ σ(t3).

Since t3 ≥ t0, we must have fi(a, t3) = ai. By self-independence, then, fi(a
′, t3) = ai for all

a′ such that a′−i = a−i.

We use these facts to iteratively build our fair schedule σ′. In the (H,σ′)-trajectory

v0,v1,v2, . . ., the system will repeatedly enter and exit the state a. First, let σ′(t) = σ(t)

for all 1 ≤ t ≤ t0, so that vt0 = a. Define σ′(t) on values t0 < t ≤ t2 as follows.

σ′(t) =

 σ(t) t0 < t < t2

{i} t2 ≤ t ≤ t3 .
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By our choices of t0, t2, and t3, this partial schedule activates every node and induces a

segment

(vt0+1, . . . ,vt3)

of the (H,σ′)-trajectory such that vt = a whenever t0 < t < t2 or t = t3, but vt2 6= a.

Now set t0 = t3, select new t1, t2, i, and t3 relative to this t0, and iterate this process

to define σ′(t) for all values t ∈ Z+. Notice that σ′ is fair and that the (H,σ′)-trajectory

v0,v1,v2, . . . does not converge, which contradicts the assumption that the system is conver-

gent. Therefore every fair trajectory in the system must have a committed finite prefix.

We will use the following consequence of self independence in the course of proving

Lemmas 47 and 48.

Observation 46. Let H ′ = (a0, . . . ,a`) and H ′ = (b0, . . . ,b`) be committed histories in

an system with self-independent, 1-recall reaction functions. If a`−i = b`−i for some i ∈ [n],

then H and H ′ are committed to the same limit state.

Proof. Let H = (a0, . . . ,a`) and H ′ = (b0, . . . ,b`) be committed histories such that, for

some i ∈ [n], a`−i = b`−i, as in Fig. 7.2. Let σ be any fair schedule such that σ(`+ 1) = {i},

and consider the (H,σ)- and (H ′, σ)-trajectories. When node i is activated, it will choose

the same action regardless of whether the history is H or H ′, by self independence. As the

reaction functions have 1-recall, this means that both these trajectories are identical after

time `+1. Thus, since H and H ′ are both committed, they must be committed to the same

limit state.

a` = (a`1, . . . , a
`
i , . . . , a

`
n)

b` = (a`1, . . . , b
`
i , . . . , a

`
n)

{i}

{i}

Figure 7.2: Activating {i} from H = (a0, . . . ,a`) or H ′ = (b0, . . . ,b`) will have the same
outcome.



86

Lemma 47. Every interaction system with 1-recall, self-independent reaction functions and

more than one limit state has at least one uncommitted history.

Proof. Suppose that every history of length one is committed, and consider two such his-

tories (a) = ((a1, . . . , an)) and (b) = ((b1, . . . , bn)). Observation 46 implies that, for all

1 ≤ i < n, the histories ((a1, . . . , ai−1, bi, . . . , bn)) and ((a1, . . . , ai, bi+1, . . . , bn)) are com-

mitted to the same limit state, and therefore that a and b are committed to the same limit

state. Thus, all histories of length one must be committed to the same limit state, and it

follows that all histories must be committed to the same limit state. This contradicts the

system having more than one limit state.

Lemma 48. Let (n,A, f) be an interaction system with self-independent, 1-recall reaction

functions and more than one limit state, let H = (a0, . . . ,a`−1) ∈ A` be an uncommitted

history, for some ` ∈ Z+, and let i ∈ [n] be a node. Then there exist some t ≥ ` and schedule

σ such that i ∈ σ(t) and the length-(t+ 1) prefix of the (H,σ)-trajectory is uncommitted.

Proof. Assume for contradiction that no such t and σ exist. Consider all histories that result

from activating a set containing i at history H. By assumption, each of these histories is

committed. Notice that for all S ⊆ [n] and j ∈ [n], the states fS(H) and fS∪{j}(H) can

only differ at coordinate j. Hence, we can iteratively apply Observation 46, much as in the

proof of Lemma 47, to see that all these histories must be committed to the same limit

state, which we call b.

Let σ be any fair schedule, and let a0,a1, . . . be the (H,σ)-trajectory. For each t ∈ Z+,

let Ht = (a0, . . . ,at), and notice that H`−1 = H. For each t ≥ `, let vt = fσ(t)∪{i}(H
t−1),

and let It = (Ht−1,vt). Since i ∈ σ(t)∪ {i}, our assumption implies that each history It is

committed. Let wt = f{i}(H
t−1), and note that by self independence, f{i}(I

t−1) = wt also,

as illustrated in Fig. 7.3. Let J t = (It−1,wt).

We now show by induction on t that, for every t ≥ `, the history It is committed to b.

This holds for t = ` by our definition of b. Fix t > `, and suppose that It−1 is committed to
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b. Then J t is also committed to b. Consider all histories that result from activating a set

containing i at history Ht−1. As before, our assumption implies that all these histories are

committed, and iterative application of Observation 46 shows that they are all committed

to the same limit state. In particular, It must be committed to the same limit state as J t,

namely b.

Since σ is a fair schedule, there is some time t for which i ∈ σ(t). For this t, we have

Ht = It, so Ht is committed to b. Thus for every fair schedule σ, the (H,σ)-trajectory

converges to b, contradicting the assumption that H is uncommitted. We conclude that

our assumption was false and that the lemma holds.

H H`

J `+1I`

H`+1

J `+2I`+1

. . .

σ(`)

σ(`) ∪ {i} {i}

{i}

σ(`+ 1)

σ(`+ 1) ∪ {i} {i}

{i}

Figure 7.3: All histories in the bottom row are committed to the same limit state b.

Proof of Theorem 43. It follows from Lemmas 47 and 48 that, in every system with 1-recall,

self-independent reaction functions and multiple limit states, it is be possible to activate

each node infinitely many times without ever reaching a committed history. This means

that every such system has a fair trajectory with no committed prefix. By Lemma 45,

this implies that no such system may be convergent. The theorem follows immediately by

Lemma 44.3

3Although our primary focus is on discrete state spaces, we note that in continuous metric spaces, the
standard notion of convergence only requires indefinite approach; the limit point might never be reached.
Accordingly, given a metric d on an infinite state space A, one could modify Definition 7.1.1 to say that a
trajectory a0,a1,a2, . . . converges to a state b if for every ε > 0 there exists some T ∈ Z+ such that, for all
t > T , d(at,b) < ε. If we require every limit state to have a committed neighborhood, then our proof of
Theorem 43 still holds in this setting.
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7.2.1 Tightness of Theorem 43

The following two examples demonstrate that the statement of Theorem 43 does not hold

if either the self-independence restriction or the bounded-recall restriction is removed.

Example. The self-independence restriction cannot be removed.

Consider a system with one node, with action space {α, β}. When activated, the node

always re-selects its own current action. Observe that the system is convergent despite

having two limit states.

Example. The bounded-recall restriction cannot be removed.

Consider a system with two nodes, 1 and 2, each with the action space {α, β}. The self-

independent reaction functions of the nodes are as follows: node 2 always chooses node 1’s

action; node 1 will choose β if node 2’s action changed from α to β in the past, and α

otherwise. Observe that node 1’s reaction function has unbounded recall: it depends on the

entire history of interaction. We make the observations that the system is convergent and

has two limit states. Observe that if node 1 chooses β at some point in time due to the fact

that node 2’s action changed from α to β, then it will continue to do so thereafter; if, on

the other hand, 1 never does so, then from some point in time onward, node 1’s action is

constantly α. In both cases, node 2 will have the same action as node 1 eventually, and thus

convergence to one of the two limit states, (α, α) and (β, β), is guaranteed. Hence, two limit

states exist and the system is convergent nonetheless. Notice also that node 1’s reaction

functions requires only two states, so the bounded-recall restriction cannot be replaced by

a memory restriction.

7.2.2 Connection to Consensus Protocols

We now discuss the relationship of our non-convergence result (Theorem 43) to the sem-

inal result of Fischer et al. on the impossibility of fault-resilient consensus protocols [36].

The consensus problem is fundamental to distributed computing research. We give a brief
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description of it here, and we refer the reader to [36] for a detailed explanation of the model.

Fischer et al. studied an environment in which a group of processes, each with an initial

value in {0, 1}, communicate with each other via messages. The objective is for all non-

faulty processes to eventually agree on some consensus value x ∈ {0, 1}, where x must match

the initial value of some process. Fischer et al. established that no consensus protocol is

resilient to even a single failure. Their proof of this breakthrough non-termination result

introduced the idea of a valency argument. They showed that there exists some initial

configuration that is bivalent, meaning that the resulting consensus could be either 0 and

1 (the outcome depends on the asynchronous schedule of message transmission), and that

this bivalence can be maintained. Our proof of Theorem 43 also uses a valency argument,

where uncommitted histories play the role of bivalent configurations.

Intuitively, the risk of protocol non-termination in the environment studied by Fischer et

al. stems from the possibility of failures; a computational node cannot tell whether another

node is silent due to a failure or is simply taking a long time to react. Our non-convergence

result concerns environments in which nodes/communication channels do not fail. Thus,

each node is guaranteed that all other nodes will eventually react. Observe that in such an

environment reaching a consensus is easy; one pre-specified node i (the “dictator”) waits

until it learns all other nodes’ inputs (this is guaranteed to happen as failures are impossible)

and then selects a value vi and informs all other nodes; then, all other nodes select vi. By

contrast, the possibility of non-convergence shown in Theorem 43 stems from limitations

on nodes’ behaviors. Hence, there is no immediate translation from the result of Fischer et

al. to ours (and vice versa).

7.3 Asynchronous Game Dynamics

Traditionally, work in game theory on game dynamics (e.g., best-response dynamics) re-

lies on the explicit or implicit premise that players’ behavior is somehow synchronized (in

some contexts play is sequential, while in others it is simultaneous). Here, we consider
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the realistic scenario that there is no computational center than can synchronize players’

selection of strategies. We describe these dynamics in the setting of this work and exhibit

an impossibility result for best-response, and more general, dynamics.

A game is characterized by a triple (n, S,u). There are n players, 1, . . . , n. Each player

i has a strategy set Si. S = S1 × . . . × Sn is the space of strategy profiles s = (s1, . . . , sn).

Each player i has a utility function ui : S → R, where u = (u1 . . . un). Intuitively, player i

“prefers” states for which ui is higher. Informally, a player is best responding when it has

no incentive to unilaterally change its strategy.

Definition. In a game U = (n, S,u), player i is best responding at s ∈ S if ui(s) ≥ ui(s′)

for every s′ ∈ S such that s−i = s′−i. We write si ∈ BRUi (s). A strategy profile s ∈ S is a

pure Nash equilibrium (PNE ) if every player is best responding at s.

There is a natural relationship between games and the interaction systems described in

Section 7.1. A player with a strategy set corresponds directly to a node with an action space,

and a strategy profile may be viewed as a state. These correspondences are so immediate

that we often use these terms interchangeably.

Consider the case of best-response dynamics for a game in which best responses are

unique (a generic game): starting from some arbitrary strategy profile, each player chooses

its unique best response to other players’ strategies when activated. Convergence to pure

Nash equilibria under best-response dynamics is the subject of extensive research in game

theory and economics, and both positive [94, 82] and negative [45, 46] results are known.

If we view each player i in a game (n, S,u) as a node in an interaction system, then under

best-response dynamics its utility function ui induces a self-independent historyless reaction

function fi : S−i → Si, as long as best responses are unique. Formally,

fi(a−i) = arg max
α∈Si

ui(a1, . . . , α, . . . , an) .

Conversely, any system with historyless and self-independent reaction functions can be

described as following best-response dynamics for a game with unique best responses. Given
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reaction functions f1, . . . , fn, consider the game where each player i’s utility function is given

by

ui(a) =

 1 if fi(a) = ai

0 otherwise .

Best-response dynamics on this game replicate the dynamics induced by those reaction

functions. Thus historyless and self-independent dynamics are exactly equivalent to best-

response dynamics. Since pure Nash equilibria are fixed points of these dynamics, the

historyless case of Theorem 43 may be restated in the following form.

Theorem 49. If there are two or more pure Nash equilibria in a game with unique best

responses, then asynchronous best-response dynamics can potentially oscillate indefinitely.

In fact, best-response dynamics are just one way to derive reaction functions from utility

functions, i.e., to translate preferences into behaviors. In general, a game dynamics protocol

is a mapping from games to systems that makes this translation. Given a game (n, S,u)

as input, the protocol selects reaction functions f = (f1, . . . , fn), and returns an interaction

system (n, S, f). The above non-convergence result holds for a large class of these protocols.

In particular, it holds for bounded-recall and self-independent game dynamics, whenever

pure Nash equilibria are limit states. When cast into game-theoretic terminology, Theo-

rem 43 says that if players’ choices of strategies are not synchronized, then the existence of

two (or more) pure Nash equilibria implies that this broad class of game dynamics are not

guaranteed to reach a pure Nash equilibrium. This result should be contrasted with positive

results for such dynamics in the traditional synchronous game-theoretic environments. In

particular, this result applies to best-response dynamics with bounded recall and consistent

tie-breaking rules (studied by Zapechelnyuk [112]).

Theorem 50. If there are two or more pure Nash equilibria in a game with unique best

responses, then all bounded-recall self-independent dynamics for which those equilibria are

fixed points can fail to converge in asynchronous environments.
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Chapter 8

Self-Stabilizing Uncoupled Dynamics

We now consider dynamic behavior when nodes still have limited knowledge of system

history, as in Chapter 7 but the self-independence restriction of Theorem 43 is replaced by

a restriction on each node’s knowledge of the other nodes’ preferences. We use a model

of interaction in which the nodes do not have reaction functions a priori. Instead, each

node is given an input before interaction begins, and the nodes choose reaction functions

based on these inputs, thereby defining an interaction system. We say that a protocol

for choosing these reaction functions is uncoupled if the inputs are private, i.e., if each

node must independently choose its reaction function based only on its own input, without

knowledge of the other nodes’ inputs [47].

In this chapter we ask, in a synchronous environment, when an uncoupled protocol can

reliably produce a self-stabilizing system. Self stabilization is a failure-resilience property

that captures the ability of a system to recover from temporary errors by returning to a des-

ignated set of “legitimate” states. An uncoupled protocol that always yields self-stabilizing

interaction systems, then, captures the distributed computing concepts of both distribution

and resilience to temporary failures. We investigate the ability of game dynamics to reach

strategic equilibrium in this distributed setting.

Uncoupled dynamics were introduced by Hart and Mas-Colell [45], who introduced the

concept of uncoupled game dynamics and gave a non-convergence result in a continuous-time

setting. In a later paper [46], the same authors showed that this result held in a discrete-

time setting, even in the presence of randomness, and addressed convergence to mixed Nash
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equilibria by bounded-recall uncoupled dynamics. Babichenko [3, 4] investigated the situ-

ation when the uncoupled nodes are finite-state automata, as well as completely uncoupled

dynamics, in which each node can see only the history of its own actions and payoffs. Hart

and Mansour [44] analyzed the time to convergence for uncoupled dynamics. In a related

model, Young [110] and Pradelski and Young [90] gave completely uncoupled dynamics that

achieve an equilibrium in a high proportion of steps but do not necessarily converge.

In Section 8.1, we incorporate the discrete-time game dynamics setting of Hart and Mas-

Colell [46] into the distributed computing framework of Chapter 7 and state a separation

result showing that randomized uncoupled dynamics are more powerful than deterministic

uncoupled dynamics for some games; the proof of this result is in Section 8.4. In Section 8.2,

we give an uncoupled protocol for deterministic bounded-recall dynamics that self-stabilizes

on all games. We give another such protocol that self-stabilizes on all games in which each

node has at least four available actions, and we prove that the recall used by this protocol

is optimal for that class of games. Section 8.3 is concerned with randomized uncoupled

dynamics; we describe earlier work on this topic and characterize the state spaces over

which historyless randomized uncoupled game dynamics can be self-stabilizing. Table 8

summarizes the results of this section. For the sake of brevity, we only discuss systems in

which every node is non-trivial, having an action space of size at least 2.

Deterministic Randomized

1-recall never (Theorem 52) iff n = 2 and some |Ai| = 2 (Theorem 59)

2-recall if every |Ai| ≥ 4 (Theorem 54) always (Theorem 56 [46])

3-recall always (Theorem 53) always

Table 8.1: For n ≥ 2 non-trivial nodes, is the given amount of recall sufficient for a stationary
uncoupled protocol to be self-stabilizing on all games over state space A = A1 × . . .× An?
Entries in italics are contributions of this work.
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8.1 Historyless Uncoupled Game Dynamics

In uncoupled game dynamics, the nodes’ private inputs are real-valued utility functions over

the state space, and the legitimate states for self stabilization are the pure Nash equilibria

(PNE) of the game induced by these utility functions. Intuitively, each node acts as a

strategic agent with private preferences about the system’s state, and the global objective

is for the system to be in a state that is compatible with all those preferences, in the

sense that every node is best-responding at that state. Game dynamics were discussed

more generally in Section 7.3. In this context, a self-stabilizing system is one that, given a

completely synchronous schedule, is guaranteed to reach and remain within the set of PNE,

regardless of the initial state.

Definition. A synchronous system with game dynamics is self-stabilizing if, for every 1-fair

trajectory a0,a1,a2, . . ., there is some T ∈ Z+ such that, for every t > T , at is a PNE.

Traditional study of convergence to equilibria in game dynamics makes various assump-

tions about the “rationality” of nodes’ behavior in each timestep, restricting them to always

play the game in ways that are somehow consistent with their self-interest given their cur-

rent knowledge. In contrast to these behavioral restrictions on the nodes, uncoupledness is

an informational restriction, in that the nodes have no knowledge of each other’s payoffs.

In this situation, no individual node can recognize a PNE, so finding an equilibrium is a

truly distributed task. We formally define an uncoupled protocol in this setting.

Definition. An uncoupled protocol for game dynamics takes a game (n,A,u) and returns

an interaction system (n,A, f). For each node i, the protocol provides a mapping that takes

the utility function ui as input (which implicitly reveals n and A), and returns a reaction

function fi.

Given an n-node game, the protocol describes an n-node interaction system whose state

space is the game’s strategy profile space. Informally, when each node chooses its reaction
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function for this system, it knows the number of nodes, the state space, and its own pref-

erences, but it does not know anything about the other nodes’ preferences. We say this

protocol is self-stabilizing if it produces a self-stabilizing system whenever a PNE exists.

Definition. An uncoupled protocol for game dynamics is self-stabilizing on a given class

of games if the protocol yields a self-stabilizing system for every game in that class that has

at least one PNE.

If uncoupledness is the only restriction on the dynamics, then the nodes can find a PNE

through a straightforward exhaustive search. However, this changes when nodes’ ability to

remember past actions is restricted. Hart and Mas-Colell [46] showed that when the reaction

functions are required to be historyless, no uncoupled protocol can guarantee convergence

to a PNE, even in games with a unique PNE. (They also showed this in a continuous time

setting in an earlier paper [45].) They proved this theorem by two counterexamples. The

first was a 3 × 3 game, and the second was a 3 × 3 × 3 game in which best responses are

unique. We restate this result using the terminology of the present work.

Theorem 51 (Hart and Mas-Colell [46]). No historyless uncoupled protocol is self-stabilizing

for all games. In particular, any such protocol fails to self-stabilize on some 3×3 game and

on some 3× 3× 3 game with unique best responses.

To obtain positive results for self stabilization in bounded-recall uncoupled game dynam-

ics, we might place restrictions on the state space or the inputs, or we might make the nodes

more powerful, allowing them to use more sophisticated reaction functions. Restricting the

state space A can be done by limiting the number of nodes n or the number of actions

each node has available. The inputs, which are utility functions, may be restricted so that

we only require self stabilization on some natural class of games, e.g., zero-sum games or

games with unique best responses. To make the nodes more powerful, we might increase

the number of steps of recall they may access.

Another possibility is to permit the reaction functions to be randomized, a relaxation
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we discuss in detail in Section 8.3. Hart and Mas-Colell [46] showed that the analogue of

Theorem 51 for nodes with randomized reaction functions holds, but that self stabilization

is possible for historyless uncoupled protocols when the nodes are allowed to use both ran-

domness and an additional step of recall, or when both the state space and the input space

are restricted (i.e., in 2-node games with unique best responses). We show in Lemma 60

that using randomness also enables historyless uncoupled protocols to self-stabilize over suf-

ficiently restricted state spaces (e.g., for all 2× 2 games). In contrast, there is no nontrivial

state space over which historyless deterministic uncoupled protocols can self-stabilize. We

defer the proof of this theorem until Section 8.4.

Theorem 52. For every n ≥ 2 and every n-node state space A, there is no historyless

deterministic uncoupled protocol that self-stabilizes on all games over A.

8.2 Self-stabilizing Deterministic Uncoupled Dynamics

The challenge for deterministic nodes in searching the state space for a PNE is keeping track

of their progress in that search. Here we show that by using repeated states to coordinate,

the nodes can take advantage of two additional steps of recall to perform an exhaustive

search, thereby executing a self-stabilizing uncoupled protocol.

Theorem 53. There is a stationary 3-recall deterministic uncoupled protocol that is self-

stabilizing on all games.

Proof. Let n, k1, . . . , kn ≥ 2, and A = [k1]×. . .×[kn]. Let π : A→ A be a cyclic permutation

on the states. We describe, for any game U = (n,A,u), how our protocol chooses reaction

functions. We write πi(a) for the action of node i in π(a). For every node i, the 3-recall
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reaction function fi : A3 → Ai is given by

fi(a,b, c) =



ci if b = c and ci ∈ BRi(c)

minBRi(c) if b = c and ci 6∈ BRi(c)

πi(a) if a = b 6= c

ci otherwise .

Notice that this protocol is uncoupled: fi does not depend on any other node’s utility

function. Informally, the nodes use repetition to keep track of which state is the current

“PNE candidate” in each stage. If a state has just been repeated, then it is the current

candidate, and each node plays a best response to it, with a preference against moving. If

the nodes look back and see that some state a was repeated in the past but then followed

by a different state, they infer that a was rejected as a candidate and move on by playing

a’s successor, π(a). Otherwise the nodes repeat the most recent state, establishing it as the

new candidate. We call these three types of histories query, move-on, and repeat histories,

respectively. Here “query” refers to asking each node for one of its best responses to b.

We now show that every 1-fair trajectory in the system (n,A, f) converges to a PNE if

one exists. Assume that U has at least one PNE. Let X = (a,b, c) ∈ A3, and let Y be

the next history (b, c, f(X)). If X is a repeat history, then Y = (b, c, c), which is a query

history. If X is a move-on history, then b 6= c, and Y = (b, c, π(a)). If c = π(a), then

this is a query history; otherwise, it is a repeat history, which will be followed by the query

history (c, π(a), π(a)). Thus, every non-query history will be followed within two stages by

a query history.

Now let X = (a,b,b) ∈ A3 be a query history, and let Y and Z be the next two

histories. If b is a PNE, then Y = (b,b,b), and the system has converged. Otherwise,

Y = (b,b, c) for some c 6= b, so Y is a move-on history, which will be followed by a query

history (b, π(b), π(b)) or (c, π(b), π(b)) within two stages. Let p be a PNE for U . Since

π is cyclic, p = πr(b) for some r ∈ Z+. So (p,p,p) is reachable from X unless πs(b)

is a PNE for some s < r. It follows that the system always converges to a PNE, so it is
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self-stabilizing for U . It follows that the protocol is self-stabilizing on all games.

We can improve on this recall bound when every node has at least four actions in its

action space. It is perhaps surprising that larger action spaces are an advantage here,

since they correspond to a larger state space that must be searched. This essentially gives

the nodes a larger alphabet, though, with which to encode information about the current

status of the search. Notice that 2-recall is optimal for this task; by Theorem 52, historyless

deterministic uncoupled dynamics could not self-stabilize on this class of games.

Theorem 54. There is a stationary 2-recall deterministic uncoupled protocol that is self-

stabilizing on all games in which every node has at least four available actions.

Proof. Let n ≥ 2, k1, . . . , kn ≥ 4 and A = [k1]× . . .× [kn]. Define a permutation π : A→ A

such that for every a ∈ A, π(a) is a’s lexicographic successor. Formally,

π(a) = (π1(a), . . . , πn(a)) ,

where for i = 1, . . . , n− 1,

πi(a) =

 ai + 1 mod ki if aj = kj for every j ∈ {i+ 1, . . . , n}

ai otherwise ,

and πn(a) = an + 1 mod kn. Observe then that π is cyclic, and for each node i and a ∈ A,

we have πi(a)− ai mod ki ∈ {0, 1}.

Let U = (n,A, u) be a game. We now describe how our protocol chooses the n-tuple of

reaction functions f = (f1, . . . , fn) for U . The reaction functions will differentiate between

three types of histories, each named according to the event it prompts. Let (a,b) ∈ A2.

• move-on: If a 6= b and aj−bj mod kj ∈ {0, 1} for every j ∈ [n], then the nodes “move

on” from a, in the sense that each node i plays πi(a), giving f(a,b) = π(a).

• query : If bj − aj mod kj ∈ {0, 1, 2} for every j ∈ [n], then we “query” each node’s

utility function to check whether it is best-responding at b. Each node i answers by
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playing bi if it is best-responding and bi − 1 mod ki if it is not. So at a query history

(a,b), for i ∈ [n],

fi(a,b) =

 bi if bi ∈ BRUi (b)

bi − 1 mod ki otherwise .

• repeat : Otherwise, each node i “repeats” by playing bi, giving f(a,b) = b.

Notice that because k1, . . . , kn ≥ 4, it is never the case that both aj − bj mod kj ∈ {0, 1}

and bj − aj mod kj ∈ {0, 1, 2}. Thus, the conditions for the move-on and query types are

mutually exclusive, and the three history types are all disjoint.

The history following (a,b) is (b, f(a,b)). There are three cases:

1. (a,b) is a move-on history. Then this is (b, π(a)). Since for every node i, ai −

bi mod ki ∈ {0, 1} and π(a)i−ai mod ki ∈ {0, 1}, we have πi(a)−bi mod ki ∈ {0, 1, 2},

so (b, π(a)) is a query history.

2. (a,b) is a query history. Then bi − fi(a,b) mod ki ∈ {0, 1} for every node i, so

(b, f(a,b)) is a move-on history unless b = f(a,b), in which case it is a query history.

But if b = f(a,b) and (a,b) was a query history, then bi ∈ BRUi (b) for every node i,

i.e., b is a PNE.

3. (a,b) is a repeat history. Then it is followed by the repeat history (b,b).

Thus, histories of move-on or repeat type are always followed by histories of query type, and

query histories are never followed by repeat histories. We conclude that with the possible

exception of the initial history, every history will be of move-on or query type, and no two

consecutive histories will be of move-on type. In particular, some query history is reachable

from every initial history.

Any query history (a,b) will be followed by (b,b) if and only if b is a PNE, in which

case the system will have converged. If b is not a PNE, then (a,b) will be followed by a

move-on history (b, c), for some c ∈ A. This will be followed by the query history (c, π(b)).
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Continuing inductively, since π is cyclic, unless the system converges to a PNE, the nodes

will examine every state a ∈ A with a query state of the form (a,b). Thus, if U has at

least one PNE, then the system will converges to a PNE, meaning that this protocol is

self-stabilizing on the given class of games.

We have shown that 3-recall is sufficient for a stationary deterministic uncoupled pro-

tocol to be self-stabilizing on all games, and that 2-recall is necessary. It remains open

whether 2-recall is sufficient. We conjecture that it is not.

Conjecture 55. There is no stationary 2-recall deterministic uncoupled protocol that is

self-stabilizing on all games.

8.3 Uncoupled Game Dynamics with Randomness

In this section we characterize the state spaces for which historyless uncoupled protocols

can be self-stabilizing if the nodes are permitted to use randomized reaction functions. In

this case each reaction function fi has ∆(Ai), the set of probability distributions over Ai,

as its range. In every stage, i’s action is drawn from the distribution given by its reaction

function: ati ∼ fi(a
0, . . . ,at−1). We say that the system is self-stabilizing if, regardless of

the initial state, the probability that at is a PNE approaches 1 as t→∞.

Hart and Mas-Colell [45, 46] showed that historyless uncoupled protocols cannot be

self-stabilizing on all games (Theorem 51 above). They also showed, however, that there

is a historyless randomized uncoupled protocol that self-stabilizes on two-node games in

which every node has a unique best response to every state, and that adding recall admits

a protocol that self-stabilizes on all games.

Theorem 56 (Hart and Mas-Colell [46]). There is a historyless randomized uncoupled

protocol that is self-stabilizing on all two-node games with unique best responses. There is

a stationary 2-recall randomized uncoupled protocol that is self-stabilizing on all games.
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Both of these protocols are simple, especially the historyless protocol, which we refer to

as the stay-or-roll protocol ; each node “stays” if it is best-responding and “rolls the dice”

otherwise. More formally, in every stage, each node checks whether it is currently best-

responding. If it is, then it continues with the same action. If it is not, then it selects an

action uniformly at random from its action space [46].

Lemma 57 states that any historyless uncoupled protocol that self-stabilizes on all games

over a given state space must be similar to this protocol: each node must continue playing

the same action when best-responding and otherwise move to a new action with positive

probability (w.p.p.). This lemma expands on the main idea in Hart and Mas-Colell’s proof of

Theorem 51, that convergence to a unique PNE can be guaranteed only if best-responding

nodes never change their actions. Intuitively, a historyless node that is best-responding

doesn’t know whether the system is at the PNE, so this node changing its action w.p.p.

would mean that the system could not guarantee permanent convergence to that state. The

only exception is when a node is certain that there is more than one PNE, which happens

when the game has two players and that node has a multiple actions that are always best

responses.

Definition. An action α ∈ Ai is weakly dominant if it is a best response for node i at every

state. It is strongly dominant if it is a unique best response for i at every state.

Lemma 57. Suppose that a historyless uncoupled protocol Π is self-stabilizing on all games

over an n-node state space A. Let U be a game over A. Under the reaction functions given

by Π(U), the following hold.

1. Any node that is not best-responding will change its action w.p.p.

2. Any node that is best-responding will change its action with probability 0, unless n = 2

and that node has more than one weakly dominant action in U .

Proof. Assume that Π is a historyless uncoupled protocol that is self-stabilizing on all games

over A. Let ui be a utility function for node i, and suppose that i is best-responding for ui
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at state a. Let fi be i’s reaction function given by Π for ui. If n > 2 or i has at most one

weakly dominant action in ui, then there is some game over A in which a is the unique PNE

and i’s utility function is ui, meaning that a must be a fixed point of fi, since otherwise

the system for that game would not converge to a. Thus, each node changes its action with

probability 0 whenever it is best-responding.

Let b ∈ A be a state such that i is not best-responding for ui at b. There is some game

in which b is a PNE, i’s utility function is ui, and no node other than i has more than

one weakly dominant action. Then as shown above, it is certain that no node j 6= i will

change its action from bj in the system given by Π for this game. This means that unless

i changes its action w.p.p., the system will converge to b, which is not a PNE. This would

contradict the self stabilization of Π on games over A, so we conclude that any node that

is not best-responding must change its action w.p.p.

An important consequence of Lemma 57 is that the stay-or-roll protocol is essentially

the best historyless randomized uncoupled protocol, in the sense that it is self-stabilizing

whenever any such protocol is. Like Lemma 57, the following lemma expands on an idea

that is implicit in the work of Hart and Mas-Colell [46].

Lemma 58. For any state space A, there is a historyless randomized uncoupled protocol

that self-stabilizes on all games over A if and only if the stay-or-roll protocol self-stabilizes

on all games over A.

Proof. The stay-or-roll protocol is a historyless randomized uncoupled protocol, so one

direction is trivial. For the other direction, assume that Π is a historyless randomized

uncoupled protocol that is self-stabilizing on all games over an n-node state space A. Let

U be a game over A that has at least one PNE. Assume that n ≥ 3 or no node has multiple

weakly dominant actions, so that Lemma 57 applies. For any state a ∈ A, some PNE p is

reachable in the system Π(U). In Π(U) a node can change its action only when it is not

best-responding, so for every action change on the path from a to p in Π(U), the reaction



103

function given by the stay-or-roll protocol would have made the same change w.p.p. This

means that p is also reachable from a in the stay-or-roll system for U , so the stay-or-roll

protocol self-stabilizes on U .

To prove the lemma, then, it suffices to show that the stay-or-roll protocol self-stabilizes

on all two-node games in which some node has a weakly dominant action. Let A be a

two-node state space, and let U be a game over A in which node 1 has at least one weakly

dominant action. Consider the system given by the stay-or-roll protocol for U . Let a be any

state in A. If a1 is weakly dominant, then either node 2 is best-responding at a or, w.p.p.,

node 2 will play a best response to a1 in the next stage. Since node 1 will continue playing

a1, which is a best response to all of node 2’s actions, a PNE is reachable from every state

in which node 1 plays a weakly dominant action. If node 1 is not best-responding at a, then

w.p.p. f1(a) is a weakly dominant action, so a PNE is also reachable from every state in

which node 1 is not best-responding. If node 1 is best-responding at a but a1 is not weakly

dominant, then either a is a PNE or node 2 is not best-responding at a. In the latter case,

node 2 will change w.p.p. to an action that a1 is not a best response to. Then w.p.p. node

1 will play a weakly dominant action in the next stage. Thus, a PNE is reachable from

every state a ∈ A. We conclude that the stay-or-roll protocol is self-stabilizing on all such

games.

With Lemma 58 in hand, we can determine the recall needed for a stationary randomized

uncoupled protocol to self-stabilize on all games over any state space: a self-stabilizing

historyless uncoupled protocol exists if and only if the stay-or-roll protocol is self-stabilizing.

Otherwise, two steps of recall is necessary, and by Theorem 56 is also sufficient.

Recall from Theorem 51 and Theorem 56 that Hart and Mas-Colell showed that a self-

stabilizing historyless randomized uncoupled protocol exists for all two-node games with

unique best responses, but not for all 3× 3 games or all 3× 3× 3 games with unique best

responses. Theorem 59 essentially says that such protocols also exist for all 2×k games, but

that further expansion of the state space makes self stabilization over all games impossible
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for these protocols.

Theorem 59. Let n ≥ 2, and let A be an n-node state space. If n = 2 and |A1| or |A2| = 2,

then there is a historyless randomized uncoupled protocol that self-stabilizes on all games

over A. Otherwise, there is not.

To prove this theorem, we use four lemmas. The first, Lemma 60, shows the positive

part of the theorem, that the stay-or-roll protocol self-stabilizes on games over two-node

state spaces where one node has only two actions. The second and third are reduction

lemmas, showing that enlarging a state space—either by adding an action to some node’s

action space (Lemma 61) or by adding a node (Lemma 62)—never improves the stay-or-roll

protocol’s ability to self-stabilize on all games over that state space. Finally, Lemma 63

says that the stay-or-roll protocol fails to self-stabilize on all 2× 2× 2 games.

Lemma 60. For k ≥ 2, the stay-or-roll protocol self-stabilizes on all 2× k games.

Proof. Let A = {1, 2}×{1, . . . k}, and let u1 and u2 be the nodes’ respective utility functions

over this state space. Suppose that the resulting game has at least one PNE, and let

a = (a1, a2) ∈ A be the initial state. Let f = (f1, f2) be the pair of reaction functions given

by the stay-or-roll protocol for this game. Notice that if the nodes reach a PNE, they will

remain in that state. Consider four cases:

1. Node 1 is best-responding at a and a1 = p1 for some PNE p = (p1, p2). Then either

node 2 is also best-responding and a is a PNE, or node 2 is not best-responding and

will change its action to p2 in the next stage w.p.p.

2. Node 1 is not best-responding at a and there is no PNE p such that a1 = p1. Then

w.p.p. f1(a) 6= a1. Since the game has a PNE, f(a) is then an instance of case 1.

3. Node 1 is best-responding at a and there is no PNE p such that a1 = p1. Then node

2 is not best-responding at a, so w.p.p. f2(a) ∈ BR2(a), but f(a) cannot be a PNE
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since f1(a) = a1. Then node 1 is not best-responding at f(a), so f(a) is an instance

of case (2).

4. Node 1 is not best-responding at a and a1 = p1 for some PNE p. Then w.p.p. f1(a) 6=

a1 and f2(a) = a2, in which case node 1 is best-responding at f(a) = (f1(a), a2), since

node 1 has only two actions. Then f(a) is an instance of (1) or (3).

Thus, from every state a ∈ A, some PNE for is reachable from a. We conclude that the

protocol is self-stabilizing on all such games.

Informally, Lemma 61 says that expanding a node’s action space does not make a state

space any “easier” for self-stabilizing game dynamics. The proof relies on a reduction in

which the nodes take advantage of a protocol for a larger game by “pretending” to play the

larger game. Whenever node i plays its highest-indexed action ki, all nodes guess randomly

whether i would have played ki or ki + 1 in the larger game.

Lemma 61. Let A and A′ be state spaces for n ≥ 2 nodes such that |A′i| = |Ai| + 1 for

some i and |A′j | = |Aj | for every j 6= i. If the stay-or-roll protocol is self-stabilizing on all

games over A′, then it is self-stabilizing on all games over A.

Proof. For n, k1, . . . , kn ≥ 2, let

A = [k1]× . . .× [kn] .

Since nodes can be reordered, assume i = 1 and

A′ = [k1 + 1]× [k2]× . . .× [kn] .

Suppose that the stay-or-roll protocol is self-stabilizing on all games over A′. Let U =

(n,A,u) be a game that has at least one PNE, and define another game U ′ = (n,A′,u′)

such that for every node j ∈ [n] and state a ∈ A, u′j(a) = uj(a) and

u′j(k1 + 1, a2, . . . , an) = uj(k1, a2, . . . , an) .
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Thus, in U ′, every node is always indifferent to whether node i plays ki or ki + 1.

We now define a new protocol by its randomized reaction functions for U . Let f =

(f1, . . . , fn) be the reaction functions given by the stay-or-roll protocol for U ′. In our new

protocol, the reaction functions g = (g1, . . . , gn) for U are defined for each node j by

gj(a) = fj(a) when a1 6= k1. When a1 = k1,

gj(a) =

 min{kj , fj(a)} with probability 1/2

min{kj , fj(k1 + 1, a2, . . . , an)} otherwise .

That is, whenever the nodes see that node 1 has played k1, each decides independently at

random to interpret that action either as k1 or as k1 + 1, then plays the action prescribed

by the stay-or-roll protocol. The minimum operator ensures that node 1 is never instructed

to play the action k1 + 1, which is not in its action space for U .

Let p be a PNE for U . To see that p is an absorbing state in the system (n,A,g), notice

that p is also a PNE for U ′, hence f(pj) = pj for every node j, and

gj(p) = min{kj , fj(p)} = pj .

It remains to show that the system always reaches a PNE. Let a ∈ A ⊆ A′. Since U ′ has a

PNE and the stay-or-roll protocol is self-stabilizing on U ′, there is some PNE

q = (q1, . . . , qn) ∈ A′

for U ′ such that q is reachable from a in the system (n,A′, f). So q is reachable from a in

that system, i.e., there is some T ∈ Z+ and 1-fair path a0, . . . ,aT in such that a0 = a and

aT = q. Since q is a PNE for U ′,

q′ = (min{q1, k1}, q2, . . . , qn)

is a PNE for both U and U ′.

Now let b0, . . . ,bT be a 1-fair path in the system (n,A,g) such that b0 = a. Suppose,

for some 0 ≤ t < T , that

bt = (min{at1, k1}, at2, . . . , atn) .
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Then w.p.p.,

bt+1 = g(bt) = (min{at+1
1 , k1}, at+1

2 , . . . , at+1
n ) .

Hence, by induction, bT = q′ w.p.p., meaning that a PNE is reachable from a in this

system. We conclude that the protocol giving f is self-stabilizing on all games over A, and

by Lemma 58, it follows that the stay-or-roll protocol is also self-stabilizing on this class of

games.

Lemma 62 says that adding another node also doesn’t help, and its proof uses another

reduction. Here, the nodes use a protocol for an (n+ 1)-node game to play a n-node game

by pretending there is an additional node that never wants to change its action.

Lemma 62. Let A be a state space for n ≥ 2 nodes, and let A′ be a state space for n + 1

nodes such that |Ai| = |A′i| for every i ∈ [n]. If the stay-or-roll protocol is self-stabilizing on

all games over A′, then it is self-stabilizing on all games over A.

Proof. For n, k1, . . . , kn+1 ≥ 2, let A = [k1] × . . . × [kn] and A′ = [k1] × . . . × [kn+1]. Let

U = (n,A,u) be a game that has at least one PNE. Define another game U ′ = (n,A′,u′)

such that for every state a′ = (a1, . . . , an+1) ∈ A′ and every node i ∈ [n],

u′i(a) = ui(a1, . . . , an) ,

and

u′n+1(a) =

 1 if an+1 = 1

0 otherwise .

Informally, the first n nodes are apathetic about node n+ 1’s action, and node n+ 1 always

prefers to play 1. Notice that (a1, . . . , an) ∈ A is a PNE for U if and only if (a1, . . . , an, 1)

is a PNE for U ′. Assume that the stay-or-roll protocol is self-stabilizing on all games over

A′.

Let f = (f1, . . . , fn) be the reaction functions given by the stay-or-roll protocol for U ′.

Our new protocol’s reaction functions g = (g1, . . . , gn) for U are defined very simply: for
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every node i ∈ [n] and (a1, . . . , an) ∈ A,

gi(a1, . . . , an) = fi(a1, . . . , an, 1) .

A PNE is an fixed point in the system (n,A,g).

Since U has a PNE, U ′ does also, and node n + 1’s action is 1 in every PNE for U ′.

Let a = (a1, . . . , an) be any state in A. By the self stabilization of the stay-or-roll protocol

on U ′, there is a 1-fair path in the system (n,A′, f) from a′ = (a1, . . . , an, 1) to some PNE

p′ = (p1, . . . , pn, 1) for U ′. We now show that there is also a path from (a1, . . . , an) to

p = (p1, . . . , pn), which is a PNE for U .

For some T ∈ Z+, let a0, . . . ,aT be a 1-fair path in (n,A′, f) such that a0 = a′ and

aT = p′. Node n + 1 will never change its action from 1 in the stay-or-roll protocol, so

its action is 1 in every state of this path. Let b0, . . . ,bT be a 1-fair path in the system

(n,A,g). For 0 ≤ t < T and i ∈ [n], if

at = (bt1, . . . , b
t
n, 1) ,

then gi(b
t) = fi(a

t). Thus, w.p.p.,

at+1 = (bt+1
1 , . . . , bt+1

n , 1) ,

and it follows by induction that w.p.p. bT = p. Hence every 1-fair trajectory in (n,A,g)

converges to a PNE, so this protocol is self-stabilizing on all games over A. By Lemma 58,

the stay-or-roll protocol is also self-stabilizing on this class of games.

Finally, we give an example of a 2× 2× 2 game on which the stay-or-roll protocol fails

to self-stabilize.

Lemma 63. The stay-or-roll protocol is not self-stabilizing on all 2× 2× 2 games.

Proof. Let A = [2]× [2]× [2]. Consider the game U = (3, A,u) where ui(α, β, γ) is the ith

coordinate of Mα[β, γ], for

M1 =

1, 1, 1 1, 0, 1

1, 0, 0 0, 1, 1

 M2 =

0, 1, 0 0, 1, 1

0, 0, 0 1, 0, 1

 .
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The unique PNE of U is p = (1, 1, 1). Let a ∈ A with a3 = 2. Then node 3 will continue

playing 2 under the stay-or-roll protocol, since 2 is always a best response. It follows that

under the stay-or-roll protocol, if the third node initially plays 2, then it will never play 1,

so p will never be reached from, for example, (1, 1, 2).

Given these last three lemmas, along with Theorem 51, proving the negative part of

Theorem 59 is straightforward. Informally, there are no self-stabilizing historyless uncoupled

protocols for 2 × 2 × 2 games or 3 × 3 games, and adding actions or nodes doesn’t change

that.

Proof of Theorem 59. The positive part of the theorem statement follows immediately from

Lemma 60. For the negative part, let A be an n-node state space, for some n ≥ 2, such

that some historyless uncoupled protocol is self-stabilizing on all games over a A. Then by

Lemma 58, the stay-or-roll protocol is self-stabilizing on all games over A. Assume first that

n ≥ 3. Then by repeated application of Lemma 62 and Lemma 61, the stay-or-roll protocol

must also be self-stabilizing over 2 × 2 × 2 state spaces, which contradicts Lemma 63. If

instead we assume that n = 2 and |A1|, |A2| ≥ 3, then repeated application of Lemma 61

shows that the stay-or-roll protocol must be self-stabilizing over 3 × 3 state spaces, which

is false by Theorem 51.

8.4 Proof of Theorem 52

We now have the tools to prove our negative result for deterministic uncoupled protocols,

which we restate here.

Theorem 52. For every n ≥ 2 and every n-node state space A, there is no historyless

deterministic uncoupled protocol that self-stabilizes on all games over A.

Proof. Except when n = 2 and either |A1| or |A2| is 2, this follows directly from Theorem 59.

So let k ≥ 2 and A = [2] × [k], and assume for contradiction there is some historyless

deterministic uncoupled protocol Π that self-stabilizes on all games over A.
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Consider the game U = (n,A,u), where

u1(a) =

 1 if a1 = 1

0 if a1 = 2

u2(a) =

 1 if a2 = a1 = 1 or a2 ≥ a1 = 2

0 otherwise ,

for every a = (a1, a2) ∈ A. The unique PNE of this game is p = (1, 1). Let f1 and f2 be

the reaction functions given for this game by the protocol. Since it is self-stabilizing, every

1-fair trajectory in the resulting interaction system must converge to p.

Define a new game U ′ = (n,A,u′), where

u′1(a) =

 2 if a2 ≥ a1 = 2 and f2(1, a2) = 1

u1(a) otherwise

u′2(a) = u2(a) ,

for every a = (a1, a2) ∈ A. Informally, each node’s preferences are exactly the same as in

U , except that node 1 now prefers to play 2 wherever f2 would instruct node 2 to change its

action to 1. Let f ′1 and f ′2 be the reaction functions given by Π for this game. Notice that

this game also has p = (1, 1) as its unique PNE, and that by uncoupledness, f ′2(a) = f2(a)

for every a ∈ A.

Let a = (1, α) ∈ A, for some action α 6= 1. Notice that u′1(a) = u1(a) = 1, and that no

node in either game has multiple weakly dominant actions. Consider two cases:

1. f2(a) = 1. Then u′1(2, α) = 2, so node 1 is not U ′-best-responding at a. Thus, by

Lemma 57, f ′1(a) 6= 1. Since f ′2(a) = f2(a) = 1, we then have f ′(a) = (2, 1).

2. f2(a) 6= 1. Then u′1(2, α) = u1(2, α) = 0, so node 1 is U ′-best-responding at a, and

by Lemma 57, f ′1(a) = 1. Since f ′2(a) = f2(a) 6= 1, we have f ′(a) = (1, β) for some

β 6= 1.

Now let b = (2, 1). Then u′1(b) = u1(b) = 0, and u′2(b) = u2(b) = 0, so neither node is

best-responding. Then by Lemma 57 f ′1(b) 6= 2 and f ′2(b) 6= 1, i.e., f ′(a) = (1, β) for some
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β 6= 1. It follows that p = (1, 1) is not reachable from (2, 1) in the system (2, A, f ′), so Π is

not self-stabilizing on U ′.
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Chapter 9

Conclusion

By examining fractal geometry and dynamics through a computational lens, this disser-

tation made progress in several areas. Part I both advanced the theory of algorithmic

dimension and showed a new way in which theoretical computer science can be applied to

answer questions in pure mathematics that may appear unrelated to computation. Our

point-to-set principles for fractal dimensions (Theorems 2 and 3) constitute a strong and

useful connection between seemingly unrelated areas, allowing us to viewing classical frac-

tal dimensions as pointwise, algorithmic information theoretic quantities. With conditional

dimensions, we developed a major component of the information theoretic apparatus for

studying dimension. The utility of these dimensions is immediately apparent in the corre-

spondence between our chain rule for effective dimensions (Corollary 19) and the product

inequalities for classical dimensions (Theorem 42).

We further demonstrated the value of the point-to-set principles and conditional dimen-

sion by employing them in the first two uses of algorithmic fractal dimensions to prove new

theorems in classical fractal geometry. The dissimilarity between these results, in content

and in proof technique, is evidence of the power and versatility of algorithmic information

theoretic methods for classical dimension bounds.

The first, our lower bound on the Hausdorff dimension of generalized Furstenberg sets

(Theorem 37), required nuanced technical arguments about Kolmogorov complexity. In the

process, we proved a general lower bound on the dimension of points on lines in R2 and

resolved an open problem on the structure of algorithmic information in Euclidean spaces

by proving the non-existence of a line in R2 with singleton dimension spectrum.
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The second (Theorem 38) is a fundamental bound on the Hausdorff dimension of inter-

sections of fractals. With the algorithmic information theoretic tools of Chapters 2 and 3 in

hand, the proof is simple and intuitive and does not directly invoke Kolmogorov complexity.

Beyond its direct mathematical value, this theorem demonstrates that our approach can be

used to strengthen the foundations of fractal geometry.

These successes motivate further investigation of algorithmic fractal geometry in general

and of effective Hausdorff dimension on lines in particular; improvements on our lower

bound or extensions to higher dimensions would have implications for important questions

about Furstenberg or Kakeya sets. Our results also motivate a broader search for potential

applications of algorithmic dimension to problems in classical fractal geometry.

In Part II, we applied distributed computing and algorithmic game theoretic perspec-

tives to dynamical systems. Our general non-convergence result for asynchronous dynamics

(Theorem 43) shows that any non-singleton invariant set rules out guaranteed convergence

to a point for a large and natural class of dynamics. For uncoupled dynamics, which cap-

ture the existence of private information in multi-agent systems, we conducted a detailed

investigation of the recall demands of self-stabilizing dynamics. We described the first deter-

ministic uncoupled protocol that self-stabilizes to a Nash equilibrium using bounded recall

(Theorem 53). We also gave a lower bound showing that this protocol is nearly optimal

(Theorem 59), and we gave an optimal protocol for the case that the agents have sufficient

expressive power (Theorem 54). Together, these results constitute significant progress to-

ward an understanding of discrete dynamics, particularly strategic dynamics, in distributed

settings.

We conclude by outlining several promising directions for future research in this area,

some of which is already in progress.
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More refined algorithmic information tools for geometric measure theory

In particular, can sets with finite or non-zero s-dimensional Hausdorff or packing measures

be characterized using Kolmogorov complexity? More quantitative versions of Theorems 2

and 3 would allow us to study a broader range of questions in fractal geometry using

algorithmic information theoretic techniques.

Results on dimension spectra of lines in Rn, for n > 2

An extension of Theorem 24 to any higher-dimensional Euclidean space (with a, b ∈ Rn−1)

would be a major breakthrough, and more modest results in that direction should also be

pursued. It is immediate from the work of J. H. Lutz and Weihrauch [68] that the dimension

spectrum of any line in Rn has nonempty intersection with the interval [1, n− 1], but little

else it known about these spectra.

Complete descriptions of dimension spectra

As we showed in Chapter 5 the dimension spectrum of any line La,b ⊆ R2 has cardinality

at least 2. It is conjectured that this spectrum must furthermore contain a unit interval.

Some progress has already been made: in a recent paper with D. M. Stull [71], we show

that the conjecture holds when dim(a, b) = Dim(a, b). Completely describing the dimension

spectra of lines and circles would represent a significant step toward understanding effective

Hausdorff dimension in the plane.

Fractal geometry on schedule spaces

Consider, for a given asynchronous, discrete dynamical system, the class of asynchronous

schedules that do not lead to convergence. For stationary and bounded-recall dynamics,

this class may be characterized by some set of forbidden activation sequences, which induces

a self-similar fractal structure. In general, what can the fractal geometry of this class tell

us about the dynamics?
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Topological and knowledge-based approaches to asynchronous game dynamics

Topological [13, 49, 95] and knowledge-based [42] approaches have been very successful in

addressing fundamental questions in distributed computing. Can these approaches shed

new light on the implications of asynchrony for strategic dynamics?

Impossibility results for stronger dynamics and weaker asynchrony

Finding limitations on less restricted dynamics operating in less hostile distributed envi-

ronments is an important research direction. In joint work with Danny Dolev, Michael

Erdmann, Michael Schapira, and Adva Zair [25], we investigate a broad class of stateless

protocols, which include historyless dynamics but also permit nodes to send messages that

are distinct from their outputs. That work gives a non-convergence result that holds even

for a “fairer” variant of asynchrony.
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