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ABSTRACT OF THE DISSERTATION

A Sequential Cognitive Diagnosis Model for Graded

Response: Model Development, Q-Matrix Validation,

and Model Comparison

by Wenchao Ma

Dissertation Director: Jimmy de la Torre

Cognitive diagnosis models (CDMs) have received increasing attention in recent years.

The goal of CDMs is to classify examinees into different latent classes with unique

attribute patterns indicating mastery or nonmastery on a set of skills or attributes of

interest. Although a large number of CDMs can be found in the literature, most of

them are developed for dichotomous response data.

This dissertation proposes a general cognitive diagnosis model for a special type

of polytomously scored items, where item categories are attained in a sequential man-

ner, and explicitly associated with some attributes. The conditional probability of an-

swering a category correctly given that the previous categories have been performed

successfully is defined as processing function, and modeled using the generalized de-

terministic inputs, noisy “and” gate (G-DINA; de la Torre, 2011) model. The resulting

model is referred to as the sequential G-DINA model. To relate response categories to
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attributes, a category-level Q-matrix is used. When the attribute and category associa-

tion is specified a priori, the proposed model has the flexibility to allow different cogni-

tive processes (e.g., conjunctive, disjunctive) to be modeled at different steps within a

single item. This model can be extended for items, where categories cannot be explic-

itly linked to attributes, and for items with unordered categories. Item parameters of

the proposed model are estimated using the marginal maximum likelihood estimation

via expectation-maximization algorithm.

Like the traditional Q-matrix, the category-level Q-matrix is most likely to be de-

veloped by experts, and thus tends to be subjective. In this dissertation, a Q-matrix

validation procedure is developed for the sequential G-DINA model to empirically

identify and correct misspecifications in the category-level Q-matrix. This validation

method is implemented in a stepwise manner based on the Wald test and an item dis-

crimination index. Simulation studies are conducted to evaluate the performance of the

proposed procedure in terms of the true positive and false positive rates.

A condensation rule is an important component for most CDMs, including the se-

quential G-DINA model, in that it specifies how the latent attributes are employed

simultaneously to make a manifest item response. Although the G-DINA model has

been used as the processing function, it is important to empirically determine whether

the G-DINA model can be further constrained according to the cognitive processes

involved in each step. In this dissertation, the performance of the Wald test and the

likelihood ratio test are examined in determining the appropriate condensation rule for

each step. More specifically, a simulation study is used to evaluate the Type I error and

power of these hypothesis tests concerning whether the DINA model, DINO model,

and A-CDM can be used in place of the G-DINA model as the processing function for

the steps that involved more than one attribute.

Taken together, this dissertation develops a set of psychometric tools including

iii



statistical models and procedures for graded response data. These tools can facili-

tate the use of constructed-response items, which are typically scored polytomously,

in cognitively diagnostic assessments. The performance of the proposed models and

procedures are examined using both Monte Carlo simulation studies and real data.
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Chapter 1

Introduction

1.1 Background

Educational assessments have played an increasing central role in evaluating students’

learning. By establishing students’ relative rankings along a proficiency continuum

based on either item response theory (IRT) or classical test theory, a number of ed-

ucational decisions, such as identifying students’ level of mastery, offerring students

scholarships, and examining students’ readiness for further study, can be made accord-

ingly (de la Torre & Minchen, 2014). In spite of the use of educational assessments

for such purposes, they typically provide little information to facilitate classroom in-

struction. Many researchers such as Stiggins (2002) argue that educational assessment

should be used to not only evaluate learning, but also support learning.

Cognitively diagnostic assessments (CDAs; de la Torre & Minchen, 2014) are de-

signed to provide immediate diagnostic information to teachers and students so that

the classroom instructions can be planned or modified accordingly. Unlike conven-

tional large-scale educational assessments, the grain size of the skills or attributes to be

measured in CDAs are typically finer, but the number can be much larger. As a result, it

is usually reasonable to assume that there are only two statuses for each attribute: mas-

tery or nonmastery. The goal of CDAs is to diagnose whether students have already

mastered each attribute or not. Students with the same total score can have differ-

ent attribute profiles, which offers additional finer-grained information about students’

strengths and weaknesses.
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To extract reliable and valid information from CDAs, cognitive diagnosis models

(CDMs) have been developed. CDMs refer to a large set of psychometric approaches

and have been named differently to emphasize their different aspects, such as restricted

latent class models (e.g., Haertel, 1989), multiple classification latent class models

(e.g., Maris, 1999), structured item response theory models (e.g., Rupp & Mislevy,

2007), structured located latent class models (e.g., Xu & von Davier, 2008), and di-

agnostic classification models (Rupp, Templin, & Henson, 2010). In this dissertation,

CDM is used consistently to refer to the discrete-skills IRT-based latent class models

as discussed in Roussos, Templin, and Henson (2007). Other diagnostic procedures

will not be covered, such as the rule-space method (Tatsuoka, 1983), the attribute hier-

archy method (Leighton, Gierl, & Hunka, 2004), Bayesian network models (Almond,

DiBello, Moulder, & Zapata-Rivera, 2007), nonparametric approaches (Chiu & Dou-

glas, 2013; Chiu, Douglas, & Li, 2009), and traditional IRT models used for diagnostic

purposes (Stout, 2007).

A number of CDMs can be found in literature. Some of them are developed based

on strong cognitive assumptions about the processes involved in problem solving, in-

cluding, among others, the deterministic inputs, noisy “and” gate (DINA; Haertel,

1989) model, the deterministic inputs, noisy “or” gate (DINO; Templin & Henson,

2006) model, and the additive CDM (A-CDM; de la Torre, 2011). To better understand

the relation among these models and make it possible to estimate various models within

a single test, some general CDMs have been developed, such as the generalized DINA

(G-DINA; de la Torre, 2011) model, the log-linear CDM (LCDM; Henson, Templin,

& Willse, 2009) and the general diagnostic model (GDM; von Davier, 2008).

Two central components shared by these models are Q-matrix (Tatsuoka, 1983)

and condensation rule (Maris, 1999). The former specifies the association between at-

tributes and items. It is typically created by experts (see Tjoe & de la Torre, 2014, for

a detailed development process of a Q-matrix for a proportional reasoning test), and
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assumed to be known in most CDM analyses. The latter specifies how attributes are

“condensed” to produce an observed item response. For example, the DINA model is

a conjunctive model assuming that to answer an item correctly, students are supposed

to master all required attributes; whereas the DINO model is a disjunctive model as-

suming that students are expected to perform an item successfully as long as they have

already mastered at least one required attribute.

Both Q-matrix and condensation rule are usually specified by experts before the

CDM analysis and assumed to be correct. However, expert judgments can be subjective

and their specifications may not always be accurate. A body of procedures have been

developed to validate the Q-matrix (de la Torre, 2008; de la Torre & Chiu, 2016; Chiu,

2013; Liu, Xu, & Ying, 2013) and to select appropriate condensation rules (de la Torre,

2011; de la Torre & Lee, 2013; Ma, Iaconangelo, & de la Torre, 2016) empirically.

1.2 Motivation and Objectives

Despite a host of CDMs available, most of them are targeted for dichotomous re-

sponses, which are mainly from multiple-choice items. Constructed response items,

however, may be more informative for diagnostic purposes in that students are al-

lowed to show their problem-solving solutions explicitly. For example, Birenbaum

and Tatsuoka (1987) found that constructed-response items were more appropriate for

the diagnostic purpose by comparing a fraction addition test using open-ended and

multiple-choice formats for diagnosing students’ misconceptions. Similar conclusions

have been drawn by Birenbaum, Tatsuoka, and Gutvirtz (1992), who also found that

students used different cognitive processes when responding to items with different

formats. For example, students may not really solve the problem in multiple-choice

format as expected, but try to utilize the information in the options, which, sometimes,

makes them more likely to achieve an incorrect solution.
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Typically, although not always, constructed response items are scored polytomously,

yielding graded responses with ordered categories. To calibrate this type of data, one

commonly used strategy is to dichotomize responses so that they can be analyzed us-

ing existing dichotomous CDMs (e.g., Johnson et al., 2013; Su, 2013). However, the

process of dichotomization often leads to loss of information. To handle polytomously

scored items more appropriately, a few polytomous CDMs have been developed, such

as the partial credit DINA model (de la Torre, 2010), the GDM for graded responses

(von Davier, 2008), nominal response diagnostic model (Templin, Henson, Rupp, Jang,

& Ahmed, 2008), and polytomous LCDM (Hansen, 2013), among others. A limitation

shared by these polytomous models is that the required attributes for an item are as-

sumed to be involved in all categories of the item, which, however, is not always the

case.

The first major goal of this dissertation is to develop a new general cognitive di-

agnosis model, referred to as the sequential G-DINA model, for polytomously scored

items that can overcome the aforementioned limitation. In particular, items that need to

be solved through a sequence of steps are considered, such as
√

7.5/0.3−16 (Masters,

1982). Unlike other existing polytomous response CDMs, the sequential G-DINA

model relaxes the assumption that all categories involve the same attributes, and takes

the step and attribute association into consideration.

The sequential G-DINA model, like most other existing CDMs, relies on a Q-

matrix. However, to consider the step and attribute association, the Q-matrix needs

to be defined at the step level. No matter how the Q-matrix is defined, developing a

Q-matrix by domain experts without any misspecifications remains challenging, and

therefore, validating the Q-matrix empirically to identify the potential misspecified

elements based on the collected data is an important research topic. Despite a few

Q-matrix validation procedures available, none of them is developed for polytomous

models.
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The second goal of this dissertation is to develop a Q-matrix validation procedure

that can be used along with the sequential G-DINA model for graded response items.

Since the Q-matrix is defined at the step level for the proposed model, the Q-matrix

validation method is able to identify which attributes are involved for each step. This

Q-matrix validation procedure employs a formal hypothesis test, as well as an effect

size measure. It is implemented step by step, and item by item.

Apart from the Q-matrix development, determining the appropriate condensation

rule is another important but difficult task for domain experts. The fact that a large

number of CDMs are available, on one hand, allows great flexibility in modeling com-

plex cognitive processes involved in the problem solving, but, on the other hand, has

also led uncertainties as to which model is the most suitable for an item. Choosing an

appropriate model for an item should ensure that its condensation rule is in line with

the way that students solve the problem. The use of an inappropriate condensation

rule yields model misspecifications, which can result in questionable validity of fur-

ther inference, as well as poor person attributes estimation (Rojas, de la Torre, & Olea,

2012). Constructed-response items that require students show their work explicitly en-

able us to better understand how students solve each question, but different steps of the

problem-solving may involve different cognitive processes, and thus call for models

with different condensation rules.

The third goal of this dissertation is to evaluate whether the Wald test and likeli-

hood ratio test can be used in conjunction with the sequential G-DINA model to select

appropriate condensation rule for each step. The Wald test has been previously used for

this purpose for dichotomous response data (de la Torre & Lee, 2013; Ma et al., 2016),

but it shows inflated Type I error under some conditions. This dissertation considers

the Wald test using variance-covariance matrices calculated in various ways.
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Chapter 2

A Sequential Cognitive Diagnosis Model for Polytomous
Responses

Abstract

This paper proposes a general polytomous cognitive diagnosis model for a spe-

cial type of graded responses, where item categories are attained in a sequential man-

ner, and associated with some attributes explicitly. To relate categories to attributes, a

category-level Q-matrix is used. When the attribute and category association is spec-

ified a priori, the proposed model has the flexibility to allow different cognitive pro-

cesses (e.g., conjunctive, disjunctive) to be modeled at different categories within a

single item. This model can be extended for items, where categories cannot be explic-

itly linked to attributes, and for items with unordered categories. The feasibility of the

proposed model is examined using simulated data. The proposed model is illustrated

using the data from TIMSS 2007 assessment.

Note

This chapter is a reprint of the following publication with format adjustment:

Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for poly-

tomous responses. British Journal of Mathematical and Statistical Psychology, 69,

253–275.
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2.1 Introduction

Cognitive diagnosis models (CDMs) have received increasing attention recently. The

goal of CDMs is to classify examinees into different latent classes with unique attribute

patterns indicating mastery or nonmastery of a number of skills or attributes of inter-

est. Students with the same total score according to item response theory (IRT) or

classical test theory (CTT) can have different attribute patterns, which offers additional

information about students’ strengths and weaknesses thus informing instruction and

remediation.

A host of CDMs can be found in the literature (for reviews, see DiBello, Rous-

sos, & Stout, 2007; Rupp & Templin, 2008), and many of them are developed based

on strong cognitive assumptions about the processes involved in problem-solving. For

example, the deterministic inputs, noisy “And” gate (DINA; Haertel, 1989) model as-

sumes that examinees are expected to answer an item correctly only when they possess

all required attributes; whereas, the deterministic inputs, noisy “Or” gate (DINO; Tem-

plin & Henson, 2006) model assumes that, in principle, examinees are able to perform

an item successfully as long as they master at least one required attribute. Some gen-

eral CDM frameworks subsuming a number of commonly used CDMs have also been

developed, such as the generalized DINA (G-DINA; de la Torre, 2011) model, the log-

linear CDM (LCDM; Henson, Templin, & Willse, 2009) and the general diagnostic

model (GDM; von Davier, 2008). Although developed from different perspectives, the

G-DINA model and the LCDM are equivalent in their saturated forms, both of which

are special cases of the GDM.

In spite of a number of CDMs available, most of them are targeted for dichoto-

mous responses that stemmed primarily from multiple-choice items. The importance of
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constructed-response items, nevertheless, has been largely overlooked in cognitive di-

agnostic assessments recently. Theoretically, the constructed-response items are prob-

ably able to provide more evidence to support the inference about examinees’ attribute

patterns because they require examinees to explicitly show their problem-solving pro-

cedures. The merits of constructed-response items have also been empirically recog-

nised. For example, Birenbaum and Tatsuoka (1987) administered a fraction addition

test using open-ended and multiple-choice formats to diagnose students’ misconcep-

tions and found that open-ended items were more appropriate for the diagnostic pur-

pose according to various criteria, such as the number of identified students’ error types

and diagnosis of students’ sources of misconceptions. This conclusion has been further

examined and verified by Birenbaum, Tatsuoka, and Gutvirtz (1992), who also found

that students used different cognitive processes when responding to items with differ-

ent formats. For example, students may not really solve the problem in multiple-choice

format as expected, but try to utilize the information in alternatives, which, sometimes,

makes them more likely to achieve an incorrect solution.

Typically, although not always, constructed-response items are scored polytomously,

yielding graded response data with ordered categories. To calibrate this type of data,

one commonly used strategy is to dichotomize them so that they can be analyzed using

existing dichotomous CDMs (e.g., Johnson et al., 2013; Su, 2013). However, the pro-

cess of dichotomization often results in loss of information. To deal with polytomously

scored items more appropriately, a few polytomous CDMs have been developed, such

as the partial credit DINA (PC-DINA; de la Torre, 2010) model, the GDM for graded

responses (pGDM; von Davier, 2008), nominal response diagnostic model (NRDM;

Templin, Henson, Rupp, Jang, & Ahmed, 2008), and polytomous LCDM (Hansen,

2013). However, none of these polytomous CDMs consider the possible relation be-

tween attributes and response categories. Unlike polytomous IRT models where the

latent trait has an impact on students’ responses to all categories, in CDMs, different
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categories could measure different attributes, as shown in an example in the next sec-

tion. To take this information into account, a general polytomous CDM for graded

responses has been developed in this paper. This model is referred to as the sequential

process model to emphasize that a series of attributes is involved in the problem-solving

process.

2.2 Attribute and Category Association

Suppose solving an item consists of a finite number of sequential steps, each of which

involves some attributes. Also, suppose that students are scored according to how many

successive steps they have successfully performed. Specifically, a student falls into the

zero category if s/he fails the first step; the first category if s/he performs the first step

correctly but fails the second step; and so forth. In doing so, responses to items with H

steps have H +1 ordered categories, namely, category zero to category H.

Take 41
8 −

3
8 as an example. To solve this item, three steps may be involved. First,

41
8 is transformed to 39

8 to allow fraction subtraction; then, by subtracting the numer-

ators of two fractions, 36
8 can be obtained; in the last step, 36

8 is simplified to 33
4 .

According to the attributes identified by Tasuoka (1990), students need to know (A1)

borrow from whole number part, (A2) subtract numerators, and (A3) reduce answers to

the simplest form to succeed in step 1, 2 and 3, respectively. This example is for illus-

trative purposes only, and items in practice can be more complex. For example, some

steps could consist of multiple substeps that are not sequential and some substeps may

need multiple attributes. Additionally, although response categories are assumed to be

attained sequentially, different categories do not have to measure different attributes,

nor must the attributes show any particular structure. For example, the attributes mea-

sured by lower categories do not have to be prerequisites to those required by higher

categories.
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To relate attributes to categories, the traditional Q-matrix (Tatsuoka, 1983) has been

modified. The traditional Q-matrix is a J×K binary matrix specifying whether an at-

tribute is measured by an item, where J is the test length and K is the number of

attributes. Element q jk at row j and column k is equal to 1 if attribute k is needed

by item j, and 0 otherwise. For graded responses, a category level Q-matrix is de-

veloped in this paper, referred to as QC-matrix, where subscript C is used to denote

category. Throughout this paper, item j is assumed to have H j + 1 categories (i.e.,

0,1, . . . ,H j). The attribute and category association for item j is placed in H j rows of

the QC-matrix because category zero does not require any attribute. Each of H j rows

has K elements indicating which attributes are required by the category. In particular,

element 1 indicates that the attribute is required by this category, and 0 indicates that

the attribute is not. The QC-matrix is a ∑
J
j=1 H j×K binary matrix, and if all items are

scored dichotomously, the QC-matrix is equivalent to the traditional Q-matrix.

Table 2.1 gives the QC-matrix for the item 41
8 −

3
8 . The attribute and category

association is specified in three rows to account for four categories. The required at-

tributes for a category refer to the attributes required for the step that examinees need

to solve to answer this category correctly after they have completed all previous steps

successfully. For example, although the first two attributes are also indispensable to

achieve category three, it is not necessary to specify [1 1 1] because after examinees

have already achieved category two, only the third attribute is needed to perform cate-

gory three correctly. The QC-matrix defined in this way is referred to as the restricted

QC-matrix.

To create the restricted QC-matrix, the attribute and category association must be

known a priori. However, this information may not be available especially when CDMs

are retrofitted to existing assessments. If so, it is reasonable to assume that all attributes

required by an item are needed by each category of this item. The QC-matrix defined
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Table 2.1: Restricted QC-matrix for 41
8 −

3
8 =?

Attributes

Step Category A1 A2 A3
39

8 −
3
8 1 1 0 0

36
8 2 0 1 0

33
4 3 0 0 1

Note: A1: borrow from whole num-
ber part; A2: subtract numerators;
A3: reduce answers to the simplest
form.

in this way is called the unrestricted QC-matrix. For the previous example, the unre-

stricted QC-matrix is given in Table 2.2.

Table 2.2: Unrestricted QC-matrix for 41
8 −

3
8 =?

Attributes

Step Category A1 A2 A3
39

8 −
3
8 1 1 1 1

36
8 2 1 1 1

33
4 3 1 1 1

Note: A1: borrow from whole num-
ber part; A2: subtract numerators;
A3: reduce answers to the simplest
form.

2.3 Sequential Process Model

When a test measures K attributes, examinees can be grouped into 2K latent classes,

each having unique attribute pattern, that is, αc = (αc1, . . . ,αcK), where c = 1, . . . ,2K .

αck = 1 indicates attribute k is mastered by examinees in latent class c, and αck = 0

indicates attribute k is not mastered by examinees in latent class c. Similar to Samejima

(1995), we define the probability of examinees with attribute pattern αc answering

category h of item j correctly provided that they have already completed the category

h− 1 successfully as the processing function of category h, denoted by S j(h|αc), and
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we can reasonably assume

S j(h|αc) =


1, if h = 0

0, if h = H j +1,

because examinees can always achieve category zero, but never achieve category H j +

1. Students score h if and only if they answer category one to h correctly, and if h is

not the highest category, category h+ 1 incorrectly; therefore, the category response

function for item j can be expressed as

P(X j = h|αc) = [1−S j(h+1|αc)]
h

∏
x=0

S j(x|αc), (2.1)

subject to the constraints
H j

∑
h=0

P(X j = h|αc) = 1 ∀c,

where h = 0, . . . ,H j, and P(X j = h|αc) is the probability of examinees with attribute

pattern αc scoring h on item j. It is reasonable to assume that the processing function

S j(h|αc) is a function of examinees’ attribute patterns and the required attributes for

category h of item j. The processing function is the kernel of the sequential process

model, and can be formulated using most dichotomous CDMs. For example, if solving

a step needs the possession of all required attributes, the DINA model can be used

as the processing function. By parameterizing each category separately, the sequential

process model allows different cognitive processes to be modeled at different categories

within a single item.

2.3.1 Sequential G-DINA Model

In this paper, the G-DINA model (de la Torre, 2011) is used as the processing function

because it offers a general framework subsuming several widely used CDMs. The
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resulting model is referred to as the sequential G-DINA model.

Like the G-DINA model, for item j, 2K latent classes can be collapsed into 2K∗j

latent groups with unique probabilities of success, where K∗j is the number of required

attributes for item j. For category h, 2K∗j latent groups can be further collapsed into

2K∗jh latent groups, where K∗jh is the number of required attributes for category h of

item j. Let α∗l jh be the reduced attribute vector for category h of item j consisting of

the required attributes for this category only, where l = 1, · · · ,2K∗jh . Without loss of

generality, we can assume the first K∗jh attributes are required for category h of item j,

that is,α∗l jh = [αl1, . . . ,αlk, . . . ,αlK∗jh
]. The processing function S j(h|αc) can be written

as S j(h|α∗l jh), and formulated using the identity link G-DINA model:

S j(h|α∗l jh) =φ jh0 +

K∗jh

∑
k=1

φ jhkαlk +

K∗jh

∑
k′=k+1

K∗jh−1

∑
k=1

φ jhkk′αlkαlk′+ · · ·

+φ jh12···K∗jh

K∗jh

∏
k=1

αlk, (2.2)

where φ jh0 is the intercept, φ jhk is the main effect due to αlk, φ jhkk′ is the two-way

interaction effect due to αlk and αlk′ , and φ jh12···K∗jh is K∗jh-way interaction effect due to

αlk to αlK∗jh
. φ jh0 represents the processing function of category h for examinees who

master none of required attributes, φ jhk is the change of processing function of category

h due to the mastery of attribute k, and interaction coefficients represent the change in

the processing function of category h due to the mastery of all relevant attributes that

is over and above all impact of lower order effects. Like the G-DINA model, the

processing function can also be defined using log or logit link function. For category

h of item j, there are 2K∗jh item parameters, as in, φ jh = {φ jh0,φ jh1, · · · ,φ jh12···K∗jh}.

By defining processing functions S j(h|α∗jh) = {S j(h|α∗l jh)}, φ jh can be derived from

S j(h|α∗jh) directly because equation (2) can be expressed as S j(h|α∗jh) =M jhφ jh,

where M jh is an invertible design matrix of dimension 2K∗jh × 2K∗jh (See de la Torre,
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2011, for details about the design matrix). This implies that processing functions can

also be viewed as item parameters, though this is not true if constraints are added to

the processing functions.

As shown by de la Torre (2011), by setting appropriate constraints in the G-DINA

model, the DINA model, DINO model, A-CDM, linear logistic model (LLM; Maris,

1999) and reduced reparametrized unified model (R-RUM; Hartz, 2002) can be ob-

tained. Those models can also be specified as the processing functions using similar

constraints in the sequential G-DINA model. Please refer to de la Torre (2011) for

details about the appropriate constraints.

The sequential G-DINA model can use either restricted or unrestricted QC-matrix.

For notational convenience, the sequential G-DINA model using restricted and unre-

stricted QC-matrix are called restricted and unrestricted sequential G-DINA model,

and abbreviated as RS-GDINA model and US-GDINA model, respectively. The use

of restricted QC-matrix allows us to model different underlying processes at different

response categories. The use of unrestricted QC-matrix, on the other hand, provides a

possible solution to account for the uncertainty in the attribute and category associa-

tion. When the attribute and category association is available, the RS-GDINA model

may be preferred theoretically because it usually estimates fewer item parameters than

the US-GDINA model. Regarding the aforementioned example, the RS-GDINA model

has six item parameters but the US-GDINA model has 24, which implies that additional

18 parameters for this single item need to be estimated when using the unrestricted QC-

matrix. Nevertheless, the practical consequence of estimating extra parameters needs

further empirical examination.

2.3.2 Parameter Estimation

Item parameters of the sequential G-DINA model can be estimated using the marginal

maximum likelihood estimation approach via Expectation Maximization (MMLE/EM)
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algorithm (Bock & Aitkin, 1981). Let α∗l j be the reduced attribute pattern for the lth

collapsed latent group for item j, where l = 1, . . . ,2K∗j . Also, let Xi j be the response of

examinee i to item j, where i = 1, . . . ,N. Under the assumption of local independence,

the conditional probability of the response vectorXi can be written as

P(Xi|α∗l j) =
J

∏
j=1

H j

∏
h=0

P(X j = h|α∗l j)
I(Xi j=h),

where I(Xi j = h) is an indicator variable evaluating whether Xi j is equal to h. The

MMLE/EM algorithm implements E-step and M-step iteratively item by item until con-

vergence. In particular, for item j, based on the provisional item parameter estimates

and the distribution of reduced latent classes p(α∗l j), E-step calculates the expected

number of examinees with attribute pattern α∗l j scoring in category h, that is,

r̄l jh =
N

∑
i=1

I(Xi j = h)P(α∗l j|Xi),

where P(α∗l j|Xi) is the posterior probability of examinee i having reduced attribute

pattern α∗l j, and can be calculated by

P(α∗l j|Xi) =
P(Xi|α∗l j)p(α∗l j)

∑
2

K∗j
l=1 P(Xi|α∗l j)p(α∗l j)

.

In the M-step, the following object function ` needs to be maximized with respect to

item parameters φ j, which is a vector of length ∑
H j
h=1 2K∗jh when the step function is the

G-DINA model, using some general optimization techniques,

`=
2

K∗j

∑
l=1

H j

∑
h=0

r̄l jh log
[
P̂(X j = h|α∗l j)

]
.
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Two steps are repeated until convergence. In this study, the Nelder and Mead’s (1965)

simplex method is used for M-step optimization. It is one of the most popular derivative-

free optimization technique applicable for multidimensional nonlinear problems. After

generating a geometric simplex, its convergence is guided by moving the simplex ap-

propriately (Nelder & Mead, 1965). It should be noted that although the Nelder and

Mead method is robust and the default method for the optim function in R programming

language (R Core Team, 2015), other optimization techniques such as quasi-Newton

methods can also be employed as alternatives. For estimating the joint attribute distri-

bution, an empirical Bayes method (Carlin & Louis, 2000) is adopted. Specifically, the

prior distribution of latent classes is uniform at the beginning, and then updated after

each EM iteration based on the posterior distribution, as in, p(αc)=∑
N
i=1 P(αc|Xi)/N.

Please note that the above MMLE/EM algorithm is suitable to both RS-GDINA

model and US-GDINA model. However, for the US-GDINA model using the G-DINA

model as the processing function, item parameter estimates in M-step can be obtained

via closed-form solutions; therefore, the general optimization routine is not necessary.

After a few algebraic manipulations and simplifications, we have

P̂(X j = h|α∗l j) =
∑

N
i=1 I(Xi j = h)P(α∗l j|Xi)

∑
N
i=1 P(α∗l j|Xi)

.

By substituting P̂(X j = h|α∗l j) into equation 4.2, the marginal likelihood estimates of

S j(h|α∗l j) can be obtained. Then, item parameter φ can be estimated via the least-

square method as introduced by de la Torre (2011). After estimating item parameters,

expected a posteriori (EAP) can be used to estimate individuals’ attribute patterns.

3.3. Relations with existing polytomous CDMs

Although the US-GDINA model is originally developed for ordered responses with

unknown category and attribute association, it has been found to be suitable for nom-

inal response data as well. In particular, the US-GDINA model can be shown to be
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equivalent to the NRDM (Templin et al., 2008) and the PC-DINA model (de la Torre,

2010) when the processing function is the G-DINA and DINA model, respectively.

The equivalence becomes evident when we view all of them as the CDM counterparts

of Bock’s (1972) nominal response model involving direct estimation of category re-

sponse functions. For instance, the category response function of the NRDM can be

reparameterized using the identity link as

P(X j = h|α∗l j) = δ jh0 +

K∗j

∑
k=1

δ jhkαlk +

K∗j

∑
k′=k+1

K∗j−1

∑
k=1

δ jhkk′αlkαlk′+ · · ·+δ jh12···K∗j

K∗j

∏
k=1

αlk,

(2.3)

with the constraint of ∑
H j
h=0 P(X j = h|α∗l j) = 1. It can be shown that estimating δ =

{δ jh0,δ jh1, · · · ,δ jh12···K∗jh} is equivalent to estimating the category response function

P(Xi j = h|α∗l j) because they can be derived directly from each other. Bearing this in

mind, the category response function of the sequential G-DINA model in equation 4.2

can then act as a bridge between these two models. Please refer to the online appendix

for more details.

In spite of the equivalence, the importance of the US-GDINA model should not

be overlooked. Both RS-GDINA and US-GDINA models are special cases of the se-

quential G-DINA model, with the only difference in how the QC-matrix is constructed

to reflect our knowledge, or lack thereof, of the category and attribute association.

The development of the US-GDINA model allows us to see that the NRDM and PC-

DINA model are special cases of the sequential G-DINA model (i.e., when responses

are treated as nominal data). As a result, the proposed sequential G-DINA model can

serve as a very general model framework so that researchers are able to calibrate si-

multaneously a number of different CDMs for dichotomous, ordered, or unordered

polytomous responses with or without specific assumptions about the cognitive pro-

cesses (e.g., conjunctive, disjunctive or additive) for a single assessment. In addition,
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when fitted to ordered responses where categories are attained sequentially, the pro-

cessing functions from the US-GDINA model can provide extra information that the

NRDM and PC-DINA model typically do not provide. Lastly, the MMLE/EM algo-

rithm developed for the sequential G-DINA model is another contribution of this work

in that it provides a much faster alternative to the MCMC algorithm originally used for

NRDM (Templin et al., 2008).

2.4 Simulation Study

Two simulation studies were conducted to evaluate the performance of the sequential

G-DINA model under various conditions. The processing functions used in the sim-

ulation studies were the G-DINA model, unless otherwise stated. Study 1 examined

(1) whether parameters of the sequential G-DINA model can be recovered accurately

based on the proposed estimation algorithm; (2) whether the sequential G-DINA model

can provide more accurate person classifications than the G-DINA model using di-

chotomized responses; and (3) whether the attribute and category association can be

used to improve parameter recovery for the sequential G-DINA model.

The appropriateness of the RS-GDINA model depends upon whether the observed

processing functions are in accordance with that predicted by the attribute and cat-

egory association. If the predicted processing functions deviate from the observed

ones dramatically, the US-GDINA model may be more appropriate because it relaxes

the assumption about the attribute and category association. Study 2 investigated the

impact of the discrepancy between the observed and predicted processing functions

on parameter estimation. Likelihood ratio test (LRT), Akaike information criterion

(AIC; Akaike, 1974), and Bayesian information criterion (BIC; Schwarz, 1978) have

been widely used for model comparison within the CDM context (e.g., DeCarlo, 2011;

Kunina-Habenicht, Rupp, & Wilhelm, 2012; de la Torre & Lee, 2013). Study 2 also ex-

amined whether these indices can be used to select the appropriate sequential G-DINA
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model under various degrees of discrepancy.

Sixteen polytomous items and five dichotomous items were used for the data simu-

lation. Five attributes were measured by these items. The restricted QC-matrix is given

in Table 4.1, where all attributes are ensured to be measured the same number of times.

Table 2.3: Restricted QC-matrix for data simulation
Item Category A1 A2 A3 A4 A5 Item Category A1 A2 A3 A4 A5

1 1 1 0 0 0 0 11 1 1 1 0 0 0
1 2 0 1 0 0 0 11 2 0 0 0 0 1
2 1 0 0 1 0 0 12 1 1 1 1 0 0
2 2 0 0 0 1 0 12 2 0 0 0 1 1
3 1 0 0 0 0 1 13 1 1 1 0 0 0
3 2 1 0 0 0 0 13 2 0 0 1 1 1
4 1 0 0 0 0 1 14 1 1 0 1 0 0
4 2 0 0 0 1 0 14 2 0 0 0 1 0
5 1 0 0 1 0 0 14 3 0 0 0 0 1
5 2 0 1 0 0 0 15 1 0 0 0 0 1
6 1 1 0 0 0 0 15 2 0 0 1 1 0
6 2 0 1 1 0 0 15 3 0 1 0 0 0
7 1 0 0 1 0 0 16 1 1 0 0 0 0
7 2 0 0 0 1 1 16 2 0 1 0 0 0
8 1 0 0 0 0 1 16 3 0 0 1 1 0
8 2 1 1 0 0 0 17 1 1 0 0 0 0
9 1 0 0 0 1 1 18 1 0 1 0 0 0
9 2 0 0 1 0 0 19 1 0 0 1 0 0

10 1 0 1 0 1 0 20 1 0 0 0 1 0
10 2 1 0 0 0 0 21 1 0 0 0 0 1

2.4.1 Study 1

2.4.1.1 Design

Sample size and item quality were controlled in this study. Examinees of size N = 500,

1000, 2000 or 4000 were drawn from a uniform attribute distribution. Item responses

were simulated based on the RS-GDINA model using the restricted QC-matrix in Table

4.1. Item j was of high quality when S j(h|α∗l jh = 1) = 0.9 and S j(h|α∗l jh = 0) = 0.1,
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moderate quality when S j(h|α∗l jh = 1) = 0.8 and S j(h|α∗l jh = 0) = 0.2, and low qual-

ity when S j(h|α∗l jh = 1) = 0.7 and S j(h|α∗l jh = 0) = 0.3, for all categories. When

K∗jh > 1, the processing functions for latent classes with α∗l jh not equal to 0 or 1,

that is, S j(h|α∗l jh 6⊂ {0,1}), were drawn from a uniform distribution U [S j(h|α∗l jh =

0),S j(h|α∗l jh = 1)]. The processing functions were simulated with the monotonicity

constraint that examinees mastering additional attributes would not have a lower pro-

cessing function. Note that, to easily control item quality, the processing functions

are manipulated directly instead of φ because either of them can be viewed as item

parameters when the G-DINA model is used as the processing function. Based on

simulated processing functions, category response functions of item j can be calcu-

lated, as in, Pl j =
[
P(X j = 0|α∗l j), . . . ,P(X j = H j|α∗l j)

]
. Responses of examinees with

attribute pattern α∗l j were generated from a Bernoulli and generalized Bernoulli dis-

tribution with parameters of Pl j, if item j is scored dichotomously and polytomously,

respectively. To reduce Monte Carlo sampling errors, 100 data sets were generated in

each condition.

Both the US-GDINA model and the RS-GDINA model were fitted to simulated

data. To fit the US-GDINA model, the unrestricted QC-matrix needs to be constructed

from Table 4.1. Specifically, for each item, attributes required by a category are also

assumed to be required by all other categories. Take item 15 as an example, in the

unrestricted QC-matrix, all three categories require the last four attributes. To fit the G-

DINA model, polytomous responses were dichotomized in two ways. For one, partial

credit and full marks were converted to 1; for the other, only full marks were converted

to 1, and partial credit was transformed to 0. In either case, the q-vector of an item in

the traditional Q-matrix is specified to measure all required attributes for each category

of this item. For example, the q-vector for item 15 is [0 1 1 1 1]. The code for imple-

menting the MMLE/EM algorithm presented in the previous section was written in R

language (R Core Team, 2015), and can be requested from the first author.
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Item parameter recovery was examined using the root mean square error (RMSE)

of the estimated category response function for each latent class from the true, that is,

RMSE =

√
∑

R
r=1 ∑

2K

c=1 ∑
J
j=1
[
P̂(r)(X j = h|αc)−P(r)(X j = h|αc)

]2
J×2K×R

,

where J, K and R are the number of items, attributes and replications, respectively, and

P̂(r)(X j = h|αc) and P(r)(X j = h|αc) are the estimated and true probability of scoring

in category h of item j for examinees with attribute pattern αc for the rth replication,

respectively. Note that RMSE was only calculated for the sequential G-DINA model.

Person parameter recovery was evaluated using the proportion of correctly classi-

fied attribute vectors (PCV) defined as,

PCV =
∑

R
r=1 ∑

N
i=1 I(r)[αi = α̂i]

N×R
,

where I(r)[αi = α̂i] is an indicator variable evaluating whether the estimated attribute

vector matches the true for the rth replication.

2.4.1.2 Results

Figure 2.1 gives RMSEs of the RS-GDINA model and the US-GDINA model under

various conditions. It is worth emphasizing that the data were generated using the

RS-GDINA model; therefore, to evaluate item parameter recovery, we only focused

on the RMSEs of the RS-GDINA model. The RMSEs of the RS-GDINA model were

between 0.012 and 0.090, with the largest value occurring when N = 500 and item

quality was low. Although, as expected, sample size and item quality have an impact

on parameter estimation, the fact that the maximum RMSE was less than 0.1 shows

that item parameters can be recovered accurately based on the proposed estimation

algorithm.
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Figure 2.1: RMSE of the sequential G-DINA models

In addition, the RS-GDINA model always had smaller RMSEs than the US-GDINA

model, as shown in Figure 2.1. The difference in RMSE between these two models can

be larger than 0.1, when item quality was low and sample size was relatively small. For

example, the RMSE of the RS-GDINA model was lower than that of the US-GDINA

model by 0.126, when N = 1000 and item quality was low. This suggests that the

attribute and category association can provide important information for accurate item

parameter estimation for the sequential G-DINA model, especially under the condition

of low item quality and small sample sizes.

Table 2.4 gives PCV for the sequential G-DINA model and the G-DINA model.

The results showed that the way of dichotomization influenced the classification rates
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Table 2.4: PCV for the sequential G-DINA models and the G-DINA model

N Item Quality RS-GDINA US-GDINA GDINA1 GDINA2

500
High 0.917 0.901 0.759 0.742

Moderate 0.679 0.601 0.442 0.371
Low 0.310 0.223 0.182 0.142

1000
High 0.921 0.911 0.790 0.752

Moderate 0.692 0.641 0.476 0.415
Low 0.354 0.254 0.199 0.147

2000
High 0.923 0.918 0.799 0.761

Moderate 0.697 0.674 0.501 0.441
Low 0.372 0.295 0.217 0.152

4000
High 0.924 0.921 0.809 0.765

Moderate 0.702 0.690 0.534 0.456
Low 0.384 0.339 0.240 0.168

Note: RS-GDINA: the restricted sequential G-DINA model; US-GDINA: the
unrestricted sequential G-DINA model; GDINA1: the G-DINA model (exam-
inees get one point as long as they get partial credit); GDINA2: the G-DINA
model (examinees get one point only if they get full marks).

of the G-DINA model. Converting both partial credit and full marks to one point (de-

noted by GDINA1) produced better person classification rates than converting only full

marks to one point (denoted by GDINA2) up to 7.8%, with the maximum difference

occurring when N = 4000 and item quality was moderate. However, this conclusion

may not hold when other dichotomous CDMs rather than the G-DINA model are em-

ployed, and therefore, needs further investigation.

The sequential G-DINA model produced better person classifications than the G-

DINA model fitted to dichotomized responses across all conditions. This conclusion

holds regardless of the way of dichotomization. For example, when item quality was

moderate and N = 500, the RS-GDINA model outperformed the GDINA1 by 23.7%

in terms of the PCV. Additionally, the RS-GDINA model produced better person clas-

sifications than the US-GDINA model across all conditions. The difference in PCV

between these two models can be noticeable when item quality was low and sample

size was small. For example, with items of low quality, the RS-GDINA model out-

performs the US-GDINA model by 8.7% and 10.0% when sample sizes were 500 and
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1000, respectively. When item quality was high or sample size was large, nevertheless,

the difference tended to be negligible. These results imply that when enough informa-

tion has been provided through large sample size and high-quality items, the category

and attribute association can offer limited extra information to improve the classifi-

cation; whereas when sample size is small and item quality is low, the category and

attribute association can be very important for accurate attribute estimation.

2.4.2 Study 2

2.4.2.1 Design

This study explored whether LRT, AIC and BIC can be used to choose between the RS-

GDINA model and the US-GDINA model. The factors examined in this study included

sample size, item quality, fitted models, and magnitude of disturbances. The settings

of sample size and item quality were the same as the previous study. To quantify

the uncertainty in attribute and category association, small or large disturbances were

added to the simulated processing functions. Specifically, the processing functions of

each item were first simulated based on the RS-GDINA model using the restricted QC-

matrix in Table 4.1. Take the first item as an example. When item quality is moderate,

the simulated processing functions of the second category are S(h = 2|α∗l jh = 0) = 0.2

and S(h= 2|α∗l jh = 1) = 0.8, or equivalently, S(h= 2|α∗l j = 00) = S(h= 2|α∗l j = 10) =

0.2 and S(h = 2|α∗l j = 01) = S(h = 2|α∗l j = 11) = 0.8. Then, random disturbances ε

were added to the simulated processing functions of α∗l j. ε ∼U [−0.1,0.1] indicates

a small disturbance and ε ∼U [−0.2,0.2] a large disturbance, where U represents the

uniform distribution. Large disturbance implies a large discrepancy between the data

and the RS-GDINA model. If the processing function is greater than 1 or less than 0

after adding the disturbance, it is set to be 0.99 and 0.01, respectively. Study 1 can
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be viewed as a condition where ε = 0. In each condition, 100 data sets were gener-

ated and fitted by both the RS-GDINA model and the US-GDINA model. Please note

that adding random disturbances in simulating data based on the RS-GDINA model

is equivalent to simulating data from the US-GDINA model. However, the size of

disturbances can help quantify how “wrong” the pre-specified attribute and category

association is.

AIC and BIC were used for model comparison. LRT was also employed as the RS-

GDINA model is nested within the US-GDINA model. Specifically, ∆χ2 can be cal-

culated as the difference in -2 log likelihood of two models. There are ∑
J
j=1 ∑

H j
h=1 2K∗jh

item parameters and 2K−1 latent class parameters, that is, 145 and 449 parameters for

the RS-GDINA and US-GDINA models, respectively, based on the QC-matrix in Table

3. Accordingly, ∆χ2 follows a χ2 distribution with 304 degrees of freedom. LRTs were

conducted at the significant level of 0.05. To understand the properties of LRT, AIC

and BIC, the proportion of choosing the US-GDINA model by each statistic was ex-

amined. The PCV based on the models selected by LRT, AIC and BIC was calculated

as well.

2.4.2.2 Results

Table 2.5 gives the proportion of choosing the US-GDINA model for LRT, AIC and

BIC. The results for ε = 0 represented type I errors, which were obtained by reanalyz-

ing the data in Study 1. When ε = 0, AIC and BIC correctly chose the RS-GDINA

model for all replications across all conditions; whereas LRT yielded inflated type I

errors (ranging from 0.11 to 1) when items quality was moderate or low.

When noises were added (i.e., ε = 0.1 and ε = 0.2), LRT was always able to iden-

tify this deviation from the RS-GDINA model and chose the US-GDINA model under

all conditions. BIC, however, consistently chose the RS-GDINA model when ε = 0.1,

with only one exception occurring when item quality was high and sample size was
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Table 2.5: Proportion of choosing the US-GDINA model
ε = 0 ε = 0.1 ε = 0.2

N Item Quality LRT AIC BIC LRT AIC BIC LRT AIC BIC

500
High 0.14 0.00 0.00 1.00 0.01 0.00 1.00 1.00 0.00

Moderate 0.90 0.00 0.00 1.00 0.00 0.00 1.00 0.99 0.00
Low 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.31 0.00

1000
High 0.08 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00

Moderate 0.57 0.00 0.00 1.00 0.02 0.00 1.00 1.00 0.00
Low 1.00 0.00 0.00 1.00 0.01 0.00 1.00 0.98 0.00

2000
High 0.02 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.98

Moderate 0.24 0.00 0.00 1.00 0.90 0.00 1.00 1.00 0.14
Low 1.00 0.00 0.00 1.00 0.03 0.00 1.00 1.00 0.00

4000
High 0.06 0.00 0.00 1.00 1.00 0.12 1.00 1.00 1.00

Moderate 0.11 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00
Low 0.96 0.00 0.00 1.00 0.67 0.00 1.00 1.00 0.00

Note: LRT: likelihood ratio test; AIC: Akaike information criterion (Akaike, 1974); BIC:
Bayesian information criterion (Schwarz, 1978).

4000. When ε = 0.2, BIC still tended to select the RS-GDINA model, especially when

sample size was relative small or items quality was low.

When ε = 0.2, the proportion of choosing the US-GDINA model for AIC was

greater than 98% in all conditions, except when sample size was 500 and item quality

was low, where the proportion was 31%. With small disturbances, AIC preferred the

US-GDINA model when items were of high quality and samples were of relatively

large sizes. For example, when N = 500 and 4000, the proportions of choosing US-

GDINA model for AIC were less than 1% and greater than 67%, respectively. When

N = 1000 or 2000, the proportion of choosing US-GDINA model for AIC increased as

item quality improved.

Table 2.6 gives the PCV for the RS-GDINA model, the US-GDINA model and

selected models using LRT, AIC, and BIC when disturbances were added. The PCV

for RS-GDINA model and US-GDINA model when ε = 0 were given in Table 2.4.

Considering that both AIC and BIC always chose the RS-GDINA model when ε = 0,

the PCV results for ε = 0 are omitted from Table 2.6. When ε = 0.1, the RS-GDINA
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model produced comparable or even better classification rates than the US-GDINA

model, especially when sample sizes were relatively small and item quality was low.

With large disturbances, the US-GDINA model outperformed the RS-GDINA model in

all conditions, with one exception occurring when N = 500 and item quality was low.

The difference in PCV between these two models was up to 8.5%, with the maximum

value occurring when N = 4000 and items were of low quality.

To compare LRT, AIC and BIC, the higher and lower values of PCV of the RS-

GDINA model and the US-GDINA model are used as the upper and lower bench-

marks, respectively. Across all conditions, selected models based on these three statis-

tics yielded comparable or higher values of PCV than the lower benchmark, which

implies that all of them are useful for model selection. The PCV of models selected

using LRT can be lower than the upper benchmark up to 10%, with the value of 10%

occurring when ε = 0, N = 1000, and item quality was low (which is not given in Table

2.6). Note that, in this condition, LRT always chose the US-GDINA model incorrectly

for all replications, as shown in Table 2.5. For BIC, the maximum difference in PCV

between the selected models and the upper benchmark is 8.5%, which occurred when

ε = 0.2, N = 4000 and items were of low quality. Lastly, AIC selected the optimal

models when ε = 0.2, which yielded the same PCV as the upper benchmark. When

ε = 0.1, AIC also produced almost optimal model selections - the maximum difference

in PCV between the selected models and the upper benchmark is 0.7%, occurring when

N = 4000 and item quality is low. These results suggest that compared with LRT and

BIC, models selected by AIC yielded desirable person classification rates in terms of

PCV under all conditions.
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2.5 Real Data Illustration

2.5.1 Data

The data for this illustration were a subset of the data originally used by Lee, Park,

and Taylan (2011), and were taken from booklets 4 and 5 of TIMSS 2007 fourth

grade mathematics assessment. Responses of 823 students to 12 of 25 items involv-

ing eight of the original 15 attributes identified by Lee et al. (2011) were used in the

current study. The definitions of the attributes are given in Table 2.7. Two of the five

constructed-response items (i.e., Items 3 and 9) were scored polytomously with three

ordered response categories (i.e., 0, 1 and 2). Items M031242A and M031242B, re-

ferred to as Items 7a and 7b, respectively, are related to a common stimulus as shown

in Figure 2.2. The former requires students to complete tables using the information

in two posters, whereas the latter requires one of the correct answers: “3 (as long as

does not contradict Part A [i.e., Item 7a] including table empty or incomplete)”, or

“number(s) correct according to a complete but erroneous table in Part A OR indicates

no match according to a complete but erroneous table in Part A” (Foy & Olson, 2009,

p. 95). The scoring rule for the latter item implies a heavy dependence between the

two items, which has also been found by Hansen (2013) when examining testlet effect.

Although it is possible for students to solve Item 7b independently, it is more straight-

forward, and thus more likely for them to obtain the answer directly by reading from

the tables completed in Item 7a. A further examination of students’ responses showed

that only three out of 823 students answered Item 7b correctly, but not Item 7a. This

suggests that we can consider the two items as a single polytomous item to handle the

testlet effect, and at the same time, to allow for answering Item 7a successfully as a

prerequisite to answering Item 7b correctly for most, if not all, students. By removing

the responses of three students who answer Item 7b correctly, but not Item 7a, and

combining Items 7a and 7b as a single polytomous item, the responses of 820 students
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to 11 items were analyzed.

Table 2.7: Attribute definitions for TIMSS 2007 data
A1. Representing, comparing, and ordering whole numbers as well as

demonstrating knowledge of place value.
A2. Recognize multiples, computing with whole numbers using the

four operations, and estimating computations.
A3. Solve problems, including those set in real life contexts (for example,

measurement and money problems).
A4. Find the missing number or operation and model simple situations

involving unknowns in number sentence or expression.
A5. Describe relationships in patterns and their extensions;

generate pairs of whole numbers by a given rule and identify a rule
for every relationship given pairs of whole numbers.

A6. Read data from tables, pictographs, bar graphs, and pie charts.
A7. Comparing and understanding how to use information from data.
A8. Understanding different representations and organizing data using

tables, pictographs, and bar graphs.

Note: This table is modified from Lee et al. (2011).

The sequential G-DINA model was fitted to all items. Note that for dichotomously

scored items, the sequential G-DINA model is equivalent to the G-DINA model. We

used a and b to denote category 1 and 2, respectively, for polytomously scored items

3 and 9. For example, 9a and 9b represent the first and second categories of Item 9,

respectively. To fit the model, the q-vector for each category of Items 3, 7 and 9 need to

be derived from the original item level q-vector developed by Lee et al. (2011). Item 3

requires students to complete a bar graph by drawing two bars based on the information

in a table. Students can get a score of one if only one bar is drawn correctly, and two

if both bars are drawn correctly (Foy & Olson, 2009, p. 85). Therefore, it is clear that

category 3a is a prerequisite to 3b. Because both categories require the same operation,

they measure the same set of attributes, as in, A1, A6 and A8. When viewed as an

independent item, Item 7b requires three attributes (i.e., A2, A3 and A7; Lee et al.,

2011); however, when Items 7a and 7b are assumed to be attained sequentially, only

A7 (i.e., comparing and understanding how to use information from data) is necessary
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Table 2.8: QC-matrix for TIMSS 2007 data
Attributes

Item TIMSS Item No. Category A1 A2 A3 A4 A5 A6 A7 A8
1 M041052 1 1 1 0 0 0 0 0 0
2 M041281 1 0 1 1 0 1 0 0 0
3a M041275 1 1 0 0 0 0 1 0 1
3b M041275 2 1 0 0 0 0 1 0 1
4 M031303 1 0 1 1 0 0 0 0 0
5 M031309 1 0 1 1 0 0 0 0 0
6 M031245 1 0 1 0 1 0 0 0 0
7a M031242A 1 0 1 1 0 1 0 0 0
7b M031242B 2 0 0 0 0 0 0 1 0
8 M031242C 1 0 1 1 0 1 0 1 0
9a M031247 1 0 1 1 1 0 0 0 0
9b M031247 2 0 1 1 1 0 0 0 0
10 M031173 1 0 1 1 0 0 0 0 0
11 M031172 1 1 1 0 0 0 1 0 1

Note: Polytomous items are shown in bold; This QC-matrix is modified from Lee et al. (2011).

for Item 7b. Finally, Item 9 requires students to solve a problem in real life context.

Students get a score of one if they provide a correct problem-solving procedure, but

with computational errors; or if they provide correct final solution without their work

shown. If both the solution and procedure are correctly presented, students get a score

of two (Foy & Olson, 2009, p. 98). Although this scoring rubric implies that category

9a is a prerequisite to 9b, it is not clear that which attributes are involved in each

category. In particular, it is difficult to determine that which attributes are used if only

the final solution is provided without their work shown, and that which attributes are

involved when computational errors occur. Therefore, we used the unrestricted QC-

matrix for Item 9, and assumed that both categories required A2, A3 and A4. The

QC-matrix is given in Table 2.8.

Based on the QC-matrix, there were ∑
11
j=1 ∑

H j
h=1 2K∗jh = 102 item parameters and

28− 1 = 255 latent class parameters. S(h|α∗l jh) were constrained to be equal to or

greater than S(h|α∗l′ jh) whenever α∗l jh � α∗l′ jh, similar to de la Torre (2011). Also, the
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lower and upper bounds for processing functions were set to 0.001 and 0.999, respec-

tively. The MMLE/EM algorithm described in the previous section with a convergence

criterion of 0.001 was used for this analysis. It should be noted that, due to the rela-

tively small number of examinees and items, large number of attributes, and possible

misspecifications in the QC-matrix, the results should be interpreted with caution.

2.5.2 Results

Given in Table 2.9 are the estimated processing functions of the 11 items for each of

the specific reduced attribute patterns. There are 2K∗jh processing functions for category

h of item j associated with the reduced attribute patterns given on the top of the table.

It should be noted that the same reduced attribute pattern for different items may not

represent the same set of attributes. For example, Items 5 and 6 each have four reduced

attribute patterns, but they refer to different attributes (i.e., A2 and A3 for Item 5, and

A2 and A4 for Item 6).

For Item 7, students who have mastered all the required attributes for category 1

(i.e., A2, A3 and A5) have a 95.5% chance of answering this category correctly; how-

ever, those who lack the required attributes have only 8.8% chance of being correct.

After completing category 1 correctly, students who have mastered A7 and those who

have yet to master the attribute have 99.9% and 0.1% chance of being correct on cat-

egory 2, respectively. Furthermore, students’ responses to category 1 do not appear to

satisfy the conjunctive assumption that lacking one of the required attributes produces

identical processing functions. For example, the processing function for students who

have mastered A5 but not A2 and A3 is approximately twice as high as that for stu-

dents who have mastered A3 only, both of which are much higher than that for students

who have not mastered any required attribute. It can also be noted that the conjunctive

assumption may not hold well for most categories requiring two or more attributes. A

such fitting the DINA model to the data, as in Lee et al. (2011) and Hansen (2013),
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might be an oversimplification.

A close scrutiny of the processing functions reveals that for most categories, stu-

dents who mastered all the required attributes have very high probabilities of suc-

cess (e.g., the processing functions are greater than 0.95 for 12 out of 14 categories);

whereas those who mastered none of the required attributes have low probabilities of

success (e.g., the processing functions are less than 0.15 for 9 out of 14 categories).

Similar to de la Torre (2008), S j(h|1)−S j(h|0) can be defined as a category discrim-

ination index for category h of item j. For 14 categories of 11 items in this data, the

discrimination indices range from 0.488 to 0.998, with the mean of 0.79. This means

that overall, most categories can be considered very discriminating.

In addition, compared with fitting NRDM to Item 9, fitting the US-GDINA model

provided more information about response categories. For instance, mastering A4 con-

tributed considerably to the processing functions for 9b, but not for 9a, which implies a

possible misspecification in the q-vector of 9a because A4 does not seem to be neces-

sary for this category. Similar findings can be observed for Item 1 and 6. For example,

A2 has a trivial contribution to the success probability for Item 6, and therefore, may

not be necessary. These, however, need to be investigated further.

Lastly, although the processing functions can be interpreted in a straightforward

manner as above, the category response functions can also be derived easily and inter-

preted accordingly. For example, students who mastered all the required attributes for

Item 3 have 99.8% chance of getting a score of two; whereas those who only mastered

A1 have 72.2% chance of getting a score of one, but only 1% chance of getting a score

of two.
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Posters for two sports clubs that rent bikes are shown below. 

 

A. Use the information in the posters to complete the tables. 

Mountain Bike rental 

Hours Cost (zeds) 

1 8 

2 11 

3  

4  

5  

6  

 

B. For what number of hours are the rental costs the same at the two clubs? 

Answer: ___________________________________ 

 

Copyright © 2008 International Association for the Evaluation of Educational 

Achievement (IEA). All rights reserved. 

Roadrace Bike Rentals 

Hours Cost (zeds) 

1 10 

2 12 

3  

4  

5  

6  

 

Figure 2.2: Item M031242A and M031242B from TIMSS 2007 assessment
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2.6 Summary and Discussion

In this paper, we developed a new polytomous CDM for graded responses (i.e., the

sequential G-DINA model). Unlike other existing polytomous CDMs, by taking the

attribute and category association into account, the sequential G-DINA model is able

to model different cognitive processes at different response categories when these cat-

egories are completed in a sequential manner. Although initially developed for graded

responses, the sequential G-DINA model is also suitable for unordered categorical re-

sponses when the unrestricted QC-matrix is used. The simulation study shows that

the proposed estimation algorithm can produce accurate item and person parameter

recovery.

The RS-GDINA model and the US-GDINA model were distinguished in this paper

to account for possible uncertainty in attribute and category association. LRT, AIC and

BIC were used to compare the RS-GDINA and US-GDINA models empirically. Based

on the simulation study, selected models based on AIC can produce almost optimal

person classifications in all simulated conditions. LRT and BIC yielded worse results

in some conditions.

The development of the sequential G-DINA model has important practical impli-

cations in that it opens the possibility of relating response categories to attributes of

interest. In particular, when writing polytomous items for cognitive diagnostic assess-

ment, item writers may consider whether it is possible to link categories with attributes.

In doing so, more diagnostic information may be extracted, which in turn can lead to

more accurate person classifications.

Despite promising results, only the psychometric framework has been developed

in this study. This offers researchers and practitioners a flexible tool to analyze poly-

tomous items, but it is only a beginning of exploiting the value of polytomous items

in cognitive diagnostic assessment. Additional research along this line is needed. For
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example, this study only used one QC-matrix, and in future studies, researchers can

consider various QC-matrices to examine the impact of the QC-matrix on parameter

recoveries. Additionally, like most other CDMs, the sequential G-DINA model is a

single-strategy model assuming that all examinees use the same strategy, which, nev-

ertheless, may not necessary be the case in practice. For example, to solve 41
8 −

3
8 , an

other strategy is to convert the mixed number to improper fraction prior to further oper-

ations. Multiple-strategies issues have been considered in the context of dichotomous

response data. For example, Mislevy (1996) considered a mixture model for estimating

the strategy being used. De la Torre and Douglas (2008) developed a multiple-strategy

DINA model which allows students to use different strategies for different items. A

major difference for graded response data stemming from constructed-response items

is that the strategy used by each student for each item is probably observable if stu-

dents show their work explicitly, and therefore estimating the strategy being used is

not needed. It would be straightforward to incorporate multiple QC-matrices into the

sequential G-DINA model, in conjunction with indicator variables showing the strate-

gies being used by each students for each item.

Although the sequential G-DINA model does not make any assumption about the

attribute structures, if attributes are structured, it seems intuitively more reasonable to

assess lower level attributes at lower level categories. How the attribute structures can

be incorporated in the sequential G-DINA model would be an interesting topic to ex-

amine in the future. Also, in the simulation studies, five single-attribute items were in-

cluded to ensure the QC-matrix is complete (Chiu, Douglas, & Li, 2009). However, it is

worthwhile to further investigate whether the completeness in the sequential G-DINA

model can be achieved using single-attribute specifications at the category rather than

item level. Furthermore, although the authors have noted the relationship between the

sequential G-DINA model and the NRDM (Templin et al., 2008) and PC-DINA model
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(de la Torre, 2010), it is still not clear how the proposed model relates to other poly-

tomous CDMs, such as pGDM (von Davier, 2008) and polytomous LCDM (Hansen,

2013). This needs further investigation. Lastly, because of the sequential mechanism

underlying the proposed model, it is appropriate for items with analytic scoring rubrics.

At this point, it is not clear if the sequential G-DINA model is applicable to items that

are scored using holistic rubrics.
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2.8 Appendix

Appendix 2A: Equivalence between the Sequential G-DINA Model and Other

Polytomous CDMs

The connection between the unrestricted sequential G-DINA (US-GDINA) model

and other existing polytomous CDMs including the partial credit DINA (PC-DINA;

de la Torre, 2010) model and nominal response diagnostic model (NRDM; Templin,

Henson, Rupp, Jang, & Ahmed, 2008) are elaborated below.

The US-GDINA model and PC-DINA model

The probability of scoring category h of item j for examinees with reduced attribute

pattern α∗l j for the PC-DINA model is given by

P(X j = h|α∗l j) =


g jh, if α∗l j 6= 1

1− s jh, if α∗l j = 1

,

where h = 1, . . . ,H j if item response X j ∈ {0,1, . . . ,H j}. Note that although we still

use h = 1, . . . ,H j for convenience, these categories are not necessarily ordered. The

PC-DINA model has 2×H j parameters for item j, and g jh is the probability of scoring

category h of item j for examinees who do not master all the attributes required by this

item, and s jh is the probability of failure on category h of item j for examinees who

master all the required attributes.

For the US-GDINA model, when the processing function is assumed to be the

DINA model, S j(h|α∗l jh) can be fomulated as

S j(h|α∗l j) =


g∗jh, if α∗l j 6= 1

1− s∗jh, if α∗l j = 1

,
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because S j(h|α∗l j) = S j(h|α∗l jh) for h = 1, . . . ,H j, when all H j categories have the same

q-vectors. Note that g∗jh is the probability of answering category h correctly given

that category h− 1 has been answered correctly for examinees who do not master all

required attributes, and s∗jh is the probability of answering category h incorrectly given

that category h−1 has been answered correctly for examinees who master all required

attributes. Note that if responses are nominal, g∗jh and s∗jh are not interpretable, but they

can still be used for model parameterizations.

There are 2×H j item parameters for item j as well. Based on the category response

function (see Equation 1 in the paper), g jh and s jh can be calculated directly from g∗jh

and s∗jh. For example, assuming item j requires two attributes, and has three categories

(i.e, 0, 1 and 2), it is easy to find the following relationship:

g j1 = g∗j1(1−g∗j2)

g j2 = g∗j1g∗j2

s j1 = 1− (1− s∗j1)s
∗
j2

s j2 = 1− (1− s∗j1)(1− s∗j2).

The US-GDINA model and NRDM

Denote αc = (αc1, . . . ,αcK) as the attribute pattern, where c = 1, . . . ,2K . The prob-

ability of scoring category h of item j for examinees with attribute pattern αc for the

NRDM is given by

P(X j = h|αc) =
exp(z jch)

∑
H j
x=0 exp(z jcx)

,

where z jch = λ0 jh +∑
K
k=1 λ1 jkhαckq jk +∑

K−1
k=1 ∑

K
k′=k+1 λ2 jkk′hαckq jkαck′q jk′+ . . . . Note

that z jch includes the intercept, K main effects, and all possible interactions, and q jk is

the element of row j and column k in the traditional Q-matrix. To ensure the identifi-

ability of the NRDM, Templin et al. (2008) added the following constraints for main
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effects and all interaction terms:

H j

∑
h=0

λ0 jh = 0 ∀ j;

H j

∑
h=0

λ1 jkh = 0 ∀ j,k;

H j

∑
h=0

λ2 jkk′h = 0 ∀ j,k,k′;

...

Like the sequential G-DINA model, we can assume that the first K∗j attributes are re-

quired for item j, and again, let α∗l j = (αl1, . . . ,αlK∗j ) be the reduced attribute pattern,

where l = 1, . . . ,2K∗j . Then, P(X j = h|αc) can be reparameterized using the identity

link:

P(X j = h|α∗l j) = δ jh0 +

K∗j

∑
k=1

δ jhkαlk +

K∗j

∑
k′=k+1

K∗j−1

∑
k=1

δ jhkk′αlkαlk′+ · · ·+δ jh12···K∗j

K∗j

∏
k=1

αlk,

(2.4)

with the constraint of ∑
H j
h=0 P(X j = h|α∗l j) = 1. Note that only the required attributes

are considered in this reparameterization because the attributes that are not required

do not contribute to the probability of success. Denote P(X j = h|α∗l j) as Pjh(α
∗
l j) for

simplicity. Equation 2.4 can be expressed equivalently in matrix form as follows,

P jh =M jδ jh,

where bothP jh = {Pjh(α
∗
l j)} and δ jh = {δ jh0,δ jh1, · · · ,δ jh12···K∗jh} are vectors of length

2K∗j . M j is a design matrix of dimension 2K∗j ×2K∗j (de la Torre, 2011). For example,

when K∗j = 3,
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

Pjh(000)

Pjh(100)

Pjh(010)

Pjh(001)

Pjh(110)

Pjh(101)

Pjh(011)

Pjh(111)



=



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

1 1 1 1 1 1 1 1



×



δ jh0

δ jh1

δ jh2

δ jh3

δ jh12

δ jh13

δ jh23

δ jh123



.

Because M j is invertible (de la Torre, 2011), δ jh can be derived directly if P jh are

known, and vice versa. In other words, we can view either δ jh or P jh as item parame-

ters.

Similarly, because S j(h|α∗l j) =M jφ jh for the US-GDINA model (See Equation

2 in the paper), either processing functions S j(h|α∗l j) or φ jh can be regarded as item

parameters. Note that this is not true if the processing function is not the saturated G-

DINA model such as the DINA or DINO model in that theM j is not a squared matrix

any more. As a result, to show the equivalence between NRDM and the US-GDINA

model, we only need to show the relation between S j(h|α∗l j) and P jh, which is given

as the category response function (i.e., Equation 1 in the paper). In other words, P jh

can be calculated from S j(h|α∗l j) directly based on the category response function in

the paper, which implies that when item parameter φ jh of the US-GDINA model are

obtained, the item parameters δ jh of NRDM can be derived accordingly.
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Appendix 2B: RMSE and PCV for the Sequential G-DINA Model Under the

Higher-order Attribute Distribution

This appendix, which has not previously been published, gives the simulation re-

sults about the performance of the sequential G-DINA model when attributes were

generated from a higher-order IRT model. Specifically, attribute patterns were gener-

ated from a higher-order distribution, where the probability of mastering attribute k for

individual i were defined as:

P(αk = 1|θi,δk) =
exp(θi−δk)

1+ exp(θi−δk)
,

where θi represents the ability of examinee i, and was drawn from the standard normal

distribution; and δk is the difficulty of attribute k, which was randomly drawn from one

of the five equal intervals from -1.5 to 1.5. The same settings as the simulation study

in Chapter 2 were considered except the attribute distribution. Under each condition,

50 data sets were simulated.

Figure 2.3 gives the RMSE, which represents item parameter recovery, and Figure

2.4 gives the PCV, which indicates the person attribute recovery. Compared with the re-

sults under uniform attribute distribution, similar results were observed when attributes

were generated from the higher-order attribute distribution.
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Figure 2.3: RMSE of the sequential G-DINA model under the higher-order attribute
distribution
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Figure 2.4: PCV of the sequential G-DINA model under the higher-order attribute
distribution
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Chapter 3

An Empirical Q-Matrix Validation Method for the
Sequential G-DINA Model

Abstract

The Q-matrix, which is an item and attribute association matrix, is a core com-

ponent of most cognitive diagnosis models. The Q-matrix is typically developed by

domain experts, and thus tends to be subjective. Validating the Q-matrix empirically is

important in that misspecifications in the Q-matrix could produce erroneous attribute

estimation. Unlike existing Q-matrix validation procedures that are developed for di-

chotomous responses, this paper proposes a method to empirically detect and correct

the misspecifications in the Q-matrix for graded response data based on the sequen-

tial G-DINA model. The proposed Q-matrix validation procedure is implemented in

a stepwise manner based on the Wald test and an effect size measure, and its feasibil-

ity is examined using simulation studies. A dataset from TIMSS 2007 Mathematics

assessment is used to illustrate the proposed method.
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3.1 Introduction

Cognitive diagnosis models (CDMs) refer to a set of psychometric models that aim

to group individuals into distinct latent classes based on their skill profiles. A more

generic term for skills is attributes, which are typically, although not always, assumed

as binary latent variables, and an attribute profile indicates which attribute individuals

have possessed and which they have not. In educational contexts, CDM analyses could

provide diagnostic information about a student’s strengths and weaknesses on a set of

fine-grained skills to facilitate classroom instruction and learning. CDMs have also

shown their potentials in the application in other fields such as psychological disorder

diagnosis and personnel selection (Sorrel et al., 2016; de la Torre, van der Ark, & Rossi,

2015; Templin & Henson, 2006).

A host of CDMs have been proposed (for reviews, see DiBello, Roussos, & Stout,

2007; Rupp, Templin, & Henson, 2010), but most are designed for dichotomous re-

sponses. Examples include the deterministic inputs, noisy “and” gate (DINA; Haertel,

1989) model, which assumes that examinees are expected to answer an item correctly

only when they possess all required attributes, and the generalized DINA (G-DINA;

de la Torre, 2011) model, which is a general model subsuming several CDMs. To deal

with polytomously scored items appropriately, a few polytomous response CDMs, such

as the sequential G-DINA model (W. Ma & de la Torre, 2016) and the general diagnos-

tic model (von Davier, 2008), have been developed as well.

Regardless of their parameterizations, most CDMs rely on a Q-matrix, or an item

and attribute association matrix (Tatsuoka, 1983), which specifies whether an attribute

is measured by an item. The importance of the Q-matrix in CDM analyses cannot be

overemphasized, and it has been widely recognized that a misspecified Q-matrix can

degrade item parameter estimation, produce poor model-data fit, and result in erro-

neous attribute estimation (e.g., Rupp & Templin, 2008; Chiu, 2013). The Q-matrix is
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typically created by experts (See Tjoe & de la Torre, 2014, for a detailed development

process of a Q-matrix for a proportional reasoning test), and assumed to be correct in

most CDM analyses. However, expert judgment tends to be subjective and therefore,

some entries in the Q-matrix may be not accurate. As noted by DeCarlo (2012), for ex-

ample, Tatsuoka’s (1983) fraction subtraction data has been used for more than twenty

years, but its Q-matrix is still in debate: researchers have suggested various modifi-

cations to some entries (e.g., de la Torre, 2008; DeCarlo, 2011; de la Torre & Chiu,

2016).

A variety of procedures have been developed to empirically identify and correct

misspecified entries in a Q-matrix. For example, Cen, Koedinger, and Junker (2005)

considered fitting CDMs with several competing Q-matrices, and comparing the ob-

tained relative model-data fit indices, such as Akaike information criterion (AIC; Akaike,

1974) and Bayesian information criterion (BIC; Schwarz, 1978). The Q-matrix that

produces the best model-data fit indices is preferred. A major limitation of this ap-

proach is that the number of competing Q-matrices may be too large to be manageable.

DeCarlo (2012) developed a Q-matrix validation procedure from a Bayesian per-

spective for a reparameterized DINA model. The entries in the Q-matrix are treated

as random variables, and estimated along with all other parameters using the Markov

chain Monte Carlo (MCMC) method. A limitation of this method is that the entries

with possible misspecifications need to be known a priori. In another study, Chiu

(2013) proposed a nonparametric Q-matrix validation approach by minimizing the

residual sum of squares (RSS) between the observed and the corresponding ideal re-

sponses. This method was justified by showing that the RSS between the observed and

the corresponding ideal responses based on the correct q-vector for an item was less

than that based on a misspecified q-vector.

Another Q-matrix validation method was developed by de la Torre (2008), which
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is called the EM-based delta-method for the DINA model. In his paper, an item dis-

crimination index, δ j, is defined as the difference in probability of success for item j

between examinees who mastered all the required attributes and those who have not.

This method is based on δ j and implemented in a sequential manner. Although promis-

ing results can be found based on the simulation study, this method is only applicable

for the DINA model. The G-DINA discrimination index ς2, which has been recently

proposed by de la Torre and Chiu (2016), can be viewed as a generalization of δ j. The

ς2 method is very flexible in that it does not assume the particular CDM forms, as long

as they are subsumed by the G-DINA model. Another procedure without the assump-

tion about the forms of the CDMs is developed by Chen (2017) using a set of model

fit measures based on residuals. This procedure is carried out iteratively and could be

time-consuming.

Despite a number of Q-matrix validation procedures available, none of them is

developed for CDMs for graded responses. This could impede the use of constructed-

response items in diagnostic assessments because constructed-response items are typi-

cally scored polytomously. This study attempts to fill this gap by developing a Q-matrix

validation procedure for the sequential G-DINA model (W. Ma & de la Torre, 2016)

for graded response data. The sequential G-DINA model is a general CDM suitable

for items that need to be solved through a sequence of steps. The proposed Q-matrix

validation procedure attempt to determine which attributes are involved for each step of

the problem-solving. For dichotomous items, the sequential G-DINA model is equiv-

alent to the G-DINA model and therefore, the proposed methods can also be used for

dichotomous responses as long as the underlying CDM is subsumed by the G-DINA

model.
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3.2 Overview of the Sequential G-DINA Model

Suppose K attributes are involved in a test with J items, and let Xi j ∈ {0, . . . ,H j} be

the response of individual i to item j, where H j is the highest response category for

item j. The sequential G-DINA model (W. Ma & de la Torre, 2016) assumes that

students’ problem solving can be decomposed into a sequence of steps, each involving

one or more attributes. A binary q-vector of length K, q jh = {q jhk}, is associated with

category h of item j, and q jhk = 1 indicates that the attribute k is required by step h of

item j, and q jhk = 0 otherwise. A collection of all q-vectors produces a category level

Q-matrix, or QC-matrix, with the dimensions of ∑
J
j=1 H j×K. Note that although this

paper aims to develop procedures to validate the QC-matrix, we still use the general

term, Q-matrix validation, to be consistent with the literature.

The K binary attributes lead to 2K latent classes with unique attribute patterns,

namely, αc = (αc1, . . . ,αcK), where c = 1, . . . ,2K . Element αck = 1 indicates that at-

tribute k is mastered by individuals in latent class c, and αck = 0 indicates attribute k

is not mastered by individuals in the same latent class. The probability for individual

i with attribute pattern αc performing step h correctly provided that s/he has already

completed step h− 1 successfully is referred to as the processing function (W. Ma &

de la Torre, 2016) and can be expressed as,

S j(h|αc) = P(Xi j ≥ h|Xi j ≥ h−1,αc) =
P(Xi j ≥ h|αc)

P(Xi j ≥ h−1|αc)
.

An individual’s response falls into category h if she performs the first h steps correctly

but fails step h+1, and thus the conditional probability of obtaining score h on item j

can be written as

P(Xi j = h|αc) = [1−S j(h+1|αc)]
h

∏
x=0

S j(x|αc),
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where S j(h = 0|αc)≡ 1 and S j(h = H j +1|αc)≡ 0.

This model framework is referred to as the sequential process model (W. Ma &

de la Torre, 2016); but different names have been used to refer to this type of model

in different contexts such as the continuation ratio model (Agresti, 2013; Mellenbergh,

1995), the sequential model (Tutz, 1997) and the step model (Verhelst, Glas, & de

Vries, 1997).

The processing function can be defined using any dichotomous CDMs. The se-

quential G-DINA model is obtained when the G-DINA model (de la Torre, 2011) is

used. Specifically, for step h of item j, 2K latent classes can be collapsed into 2K∗jh la-

tent groups, where K∗jh is the number of required attributes for this step. Letα∗l jh be the

reduced attribute pattern for step h of item j consisting of the required attributes for this

step only, where l = 1, · · · ,2K∗jh . Without loss of generality, we can assume the first K∗jh

attributes are required for category h of item j, that is, α∗l jh = (αl1, . . . ,αlk, . . . ,αlK∗jh
).

The processing function for the sequential G-DINA model is given by

g
[
S j(h|α∗l jh)

]
=φ jh0 +

K∗jh

∑
k=1

φ jhkαlk +

K∗jh

∑
k′=k+1

K∗jh−1

∑
k=1

φ jhkk′αlkαlk′+ · · ·+φ jh12···K∗jh

K∗jh

∏
k=1

αlk,

where g[·] is the identity, log or logit link function. φ jh0 is the intercept, φ jhk is the main

effect due to attribute k, φ jhkk′ is the two-way interaction effect due to attributes k and

k′, and φ jh12···K∗jh is K∗jh-way interaction effect due to all required attributes. Note that

the G-DINA model is equivalent to the loglinear CDM (Henson, Templin, & Willse,

2009), both of which subsume a number of reduced models by setting appropriate

constraints. This allows different cognitive processes to be modeled at different steps

within a single item. For example, if solving a step needs the possession of all required

attributes, the DINA model can be used as the processing function, whereas if it needs

the mastery of at least one required attribute, the DINO model (Templin & Henson,

2006) can be used as the processing function.
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3.3 Category-level GDINA Discrimination Index

The G-DINA discrimination index (GDI) is originally proposed by de la Torre and

Chiu (2016) for empirically validating the Q-matrix in conjunction with the G-DINA

model for dichotomous responses. It can be extended for the sequential G-DINA model

and defined in a straightforward manner for each nonzero category of a polytomously

scored item. Specifically, for category h of item j, the GDI can be formulated by

ς
2
jh =

2
K∗jh

∑
l=1

p(α∗l jh)
[
S j(h|α∗l jh,q jh)− S̄ jh

]2
,

where p(α∗l jh) is the posterior probability of the latent group with the reduced attribute

pattern α∗l jh, and

S̄ jh =
2

K∗jh

∑
l=1

p(α∗l jh)S j(h|α∗l jh,q jh).

The category level GDI is the variance of success probabilities for category h of

item j for all latent groups given q jh, and measures a category’s overall discriminating

power. De la Torre and Chiu (2016) have shown that when the correct Q-matrix is

used, the correct q-vector and overspecified q-vectors from the correct one produce

the largest GDI, and hence, the q-vector with the largest GDI, but requiring fewest

attributes is the correct q-vector. In practice, however, overspecified q-vectors from

the correct one have larger GDI than the correct q-vector due to random errors. De

la Torre and Chiu (2016) calculated the proportion of variance accounted for (PVAF)

by a particular q-vector relative to the maximum for each item, and the q-vector with

a PVAF greater than a certain prespecified cutoff, but requiring fewest attributes can

be considered correct. This method is very flexible, given that it can be used without

any assumption about the form of CDMs. The use of PVAF also provides a way of

quantifying the discriminating power of each candidate q-vector. However, this method
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does not consider the item parameter estimation errors, and determining the cutoff for

PVAF a priori could be challenging.

3.4 Attribute Validation Using the Wald Test

Wald test (Wald, 1943) is a widely used hypothesis test in Statistics. In the context

of CDMs, it has been used for comparing the G-DINA model and the reduced CDMs

that the G-DINA model subsumes (de la Torre, 2011; de la Torre & Lee, 2013; W. Ma,

Iaconangelo, & de la Torre, 2016), and detecting differential item functioning (Hou,

de la Torre, & Nandakumar, 2014). This section illustrates how the Wald test can be

used to evaluate whether or not an attribute that is assumed to be required is statisti-

cally necessary in a q-vector involving two or more ones. Specifically, if changing an

element one to zero in a q-vector does not lead to a worse model-data fit, the attribute is

said to be unnecessary statistically. This allows us to conduct the Q-matrix validation

from a perspective of model comparison.

Suppose we want to test whether an element one can be changed to zero in a q-

vector q̃ jh = {q̃ jhk} for step h of item j, and K̃∗jh = ∑
K
k=1 q̃ jhk. Note that q̃ jh has at

least two ones (i.e., K̃∗jh ≥ 2), and is not necessarily the same as q jh. A 2K̃∗jh−1× 2K̃∗jh

restriction matrix R is needed for the Wald test so that under the null hypothesis, R×

s̃ jh = 0, where s̃ jh = {S̃ j(h|α∗l jh, q̃ jh)} are the processing functions for category h of

item j when q̃ jh is employed. For example, assume K̃∗jh = 3 and q̃ jh = (1,1,1, . . .). To
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test whether Attribute 1 is required statistically, the null hypothesis is



1 −1 0 0 0 0 0 0

0 0 1 0 −1 0 0 0

0 0 0 1 0 −1 0 0

0 0 0 0 0 0 −1 1


×



S̃ j(h|000, q̃ jh)

S̃ j(h|100, q̃ jh)

S̃ j(h|010, q̃ jh)

S̃ j(h|001, q̃ jh)

S̃ j(h|110, q̃ jh)

S̃ j(h|101, q̃ jh)

S̃ j(h|011, q̃ jh)

S̃ j(h|111, q̃ jh)



= 0.

The restriction matrices for testing the necessity of Attribute 2 and 3 are



1 0 −1 0 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 0 1 0 0 −1 0

0 0 0 0 0 1 0 −1


,

and 

1 0 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 0 1 0 0 −1


,

respectively. The Wald statistic is defined as

W =
[
R× s̃ jh

]′ [
R×V jh×R

′
]−1 [

R× s̃ jh
]
, (3.1)

where V jh is the variance-covariance matrix of s̃ jh, which is of dimension 2K̃∗jh×2K̃∗jh .

The Wald statistic W is asymptotically χ2 distributed with 2K̃∗jh−1 degrees of freedom.
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3.5 A Q-matrix Validation Algorithm

The previous section shows how the Wald test can be used to evaluate whether an

attribute that is assumed to be necessary is statistically required or not in a q-vector

involving two or more ones. This section describes a Q-matrix validation procedure

for the sequential G-DINA model using the aforementioned PVAF and Wald statistic.

This procedure is implemented category by category and item by item. Specifically,

the first required attribute is chosen based on the PVAF, whereas choosing the next

required attributes, if any, is based on both the Wald test and the PVAF. The Wald test

serves as a hypothesis test, and the PVAF functions as an effect size measure, which

can be critical when more than one attribute is deemed necessary based on the Wald

test. More specifically, for category h of item j, the algorithm is conducted as follows:

Step 1 : Define Ω = {1, . . . ,K} as a set consisting of the indices for all K attributes.

Also, let A be a set consisting of the indices for all the required attributes identified

during the validation process, and B = Ω\A. The attributes indexed in set B are called

target attributes in that their necessity needs to be examined. Initialize A = /0, and

thus B = {1, . . . ,K}. Define a q-vector search bank C consisting of K single-attribute

competing q-vectors. Replace the provisional q-vector (i.e., q jh in the QC-matrix) with

each of the competing q-vectors in C, and calculate their associated PVAFs. The target

attribute required by the competing q-vector producing the largest PVAF is defined as a

required attribute. Assume this attribute is attribute k′, and update set A and B: A= {k′}

and B = Ω\A.

Step 2 : Check whether the q-vector requiring the attributes indexed in set A has

a PVAF greater than 0.95. If yes, the validation process terminates; otherwise, update

the search bank C so that each competing q-vector requires all attributes indexed in set

A and one target attribute indexed in set B. As a result, there are at least two ones in

each competing q-vector in this step. The Wald test is used to examine whether or not
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the target attribute is statistically necessary for each competing q-vector. If none of

the target attributes is required, the validation process terminates; if at least one target

attribute is required, the one specified in the competing q-vector with the largest PVAF

is assumed to be required, and the associated q-vector is the best among all current

competing q-vectors. The index of the target attribute in this q-vector is added to set

A and removed from set B. The necessity of the required attributes except the target

one in this competing q-vector is examined using the Wald test as well. If any of them

are deemed unnecessary statistically after the target attribute has been included, their

indices are removed from set A to set B. Step 2 is repeated until no new index can be

added to or removed from sets A and B. The flowchart for this validation procedure is

given in Figure 3.1.

Step 1 and Step 2 are implemented for each category of each item. The former

aims to determine the first required attribute using the PVAF, and the latter attempts to

identify, if any, other required attributes using the Wald test, in conjunction with the

PVAF when necessary. After Step 2 ends, all attributes indexed in set A are believed

to be required for the studied category. This process is said to be implemented in a

stepwise manner in that the necessity of the attributes is evaluated iteratively, similar

to the stepwise procedure for model selection in linear regression (Efroymson, 1960).

It should be noted that at the beginning of Step 2, the PVAF of the current q-vector is

calculated and compared with 0.95. This evaluation is not mandatory, but it is useful

when sample size is large, in which condition, the hypothesis test tends to reject the

null hypothesis and result in over-specified q-vectors.

In addition, the calculations of the GDI and the Wald statistics involve the estima-

tion of the processing functions based on each competing q-vector for the studied cat-

egory. It is straightforward to recalibrate the data based on each competing q-vector;

however, this can be computationally intensive. An alternative solution is the EM-

based approximation, similar to de la Torre (2008) and de la Torre and Chiu (2016).
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Figure 3.1: Flowchart of the stepwise Q-matrix validation
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The sequential G-DINA model is fitted to the data based on the provisional (i.e., orig-

inal) QC-matrix first. Then, the posterior P(αc|Xi) can be calculated for each exami-

nee. For a specific competing q-vector for category h of item j, instead of refitting the

model, the processing functions are estimated by a one-step EM type of algorithm, as

in,

Ŝ j(h|α∗l jh) =
R̃+

h (α
∗
l jh)

R̃+
h−1(α

∗
l jh)

,

where R̃+
h (α

∗
l jh)=∑

N
i=1 P̃(α∗l jh|Xi)I(Xi j≥ h), and P̃(α∗l jh|Xi) is derived from P(αc|Xi)

directly. It should be noted that although the use of P̃(α∗l jh|Xi) reduces the computa-

tional burden dramatically, it is merely an approximation to the posterior when a com-

peting q-vector is adopted. Therefore, the adequacy of this approximation depends on

how well the posterior distribution can be estimated based on the original QC-matrix.

The details of the Q-matrix validation procedure for category 1 of Item M042303B

from the TIMSS 2007 Mathematics assessment is given in Table 3.1 for illustration.

This item was analyzed in Section 3.7. The assessment measures 7 attributes, and

therefore, at the beginning, A = /0 and B = {1,2, . . . ,7}. As shown in Table 3.1, the

PVAFs were calculated in Step 1 for the seven candidate single-attribute q-vectors in

the initial search bank C. The q-vector measuring α5 had the highest PVAF, and thus

was believed the best single-attribute q-vector. Because the highest PVAF for single-

attribute q-vectors was less than 0.95, Step 2 was implemented. In the first round of

Step 2, A = {5}, and the search bank C consists of six candidate q-vectors each mea-

suring two attributes including α5 and another target attribute. The Wald test was used

to evaluate whether the target attributes were statistically necessary. The correspond-

ing p-values were reported as p[entry] in Table 3.1. When α5 was assumed required,

adding any of the target attributes could result in better model-data fit. Because adding

α1 produced the highest PVAF, the q-vector measuring α1 and α5 was deemed the best.

After the “entry” step, the Wald test was used to evaluate whether α5 was statistically
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necessary when α1 was assumed required in the “removal” step. The associated p-

value is denoted as p[removal] in the table. It turned out that α5 was still statistically

necessary when α1 was assumed required. Because the PVAF was still less than 0.95,

Step 2 was repeated after updating sets A = {1,5} and B = {2,3,4,6,7}. In round 2,

α6 was statistically necessary when α1 and α5 were assumed required, and the Wald

test for α1 or α5 was still significant when α6 was assumed needed. The associated

PVAF was less than 0.95 and thus Step 2 was repeated. However, none of the other

attributes were significant based on the Wald test. Therefore, the suggested q-vector

for this item was 1000110 with a PVAF of 0.922.

3.6 Simulation Studies

Two simulation studies were conducted to evaluate the performance of the proposed

stepwise Q-matrix validation method. Simulation Study 1 explored the performance of

the proposed method when the processing functions conform to some reduced CDMs,

namely, the DINA model, DINO model and A-CDM, whereas the Simulation Study

2 specified the processing function as a more general form (i.e., the G-DINA model).

The factors considered in these two studies are summarized in Table 3.2.

3.6.1 Simulation Study 1

3.6.1.1 Design

In this study, the number of items and attributes were fixed to J = 23 and K = 5,

respectively. The sample sizes were N = 1000, 2000 and 4000. Item quality had three

levels: g= s= 0.1, 0.2 or 0.3 for all categories of all items, representing high, moderate

and low quality, where g = S j(h|α∗l jh = 0) and s = 1−S j(h|α∗l jh = 1) for category h of

item j. When the processing function is the A-CDM, each required attribute contributed

equally to the processing function.
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Table 3.1: An illustration of the stepwise Q-matrix validation algorithm

Step
Candidate q-vectors

in search bank C
PVAF p[entry]

p[removal]
Decision

α5 α1

Step 1 A = /0,B = {1, . . . ,7}

(1000000) 0.260
(0100000) 0.123
(0010000) 0.333
(0001000) 0.065
(0000100) 0.369 X
(0000010) 0.195
(0000001) 0.080

Step 2

Round 1 A = {5},B = {1,2,3,4,6,7}

(1000100) 0.818 <.001 <.001 X
(0100100) 0.444 <.001
(0010100) 0.546 <.001
(0001100) 0.424 <.001
(0000110) 0.610 <.001
(0000101) 0.435 <.001

Round 2 A = {1,5},B = {2,3,4,6,7}

(1100100) 0.821 0.970
(1010100) 0.872 0.070
(1001100) 0.822 0.887
(1000110) 0.922 0.001 <.001 <.001 X
(1000101) 0.822 0.911

Round 3 A = {1,5,6},B = {2,3,4,7}

(1100110) 0.925 1.000
(1010110) 0.924 1.000
(1001110) 0.927 0.997
(1000111) 0.986 0.375
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Table 3.2: Summary of Factors in simulation studies
Factors Simulation Study 1 Simulation Study 2

N 1000, 2000, 4000
(J,K) (23, 5)

Misspecification generation Random
% of misspecified entries 0%, 10%, 20%

Attribute distribution Uniform, Higher-order
Processing function DINA/DINO/A-CDM G-DINA[

S j(h|0),S j(h|1)
]

[0.1,0.9]/[0.2,0.8]/[0.3,0.7] [U(0.1,0.3),U(0.7,0.9)]

Individuals’ attribute patterns were generated from two different distributions: the

uniform distribution, where all possible attribute patterns are equally likely; and the

higher-order distribution (de la Torre & Douglas, 2004), where the probability of mas-

tering attribute k for individual i were defined as:

P(αk = 1|θi,δk) =
exp(θi−δk)

1+ exp(θi−δk)
,

where θi represents the ability of examinee i, and was drawn from the standard normal

distribution; and δk is the difficulty of attribute k, which was randomly drawn from one

of the five equal intervals from -1.5 to 1.5.

Table 4.1 gives the QC-matrix for the simulation studies. There are five two-

category items (i.e., category 0 and 1), 12 three-category items and six four-category

items. Misspecified QC-matrices were constructed by altering 10% or 20% entries in

the correct QC-matrix randomly from 0 to 1 or from 1 to 0 with the constraints that each

nonzero category measured at least one attribute and that each attribute was required by

at least one nonzero category. The processing functions used for data simulation were

the DINA model, DINO model, and A-CDM. In each condition, 200 data sets were

simulated. The GDINA R package (W. Ma & de la Torre, 2017) was used for data sim-

ulation and model estimation, and the stepwise Q-matrix validation was implemented

in the R programming environment (R Core Team, 2017).
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Table 3.3: QC-matrix for simulation studies
Item Category α1 α2 α3 α4 α5 Item Category α1 α2 α3 α4 α5

1 1 1 0 0 0 0 13 1 1 0 0 0 0
1 2 0 1 0 0 0 13 2 0 1 0 0 0
2 1 0 0 1 0 0 13 3 0 0 1 0 0
2 2 0 0 0 1 0 14 1 0 0 0 1 0
3 1 0 0 0 0 1 14 2 0 0 1 0 0
3 2 1 0 0 0 0 14 3 0 1 0 0 0
4 1 0 1 0 0 0 15 1 0 0 0 0 1
4 2 0 0 1 0 0 15 2 0 0 1 0 0
5 1 0 0 1 1 0 15 3 1 0 0 1 0
5 2 0 0 0 0 1 16 1 0 0 0 1 0
6 1 1 1 0 0 0 16 2 1 0 0 0 0
6 2 0 0 0 1 0 16 3 0 0 1 0 1
7 1 0 0 1 1 1 17 1 1 0 0 0 0
7 2 0 1 0 0 0 17 2 0 1 0 0 0
8 1 1 1 0 1 0 17 3 0 1 0 1 1
8 2 0 0 0 0 1 18 1 0 1 0 0 0
9 1 0 0 0 0 1 18 2 0 0 0 1 0
9 2 1 0 1 0 0 18 3 1 0 1 0 1

10 1 0 1 0 0 0 19 1 1 0 0 0 0
10 2 1 0 0 0 1 20 1 0 1 0 0 0
11 1 0 0 0 0 1 21 1 0 0 1 0 0
11 2 0 1 1 1 0 22 1 0 0 0 1 0
12 1 0 0 1 0 0 23 1 0 0 0 0 1
12 2 1 0 0 1 1

An initial recovery rate (IRR) is defined as the percentage of the attributes that are

correctly selected after Step 1 of the Q-matrix validation procedure. An average IRR

across all replications for each condition is used to evaluate the performance of the GDI

in selecting the first required attribute. To examine the performance of the Q-matrix

validation procedure, true positive rate and true negative rate were calculated. The true

positive rate is the percentage of misspecified entries that were correctly identified, and

the true negative rate is the percentage of correct entries that were correctly retained.
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3.6.1.2 Results

The IRRs when items were of low quality are provided in Table 3.4. When item quality

were high or moderate, the IRRs were always greater than 99%, which implies that the

GDI has excellent performance in selecting the initial required attribute under these

conditions and therefore, the results were omitted from the table. When item quality

was low, the IRRs were still very good with a minimum value of 95.3%, which oc-

curred under N = 1000, 20% misspecifications, higher-order attribute distribution and

A-CDM processing function. From Table 3.4, the IRR increased as the sample size

increased or the percentage of misspecification decreased. This pattern, however, does

not hold under high or moderate item quality probably because of the ceiling effect.

Regarding attribute distributions, similar IRRs were observed when there were 10%

misspecifications or less; but lower IRRs were observed for the higher-order attribute

distribution when there were 20% misspecifications. Generating processing functions

do not have much impact on IRRs.

Table 3.4: IRR for reduced models when item quality was low
Processing Uniform Higher-Order

Function % Misp N=1000 N=2000 N=4000 N=1000 N=2000 N=4000

DINA
0% 0.997 0.999 1.000 0.999 1.000 1.000

10% 0.991 0.998 0.999 0.989 0.997 0.999
20% 0.977 0.994 0.996 0.958 0.972 0.984

DINO
0% 0.998 1.000 1.000 0.998 1.000 1.000

10% 0.993 0.998 0.999 0.992 0.998 0.999
20% 0.976 0.989 0.995 0.963 0.982 0.987

ACDM
0% 0.997 1.000 1.000 0.999 1.000 1.000

10% 0.994 0.999 1.000 0.993 0.998 0.999
20% 0.980 0.993 0.998 0.953 0.977 0.982

Note: % Misp represents the percentage of misspecifications.

Figure 3.2 gives the true positive rates across sample sizes, item qualities, attribute

distributions, percentages of misspecifications, and processing functions. Item quality
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influences the true positive rates. The average true positive rate was 98.8% with a min-

imum value of 97.4% when items were of high quality, and 96.2% with a minimum

value of 91% when items were of moderate quality. When item quality was low, how-

ever, the average true positive rate dropped to 78.9% with a minimum value of 66.4%.

The impact of sample sizes, attribute distributions, and percentages of misspecifica-

tions was apparent when items were of moderate or low quality. Specifically, the true

positive rate increased as the sample size increased, or the percentage of misspecifica-

tions decreased. Also, uniformly distributed attributes yielded higher true positive rates

than higher-order attributes. When items were of high quality, however, the impact of

other factors was not always consistent, which may be caused by ceiling effect in that

the range of true positive rate was only 1.9%.

Table 3.5 gives the true negative rates for the stepwise Q-matrix validation method

across varied conditions. It can be observed that across all conditions, the validation

method performed excellently. Even when item quality was low, the average true nega-

tive rate was 97.5% with the minimum values of 95.3%. The average true negative rate

for high item quality conditions (i.e., 99.4%) is slightly higher than that for moderate

item quality conditions (i.e., 99.3%), but with large sample size and small percentage

of misspecification, items of moderate quality could have slightly larger true nega-

tive rates than items of high quality. The true negative rates increased as sample size

increased. In addition, the uniformly distributed attributes produced higher true neg-

ative rates than the higher-order attributes. There was no apparent difference in true

negative rate among different percentages of misspecification and different processing

functions.
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3.6.2 Simulation Study 2

3.6.2.1 Design

In Simulation Study 1, the performance of the stepwise Q-matrix validation method

was examined when the processing functions was a reduced CDM. This study used

the G-DINA model as the processing function, which relaxes the assumptions about

the condensation rule for each category. A more realistic condition for item quality

was considered as well, where S j(h|α∗l jh = 0) and S j(h|α∗l jh = 1) were drawn from

U(0.1,0.3) and U(0.7,0.9), respectively. When K∗jh > 1, the processing functions for

latent classes with α∗l jh not equal to 0 or 1, that is, S j(h|α∗l jh 6⊂ {0,1}), were drawn

from the uniform distribution U [S j(h|α∗l jh = 0),S j(h|α∗l jh = 1)]. The processing func-

tions were simulated with the monotonic constraint that mastering an additional at-

tribute would not produce a lower processing function. In each condition, 200 data sets

were generated. As in the previous study, IRR was used to evaluate the performance of

the GDI in identifying the initial required attribute, and the true positive and true neg-

ative rates were used to assess the performance of the stepwise validation procedure.

3.6.2.2 Results

Table 3.6 gives the IRRs across sample sizes, attribute distributions and percentages of

misspecifications. The GDI has excellent power to identify the first required attribute

with a minimum IRR of 98.9%. It can also be observed that the IRR increased as the

sample size increased and the percentage of misspecification decreased. Additionally,

the IRRs under the uniform attributes were slightly higher than or equal to these under

the higher-order attributes with only one exception.

True positive and true negative rates are given in Table 3.7. The stepwise Q-matrix

validation procedure performs well in correcting the misspecifications and retaining

the correct q-entries in the Q-matrix. Across all conditions, the true positive and true
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Table 3.6: IRR for the G-DINA processing function
Uniform Higher-Order

% Misp N=1000 N=2000 N=4000 N=1000 N=2000 N=4000

0% 0.999 1.000 1.000 0.998 1.000 1.000
10% 0.999 0.999 1.000 0.998 1.000 1.000
20% 0.993 0.996 0.996 0.989 0.991 0.998

negative rates were greater than 91% and 96%, respectively. In addition, both true

positive and true negative rates increased as sample sizes increased or the percentage

of misspecifications decreased. Compared with the higher-order attribute distribution,

the true positive and true negative rates were higher under the uniform distribution.

Table 3.7: Recovery rates for the G-DINA processing function
Uniform Higher-Order

% Misp N=1000 N=2000 N=4000 N=1000 N=2000 N=4000

True positive
10% 0.945 0.960 0.979 0.929 0.954 0.969
20% 0.933 0.956 0.968 0.910 0.924 0.956

True negative
0% 0.979 0.988 0.993 0.973 0.984 0.990
10% 0.977 0.988 0.992 0.971 0.983 0.989
20% 0.973 0.985 0.990 0.965 0.978 0.987

3.7 Real Data Analysis

Seventeen items from Block 4 of the Trends in International Mathematics and Science

Study (TIMSS) 2007 eigth-grade mathematics assessment were analyzed in this study.

The Q-matrix for these items was developed by L. Ma (2014) using multiple regression

and the least squares distance method. Note that L. Ma (2014) considers both cognitive

process attributes and content attributes and builds attributes at two levels. Neverthe-

less, for illustration purposes, only seven second level content attributes were used for

current analysis, including (α1) whole numbers and integers, (α2) fractions, decimals,
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ratio proportion, and percent, (α3) algebraic expressions and equations/formulas func-

tions, (α4) geometric shapes, (α5) geometric measurement and location movement,

(α6) data organization and representation, and (α7) data interpretation and chance. Out

of 17 items, three are polytomously scored with the maximum point of 2. We assume

that for these polytomous items, each nonzero category measures all attributes required

by the item, and thus the unrestricted QC-matrix (W. Ma & de la Torre, 2016) was cre-

ated. The QC-matrix is given in Table 4.4, where the suffix “-1” and “-2” were added

to item numbers to indicate category 1 and 2, respectively, for polytomously scored

items. Nonmissing responses of 1328 students from the United States including 448

Massachusetts and Minnesota benchmark students were calibrated using the sequential

G-DINA model. Note that for dichotomous responses, the sequential G-DINA model

is equivalent to the G-DINA model and the stepwise Q-matrix validation is applicable

as well.

Based on the stepwise Q-matrix validation procedure, modifications were sug-

gested to nine categories of eight item as shown in Table 4.4. Take Item 17 in Box

1 as an example. Attributes 2 and 7 were assumed to be required, but the Q-matrix val-

idation method suggested that the Attribute 2 may not be necessary. A close scrutiny

of this item reveals that it may be solved by using intuition when students understand

the question well, and thus Attribute 2 may not be required. It is worth emphasizing

that the stepwise Q-matrix validation method should be used with the intent of provid-

ing ancillary information to aid experts judgments rather than to replace the experts in

determining the association between attributes and items.
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Table 3.8: QC-matrix for the TIMSS 2007 data
Item No. TIMSS Item ID α1 α2 α3 α4 α5 α6 α7

1 M042001 1 0 0 0 0 0 0
2 M042022 1 0 0 0 0 0 0
3 M042082 1 0 1 0 0 0 0
4 M042088 0 0 1 0 0 0 0
5 M042304A 1 0 0 0 0 0 0

6-1 M042304B-1 0 1 1 0 0 0 0
6-2 M042304B-2 0 1 1 0 0 0 0
7 M042304C 0 1 1 0 0 0 0

8-1 M042304D-1 1 0 0 0 0 0 0
8-2 M042304D-2 1 0 0 0 0 0 0
9 M042267 1 0 1 0 0 0 0

10 M042239 1 0 1 0 0 0 0
11 M042238 1 0 1 0 1 0 0
12 M042279 0 0 0 1 0 0 0
13 M042036 1 0 0 1 1 0 0
14 M042130 1 0 0 1 1 1 0
15 M042303A 0 1 0 0 0 1 0

16-1 M042303B-1 1 0 0 0 1 1 1
16-2 M042303B-2 1 0 0 0 1 1 1
17 M042222 0 1 0 0 0 0 1

Note: Modifications were suggested to underlined entries.

The model data fits based on the original and suggested Q-matrices were compared.

As shown in Table 3.9, the sequential G-DINA model using the suggested QC-matrix

had better model data fit in terms of both Akaike’s (1974) information criterion and

Schwarz’s (1978) BIC. This implies that the suggested QC-matrix is statistically pre-

ferred to the original, though this does not guarantee that the suggested one is correct.

Sophie has a bag in which there are 16 marbles: 8 are red and 8 are black marbles. She
draws 2 marbles from the bag and does not put them back. Both marbles are black.
She then draws a third marble out of the bag. What can you say about the likely color
of this third marble?
A. It is more likely to be red than black.
B. It is more likely to be red than black.
C. It is equally likely to be red or black.
D. You cannot tell if red or black is more likely.

Box 1: Item M042222 from TIMSS 2007 Assessment

The estimated proportions of ten dominant latent classes based on the sequential
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Table 3.9: Comparison between original and suggested QC-matrices
Sequential G-DINA model -2 log Likelihood AIC BIC

Model with original QC-matrix 26967.857 27441.857 28672.226
Model with suggested QC-matrix 26866.526 27296.526 28412.684

G-DINA model using the original and suggested QC-matrices are given in Figure 3.3.

In addition to the first two dominant latent classes (i.e., 1111111 and 1101011), there

were another three latent classes common to the two Q-matrices. Furthermore, the

model based on the suggested QC-matrix classified more examinees to extreme latent

classes (i.e., 1111111 and 0000000).

Discussion

The importance of a correctly specified Q-matrix has been recently recognized by many

researchers, but research on the Q-matrix validation mainly centers on dichotomous re-

sponses. The stepwise Q-matrix validation procedure developed in this study can be

used to validate the association between attributes and problem-solving steps of poly-

tomously scored items empirically based on a recently developed CDM - the sequential

G-DINA model. It can also be applied to dichotomous response data directly without

the assumption about the specific forms of the CDMs involved, as long as they are

special cases of the G-DINA model. The stepwise Q-matrix validation method incor-

porates a formal hypothesis test with an effect size measure. Specifically, the procedure

intends to identify all statistically required attributes for each nonzero category based

on the Wald test, which takes the item parameter estimation errors into account. The

GDI or PVAF from de la Torre and Chiu (2016) is used as an effect size measure to ex-

clude the attributes that are identified as statistically necessary but without substantial

contributions.

The GDI was used to identify the first required attribute and under most conditions,
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it performed excellently. We also conducted a simulation study to evaluate whether the

stepwise validation method could be further improved if the first required attribute was

always selected correctly. It turns out that under the condition N = 1000, 20% misspec-

ifications, low item quality, higher-order attribute distribution, and A-CDM processing

function, where the GDI had the worst performance in the first step, the stepwise Q-

matrix validation can be improved by only 3.3% in terms of the true positive rate, and

by 0.3% in terms of the true negative rate. Under other conditions, where the GDI had

better performance, the improvements were smaller.

Despite the promising results from the simulated and real data analyses, additional

research is needed along this line. First, the effectiveness of the stepwise Q-matrix val-

idation method relies upon the reliable estimation of item parameters, but many factors

that could degrade the estimation accuracy have not been investigated yet. For example,

the number of attributes measured by the assessment is assumed to be known correctly,

but if it is not the case, item parameters may not be estimated accurately. Therefore, the

impact of missing one or more required attributes on the stepwise Q-matrix validation

procedure is worth investigating. Second, the proposed approach assumes a provi-

sional Q-matrix, which needs to be largely correct. This can be satisfied if a Q-matrix

has been developed by domain experts. However, it would be interesting to explore

how the proposed methods can be extended to generate Q-matrix without a provisional

Q-matrix as in Liu, Xu, and Ying (2012) and Liu, Xu, and Ying (2013). In addition,

although the sequential G-DINA can be used for both ordinal and nominal responses,

the proposed validation methods are only suitable for ordinal response data. Exploring

how to extend the proposed methods for nominal response data is an important direc-

tion to consider. Lastly, as a method that can be used for dichotomous response data, it

would be interesting to compare it with other Q-matrix validation methods.
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Chapter 4

Category-Level Model Selection for the Sequential
G-DINA Model

Abstract

Solving a problem usually requires performing a sequence of steps successfully.

Each step may measure different skills, and the required skills may contribute to the

performance in each step in various ways. The sequential generalized deterministic

noisy “and” gate model is a general cognitive diagnosis model (CDM) for polyto-

mously scored/graded response items of this type. Despite a host of dichotomous

CDMs that may be used to parameterize the success probability for each step, spec-

ifying the most appropriate model remains challenging. However, if the model for

each step is not in accordance with the underlying cognitive processes, the validity

of the inference could be questionable. This study aims to evaluate whether several

hypothesis tests, namely, the Wald test using various variance-covariance matrices, the

likelihood ratio test and the likelihood ratio test using approximated parameters, can be

used to select appropriate CDMs for each step of a graded response item. Simulation

studies are conducted to examine the Type I error and power of the hypothesis tests

under varied conditions. A data set from the TIMSS 2007 Mathematics assessment is

analyzed as an illustration.
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4.1 Introduction

Cognitive diagnosis models (CDMs) have attracted considerable attention recently

within the field of educational measurement. CDMs are multidimensional psycho-

metric models aiming to uncover individuals’ profiles on a set of latent variables from

their observed item responses in an assessment. The latent variables are referred to as

attributes, and represent the skills or cognitive processes of interest in educational as-

sessment. Typically, although not always, the latent variables are assumed to be binary

indicating either mastery or nonmastery of the attributes.

A number of cognitive diagnosis models (CDMs) have been developed (for re-

views, see DiBello, Roussos, & Stout, 2007). To understand these models, the so-

called condensation rule (Maris, 1999) is critical. A condensation rule specifies how

latent variable responses are “condensed” to produce a manifest item response. For ex-

ample, based on a conjunctive condensation rule, the deterministic inputs, noisy “and”

gate (DINA; Haertel, 1989) model assumes that individuals are expected to answer an

item correctly only when they possess all required attributes; whereas based on the dis-

junctive condensation rule, the deterministic inputs, noisy “or” gate (DINO; Templin &

Henson, 2006) model assumes that mastering at least one required attribute can yield a

high success probability. The additive model (A-CDM; de la Torre, 2011), which has an

additive condensation rule, assumes that each required attribute contributes to the suc-

cess probability independently and uniquely. Aside from these specific models, some

general CDM frameworks have also been developed, namely the generalized DINA

(G-DINA; de la Torre, 2011) model, the log-linear CDM (LCDM; Henson, Templin,

& Willse, 2009), and the general diagnostic model (GDM; von Davier, 2008). Note

that the G-DINA model and LCDM consider all main effects of latent variables and all

possible interactions among them. By setting appropriate constraints, specific models

with conjunctive, disjunctive or additive condensation rules can be obtained as special
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cases.

Specifying the condensation rule for each item is largely based on experts’ judg-

ment, and thus could be subjective. A misspecification in the condensation rules pro-

duces the use of inapporiate CDMs, which then results in a model-data misfit (Kunina-

Habenicht, Rupp, & Wilhelm, 2012; Liu, Tian, & Xin, 2016) and could call into ques-

tion the validity of inferences. For example, Rojas, de la Torre, and Olea (2012) have

shown that fitting the conjunctive model to the data generated from the disjunctive

model, or vice versa, can lead to poor attribute estimation. With the development of

the general CDMs, some may argue that the general models should be preferred to the

reduced models, such as the DINA model, DINO model and A-CDM, because they

can provide better model-data fit in terms of the likelihood. However, as noted by

W. Ma, Iaconangelo, and de la Torre (2016), the reduced models may still be more

appropriate for several reasons. For example, the reduced CDMs usually have more

straightforward interpretations because of the corresponding condensation rules. In

addition, due to fewer item parameters involved, the reduced models need a smaller

sample for accurate parameter estimation. Lastly, W. Ma et al. (2016) have found that

the appropriate reduced models can provide better person attribute estimation than the

saturated models, especially when the sample size is small.

As emphasized by von Davier (2014), it is important to consider other alternatives

prior to committing to using one particular model. A few studies along this line can

be found in literature. For example, Chen, de la Torre, and Zhang (2013), Henson et

al. (2009), and Sinharay and Almond (2007) evaluated and compared different models

using Akaike’s (1974) information criterion, Schwarz’s (1978) BIC, and deviance in-

formation criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) at the

test level. A limitation of model comparison at the test level is that all items are typ-

ically assumed to conform to the same model, which, most likely, is not the case in
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practice. At the item level, Henson et al. (2009) provided a way to determine the ap-

propriate reduced model by visual inspection of the estimates of LCDM, and Sinharay

and Almond (2007) checked the item fit plots generated from a residual analysis. De

la Torre (2011) proposed to use the Wald test (Wald, 1943) to evaluate whether the

reduced models subsumed by the G-DINA model can be used in place of the saturated

G-DINA model without a significant loss in model-data fit. The Type I error and power

of the Wald test for comparing the G-DINA model and the DINA model, DINO model

and A-CDM were examined in de la Torre and Lee (2013), and the performance of

the Wald test in comparing the G-DINA model with the logistic linear model (Maris,

1999) and reduced reparameterized unified model (Hartz, 2002) was later investigated

in W. Ma et al. (2016). Although the model selected by the Wald test can provide bet-

ter person classification, the Type I error rates of the Wald test are found to be inflated,

especially when sample size is small or item quality is low (de la Torre & Lee, 2013;

W. Ma et al., 2016), which may be, among other things, caused by the underestimation

in the variance-covariance matrix of item parameters.

Research on model comparison, or condensation rule selection, mainly focus on

dichotomous responses, though graded response data are very common in educational

measurement because of the widely use of the constructed-response items. In this pa-

per, we consider polytomously scored items that are solved in a sequential manner. For

this type of items, it is not possible for students to perform a step successfully unless all

previous steps have been completed correctly. The sequential G-DINA model (W. Ma

& de la Torre, 2016) is a general CDM suitable for items of this type, and steps involved

in a problem-solving sequence are modeled separately using the dichotomous G-DINA

model (de la Torre, 2011). However, different steps may require different attributes and

involve different condensation rules. Using the saturated G-DINA model may not al-

ways be the optimal choice due to the same reasons in dichotomous responses. This

study aims to evaluate the performance of the Wald test and likelihood ratio (LR) test
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in selecting appropriate condensation rules for each step of the graded response items

based on the sequential G-DINA model.

4.2 Overview of the Sequential G-DINA Model

Suppose a test measuring K attributes has J items, and also suppose that item j has

H j +1 response categories (i.e., category 0, 1, . . . ,H j). A binary q-vector q jh = {q jhk}

is associated with nonzero category h of item j, where h∈ (1, . . . ,H j). Element q jhk = 1

indicates that the attribute k is required by step h of item j, and q jhk = 0 otherwise.

A collection of q jh produces a category level Q-matrix, or QC-matrix, which is a

∑
J
j=1 H j ×K binary matrix. If all items are scored dichotomously, the QC-matrix is

equivalent to the traditional Q-matrix (Tatsuoka, 1983). Individuals can be grouped

into 2K latent classes because of the K attributes involved in the assessment. Individ-

uals in the same latent class have the same attribute pattern. For latent class c, denote

the attribute pattern as αc = (αc1, . . . ,αcK), where c = 1, . . . ,2K . Element αck = 1 in-

dicates attribute k is mastered by individuals in the latent class, and αck = 0 indicates

attribute k is not mastered.

The sequential G-DINA model (W. Ma & de la Torre, 2016) assumes that solving

an item involves a sequence of steps, and that individuals cannot complete a step unless

they have already performed the previous step successfully. Let Xi j be the response of

individual i to item j, and s jh(αc) = P(Xi j ≥ h|Xi j ≥ h− 1,αc) be the processing

function (W. Ma & de la Torre, 2016), or the probability of performing step h correctly

given that step h− 1 has been completed successfully. The conditional probability of

obtaining score h on item j can be written as

P(Xi j = h|αc) = [1− s j,h+1(αc)]
h

∏
x=0

s jx(αc),

where s j0(αc)≡ 1 and s j,H j+1(αc)≡ 0.
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To model the processing function, the G-DINA model (de la Torre, 2011) is used.

Specifically, for step h of item j, let α∗l jh be the reduced attribute pattern consisting

of the required attributes for this step only. Without loss of generality, the first K∗jh

attributes are assumed to be required, that is, l = 1, · · · ,2K∗jh . The processing function

can be expressed as

g
[
s jh(α

∗
l jh)
]
= φ jh0 +

K∗jh

∑
k=1

φ jhkαlk +

K∗jh

∑
k′=k+1

K∗jh−1

∑
k=1

φ jhkk′αlkαlk′+ · · ·+φ jh12···K∗jh

K∗jh

∏
k=1

αlk,

where g[·] is the identity, log or logit link function. By setting appropriate constraints

to the identity link model as in de la Torre (2011), the DINA model, DINO model or

A-CDM can be used as the processing function, and different models can be used at

different steps within a single item. Specifically, the DINA model is obtained when all

main effects and interaction terms except the highest-order interaction are set to be 0:

s jh(α
∗
l jh) = φ jh0 +φ jh12···K∗jh

K∗jh

∏
k=1

αlk.

The processing function based on the DINO model is given by

s jh(α
∗
l jh) = φ jh0 +φ jhkαlk,

where φ jhk =−φ jhk′k′′ = · · ·= (−1)K∗jh+1
φ jh12···K∗jh , for k = 1, · · · ,K∗jh, k

′
= 1, · · · ,K∗jh−

1, and k
′′
> k

′
, · · · ,K∗jh. The A-CDM processing function is the constrained identity-link

G-DINA model without the interaction terms. It can be formulated as

s jh(α
∗
l jh) = φ jh0 +

K∗jh

∑
k=1

φ jhkαlk.
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4.3 Category-Level Model Comparison

If a response category only requires one attribute, the G-DINA model and other reduced

CDMs (e.g., DINA model, DINO model, A-CDM) are not distinguishable, which im-

plies that all condensation rules are equivalent. Therefore, model comparison is only

necessary for categories requiring two or more attributes, which are referred to as multi-

attribute categories. This section introduces how the LR test and Wald test can be used

for model comparisons.

4.3.1 Likelihood Ratio Test

Let s j = {s jh} be a vector of processing functions of all categories of item j, where

s jh = {s jh(α
∗
l jh)}, and s = {s j} for all items. Also, let π = {πc|c = 2,3, . . . ,2K} be

free latent class proportion parameters, π1 = 1−∑
2K

c=2 πc, and ψ = (s,π). The log

marginalized likelihood of response vectorXi for individual i is

`(ψ;Xi) = log
2K

∑
c=1

πcP(Xi|αc),

and the log marginalized likelihood of responses for all individuals is

`(ψ;X) =
N

∑
i=1

`(ψ;Xi).

The LR test has been widely used to compare two nested models: A compact model

and an augmented model. Let `(ψC;X) and `(ψA;X) be the log likelihood of the

compact and augmented models, respectively. The LR statistic can be written as

LR =−2 [`(ψC;X)− `(ψA;X)] ,

which follows a χ2 distribution with the degrees of freedom equal to the difference in
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the number of parameters estimated for the two models.

In this study, the LR test is conducted category by category, and item by item. For

the augmented model, the G-DINA model is used as the processing functions for all

categories of all items, whereas for the compact model, the G-DINA model is used

as the processing functions for all categories except the studied category, for which, a

reduced model is used as the processing function. The augmented model only needs

to be calibrated once. Given that the reduced models to be tested for each category in

this study include the DINA model, DINO model and A-CDM, the data needs to be

calibrated 1+3∑
J
j=1 ∑

H j
h=1 I(K∗jh > 1) times.

The LR test could be time-consuming, and thus we also consider an EM-based

approximation, which is referred to as two-step LR test (Sorrel, de la Torre, Abad,

& Olea, in press). Specifically, the processing functions under a reduced model are

estimated using a one-step EM algorithm based on the estimates under the G-DINA

processing functions directly without recalibrating the data. When the DINA or DINO

model is used as the processing function, some reduced latent groups are equivalent in

that they have the same processing function. We use a vector of length 2K∗jh , ω jh, to

denote the equivalent reduced latent groups for category h of item j, where ωl jh = g

if α∗l jh is in the gth set of the equivalent reduced latent groups. For example, sup-

pose α∗jh = (00,10,01,11). ω jh = (1,2,3,4) for the G-DINA processing function,

(1,1,1,2) for the DINA processing function, and (1,2,2,2) for the DINO processing

function. It can be shown that the marginal maximum likelihood estimates of s jh(α
∗
l jh)

when h≥ 1 is given by

ŝ jh(α
∗
l jh) =

R+
h (α

∗
l jh)

R+
h−1(α

∗
l jh)

.

where R+
h (α

∗
l jh) is the expected number of examinees in reduced latent group l and
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other equivalent groups getting at least a score of h, and can be calculated as,

R+
h (α

∗
l jh) =

N

∑
i=1

∑
{l′:ωl′ jh=ωl jh}

P(α∗l′ jh|Xi)I(Xi j ≥ h).

Note that P(α∗l′ jh|Xi) is calculated based on the augmented model. When the process-

ing function is the A-CDM, the following log likelihood function is maximized for a

studied category while the processing functions of other categories are hold constant,

2
K∗j

∑
l=1

H j

∑
h=1

r̄l jh log
[
P(Xi j = h|α∗

l j)
]
.

4.3.2 The Wald Test

To use the Wald test to examine whether a reduced model can be used in place of the

G-DINA model as the processing function for a multi-attribute category, category h of

item j, a (2K∗jh −m)× 2K∗jh restriction matrix R needs to be set up so that under the

null hypothesis, R× s jh = 0, where m is the number of parameters involved in this

category when a reduced CDM is used as the processing function, and s jh is a vector

consisting of the processing functions for category h when the G-DINA model is used.

For example, when K∗jh = 3, the null hypothesis for the A-CDM is



1 −1 −1 0 1 0 0 0

1 −1 0 −1 1 0 0 0

1 0 −1 −1 0 0 1 0

−1 1 1 1 −1 −1 −1 1


×



s jh(000)

s jh(100)

s jh(010)

s jh(001)

s jh(110)

s jh(101)

s jh(011)

s jh(111)



= 0.
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Examples of the restriction matrices for the DINA and DINO models can be found in

de la Torre and Lee (2013). The Wald statistic can be calculated as

W =
[
R× ŝ jh

]′ [
R×V (ŝ jh)×R

′
]−1 [

R× ŝ jh
]
,

where V (ŝ jh) is the variance-covariance matrix of the processing functions for cate-

gory h of item j. The Wald statistic W is asymptotically χ2 distributed with 2K∗jh −m

degrees of freedom.

The (observed) Fisher information can be approximated using the outer product of

gradients of the log marginalized likelihood as follows:

Iψ̂ =
1
N

N

∑
i=1

[(
∂`(ψ;Xi)

∂ψ

)(
∂`(ψ;Xi)

∂ψ

)′]∣∣∣∣∣
ψ=ψ̂

.

The score function for the processing function s is a vector with elements

∂`(ψ;Xi)

∂ s jh(α
∗
l jh)

= P(α∗l jh|Xi)

[
I(Xi j ≥ h)
s jh(α

∗
l jh)
−

I(Xi j = h−1)
1− s jh(α

∗
l jh)

]
.

The score function for the latent class proportion parameters π has elements

∂`(ψ;Xi)

∂πc
=

P(Xi|αc)−P(Xi|α1)

P(Xi)
.

The variance-covariance matrix of ψ can be written as

V (ψ̂) =

 V (ŝ) V (ŝ, π̂)

V (π̂, ŝ) V (π̂)

 ,
where V (ŝ) and V (π̂) are variance-covariance matrices for processing functions and

latent class proportion parameters, respectively. V (ŝ) is of dimension ∑
J
j=1 ∑

H j
h=1 2K∗jh×
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∑
J
j=1 ∑

H j
h=1 2K∗jh and V (π̂) is of dimension (2K − 1)× (2K − 1). Cov(ŝ, π̂) is the co-

variance between processing functions and latent class proportions. V (ψ̂) can be cal-

culated by inverting the information matrix, as in, V (ψ̂) = I −1
ψ̂

, and V (ŝ jh) used to

calculate the Wald statistic is a submatrix of V (ψ̂) associated with category h of item

j. Because all free parameters are considered in Iψ̂, it is referred to as the complete

information matrix (Philipp, Strobl, de la Torre, & Zeileis, 2016).

In practice, only item parameters are typically of interest, and thus, some previous

studies (e.g., de la Torre, 2008) calculate the variance-covariance matrix of item param-

eters by inverting the information matrix for each item separately. For the sequential

G-DINA model, this can be obtained by inverting the following ∑
H j
h=1 2K∗jh×∑

H j
h=1 2K∗jh

itemwise information matrix,

Iŝ j =
1
N

N

∑
i=1

[(
∂`(ψ;Xi)

∂s j

)(
∂`(ψ;Xi)

∂s j

)′]∣∣∣∣∣
s j=ŝ j

.

Calculating covariance matrix based on this itemwise information matrix is based on

an implicit assumption that parameters are independent among items, and between

items and latent classes. Although inverting the itemwise information matrix can be

much faster than inverting the complete information, the Wald test based on the item-

wise information matrix has been shown to have inflated Type I errors under some

conditions for model comparison and differential item functioning for dichotomous re-

sponses (de la Torre & Lee, 2013; Hou, de la Torre, & Nandakumar, 2014; W. Ma et

al., 2016).

In between the complete information matrix and the itemwise information matrix

is an incomplete information matrix, Iŝ, which does not consider the latent class

proportion parameters (Philipp et al., 2016). It is of dimension ∑
J
j=1 ∑

H j
h=1 2K∗jh ×

∑
J
j=1 ∑

H j
h=1 2K∗jh . This incomplete information matrix considers the associations among

parameters of different items, and its size does not increase exponentially with the
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number of attributes as the complete information matrix. For example, when there

are 15 attributes as in Lee, Park, and Taylan (2011), Iπ̂ is of dimension 215×215, or

32768×32768, which may be problematic when calculating the inverse. However, as

Philipp et al. (2016) showed, both itemwise and incomplete information matrix pro-

duced underestimated standard errors, and their impact on the Wald test needs further

investigations.

4.4 Simulation Study

The goal of this simulation study is to systematically evaluate the performance of the

LR tests, and the Wald test using different information matrices for category-level

model selection in the context of the sequential G-DINA model. The Type I error

and power of these statistical tests were examined under varied conditions.

4.4.1 Design

The number of items and attributes were fixed to J = 23 and K = 5, respectively. The

sample sizes were N = 1000, 2000, and 4000. The processing functions for the gen-

erating models were the DINA model, DINO model and A-CDM, representing the

conjunctive, disjunctive and additive condensation rules. Note that all categories had

the same condensation rule for data generation in each condition. Item quality had

three levels: g = 0.1, 0.2 or 0.3 for all categories of all items, representing high, mod-

erate and low quality, where g = s jh(α
∗
l jh = 0) = 1− s jh(α

∗
l jh = 1) for category h of

item j. When the A-CDM was used as the processing function for data generation,

each required attribute was assumed to contribute equally to the processing function.

The QC-matrix is given in Table 4.1, where each attribute was measured 13 times.

The QC-matrix consists of six two-attribute response categories and six three-attribute

response categories distributed uniformly at categories 1, 2 and 3. Attribute patterns
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were generated from the uniform distribution. Under each condition, 1000 data sets

were simulated. The GDINA package (W. Ma & de la Torre, 2017) was used for data

simulation and model estimation. The code for model comparison was written in the

R programming environment (R Core Team, 2017). The Type I error rates of the Wald

and LR tests were investigated at 10 significance levels: .01, .02, .03, .04, .05, .06, .07,

.08, .09 and .10.

Table 4.1: QC-matrix for the simulation study
Item Cat α1 α2 α3 α4 α5 Item Cat α1 α2 α3 α4 α5

1 1 1 0 0 0 0 13 1 1 0 0 0 0
1 2 0 1 0 0 0 13 2 0 1 0 0 0
2 1 0 0 1 0 0 13 3 0 0 1 0 0
2 2 0 0 0 1 0 14 1 0 0 0 1 0
3 1 0 0 0 0 1 14 2 0 0 1 0 0
3 2 1 0 0 0 0 14 3 0 1 0 0 0
4 1 0 1 0 0 0 15 1 0 0 0 0 1
4 2 0 0 1 0 0 15 2 0 0 1 0 0
5 1 0 0 1 1 0 15 3 1 0 0 1 0
5 2 0 0 0 0 1 16 1 0 0 0 1 0
6 1 1 1 0 0 0 16 2 1 0 0 0 0
6 2 0 0 0 1 0 16 3 0 0 1 0 1
7 1 0 0 1 1 1 17 1 1 0 0 0 0
7 2 0 1 0 0 0 17 2 0 1 0 0 0
8 1 1 1 0 1 0 17 3 0 1 0 1 1
8 2 0 0 0 0 1 18 1 0 1 0 0 0
9 1 0 0 0 0 1 18 2 0 0 0 1 0
9 2 1 0 1 0 0 18 3 1 0 1 0 1

10 1 0 1 0 0 0 19 1 1 0 0 0 0
10 2 1 0 0 0 1 20 1 0 1 0 0 0
11 1 0 0 0 0 1 21 1 0 0 1 0 0
11 2 0 1 1 1 0 22 1 0 0 0 1 0
12 1 0 0 1 0 0 23 1 0 0 0 0 1
12 2 1 0 0 1 1
Note: Cat represents the level of response category.
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4.4.2 Results

4.4.2.1 Type I Error

Type I error or false positive occurs when a hypothesis test concludes that the G-DINA

processing function is statistically better than the generating processing function. For

each of the multi-attribute response categories, the (observed) Type I error rate or false

positive rate is the percentage of times that the hypothesis test makes the Type I error

out of the 1000 replications under a specific significance level. The Type I error rates

were averaged across categories with the same K∗jh and the level of the response cate-

gory. Figures 4.1 to 4.3 give the Type I error rates of the Wald test, two-step LR test,

and LR test when the processing function was the A-CDM. The Type I error rates may

not be equal to the significance level exactly due to the sampling errors, even when the

tests conform well to the nominal level p. However, the Type I error rates are expected

to have a probability of 95% of falling within p± 1.96
√

p(1− p)/n under a nominal

level of p with n replications. This region is established for different significance lev-

els, and shown as the gray ribbon in Figures 4.1 to 4.3. The black lines in the figures

are reference lines. The Type I error rates when the processing function was the DINA

or DINO model are given in Appendix 4.7.

Regarding the Wald test, across all conditions, using the itemwise information

yielded the largest Type I error rates, whereas using the complete information pro-

duced the smallest Type I error rates. This was expected because inverting a submatrix

of the complete information produces underestimated variances, as showed in Philipp

et al. (2016). From Figure 4.1 where N = 1000, the Wald test using the incomplete and

complete information matrices tended to be conservative when item quality was high,

but the Wald test using the itemwise information performed well. However, when the

processing function was the DINA or DINO model, the Wald test using the itemwise

information performed poorly when items were of high quality, N = 1000 and K∗jh = 3.
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More specifically, the test tended to be inflated for lower category levels, but overly

conservative for the higher category level. When items were of moderate quality and

K∗jh = 3, the Wald test using the itemwise information showed inflated type I error re-

gardless the generating processing functions. Additionally, when items were of low

quality, the Wald test had inflated type I error regardless of the information matrices

used and the generating processing functions, but the inflation was out of control when

using the itemwise information especially when K∗jh = 3.

The two-step LR test and the LR test performed similarly well when items were of

high or moderate quality. When items were of low quality, both the LR test and two-

step LR test produced inflated type I error, but the inflation is much more severe for the

two-step LR test. Under the low item quality condition, the LR test performed similarly

as the Wald test using the complete or incomplete information matrix, whereas the

two-step LR test performed similarly as the Wald test using the itemwise information

matrix. Last, the impact of sample size was apparent. With larger samples, the Type I

error rates for all hypothesis tests were closer to the nominal levels.

4.4.2.2 Power

Receiver Operating Characteristic Curves. True positive occurs when a reduced

processing function is rejected correctly by a hypothesis test. The true positive rate is

defined as the percentage of times that a hypothesis test rejects a reduced processing

function correctly out of the 1000 replications under a specific significance level. Like

the false positive rate, the true positive rates were also averaged across categories with

the same K∗jh and the level of the response category. The previous section shows that

different hypothesis tests have different false positive rates, which makes it difficult to

compare their true positive rates directly. As a result, the receiver operating charac-

teristic (ROC) curves were drawn by plotting the true positive rates against the false

positive rates at varied nominal levels.
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Figure 4.1: Type I error for the A-CDM under N = 1000
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Figure 4.2: Type I error for the A-CDM under N = 2000
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Figure 4.3: Type I error for the A-CDM under N = 4000
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Figures 4.4 and 4.5 give the ROC curves for the DINA and DINO processing func-

tions when the true processing function is the A-CDM and items were of low quality.

The ROC curves under other conditions can be found in Appendix 4.7. The ROC

curves showed the relationship between the true positive and false positive for each

hypothesis test. A hypothesis test is more accurate if its ROC curve is closer to the

left-hand and upper borders, and less accurate if closer to the diagonal line. The area

under the ROC curve is an overall measure of the classification accuracy. From Figures

4.4 and 4.5, all hypothesis tests had similar ROC curves when sample size was large or

the level of category was low. When sample size was small or the level of category was

high, the two-step LRT and the Wald test using itemwise information matrix tended to

have larger areas under the ROC curve.

Empirical Power Rates. Statistical power, which is the same as the true positive,

is used more commonly in the context of hypothesis testing. Although the ROC curves

can provide an overall measure of the power, it is more common in practice to conduct

a hypothesis test under a nominal level of 0.05, and therefore, examining the corre-

sponding power is necessary. To compare statistical power rates, all hypothesis tests

should have the same observed Type I error rate. However, this is not the case as shown

in the previous section. As a result, the empirical power rates calculated from the em-

pirical distributions under the null hypothesis were reported instead. Specifically, when

the generating model was fitted to the data, the 5th percentile of the p-values for each

hypothesis test was calculated and used as the empirical cutoff for each condition. The

empirical power rate, which was calculated for each hypothesis test under each condi-

tion, is defined as the percentage of p-values that were less than the empirical cutoff

under the same condition. Like the Type I error rate, the empirical power rates were

also averaged across categories with the same K∗jh and the level of the response cate-

gory. As in de la Torre and Lee (2013), a test power of 0.80 or higher is considered

adequate, and of 0.90 or higher excellent. Tables 4.2 and 4.3 give the empirical power
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rates of the Wald and LR tests for the DINA and DINO processing functions when

the generating processing function was the A-CDM across sample sizes, item quali-

ties, response category levels and K∗jh. The empirical power rates when the generating

processing functions were the DINA and DINO models are given in the Appendix 4.7.

From Tables 4.2 and 4.3, the empirical power rates of the Wald test and LR test

increased as the sample size increased, K∗jh decreased, items quality improved, or the

category level decreased. Specifically, the power rates for all tests were excellent when

items were of high quality, with a minimum value of 0.931 occurring when the category

level was 3, N = 1000, and K∗jh = 3. When items were moderate quality, the power rates

were higher than 0.958 when N = 2000 or higher, but can be as low as 0.726 when

N = 1000. When items were of low quality, the power rates can be very low especially

when the category level was high, and the sample size was small. For example, the

power rate for the LR test to distinguish the DINA model and A-CDM was merely

0.154 when the category level was 3, N = 1000 and K∗jh = 3. However, increasing the

sample size could improve the power substantially. For example, the empirical power

rate for the Wald test using the complete information was improved from 0.2 to 0.708

when N increased from 1000 to 4000, given that the category level was 3, item quality

was low and K∗jh = 3.

Similar patterns can be observed when the generating processing function was the

DINA or DINO model. The power rates were high under the favorable conditions (i.e.,

higher item quality, larger sample size, lower level of category and smaller K∗jh), but

dropped considerably under some unfavorable conditions. In addition, when the pro-

cessing function was the DINA model, the power rates for the A-CDM were lower than

those for the DINO model under all conditions; and when the processing function was

the DINO model, the power rates for the A-CDM were lower than those for the DINA

model under all conditions. These results imply that distinguishing the conjunctive and

disjunctive models is easier than distinguishing them from the additive model.
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Figure 4.4: ROC curves for the DINA processing function: A-CDM generated process-
ing function under low item quality
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When the generating processing function was the A-CDM, as shown in Tables 4.2

and 4.3, the Wald test using the itemwise information had higher power rates than that

using the incomplete information, both of which had higher power rates than that using

the complete information, with only two exceptions occurring under low quality items,

N = 1000 and K∗jh = 3. In addition, the two-step LR test tended to have higher powers

than the LR test when N = 2000 or above. Overall, no one method outperformed

others consistently when the processing function was the A-CDM, and the same can

be said for the DINA or DINO generated processing functions. However, it is worth

emphasizing that when the generating processing function is the DINO model, the

Wald test regardless of the information matrix produced much lower power rates than

the LR test and two-step LR test when the sample size was small, K∗jh = 3 and the

category level was 3. For example, the power rates of the Wald test using different

information matrices for the A-CDM ranged from 0.634 to 0.638 when N = 1000,

K∗jh = 3 and the category level was 3. In contrast, under the same condition, the power

rates of the LR and two-step LR tests were 0.93.

4.5 Real Data Analysis

Responses of 1328 students from the United States to 17 items from the block 4 of

the Trends in International Mathematics and Science Study (TIMSS) 2007 eigth-grade

mathematics assessment were analyzed in this study. The attributes measured by these

items were identified by L. Ma (2014), who considered both cognitive process at-

tributes and content attributes, and built attributes at two levels. However, for illus-

tration purposes, only seven second level content attributes were considered in this

study, namely (α1) whole numbers and integers, (α2) fractions, decimals, ratio propor-

tion, and percent, (α3) algebraic expressions and equations/formulas functions, (α4)

geometric shapes, (α5) geometric measurement and location movement, (α6) data or-

ganization and representation, and (α7) data interpretation and chance. L. Ma (2014)
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also developed the Q-matrix for these items using multiple regression and the least

squares distance method, and the QC-matrix, given in Table 4.4, was created based on

L. Ma’s (2014) work by assuming that for each polytomously scored item, all required

attributes are measured by each step of the item. The sequential G-DINA model was

fitted to the data. The Wald test using the itemwise, incomplete and complete informa-

tion matrices, the LR test and the two-step LR test were conducted to examine whether

the saturated G-DINA model can be replaced by the DINA model, DINO model and

A-CDM.

Table 4.4: QC-matrix for the TIMSS 2007 data
Item No. TIMSS Item ID α1 α2 α3 α4 α5 α6 α7

1 M042001 1 0 0 0 0 0 0
2 M042022 1 0 0 0 0 0 0
3 M042082 1 0 1 0 0 0 0
4 M042088 0 0 1 0 0 0 0
5 M042304A 1 0 0 0 0 0 0

6-1 M042304B-1 0 1 1 0 0 0 0
6-2 M042304B-2 0 1 1 0 0 0 0
7 M042304C 0 1 1 0 0 0 0

8-1 M042304D-1 1 0 0 0 0 0 0
8-2 M042304D-2 1 0 0 0 0 0 0
9 M042267 1 0 1 0 0 0 0

10 M042239 1 0 1 0 0 0 0
11 M042238 1 0 1 0 1 0 0
12 M042279 0 0 0 1 0 0 0
13 M042036 1 0 0 1 1 0 0
14 M042130 1 0 0 1 1 1 0
15 M042303A 0 1 0 0 0 1 0

16-1 M042303B-1 1 0 0 0 1 1 1
16-2 M042303B-2 1 0 0 0 1 1 1
17 M042222 0 1 0 0 0 0 1

For 13 multi-attribute response categories from nine dichotomous items and two

polytomous items, the DINA model was never selected by any of the hypothesis tests.

The DINO model was selected only once for Item 17 by the Wald test using the com-

plete information matrix with a p-value of 0.51; whereas for this item, A-CDM was

believed appropriate by all hypothesis tests. Because the DINA and DINO models
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were not selected for any other items, only the p-values for A-CDM were given in

Table 4.5. The results from all hypothesis tests were consistent for 8 item response

categories. Specifically, the G-DINA model was deemed appropriate for Items 3, 6-1,

10 and 11, whereas the A-CDM was considered as good as the G-DINA model for Item

7, 9, 13 and 17. The Wald test using the itemwise information and the two-step LRT

reached the same conclusion, but all other methods identified more item response cat-

egories where A-CDM can be used in place of the G-DINA model. Based on the Wald

test using the complete information matrix, the A-CDM was appropriate for nine item

response categories.

Table 4.5: P-values of the Wald and LR tests for the A-CDM processing function

Item No.
Wald

[Itemwise]
Wald

[Incomplete]
Wald

[Complete] Two-step LRT LRT

3
6-1
6-2 0.083
7 0.205 0.282 0.481 0.140 0.684
9 0.438 0.501 0.543 0.440 0.543

10
11
13 0.544 0.635 0.723 0.304 0.570
14 0.216
15 0.081

16-1 0.137 0.136
16-2 0.092 0.343 0.275
17 1.000 1.000 1.000 1.000 1.000

Note: p-values less than 0.05 were omitted.

According to the models suggested by each hypothesis test, the data were re-

calibrated, and the AIC and BIC of each fitted model were calculated. The LR test

was also implemented at test level to evaluate whether the suggested models were as

good as the saturated sequential G-DINA model. Based on the test-level LR test, the

models suggested by the Wald test using the complete information matrix were signif-

icantly worse than the sequential G-DINA model (χ2 = 80.417,d f = 42, p < 0.001),

whereas the models suggested by other hypothesis tests were all statistically as good
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as the sequential G-DINA model. From Table 4.6, if not taking the Wald test using the

complete information into consideration, the models based on the Wald test using the

incomplete information had the smallest AIC and BIC, followed by those suggested by

the LR test.

Table 4.6: AIC and BIC for models selected by the Wald and LR tests
Wald

[Itemwise]
Wald

[Incomplete]
Wald

[Complete]
Two-step

LRT LRT

AIC 27431.159 27419.739 27438.274 27431.159 27420.636
BIC 28625.188 28499.556 28450.602 28625.188 28557.559
Note: Lowest AIC and BIC were shown in boldface. AIC and BIC for the sequential
G-DINA model were 27441.857 and 28672.226, respectively.

Discussion

It has been said that no model is true, but some are more useful than others. A psy-

chometric model should be in line with the underlying cognitive processes to provide

a good approximation to the reality. The condensation rule is a central component for

many cognitive diagnosis models, and in this study, we examined the Type I error and

power of the Wald and likelihood ratio tests in determining the appropriate condensa-

tion rules for each response category of a polytomously scored item. This is achieved

by comparing whether the reduced models can be used in place of the G-DINA model

without a significant loss in model-data fit.

Previous research (e.g., de la Torre & Lee, 2013; W. Ma et al., 2016) on dichoto-

mous responses has revealed that the Type I error of the Wald test using the item-

wise information matrix can be inflated under certain conditions. Similar findings have

been observed in this study for polytomous response data. Furthermore, this study has

shown that using the complete and incomplete information could control the inflated

type I error for the Wald test, but only to some extent under unfavorable test conditions.

A potential issue associated with the use of the complete and incomplete information
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matrices is that the the resulting Wald test tended to be conservative when items were

of high quality and sample size was small. This finding is partially consistent with

Liu, Xin, Li, Tian, and Liu (2016), who examined the type I error of the Wald test

for the DINA model using the complete information matrix in detecting differential

item functioning for dichotomous responses and found that the Wald test tended to be

conservative under small sample sizes regardless of item quality.

Despite not involving an estimated variance-covariance matrix, the LR test also

produced inflated Type I error under some unfavorable conditions, similar to the Wald

test using the complete or incomplete information matrix. However, unlike the Wald

test, the LR test did not tend to be conservative under high item quality conditions.

Although the two-step LR test performed as well as the LR test under most conditions,

it can yield much more inflated Type I error than the LR test when items were of low

quality and sample size was small.

In terms of the computation time, the LR test can be very expensive if the data cal-

ibration takes time or the number of categories is very large. For the real data analyzed

in this study, the Wald test took only about 0.25 seconds to compare the G-DINA pro-

cessing function with the DINA, DINO and A-CDM for all multi-attributes categories.

In contrast, the LR test and two-step LR test took around 16 minutes and 12 seconds,

respectively. It should be noted that the code for the LR test was written in R by the

author, and faster speeds can be expected by using a program written in a lower-level

language such as C.

Under most conditions, the studied methods have similar power rates, and no sin-

gle method performed best across all conditions. Despite excellent power rates under

favorable conditions, their power can drop substantially under unfavorable conditions.

This study also found that the power rate decreased as the category level increased.

Based on the closed-form solution for item parameter estimation, the processing func-

tion for category h is the ratio of the expected number of examinees given a particular
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attribute pattern obtaining a score of h or higher to the expected number of examinees

given the attribute pattern obtaining a score of h−1 or higher. As a result, the number

of examinees who get at least a score of h−1 can be viewed as the “effective” sample

size for category h and thus for a higher category, the “effective” sample size is smaller,

yielding a poorer power.

Although the Wald test and the LR test may be used for model selection at category

level for polytomously scored items, the findings of this study should be used with cau-

tions for several reasons. First, the test length and the number of attributes were fixed

and the Q-matrix was assumed known. Guo, Ma, and de la Torre (2017) found that

with misspecified Q-matrix, the standard errors of item parameters estimated using the

outer product of gradient can be problematic, which may further influence the perfor-

mance of the Wald test. It would be important to explore the performance of the Wald

test using variance-covariance matrix calculated in other ways, such as the observed

information matrix (Louis, 1982), the supplemented EM (Meng & Rubin, 1991) and

the numerical differential methods (Jamshidian & Jennrich, 2000). Also, all required

attributes of the additive model were assumed to contribute equally to the processing

functions, which could be relaxed in the future studies.
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Figure 4.6: Type I error for the DINA processing function under N = 1000



115

Cat = 1 Cat = 2 Cat = 3

K
jh *

=
2

Q
uality

:H
igh

K
jh *

=
3

Q
uality

:H
igh

K
jh *

=
2

Q
uality

:M
oderate

K
jh *

=
3

Q
uality

:M
oderate

K
jh *

=
2

Q
uality

:Low

K
jh *

=
3

Q
uality

:Low

0.000 0.025 0.050 0.075 0.1000.000 0.025 0.050 0.075 0.1000.000 0.025 0.050 0.075 0.100

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Significance Level

Ty
pe

 I 
E

rr
or

methods Wald[Itemwise] Wald[Incomplete] Wald [Complete] Two−step LRT LRT

Figure 4.7: Type I error for the DINA processing function under N = 2000
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Figure 4.8: Type I error for the DINA processing function under N = 4000
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Figure 4.9: Type I error for the DINO processing function under N = 1000
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Figure 4.10: Type I error for the DINO processing function under N = 2000
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Figure 4.11: Type I error for the DINO processing function under N = 4000
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Figure 4.12: ROC curves for the DINO processing function: DINA-generated process-
ing function under high item quality
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Figure 4.13: ROC curves for the A-CDM processing function: DINA-generated pro-
cessing function under high item quality
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Figure 4.14: ROC curves for the DINO processing function: DINA-generated process-
ing function under moderate item quality
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Figure 4.15: ROC curves for the A-CDM processing function: DINA-generated pro-
cessing function under moderate item quality
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Figure 4.16: ROC curves for the DINO processing function: DINA-generated process-
ing function under low item quality
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Figure 4.17: ROC curves for the A-CDM processing function: DINA-generated pro-
cessing function under low item quality
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Figure 4.18: ROC curves for the DINA processing function: DINO-generated process-
ing function under high item quality
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Figure 4.19: ROC curves for the A-CDM processing function: DINO-generated pro-
cessing function under high item quality
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Figure 4.20: ROC curves for the DINA processing function: DINO-generated process-
ing function under moderate item quality
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Figure 4.21: ROC curves for the A-CDM processing function: DINO-generated pro-
cessing function under moderate item quality



130

Cat = 1 Cat = 2 Cat = 3

K
jh *

=
2

N
=

1000

K
jh *

=
3

N
=

1000

K
jh *

=
2

N
=

2000

K
jh *

=
3

N
=

2000

K
jh *

=
2

N
=

4000

K
jh *

=
3

N
=

4000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Methods Wald [Itemwise] Wald [Incomplete] Wald [Complete] Two−step LRT LRT

Figure 4.22: ROC curves for the DINA processing function: DINO-generated process-
ing function under low item quality
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Figure 4.23: ROC curves for the A-CDM processing function: DINO-generated pro-
cessing function under low item quality
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Figure 4.24: ROC curves for the DINA processing function: A-CDM-generated pro-
cessing function under high item quality
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Figure 4.25: ROC curves for the DINO processing function: A-CDM-generated pro-
cessing function under high item quality
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Figure 4.26: ROC curves for the DINA processing function: A-CDM-generated pro-
cessing function under moderate item quality
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Figure 4.27: ROC curves for the DINO processing function: A-CDM-generated pro-
cessing function under moderate item quality
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Chapter 5

Discussion

Cognitively diagnostic assessment (CDA; de la Torre & Minchen, 2014) has attracted

increasing attentions in recent years because of its potential to provide detailed in-

formation about students’ strengths and weaknesses. To fulfil its potential, a well-

developed CDA should be a minimum requirement. However, for many recently de-

veloped CDAs (e.g., Bradshaw, Izsák, Templin, & Jacobson, 2014; Tjoe & de la Torre,

2014), multiple-choice items are still predominantly used, though constructed-response

items have been shown to be more informative for diagnostic purposes (Birenbaum

& Tatsuoka, 1987; Birenbaum, Tatsuoka, & Gutvirtz, 1992). The overemphasis on

multiple-choice items can be attributed to several reasons, and one of the reasons may

be the constraints of the current development of psychometric models and procedures

for the constructed-response items.

CDMs play a critical role in making valid inference about students’ attribute pat-

terns based on their observed item responses. Despite the large number of CDMs

available, most of them are designed for dichotomous responses. This constrains the

use of polytomously scored items such as constructed-response items. More impor-

tantly, developing a psychometric model is merely the initial step in a complete data

analysis process, and a set of procedures, including, among others, Q-matrix validation,

model-data fit and item fit evaluation, condensation rule selection, and differential item

functioning detection, may also need to be developed. A body of research can be found

in literature on these topics, but most of them are related to CDMs for dichotomous re-

sponses. This results in another challenge in the use of polytomously scored items in
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CDAs.

This dissertation developed a psychometric model for polytomously scored items,

as well as associated statistical procedures for Q-matrix validation and condensation

rule determination. Specifically, in Chapter 2, the sequential G-DINA model, which is

particularly suitable for items that involve a sequence of steps in the problem-solving

process, was proposed. This model can utilize the information about the association

between attributes and steps when it is available. If the step and attribute association is

unknown, the sequential G-DINA model is still applicable, but is equivalent to nominal

response model. Simulation studies have shown that the MMLE/EM algorithm can be

used to accurately recover item and attribute parameters under varied conditions.

Assuming a sequential process in problem solving and modeling each step sep-

arately are not novel in the field of educational measurement because items of this

type are common in achievement testing. Examples of IRT models for items of this

type include Tutz’s (1997) sequential model, Verhelst, Glas, and de Vries’s (1997) step

model, and Samejima’s (1997) acceleration model. These models belong to a more

general model framework, namely, continuation ratio model (Agresti, 2013), and their

properties have been investigated by van der Ark (2001), and Hemker, van der Ark,

and Sijtsma (2001). However, these IRT models have gained less attentions than other

polytomous IRT models such as Samejima’s (1969) graded response model, because,

among other reasons, under unidimensional assessment, all these models tend to per-

form similarly (Verhelst et al., 1997). The sequential G-DINA model is also a special

case of the continuation ratio model, but compared with other polytomous CDMs, it al-

lows researchers to model the association between steps and attributes directly. This is

a distinct feature of CDAs from traditional unidimensional assessment. Because the at-

tributes are typically finer-grained, it is very likely that different attributes are involved

at different steps. Considering this information, as in the sequential G-DINA model,

might lead to more accurate classification.
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Like most CDMs, the proposed sequential G-DINA model relies on a Q-matrix

(Tatsuoka, 1983) to specify the association between attributes and items. Nevertheless,

it goes one step further and can consider the attribute and step association specified

in a category level Q-matrix or QC-matrix. The QC-matrix provides extra information,

which could facilitate person classification; but developing the QC-matrix may be more

challenging than developing the Q-matrix, and thus misspecifications are more likely

to occur. Chapter 3 of this dissertation developed a stepwise procedure for empirically

validating the QC-matrix. Because the sequential G-DINA model is equivalent to the

G-DINA model for dichotomous response data, the stepwise procedure can also be

used for dichotomous data without assuming the specific condensation rule, as long as

the underlying model is subsumed by the G-DINA model. Compared with other Q-

matrix validation procedures for dichtomous responses (e.g., Chiu, 2013; de la Torre

& Chiu, 2016), the stepwise procedure takes both hypothesis test and effect size mea-

sure into consideration. Under various conditions through the simulation studies, the

stepwise method performs well in terms of both false positive and true positive rates.

It should be noted that the stepwise Q-matrix validation procedure assumes that a pro-

visional QC-matrix is available and largely correct. This is different from Q-matrix

learning algorithms (e.g., J. Liu, Xu, & Ying, 2012) that aim to recover the Q-matrix

without a provisional one.

Although no condensation rule is specified for each step in the sequential G-DINA

model, knowing the condensation rule could provide additional insights into how at-

tributes are translated into manifest item responses. Specifying models with condensa-

tion rules in line with the underlying cognitive processes makes the data analysis more

defensible. Compared with the G-DINA model used in the sequential G-DINA model,

models based on specific condensation rule could be simpler, and therefore yield more

reliable parameter estimation. However, for domain experts, identifying the conden-

sation rule for each step of an item could be as difficult as, if not more difficult than,
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determining the required attributes for this step. To address this issue, Chapter 4 of

this dissertation examined whether the Wald test and likelihood ratio test can be used

to empirically determine several types of condensation rules for each step of an item.

Type I error and power of these hypothesis tests were examined. The performance of

hypothesis tests was influenced by many factors. Under unfavorable conditions, all

hypothesis tests have inflated Type I error, but under favorable conditions, the Type I

error rates for all tests are close to the nominal level.

To sum up, this dissertation developed the sequential G-DINA model for a spe-

cial type of polytomously scored items, as well as two procedures for validating the

attribute and step association and for determining the condensation rule for each step.

The sequential model and the associated procedures offer a set of psychometric tools

for analyzing polytomously scored items. Despite promising results, further research

along this line is needed. First of all, although the sequential G-DINA model can be

used for both graded and nominal response data, the stepwise Q-matrix validation and

condensation rule selection procedures in Chapters 3 and 4 are only suitable for the

graded response data. It is important to generalize these procedures so that they can be

used for the nominal responses. Also, in the simulation studies across the three chap-

ters, five dichotomous items each requiring single attribute were included to ensure the

Q-matrix is identifiable. Identifiability is a critical issue in CDMs. Although many

studies can be found in literature (e.g., Y. Chen, Liu, Xu, & Ying, 2015; Köhn & Chiu,

2017), all of them are based on dichotomous response data. It is not clear whether the

identifiability can be achieved at the step level in the QC-matrix. Additionally, the step-

wise Q-matrix validation procedure assumes that the number of attributes measured by

the test is known; in practice, however, it is possible that students use some attributes

that are not identified by experts.

Apart from the Q-matrix validation and condensation rule selection, many other



144

procedures are needed. For example, evaluating model-data fit for the sequential G-

DINA model is a topic that is worth exploring. Many indices have been developed for

CDMs for dichotomous responses, such as indices based on the transformed correlation

and log odds ratio in J. Chen, de la Torre, and Zhang (2013), and M2 statistic (Hansen,

Cai, Monroe, & Li, 2016; Y. Liu, Tian, & Xin, 2016), and several other measures

examined by Hu, Miller, Huggins-Manley, and Chen (2016). The performance of these

indices in conjunction with the sequential G-DINA moel for polytomous response data

needs to be examined.

Last but not least, the ultimate goal of developing the sequential G-DINA model

and the associated statistical procedures is to provide valid and reliable feedback to

teachers and students immediately after the exam. This could be challenging when

constructed response items are involved because these items may need to be graded by

human raters. It is intuitive to consider some automatic scoring algorithms to accelerate

the grading process. In addition, to fulfill the potential of the diagnostic assessments,

it is important to explore how the test can be administered adaptively, and how the

assessments can be embeded in class instructions.
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