
LOW LATENCY CDMA-BASED PROTOCOL TO
SUPPORT IOT TRAFFIC IN 5G

BY SIDDARTH MATHUR

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Dipankar Raychaudhuri

and approved by

New Brunswick, New Jersey

October, 2017

ABSTRACT OF THE THESIS

Low Latency CDMA-Based Protocol to Support IoT

Traffic in 5G

by Siddarth Mathur

Thesis Director: Prof. Dipankar Raychaudhuri

The upcoming 5th generation mobile network architecture is envisioned to deploy mas-

sive Internet-of-Things (IoTs) devices with a variety of traffic patterns. These de-

vices will often transmit short sporadic messages, which are not well suited to the

connection-oriented modes associated with legacy 3GPP networks resulting in high ser-

vice latency and excessive control overhead. This thesis presents the design of a low

latency MAC (Medium Access Layer) / PHY (Physical Layer) protocol for emerging

Internet of Things (IoT) devices that require low access delay. The goal is to operate

in the same band as current LTE, thus not requiring any separate channel allocation,

while maintaining backward compatibility with the current LTE system. The physical

layer access is achieved using an underlay CDMA-based low power transmission scheme,

which operates in the same frequency range as the LTE’s uplink/downlink frequencies.

The MAC layer is designed for low access latency by transmitting small sized data in a

random access mode as it becomes available, eliminating the need to setup a connection.

A proof of concept prototype was developed to demonstrate the feasibility of the

proposed design and the performance of the CDMA system and in presence of LTE. The

CDMA based transmission was prototyped using the Software Defined Radio (SDR)

ii

platform (USRP B210/X310) and the code is written in C and C++. The LTE trans-

mission is enabled using the OpenAirInterface (OAI) platform, which is an open sourced

LTE implementation for Software Defined Radios. The performance of CDMA is stud-

ied with varying the spreading code length, message size, delay between transmitted

packets, Signal to Noise Ratio (SNR). The CDMA based system is studied indepen-

dently as well as in the presence of an ongoing LTE transmission. The results demon-

strate that underlay burst CDMA transmissions for IoTs are capable of providing lower

latency compared to LTE.

iii

Acknowledgements

I would like to sincerely express my deepest gratitude to my adviser Dr. Dipankar

Raychaudhuri for his constant support, sound advice and invaluable guidance to shape

my thesis. I would like to thank my mentor Prof. Dola Saha. Her constant support and

direction was invaluable for my work and it was a great learning experience working

with her. I would also like to thank my colleagues at Huawei, Santa Clara to support

me in my time there working on this project and gave me some great advice.

I would like to thank the rest of my thesis committee members, Dr. Zoran Gajic

and Dr. Predrag Spasojevic. Finally, I would like to thank my friends at WINLAB and

my family for their unwavering support.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Figures . vii

1. Introduction . 1

2. Background and Motivation . 3

2.1. LTE Architecture Overview . 3

2.2. Code Division Multiple Access . 7

2.2.1. CDMA Capacity . 8

2.3. Comparison of Access Delay in LTE and Underlay CDMA 11

2.3.1. Latency in LTE . 11

2.3.1.1. Transmission Delay in LTE 11

2.3.1.2. Access Delay in LTE 13

2.3.2. Latency in CDMA . 18

2.3.2.1. Transmission Delay in CDMA 18

2.3.2.2. Access Delay in CDMA 23

2.4. Coexistence of CDMA Underlay and LTE Network 26

2.4.1. Coexistence Analytical Model . 26

3. System Design . 30

3.1. System Requirements for IoT at PHY/MAC layers 30

3.2. CDMA Design . 30

4. Implementation and evaluation . 38

v

4.1. CDMA Implementation . 38

4.1.1. Standalone operation of CDMA IoT 39

4.1.2. Coexistence of underlay CDMA with LTE 49

5. Related Work . 51

6. Conclusion . 53

Appendix A. CDMA Code . 54

A.1. MATLAB code . 54

A.1.1. CDMA Transmitter . 54

A.1.2. CDMA Receiver . 56

A.2. C/C++ code . 58

A.2.1. Transmitter . 58

A.2.1.1. How to run CDMA Transmitter 60

A.2.2. Receiver . 61

A.2.2.1. Main Thread . 63

A.2.2.2. Process Thread . 64

A.2.2.3. How to run CDMA Receiver 65

References . 67

vi

List of Figures

2.1. LTE Architecture Diagram . 4

2.2. Control Plane Signaling (User Equipment Attach Procedure) 4

2.3. RRC State transition in LTE . 5

2.4. Cumulative Overhead in Control Plane for Attach Procedure in LTE [1] 6

2.5. Percentage Overhead for transmissions of different sizes in idle mode [1] 7

2.6. Bit error rate (Pb) and capacity of CDMA IoT network (N) as a function

of Eb/N0 and processing gain (Lc) for received power S at distance =

600 m [2] . 10

2.7. Modulation, TBS index and redundancy version table for PUSCH [3] . . 12

2.8. Transport block size table [3] . 13

2.9. Initial Acquisition Procedure in LTE . 14

2.10. Best and Worst Initial Acquisition times for an idle UE in LTE 16

2.11. Contention Based Random Access Procedure [4] 16

2.12. Transmission Delay (in ms) for a BPSK Modulated CDMA Transmission,

varying spread/preamble code lengths 19

2.13. Transmission Delay (in ms) for a 16-QAM Modulated CDMA Transmis-

sion with varying spread code lengths 20

2.14. CDMA Transmission Delay (in ms) for varying spread code length . . . 20

2.15. CDMA Transmission Delay (in ms) for different modulation techniques. 21

2.16. Transmission Delay (in ms) for a CDMA Transmission with varying

bandwidth . 22

2.17. Capacity of CDMA-based IoT Network as a function of no. of LTE UEs

and LTE channel occupancy (β) when required CDMA Eb/N0 = 7 dB,

W = 1MHz. 28

vii

2.18. LTE throughput for a single average and worst-case user as a function

of number of CDMA UEs . 29

3.1. Underlay CDMA Transmission for IoT-Uplink 31

3.2. Packet format of CDMA-based IoT data transmission 31

3.3. CDMA Transmitter Block Diagram . 32

3.4. CDMA Receiver Block Diagram . 32

3.5. Correlation output of the Received Samples 33

3.6. Recursive Least Square filter . 34

3.7. Carrier Synchronizer Block Diagram . 36

3.8. Time Domain Representation of the CDMA Packet at the Receiver . . . 37

3.9. Time Domain Representation of the CDMA co-existing with LTE 37

4.1. Setup of a single IoT link for uplink transmission using CDMA software

implementation and USRP . 39

4.2. Packet Error Rate of a CDMA-based IoT transmission as a function of

the Signal-to-Noise Ratio with varying message sizes 40

4.3. Packet Error Rate of a CDMA-based IoT transmission as a function of

the Signal-to-Noise Ratio with varying Spreading Code length. 40

4.4. Packet Error Rate of a CDMA-based IoT transmission as a function of

the Signal-to-Noise Ratio with varying Preamble length. 41

4.5. CDMA Throughput for varying spreading code lengths and keeping band-

width constant at 1 MHz . 42

4.6. CDMA Throughput for varying bandwidths keeping spreading code length

constant to 64 bits . 43

4.7. Throughput Vs Delay plot for different message sizes (experimental) . . 44

4.8. Throughput Vs Delay plot for different message sizes (analytical) 45

4.9. Throughput Vs Delay plot for different message sizes and higher bandwidth 46

4.10. Throughput Vs Delay plot for different preamble lengths (experimental

and analytical) . 47

viii

4.11. Throughput Vs Delay plot for different spreading code lengths (experi-

mental and analytical) . 48

4.12. Setup for coexistence of IoT link and LTE using CDMA-underlay imple-

mentation, OAI and USRP . 49

4.13. Throughput of the LTE transmission and Packet Error Rate(PER) of

the CDMA-based IoT transmission as a function of the CDMA Signal-

to-Noise Ratio(SNR). 50

A.1. CDMA Transmitter for MATLAB code 55

A.2. CDMA Receiver for MATLAB code . 56

A.3. CDMA Transmitter for the C++ code 59

A.4. CDMA Receiver for the C code . 61

A.5. Flow Diagram of the CDMA Receiver 62

ix

1

Chapter 1

Introduction

Global data traffic will increase sevenfold between 2016 and 2021. Mobile data traffic

will grow at a rate of 47 percent from 2016 to 2021 [5]. In 2016, 4G carried 69 percent of

the total mobile traffic and is expected to represent over 79 percent of all mobile traffic

by 2021. Smartphones have been a part of this trend for quite a while now, but in near

future, the majority increases in the number of devices will be due to the emerging

Machine to Machine (M2M) communication systems, also termed as Internet of Things

(IoT). M2M connections were initially forecasted to be about 50 billion by 2020 [5, 6].

This estimate although seeming farfetched now, the number is still expected to be in

the range of 20B to 30B connected devices [7, 8]. This recent evolution introduces a

great variety of network-enabled objects which interact with each other and provide

a broad spectrum of new services. Connectivity is now reaching home devices, cars,

industrial automation, etc. and wireless mobile networks are one of the main platforms

for these M2M systems .

5G is the next phase of mobile communication and is expected to have significantly

higher bandwidth (Gigabit speeds), broader coverage and ultra low latency. The cur-

rent fourth generation of mobile networks, the Long Term Evolution (LTE) has been

designed to enhance the capacity in order to provide support to a large number of

connected devices and is expected to be the main driver of the emergence of the IoT

on cellular networks. These mobile networks are designed and optimized to transport

human-originated traffic. The traffic characteristics of many IoT applications which

are substantially different than user traffic from smartphones and tablets, are known

to result in network resource utilization inefficiencies. Machine type communication

involves a potentially large number of communicating terminals with, to a large extent,

2

little traffic per terminal transmitted between them [9].

Considering the aforementioned traffic requirements, there is a need to design a

network with low access latency and less control overhead. This can by achieved by

using a random access protocol. Most of the proposed IoT systems require additional

spectrum allocation, underlining the need to coexist with the current cellular network in

the same frequency band. Our design is a MAC/Physical layer solution for low power,

low bitrate and static devices that require low access delay (possibly as low as 1-2 ms)

and long range for communication. We propose a CDMA-based low power transmission

for simultaneous channel access of IoT devices along with LTE User Equipments (UE).

In such cases, the IoT devices can operate at low Signal-to-Noise Ratio (SNR) for low

bit-rate data transmission [10]. There has been work in the community with SIGFOX

[11], which is a Low Throughput and Ultra Narrow-Band(UNB) Modulation system

limiting the maximum size to 12 bytes of information on 200 Hz bandwidth. NB-IoT [12]

is another standard for MTC, using 180 KHz of bandwidth using OFDMA/SC-FDMA.

However, it targets latency insensitive applications and targets a latency of 10 seconds

for emergency messages. LoRa [13] Alliance is yet another option which uses proprietary

chirp-based spread spectrum technique developed by Semtech.

Chapter 2 provides a brief overview of the LTE Network Architecture and provides

us with the motivation behind the proposed design in detail. Delays in LTE and CDMA

are discussed to justify the use of underlay CDMA. Capacity analysis of standalone

CDMA based IoT network and CDMA in presence of LTE is done in detail. Chapter 3

builds on this and provides a detailed description of the underlay CDMA technique and

why it is a feasible option to use. Chapter 4 presents a proof of concept prototype to

demonstrate the functionality of the prototyped CDMA on USRPs (Universal Software

Radio Peripherals). The experimental evaluations of the standalone CDMA and in

presence of overlay LTE transmissions are presented. Finally, the related work and

Conclusion are presented in Chapter 5 and Chapter 6 respectively.

3

Chapter 2

Background and Motivation

2.1 LTE Architecture Overview

Long Term Evolution (LTE) is a 4G mobile communications standard for high speed

wireless communication majority between mobile phones and data terminals. It is a

standard by 3GPP (3rd Generation Partnership Project) [14]. LTE Release 8 supports

peak data rates up to 326 Mbps on the downlink and 86 Mbps on the uplink with a 20

GHz channel and 4x4 MIMO (Multiple Input, Multiple Output Antennas). It provides

duplexing in both Frequency (Frequency Division Duplexing) and Time (Time Domain

Duplexing). The network architecture of LTE consists of two blocks, i.e. the E-UTRAN

(Evolved UTRAN) and the evolved packet core (EPC). The E-UTRAN consists of

the eNodeB (Base Station) and the UE (User Equipment). The Evolved Packet core

consists of the Mobility Management Entity (MME), Home Subscriber Server (HSS),

S-GW (Service Gateway), P-GW (PDN Gateway) and the Policy Control and Charging

Rules Function (PCRF). Figure 2.1 shows the overall network architecture of LTE. It

includes the different network elements and the standard interfaces between them. In

this section. we look at the E-UTRAN and the Core Network (CN) for inefficiencies

that could be ill-suited for the target IoT applications.

Our design objective is to reduce the network latency in LTE for short messages

generated by IoTs, and to reduce the overhead generated in the network for these

devices. Latency in LTE consists of :

• Control plane latency

• User plane latency

Control plane latency deals with signaling and controlling functions and is measured

4

Figure 2.1: LTE Architecture Diagram

Figure 2.2: Control Plane Signaling (User Equipment Attach Procedure)

5

Figure 2.3: RRC State transition in LTE

as the transit time from an idle state (Radio resource control (RRC) Idle) to an active

state (RRC Connected) for the UE. User Plane latency deals with the actual data

transmission, and is defined as transit time between a packet available at IP layer of

the UE and the availability at the IP Layer of the eNodeB. Our focus is mainly on the

control plane since it is the biggest piece in the network latency.

A UE looking to access the network, has to perform an attach procedure to the

network. If the UE has data to transmit, it initiates a connection by means of the

Random Access Procedure in which it sets up the RRC (Radio Resource Control)

Connection. Non Access Stratum (NAS) (UE and MME) security, Access Stratum

(AS) (UE and eNB) security and mutual authentication procedures are then performed

and a bearer is finally established through the Evolved Packet Core (EPC) in order

to send and receive user traffic. This accounts up to 30 % of control plane signaling

overhead.

A device goes to the RRC Idle state if it has been inactive for 10 seconds and for

the next transmission, the device needs to reestablish the radio bearer as seen in Figure

2.3. The idle to connected latency is around 60ms [15], which is very high compared to

WiFi (often ¡1ms). This increases control plane overhead within the network. Figure

2.4 shows the cumulative control overhead, which is extremely high when the packet

size is very small. M2M devices will have low throughput and the signaling load is

6

Figure 2.4: Cumulative Overhead in Control Plane for Attach Procedure in LTE [1]

really high due to the control overhead. Now, the two major issues in using the existing

4G net- work for IoT traffic are:

• High latency for the attach procedure .

• High overhead in control plane.

As can be seen in Figure 2.4, higher latency is due to the wait time at UE for

random access and the time to perform multiple steps of attach procedure. Figure 2.5

shows the percentage overhead for message transmissions by an idle UE. The overhead

can be as high as 4500% for a 1 byte message, when the UE is in idle mode and it has

to re-establish the connection to the network.

We will minimize the waiting time by using an underlay CDMA based transmission

with low access latency for burst IoT traffic without having the need to over provision

the allocated spectrum.

This motivates us to propose an underlay CDMA-based low power IoT transmission

for the shared band operation of IoT and LTE devices. With the proposed underlay

CDMA-based MAC and Physical layer solution, we achieve low latency, short-message

and long range communication required for low-power IoT devices.

7

Figure 2.5: Percentage Overhead for transmissions of different sizes in idle mode [1]

2.2 Code Division Multiple Access

Code Division Multiple Access or CDMA is a spread spectrum, multiple access tech-

nique. It uses a spread spectrum technique to spread the bandwidth of the data uni-

formly over the available frequency band. It allows numerous signals or clients to

occupy a single transmission channel and optimizing the use of available bandwidth.

The spreading is achieved by codes, which are independent of the data. These codes

are pseudo-random There are two types of spread spectrum techniques :

• Frequency Hopping Spread Spectrum (FHSS)

The transmitters hops between different frequencies repeatedly within a specified

channel bandwidth, using a pseudo-random sequence known to both sender and

receiver. Data is transmitted on a sequence of different narrow band frequencies

specified by the PN sequence.

• Direct sequence Spread Spectrum (DSSS)

The sender uses a PN sequence code or also known as ”chipping code” to spread

the data over a wide bandwidth. The other senders use different chipping codes

and transmit on the same frequency bandwidth. These chipping sequences are

8

orthogonal. They give high auto-correlation output and zero cross-correlation

with other chipping sequences.

Walsh-Hadamard codes are used as chip sequences in our work. The Walsh-Hadamard

codes encode n bits into 2n bits.

2.2.1 CDMA Capacity

In CDMA [16], the information-bearing baseband signal, s(t), is multiplied by the

spreading code, c(t). Let us assume that Tb is the bit interval of s(t) with the information

rate of R = 1/Tb bits/sec and Tc is the pulse duration of c(t). For such system, CDMA

processing gain is given by

Lc =
Tb
Tc

=
W

Rb
(2.1)

where W ≈ 1/Tc represents the total spread bandwidth. In the proposed underlay

CDMA IoT network, we assume all uplink signals (IoT device-to-eNB) are received at

the same power level S. For N IoT UEs, signal-to-interference-plus-noise-ratio (SINR)

is given by [17]

SINR =
S

(N− 1)S + η
(2.2)

where η is the thermal noise, and Eb/N0 can be obtained as

Eb/N0 =
S/Rb

(N − 1)S/W + η/W
=

W/Rb
(N − 1) + η/S

(2.3)

For a given value of Eb/N0, required for the adequate performance of demodulation

and decoding, the capacity of CDMA in terms of users it can support is

N = 1 +
W/Rb
Eb/N0

− η

S
(2.4)

The probability of error for the CDMA system using BPSK modulation is expressed

as

Pb = Q

(√
2Eb
N0

)
(2.5)

where Q(x) is Q-function, Eb is the energy per bit, N0 is the power spectral density

of an equivalent broadband interference (generally, over bandwidth W) and Eb/N0 is

referred as the bit energy-to-noise density ratio.

9

System Parameter Specification

CDMA bandwidth 1 MHz

Modulation BPSK

Antenna configuration UE: 1T1R

Operating frequency 2620.5 MHz

UE transmit power 23 dBm

Thermal noise density -174 dBm/Hz

Cell site sector radius 600 m

Path loss model (for 36.7 log10(dist[m]) + 22.7
2GHz < freq < 6GHz) + 26 log10(frq [GHz])

Table 2.1: Parameters for CDMA-based IoT network [2]

The capacity of the proposed CDMA IoT network for typical cellular deployment

parameters (given in Table 2.1) is now evaluated [2]. As shown in Fig. 2.6, the capacity

of CDMA IoT network, N , can be augmented by either increasing the processing gain

(higher system complexity) or by compromising system performance in terms of bit

error rate (BER), Pb. Assuming the BER system constraint Pb = 10−3 (e.g. required

Pb or better for digital voice transmission), the required Eb/N0 is approximately 7

dB at Lc = 64 and for a powerful convolutional code. In a single CDMA channel,

it can accommodate N = 13 IoT UEs simultaneously without affecting each other’s

performance. The total CDMA network capacity, Nmax can be obtained as:

Nmax = Capacity of a single CDMA channel * No. of CDMA channels (2.6)

For example, let’s take a CDMA channel with bandwidth 1 MHz and N = 13

which can coexist with an LTE network using 20 MHz spectrum band. The maximum

achievable CDMA IoT capacity in that case, with no LTE presence is 260 users. We

look at some observations which affect the capacity of CDMA IoT network :

• No requirement of guard bands

CDMA IoT network can avoid having guard bands between CDMA channels by

using non-overlapping data spreading codes for adjacent frequencies. For example,

a 64-bit Hadamard code forms 64 spreading code sequences. For N = 13, 4 groups

of non-overlapping sequences can be formed. In this case, maximum channel

separation is 4 MHz for W = 1 MHz minimizing the interference between adjacent

10

0 2 4 6 8 10 12
Eb/N0 [dB]

10-6

10-5

10-4

10-3

10-2

10-1
P
ro

b
a
b
ili

ty
 o

f
B

it
 E

rr
o
r

(P
b
)

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

U
se

rs
 (
N

)

Pb =10−3

Eb/N0 ≈7 dB

Lc = 128

Lc = 64

Lc = 32

Figure 2.6: Bit error rate (Pb) and capacity of CDMA IoT network (N) as a function
of Eb/N0 and processing gain (Lc) for received power S at distance = 600 m [2]

channels.

• Robust performance in multi-cell scenario

In the conservative approach of limited spectrum band with reuse factor 1, inter-

ference between CDMA UEs in adjacent cells can be mitigated by CDMA code

and channel diversity. For example, for 20 CDMA channels with W = 1 MHz in

20 MHz band and 4 non-overlapping spreading sequence groups, code-channel di-

versity has a reuse factor of 80. This assures that IoT UEs in adjacent cells with

the same channel and spreading code are at least apart by inter-eNB distance

causing negligible interference to each other.

11

2.3 Comparison of Access Delay in LTE and Underlay CDMA

As seen in section 2.1, the control plane latency LTE is a hindrance for applications

requiring low latency access or transmission times. Thus, control plane latency, i.e. Idle

UE to Connected UE, can be divided into two parts. The initial being the access delay

and the other being the transmission delay. Access delay is the delay an average idle UE

experiences from the time it has a message to be sent to the time it actually transmits

it to the network. In case of LTE, the access delay is the major part of the control

plane latency. Transmission delay in LTE is minimal due to OFDM, which allows high

data rate. For underlay CDMA, it is quite the opposite. The time to get access to the

network is minimal, since it is a random access technique. Whereas, the transmission

time is high depending on the spreading factor used and the size of the message. These

delays in LTE and CDMA are discussed and the use of underlay CDMA is justified.

2.3.1 Latency in LTE

2.3.1.1 Transmission Delay in LTE

The focus is on IoT uplink transmissions and thus, we look at transmission times for

LTE uplink in this section. The transmission times in LTE are extremely low due to

multiple carriers in OFDM and higher orders of modulation used. The transmissions

over only the Physical Uplink Shared Channel (PUSCH) are considered, which is the

data channel. The approximate throughput in the PUSCH is calculated and the trans-

mission time is derived from the throughput. There are three factors that control LTE

throughput:

• Bandwidth

The bandwidth is acquired by the UE from the Master Information Block (MIB),

transmitted in the Physical Broadcast Channel (PBCH). The total number of

resource blocks allocated for uplink, NPRB is obtained from the bandwidth.

• Modulation and Coding Scheme Index(IMCS) and the redundancy version (RV)

This index determines the modulation scheme and the code rate to be used. UE

12

Figure 2.7: Modulation, TBS index and redundancy version table for PUSCH [3]

would read the 5-bit index, IMCS from the Downlink Channel Indicator(DCI)

format 0 message in the PDCCH [3].

• Transport Block Size Index(ITBS) For 0 ≤ IMCS ≤ 28, the UE would determine

the ITBS in Table 8.6.1-1 in TS 36.213 [3] which can be seen in Figure 2.7.

The maximum throughput depends on the ITBS and NPRB. These two parameters

determine the transport block size, which is the maximum number of bits that can be

transmitted on the uplink in 1 TTI (= 1 millisecond). This value is obtained from the

Table 7.1.7.2.1-1 in [3]. For example, considering 5 MHz bandwidth (= 25 Resource

Blocks) and IMCS to be 9 which uses QPSK modulation. ITBS is 9 and TBS is 4008

bits as seen in Figure 2.8. Thus, the throughput is 4.008 Mbps. Assuming the user is

using all resource blocks, transmission delay for a 200 byte(1600 bits) message is 0.4

milliseconds and for a 33 byte(254 bits) message is 0.065 milliseconds. The transmission

latency is significantly lower than the access delay and thus can be ignored.

13

Figure 2.8: Transport block size table [3]

2.3.1.2 Access Delay in LTE

An idle user waiting to get access from the eNodeB experiences some delay from when

it has a packet to transmit and to the time it sends it across the air interface. The

access delay is considered to be the time to get resources from the eNodeB and can be

broadly divided into two steps:

1. Initial Synchronization and Acquisition

The initial acquisition procedure has multiple steps involved which can be seen in

Figure 2.9. The first step is the frequency scanning and selection. The UE tunes

to all channels it supports and measures the Received Signal Strength Indicator

(RSSI). The channels with high RSSI are determined. Primary Synchronization

Signal (PSS) and Secondary Synchronization Signal (SSS) are used to achieve

slot and radio frame synchronization. The Physical Cell Identity (PCI) is also re-

trieved. PSS and SSS are transmitted in the last and second last OFDM symbol

of the first and sixth subframe. Next step is to decode the Master Information

Block(MIB) which contains Bandwidth, System Frame Number (SFN), PHICH

information. The MIB uses a fixed schedule with a periodicity of 40 ms and

repetitions made within 40 ms. It is transmitted in the first 4 OFDM symbols

of the second slot in the first subframe. The Physical Downlink Control Chan-

nel (PDCCH) is then monitored to decode DCI Format 1A which gives PDSCH

information. System Information Blocks(SIBs) are transmitted in PDSCH.The

14

Figure 2.9: Initial Acquisition Procedure in LTE

15

SIB1 and SIB2 are vital and others are optional. SIB1 specifies the timing of re-

maining SI blocks, along with PLMN identity. It is transmitted in the subframe

5 of frame with SFNmod2 = 0. SIB2 contains RACH, PUSCH and PUCCH

related parameters and idle mode paging configurations. The periodicity of SIB2

is given in SIB1, with minimum period 80 radio subframes and maximum period

512 subframes [18]. The best and worst times are calculated and can be seen in

Figure 2.10. The minimum acquisition time is about 19.857 milliseconds and the

worst acquisition time is as high as 5.13 seconds.

2. Random Access Procedure (RAP)

Random access procedure is a procedure for the UE to gain access to resources

after the initial cell acquisition. It is done over the Random Access Channel

(RACH). There are two types of RAP, namely, Contention Based and Contention

free. A preamble is sent by the UE to initiate the RAP and there are 64 pream-

bles available. Contention based random access is a four-step procedure as is

shown in Figure2.11. It starts with UE selecting one of the 64 RACH preambles

and sending it to the eNodeB. The eNodeB sends a Random Access Response

(RAR) message to UE on the DL-SCH(Downlink Shared Channel). This mes-

sage contains uplink resource grant and then Msg3 (RRC Connection Request)

is transmitted by the UE using UL-SCH(Uplink Shared Channel). This message

contains UE’s temporary identity and connection establishment cause. eNodeB

responds with a RRC Connection Setup message(Msg4) which is a contention res-

olution message, which contains a new permanent identifier for the UE. Average

delay to complete the RACH procedure as seen in Table II of [15] is ∼ 50ms,

which is a significant amount of delay.

For a large number of devices, unexpected bursty arrivals of access requests may re-

sult in severe collisions in RACH. Here, we look at an analytical model [4] to investigate

the behavior of the RACH with bursty data arrival, as expected in case of IoTs. The

contention-based random access is a slotted ALOHA based access mechanism, where

each UE transmits a preamble in the first available random-access slot.

16

Figure 2.10: Best and Worst Initial Acquisition times for an idle UE in LTE

Figure 2.11: Contention Based Random Access Procedure [4]

17

NOTATION MEANING

M Number of arriving UEs during time interval TP
TP Arrival period (sub-frames)

TRAR Processing time required by the eNB to detect the transmitted preambles (sub-frames)

TRQ Gap of Connection Request message retransmission (sub-frames)

TARP Gap of Monitor Connection Response message (sub-frames)

TRP Gap of Connection Response message retransmission (sub-frames)

THARQ Time interval required for receiving HARQ ACK (sub-frames)

pe,MSG Error probability of the message transmission

IR Number of random-access slots

WBO Backoff window size (sub-frames)

TRAREP Interval between two successive random-access slot (sub-frames)

NRAR Maximum number of RAR that can be carried in a response message

WRAR Length of the random-access response windows (sub-frames)

pf HARQ retransmission probability for a Connection Request/Response message

NHARQ Maximum number of HARQ transmissions for a Connection Request/Response message

pn Preamble detection probability of the n-th preamble transmission

Table 2.2: Basic parameters used for RACH modeling [4]

Average access delay for the successfully accessed UEs, Da, is the ratio between the

total access delay for all successfully accessed UEs and the total number of successfully

accessed UEs [4]. Da is given by:

Da ≈
∑IR

i=1

∑NPTmax
n=1 Mi,S [n]Tn∑IR

i=1

∑NPTmax
n=1 Mi,S [n]

(2.7)

where Tn is the average access delay of a successfully accessed UE that transmits

exactly n preambles. This includes the time to transmit the first preamble, to re-

transmit (n-1) preambles, eNB processing times and finishing the message(Msg3 and

Msg4) transmissions. Mi,S [n] represents the number of successful transmissions during

random-access slot i ≥ 0 by UEs engaged in their n-th transmission attempt.

Tn ≈ 1 + (n− 1)TW + TRAR +WRAR + TMSG (2.8)

where TW is the average time a UE waits to perform backoff and re-transmit a

preamble. TMSG is the average message transmission time. Considering a case where

the UE fails in the first preamble transmission in the 1st random=access slot and

retransmits another preamble in the (1 + h)th random-access slot. TW is given by:

18

TW ≈
Hmax∑
h=Hmin

qhhTRAREP (2.9)

where Hmin and Hmax are the minimal and maximal value of h. Hmin and Hmax

occur when the backoff counter is zero and WBO, respectively.

TMSG can be obtained by considering that the message transmissions are completed

by sending u HARQ transmissions of the ConnectionRequest message and receiving v

HARQ transmissions of ConnectionResponse message. TMSG in [4] is given by:

TMSG =

NHARQ∑
u=1

NHARQ∑
v=1

pu+v−2
f (1−pf)2[(u−1)TRQ+(v−1)TRP+(u+v)THARQ+TA RP+1]

(2.10)

Using the equations above, the average access delay is calculated in [4] for two traffic

models defined in 3GPP TR37.868. in [19]. As the number of arriving UEs during a

time interval TP are increased from 5000 to 30,000, the access delay varies between

∼ 28 ms to 65 ms. The arrival period, TP is 10000 and 60000 for the two traffic models.

2.3.2 Latency in CDMA

2.3.2.1 Transmission Delay in CDMA

The delay in transmission is a significant part of the latency in CDMA. It is the time

from when the packet is available at the Physical layer of the transmitter to the time

when it is transmitted over the air. With respect to CDMA, there are a few parameters

that we vary and study the delay. The parameters are :

• Bandwidth (1 MHz - 20 MHz)

• Modulation Scheme (BPSK - 64QAM)

• Message Size (1 - 200 bytes)

• Spreading factor (32 - 512 bits)

The IoT data traffic model as seen in the official 3GPP document can be seen

in Table 2.3 [2] [20]. The average payload size of the IoT data traffic is retrieved

19

Figure 2.12: Transmission Delay (in ms) for a BPSK Modulated CDMA
Transmission, varying spread/preamble code lengths

20

Figure 2.13: Transmission Delay (in ms) for a 16-QAM Modulated CDMA
Transmission with varying spread code lengths

Figure 2.14: CDMA Transmission Delay (in ms) for varying spread code length

21

Figure 2.15: CDMA Transmission Delay (in ms) for different modulation techniques.

Parameter Value

IoT Data Traffic Model

IoT Application Pareto distribution: α = 2.5 (shape
payload size (PL) parameter), min PL = 20 bytes,
distribution max PL = 200 bytes (for

PL > 200 bytes, PL = 200 bytes).

Periodicity split 1 day (0.4), 2 hours (0.4),
for IoT data 1 hour (0.15), 30 minutes (0.05)

Table 2.3: IoT system parameters [2]

by calculating the mean of the Bounded(or truncated) Pareto distribution with the

minimum size = 20 bytes and maximum size = 200 bytes. The formula to calculate

mean with the above system parameters is :

Mean =
Lα

1−
(
L
H

)α .(α

α− 1

)
.
(1

Lα−1
− 1

Hα−1

)
α 6= 1 (2.11)

The statistical average of the size of the IoT payload using Table 2.3 and Equation

2.11 is 33 bytes. When varying the rest of the parameters, the message size is kept

constant at 33 bytes in the analysis. Transmission delay for the underlay CDMA can

be seen for BPSK and 16-QAM modulated messages for varying spreading code length,

bandwidth and message lengths in Figure 2.12 and 2.13 respectively. For a BPSK mod-

ulated CDMA, with spread code length of 64 and bandwidth of 20 MHz, transmission

delay of as low as 5 ms can be achieved for a 200 byte message and <1ms for a 33 byte

message as seen in Figure 2.15. The same values get to about 1.5 ms and 0.4ms, when

22

Figure 2.16: Transmission Delay (in ms) for a CDMA Transmission with varying
bandwidth

23

modulated with 16QAM. Similarly, the delay for a constant bandwidth and varying

modulation schemes, spreading code lengths is plotted in Figure 2.16. For the average

message size of 33 bytes, the delays are less than 1 millisecond for a bandwidth of 20

MHz and spread code length = 64 bits as seen in Figure 2.14. As seen in Figure 2.16,

for bandwidth greater than 5 MHz and spreading factors less than 256, transmission

delay of <10 ms can be achieved for any modulation scheme. The point to keep in mind

is that if there is an emergency packet with low latency requirement, more bandwidth

and higher modulation schemes need to be provided with a BPSK or QPSK modulation

scheme.

2.3.2.2 Access Delay in CDMA

Consider CDMA mobile users sharing M orthogonal traffic channels. To study the

access delay in CDMA, we assume that all uplink channels are synchronized and slotted

to one packet duration. Each uplink channel is assigned a unique, orthogonal spreading

code such that the packets transmitted on a given channel are spread using the assigned

spreading code. The analysis of slotted CDMA will be similar to the RACH procedure

analysis in Section 2.3.1.2, except the message transmission. The orthogonality of

preamble transmissions in RACH is analogous to the orthogonal channels in the CDMA

network. The only difference is that the preambles are usually less than 64 in number,

whereas the number of spreading codes assigned can be controlled to be more in number.

If many UEs transmit packets in the same time slot, the result depends on two aspects

[21]:

1. Stage 1: If all the mobiles use different spreading codes, then the receivers will be

able to distinguish the packets. This will lead to successful acquisition. Whereas,

users using the same spreading codes will face collision and will be retransmitted

in some later time slot.

2. Stage 2: The successful acquisition of packets also depends on random interfer-

ence introduced by the multiple transmissions associated with CDMA. Packets

with zero bits in error are considered to be succesfully received and all others are

24

regarded as a failure. Those packets will need to be retransmitted later with some

probability.

For the purpose of analysis, we assume a simplified slotted ALOHA based CDMA

operation. [22, 23] The time slots are referred with the index i ≥ 0 and are of the size

of maximum packet size allowed, say P bytes. For every slot i, let Xi be a random

variable which represents the number of newly arriving UEs during the slot i. Let M

be the number of spreading codes available. Arriving UEs randomly select a spread-

ing code among the M codes to spread the data packet and send it over the air. If

the transmission is successful, the Base Station(BS) will send back an acknowledge-

ment(ACK) to the user. Conversely, if the transmission fails, the UE will backoff and

try to retransmit in the subsequent slot with probability p0 using a randomly selected

spreading code. The maximum number of transmissions by a UE is limited to Nmax,

as in Section 2.3.1.2.

Similar to the stochastic model for LTE in Section 2.3.1.2, we can define the random

variable Mi[n] for n ∈ (1, Nmax). Mi[n] represents the number of UEs engaged in their

n-th transmission attempt after (n − 1) collisions/failures at time slot i. The process

can thus be described as:



Mi+1[1] = p0.Xi

Mi+1[2] = p0.Mi,F [1]

... ...

Mi+1[n] = p0.Mi,F [n− 1]

... ...

Mi+1[Nmax] = p0.Mi,F [Nmax − 1]

where p0 for 0 ≤ p0 ≤ 1, is the probability of a failed UE re-transmitting in the

subsequent time slot and Mi,F [n] is a random variable representing the number of UEs

that failed during their n-th transmission attempt in time slot i. Similarly, we introduce

a complementary random variable Mi,S [n] like in Section 2.3.1.2. Let us also denote

Mi =
∑Nmax

n=1 Mi[n] to be the total number of UEs competing during time slot i.

The average access delay for the UEs with successful packet transmission, Dac, is

25

the ratio between the total access delay for all successful UEs and the total number of

successful UEs, from Equation 2.7 and [4]. Dac is given by

Dac =

∑M
i=1

∑Nmax
n=1 Mi,S [n]Tn∑M

i=1

∑Nmax
n=1 Mi,S [n]

(2.12)

where Tn is the average delay of a UE with successful packet transmission in the

n-th attempt. This includes time to transmit the first packet, the (n-1) retransmissions

and the BS processing time.

Tn ≈ TTx(1 + (n− 1)TWait) (2.13)

where TTx is the average transmission time of the CDMA packet as studied in Section

2.3.2.1 and TWait is the average waiting time required by a UE to perform backoff and

re-transmit the packet using a different spreading code sequence. Considering that the

UE fails in the first time slot, it performs random backoff and retransmits in (1 + h)th

time slot.

TWait =

Hmax∑
h=Hmin

qhh (2.14)

where, qh is the probability of selecting the time slot (1 + h) to transmit the packet

after performing random backoff. Hmin and Hmax are the minimal and the maximal

values of h, which depends on which retransmission backoff scheme was used. Some of

the backoff techniques are exponential, linear, mu-law and step-function as described

in detail in [24]. In comparison with the random-access delay in LTE, the access delay

in CDMA seems quite less due to the following reasons:

• Reuse of spreading codes by spacing the CDMA channels in frequency domain.

• Possibility of a large number of spreading codes available.

• Absence of Message transmission and initial acquisition delay in CDMA. It is a

two-message transmission.

• Flexible retransmission backoff policy.

26

2.4 Coexistence of CDMA Underlay and LTE Network

The underlay CDMA network is proposed to coexist with the existing LTE network in

the same spectrum band. In this section, we look at an analytical model to evaluate

the performance of CDMA underlay IoT and LTE network while they coexist as done

in [10]. We also observe the performance of a CDMA network with a practical IoT UE

deployment and data traffic model. Our focus is on the IoT uplink only.

2.4.1 Coexistence Analytical Model

Let us assume that N CDMA underlay IoT devices per CDMA channel are uniformly

distributed over a hexagonal mobile site with radius rd. Assuming IoT UEs employ

power control such that eNB receive an equal power PCr from UEs. Assuming the

worst-case IoT UE is located at distance rd from eNB, PCt is the maximum transmit

power and PLC(rd, f) is the path loss at the distance rd and frequency f , PCr is given

as

PCr =
PCt

PLC(rd, f)
, (2.15)

For an LTE network, we assume that M UEs are uniformly distributed over the

mobile site, R resource blocks are available for LTE uplink operation and each LTE UE

get M/R contiguous resource blocks. Assuming that all LTE UEs are transmitting at

maximum power PLt , the total average power, QLRc
, received at the eNB from LTE UE

over CDMA channel bandwidth equivalent to RC resource blocks is [25]

QLRc
= 3β

MRc
R

PLt
PLC(rd, f)

(2.16)

where β is the LTE channel occupancy factor and (PLt M/R) is the transmission power

per LTE resource block.

CDMA Eb/N0 at the eNB is given by

Eb/N0 =
LcP

C
r

NPCr +QLRc
+ η

(2.17)

and CDMA-based IoT capacity can be obtained as

N = 1 +
Lc

Eb/N0
−
QLRc

+ η

PCr
(2.18)

27

Parameter Value

CDMA-based IoT Network Parameters

Max payload size 20 Bytes

Processing gain 64 with W = 1 MHz

Modulation BPSK

Information Data Rate 15.625 kbps

Table 2.4: IoT system parameters [2]

Power (PLr,W , P
L
r,A) received by eNB from the worst-case and average-case LTE UEs

located at the cell boundary rd and at average distance rd/2 is given by

PLr,W =
PLt

PLL(rd, f)
, PLr,A =

PLt
PLL(rd/2, f)

. (2.19)

Uplink LTE SINR (ΓLW ,Γ
L
A) can be obtained as

ΓLW =
K.PLr,W
NPCr + η

,ΓLA =
K.PLr,A
NPCr + η

, (2.20)

respectively and K = RCM/R is an overlapping bandwidth factor. LTE throughput

can be computed as [26]

TLx = aWL log2(1 + bΓLx), x = {W,A} (2.21)

where WL is the LTE channel bandwidth, a is a factor associated to the gap between

Shannon and actual capacity and b is the LTE bandwidth efficiency.

Fig. 2.17 shows the capacity of CDMA underlay IoT network as a function of number

of LTE UEs M and LTE channel occupancy β. It shows that for the worst-case, when

LTE data requirement is high (e.g. M = 100, β = 1), the simultaneous CDMA underlay

traffic is not possible and the IoT data traffic needs a dedicated channel assignment.

For the average case, the LTE network can share the spectrum with multiple IoT UEs.

Fig. 2.18 shows the average and worst case LTE throughput as a function of number

of CDMA-based IoT UEs, N . The parameters are defined in Table 2.4. As N increases

the LTE throughput decreases but along with gaining the IoT UE capacity. For the

average case, the LTE throughput decreases by 3% and 12% when N is 5 and 10,

respectively. The analysis assumes that CDMA and LTE UEs transmit at the maximum

power. But both CDMA and LTE employ power control based on CDMA/LTE co-

channel interference causing lesser interference to other uplink transmission. Thus, this

28

0 20 40 60 80 100
LTE UEs (M)

0

2

4

6

8

10

12

14

C
D

M
A

 U
se

r
C

a
p
a
ci

ty
 (
N

)

β = 0.10

β = 0.25

β = 0.50

β = 1.00

Figure 2.17: Capacity of CDMA-based IoT Network as a function of no. of LTE UEs
and LTE channel occupancy (β) when required CDMA Eb/N0 = 7 dB, W = 1MHz.

plot represents the conservative (lower bound) LTE throughput coexisting with CDMA

underlay IoTs. From Figure 2.18, we see that the average LTE throughput degradation

is at ∼ 3% when the number of simultaneously operating IoT UEs, N = 5. The analysis

in Section 4.2 of [2] show that this meets practical IoT data demands.

29

0 5 10 15 20
CDMA UEs (N)

5

10

15

20

25

30

35

40

45

50

LT
E
 T

h
ro

u
g
h
p
u
t

[M
b
p
s]

Average Case

Worst Case

Figure 2.18: LTE throughput for a single average and worst-case user as a function of
number of CDMA UEs

30

Chapter 3

System Design

3.1 System Requirements for IoT at PHY/MAC layers

The main objective at MAC layer is to schedule IoT traffic with the minimum wait

time to access the channel. At physical layer, we needed to identify an optimal wave-

form operating at low signal-to-interference-plus-noise ratio (SINR) and bit-error-rate

(BER) and without causing significant interference to the overlay LTE transmission.

Considering these requirements, the CDMA underlay transmission becomes a favorable

choice for IoT services, as shown in Figure 3.1 as:

• It does not require any UE-eNB handshaking (RACH+RRC) contrary to earlier

efforts made in the community.

• Asynchronous CDMA transmission enables decentralized spectrum access at IoT

UEs which reduces wait time to get assigned resources from eNB.

• CDMA IoT transmission can reject narrow band OFDMA LTE interference with-

out causing significant interference to LTE as well with its low-power transmission.

• CDMA-based IoT transmission utilizes the legacy CDMA support available at

cellular network.

3.2 CDMA Design

The design of the CDMA(IoT) Transmitter and Receiver is explained in this section.

Fig. 3.2 shows a packet format instance for the uplink IoT data transmission. The

CDMA MAC frame consists of source address (or ID), message length, payload and

31

Figure 3.1: Underlay CDMA Transmission for IoT-Uplink

Preamble
(Hadamard

Code)

Source
(UE)
ID

Packet
Length

Payload Data CRC

64 Bits 4 Bits 4 Bits 0 – 15 Bytes 16 Bits

Message spread with Hadamard Code

Figure 3.2: Packet format of CDMA-based IoT data transmission

cyclic Redundancy Check (CRC) to check errors in frame. This example frame format

allows to send variable size payload of 0-15 Bytes which is typical IoT traffic profile

emanating from sensing devices. The MAC frame is spread/despread with a Walsh-

Hadamard code (of length 64 bits in this case) where different codes are assigned to

different UEs. Data is modulated/demodulated using BPSK to be able to operate on

low-SINR. Packet preamble contains a unique Walsh-Hadamard code which is used to

detect the start of the packet at the receiver by correlating the signal with the known

code. Zadoff-Chu sequences were avoided in the design to avoid interference with the

LTE synchronization signals, which use ZC sequences. The CDMA Transmitter blocks

are shown in Figure 3.3

At the Receiver, as shown in Figure 3.4, cross-correlation of the received samples

is done with the expected Preamble code.

The cross-correlation is a sliding product of two signals. It is most commonly used

to measure the similarity between the two input signals. The cross-correlation, Rxy of

32

Figure 3.3: CDMA Transmitter Block Diagram

Figure 3.4: CDMA Receiver Block Diagram

33

Figure 3.5: Correlation output of the Received Samples

two jointly stationary random processes xn and yn is given by :

Rxy(m) = E[xny
∗
n−m] = E[xn+my

∗
n] (3.1)

where∞ < n <∞, the asterisk denotes complex conjugation, and E is the expected

value operator. [refer mathworks source for xcorr]

If the output of the correlation, as can be seen in Figure 3.5 is greater than a thresh-

old(noise), that signifies packet detection. This threshold is set by the user and should

be higher than the noise floor. Currently, it is set using a trial-and-error method but

can be made dynamic in future. Once the packet is detected, channel equalization is

done for the UE ID and the sizeField length (512 bits for a 64-bit spreading sequence).

It compensates for the Inter-symbol Interference (ISI) caused by multipath using a

training sequence, in this case the preamble. We do not implement the RAKE receiver

in this case, and thus have to equalize the channel to decode the packets correctly.

A linear adaptive filter, called Recursive Least Squares(RLS) is used to do the

channel estimation and equalization. This filter finds the coefficients recursively that

minimize a weighted linear least squares function relating to the input signals, as can be

seen in Fig. 3.6. RLS exhibits extremely fast convergence at a cost of high computation

complexity.

34

Figure 3.6: Recursive Least Square filter

∆wn is the filter coefficient, e(n) is the error signal and d(n) is the reference signal.

The update algorithm for a p-th order RLS filter is summarized as: Parameters :

– p = filter order

– λ = forgetting factor

– δ = value to initialize P (0)

Initialization :

– w(n) = 0

– x(k) = 0, k = −p, ...,−1

– d(k) = 0, k = −p, ...,−1

– P (0) = δ−1I where I is the identity matrix of rank p + 1.

Computation : Forn = 1, 2, ...

x(n) =



x(n)

x(n− 1)

...

x(n− p)



35

α(n) = d(n)− xT (n)w(n− 1)

g(n) = P(n− 1)x(n)
{
λ+ xT (n)P(n− 1)x(n)

}−1

P(n) = λ−1P(n− 1)− g(n)xT (n)λ−1P(n− 1)

w(n) = w(n− 1) + α(n)g(n)

(3.2)

The equalization is followed by Carrier Frequency Offset Correction. Car-

rier frequency offset often occurs when the local oscillator signal for down-conversion

in the receiver does not synchronize with the carrier signal contained in the received

signal. This leads to the received signal being shifted in frequency. It is a two step

carrier synchronization, coarse and fine. Coarse frequency offset estimation is done

by the PSKCoarseFrequencyEstimator object in MATLAB. The algorithm used to

estimate the coarse frequency offset is [27]. The estimate frequency and phase offset

is then applied to the input signal using the PhaseFrequencyOffset object. The fine

frequency offset correction is done by CarrierSynchronizer object, which is a closed-

loop compensator that uses a PLL based algorithm described in [28] can be seen in

Figure 3.7. The output of the synchronizer. yn is a frequency shifted version of the

complex input signal, xn. The synchronizer output is :

yn = xne
iλn (3.3)

where λn is the output of the direct digital synthesizer, DDS and the en is the phase

error for the nth symbol. The DDS is the discrete-time version of a voltage-controlled

oscillator. In this context, the DDS acts as an integration filter. The error signal, en

for a BPSK signal is given by:

en = sgn(Re {xn}) ∗ Im {xn} (3.4)

Next step is to de-spread the equalized and offset corrected signal using the Hadamard

sequence that was used to spread it. In our design, we pass the signal through despread-

ing operations for different Hadamard spread codes. For simplicity, the Hadamard code

index is chosen to be the same as the UE ID. After the despreading, if the UE ID is the

same as the code index, the signal is then demodulated to get the size of the message

36

Figure 3.7: Carrier Synchronizer Block Diagram

received and the ID of the UE (Transmitter). If the UE ID retrieved is not the same as

the Hadamard code index, the signal is despread with the next Hadamard code index.

Once the size of the message is retrieved and the transmitter UE’s ID is known, we

get to know the client UE which is transmitting the packet. The rest of the packet is

decoded using the known despreading code sequence and the same steps are followed

as explained above to decode the final bits.

Cyclic Redundancy Check (CRC) is an error detecting code which is used to detect

possible errors in bits received and determine if the message is received in error. The

transmitter calculates the checksum, which is a function of the input message and is

appended to the message bits. The receiver uses the same function to calculate the

CRC checksum bits and is then the checksum is compared with the received checksum.

A generator polynomial is used to generate the CRC bits and we use the CRC-16

polynomial given by x16 + x15 + x2 + 1 or 0x8005.

The CDMA Packet in time domain is represented in Figure 3.8. The CDMA channel

uses 1 MHz bandwidth with data rate of ∼10 - 15 Kbps for a spreading code length of

64 bits. The proposed design parameters are consistent with existing low power wide

area network IoT technologies and also compatible with coexistence operation of LTE.

In Figure 3.9 is a representation of the CDMA packets as underlay transmissions with

a Signal-to-Interference Ratio of -3 dB.

37

Figure 3.8: Time Domain Representation of the CDMA Packet at the Receiver

Figure 3.9: Time Domain Representation of the CDMA co-existing with LTE

38

Chapter 4

Implementation and evaluation

4.1 CDMA Implementation

CDMA-based IoT transmission is prototyped using a software-defined radio (SDR)

platform using GNU radio and Universal Software Radio Peripheral (USRP). USRP

Hardware Drivers (UHD) are used to transmit/receive samples to/from the USRP. The

CDMA transmitter and receiver code is developed on top of UHD in C++ and C,

respectively, to process and decode CDMA packets in real time. Intel(R) Core i7 4th

Generation CPU (@3.60 GHz) machines are used in performance mode. Developing

the CDMA receiver is particularly challenging to detect CDMA packets considering

random wireless channel and critical time constraints of real-time signal processing. For

example, to detect beginning of the packet, we perform cross-correlation of a known

64-bit preamble and 10,000 received samples (equivalent to size of the maximum size of

the packet, i.e. 9280 samples) at one instance. Each instance takes processing time of

160 ms including 100 ms for reading samples at sampling rate of 1 MSps and 60 ms for

running correlation function. We choose sampling rate 1 MSps to avoid overflowing of

samples at receiver which is caused due to higher sampling rates. This parameter also

restrict the maximum achievable data rate for the CDMA transmission. Furthermore,

a packet is detected if the peak value of the cross-correlation output is greater than

certain threshold which is a function of SINR. Here the choice of the threshold becomes

critical. If it very low, then there is significant false packets detection which eventually

get discarded while checking the packet CRC. At higher threshold values, packets gets

missed in the detection function. This threshold is controlled manually by the user,

and is set to a value a little above the noise floor.

We evaluate our prototype for the following scenarios:

39

chch

Uplink data
Transmission

IoT eNodeB
(CDMA Receiver)

IoT Client
(CDMA Transmitter)

Distance = 17 m

Figure 4.1: Setup of a single IoT link for uplink transmission using CDMA software
implementation and USRP

(1) standalone operation of CDMA IoT transmission and, (2) coexistence of CDMA

IoT and LTE transmissions. IoT nodes are realized using USRP series N210 and/or

B210. LTE transmission is enabled using OpenAirInterface (OAI) where OAI is a PC-

hosted open sourced SDR platform [29]. The LTE UE is connected to the eNB using

FDD mode, 5 MHz bandwidth and transmission mode 1 (SISO).

4.1.1 Standalone operation of CDMA IoT

We have chosen two nodes in ORBIT grid as the IoT eNodeB and IoT Client, where the

distance between the two chosen nodes was 17m. The setup can be seen in Figure 4.1.

Figure 4.2 shows the packet error rate (PER) of a single uplink CDMA IoT trans-

mission as a function of Signal-to-Noise-Ratio (SNR). In our experiment, we varied

packet payload size, PL, as {10, 12, 15} Bytes. For each PL, packets are transmitted

at the interval of 60 milliseconds and, with the constant receiver gain, transmitter gain

is adjusted to vary SNR between 0 to 8 dB. We observed that PER is between 0.22

to 0 for SNR range from 0 to 4.5 dB and PER is always zero for SNR above 4.5 dB.

Also, PER does not get affected significantly by the PL values considered in the ex-

periment. Through these set of experiments, we show that our prototyped CDMA IoT

transmission can transmit data with low PER with significantly low SNR value along

with varying packet payload size.

In the next set of experiments, we vary the size of the Hadamard code that is used

40

0 2 4 6 8 10

Signal to Noise Ratio [dB]

0

0.05

0.1

0.15

0.2

0.25

P
a
c
k
e
t
E

rr
o
r

R
a
te

Message size = 10 bytes
Message size = 12 bytes
Message size = 15 bytes

Figure 4.2: Packet Error Rate of a CDMA-based IoT transmission as a function of the
Signal-to-Noise Ratio with varying message sizes

Figure 4.3: Packet Error Rate of a CDMA-based IoT transmission as a function of the
Signal-to-Noise Ratio with varying Spreading Code length.

41

Figure 4.4: Packet Error Rate of a CDMA-based IoT transmission as a function of the
Signal-to-Noise Ratio with varying Preamble length.

to spread the input message. With an increase in spreading code length, the packet is

spread over a wider bandwidth. The spreading code length, Sl is varied in {32, 64, 128}

bits. For each Sl, packets are transmitted at an interval of 50 milliseconds. Similar to

the above experiment, we change the transmit gain to vary the SNR between 0 to 5.21

dB. We observe, as can be seen in Figure 4.3 that there is no significant improvement

in performance for Sl = 32 and 64 and both achieve zero packet error rate (PER) at ∼

3.8 - 4.2 dB. For Sl = 128, there is an evident increase in performance, as zero packet

error rate (PER) is attained at 2.31 dB. From the results of these experiments, we show

that the CDMA transmission can transmit with a lower PER at a particular SNR, as

the spreading code length increases.

The next set of experiments involve varying the preamble length in the packet.

Preamble is a Hadamard code sequence, which is required to find the start of the

packet at the receiver. The preamble length, Prl is varied in {32, 64, 128, 256} bits,

which can be seen in Figure 4.4. The SNR is varied from 0 to 3.8 dB and the Packet

Error Rate (PER) of the packets is studied for different lengths. For preamble lengths of

32 and 64, the PER remains in a close range for a specified SNR and has no remarkable

improvement. Whereas, as we increase the preamble length to 128 bits and 256 bits,

42

Figure 4.5: CDMA Throughput for varying spreading code lengths and keeping
bandwidth constant at 1 MHz

we observe the PER to go down for low SNR values and exhibits better performance.

Now, we look at the CDMA throughput with varying spreading code length for

a bandwidth of 1 MHz. The length of the preamble does not affect the throughput

appreciably since it is a very small part of the CDMA packet transmitted. In Figure 4.5,

the maximum message size is 15 bytes(or characters). Maximum achievable throughput

is 25.86 Kbps, with spread code length = 32 bits. High throughput comes at the expense

of higher Packet Error Rate (PER) at low SNRs. We can increase the maximum size of

the message sent to 255 bytes, augmenting the throughput to upto 30 kbps. It can also

be understood from the Figure 4.5 that for different preamble sizes, the throughput

largely remains unaffected. CDMA throughput for varying bandwidth is plotted in

Figure 4.6. The CDMA system is capable of providing a maximum throughput of

about 258.6 Kbps if it occupies 20 MHz bandwidth and the spreading code length is

64. Throughput efficiencies for spread code lengths of 64 and 512 are 0.01293 bps/Hz

and 0.001626 bps/Hz, respectively.

We now look at Ttotal, the total delay for transmission of a CDMA packet by an IoT

UE.

Ttotal = Taccess + Ttransmit (4.1)

43

Figure 4.6: CDMA Throughput for varying bandwidths keeping spreading code length
constant to 64 bits

where, Taccess is the time required to acquire the preamble and confirm packet de-

tection. Ttransmit is the delay in successfully transmitting the packet, which includes

Tretransmission, delay added due to error in packet detection at the receiver and Ttransmission,

the time to transmit the CDMA packet once. Tretransmission depends on the packet error

rate, when operating at a certain SNR and Tbackoff , backoff time. Tbackoff is ignored

in out analysis.

Consider a BPSK modulated CDMA transmission, with preamble and spread code

length to be 64 bits operating at 1 MHz bandwidth. From Figure 4.3, we get the packet

error rate(PER) of 0.15 at SNR of 1.5 dB. Tpreamble is the time to acquire 64 bits in 1

MHz bandwidth = 64 microseconds. N is the average number of retransmissions made

by a UE and is equal to 1
1−PER .

TTransmit =
Ttransmission

1− PER
+ Tbackoff ≈

Ttransmission
1− PER

(4.2)

Ttransmit gives the delay experienced by users transmitting CDMA packets. These

users need to have power control and simultaneous packet transmissions need to be

managed to restrict the bit-error rate as per Equations 2.4 and 2.5.

The throughput of the system, T is given by:

T = R ∗N ; (4.3)

44

Figure 4.7: Throughput Vs Delay plot for different message sizes (experimental)

where, R is the data rate per CDMA signal and N is the number of UEs transmitting

simultaneously. For a range of N, the SINR is calculated from equation 2.4.

Next step is to plot some Throughput vs Latency(Delay) graphs for various CDMA

message sizes, preamble lengths and spreading code lengths. The packet error rates(PER)

required in calculating the delays is fetched from the experimental results given above.

These plots will help us in figuring out the practical value of achievable throughput

with considerably minimal delay. These values are a little optimistic, considering the

experiments only had one user transmitting at low SINR. When there are a large num-

ber of UEs transmitting, the interference from other users can be a little difficult to

predict. These plots are done for preamble length and spread code length at 64, if not

mentioned otherwise. The CDMA bandwidth is 1 MHz.

In Figure 4.7, the delays remain constant at 9.28 milliseconds for the initial range of

throughput. This is the range where the SNR is high and the PER is 0. Then, there is

a gradual increase in the delay as the throughput of the system increases. For message

size = 15 bytes, there is a considerably steep rise in the delay between 500-700 kbps,

where the delay rises from 10 ms to 12 ms. As mentioned before, these numbers are a

bit optimistic considering there is only one transmission. Similarly, for message sizes

10 and 12 bytes, the delay has a significant rise in the 600-700 kbps throughput range.

This range of throughput is achieved for number of UEs in the range 40 to 50.

45

Figure 4.8: Throughput Vs Delay plot for different message sizes (analytical)

46

Figure 4.9: Throughput Vs Delay plot for different message sizes and higher
bandwidth

The plot is also done analytically in Figure 4.8. In the first subfigure with message

sizes ≤ 50, the rise in delay is steep for throughput range 120 - 160 kbps. The corre-

sponding N values for a 10 byte message are 10 to 14. The delay at throughput ∼ 120

kbps is about 12 ms for a 10 byte message. For the 50 byte message, the delay is 63 ms

for throughput 130 kbps. These values are pretty low compared to the total acquisition

and connection establishment latency for all UEs combined. In the second sub-figure

with messages sizes ≥ 100, the steep rise in delay is for throughput 105 - 140 kbps. For

the 200 byte message, the delay is 127 ms and 279 ms for throughputs 107 kbps and

123 kbps, respectively. Thus, the number of simultaneous UEs need to be limited to 7

for delays less than 100 ms and throughput of ∼100 kbps. If CDMA is provided with

more bandwidth and the message size is 200 bytes, throughput of 2460 kbps can be

achieved with the latency of 14 ms as shown in Figure 4.9.

Next set of Throughput Vs Latency graphs are for variable preamble length and

spreading code length. Delays for different preamble lengths in a CDMA packet is

shown in Figure 4.10. The delay rises considerable between 600 to 700 kbps, increasing

from 9.5 ms to about 13-14 ms in that range. Since the preamble is a very small part

of the whole packet, the delays behave similarly for different preamble lengths as seen

in the second subfigure of Figure 4.10. The throughput with considerably low delay is

47

Figure 4.10: Throughput Vs Delay plot for different preamble lengths (experimental
and analytical)

48

Figure 4.11: Throughput Vs Delay plot for different spreading code lengths
(experimental and analytical)

between 85 and 130 kbps, for which delays are between 19 ms and 33 ms.

Figure 4.11 shows throughput vs. delay plots for varying spreading code lengths.

Using lower spreading code lengths will have much lower transmission delay at the same

throughput value. This is because lower spread code lengths will operate at higher

SINR values, and thus will support less number of UEs. Based on our experiments, the

correct range of throughput values are between 600-700 kbps in the first subfigure, for

low transmission delay (< 20ms) and to support acceptable number of users. In the

second subfigure of Figure 4.11, we can see that with the spreading code length of 128

bits, large number of users can be supported at the cost of little high delay. Depending

49

V
id

eo
 tra

n
sm

issio
n

o
n

 u
p

lin
k

1 m 10 m

1
7

m

IoT eNodeB

LTE UE
(Playing video on VLC)

IoT Client
(ZigBee or Text Input)

LTE eNodeB

Figure 4.12: Setup for coexistence of IoT link and LTE using CDMA-underlay
implementation, OAI and USRP

on the delay requirements, the spreading code lengths can be controlled. For reliability

and high occupancy applications, length of 128 bits should be considered. Whereas

for low latency applications, higher bandwidth and a 64 bit spreading code could be

suitable.

4.1.2 Coexistence of underlay CDMA with LTE

OpenAirInterface(OAI) is used to implement the current LTE system on a USRP, with

OFDM based downlink and SC-FDMA based uplink frames for regular LTE clients.

The LTE UE is connected to the LTE eNB using FDD mode, 5 MHz bandwidth, trans-

mission mode 1 (SISO), and MCS index of 9 for uplink / downlink (QPSK modulation).

At the same time, the IoT clients, as developed in previous phase, will transmit in-band

underlay uplink CDMA packets.

Experiment setup shown in Fig. 4.12 targets to evaluate performance of the shared

band operation of LTE and CDMA-underlay IoT transmissions. In this setup, we

have separate eNBs for CDMA IoT and LTE UEs. We are currently integrating IoT

eNB and OAI/LTE eNB into one unified eNB. In our experiments, for CDMA IoT

50

Figure 4.13: Throughput of the LTE transmission and Packet Error Rate(PER) of the
CDMA-based IoT transmission as a function of the CDMA Signal-to-Noise

Ratio(SNR).

transmission, packet payload and interval between packet transmission is kept constant

at 15 Bytes and 60 millisecond, respectively. CDMA IoT SNR is varied as mentioned

in Section 4.1.1. LTE UE transmits UDP traffic using iperf. LTE is not completely

loaded and achieves 1.15 Mbps throughput without any CDMA transmission. As shown

in Fig. 4.13, with simultaneous CDMA and LTE transmission, CDMA average SNR is

observed to be in the range -7.1 dB to -1.4 dB and PER is in the range of 0.01 to 0.22

(due to not fully loaded LTE channel). As CDMA SNR increases, LTE throughput

decreases upto a maximum of 20%. This scenario provides insight on design details of

CDMA-underlay IoT protocol considering OFDMA structure of LTE.

51

Chapter 5

Related Work

In this chapter, we will discuss some waveforms and technologies that have been sug-

gested to handle IoT traffic in the future 5G wireless communication systems. There

have been waveforms and standalone systems proposed to satisfy the vast range of new

services in the net generation internet. Some of the service requirements of 5G include

Gbps downlink speeds, massive number of HTC (Human-Type Communication) and

MTC (Machine-Type Communication) devices and ultra low latency. [30]

Some of the suggested waveform techniques for 5G are Generalised Frequency Divi-

sion Multiplexing (GFDM) [31] which is a block based multi-carrier system similar to

OFDM. But, instead of adding a cyclic prefix to every symbol, GFDM adds a single pre-

fix to an entire slot (7 sub-symbols). The symbols are smaller in size and it improves the

spectral efficiency. GFDM has significantly low PAPR and a better BER than OFDM,

but it still does not provide us a platform for low latency applications. Filter Bank Mul-

ticarrier (FBMC) and Universal Filtered Multi-Carrier (UFMC) [32,33] are another set

of proposals from the community. FBMC is a multicarrier system which instead of

digitally filtering the complete band, filters on a per subcarrier basis. Instead of sinc-

pulses, the subcarriers have a more suitable shape according to the filter design with

reduce side lobe levels. With UFMC, filtering is applied on a per sub-band basis instead

of subcarrier as in FBMC. UFMC is as spectrally efficient as FBMC, whereas FBMC

suffers from high time domain overheads. FBMC also sufers from higher overhead for

UL/DL synchronization. For the purpose of bursty small packet IoT transmissions,

UFMC is a better fit [32] and can be used to enable low latency modes with low en-

ergy consumption. More waveform techniques are discussed in [34–36]. All the above

mentioned techniques provide benefits like reduced PAPR, higher spectral efficiency,

52

Massive MIMO support, enabling a framework with low latency. One advantage that

underlay CDMA has with respect to the aforementioned techniques are that it works

in band with the current LTE architecture. The CDMA transmission a being random

access technology provides significantly lower access and transmission delay.

Narrowband IoT (NB-IoT): As 3GPP is moving towards standardizing the 5G New

Radio [37–40], Narrowband-IoT [12] and various RAN aspects for Machine-Type Com-

munication [19, 41] are considered. However, the latency numbers for NB-IoT are ex-

pected to be much higher than LTE/LTE-A as the duration between narrowband PSS

and SSS are significantly more. As seen in Section 2.3.1.1, the initial access delay is

already high for LTE. The target RACH procedure latency for emergency messages in

NB-IoT is 10 seconds. Also, NB-IoT allocates subcarriers from the existing spectrum

used by LTE causing degradation in LTE throughput as well. Thus, LTE and NB-IoT

have high scheduling overhead and access delay. Since NB-IoT uses RACH for newly

arriving UEs, sudden surge in IoT traffic could result in high collisions.

The majority of the proposed standalone technologies are systems operating in sub-

6GHz frequencies and do not intend to merge with cellular services. Weightless [42]

is one such effort for Low Power Wide Area Network (LPWAN). It has an open stan-

dard, and nWave [43] has already developed a prototype for the Weightless-N standard.

SigFox [11] is another standalone network solution for Internet of Things. It is ultra-

narrowband and supports packets sizes of 12 bytes. LoRa Alliance [13] is another

standalone option for IoT network, which is based on a proprietary spread spectrum

developed by Semtech. These dedicated IoT network [44–46] suffer from scalability

when simultaneous transmissions from IoT result in collision of packets followed by re-

transmissions. Nonetheless, even in hypothetical scenario of abundance of chirp codes,

often the allocated bandwidth is not enough to handle the surge of IoT traffic.

With the possibility of extending LTE-U in multiple unlicensed spectrum, it is

envisioned that in recent future standalone IoT systems in unlicensed spectrum will

suffer significantly due to interference from LTE. This defines the need to coexist with

the cellular network, which can be achieved using underlay transmission techniques

such as those proposed here.

53

Chapter 6

Conclusion

The massive deployment of IoT devices in the next few years will overwhelm the current

4G network and could also affect the future 5G network by causing a significant amount

of surge in control plane signaling overhead and in network latency. This makes 4G un-

suitable for IoT deployment and this motivated us to design a CDMA-based PHY/MAC

protocol for IoT devices. The proposed IoT system coexists with in-band LTE oper-

ation and allows uplink sporadic IoT data transmission without a need for resource

allocation from the LTE network. The CDMA-based IoT system is a random access

protocol which experiences very low access delay compared to LTE. We implemented

the proposed protocol using software-defined radio platform for exemplary scenarios as

a proof-of-concept. We studied the CDMA based IoT system to understand its limi-

tations. The main limitation of the CDMA based IoT system is the high transmission

delay for large packet transmissions. As seen from our analysis and results, upto 13

IoT devices can transmit packets without affecting each other’s performance in 1 MHz

bandwidth. Depending on the requirements, the latency in CDMA can be controlled

with various system parameters like bandwidth, modulation schemes, message sizes and

spreading code length.

The underlay IoT transmissions in presence of an ongoing LTE transmission cause

the LTE throughput to degrade a little. This degradation in throughput can be con-

trolled in future by controlling the transmit power of IoT UEs. Coordination amongst

OFDM (in LTE) and CDMA will be vital in managing the spectrum and allocating the

resources better, leading to a better performing IoT system.

54

Appendix A

CDMA Code

The appendix describes the codes written for running Code Division Multiple Access

(CDMA) on Ettus USRP Software Defined Radios B210/X310. The code is written

first in MATLAB and then was moved to C to interface with the USRP in real-time.

The C code is available on a private repository in bitbucket and also in the image cdma-

new.ndz on ORBIT, WINLAB. The MATLAB code is available on Google Drive. The

CDMA Receiver was run in a separate node, keeping it close to the LTE eNodeB and

this setup can be seen in Section 4.1.2.

A.1 MATLAB code

The MATLAB code is not the complete implementation of CDMA and only validates

the use of different algorithms and techniques. Once we figured out what algorithms

we needed to use, a complete code was written in C/C++.

A.1.1 CDMA Transmitter

The CDMA Transmitter code is in the script Transmitter.m. The transmitter in MAT-

LAB is different from the transmitter in C, as the packet created does not have fields for

UE ID and Message Size. We will discuss the C code in later sections. The transmitter

block diagram for the MATLAB code is given in Figure A.1. The transmitter generates

CDMA packets and writes the samples to a file, which is then used to transmit over

the USRP.

55

Figure A.1: CDMA Transmitter for MATLAB code

Different blocks/functions of the Transmitter are explained below:

1. readFromFile: This function takes two inputs, FileName and NumberOfBytes

to be transmitted. The input file should contain a text with preferably NumberOf-

Bytes characters and the value(or more) needs to be passed to the function as

well. The function converts the characters to binary and appends a 16 bit CRC.

For example, if the text is 10 bytes, it will be converted to a 96 bits codeword (80

bits for the message and 16 bits for CRC).

2. bpskmod: This function modulates the input signal or codeword using BPSK.

Converts 1 to -1 and 0 to +1.

3. HadamardGen: This function generates a Hadamard code sequence. The inputs

are Length, Index, DataType, SamplesPerFrame. It creates a Hadamard matrix

of size Length x Length and gives out the sequence at the required Index.

4. NormalizeGain: This function multiplies the input sequence with the gain value

as passed to the function.

5. Spread: This function spreads the input signal using the code sequence which is

passed to the function. Every bit in the input signal is multiplied with the code

sequence, also known as spreading.

6. writetofile: This function takes one signal as an input and converts them to IQ

samples. For example, 2+3i is transmitted as 2 and 3 separately. The output

56

signal is thus twice the size of the input signal. These samples are then written

to the file, and the filename is passed to the function. The samples are in the

format int16 and that can be modified.

There are more functions which are not used in the code but could be useful:

1. addawgn: This function adds AWGN to the input signal and takes the required

noise SNR value as an input.

2. plotIQ: This function takes two signals as inputs. First is the transmitted signal

and the second is the received signal. Both need to be of the same size. The

function gives the I-Q plot of the received samples depending on if the transmitted

values are positive or negative.

A.1.2 CDMA Receiver

Figure A.2: CDMA Receiver for MATLAB code

The receiver reads IQ samples from a file and then processes it to find CDMA

packets in the samples received. Functions in the CDMA receiver are explained below:

1. readfromfile: This function reads samples from the file passed as an input.

The samples are then converted back to A + Bi format from A and B received

separately.

2. correlate: This is the function where the cross-correlation is done to detect the

57

CDMA packets by looking for the preamble in the received signal. The func-

tion inputs are: Received Signal, Transmitted Packet(to fetch the size of the

packet sent) and the Preamble. The received signal is large in size and is divided

into blocks and these blocks are treated separately to look for the CDMA Pack-

ets/Preamble. The function returns the 2D array, called corr, which contains the

contents of all the packets and num is the number of packets detected.

Important variables:

• arg: This value is the number of blocks you want to divide the received

samples in. For better performance, select the number of blocks such that

the block size is close to the size of the CDMA packet transmitted.

• thresh: This is the threshold value, using which the packet detections are

done. The threshold value needs to be manually entered such that you only

detect and process the actual CDMA packets and ignore the noise. This can

be done by trial-and-error method by trying a few different values for the

threshold when the number of packets transmitted is known.

3. equalizeCorr: This function equalizes the packet using the preamble as a train-

ing sequence. It uses Recursive Lease Square Estimation (RLS) to do the equal-

ization. The parameters of RLS equalizer might need playing with depending

on different scenarios. The output of this function is the samples without the

preamble and just the spread packet. Source : https://www.mathworks.com/

help/dsp/ref/dsp.rlsfilter-class.html.

4. CS4: This function does the Carrier Offset Correction using the Carrier Syn-

chronizer function from MATLAB. It performs COARSE and FINE synchroniza-

tion both. The source is https://www.mathworks.com/help/comm/ref/comm.

carriersynchronizer-class.html.

There are functions CS, CS2 and CS3 in the folder which perform Carrier Offset

Correction in different ways.

5. despreader: This function is the despreader and performs exactly opposite to

58

the spreader. It divides every N samples, where N is the size of the PN code

sequence with the PN code sequence.

6. intdump: This function integrates(adds) every N samples, where the N is the

size of the PN Sequence and is passed as an input to the function.

7. bpskdemod: This function demodulates the input signal using BPSK. It con-

verts negative values to 1 and positive values to 0.

8. readSignal: This function reads the final codeword and prints the character

representation of the bits received. The CRC is first calculated and compared

with the received CRC to know if the packet has been received in error or not. It

prints out the character representation if the packet has been correctly received,

else it is in error. The output is an array of 0s and 1s, where 0 is for no error and

1 for erroneous packets.

9. calculatePktErrorRate: This function calculates the packet error rate. It takes

inputs as the total number of packets detected and the error array generated by

the readSignal function above.

A.2 C/C++ code

A.2.1 Transmitter

The CDMA Transmitter code is written in C++. The block diagram of the CDMA

transmitter as given in Figure A.3 in C++ is a little different from the one written in

MATLAB.

Various functions used in the main, in order of which they are used:

• readText: Reads text from the user and stores it in the msg variable. The

length of the characters is in totalmsglength. It also initializes a few variables

and the function takes no arguments.

• formPacket: Takes the length of the packet as an argument. Creates the packet

based on the length passed and copies the final bits to txsignal. This is the main

59

Figure A.3: CDMA Transmitter for the C++ code

function where all the packet formation happens at the transmitter. Following

are the steps of forming the packet :

1. The first step is to create the sendmsg variable which only stores the part of

the message (if we are varying lengths) that is to be sent. For example, if the

input message is of size 15 characters, but we are sending only 10 characters.

Then, sendmsg stores the 10 characters of the message.

2. We assign the UE ID to be the spreading code index for simplicity. Say, the

spreading code index is 9, then we set the UE ID to be 9.

3. Functions decToBinSize and decToBinID take the message size and the

UE ID as arguments and converts the decimal value into binary. The size

field binary is stored in variable sizeField and ID is stored in UEID.

4. The text message from sendmsg is then converted to binary. CRC is cal-

culated using CRC-16 checksum by calling the function crcSlow, which is

present in crc.c. Message is stored in msgBin and calculated CRC is in

crcBin. Length of the msgBin array containing the binary bits is len and

length of the crcBin is crclen.

5. Total length, totLen is defined to be sum of message length, CRC length,

sizeField in bits and UE ID in bits. The codeword is formed by copying all

the bits to it. This is the packet that will be modulated and spread now.

6. Function bpskmod modulates the codeword using BPSK.

60

0 is -1

1 is +1

7. Fetches the spreading codes and the preamble code from the functions getIndex-

Cor and getIndexSpr. The Hadamard matrix is generated in the read-

Text function and the indices are fetched using these functions.

8. Packet spreading is done in the function spreading and the spread length

is packetLength. The spreading is done depending on what the UE ID is,

since that determines the spreading code index.

9. Preamble is added to the packet and is multiplied by a factor of 32767 to

increase the gain of the packet transmitted. The final packet is in txsignal.

• The do-while loop checks for the stop signal called and the repeat variable to know

if there are more packets that need to be sent. It passes the appropriate data type

to the template of send cdma function, depending on what the message type

is. We use short but can use anything.

send cdma transmits the packet by copying the packet data from txsignal to

the tx stream only buff.size() samples at a time. buff.size() is equal to samps per buff.

• formPacket can be used inside the while loop if we want to vary the size of

the packets transmitted. Delay (stored in delay variable) between the packets is

controlled by making the thread sleep for some time/random times. If the packets

sent is equal to the pktCount, then it comes out of the loop.

A.2.1.1 How to run CDMA Transmitter

The README in the CDMA folder can be referred to understand how to run the

CDMA transmitter. The instructions are: Go to /uhd/host/build/examples. It should

have tx cdma and rx cdma executables.

1. tx cdma.cpp sends random sized packets at random intervals. Intervals being

multiples of the delay(in milliseconds) given in the command line.

61

2. To run the CDMA Transmitter code (random packet sizes and random delay):

./tx cdma –freq 2560e6 –rate 1e6 –gain 90 –repeat –delay 100 –UE 2 –pkt 100

–freq : Center frequency (in Hz)

–rate : Sampling Rate (in Hz)

–gain : Gain

–delay : Delay (in milliseconds)

–UE arg (=2) : UE Identification Number (default = 2)

–pkt arg (=100) : Packet count (default = 100)

.

A.2.2 Receiver

The CDMA Receiver code is written in C. Instructions on how to run the receiver is

in the README file. The block diagram of the CDMA Receiver is in Figure A.4. The

flow diagram of the CDMA Receiver can be seen in Figure A.5.

The CDMA Receiver is running all the time and is constantly receiving samples from

the USRP. It looks to find the CDMA Packets in the samples it receives using cross-

correlation. Further processing is done, to find the UE ID, the size of the packet and

then decode the message accordingly.

Figure A.4: CDMA Receiver for the C code

At the receiver, there are two threads running simultaneously. One is the main

thread, which reads the samples from the USRP and looks for the packets in every set

62

Figure A.5: Flow Diagram of the CDMA Receiver

63

of received samples. If the thread detects a packet, it puts the packet in an unlimited

sized Queue and increases the queue’s size. The other thread is the one which monitors

the Queue. If the queue is empty, it keeps checking the queue’s length to see if a packet

has arrived. If there is one or more elements in the queue, it takes out a packet from the

front of the queue (First in, First Out). It dequeues the packet and further processing

is done to extract the message out. This processing is done in the processThread as

explained in A.2.2.2.

A.2.2.1 Main Thread

Steps in the main thread :

1. The main thread/function initializes some basic variables to get the USRP setup.

It sets up the USRP’s streamers,etc and more can be understood about it on

UHD website.

2. packetMax is a variable that stores the maximum bits that the message can have.

The maximum size of our messages are 15 bytes. Maximum characters = 15 bytes

= 120 bits. CRC = 16 bits. Total = 136 bits. This can be increased or decreased

to any value. For ex, packetMax = 2056 bits for max = 256 bytes.

3. Initializing variables to create the processThread.

4. Sets up the Hadamard code matrix. Initialize the corrindex, spreadindex(n), which

are the preamble code index and the spreading code index(s).

5. pthread create creates the processPacket thread.

6. while loop is running until it is externally interrupted by the user using Ctrl +

C. In this loop, samples are read from the USRP and are dumped into a file.

The array buffer stores the samples from block and prefixes it with M-1 samples

of the previous buffer. The last M-1 samples of the previous buffer is stored in

the variable suffix.

7. correlateout is the array which stores the packets as they are detected. If the

packet is overflowing from the previous buffer, we copy pktOverflow samples from

64

the new buffer to correlateout. This completes our packet and we enqueue the

packet to the queue for processing. We set pktOverflow to -1.

8. correlate is the cross-correlation function where the preamble detection is done

by cross-correlating the received buffer with the preamble. The packet is stored

in correlateout. If we find a packet(packetFound = 1) and the packet is not

overflowing(pktOverflow = -1), then we enqueue the packet and reset the variables

for the next packet.

The packet detection is done by setting a threshold. The threshold decides if the

packet we are ”detecting” is noise or the actual expected packet. For this, we

run the CDMA receiver without any CDMA transmissions. This gives us an idea

on what the noise level is by giving the cross-correlation values of the preamble

with the noise. Then, setting the threshold for cross-correlation accordingly (more

than the noise level) to detect actual packets.

This part can be modified to include multiple packet detections in one processing

buffer. Currently, it only detects one packet in one buffer.

9. Once we exit the while loop, the SNR(Signal to Noise Ratio) and PER(Packet

Error Rate) is calculated. These statistics are printed out to the user.

A.2.2.2 Process Thread

• Outer while loop runs until interrupted externally by the user using Ctrl + C.

• The inner while loop keeps a check on the queueSize and runs while there exists

an element in the queue. If there is an element in the queue, then it follows the

following steps:

1. Get the packet from the front of the queue and remove it from the queue.

This is stored in variable pkt.

2. The packet is processed first to get the size of the packet and the UE ID.

The despreading is done using spreadindex1 and if the UE ID matches the

spreadindex1, then the message is from UE ID = spreadindex1. If not, we

65

despread using spreadindex2 and then the UEID should match the spreadin-

dex2. This is how we do multi-user detections at the CDMA Receiver. If

none of these hold true, we discard the packet as it is not from any of the

two UEs.

The processing involved equalization, frequency/phase offset correction, de-

modulation, despreading and converting from binary to decimal/characters.

The functionalities of these are the same as it was in the MATLAB code, so

we are not going into detail again. Refer Section 2.2 for more details.

3. Once we have retrieved the message size and the UE ID, the next step is to

process the packet to get the message out. packetOffset gives us the offset

of where the spread message starts. (= M + (L*sizeBits) + (L*IDBits))

4. Depending on what the UEID is, the despreader code is chosen and the

message is finally retrieved in readSignal function.

5. Similar to the MATLAB function, readSignal calculates the CRC checksum

of the bits received and compares it to the received CRC. If they are the same,

there is no error in the reception and it prints out the received message after

converting bits to character.

A.2.2.3 How to run CDMA Receiver

The details can be found in the README. The instructions are also given here:

• rx cdma.c receives the samples, stores them in a buffer (of n size, which is a

parameter given at runtime in the command line) and then processes it to find

CDMA packets. It uses COARSE and FINE Carrier Frequency offset estimator

and corrector . It discards packets with CRC mismatch.

• To run the CDMA Receiver code: ./rx cdma -f 2560e6 -r 1e6 -g 20 -n 10220 -t

300

– -n: Samples buffer size.(For X310s , say 36400 for simplicity since 364 is the

buffer size. For B210s, the buffer size is 2044, then make -n as 10220)

66

– -t: threshold for correlation output. To calculate the threshold (at a partic-

ular gain value), First run the receiver without any ongoing transmissions.

• ./rx cdma -f 2560e6 -r 1e6 -g 20 -n 10220

After stopping the program, we see ”Maximum correlation peak” give out a value.

This is the maximum value which the cross-correlation gives out with noise.

We need to set the threshold more than that so that we do not detect any incorrect

start of the CDMA packet. Now, say if the Maximum correlation peak is 200.

We can select the threshold to be 250, so that we do not have any incorrectly

detected packets.

– -f: Center frequency in Hz.

– -r: Sampling Rate in Hz.

– -g: Gain

– -o : output filename (default = test.dat)

67

References

[1] S. Mathur, D. Saha, and D. Raychaudhuri. Poster: Cross-layer MAC/PHY proto-
col to support IoT traffic in 5G. In ACM Mobicom, 2016.

[2] S. S. Sagari, Siddarth Mathur, D. Saha, S. O. Amin, R. Ravindran, I. Seskar,
D. Raychaudhuri, and G.Q. Wang. Realization of cdma-based iot services with
shared band operation of lte in 5g, 2017. ACM SIGCOMM 2017 Workshop on
Mobile Edge Communications (MECOMM2017).

[3] 3GPP TS 36.213 version 13.0.0 Release 13. Lte; evolved universal terrestrial radio
access (e-utra); physical layer procedures.

[4] C. H. Wei, G. Bianchi, and R. G. Cheng. Modeling and analysis of random access
channels with bursty arrivals in ofdma wireless networks. IEEE Transactions on
Wireless Communications, 14(4):1940–1953, April 2015.

[5] Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2016 –2021 . https://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.html.

[6] The Internet of Things: How the Next Evolution of the Internet Is Changing
Everything . https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/

IoT_IBSG_0411FINAL.pdf.

[7] Report: Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is
Outdated.

[8] Gartner IoT Forecast . http://www.gartner.com/newsroom/id/3598917.

[9] M.Z. Shafiq, Lusheng Ji, A.X. Liu, J. Pang, and Jia Wang. Large-scale mea-
surement and characterization of cellular machine-to-machine traffic. Networking,
IEEE/ACM Transactions on, 21(6):1960–1973, Dec 2013.

[10] S. Mathur, S. S. Sagari, S. O. Amin, I. Seskar, R. Ravindran, D. Saha, D. Ray-
chaudhuri, and G. Wang. Demo abstract: CDMA-based IoT services with shared
band operation of LTE in 5G, 2017. IEEE Infocom Workshop 2017.

[11] Sigfox. http://www.sigfox.com.

[12] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi. A primer on 3gpp narrowband internet of things.
IEEE Communications Magazine, 55(3):117–123, March 2017.

[13] Lora. http://www.lora-alliance.org.

68

[14] 3GPP LTE. http://www.3gpp.org/technologies/keywords-acronyms/

98-lte.

[15] Vijayalakshmi Chetlapalli Deepti Singhal, Mythili Kunapareddy. Lte-advanced:
Latency analysis for imt-a evaluation.

[16] J.G. Proakis and M. Salehi. Communication Systems Engineering. Pearson Edu-
cation. Prentice Hall, 2002.

[17] K. S. Gilhousen et al. On the capacity of a cellular CDMA system. IEEE Trans-
actions on Vehicular Technology, 1991.

[18] 3GPP TS 36.331 version 13.0.0 Release 13. Lte; evolved universal terrestrial radio
access (e-utra); radio resource control (rrc).

[19] 3GPP TR 37.868 version 11.0.0. 3gpp; technical specification group radio access
network; study on ran improvements for machine-type communications;.

[20] 3GPP TR 45.820 V13.1.0 (2015-11). Cellular system support for ultra-low com-
plexity and low throughput internet of things (CIoT).

[21] Zhao Liu and Magda El Zarki. Performance analysis of ds-cdma with slotted aloha
random access for packet pcns. Wirel. Netw., 1(1):1–16, February 1995.

[22] D. Raychaudhuri and K. Joseph. Performance evaluation of slotted aloha with
generalized retransmission backoff. IEEE Transactions on Communications,
38(1):117–122, Jan 1990.

[23] D. Raychaudhuri. Performance analysis of random access packet-switched code di-
vision multiple access systems. IEEE Transactions on Communications, 29(6):895–
901, Jun 1981.

[24] D. Raychaudhuri and K. Joseph. Performance evaluation of slotted aloha with
generalized retransmission backoff. IEEE Transactions on Communications,
38(1):117–122, Jan 1990.

[25] D. M. Grieco. The capacity achievable with a broadband cdma microcell underlay
to an existing cellular macrosystem. IEEE JSAC, 1994.

[26] S. Sagari et al. Coordinated dynamic spectrum management of LTE-U and Wi-Fi
networks. In IEEE DySPAN, Sept 2015.

[27] M. Luise and R. Reggiannini. Carrier frequency recovery in all-digital
modems for burst-mode transmissions. IEEE Transactions on Communications,
43(2/3/4):1169–1178, Feb 1995.

[28] Michael Rice. Digital communications: a discrete-time approach. Pearson Educa-
tion India.

[29] N. Nikaein et al. Openairinterface: A flexible platform for 5G research. SIG-
COMM, 2014.

[30] Ngmn alliance, ”5g white paper, february 2015, available at. https://www.ngmn.
org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf.

69

[31] G. Fettweis, M. Krondorf, and S. Bittner. Gfdm - generalized frequency division
multiplexing. In VTC Spring 2009 - IEEE 69th Vehicular Technology Conference,
pages 1–4, April 2009.

[32] F. Schaich and T. Wild. Waveform contenders for 5g x2014; ofdm vs. fbmc vs.
ufmc. In 2014 6th International Symposium on Communications, Control and
Signal Processing (ISCCSP), pages 457–460, May 2014.

[33] F. Schaich, T. Wild, and Yejian Chen. Waveform contenders for 5g - suitability for
short packet and low latency transmissions. In Vehicular Technology Conference
(VTC Spring), 2014 IEEE 79th, pages 1–5, May 2014.

[34] S. Y. Lien, S. L. Shieh, Y. Huang, B. Su, Y. L. Hsu, and H. Y. Wei. 5g new radio:
Waveform, frame structure, multiple access, and initial access. IEEE Communi-
cations Magazine, 55(6):64–71, 2017.

[35] B. Farhang-Boroujeny and H. Moradi. Ofdm inspired waveforms for 5g. IEEE
Communications Surveys Tutorials, 18(4):2474–2492, Fourthquarter 2016.

[36] F. Yang and X. Wang. A novel waveform for massive machine-type communica-
tions in 5g. In 2017 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–5, March 2017.

[37] C. Sexton, N. J. Kaminski, J. M. Marquez-Barja, N. Marchetti, and L. A. DaSilva.
5g: Adaptable networks enabled by versatile radio access technologies. IEEE Com-
munications Surveys Tutorials, 19(2):688–720, Secondquarter 2017.

[38] 3GPP TS 37.340 V0.2.0. Lte; evolved universal terrestrial radio access (e-utra)
and nr multiconnectivity.

[39] 3GPP TR 38.801 V14.0.0. Study on new radio access technology: Radio access
architecture and interfaces.

[40] 3GPP TR 38.804 V14.0.0. Study on new radio access technology: Radio interface
protocol aspects.

[41] 3GPP TR 37.869 V1.0.0. Study on enhancements to machine-type communications
(mtc) and other mobile data applications; radio access network (ran) aspects. 2017.

[42] Weightless. http://www.weightless.org.

[43] Nwave. http://www.nwave.io.

[44] Claire Goursaud and Jean-Marie Gorce. Dedicated networks for IoT : PHY / MAC
state of the art and challenges. EAI endorsed transactions on Internet of Things,
October 2015.

[45] W. Yang, M. Wang, J. Zhang, J. Zou, M. Hua, T. Xia, and X. You. Narrowband
wireless access for low-power massive internet of things: A bandwidth perspective.
IEEE Wireless Communications, 24(3):138–145, 2017.

[46] X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios. Low power wide area
machine-to-machine networks: key techniques and prototype. IEEE Communica-
tions Magazine, 53(9):64–71, September 2015.

