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ABSTRACT OF THE DISSERTATION
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Validation

by Nathan Daniel Minchen

Dissertation Director: Jimmy de la Torre

At present, many cognitive diagnosis models (CDMs) have been developed for

dichotomous response, several of which have been extended to handle polyto-

mous response. CDMs to handle continuous response, however, have not been

extensively explored beyond the recently proposed continuous deterministic in-

puts, noisy “and” gate (C-DINA) model and its generalized version. The studies

that comprise this dissertation aim to extend model development in the context

of continuous response and to address several key issues that arise from its use in

CDM.

In the first study, a hierarchical framework is employed for using response

time to improve examinee ability estimation and classification accuracy. Under

this framework, response time and response accuracy are construed as arising

from separate continuous, possibly correlated, unidimensional latent variables.
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A higher-order attribute specification is used to link the general ability to the

probability of mastering certain attributes. Results show that both examinee

classifications and higher-order ability estimation can be improved by using re-

sponse time. A real data example is included to demonstrate the viability of the

method.

In the second study, a new item selection algorithm is presented for comput-

erized adaptive testing applications that use continuous response CDMs. The

algorithm uses the Jensen-Shannon divergence, which quantifies the total degree

of dissimilarity in a set of two or more probability distributions, as an item se-

lection algorithm. Results demonstrate that the method typically outperforms

random item administration with respect to both classification accuracy and test

efficiency. A real data example shows that an existing test could be shortened

considerably while still producing a high level of classification agreement with the

original.

In the final study, a new Q-matrix validation procedure is proposed for con-

tinuous response CDMs. The method presented is designed to work with a gen-

eralized continuous response model, and is based on a weighted least squares

regression. The simulation study shows that the method performs increasingly

well as item quality increases. The method was also applied to an existing dataset,

with results confirming most of the entries in the existing Q-matrix.
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Chapter 1

Introduction

1.1 Cognitive Diagnosis Models

Cognitive diagnosis modeling, which is the statistical technique used to extract di-

agnostic information from cognitively diagnostic assessments (CDAs; de la Torre

& Minchen, 2014), is a psychometric framework for formative assessment that

stands in contrast to traditional testing frameworks such as item response the-

ory (IRT) and classical test theory (CTT). Whereas the goal in the latter two

frameworks is generally to provide summative feedback for the purpose of rank-

ordering examinees, the goal of cognitive diagnosis models (CDMs) is to provide

timely diagnostic feedback with respect to a set of discrete skills so that teachers

are equipped with specific information about their students’ knowledge states.

Assessments with this purpose are in great demand (DiBello & Stout, 2007).

In contrast, IRT- and CTT-based tests typically provide information on a

small number of broadly-defined abilities (Junker & Sijtsma, 2001) - many times

just a single ability - such as mathematics or reading. Thus, it may be difficult to

know how to improve the learning process. De la Torre (2012) and de la Torre and

Minchen (2014) have discussed the use of item maps as tools to make diagnostic

inferences in the context of traditional assessments. They concluded that doing

so may result in drawing diagnostic inferences that are conflated with the nuances

and idiosyncrasies of the questions themselves, thereby jeopardizing the validity

of the inferences, largely because the questions have not been designed to provide

information at that level.
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CDMs aim to provide feedback on a multivariate set of discrete skills or at-

tributes. The number of skills measured can be large, but is generally recom-

mended to be less than 10 (Tatsuoka et al., 2016; DiBello, Roussos, & Stout,

2007). The levels of the attributes are generally conceptualized as skills being

“present” or “not present.” In educational settings, this typically translates into

categories of mastery versus non-mastery. When CDMs are used in medical set-

tings, these categories can be interpreted as the absence or presence of symptoms

(Templin & Henson, 2006; de la Torre, van der Ark, & Rossi, 2015). For the level

of measurement to be reduced to a simple dichotomy without losing meaningful

information, it should be clear that this set of skills must be much finer-grained

than the ability or abilities measured in traditional assessments.

For CDAs to have maximum potential, they should be intentionally designed

from their very inception to be diagnostic (de la Torre & Minchen, 2014), a

process that is lengthy and involves many steps. Tjoe and de la Torre (2013b)

outline the steps involved in the attribute-validation process, which include a

literature review, conferring with relevant experts (e.g., researchers, teachers,

and psychometricians), and think-aloud problem solving sessions with students

of various academic levels. Tjoe and de la Torre (2013a) also outline the item-

writing process for such an assessment. Although it would be convenient to simply

apply a CDM to an ordinary test in an effort to make diagnostic inferences, such

efforts have had only limited success (de la Torre & Karelitz, 2009).

One of the distinguishing features of CDMs is the way that they model the

interaction between examinees’ skill patterns and the attributes measured by the

item. The probability of a correct response for an examinee on a given item is a

function of the examinee’s attribute pattern and the attributes required for the

item, with some cognitive process governing this function, which is defined by

the specific CDM. For example, both the deterministic inputs, noisy “and” gate

(DINA; Haertel, 1989; Junker & Sijtsma, 2001) and the deterministic inputs, noisy
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“or” gate (DINO; Templin & Henson, 2006) models partition examinees into two

groups for each item, but the groups are defined differently. To respond correctly,

the DINA requires that examinees possess all required attributes, wheres the

DINO only requires that examinees posess at least one of the required attributes.

Otherwise, examinees are expected to answer incorrectly. Generalized models

exist as well (e.g., de la Torre, 2011; von Davier, 2005) that relax the assumptions

of simplified models, of which the DINO and DINA are examples.

1.2 Continuous Responses

Many advancements in the CDM literature have assumed a dichotomous, or some-

times a polytomous, item response, but continuous response CDMs have not been

explored extensively. Thus, the focus of this research is to advance continuous

response modeling in CDM. Continuous response is increasingly common and of-

fers great potential by expanding applicability of CDAs, but it also presents a

wide range of new challenges for the technical components of cognitive diagnosis

modeling. Before exploring the objectives of this research, we will first discuss

some of examples of continuous response.

Perhaps one of the most abundant continuous responses available today is re-

sponse time, which is easily captured in computer-based exam delivery. Response

time could be used as the intended measurement, or it could be used as ancillary

information that is obtained in the process of measuring a construct for which

response accuracy is of primary interest. It may also provide additional insight

when there are clearly-defined developmental steps that need to be executed in

order to solve a problem (van der Maas & Jansen, 2003).

Another type of continuous response is to simply place a mark on a line

segment. Such a response type can be viewed as a generalization of a graded-

response as the number of categories becomes infinite (Samejima, 1973). Noel
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and Davier (2007) introduced a model for analyzing this type of response. They

applied their model to a real data example in which the responses were levels of

agreement (0-100%) with a statement. For example, if the mark was placed one-

quarter of the distance from the left end of the segment, then the response would

be approximately 0.25, or 25% agreement. Noel (2014) extended this model to

accommodate responses that have an unfolding nature.

Another type of continuous response is “probability testing,” in which exami-

nees report the probability that an answer is correct, with possible marks ranging

from 0 to 100. Probability testing has the potential to reveal the following types

of knowledge: “full knowledge,” “partial knowledge,” “partial misinformation,”

“full misinformation,” and the “absence of information” (Ben-Simon, 1997, p.

69-70). In the full information setting, examinees report a probability of 1 for

the answer that is correct, and 0 for all others, demonstrating complete knowl-

edge. With partial information, examinees report a nonzero probability for the

correct answer, but also report nonzero probabilities for other incorrect answers.

Assigning a probability of zero to the correct answer represents full misinforma-

tion, whereas assigning equal probabilities to all answers reflects the absence of

information. Other variations on this method exist and are discussed or cited in

Ben-Simon (1997).

More generally, continuous responses have numerous applications in measure-

ment models, and the CDA/CDM assessment framework has much to offer in

its diagnostic potential. Thus, it is prudent to further the body of research that

explores the viability of continuous responses in the context of CDM. To that

end, the objectives of this research are discussed next.
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1.3 Objectives

Many of the current cognitive diagnosis models (CDMs) have been developed for

dichotomous response, several of which have been extended to handle polytomous

response (e.g., de la Torre, 2009; Ma & de la Torre, 2016). CDMs to handle con-

tinuous response, however, have not been extensively explored beyond the work

of Minchen, de la Torre, and Liu (in press), in which the continuous deterministic

inputs, noisy “and” gate (C-DINA) model is developed, and Minchen and de la

Torre (2016), in which the C-DINA model was generalized.

To expand the body of research in this area, this dissertation aims to extend

model development and methodology as they pertain to continuous response in

CDM. To that end, the objectives of the research presented herein are three-fold:

(1) to adapt a hierarchical framework (van der Linden, 2007), which has been

used in IRT for jointly modeling response time and response accuracy, for use

in CDM, (2) to propose a new item selection index for use in cognitive diagnosis

computerized adaptive tests (CD-CAT) in the context of a generalized continuous

response model (Minchen & de la Torre, 2016), and (3) to introduce a statistical

Q-matrix validation procedure for verifying the attributes that are assumed to be

measured by each item in the context of continuous response models. Additional

details for each objective are now discussed in turn.

In the first study, a hierarchical framework (van der Linden, 2007) is employed

for using response time to improve both examinee classifications and ability es-

timates. Using this framework, response time and response accuracy arise from

separate, but correlated, latent variables. On the response time side of the model,

a lognormal model (van der Linden, 2006, 2007) is used, and a continuous, uni-

dimensional latent variable governs the speed at which examinees work. On the

response accuracy side of the model, a higher-order attribute formulation (de la

Torre & Douglas, 2004) is used to link the general ability to the probability of
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mastering each attribute. A simulation study was carried out, and factors investi-

gated in the simulation study were item quality, sample size, and the relationship

between the higher-order ability and the attributes. Classification accuracy of at-

tributes patterns and estimation accuracy of model parameters and higher-order

abilities were analyzed. Finally, the method was applied to a real data example.

In the second study, a new item selection algorithm is presented for comput-

erized adaptive testing applications that use continuous response CDMs. In a

simple continuous response model such as the C-DINA (Minchen, de la Torre,

& Liu, in press), it may be possible to adapt existing selection algorithms. Do-

ing so, however, presents certain challenges, which may be serious, and are dis-

cussed. When using the continuous generalized DINA (C-G-DINA; Minchen &

de la Torre, 2016), adaptations from the dichotomous response models can result

in a loss of information. Thus, the Jensen-Shannon divergence (JSD; Lin, 1991),

which quantifies the total degree of dissimilarity in a weighted set of two or more

probability distributions, is proposed for use as an item selection algorithm. The

weights used in the item selection algorithm are examinees’ current posterior dis-

tribution probabilities. Both fixed- and variable-length tests were administered in

the simulation study, the latter of which used the level of certainty in the posterior

distribution as the stopping rule. Performance of the algorithm in fixed-length

tests were evaluated using classification accuracy will be examined, whereas the

number of items administered will be used to evaluate variable-length tests. Item

usage was be examined, and the algorithm was applied to a real data example.

In the final study, a new Q-matrix validation procedure is proposed. Although

an array of such techniques exist, they have largely been developed in the context

of a dichotomous item responses. For a variety of mathematical reasons, which

will be discussed, the existing methods may not be appropriate for continuous

response data. The method presented in this study is designed to work with the

C-G-DINA model, and is based on a weighted least squares regression technique.



7

The method is exhaustive in the sense that each q-vector is evaluated for each

candidate item. The posterior distributions under the candidate q-vector are

obtained and used as weights to partition the responses into the latent groups

created under that q-vector. The coefficient of determination, R2, is used to de-

scribe the proportion of explained variance in the responses under each grouping.

The fully-specified q-vector will produce the highest R2, and the q-vector with

the smallest number of specifications that does not have a significantly differ-

ent R2 is chosen. In the simulation study, the level of misspecification in the

Q-matrix, item discrimination, generating model were manipulated. To evaluate

the method, the number of times a correction is made to an incorrect q-vector

(true positive) was tabulated, as well as the number of times a correct q-vector

was made wrong (false positive). Finally, the method was also applied to a real

data example for which the Q-matrix has been established.
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Chapter 2

Study I: Modeling Response Time in Cognitive

Diagnosis

Abstract

At present, examinees classifications in cognitive diagnosis are typically based

solely on response accuracy. However, response time is another source of infor-

mation that contains potentially valuable information, and may be easily obtained

in computer-based testing settings. Although a continuous response cognitive di-

agnosis model that can be used in response time modeling was recently proposed,

examinee classifications are still made on the basis of a single response type. This

paper proposes a framework in which both response accuracy and response time

can be used jointly to classify examinees. Specifically, a hierarchical framework

is used in conjunction with a higher-order deterministic inputs, noisy “and” gate

model. In this framework, latent variables governing speed and attribute mastery

are assumed to be related, thus providing a bridge for response time to assist in

the estimation of both the higher-order general abilities and the attribute pat-

terns.

Keywords: cognitive diagnosis models, continuous response, response time, DINA

model, lognormal
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MODELING RESPONSE TIME IN COGNITIVE DIAGNOSIS

2.1 Introduction

Although response time is a readily-available source of information, its applica-

tions in cognitive diagnosis modeling have been limited. The recently proposed

continuous deterministic inputs, noisy “and” gate (C-DINA; Minchen, de la Torre,

& Liu, in press) model allows for examinee classifications to be made on the basis

of a continuous response, of which response time is an example; however, this

model, like many others, only uses a single response type to classify examinees.

Also, Finkelman et al. (2014) present a method of incorporating response time

into a computerized adaptive testing (CAT) selection algorithm for cognitive di-

agnosis. Their model, however, does not explicitly use response time to improve

the estimation of ability, θ. To the extent that classification is improved, it is

through the choice of items that are administered, not because the response time

improves estimation of θ.

The goal of this study is to examine whether the estimation of examinees’ gen-

eral abilities and attribute patterns can be improved directly by using response

time to assist in the estimation of θ. To this end, a new methodology for simul-

taneously modeling both response time (RT) and response accuracy (RA) within

the context of CDM is presented. The proposed model, which was originally

presented by Minchen and de la Torre (2016), rests on van der Linden’s (2007)

hierarchical framework. In this application, a cognitive diagnosis model (CDM)

with a higher-order attribute structure (de la Torre & Douglas, 2004) is used as

the model for the RA, and a lognormal model (van der Linden, 2006, 2007) is

used as the model for the RT. The higher-order attribute distribution assumes

that the mastery of attributes depends probabilistically on a higher-level general

ability.
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2.2 Continuous Response Measures

Many psychometric models are designed to work with multiple-choice items, and

thus responses are frequently conceptualized as either dichotomous or polytomous

in nature. Polytomous models (e.g., de la Torre, 2009; Ma & de la Torre, 2016)

can be applied to multiple-choice questions, but they also can be applied to con-

structed response questions. Polytomous psychometric models can also allow for

partial credit-scoring (e.g., de la Torre, 2010)

One way of viewing the nature of a continuous response is that such a format

allows for infinitely many possible answer choices, and in that way is the gen-

eralization of a polytomous format as the number of response categories tends

toward infinity (Samejima, 1973). There are a variety of types of tasks that may

be best captured by a response that is continuous in nature. One type of response

is simply the placement of a mark at some point along a continuum, indicating

some degree of endorsement. A second type of continuous response is probability

testing, in which respondents report what they believe to be the probability of

their chosen response being correct. Another form of probability testing is for

respondents to report what they believe to be the probability of each response

alternative being correct. The third, and perhaps most popular use of continuous

response, is response time.

With many testing programs utilizing a computer-based format, some of which

are also adaptive, response time has become effortless to capture, and is essentially

free ancillary information. Response times may also be of interest in and of

themselves in applications that measure constructs such as reaction time, or in

settings in which response time may be a function of developmental steps (e.g.,

van der Maas & Jansen, 2003). To the extent that response time can provide

profitable information about examinees, its use could potentially improve a variety

of aspects of testing.
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Before discussing the various applications of response time in computerized

testing, however, it is prudent to introduce van der Linden’s (2007) hierarchical

framework, which has been a monumental advancement in this niche, and on

which many other applications, including this research, are based. Briefly, his

framework posits separate latent variables to account for the students’ abilities

and work speeds. The ability side of the model is flexible and can accommodate

any standard item response model that assumes a unidimensional ability variable,

θ. The response time side of the model employs a lognormal model (van der

Linden, 2006), which is a function of the item-specific structural parameters and

the latent variable τ , which represents the speed intensity at which students work.

The joint distribution of θ and τ is bivariate normal. This model also assumes

that both θ and τ remain constant throughout the test. Van der Linden and Glas

(2010) extended this model to allow for violations of conditional independence in

the responses or response times. They found that parameter and ability estimates

improved by using their model when conditional independence was violated.

A number of researchers have developed models that use response time as

a way to detect responses that differ from what would be expected based on an

examinee’s performance on the remainder of the test (van der Linden & Guo, 2008;

van der Linden & van Krimpen-Stoop, 2003). Such responses are often referred to

in the literature as aberrant responses. Van der Linden and van Krimpen-Stoop

(2003) discuss the use of residuals to detect such aberrant responses. They use

residuals from both response accuracy and response time models and find that

using response time is superior to using response accuracy for detecting aberrance.

However, they do not explicitly model a relationship between examinees’ speeds

and abilities. Van der Linden and Guo (2008) show that residuals based on actual

responses will be large for items whose difficulties are similar to the examinee’s

ability, which occur frequently in a computerized adaptive test, but contend that

response times are not subject to the same relationship with difficulty. They
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also use a hierarchical model (van der Linden, 2007) to account for the joint

relationship between speed and accuracy.

Response times have also been used extensively in CAT. Fan, Wang, Chang,

and Douglas (2012) develop the maximum information per time unit selection

algorithm, in which the ratio of the item’s information at θ̂ and its time required

to completion is maximized. Using their algorithm, highly informative items are

desired, but longer expected completion times reduce the likelihood that they will

be chosen (Fan et al., 2012). In an effort to control item exposure, which is not

naturally controlled through maximum information criteria, they also propose

an adjustment to the alpha-stratified with difficulty blocking algorithm (Chang,

Qian, & Ying, 2001) by penalizing items based on how long they take to complete

(Fan et al., 2012). Finkelman, Kim, Weissman, and Cook (2014) use response

time in conjunction with response accuracy in a CDM to develop an item selection

algorithm that is based on Fan et al.’s (2012) idea of maximizing information

per time unit. However, they do not model the relationship between speed and

ability. In a slightly different application, van der Linden (2008) shows that the

inclusion of response times into a hierarchical framework (van der Linden, 2007)

can improve item selection by virtue of the improvement in ability estimation.

Finally, Sie, Finkelman, Riley, and Smits (2015) and van der Linden (2009) have

employed stopping rules in computerized tests whereby the test is terminated if

all remaining items have a probability greater than some threshold of causing the

test to exceed its time limit.

Ferrando and Lorenzo-Siva (2007) introduce a framework for modeling re-

sponse time that is based on the distance-difficulty (DD) hypothesis, which as-

sumes that there is more uncertainty in binary personality item responses as the

item location gets closer to the examinee location. In an item response theory

(IRT) context, this uncertainty can be thought of as the variance of the response,
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Xij, which is computed as V ar(Xij) = pij(1− pij), where pij represents the prob-

ability of a correct response for examinee i on item j. Assuming no guessing

parameter, this quantity is maximized at p = 0.5, which occurs when the item’s

threshold and the examinee’s latent trait are equal. In the context of person-

ality testing, however, the distance between the person and item locations can

be thought of as difficulty; here, distance and difficulty have an inverse relation-

ship. This distance is the fundamental component of the response time model,

but it does not have a monotonic relationship with the latent variable for speed,

thus the monotonicity assumption on which van der Linden’s (2007) hierarchical

framework is built would be violated (Ranger & Kuhn, 2012).

In Ferrando and Lorenzo-Siva’s (2007) model, the item response model and

response time model parameters are estimated independently of one another.

They are then treated as fixed and used in the response time portion of the model.

Therefore, although the authors demonstrated that the model can improve the

precision of ability estimation, the response times do not aid in the estimation

of the parameters in the item response model (Ranger & Kuhn, 2012). Ranger

and Kuhn (2012) developed a new estimation strategy whereby all parameters

are jointly estimated. In doing so, they found that the estimation of parameter

estimates, in addition to the ability estimates, were improved.

Response times clearly have a variety of applications in psychometrics. Much

of the model development, however, has been in the context of IRT, with only lim-

ited developments in CDM (e.g., Minchen, de la Torre, & Liu, in press; Finkelman

et al., 2014). Thus, more work needs to be done in continuing to develop CDMs

that utilize continuous responses. Continued model development will also neces-

sitate research in other areas, such as CAT, and Q-matrix validation, a model

selection, which are important applications in CDM.
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2.3 Cognitive Diagnosis Models

In contrast to the goal of traditional assessments, which are typically used to

rank-order students, cognitively diagnostic assessments (CDAs; de la Torre &

Minchen, 2014) aim to provide diagnostic information on examinees. Traditional

assessments often use IRT or classical test theory (CTT) to estimate examinees’

latent trait levels on a continuous spectrum, whereas CDAs use cognitive diagnosis

models (CDMs) to estimate the class membership of each examinee. In educa-

tional settings, classes represent various combinations of skills that examinees

have mastered. It should be noted that, in some settings, not all combinations

will exist. For example, in the case where attribute A2 requires the successful

implementation of attribute A1, classes in which examinees possess attribute A2

but not A1 will not exist. Such situations impose restrictions on the attribute

space, and a variety of restrictions exist.

The Q-matrix (Tatsuoka, 1983) is frequently used in CDM applications to

identify which skills are being measured in each item. The matrix is of dimension

J × K, where J represents the number of items on the test, and K represents

the number of attributes being measured. For dichotomous attributes, entries

in the Q-matrix are either 1 or 0, indicating that item j either requires or does

not require the use of attribute k, respectively. Correspondingly, the examinee-

level latent variable is a Boolean vector of length K, in which entries of 1 and 0

denote that examinee i possesses or does not posess the kth attribute, respectively.

Assuming an unrestricted attribute space, there will be L = 2K possible attribute

patterns. The interaction of αi and qj, along with other quantities such as the

characteristics of the item, govern the probability of a particular response.

This paper employs the deterministic inputs, noisy “and” gate (DINA; Haer-

tel, 1989; Junker & Sijtsma, 2001) model, which has become commonplace in the

CDM literature. Thus, only a brief review will be offered. At the core of the
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DINA model is the latent response variable, ηij, which takes on a value of 0 if

the examinee is missing any of the item’s required skills and 1 otherwise. With

ηij =
∏K

k=1 α
qjk
ik , the probability of a correct response can be written as

P (Xij = 1|αi, sj, gj) = (1− sj)ηij(gj)1−ηij , (2.1)

where gj and sj are the guessing and slip item parameters, which are interpreted

as the probability of η = 0 examinees providing a response of 1, and an η = 1

examinees providing a response of 0 to item j, respectively. These parameters

capture aberrations from the model; the larger their values, the lower the quality

of the item. De la Torre (2008) defined item quality for the DINA model as the

sum of g and 1− s, where increasing values of the quantity represent decreasing

item quality. Although the DINA model may be overly simple (de la Torre, 2011;

Henson & Douglas, 2005), one of its key advantages is its parsimony and relative

ease of interpretation.

The DINA model serves as a basis for understanding other CDMs. For exam-

ple, the generalized-DINA (de la Torre, 2011) model relaxes the strict assumption

that only examinees possessing all required attributes respond correctly. Instead,

the G-DINA model can estimate unique probabilities for each latent group, where

the latent group is defined as the subset of attributes that are required by a par-

ticular item.

The C-DINA (Minchen, de la Torre, & Liu, in press) and the continuous gen-

eralized (C-G-DINA; Minchen & de la Torre, 2016) are the continuous-response

analogs to the DINA and G-DINA models, respectively. Figure 2.1 shows an

example of each of these models for an item that requires two attributes. Note

that the variances of the latent groups in the continuous-response models on the

right side of the plot are similar, but this need not be the case.
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Figure 2.1: Dichotomous- and Continuous-Response CDMs

The Joint Distribution of the Attributes

De la Torre and Douglas (2004) discussed several possibilities for modeling the

structure of the attribute space, which can be thought of as the joint distribu-

tion of attributes. Of those they discussed, the saturated and higher-order joint

distributions were used in this paper. In the saturated model, all permutations

of the K-length binary attribute vector, α, are permissible, requiring a total of
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2K − 1 parameters. In the higher-order model, a general ability is related to the

likelihood of possessing certain attributes. Specifically, each αi is modeled as

a probabilistic function of θi, both of which are latent variables, using an IRT

model, where θi takes on the same meaning as it does in IRT and each of the

attributes functions like an item. Other joint distributions exist, but will not

be discussed here (de la Torre, Hong, & Deng, 2010; Leighton, Gierl, & Hunka,

2004).

De la Torre and Douglas (2004) present the higher-order DINA (HO-DINA)

model, in which the higher-order IRT model and the item-level DINA model are

combined. First, the joint distribution of the attributes is given by

P (αi|θi) =
K∏
k=1

exp(λ0k + λ1θi)

1 + exp(λ0k + λ1θi)
, (2.2)

where λ0k are the intercept parameters associated with attribute k, and λ1 is

the slope parameter that governs the strength of the relationship between θ and

α in the same way that the discrimination parameter governs the strength of

the relationship between θ and X in the Rasch family of IRT models. In this

formulation, the attributes are expressed as a function of θ, where the function is

a one-parameter logistic IRT model in slope-intercept form. The probability of a

correct response is simply the DINA IRT given in Equation 4.1. One advantage

of the HO-DINA model is that it provides both θ estimates and α classifications

(de la Torre & Douglas, 2004). It should also be noted that the item-level portion

of the model can easily be replaced with any CDM.

2.4 The LN+HO-DINA Model

Van der Linden’s (2007) framework, on which the proposed model (Minchen &

de la Torre, 2016) is built, defines separate person parameters to represent ability

and speed intensity, which are postulated to be jointly normal with a covariance
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that is likely to be nonzero. The HO-DINA model (de la Torre & Douglas, 2004)

is used on the RA side of the model. On the RT side of the model, a 2PL-like

IRF that was used by van der Linden (2006, 2007) is used, which is given by

P (Tij|τi, aj, bj) =
1

tij
√

2πa2
j

exp
[
− (ln tij − (bj − τi))2

2a2
j

]
, (2.3)

where τi is the speed intensity latent variable for examinee i, aj is a parameter

that reflects the variation in log-times for item j, and bj is the time threshold

parameter for item j, which describes the mean of the log-times. Figure 2.2

shows a diagram of the model.

Based on this paramaterization, examinees with larger values of τi will work

more quickly. The aj parameter describes the variance of the log-times of respon-

dents at a particular level of τi. As this value decreases, examinees with a similar

speed-intensity parameter will have more homogeneous response times, allowing

them to be differentiated other examinees. Note that the interpretation of aj in

this parameterization is based on the variance of the log-times and that smaller

values of aj indicate larger discriminations. This model will be referred to as the

lognormal HO-DINA (LN+HO-DINA) model (Minchen & de la Torre, 2016).

The assumptions of this model are the same as those discussed in van der

Linden (2007), and are

f(θ, τ ) ∼MVN(µ,Σ), (2.4)

where

Σ =

 σ2
θ σθτ

σθτ σ2
τ

 , (2.5)
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Figure 2.2: Acyclic Diagram of the LN+HO-DINA Model

µ = 0, (2.6)

and

σ2
θ = 1, (2.7)

the latter two of which are for the sake of identifiability (van der Linden, 2007).
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Note also that

ρθτ =
σθτ
σθστ

. (2.8)

Other assumptions are the independence of the responses and the response times

conditional on θ and τ , respectively (van der Linden, 2007), and the monotonicity

of both θ and τ .

The critical component of the LN+HO-DINA model is the correlation between

θ and τ . It is through this relationship that the estimation of θ is improved.

Specifically, a nonzero correlation implies that θ and τ each provide some infor-

mation about each other, thereby improving the estimation of both parameters.

As a result of the improved estimation of θ, estimation of α can also be improved.

Higher magnitudes of this correlation are hypothesized to improve θ estimation

to a greater degree, but it does not matter whether the correlation is negative or

positive; in either case, it is the strength of the relationship that is crucial.

Parameter Estimation

The likelihood of the response accuracy data in the LN+HO-DINA can be written

as

L(Y |θ,α, s, g) =
N∏
i=1

J∏
j=1

P
Yij
ij (1− Pij)1−Yij

=
N∏
i=1

J∏
j=1

[s
1−Yij
j (1− sj)Yij ]ηij [g

Yij
j (1− gj)1−Yij ]1−ηij (2.9)

where the IRF Pij = P (Yij = 1|αi, sj, gj,λ1, λ1) = P (Yij = 1|αi, sj, gj) as is given

in Equation 2.1. The likelihood of the response time portion of the model is given
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by

L(T |τ ,a, b) =
N∏
i=1

J∏
j=1

P (Tij|τi, aj, bj), (2.10)

where P (Tij|τi, aj, bj) is defined in Equation 2.3. Thus, the likelihood of the

complete data is

L(Y ,T |θ, τ ,α, s, g,a, b) = L(Y |θ,α, s, g)L(T |τ ,a, b). (2.11)

Due to the complexity of this model, parameters were estimated using Markov

chain Monte Carlo (MCMC). Under the MCMC approach, the goal is to sample

from the joint posterior, which is given by

P (θ, τ ,α,λ0, λ1, s, g,a, b,µ,σ
2
τ ,ρθτ |Y ,T ) ∝ L(Y |θ,α, s, g)L(T |τ ,a, b)

×P (α|λ0, λ1)P (θ, τ |µ,σ2
τ ,ρθτ )

×P (s)P (g)P (µ)P (σ2
τ ,ρθτ )

×P (λ0)P (λ1)P (a)P (b). (2.12)

However, such sampling is difficult to do, so the set of full conditional distributions

is obtained from the joint posterior and is used in the Gibbs sampler. The full
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conditional distributions for the parameters are presented as follows:

P (λ0, λ1|θ, τ ,α, s, g,a, b,σ2
τ ,ρθτ ,Y ,T ) ∝ P (α|λ0, λ1)P (λ0)P (λ1), (2.13)

P (s, g|θ, τ ,α,a, b,σ2
τ ,ρθτ ,Y ,T ) ∝ L(Y |θ,α, s, g)

×P (s)P (g), (2.14)

P (α|θ, τ , s, g,λ0, λ1,a, b,σ
2
τ ,ρθτ ,Y ,T ) ∝ L(Y |θ,α, s, g)

×P (α|λ0, λ1), (2.15)

P (a, b|θ, τ ,α, s, g,σ2
τ ,ρθτ ,Y ,T ) ∝ L(T |τ ,a, b)P (a)P (b), (2.16)

P (θ|τ ,α, s, g,a, b,σ2
τ ,ρθτ ,Y ,T ) ∝ L(Y |θ,α, s, g)

×P (θ|τ ), (2.17)

P (τ |θ,α, s, g,a, b,σ2
τ ,ρθτ ,Y ,T ) ∝ L(T |τ ,a, b)P (τ |θ), (2.18)

P (σ2
τ |θ, τ ,α, s, g,a, b,ρθτ ,Y ,T ) ∝ P (θ, τ |σ2

τ ,ρθτ )P (σ2
τ ), and(2.19)

P (ρθτ |θ, τ ,α, s, g,a, b,σ2
τ ,Y ,T ) ∝ P (θ, τ |σ2

τ ,ρθτ )P (ρθτ ). (2.20)

Finally, the prior distributions in the full conditional distributions above are cho-

sen as follows:

s ∼ Uniform(as, bs) (2.21)

g ∼ Uniform(ag, bg) (2.22)

λ0 ∼ Normal(µλ0 , σλ0) (2.23)

λ1 ∼ Lognormal(µλ1 , σλ1) (2.24)

a ∼ Lognormal(µa, σa) (2.25)

b ∼ Normal(µb, σb) (2.26)

f(θ, τ ) ∼ MVN(µ∗,Σ∗) (2.27)

σ2
τ ∼ Uniform(aστ , bστ ) (2.28)

ρθτ ∼ Uniform(−1, 1). (2.29)
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Next, the Metropolis-Hastings within Gibbs sampler (e.g., Gelman, Carlin,

Stern, & Rubin, 2004) is used to conduct sampling from the full conditional

distributions given above. Parameter estimates were computed after removing

the burn-in samples, and were based on expected a posteriori (EAP). The number

of draws required to reach convergence was evaluated using the potential scale-

reduction factor (PSRF; Gelman & Rubin, 1992), R̂, for a single replication of all

low-quality item conditions. Because low-quality conditions contain more noise

than medium- or high-quality conditions, they were expected to take longer to

converge. The required chain lengths for the low-quality conditions were also used

for their medium and high item quality conditions.

To determine the requisite chain length, five parallel chains with different

starting values were used in the convergence analysis. The number of draws

required for R̂ ≤ 1.2 (de la Torre & Douglas, 2004) for each of six conditions -

one for each of the model conditions for both values of λ1 - was obtained. The

value of R̂ for all structural parameters was computed at each multiple of 2,500

draws. To be conservative, the first half of the draws were discarded as burn-in

samples at each check. For example, when evaluating the R̂ after 7,500 draws, the

first 3,750 were discarded. Chain lengths satisfying R̂ ≤ 1.2 were obtained for all

low item quality conditions with one small exception. For the low λ1, ρθτ = 0.8

condition, the R̂ for one parameter was slightly above the threshold (R̂ ≈ 1.25)

after a total of 25,000 draws.

2.5 Design and Analysis

A simulation study was conducted to evaluate the performance of the proposed

model; the primary goal of the study was to determine the extent to which the in-

clusion of response times improved examinee classifications and higher-order abil-

ity estimates, and the relationships between this improvement and the conditions
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of the simulation study. Data generation, parameter estimation, and subsequent

computations and graphics were performed in R (R Core Team, 2015).

The quality of parameter estimation, attribute classification, and higher-order

ability estimation was determined for a range of conditions. The critical compo-

nent through which the response times were expected to aid in the estimation of

examinee abilities was through the correlation between θ and τ and the strength

of the relationship between θ and α. The estimation of τ was expected to improve

the estimation of θ, thereby increasing the precision of α estimation.

Factors in the simulation study were the correlation between θ and τ (ρθτ =

0, .8), item quality (low, medium, and high), and the strength of the associa-

tion between θ and α (λ1 = 1.25, 2.5). For all conditions, K = 5 and λ0 =

[−1,−.5, 0, .5, 1]. Conditions were fully crossed and replicated 100 times. The

slip and guessing parameters were distributed as s, g ∼ U(0, .1), s, g ∼ U(.1, .2),

and s, g ∼ U(.2, .3), representing items of high, medium, and low quality, respec-

tively. It should be noted that these descriptors are relative and are not meant

to be general judgments on item quality.

The ρθτ = .8 condition displayed the overall effect of the collateral information;

whereas the ρθτ = 0 condition, when compared to the RA only model (HO-DINA)

displayed the cost of simultaneous estimation when the inclusion of response time

was not expected to be beneficial.

The effect of including response time was evaluated by comparing the quality

of the parameter and ability estimates of the LN+HO-DINA (ρθτ = .8) model to

those for the HO-DINA model. Conditions in which the test was less informative

(i.e., low quality items and low values of λ1) and in which the attribute distribution

was strongly related to the higher-order ability (i.e., the high λ1 condition) were

expected to offer the greatest opportunity for improvement to the classification

accuracy and higher-order ability estimation from the inclusion of response time.

The estimation quality of the item parameters was assessed by using the root
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Table 2.1: Simulation Study Q-Matrix

Attribute
Item α1 α2 α3 α4 α5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 1 1 0 0 0
7 0 1 1 0 0
8 0 0 1 1 0
9 0 0 0 1 1
10 1 0 0 0 1
11 1 1 1 0 0
12 0 1 1 1 0
13 0 0 1 1 1
14 1 1 0 0 1
15 1 0 0 1 1

mean squared error (RMSE), computed as

RMSE =

√∑Reps
r=1

∑H
h=1(β̂hr − βhr)2

Reps×H
, (2.30)

where Reps = 100 replications, β is the parameter of interest, and H is the

number of parameters per replications. For example, H is equal to N for θ, J for

the item parameters, K for λ0, and 1 for ρ and λ1. Item parameters (i.e., s, g, a,

and b) were not fixed across replications. Mean bias was computed for θ̂ as

BIAS =

∑Reps
r=1

∑N
i=1(θ̂ir − βir)
Reps

. (2.31)

To evaluate the quality of α estimation, the correct attribute classification

(CAC) and correct vector classification (CVC) were computed as

CAC =

∑Reps
r=1

∑N
i=1

∑K
k=1 I[α

(r)
ik = α̂

(r)
ik ]

Reps×N ×K
,
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and

CV C =

∑Reps
r

∑N
i=1

∏K
k=1 I[α

(r)
ik = α̂

(r)
ik ]

Reps×N
, (2.32)

respectively, with the vector-level metric being the more stringent criterion of the

two.

Lastly, because ancillary information is usually more beneficial in shorter tests,

the number of items used in this study was fixed to 15. The Q-matrix used is

given in Table 2.1. Although this Q-matrix does not include every possible item

type, is balanced in the sense that each attribute is measured six times, and it

is also complete (Chiu, Douglas, & Li, 2009), meaning that all attribute patterns

can be statistically distinguished from one other. A Q-matrix that contains items

that measures each attribute by itself, as does the one presented in Table 2.1,

guarantees completeness, although it may not be necessary under certain CDMs

(Köhn & Chiu, 2017).

2.6 Results

Model Parameters

Before discussing the classification accuracy of the examinees, we first discuss

the estimation quality of all other parameters for all conditions, for which the

RMSEs are shown in Table 2.2. For the sake of readability, the HO-DINA

model will generally be referred to as simply the RA model, and the zero- and

high-correlation LN+HO-DINA models will be referred to as the zero- and high-

correlation RA+RT model.

Examining the λ
(L)
1 first, the most notable result in Table 2.2 is the vast reduc-

tion in the RMSE of θ̂ when using the high-correlation RA+RT model compared

with the other two models. Even when the item quality was high, in which case
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the expected improvement in estimation was lower due to the inherently higher

level of informativeness of the test, there still was a substantial reduction in the

RMSE of θ̂ from .678 (RA) and .674 (zero-correlation RA+RT) to .522 (high

correlation RA+RT model). Also notable was the fact that that the estimation

accuracy of ρ improved for medium and high item quality conditions.

The cost associated with including response time when it was not beneficial

primarily plagued the estimation of λ1, but the effect was not dramatic. Its

RMSE increased slightly under all λ(L) conditions when comparing the RA model

to the zero-correlation RA+RT model. Even when comparing the high-correlation

model with the RA only model, the RMSE of λ1 was similar or worse except for

the high item-quality condition. The RMSEs for other parameters were quite

similar regardless of the model.

As with the results under λ
(L)
1 , the reduction in RMSE of θ̂ was also the most

notable result for λ
(H)
1 conditions. Additionally, estimation quality of ρ improved

for all item quality conditions. The decreases in RMSE were slightly smaller

under λ
(H)
1 , but this was because raising λ1 benefited all models in the form of

decreased RMSE, including the RA only model. Most importantly, the resulting

RMSEs for θ̂ were lowest under λ
(H)
1 for a given item quality condition. Also,

the RMSEs for parameters in the high-correlation model often were slightly lower

than for those with the RA-only model for λ
(H)
1 , but there were several exceptions

(s for medium quality and λ0 for high quality items). Clearly, the most important

finding is the reduction in the RMSE of θ̂ under both levels of λ1.

Classification Accuracy

Mean classification rates for all conditions are presented in Table 2.3, in which

several trends were noteworthy. First, as with the model parameters, it was again

evident that there was very little cost associated with estimating the more complex

model when there was no correlation between the ability and speed parameters.
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Table 2.2: RMSEs for Model Parameters
λ

(L)
1 λ

(H)
1

Item Quality Parameter - ρ = 0 ρ = .8 - ρ = 0 ρ = .8

Low

θ 0.805 0.805 0.585 0.688 0.696 0.522
λ0 0.243 0.230 0.235 0.161 0.164 0.142
λ1 0.156 0.168 0.198 0.374 0.409 0.324
a - 0.024 0.023 - 0.025 0.024
b - 0.045 0.046 - 0.055 0.046
s 0.044 0.044 0.041 0.036 0.037 0.035
g 0.038 0.037 0.034 0.039 0.039 0.032
ρ - 0.056 0.084 - 0.043 0.027

Medium

θ 0.729 0.730 0.545 0.584 0.586 0.472
λ0 0.118 0.117 0.117 0.089 0.093 0.088
λ1 0.090 0.093 0.090 0.204 0.186 0.196
a - 0.023 0.024 - 0.024 0.024
b - 0.050 0.043 - 0.053 0.050
s 0.029 0.028 0.029 0.025 0.026 0.025
g 0.024 0.025 0.023 0.026 0.029 0.024
ρ - 0.047 0.038 - 0.040 0.024

High

θ 0.678 0.674 0.522 0.521 0.521 0.435
λ0 0.084 0.082 0.082 0.059 0.061 0.063
λ1 0.075 0.082 0.070 0.146 0.126 0.145
a - 0.024 0.024 - 0.024 0.024
b - 0.048 0.046 - 0.057 0.051
s 0.016 0.015 0.015 0.015 0.014 0.014
g 0.013 0.013 0.012 0.016 0.017 0.016
ρ - 0.044 0.028 - 0.039 0.021

For low quality items, these classification rates were different by at most .005,

and the differences were inconsistent in their direction. As a result, the HO-

DINA model can be compared directly with the high-correlation LN+HO-DINA

model and, with the exception of a small amount of noise, any differences in the

model performance can be attributed to the inclusion of response time.

Next, comparing the RA only model with the high-correlation RA+RT model,

the results indicated that the RA+RT model either outperformed or performed

equivalently to the RA only model for every condition for both the CAC and CVC

rates, a finding that was more consistent, and thus somewhat different, than what
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Table 2.3: Mean Classification Rates
Item Quality Model ρ Classification λ

(L)
1 λ

(H)
1

Low

HO-DINA - 0.813 0.858
LN+HO-DINA 0 CAC 0.814 0.857
LN+HO-DINA .8 0.827 0.874
HO-DINA - 0.400 0.510
LN+HO-DINA 0 CVC 0.402 0.506
LN+HO-DINA .8 0.428 0.542

Medium

HO-DINA - 0.904 0.928
LN+HO-DINA 0 CAC 0.906 0.928
LN+HO-DINA .8 0.910 0.933
HO-DINA - 0.638 0.716
LN+HO-DINA 0 CVC 0.643 0.715
LN+HO-DINA .8 0.656 0.730

High

HO-DINA - 0.976 0.981
LN+HO-DINA 0 CAC 0.976 0.981
LN+HO-DINA .8 0.976 0.982
HO-DINA - 0.892 0.912
LN+HO-DINA 0 CVC 0.892 0.913
LN+HO-DINA .8 0.895 0.918

was found for the structural parameters. Improvements tended to increase as the

item quality decreased, and tended to be larger at the vector level.

In the low item quality, λ
(H)
1 condition, the improvements at the attribute- and

vector-levels were .016 and .032, respectively. The corresponding improvements

for the λ
(L)
1 were .014 and .028, respectively. Although these improvements were

smaller than anticipated, they still could result in the correct classification of

many more test takers, depending on the number of examinees. These rates for

the medium quality items were .005 and .014 for λ
(H)
1 and .006 and .018 for λ

(L)
1 ,

respectively.

For the high item quality conditions, the inclusion of response time still led

to improvements, with the exception of the λ
(L)
1 condition at the attribute level,

but they were more modest. At the vector level for the λ
(L)
1 , the improvement

was .003. At the attribute- and vector-levels for the λ
(H)
1 , the improvements were

.001 and .006, respectively.
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Higher-Order Ability Estimation

Despite the fact that improvements in classification accuracy were modest at best

for high item quality conditions, Table 2.2 shows that the estimation of the higher-

order ability parameter, θ, still improved substantially. This finding suggests that

there was still a benefit to including response time when the item quality was high,

a conclusion which would not have been seen by examining classification accuracy

alone.

Table 2.4: RMSE and Bias for θ for Low Quality Items
Range of θ

λ1 Index Model (−∞,−2] (−2,−1] (−1, 0] (0, 1] (1, 2] (2,∞)

λ
(L)
1

RMSE
H 1.905 1.037 0.534 0.624 0.992 1.603
L1 1.895 1.041 0.536 0.626 0.987 1.594
L2 0.949 0.668 0.518 0.526 0.644 0.898

Bias
HO 1.840 0.944 0.237 -0.310 -0.820 -1.512
L1 1.835 0.943 0.243 -0.310 -0.817 -1.503
L2 0.790 0.433 0.122 -0.141 -0.402 -0.743

λ
(H)
1

RMSE
H 1.695 0.850 0.490 0.584 0.729 1.331
L1 1.733 0.854 0.493 0.593 0.732 1.299
L2 0.991 0.606 0.453 0.470 0.537 0.840

Bias
H 1.622 0.721 0.108 -0.216 -0.507 -1.238
L1 1.652 0.724 0.106 -0.217 -0.501 -1.206
L2 0.862 0.401 0.071 -0.121 -0.297 -0.718

Note. H: HO-DINA Model. M2: LN+HO-DINA Model (ρ=0) M3: LN+HO-DINA Model (ρ=.8)

To examine its behavior more closely, the RMSE and mean bias of θ̂ were

analyzed at various regions across the domain of θ, as shown in Tables 2.4, 2.5,

and 2.6. We begin by analyzing the low item quality results, which showed that

there does not appear to be a consistent substantial difference in performance

between the RA model and the zero correlation RA+RT model. These results

again confirmed that the inclusion of response time, when it was not expected to

be helpful, had little to no negative effect on examinee ability estimation.

By comparing the high correlation RA+RT model to the RA model, quite

a different finding emerged. First, increasing the level of λ1 always resulted in
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Table 2.5: RMSE and Bias for θ̂ for Medium Quality Items
Range of θ

λ1 Index Model (−∞,−2] (−2,−1] (−1, 0] (0, 1] (1, 2] (2,∞)

λ
(L)
1

RMSE
H 1.662 0.887 0.535 0.611 0.844 1.358
L1 1.653 0.883 0.532 0.612 0.842 1.389
L2 0.939 0.620 0.480 0.487 0.594 0.872

Bias
H 1.600 0.771 0.178 -0.242 -0.656 -1.282
L1 1.591 0.766 0.174 -0.244 -0.654 -1.307
L2 0.808 0.407 0.112 -0.123 -0.368 -0.736

λ
(H)
1

RMSE
H 1.445 0.649 0.460 0.528 0.557 1.099
L1 1.433 0.653 0.463 0.526 0.559 1.100
L2 0.914 0.528 0.418 0.428 0.471 0.771

Bias
H 1.370 0.501 0.039 -0.126 -0.333 -1.031
L1 1.358 0.501 0.034 -0.124 -0.332 -1.033
L2 0.786 0.314 0.042 -0.089 -0.238 -0.656

Note. H: HO-DINA Model. M2: LN+HO-DINA Model (ρ=0) M3: LN+HO-DINA Model (ρ=.8)

Table 2.6: RMSE and Bias for θ̂ for High Quality Items
Range of θ

λ1 Index Model (−∞,−2] (−2,−1] (−1, 0] (0, 1] (1, 2] (2,∞)

λ
(L)
1

RMSE
H 1.416 0.776 0.547 0.569 0.762 1.326
L1 1.436 0.770 0.543 0.573 0.756 1.305
L2 0.878 0.587 0.463 0.467 0.566 0.845

Bias
H 1.347 0.628 0.156 -0.182 -0.582 -1.251
L1 1.364 0.622 0.153 -0.180 -0.579 -1.235
L2 0.749 0.377 0.102 -0.109 -0.352 -0.720

λ
(H)
1

RMSE
H 1.213 0.525 0.448 0.466 0.489 1.062
L1 1.203 0.527 0.448 0.461 0.491 1.070
L2 0.832 0.463 0.394 0.392 0.437 0.751

Bias
H 1.143 0.349 0.029 -0.067 -0.276 -0.997
L1 1.134 0.349 0.032 -0.059 -0.277 -1.006
L2 0.720 0.246 0.039 -0.052 -0.204 -0.637

Note. H: HO-DINA Model. M2: LN+HO-DINA Model (ρ=0) M3: LN+HO-DINA Model (ρ=.8)

a reduction in the bias and RMSE of θ̂ for all three models, although these

reductions were more substantial for more extreme θ. It also always resulted in a

smaller reduction in the benefit of including response time with the exception of

the RMSE for −1 < θ ≤ 1.

In the central regions of θ - those within one unit of zero - inclusion of response

time offered a more modest improvement to the estimation of θ, with respect
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to both the bias and the RMSE, than was seen at more extreme regions of θ.

The intervals in which | θ |> 2, the reduction in RMSE and bias as a result of

including response time was very large. For the negative interval, the reduction

in RMSE was .956 and .704 for the low and high λ1 conditions, respectively.

The corresponding reductions in bias for the same interval were 1.05 and .76.

For the positive side of the interval, the RMSE reductions were .705 and .491,

and the bias reductions were .769 and .52 for the low and high λ1 conditions,

respectively. The intermediate intervals demonstrate the same trend, but to a

lesser degree. Collectively, these findings demonstrate that the ability of the RA

model to estimate θ degraded as the true values moved away from zero, where

the estimates showed strong shrinkage. Although the bias and RMSE results for

the RA+RT model were also somewhat large for these intervals, they were a vast

improvement over the performance of the RA model.

Examination of Tables 2.5 and 2.6 revealed that the benefit of including re-

sponse time when the item quality was higher continued to provide a benefit in

the estimation of θ, a result that was somewhat different than the corresponding

findings for the estimation of α. Only under two conditions (medium and high

item quality for high λ1) and for one range of θ (−1 < θ ≤ 0), did the bias

increase slightly when including response time. For these conditions, increases in

the mean bias were small, at .003 and .01 for the medium and high item quality

conditions, respectively. Conversely, the RMSE still declined in these conditions.

Reductions in the RMSE and bias of θ̂ were still large, though, even for high item

quality conditions for more extreme values of of θ.

These findings demonstrated that the RA only model tended to restrict the

range of θ̂ in a way that may have corresponded to the threshold values of the

attributes, showing a strong inward bias, indicating that the model may generally

not be able to estimate θ precisely, except in the center of the ability distribution.

The lack of the RA only model’s ability to estimate θ precisely corroborates de la
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Torre and Douglas’ (2004) findings, who found RMSE values for θ̂ in the range of

approximately .6 to .7, as well as shrinkage in θ̂ relative to the IRT estimates of

θ. To the extent that values of θ are of interest, which is one practical advantage

of using a higher-order attribute distribution with CDMs (de la Torre & Douglas,

2004), ancillary information such as response time may prove to be beneficial.

2.7 Real Data Example

Data Description

Van der Maas and Jansen (2003) collected data on both response time and re-

sponse accuracy on a set balance scale questions. In each question, one or more

weights were situated at various distances from the center of a balance scale. The

task of each question was to determine whether or not the scale was balanced on

the fulcrum. If it was not balanced, examinees were to determine which direction

it would lean. To solve each question, examinees needed to take into account

either the number of weights on both sides of the fulcrum, the location of the

weights, or both pieces of information.

Table 2.7: Q-Matrix for the Balance Scale Data

Attribute
Item Type # Items Description Distance Torque

I 10 Simple-distance 1 0
II 10 Conflict-balance B 1 1
III 10 Conflict-distance 1 1
IV 10 Conflict-balance A 1 1

For questions in which the numbers of weights on either side of the scale were

equal but the locations differed, the examinee would simply use the distance of

the weights to determine which way the scale would tip. If, however, the numbers

and the distances of the weights differed, then the examinee would need to apply
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the torque formula to determine the direction the scale would tip. These skills

can be viewed as hierarchical (Siegler, 1976, 1981); students are not expected to

be able to apply the torque rule without command of the distance rule.
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Figure 2.3: Higher-Order Ability Distribution by Latent Class

Minchen, de la Torre, and Liu (in press) analyzed a subset of the data, which

included responses for both accuracy and time on 40 questions for 146 examinees,

with both the DINA model and the C-DINA model. The Q-matrix used in

their study, shown in Table 2.7, was also used in this example and gives item

descriptions, which provide insight into the nature of the question and its answer.

For example, conflict-balance means that the distance and number of weights give

conflicting information that requires the use of the torque rule to solve. Solving

the problem correctly will result in the determination that the scale will remain

balanced. The Conflict-balance A and B problems differed in that the type A

problems can also be solved with a different strategy (van der Maas & Jansen,

2003).
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Figure 2.4: Relationship between Higher-Order Ability Estimates

Regardless of whether classifications were made using the DINA or C-DINA

model, the results generally showed a similar pattern (Minchen, de la Torre, &

Liu, in press). Examinees who had all attributes required by the problem had

longer and more variable response times compared to examinees who did not have

all required attributes. Furthermore, this difference was larger for problems with

more required attributes.

Analysis and Results

In this example, the data were fitted with three different models: the DINA, the

HO-DINA, and the LN+HO-DINA. First, the classifications obtained using the

HO-DINA and LN+HO-DINA were nearly identical to those obtained by using

the standard DINA model. However, because the true classifications were not

known, an evaluation of classification accuracy was not possible. Nonetheless,
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such high classification agreement suggested, at a minimum, that including re-

sponse time did not have a negative affect on classification accuracy relative to

the RA only model.

Next, the higher-order ability estimates for the HO-DINA and LN+HO-DINA

models, θ̂HO and θ̂LN , respectively, were compared to each other. Figure 2.3 shows

the distributions of the higher-order ability estimates obtained under each of the

higher-order models as a function of the associated latent classes, and Figure 2.4

shows the scatterplot of θ̂HO and θ̂LN . Although the medians for the higher-order

abilities for each latent class were similar for both models, and cor(θ̂HO, θ̂LN) =

.95, the variances in the estimates were much larger when response time was

included than when it was ignored, as seen in the left and right panels of Figure

2.3, respectively. It appeared that, without the use of response time, the higher-

order ability estimates within a latent class were nearly identical.

The final analysis was to determine the extent to which the inclusion of re-

sponse time could improve classification accuracy. To accomplish this, the results

from the full-length test were used as the baseline measure. Next, the test length

was halved, and both the HO-DINA and LN+HO-DINA model were fit to the

data, and their results compared. To shorten the test, half of the items were

removed at random such that 25% of the items measured only the first attribute,

and the remaining items measured both attributes, which was also the case with

the full-length Q-matrix. Classifications and higher-order ability estimates were

averaged across 100 replications for each model.

The attribute- and vector-wise agreement rates between the shortened test

fitted with the HO-DINA model and the full-length test were .98 and .95, re-

spectively. The same rates for the shortened test fitted with the LN+HO-DINA

model were .98 and .97. The correlations and RMSEs between the higher-order

abilities for the two HO-DINA models was .94 and .29, respectively, whereas the

same quantities between the full-length HO-DINA model and the LN+HO-DINA
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model and were .98 and .18, respectively. In both cases, and by all three measures,

the use of response time in the shorter test resulted in improved classification and

ability estimates.

2.8 Summary and Discussion

This paper presented a method of including response time to assist in the esti-

mation of person-level parameters in cognitive diagnosis modeling. To this end,

a model was presented that adapted van der Linden’s (2007) hierarchical frame-

work for use in CDM, which assumes a bivariate normal correlation between speed

and ability parameters. To adapt this framework to suit CDMs, de la Torre and

Douglas’s (2004) higher-order attribute distribution was used and applied to the

DINA model.

In general, the inclusion of response time improved classification accuracy on

average, provided that the latent variables for speed and response time had a

nonzero correlation. Greater improvements were found at the vector level. The

effect of including response time when it was not expected to be beneficial (i.e.,

the zero-correlation RA+RT model) was generally negligible. Interestingly, in-

cluding response time did not result in a substantial improvement in the model

parameters, with the exception of the higher-order ability parameter, θ. Because

of this finding, improvements in classification accuracy were only attributable to

improvements in the estimation of θ. The RMSE and bias of θ̂ also improved

substantially for most ranges of θ and under most conditions when including re-

sponse time. As the item quality increased, the benefit of response time lessened,

but it still was generally beneficial in improving the estimation of θ.

The differing results on the effect of the inclusion of response time on clas-

sification accuracy and higher-order ability estimation accuracy is worth noting.

The mechanism by which classification accuracy was improved was through the
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reduced variation in the prior distribution of θ that comes as a result of the an-

cillary information provided by τ̂ . Because the inclusion of response time did not

have a substantial effect on the other model parameters, however, improvement

in classification accuracy was nearly entirely dependent on the improvement in

the estimation of θ. However, the amount of improvement in the estimation of

θ does not correspond in a linear fashion to improvement of α̂, as can be seen

in the higher quality item conditions. This finding indicates two things. First,

even with high attribute pattern classification rates, θ̂ can still be improved, and

second, related to the first finding, attempting to improve α̂ by improving θ̂ may

only be beneficial under certain circumstances.

The proposed model was also applied to an existing data set. Results from

the analysis were generally consistent with the results of the simulation study.

Specifically, examinee classifications under the LN+HO-DINA model were very

similar to those obtained under the HO-DINA and DINA models when using the

complete test. However, the higher-order ability estimates, when using response

time, had substantially more variation within the latent classes. When response

time was not used, higher-order ability estimates had very little variation within

classes. This was consistent with the behavior of θ̂ in the simulation, in which

shrinkage was partially mitigated by including response time. Finally, when using

a shortened version of the test, the inclusion of the response time resulted in

improved classifications and higher-order ability estimates when the full-length

HO-DINA model was used as the baseline.

One critical factor that was not investigated in this study is the effect that

K has on the effect of response time with respect to improving classification

accuracy. It is likely that larger values of K would result in improved estimation

of θ in the same way that additional items result in improved estimation of θ in a

standard IRT context. However, it may not be feasible to have values of K large

enough to yield the desired precision of θ; thus, response time, or other ancillary
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variables that are modeled in a way similar to how response time is modeled in

this article, may prove to be beneficial.

Finally, using response time as a source of information to estimate abilities

should be done with caution. One consideration has to do with the meaning

of the response times (van der Linden, 2006), and whether or not their use as

ancillary estimation is valid. In the example we provided, there is some theoretical

basis to use response times (van der Maas & Jansen, 2003); however, in other

settings this may not be the case. In particular, if high-stakes decisions are being

made with test scores and the response times are being used to estimate ability,

then examinees with the same response accuracy pattern could have different

ability estimates, which may be problematic. However, in diagnostic applications,

response times may simply provide additional insight into the response processes

of examinees.

The main finding in this research was that, on average, attribute classifica-

tions can be improved slightly when including response times, but higher-order

ability estimates can be improved substantially. To that end, an important future

direction would be to explore the relationship between ability estimates obtained

using the LN+HO-DINA method and a standard IRT model. One thing that

would be interesting to explore is whether data generated by the LN+HO-DINA

model could be better estimated with a 2-parameter logistic IRT model rather

than the LN+HO-DINA model. Another potential direction would be to explore

the framework presented in this model with other CDMs.
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Chapter 3

The Jensen-Shannon Divergence as an Item

Selection Algorithm in CD-CAT

Abstract

Item selection algorithms for computerized adaptive testing (CAT) have been

proposed within the context of both item response theory (IRT) and cognitive di-

agnosis models (CDMs). Although the literature in CDM has recently expanded

to include continuous response modeling, CAT algorithms for CDM are currently

limited to dichotomous response. For various reasons, existing algorithms may not

be applicable in their present forms, if at all, for continuous response models, par-

ticularly one that is saturated. This article proposes a new algorithm developed

in the context of a generalized continuous response CDM. The algorithm selects

the item that maximizes the posterior-weighed Jensen-Shannon divergence, which

is a proposed measure of item discrimination in continuous response CDMs. Re-

sults show that the algorithm provides a substantial improvement over random

item administration. The method’s viability is also demonstrated in a brief real

data example.

Keywords: cognitive diagnosis models, continuous response, response time, Jensen-

Shannon divergence, DINA model, G-DINA model, C-DINA model, C-G-DINA

model
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THE JENSEN-SHANNON DIVERGENCE AS AN ITEM SELECTION

ALGORITHM IN CD-CAT

3.1 Introduction

Traditional assessments typically aim to estimate examinees’ ability levels on a

unidimensional, broadly-defined trait. In contrast, cognitively diagnostic assess-

ments (CDAs; de la Torre & Minchen, 2014) and their associated statistical mod-

els, cognitive diagnosis models (CDMs), offer an alternative assessment paradigm

in which the latent variable is generally conceptualized as a multidimensional set

of discrete attributes. In educational testing applications, these attributes are

usually thought of as skills. The latent variable in CDMs is represented as a

binary vector that denotes the presence or absence of these attributes. As such,

CDMs generally yield a profile of skills rather than a single value representing

one’s location on a continuum, as is done in traditional assessment. Such models

are a relatively recent development in psychometrics, and research pertaining to

these models has expanded rapidly in the last two decades.

Recent publications have proposed item selection algorithms for cognitive di-

agnosis computerize adaptive testing (CD-CAT; e.g., Xu, Chang, & Douglas;

Kaplan, de la Torre, & Barrada, 2015) that will be discussed in detail later; how-

ever, these algorithms have been developed in the context of a dichotomous item

response. Perhaps not coincidentally, most CDMs developed to date are designed

to handle dichotomous responses (e.g., Haertel, 1989; Junker & Sijtsma, 2001;

Templin & Henson, 2006; de la Torre, 2011), with only a few designed to handle

polytomous responses (e.g., de la Torre, 2009a; Ma & de la Torre, 2016). How-

ever, response types of a continuous nature also exist and have been studied in

the context of item response theory (IRT; e.g., Noel & Davier, 2007; Noel, 2014)

and CDM (Minchen & de la Torre, 2016; Minchen, de la Torre, & Liu, in press).
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One readily-available example of a continuous response is response time. Al-

though it may be difficult to record item response time in traditional testing, it is

much easier, and essentially free, to record it in computer-based testing formats.

Because it is an additional source of information provided by examinees, methods

should be developed to make use of response time. Although response time may

be the most obvious example of a continuous response, other continuous response

types exist as well. One such response type is “probability testing,” in which ex-

aminees estimate the probabilities that various alternatives are correct. Typical

multiple-choice questions without partial credit can be viewed as a special case of

probability testing, in which the chosen answer is assigned a 100% probability of

being correct. Probability testing can reveal more information per question (de

Finetti, 1965). See Dressel and Schmidt (1953), Ben-Simon, Budescu, and Nevo

(1997), and Minchen, de la Torre, and Liu (in press) for more information about

probability testing. Another type of continuous response measure is simply to

place a mark on a continuum, which can be seen as the continuous version of a

Likert scale, for which Noel and Dauvier (2007) and Noel (2014) have developed

IRT models.

It is important to differentiate the fact that response time is a continuous

response that is separate from the response accuracy, whereas probability testing

and the use of a mark on a line are continuous responses for the response accuracy.

Therefore, if both the response time and response accuracy were to be recorded

and analyzed, one or both measures could be continuous. Response time in and

of itself, however, may be of interest to some researchers. For example, Minchen,

de la Torre, and Liu (in press) analyzed response times for balance-scale data

using their continuous response CDM.

Although continuous response CDMs are being studied, there is no CD-CAT

algorithm designed specifically for this response type. In addition, for reasons

that will be explored in detail later, adapting current CD-CAT algorithms to
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continuous-response CDMs may not be straightforward, if possible at all. Thus,

this paper proposes a CD-CAT algorithm based on the Jensen-Shannon divergence

(JSD; Lin, 1991) that is developed in the context of a generalized continuous

response CDM (Minchen & de la Torre, 2016). First, however, the developments

in CD-CAT are reviewed, followed by brief overview of the CDMs relevant to this

work.

3.2 Cognitive Diagnosis Computerized Adaptive Testing

CAT typically improves the efficiency and the accuracy of measurement (Xu,

Wang, & Shang, 2016). In CAT, examinees are administered items that are

tailored to their ability levels, which are re-estimated after each question (or set

of questions, as in multi-stage testing) with greater precision as the test proceeds.

Thompson and Weiss (2011) enumerate the following critical components of a

CAT: 1) the item bank, 2) the ability level to which examinees are assigned prior

to the observation of any responses, 3) the item selection algorithm, 4) the scoring

method, and 5) the stopping criterion (or criteria). Most developments in CAT

have been in the framework of traditional testing rather than CDA. However,

some research has been conducted recently on CD-CAT. The critical elements of

a CAT outlined above are retained in the context of CD-CAT with appropriate

modifications.

In particular, the item selection algorithms used in CD-CAT are different

than those used in IRT-based CATs due to the multivariate, discrete nature of

the latent variable, and thus will be the primary focus herein. Specifically, it is

common (Barrada, Olea, Ponsada, & Abad 2009; Xu, Chang, & Douglas, 2003)

to choose as the next item the one that maximizes the Fisher information (Lord,

1980).
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In IRT, the progressive method (Reveulta, 1995, as cited in Revuelta & Pon-

sada, 1998; Revuelta & Ponsada, 1996, as cited in Revuelta & Ponsada, 1998) is

based on the Fisher information, whereas Chang and Ying’s (1999) alpha-stratified

method blocks items by their discriminations and the computes the magnitude of

the linear difference between the ability estimate and the item’s difficulty. In the

case of information-based statistics, Xu, Chang, and Douglas (2003) point out

that a requirement of using the Fisher information function is that the likelihood

function be twice differentiable, but due to the discrete nature of attribute vec-

tors, α, in CDM, no such derivative for α will exist. In the case of the progressive

method, the distance between the item and person locations cannot be measured

in a simple unidimensional way.

Because of these challenges, CAT selection indices have been either developed

or adapted from other types of IRT-based CAT selection indices. For example,

the Kullback-Leibler (KL; Cover & Thomas, 1991) information, which is another

way to measure information, was first used in CAT in the context of IRT (Chang

& Ying, 1996). The KL computes the distance between two distributions; in

the case of its application to CAT, these are the response probabilities, summed

over all possible responses, to the next item for pairs of latent trait or class

values. Xu, Chang, and Douglas (2003) compared this method with another

selection algorithm based on the Shannon Entropy (Shannon, 2001), referred to

as the SHE method (Tatsuoka, 2002). Briefly, the Shannon Entropy quantifies

the dispersion of a single probability distribution, whereas the KL quantifies the

degree of divergence between two distributions. The SHE method chooses the

item that minimizes the sum of entropies of the updated posterior distributions

under each possible response. In their study, Xu et al. (2003) found the SHE

algorithm to be superior to the KL algorithm.

Cheng (2009) notes that under the KL selection algorithm, the prior distri-

bution is not systematically updated in accordance with the responses. Thus,
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Cheng (2009) proposed the posterior-weighted KL (PWKL) algorithm, in which

both informative priors and updated priors may be used throughout the test. In

this way, the divergence measure is weighted by the current probability that an

examinee resides in that class. This index essentially summarizes the distance

between the current estimate and all other possible values of the attribute vector.

They found that the PWKL was superior to the SHE method. Kaplan, de la

Torre, and Barrada (2015) proposed an improved version of the PWKL, referred

to as the modified PWKL (MPWKL), in which the estimate of the attribute vec-

tor is replaced by the entire posterior distribution, thus avoiding the uncertainty

associated with a classification. Kaplan et al.’s (2015) method outperformed the

PWKL under most conditions.

Kaplan et al. (2015) also used the generalized discrimination index (GDI),

which was originally introduced in the context of Q-matrix validation (de la Torre

& Chiu, 2016), as an item selection index. The GDI chooses the item from

the bank that maximizes the variance of the probabilities of success, which are

assumed to be known for each item due to prior calibration, weighted by the

examinee’s posterior probability of residing in each group. In Kaplan et al.’s

(2015) research, the GDI performed very similarly to the MPWKL, but the GDI’s

computational time was significantly lower than that of the MPWKL.

Finkelman et al. (2014) present a method of incorporating response time

into a CD-CAT selection index. They use a CDM for the item response and a

lognormal model for the response times. Their algorithm is based on Fan et al.’s

(2012) criterion of evaluating information per time unit. Finkelman et al.’s (2014)

method may be preferred when the time to completion for each examinee should

be limited.

These CD-CAT item selection algorithms discussed are all designed to work

with binary measures for response accuracy. Generalizations of these algorithms

to continuous response models may not be straightforward, if possible at all. For
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example, the GDI is based on the weighted variance of success probabilities. In

such models, the probability of a particular response cannot be represented by

single number p, as in the binary models. Rather, the probabilities are given by

a distribution, which is a function of t. In binary response models, the mean and

variance are given by E (X) = p and Var(X) = p(1 − p), respectively. Thus, p,

the probability of a correct response, simply represents the mean of the Bernoulli

distribution, and the variance can be derived directly from the same parameter.

Thus, it is sufficient to work only with the mean, on which the GDI is based.

In the continuous response applications, however, representing each distribu-

tion by only their means may obscure some information about the distribution,

because the variance cannot be written as a function of the mean. For example,

for a lognormal random variable, T , both its mean and variance, which are given

by E (T ) = (eµ+σ2
) and Var(T ) = (eσ

2 − 1)(e2µ+σ2
), respectively, are functions of

both parameters µ and σ. For example, Figure 3.1 shows a variety of differently-

shaped lognormal distributions, all of which have the same mean of approximately

12.18, but variances ranging from approximately 255 to 2833. Therefore, an index

based on the concept of the GDI, but that takes into account information beyond

just the mean, is needed for continuous response models.

The SHE method sums entropies over possible responses, but in a continuous

model, the sum would need to be replaced with an integral, as would the KL.

Furthermore, the KL is only defined if the support of each distribution is nonzero

across the union of the support of both distributions, due to the division in the

formula, which may render the index undefined in a continuous model. This may

happen when the responses from one group are much larger than those for the

other group, as in the case of highly discriminating items. In binary models, such

as the DINA and G-DINA, this problem will generally not occur because there

are only two possible responses. Even for very high quality items, all groups will

likely have a nonzero probability of a correct response. Thus, a new algorithm
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Figure 3.1: Various Lognormal Distributions with Identical Means

that avoids these problems is necessary for continuous response models.

An additional consideration regarding KL-based indices is that the KL only

measures the divergence between two distributions. Therefore, to develop a CD-

CAT algorithm for use with continuous response models, it is best to work with

the continuous version of the generalized DINA (de la Torre, 2011), known as the

continuous-generalized DINA (C-G-DINA; Minchen & de la Torre, 2016), which

will be reviewed in the next section. The rationale for developing the algorithm

in the context of the C-G-DINA models is that the C-DINA model only produces

two latent groups for each item, potentially allowing for an existing method, such

as the MPWKL (Kaplan et al., 2015) or an adaptation of the MPWKL, to be

used, notwithstanding the aforementioned issue of division by zero. However, the

C-G-DINA model may partition examinees into more than just two groups per

item, necessitating a new method altogether.
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3.3 Cognitive Diagnosis Models

Dichotomous-Response CDMs

One of the most basic CDMs is the deterministic inputs, noisy “and” gate (DINA;

Haertel, 1989; Junker & Sijtsma, 2001) model. Under this model, which may be

a simplification of reality, examinees must possess all skills that are required by

the item to respond correctly; possessing skills beyond those that are required is

of no additional benefit. If a student lacks any of the skills being measured by

the question, he or she is expected to respond incorrectly. This response process

is modeled mathematically with the latent response variable, which is defined as

ηij =
∏K

k=1 α
qjk
ik , where αik is binary, and denotes the presence or absence of the

kth, k = 1, . . . , K, skill for examinee i, i = 1, . . . , N , and qjk denotes whether or

not attribute k is required for item j, j = 1, . . . , J.. Its item response function

(IRF) can be defined as

P (Xij = 1|αi, sj, gj) = (1− sj)ηij(gj)1−ηij , (3.1)

where gj and sj are the two item parameters - guessing and slip - that define

the DINA model. The guessing parameter models the probability that an exam-

inee without all the required skills responds correctly; the slip parameter models

the probability that, in spite of having all the required attributes, an examinee

responds incorrectly.

The generalized-DINA (G-DINA; de la Torre, 2011) model is a generalization

of the DINA model in which a probability of providing a correct response is

estimated for each of the combinations of necessary attributes. Specifically, the

G-DINA model defines K∗j =
∑K

k=1 qjk, which represents the number of required

attributes for item j. The G-DINA model estimates unique probabilities of success

for each of the 2K
∗
j possible latent groups that are based on the main effects of
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having mastered each attribute, plus all possible two- to K∗j -way interactions.

Continuous-Response CDMs

As the continuous-response analog to the DINA model, the continuous-DINA (C-

DINA) was recently proposed by Minchen, de la Torre, and Liu, (in press). The

latent response variable, ηij, is identical to that used in the DINA model. Thus,

the IRF of the C-DINA model is given as

P (Tij ≤ t|αi) =

∫ t

0

[fj0(tij)]
1−ηij [fj1(tij)]

ηijdtij, (3.2)

where

fjη(tij) =
1

tij
√

2πσ2
jη

exp
[
− (ln tij − µjη)2

2σ2
jη

]
, (3.3)

and Tij is the continuous response, fj0(tij) and fj1(tij) are the response distribu-

tions for the ηj = 0 and 1 groups. The item parameters are given by µjη and σjη,

which are the mean and variance, respectively, of the logarithm of the responses.

Note that, whereas the DINA model defines two probabilities for each item, the C-

DINA defines two distributions for each item. In the case of the C-DINA model,

the lognormal distribution is used, in part because it is amenable to modeling

response time (van der Linden, 2006), but other distributions, such as the Beta,

could be used as well (Minchen, de la Torre, & Liu, in press). Binary CDMs

estimate correct response probabilities for each latent group; these probabilities

can actually be viewed as the mean of the Bernoulli distribution governing their

responses. The C-DINA, however, requires the estimation of two parameters for

each of the lognormal distributions, resulting in twice as many parameters as are

required in the DINA model.

In the same way the G-DINA model generalizes the DINA, the C-G-DINA
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model generalizes the C-DINA. The C-G-DINA model (Minchen & de la Torre,

2016) includes features of both the C- and G-DINA models. Rather than parti-

tioning examinees into just two groups for each item as the DINA and C-DINA

models do, the C-G-DINA model partitions examinees into 2K
∗
j groups for each

item, just as the G-DINA model does. Similarly, the C-G-DINA model estimates

a lognormal distribution for each of these groups.

The C-G-DINA model is given as follows. Let the cumulative distribution

function of the response be given by

P (Tij ≤ t|αi) =

∫ t

0

fjη(tij)dtij, (3.4)

where

fjη(tij) =
1

tij
√

2πσ2
jη

exp
[
− (ln tij − µjη)2

2σ2
jη

]
, (3.5)

and where η = 1 . . . 2K
∗
j , representing the collection of reduced latent groups for a

given item. Whereas the C-DINA model estimates two lognormal distributions for

each item, the C-G-DINA model estimates 2K
∗
j lognormal distributions for each

item. Note also that, as with the G-DINA model, mastering additional attributes

beyond those required to solve the problem has no effect under this model. From

this parameterization, it can be seen that mastering a particular combination of

the required attributes may result in a unique µ and σ, which in turn may result

in unique lognormal distributions of responses.

Figure 3.2 shows the differences between the dichotomous and continuous

versions of the DINA and G-DINA models in the case where K∗j = 2, resulting

in 2K
∗
j = 4 groups, and where both attributes are required to solve the problem

(K∗j = 2). The top panel shows that the DINA and C-DINA models both partition

examinees into two groups, whereas the bottom panel shows that the G-DINA
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and C-G-DINA models partition examinees into 2K
∗
j = 22 = 4 groups.
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Figure 3.2: Binary and Continuous CDMs

3.4 The Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD; Lin, 1991) is an index that measures the

degree of divergence in multiple probability distributions. Its function is similar to

that of the KL information, but it can be extended to more than two probability
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distributions, and is given by

JSD{w1,w2,...,wn}(P1, P2, . . . , Pn) = H
( n∑
i=1

wiPi

)
−

n∑
i=1

wiH(Pi). (3.6)

In this formula, H(X) is the Shannon Entropy (Shannon, 2001), computed as

H(X) = E[I(X)] = E[−ln(P (X))] = −
∫
P (x)ln[P (x)]dx, (3.7)

and w1, w2, . . . , wn is a series of weights, and P1, P2, . . . , Pn are the probability

density functions under consideration.

The JSD computes the Shannon Entropy of the mixture of all probability dis-

tributions, each respectively weighted by wn, from which the sum of the weighted

Shannon Entropies of each of the individual probability distributions is sub-

tracted. Shannon Entropy is maximized for flat distributions and minimized

for degenerate distributions. Thus, the collection of distributions that will max-

imize the JSD relative to other collections of distributions will be one in which

the mixture distribution is flatter, but where the individual distributions have

taller peaks. It also can clearly be seen from Equation 3.6 that the measure is

symmetric, whereas other divergence measures, such as the KL, are not.

3.5 The JSD as an Item Selection Index

Our use of the JSD as an item selection index in the context of CD-CAT is

based on the concept of choosing the most discriminating next item for each

examinee. Minchen, de la Torre, and Liu (in press) defined discrimination in the

continuous response setting to be the degree of separation between the response

distributions of the latent groups. For the C-G-DINA model, the concept of

discrimination closely follows the G-DINA discrimination index (GDI; de la Torre

& Chiu, 2016). The GDI is based on the variance of the response probabilities
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for the latent groups. For the C-G-DINA, the discrimination is defined as the

total amount of dispersion among all probability distributions (Minchen & de la

Torre, 2016). Thus, the JSD naturally lends itself for use both as a measure of

item discrimination and as an item selection measure in CD-CAT for continuous

response models.

The selection algorithm involves two steps. The first is to compute the JSD

for all remaining items in the bank using the current estimate of the posterior

class membership probabilities as the weights. The second is to administer the

item that maximizes the JSD for each individual, and recompute the posterior

distribution based on the examinee’s response. For the sake of notation, assume

that examinees have completed j−1 items, and that the jth item is being selected.

Let P (αηj |t
(j−1)
i ) be the combined posterior distribution according to the q-

vector of the candidate item, qj, whose elements are given by

p(ηj = η|t(j−1)
i ) =

∑
αl:ηj=η

P (αl|t(j−1)
i ), (3.8)

where ηj = 1, . . . , 2K
∗
j , l = 1, . . . , 2K , and where t

(j−1)
i is the vector of responses

for the ith examinee for items 1, . . . , j−1. There are now only 2K
∗
j different values.

Now, the JSD can be used as an item selection index, and is defined for the jth

item as

JSD{P (α1|t(j−1)
i ),...,P (α

2
K∗
j
|t(j−1)
i )}

[
fj1(tij), . . . , fjηj(tij)

]
ij

=

H
[ 2

K∗j∑
ηj=1

P (αηj |t
(j−1)
i )fjηj(tij)

]
−

2
K∗j∑

ηj=1

P (αηj |t
(j−1)
i )H

(
fjηj(tij)

)
, (3.9)
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where

fjηj(tij) =
1

tij
√

2πσ2
jηj

exp
[
−

(ln tij − µjηj)2

2σ2
jlj

]
. (3.10)

An Example

We now turn to an example in which the JSD for several candidate C-DINA items

is computed for an examinee. To simplify this example, assume that K = 3, that

there is one of each possible item types, and that all seven items have identical

item parameters, yielding coincidental item response curves, which are shown in

Figure 3.3, for both groups.
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Figure 3.3: JSD Example: C-DINA Item

Table 3.1 shows the posterior probability of membership in each of the latent

classes. The probabilities in bold and standard fonts represent those that consti-

tute the η = 0 and 1 latent groups, respectively, under the candidate item. Each

of these sets of probabilities are summed for each of the latent groups, producing

the weights shown in the left panel of Table 3.2. The weights and the probability

densities of the curves in Figure 3.3 are used to compute the JSD for examinee i

on item j according to Equation 3.9. In the right panel of Table 3.2 are the first

and second terms and JSD computed using Equation 3.9. In this case, the 110
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item has the highest JSD value (.44), and the 111 item has the lowest JSD value

(.07). Because the 110 item has the largest JSD for this examinee, it would be

the next one administered.

Table 3.1: JSD Example (1)
Latent Class Posterior Probabilities

Item 000 100 010 001 110 101 011 111

100 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
010 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
001 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
110 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
101 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
011 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02
111 0.05 0.01 0.05 0.01 0.80 0.05 0.01 0.02

Table 3.2: JSD Example (2)
Weights JSD

Item w0 w1 T1 T2 JSD

100 0.12 0.88 1.33 .98 .35
010 0.12 0.88 1.33 .98 .35
001 0.91 0.09 1.62 1.36 .25
110 0.18 0.82 1.45 1.01 .44
101 0.93 0.07 1.58 1.37 .21
011 0.97 0.03 1.50 1.39 .10
111 0.98 0.02 1.47 1.40 .07

Note. T1 and T2: First and second terms in testing
Equation 3.9, respectively.

3.6 Design and Analysis

The goal of the simulation study was to demonstrate that the JSD is a viable item

selection index in the context of continuous response items in CD-CAT. This was

done by analyzing the improvement the JSD algorithm provided over a random

selection of items, using either the classification rates of the examinees or the

number of items required for a given level of classification certainty, depending



62

on the stopping rule. Additionally, the number of times each item was administer

was examined.

Classification accuracy at both the attribute- and vector-levels were analyzed.

The correct attribute classification (CAC) accuracy was calculated for each at-

tribute pattern l as

CACl =

∑N
i=1

∑K
k=1 I[αik = α̂ik]

N ×K
, (3.11)

and the correct vector classification (CVC) was calculated for each attribute pat-

tern l as

CV Cl =

∑N
i=1

∏K
k=1 I[αik = α̂ik]

N
, (3.12)

where N = 1000 was the number of examinees per attribute pattern.

The simulation study included the following factors: item quality (low and

high), test length (fixed and variable), and model (C-DINA and C-G-DINA).

Item quality was defined as the discrimination of the item as quantified by the

JSD, the computational details of which will be given later. For the fixed test

length conditions, short (J = 5) and long (J = 10) tests were used. Fixed length

test conditions allow for the classification accuracy to by analyzed after the admin-

istration of an arbitrary number of items. For the variable test length conditions,

the criteria used was the minimax of the posterior distribution, as in Kaplan

et al. (2015), which required that the highest posterior node meet or exceed a

specified value. The values used were .50 and .75, to represent varying levels of

uncertainty in classification. For example, the .5 minimax condition required that

each examinee’s posterior distributions had a maximum value (height) of at least

.5, which means that 50% of the mass is concentrated on a single latent class,

whereas the .75 condition requires for 75% of the mass to be concentrated on a

single latent class. Higher minimax values are associated with lower degrees of
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classification uncertainty. The algorithm continued administering items to each

examinee until this condition is satisfied. The variable test length conditions al-

lowed for the comparison of the number of items required to achieve a particular

level of certainty under various conditions.

The construction of the item bank and the examinee distribution was similar

to that outlined in Kaplan et al. (2015). First, the item bank contained 310

items, which were comprised of each of the 31 possible q-vectors for the K = 5

case, replicated 10 times. Such an item bank allowed for the algorithm to choose

the same item type for all items in all fixed-length conditions. In each of the

item quality conditions, all items in the bank were of roughly the same quality. A

small amount of noise was added to the item parameters to reduce the possibility

of multiple items have an identical JSDs. A total of 6,000 examinees were gen-

erated, comprised of 1,000 from each of the following attribute patterns: [00000],

[10000], [11000], [11100], [11110], and [11111]. Using this subset of attribute vec-

tors allowed for easier comparison of item usage. Maximum a posteriori (MAP)

estimation was used for examinee classification. No attribute patterns were pre-

cluded from estimation, meaning that examinees could have been classified in a

pattern other than the six used to generate the data. All computations were per-

formed in R (R Core Team, 2015). The first two items administered were chosen

randomly, and the starting posterior distributions for all examinees were flat.

The expected item discriminations for the C-DINA and C-G-DINA were de-

signed to be approximately the same for each of the discrimination conditions,

which was accomplished via the following procedure. First, µ parameters for the

C-DINA items were chosen. For the low discrimination condition, µ0 = 1 and

µ1 = 2 were used; for the high discrimination condition, µ0 = 1 and µ1 = 3 were

used. Next, σ parameters were chosen that resulted in curves of approximately a

fixed height; these parameters were fixed across all 31 items. Then, the JSD was

computed for each item using the attribute distribution given above. Note that
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the raw, or equally-weighted, discrimination was the same for each item, but the

JSD varies depending on the attribute distribution. For example, a 11010 item

would have weights of .33 and .67 for the η = 0 and 1 conditions. The JSD was

then averaged across all items, providing an average test discrimination.

The next challenge was to select C-G-DINA parameters for the 31 items that

resulted in an average test discrimination similar to that found for the C-DINA.

To do so, the necessary number of µ parameters (i.e., 2K
∗
j ) were equally spaced

between a lower and a higher bound, and corresponding σ parameters were chosen

for each distribution so that the resulting curves were the same height as the C-

DINA curves. Next, the JSD was computed for each item, and then averaged

across all items. Again, using a 11010 item as an example, the weights for each of

the latent group would be .17, .17, 0, 0, .33, 0, 0, and .33. Finally, ranges of the µ

parameters (separate ranges for low and high discriminations) were adjusted such

that the average test discrimination was similar to that of the same discrimination

condition for the C-DINA model.

Another way to examine the comparability of the discrimination conditions is

to compute the examinee classification rates that result from the various sets of

item parameters. To that end, a small simulation study using a 15-item test and

the JSDs prescribed by the aforementioned procedure was conducted. Under the

low discrimination condition, the attribute classification rates were .973 and .975

for the C-DINA and C-G-DINA models, respectively; for the high discrimination

condition, the rates were higher, as in 1.000 and .996, respectively. The vector

classification rates for the low discrimination condition were .896 and .897, and

for the high discrimination condition, 1.000 and .983 for the C-DINA and C-

G-DINA models, respectively. The JSDs for the low and high discrimination

conditions were approximately .39 and .54, respectively. Therefore, the low and

high discrimination conditions produce similar classification rates for each model.
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3.7 Results

Fixed Test Length Results

Tables 3.3 and 3.4 show the mean attribute- and vector-level classifications for

examinees by attribute pattern for all conditions involving the five- and 10-item

tests, respectively. The weighted averages were computed by assigning the follow-

ing weights to each of the attribute patterns: 1/32 (00000), 5/32 (10000), 10/32

(11000), 10/32 (11100), 5/32 (11110), 1/32 (11111). These weights reflect what

the proportion of examinees with a given number of attributes would be if the

attribute patterns were uniformly distributed.

These tables reveal several important results. Most importantly, the JSD

always performed at least as good as, but usually better than, random item selec-

tion. Improvements were more substantial for the low discrimination conditions

because items that are more discriminating are more informative and result in

higher classification rates, regardless of the way they are administered. Improve-

ments were also more substantial for the vector-level criterion. Additionally, the

JSD resulted in nearly perfect attribute- and vector-level classification rates for

all conditions involving a 10-item test. The lowest classification rate was .97 for

the low discrimination/vector-level/C-G-DINA condition for the 00000 pattern.

Another general finding was that the classification rates generally rose as the

number of attributes in the pattern increased. The increase was much more sub-

stantial for the random item selection method because the rates for the patterns

with fewer attributes were much lower than those for the JSD. For example, for

the low discrimination condition, the vector-level classification rates for the five-

item test with data generated from the C-G-DINA model ranged from .59 for

examinees with no attributes to .91 for examinees with all five attributes. The

same quantities for random item administration ranged from .11 to .90. The

corresponding ranges for the C-DINA data were .69 to 1.00, and .01 to 1.00,
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Table 3.3: Mean Classification Rates by Attribute Pattern: 5-Item Tests
Classification Type

Attribute Vector
Generating Low Disc. High Disc. Low Disc. High Disc.

Model Pattern JSD Ran. JSD Ran. JSD Ran. JSD Ran.

C-G-DINA

00000 0.89 0.70 0.93 0.75 0.59 0.11 0.70 0.16
10000 0.91 0.80 0.95 0.87 0.66 0.31 0.82 0.49
11000 0.92 0.88 0.98 0.93 0.68 0.56 0.91 0.73
11100 0.94 0.92 0.98 0.95 0.74 0.68 0.90 0.78
11110 0.98 0.96 1.00 0.98 0.88 0.82 0.98 0.90
11111 0.98 0.98 1.00 0.99 0.91 0.90 1.00 0.96

Wt. Avg. 0.94 0.89 0.97 0.93 0.73 0.60 0.90 0.72

C-DINA

00000 0.92 0.55 0.98 0.62 0.69 0.01 0.90 0.02
10000 0.92 0.69 0.96 0.78 0.74 0.18 0.80 0.26
11000 0.90 0.81 0.99 0.88 0.58 0.35 0.94 0.48
11100 0.93 0.91 1.00 0.95 0.69 0.62 1.00 0.76
11110 0.98 0.98 1.00 1.00 0.91 0.90 1.00 0.98
11111 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Wt. Avg. 0.93 0.85 0.99 0.90 0.71 0.50 0.95 0.62
Note. Disc.: Discrimination. Ran.: Random. Wt. Avg: Weighted Average

respectively.

The attribute patterns with fewer attributes were usually more difficult to

estimate, and the JSD algorithm offers a substantial improvement over random

selection for these attribute patterns. One exception to this pattern was perfect

CAC and CVC rates for the 11000 attribute pattern for C-DINA data with the

10-item test. Upon closer inspection, it was found that these anomalous rates

were likely due to the prior distribution, which was updated after each item

following the second item. Without a prior distribution, the posterior nodes

typically took on one of two values, with one of the values being very small. For

example, if there were two large nodes with the remainder being close to zero, the

approximate value of the two large nodes was around .5. By using the updated

prior distribution, one of the large nodes was made slightly larger than the other.

For the 11000 pattern, the correct prior node was often slightly higher than the

node corresponding to the other nonzero posterior node, causing the pattern to
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Table 3.4: Mean Classification Rates by Attribute Pattern: 10-Item Tests
Classification Type

Attribute Vector
Generating Low Disc. High Disc. Low Disc. High Disc.

Model Pattern JSD Ran. JSD Ran. JSD Ran. JSD Ran.

C-G-DINA

00000 0.99 0.79 1.00 0.84 0.97 0.19 1.00 0.34
10000 1.00 0.90 1.00 0.95 0.98 0.56 1.00 0.79
11000 1.00 0.96 1.00 0.97 0.98 0.81 1.00 0.86
11100 1.00 0.95 1.00 0.99 0.99 0.79 1.00 0.95
11110 1.00 0.97 1.00 1.00 0.99 0.86 1.00 0.98
11111 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Wt. Avg. 1.00 0.95 1.00 0.97 0.98 0.76 1.00 0.88

C-DINA

00000 1.00 0.70 1.00 0.78 0.99 0.17 1.00 0.27
10000 1.00 0.83 1.00 0.89 0.99 0.36 1.00 0.47
11000 1.00 0.93 1.00 1.00 0.99 0.68 1.00 1.00
11100 1.00 0.98 1.00 0.94 1.00 0.91 1.00 0.70
11110 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
11111 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Wt. Avg. 1.00 0.94 1.00 0.96 1.00 0.75 1.00 0.80
Note. Disc.: Discrimination. Ran.: Random. Wt. Avg: Weighted Average

be correctly classified at a high rate. It is important to note, however, that even

though the pattern was classified correctly at a high rate, the highest node in the

posterior was frequently only around .5.

Variable Test Length Results

Table 3.5 shows the average number of items required to attain posterior mini-

max values of .50 and .75 for each of the attribute patterns, and Table 3.6 shows

the average efficiency of the tests using the JSD algorithm relative to the tests

with random selection. The JSD outperformed random item selection for all at-

tribute patterns except for the 11111 attribute pattern for the low discrimination

condition with data generated from the C-DINA model, for which the differences

were no larger than .08 items. To rule out noise as the cause, this condition was

replicated with 10,000 examinees, but similar results were obtained. The reason

for this is unclear and warrants further study.
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Table 3.5: Average Number of Items Administered by Attribute Pattern
Minimax: 0.50 Minimax: 0.75

Generating Low Disc. High Disc. Low Disc. High Disc.
Model Pattern JSD Rand JSD Rand JSD Rand JSD Rand

C-G-DINA

00000 6.39 13.53 5.63 10.07 7.40 33.20 6.45 25.28
10000 6.29 12.39 5.55 9.19 7.76 25.67 6.40 18.05
11000 6.31 10.79 5.51 8.23 7.85 19.00 6.31 12.84
11100 6.24 9.65 5.26 7.16 7.75 15.17 6.45 10.07
11110 6.08 8.24 4.97 6.30 7.20 12.77 5.94 8.38
11111 5.96 7.16 4.75 5.56 6.94 9.22 5.56 7.09

C-DINA

00000 6.64 19.93 5.16 14.16 7.38 44.90 5.92 33.46
10000 6.62 20.36 5.18 14.35 7.65 45.09 5.84 36.50
11000 6.17 17.18 5.10 13.83 7.21 25.64 5.47 19.17
11100 5.82 10.60 4.58 8.56 6.78 14.50 4.76 9.96
11110 4.99 6.18 3.58 4.46 5.86 7.85 4.14 5.50
11111 3.82 3.70 3.02 3.09 4.39 4.38 3.15 3.36

Note. Disc.: Discrimination. Rand: Random.

Table 3.6: Average Efficiency of the JSD CAT Algorithm by Attribute Pattern
Generating Minimax: 0.50 Minimax: 0.75

Model Pattern Low Disc. High Disc. Low Disc. High Disc.

C-G-DINA

00000 0.47 0.56 0.22 0.26
10000 0.51 0.60 0.30 0.35
11000 0.58 0.67 0.41 0.49
11100 0.65 0.74 0.51 0.64
11110 0.74 0.79 0.56 0.71
11111 0.83 0.85 0.75 0.78

C-DINA

00000 0.33 0.36 0.16 0.18
10000 0.33 0.36 0.17 0.16
11000 0.36 0.37 0.28 0.29
11100 0.55 0.53 0.47 0.48
11110 0.81 0.80 0.75 0.75
11111 1.03 0.98 1.00 0.94

Note. Disc.: Discrimination.

Similar to the findings in the previous section, attribute patterns with more

attributes generally required fewer items to reach the required level of certainty in

the posterior distribution within a given set of conditions. This reduction in the

number of items required was more pronounced for the .75 minimax requirement,
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mainly because of the large increases in the number of items required for exami-

nees with fewer attributes. Compared with the random selection, there was much

less variation in the average number of items administered across the attribute

patterns for the JSD algorithm. For example, for the low discrimination, .75 min-

imax condition for the C-DINA model, the JSD algorithm required an average of

7.38 (efficiency = .16) and 4.39 (efficiency = 1.00) items for the 00000 and 11111

attribute patterns. The corresponding rates for random selection were 44.90 and

4.38. Although examinees with fewer attributes required more items than those

with more attributes for both algorithms, the increases were much more modest

for the JSD algorithm.

Although not presented here in full, the number of items required to reach

the desired level of certainty under random item administration can be exorbi-

tant. For example, for at least one 00000 examinee in the low discrimination/C-

DINA/.75 condition, 300 items were required when using random item selection,

but only 12 for the same condition when using the JSD. Despite the fact that

the efficiencies shown in Table 3.6 for two conditions were greater than or equal

to one, all maxima for the JSD algorithm were strictly less than their random

counterparts.

Finally, comparing the average and maximum numbers of items required for

the C-DINA and C-G-DINA models yielded mixed results. For example, the

average number of items required when using the JSD was typically less for the

C-DINA; however, for random selection, the C-DINA typically required more

items for attribute patterns with fewer specifications, and fewer items otherwise,

than the C-G-DINA. This finding was often true for the maxima as well.

Item Usage

To gain additional insight into the nature of the JSD algorithm, the final step

of analysis was to examine item usage. Figures 3.4 and 3.5 show the overall
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item usage proportions for all 31 item types for each of the attribute patterns

for the C-DINA and C-G-DINA models, respectively. When applying the JSD to

C-DINA data, the item preference followed a somewhat consistent pattern. As

the number of attributes in the pattern increased, the JSD moved from selecting

mostly single-attribute items to items that measure more attributes. In the case of

the 00000 examinees, items administered were almost exclusively single-attribute

items.

In the case of the 11111 examinees, however, the preference appeared to be

mainly for three- and four-attribute items. The items that were used the most

all measured the fifth attribute. Interestingly, there was virtually no preference

for single-attribute items. The item usage for the remaining attribute patterns

was more moderate than either the 00000 or the 11111 patterns. For example,

the 11110 examinees tended to be administered primarily two-, and three-, and

four-attribute items, with all of them measuring the fourth attribute. The 11100

examinees were administered many 11100 items.

In contrast to the item usage of the C-DINA model, the JSD preferred single-

attribute items, and sometimes two-attribute items, for all attribute patterns

when using the C-G-DINA model. For the 00000 and 10000 patterns, the strongest

preference was toward 10000 items. For the 11000 pattern, the strongest prefer-

ence was instead for the 01000 item. There was also a slightly-elevated preference

for 01100 items, but it was still less than all single-attribute items. For 11100

examinees, the most used items were 00100, 00010, and 01100, all of which were

used with approximately the same frequency. The 11110 examinees were ad-

ministered the 00010 and 00001 items at the highest rates, and also the 00110

items. Finally, the most frequently administered items for the 11111 examinees

were 00001 and 00011. Only when examinees had three or more attributes were

there substantial rates of use for two-attribute items. Items with three or more

attributes were rarely used for any attribute pattern.
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Figure 3.4: Overall Item Usage: C-DINA
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Figure 3.5: Overall Item Usage: C-G-DINA
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In summary, the usage patterns of the JSD for both models are similar for

00000, 10000, and 11000 attribute patterns, in which mainly single-attribute items

were chosen. However, for the remaining attribute patterns, the C-DINA results

show that the JSD tended to choose items with more attributes, particularly

for the 11111 pattern, whereas the C-G-DINA results show that the JSD chose

primarily one- and two-attribute items.

3.8 Real Data Example

Minchen, de la Torre, and Liu (in press) analyzed a set of balance-scale data,

originally collected and analyzed by van der Maas and Jansen (2003), with the

C-DINA model. The JSD CAT algorithm proposed in this paper was applied to

that data set. Parameter estimates obtained in the aforementioned article were

used in this example.

Although the true classifications are not known, the pseudo-true classifications

are assumed to be those obtained when administering all 40 items. To empha-

size the distinction between the unknown true classifications and the pseudo-true

classifications, CAC∗ and CV C∗ are used denote the latter. If all 40 items were

administered, both of these indices would be equal to one.

Table 3.7 shows the classification rates for balance scale data, according to

each of three levels of the two types of stopping rules. When a fixed number

of items were administered, high correct classifications were obtained with very

short tests. In this example, administering only five items resulted in CAC∗ and

CV C∗ rates of .90 and .85, respectively. By increasing the test length to 20, those

rates rose to .99, indicating near perfect classification rates. Correct classifications

when using the minimax stopping conditions also show that reasonably high rates

were attainable without imposing a stringent criterion. For example, CAC∗ and

CV C∗ rates for the .50 condition were .83, and .77, respectively.
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Table 3.7: Balance Scale Data CAT Results

Stopping Rule CAC∗ CV C∗

Test Length:
5 .90 .85
10 .96 .92
20 .99 .99

Posterior Minimax:
.5 .83 .77
.75 .90 .85
.95 .96 .95
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Figure 3.6: Number of Items Administered by Minimax Condition

Figure 3.6 shows the distribution of the number of items administered under

each of the posterior minimax conditions. The lowest minimax condition resulted

in very few items being administered, with most examinees being administered

about four items. The .75 minimax condition still resulted in many examinees

being administered around four of five items, but there also were a number of

examinees that were administered more items. The .95 criterion still resulted in
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most examinees only being administered a small number of items. The median

for this condition was less than 10, and all but a few examinees were administered

less than half of the items in the bank. When taken together, the test lengths

shown Figure 3.6 and the classification rates shown in in Table 3.7 both suggest

that applying the JSD CAT algorithm proposed in this paper can result in a

dramatic reduction in the number of items required to obtain good classification

rates.

3.9 Discussion and Conclusion

The purpose of this article was to adapt the JSD for use as an item selection

method in CD-CAT for continuous response CDMs. Doing so also affirms the

JSD’s use as a measure of item discrimination in continuous response CDMs.

The JSD was shown to perform better than random item selection in nearly all

conditions. For fixed-length tests, the improvements were most substantial for

low discrimination conditions and at the vector classification level, as well as

for attribute patterns with fewer attributes, which were inherently more difficult

to classify, and thus required more items. For tests in which the stopping rule

was determined by the posterior distribution, the improvements were most sub-

stantial for attribute patterns with fewer attributes, and for the higher minimax

requirement.

As the minimax requirement was increased, the JSD generally required just a

few more items, whereas random selection required many more items, particularly

for attribute patterns with fewer attributes. Under some conditions, namely

those that corresponded to lower correct classification rates on the fixed-length

tests, the maximum number of items administered to meet the posterior minimax

requirement was excessive (i.e., well over 100), but this was never the case for the

JSD.
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The overall item usage for each of the six attribute patterns for the C-DINA

and C-G-DINA models discussed above appeared to be somewhat different. The

C-DINA model administered more complex items to examinees with more at-

tributes, whereas single-attribute items, and sometimes two-attribute items, were

dominant for the C-G-DINA model. The JSD rarely chose items with three or

more attributes.

Although this simulation study explored a variety of important factors, there

are still a number of issues that remain to be investigated. One example is

that the item bank was perfectly balanced and used items of all possible types.

This is likely a substantial simplification of reality, but it was necessary in the

early stages of development in an effort to better understand the behavior of the

algorithm. The items were also designed so that the average discrimination of a

test was similar across the models, but this depends on both the attribute pattern

distribution and the composition of the test. Adjusting either of these factors

could yield different results. Additionally, future studies could compare the JSD

to the GDI when applied to continuous data. Although a loss of information can

result from using the GDI when the variances of the response distributions are

different, the degree to which this would degrade results is unknown.

We offer a final note on the support of the JSD. Specifically, the JSD can

range from 0 to log(w) (Castner, 2014), where w is the number of probability

distributions being compared, meaning that the JSD can be larger for items with

more attributes under the C-G-DINA model. One implication of this is that items

with more attributes could have higher JSDs than items with a smaller number

of attributes. To place all computations on a similar scale, JSD values could be

normalized by dividing by their maxima, namely log(w).

Such an adjustment would fix the range from 0 to 1, but those values would

only be comparable if the JSD demonstrated linear behavior across the entirety

of its range, which is unknown at this time. Nonetheless, making all JSD values
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comparable may make the values for items with a smaller number of attributes

larger relative to items with more attributes, possibly skewing the preference of an

adjusted version of this algorithm more towards single-attribute items. The ben-

efit of adjusting the JSD for the C-G-DINA model, however, is unclear, because

the JSD always performed equivalently to or better than random item selection

and also usually administered one- and two-attribute items. Any adjustments

made of this type may further skew the item preference towards single-attribute

items, at which point item exposure may become a concern.
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Chapter 4

Study III: A Q-Matrix Validation Method for

Continuous Response CDMs

Abstract

An integral component of many cognitive diagnosis models is the Q-matrix, which

specifies the attributes measured in each item. Because the Q-matrix is con-

structed by experts and is subject to error, an important area of research within

cognitive diagnosis modeling is to validate its specifications. An array of statisti-

cal methods have been developed for this purpose, but most have been developed

in the context of a binary response. However, due to the continuous nature of

the response variable under recently proposed continuous response models, a new

method is required. In this paper, such a method is developed for use in the

context of a generalized continuous response model that can also be applied to

constrained versions of the model. A simulation study was carried out to analyze

its performance, and a real data example was included. Results from the simula-

tion study demonstrated the method’s viability, and showed that its performance

improved as item quality increased.

Keywords: cognitive diagnosis models, continuous response, Q-matrix validation,

DINA model, C-DINA model, G-DINA model, C-G-DINA model
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A Q-MATRIX VALIDATION METHOD FOR CONTINUOUS RESPONSE

CDMS

4.1 Introduction

The purpose of many traditional assessments is to rank-order students. In do-

ing so, students can be compared with one another, as is done in norm-referenced

tests, or they can be compared against some fixed criterion, as is done in criterion-

referenced tests. Such tests serve an important function in educational assess-

ment, but they are generally not designed to provide diagnostic information;

rather, they usually provide a single score on a continuous scale. Although at-

tempts have been made to extract diagnostic information they have had limited

success (e.g., de la Torre, 2012; de la Torre & Karelitz, 2009; de la Torre &

Minchen, 2014).

Conversely, cognitively diagnostic assessments (CDAs; de la Torre & Minchen,

2014) are designed from their very inception to be diagnostic, and yield score pro-

files that report students’ mastery and non-mastery on a set of discretely-defined

attributes. Based on such information, teachers can modify their classroom in-

struction to best serve students’ needs. Whereas traditional assessments are typ-

ically analyzed using item response theory (IRT) or classical test theory (CTT),

CDAs require an alternative class of statistical models referred to as cognitive

diagnosis models (CDMs).

Like IRT models, CDMs are item response models, but rather than estimating

levels of a continuous latent trait, they group examinees into latent classes. In

educational tests, these classes represent distinct combinations of skills. CDMs

can also be applied in medical settings to determine patients’ clinical disorders

(Templin & Henson, 2006; de la Torre, van der Ark, & Rossi, 2015), as well as in

situational judgement testing (Sorrel et al., 2016).
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A critical component of many CDMs is the Q-matrix (Tatsuoka, 1983), which

is usually a binary loading matrix that identifies which skills are measured in each

item. The Q-matrix is constructed in the test development phase (e.g., Tjoe &

de la Torre, 2013a; Tjoe & de la Torre, 2013b; Tjoe & de la Torre, 2014) and is

assumed to be correct in most analyses; however, if its entries are not all correct,

model misfit may result. Therefore, procedures have been developed to validate

its entries.

Many Q-matrix validation procedures, some of which will be discussed later,

have been developed for use with binary responses, but polytomous (de la Torre,

2009a; Ma & de la Torre, 2016) and continuous (e.g., ; Minchen & de la Torre,

2016; Minchen, de la Torre, & Liu, in press) responses exist and have been the

topic of a growing body of research. One readily-available continuous response in

computer-based testing programs is response time, which is nearly free to capture

(van der Linden, 2006). Although care must be exercised in the way response time

is used (van der Linden, 2006), it is additional information from a psychometric

standpoint. Van der Linden (2007) introduced a framework to use response time

to improve ability estimation in the context of IRT.

Other continuous response types include “probability testing,” in which ex-

aminees estimate the probabilities that various alternatives are correct. Typical

multiple-choice questions without partial credit can be viewed as a special case of

probability testing in which the chosen answer is assigned a 100% probability of

being correct. Probability testing can reveal more information per question (de

Finetti, 1965). Another type of continuous response measure is simply to place a

mark on a continuum indicating one’s level of endorsement. Such a response for-

mat could be approximated by a Likert scale, for which a graded-response model

may be appropriate, but in the case of a sufficiently large number of response

categories, the variable essentially becomes continuous (Samejima, 1969). Noel

and Dauvier (2007) and Noel (2014) developed IRT models for such a response
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format.

Although continuous response measures have been considered in IRT, they

have received only limited attention in the CDM literature. Minchen, de la Torre,

and Liu (in press) recently proposed a CDM that takes continuous measures as

input. They demonstrated the model’s viability through a simulation and showed

its applicability to a real data set. Their study, as in many studies, assumed

that the Q-matrix was correctly specified, which may not in fact be true. To

address this concern, this paper presents a Q-matrix validation procedure based

on standard regression and model selection procedures for continuous response

CDMs. In addition to the results from a simulation study, a real data example

is presented. Before discussing the method in detail, a brief review of the CDMs

relevant to this work is offered.

4.2 Cognitive Diagnosis Models

CDMs are restricted latent class models through which examinees’ class mem-

berships are estimated. These classes are defined as the set of permutations of

skill patterns permissible under the attribute structure. In some cases, the set

may include all combinations, whereas in other situations, such as an attribute

structure in which mastering one skill presupposes the mastery of another skill,

only a subset of skill patterns may be permissible.

As mentioned earlier, the Q-matrix represents the skills required for each

item, and is used in most CDMs. The Q-matrix is of dimension J × K, where

J represents the number of items on the test, and K represents the number of

skills measured on the test. Entries in the Q-matrix are denoted by qjk, j =

1, . . . , J and k = 1, . . . , K, and are 1 if the jth item requires the kth attribute

and 0 otherwise. As mentioned before, the Q-matrix is generally assumed to be

observable, known, and correct because it is determined during test development
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in a lengthy and iterative process that involves researchers, educators, examinees,

and psychometricians (Tjoe & de la Torre, 2013a; Tjoe & de la Torre, 2013b; Tjoe

& de la Torre, 2014). Because judgement is involved, statistical methods have

been developed to verify the entries of the Q-matrix. Some of these methods will

be reviewed later.

The ith examinee’s attribute pattern is represented by a binary K-length vec-

tor, denoted by αi, where i = 1, . . . , N . Unlike the entries in the Q-matrix,

attribute patterns are unobservable (i.e., latent) and need to be estimated. Ex-

aminees are partitioned into a maximum of L = 2K latent classes, including a

class for examinees who possess none of the K attributes. The probability of

success for examinee i on item j is a function of both αi and qj, the nature of

which is defined by the specific CDM.

The DINA Model

The deterministic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker & Si-

jtsma, 2001) model is a parsimonious CDM. With ηij =
∏K

k=1 α
qjk
ik as the DINA-

specific latent response variable, the probability of a correct response is given

as

P (Xij = 1|αi, sj, gj) = (1− sj)ηij(gj)1−ηij , (4.1)

where gj and sj are the guessing and slip parameters for item j, respectively. From

the definition of ηij, it can be shown that each DINA item partitions examinees

into two latent groups: Those examinees who possess all attributes that the item

requires, and those who are missing at least one required attribute, for whom

ηij = 1 and 0, respectively.

Although the DINA model may be too simple to accurately represent reality

(de la Torre, 2011; Henson & Douglas, 2005), it is both readily interpretable and
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parsimonious, making it simple with which to work. De la Torre (2009), and

Culpepper (2015) provide more details on marginal maximum likelihood estima-

tion and Bayesian estimation of the model, respectively.

The G-DINA Model

In an effort to relax the strict and perhaps unrealistic constraints of the DINA

model, de la Torre (2011) proposed the generalized -DINA (G-DINA) model, in

which the DINA model’s assumption that all attribute patterns contained in the

ηj = 0 group have the same probability is relaxed. Specifically, the G-DINA

model allows for some of these attribute patterns (i.e., those that differ on the

measured attributes) to have unique probabilities of success.

Let K∗j =
∑K

k=1 qjk denote the number of attributes required to solve item

j. Then, define α∗
gj to be a K∗j -length vector that retains only the entries from

αl for which qjk = 1, where g = 1, . . . , 2K
∗
j . The 2K

∗
j α∗

gj vectors are referred to

as the reduced attribute patterns and represent the reduced latent groups under

item j. Then, the probability of a correct response for each reduced latent group

is expressed as a function of the effect of mastering a given combination of the

attributes required for that item, as in

P (X = 1 | α∗
gj) = δj0 +

K∗j∑
k=1

δjkαgk +

K∗j∑
k′=k+1

K∗j−1∑
k=1

δjkk′αgkαgk′ + . . .

· · ·+ δ12...K∗j

K∗j∏
k=1

αgk, (4.2)

where δj0 is the intercept, δjk are the main effects due to mastering αk, and all

other δ parameters are the 2− to K∗j -way interaction effects. Because the individ-

ual contribution of each attribute and all 2−, 3−, . . . , K∗j−way interactions are
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modeled, the G-DINA is a saturated model. De la Torre (2011) also defined the

additive-CDM (A-CDM), which can be obtained by constraining all interaction

terms in the G-DINA model to 0, leaving only the main effects and the intercept.

Other additive models can be defined from other saturated models with different

link functions.

The C-DINA Model

The continuous-DINA (C-DINA; Minchen, de la Torre, & Liu, in press) is a

CDM that takes continuous responses, rather than discrete (e.g., dichotomous

or polytomous) responses, as the input. The model’s latent response variable is

defined as it is in the DINA model, namely, ηij =
∏K

k=1 α
qjk
ik . Due to the continuous

nature of the response, an integral is used to write the the item response function

(IRF), which is given as

P (Tij ≤ t|αi) =

∫ t

0

[fj0(tij)]
1−ηij [fj1(tij)]

ηijdtij, (4.3)

where

fjη(tij) =
1

tij
√

2πσ2
jη

exp
[
− (ln tij − µjη)2

2σ2
jη

]
, (4.4)

where Tij is the response of examinee i on item j, fjη(tij) is the distribution

of responses for group η on item j, and µjη and σ2
jη are the item parameters for

fjη(tij). Whereas in typical CDMs a correct response probability is estimated, the

C-DINA model estimates a response distribution for each latent group, namely,

the lognormal probability density function in Equation 4.4. Each function is

defined by µjη and σjη, resulting in a total of 2× 2J = 4J structural parameters,

whereas the DINA model only requires 2J parameters. The item parameters,

µjη and σ2
jη, are estimated as the posterior-weighted mean and variance of the
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logarithm of the response times for item j, respectively, for groups η = 0 and 1.

The C-G-DINA Model

The continuous generalized DINA (C-G-DINA; Minchen & de la Torre, 2016)

model generalizes the C-DINA model in exactly the same way that the G-DINA

generalizes the DINA model. Rather than partitioning examinees into just two

groups, the C-G-DINA partitions them into 2K
∗
j latent groups on each item. The

resulting model is a straightforward extension of the C-DINA. Its IRF is defined

as

P (Tij ≤ t|αi) =

∫ x

0

fjη(tij)dtij, (4.5)

where

fjη(tij) =
1

tij
√

2πσ2
jη

exp
[
− (ln tij − µjη)2

2σ2
jη

]
, (4.6)

and where η = 1 . . . 2K
∗
j . Thus, the C-G-DINA estimates lognormal response

distributions for each of the 2K
∗
j groups. Parameter estimation is similar to that

of the C-DINA model, except that there are 2× 2K
∗
j parameters for each item.

4.3 Q-Matrix Validation

A variety of methods exist to validate the Q-matrix. De la Torre (2008) developed

the sequential EM-based δ-method, designed to work with the DINA model. In

this method, the correct Q-vector for an item minimizes the sum of its slip and

guessing parameters. As a result, the difference in the correct response probabil-

ities of the two groups is maximized. This method was subsequently generalized

by de la Torre and Chiu (2016) for use in the G-DINA model, who developed the

G-DINA model discrimination index (GDI). The GDI is defined as the weighted
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variance of the probability of a correct response for each of the reduced latent

groups under the candidate q-vector, where the weights are equal to the pro-

portion of examinees contained in each of the groups. Using their framework,

the fully specified q-vector maximizes the GDI; their procedure is to choose the

q-vector that accounts for a sufficient proportion of the variance relative to the

fully-specified q-vector.

Liu, Xu, and Ying (2012) developed a method in which the Q-matrix is learned

from the data. Their method does not attempt to correct misspecified Q-matrix

entries; instead it attempts to build the entire Q-matrix from scratch. The cen-

terpiece of their method is the latent response variable, which summarizes the

interaction between the person attributes and the item attributes as discussed

earlier. Although they have only tested their method on the DINA model, they

indicate that extensions to other models, such as the deterministic inputs, “or”

gate (DINO; Templin & Henson, 2006), can be made. However, it remains to be

seen how the method will perform with models of a different class (i.e., continuous

response models) or more complex models.

Chiu (2013) developed the Q-matrix refinement method, which is based on

Chiu and Douglas’ (2013) nonparametric classification method, and has been

shown to be effective, even with relatively high levels of misspecification in the

Q-matrix. However, the method is based on the residual between the response Xij

ideal response ηij. In a continuous models such as the C-DINA and C-G-DINA,

the ideal response only denotes the group, not the expected response.

DeCarlo (2012) also presented a Q-matrix validation procedure, but in his

method, certain entries in the Q-matrix are thought of as random variables and

are estimated with model parameters. This method has been shown to work well

with a reparameterized version of the DINA model. The limitation of this method,

though, is that the elements of the Q-matrix to be validated must be determined

a priori; the extent to which this is a drawback depends on the application.
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Misspecifications in the portion of the Q-matrix not under consideration appear

to negatively affect the recovery of the uncertain elements.

In the language of factor analysis, these Q-matrix validation methods can

be categorized as either exploratory or confirmatory, where the latter contains

only DeCarlo’s (2012) method of those discussed, because it only validates pre-

determined entries. (His method, however, can also be used in an exploratory

manner.) Exploratory methods can be either parametric or nonparametric, and

can be based on clustering, statistical learning, or some type of index, each of

which has its own advantages and disadvantages. An important note, however,

is that each of these methods have been developed in the context of dichotomous

response data.

4.4 Proposed Method: Weighted Least Squares Q-Matrix

Validation Procedure

The proposed weighted least squares (WLS) method is based on the logic of model

selection in regression. At the heart of the method is the idea that the correct

latent groupings of examinees should produce the most homogeneous groups. In

other words, the within-group variation should be at a minimum. This is an

exhaustive search method that evaluates every possible q-vector for all candidate

items. Using this method, each candidate q-vector partitions examinees into 2K
∗
j

(as defined earlier) latent groups for each item. Note that the C-G-DINA model

is implicit in this algorithm.

The method chooses the q-vector (e.g., grouping) that results in response

distributions that are maximally homogeneous with the smallest number of spec-

ifications, which is defined as the correct q-vector by de la Torre and Chiu (2016).

Other appropriate (de la Torre & Chiu, 2016) q-vectors with more specifications

can also be found that result in homogeneous groups, but they would require
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additional parameters. The method is outlined as follows:

1. Data are obtained either from an actual test or from a simulation. In a

simulation study, the data are generated according to some CDM and a

Q-matrix that is presumed to be correct. Next, the model is estimated with

a provisional Q-matrix, which may contain misspecifications. The resulting

posterior distribution for each examinee is captured, which is denoted as

P (α|Ti) and is of dimension 1× 2K .

2. For each item j, there are a total of 2K − 1 possible q-vectors of length K

that can be formed for a given value of K, (01×K is not included), only

one of which is correct. Of these q-vectors, one of them will be qf = 11×K ,

which will be referred to as the full q-vector. The remaining C = 2K − 2

q-vectors contain at least one zero. Denote q-vectors in this set as qc, where

c = 1, . . . , C. A single qc is selected.

3. The posterior distribution obtained in step 1 is then collapsed based on the

latent groupings formed by the candidate q-vector, resulting in 2K
∗
c < 2K

groups, where K∗c =
∑K

k=1 qck. The resulting distribution will be referred to

as the candidate posterior distribution, denoted as Pc(α|Ti), is of dimension

1× 2K
∗
c , and whose elements are computed as

Pc(αηc|Ti) =
∑

αl:ηc=η

P (αl|Ti). (4.7)

where ηc = 1, . . . , 2K
∗
c are the reduced latent groups formed under qc.

As an example, Table 4.1 shows the the process of forming the candidate

posterior distribution when K = 3 and qc = [110]. Because the third

attribute is not required under this q-vector, it becomes irrelevant, which

is shown in the middle set of columns. In the next set of columns to the

right, this attribute is removed entirely, which results in a reduction of
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attributes. Here, latent classes 1 and 4, 2 and 6, 3 and 7, and 4 and 8 become

indistinguishable, resulting in four reduced latent groups. The elements of

the posterior obtained in step 1 associated with indistinguishable latent

groups are summed, resulting in a candidate posterior distribution.

Table 4.1: Forming the Candidate Posterior Distribution with q-vector [110]
Full Reduced

Class α α∗ Group
1 0 0 0 → 0 0 0 → 0 0 1
2 1 0 0 → 1 0 0 → 1 0 2
3 0 1 0 → 0 1 0 → 0 1 3
4 0 0 1 → 0 0 1 → 0 0 1
5 1 1 0 → 1 1 0 → 1 1 4
6 1 0 1 → 1 0 1 → 1 0 2
7 0 1 1 → 0 1 1 → 0 1 3
8 1 1 1 → 1 1 1 → 1 1 4

4. The candidate posterior-weighted mean log responses are obtained as

µηc =

∑N
i=1 ln(tij)Pc(αηc|Ti)∑N

i=1 Pc(αηc |Ti)
. (4.8)

In this instance, weighting effectively partitions each examinee’s response

into each reduced latent group according to the posterior probability of

residing in that group.

5. The differences between the log responses and the mean posterior-weighted

log responses computed in Equation 4.8 in step 4 are obtained, squared,

and summed across examinees and latent groups. This quantity is the sum

of squared errors for qc, and is given by

SSEc =
2K
∗
c∑

ηc=1

N∑
i=1

Pc(αηc|Ti)
[
ln(tij)− µηc

]2

. (4.9)

Note that the log responses for each latent group will be normal under the
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correct q-vector.

6. Similarly, the sum of squared errors for the full model is computed as

SSEf =
2K∑
l=1

N∑
i=1

P (αl|Ti)
[
ln(tij)− µl

]2

, (4.10)

where

µl =

∑N
i=1 ln(tij)P (αl|Ti)∑N

i=1 P(αl|Ti)
. (4.11)

Note that the computations for SSEf and µl are identical to those for

SSEc and µηc , respectively, except that the original posterior distribution

obtained in step 1 is used to compute the former. This is because there is

no collapsing of latent classes under qf .

7. The total sum of squares is computed by subtracting the mean of the log

responses from each log response, squaring, and summing over individuals.

This quantity is given by

SST =
N∑
i=1

[
ln(tij)− µj

]2

, (4.12)

where

µj =

∑N
i=1 ln(tij)

N
. (4.13)

8. Using SSEc, SSEf , and SST , each candidate q-vector’s proportion of vari-

ance explained can be computed as

R2
c = 1− SSEc

SST
, (4.14)
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and

R2
f = 1− SSEf

SST
. (4.15)

9. The ∆R2 F-statistic is computed for each of the C candidate q-vectors as

Fc =
R2
f −R2

c

dfM(F )− dfM(R)
÷

1−R2
f

dfE(F )
, (4.16)

and follows an F [dfM(F )− dfM(R), dfE(F )] distribution, where the degrees

of freedom of the full model is dfM(F ) = 2K , the model degrees of freedom

of the reduced model is dfM(R) = 2K
∗
c , and the error degrees of freedom of

the full model is dfE(F ) = N − 2K .

10. P-values are obtained for each of the C ∆R2 F-statistics, denoted as pc. A

Bonferroni correction is applied by setting α∗ = α/g, where g = 2C . Define

W = {qc|pc > α∗}, (4.17)

and

Z = {qc ∈ W : K∗c = K∗c′ ∀ c and c′}. (4.18)

11. The decision rule is to choose

q̂j =


qc : K∗c = arg minc ∀ qc ∈ W, if |W | ≥ 1 and |Z| = 0

qc : pc = arg maxc ∀ qc ∈ Z, if |Z| ≥ 1

11×K , if |W | = 0

, (4.19)

where | · | denotes the number of elements in a set.

12. Repeat steps 2-11 for all items under consideration.
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The full model, qf , will necessarily produce the highest R2 value because it

contains more predictors than any other qc (i.e., it is appropriate). Thus, the most

parsimonious model (i.e., the q-vector with the smallest number of specifications)

that is not significantly different from the full model is chosen.

This procedure is essentially a regression-style model selection method in

which the more complex models are penalized through a loss in the error degrees

of freedom. If the generating model is known to be C-DINA, then the problem

is simplified. All q-vectors will partition examinees into exactly two groups when

applied to the C-DINA model; thus, all q-vectors represent models with equal

degrees of freedom: N − 2. In such a case, the analogous model selection method

would be to simply choose the q-vector that results in the largest R2 value or,

equivalently, the smallest SSE value. This method was explored in the simulation

study and real data examples and will be referred to as the Max R2 method.

Note that this procedure appeals to the robustness of the F-test to the vi-

olation of the homogeneity of variance assumption. A slightly different version

of the F-statistic may be used that avoids this assumption by approximating the

distribution of the sum of variances and using the Satterthwaite correction (1946)

to compute the degrees of freedom. This statistic, however, may violate the as-

sumption that the chi-squared statistics in the numerator and denominator of the

F-statistic are independent. One potential way to minimize the degree of viola-

tion of this assumption would be to classify examinees rather than partitioning

their responses into the various latent classes based on their posterior distribu-

tions. Using only the mode of the posterior rather than the entire distribution,

however, could result in a loss of information.

We make a final note about the similarity of the proposed method to the

GDI (de la Torre& Chiu, 2016). Each method attempts selects a q-vector on

the basis of maximizing the variability in the responses of the latent groups.

However, the key difference between the two methods is that the WLS method
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works directly with the posterior-weighted responses, whereas the GDI uses the

posterior-weighted correct response probabilities; the former are observed, the

latter are estimated. A secondary difference is that the WLS method is based on

a statistical test, whereas the GDI relies on a user-specified cutoff.

Design and Analysis

The goal of the simulation study was to evaluate the performance of the WLS

method while manipulating item quality (low, medium, and high discrimination),

sample size (N = 500, 1000, 2000), number of Q-matrix misspecifications (8, 15),

and generating model (C-DINA and C-G-DINA). The Q-matrix shown in Table

4.2 was used for all conditions. The WLS method was tested by misspecifying

the Q-matrix, applying the method to each item, and observing the results. The

results for the C-DINA and C-G-DINA models were compared and, in the case

of the C-DINA model, the WLS method was compared to the Max R2 method.

The method was also applied to a real data set.

Misspecifications were chosen at random and were limited to one per item.

Misspecifying 8 and 15 of the 150 entries in the Q-matrix amounts to just over

5% and exactly 10% of entries, resulting in just over a quarter and exactly half of

the items being misspecified, respectively. In a procedure that will be discussed

next, the discriminations were chosen such that the results for the C-DINA and

C-G-DINA models would be comparable.

To manipulate item quality in the DINA model, the guessing and slip param-

eters would be adjusted. Smaller values for those parameters would correspond

to higher quality items because each of the groups responds both more consis-

tently and differently from each other. The same reasoning holds in continuous

response models. C-DINA items can be made more discriminating by choosing

distributional parameters that result in the two lognormal distributions being fur-

ther apart (Minchen, de la Torre, & Liu, in press). For the generalized models,
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Table 4.2: Simulation Study Q-matrix

Attribute Attribute
Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 16 0 1 0 1 0
2 0 1 0 0 0 17 0 1 0 0 1
3 0 0 1 0 0 18 0 0 1 1 0
4 0 0 0 1 0 19 0 0 1 0 1
5 0 0 0 0 1 20 0 0 0 1 1
6 1 0 0 0 0 21 1 1 1 0 0
7 0 1 0 0 0 22 1 1 0 1 0
8 0 0 1 0 0 23 1 1 0 0 1
9 0 0 0 1 0 24 1 0 1 1 0
10 0 0 0 0 1 25 1 0 1 0 1
11 1 1 0 0 0 26 1 0 0 1 1
12 1 0 1 0 0 27 0 1 1 1 0
13 1 0 0 1 0 28 0 1 1 0 1
14 1 0 0 0 1 29 0 1 0 1 1
15 0 1 1 0 0 30 0 0 1 1 1

items are made more discriminating for the G-DINA by adjusting the variance of

the success probabilities of the latent groups (de la Torre & Chiu, 2016), and for

the C-G-DINA, by spacing out the response distributions. Figure 4.1 shows an

example of an item with low and high discriminations under each of the afore-

mentioned models. Note that in this example the variances of the distributions

were constrained to be similar for the purposes of illustration.

To quantify item discrimination, we used the Jensen-Shannon divergence (JSD;

Lin, 1991), which quantifies the total divergence among a system of probability

distributions. The JSD was first used in CDM as a computerized adaptive testing

item selection algorithm for the C-DINA and C-G-DINA models (Minchen & de

la Torre, 2016). In their algorithm, the next item chosen is the one that max-

imizes the JSD of the item response curves, weighted according to the current

estimate of the posterior distribution.

Our use of the JSD here was simply to standardize the levels of discrimination
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Figure 4.1: Example Items of Low and High Discrimination Under Various CDMs
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within a given level for both the C-DINA and C-G-DINA data, which made the

results comparable. Item parameters were chosen such that the expected JSD

values were approximately equal between the two generating models for all three

discrimination conditions at the test level (i.e., the average of all JSDs on the

test).

To construct tests for each of the models that had comparable average ex-

pected JSDs, two sets of µ0 and µ1, one for each of the discrimination conditions,

were chosen arbitrarily for the C-DINA model. Corresponding σ0 and σ1 pa-

rameters were also chosen such that the response curves had a similar height.

Parameters for all items were similar, but a small amount of noise was added so

that item parameters were not identical, except by chance. Finally, the JSD was

computed for all items. The weights used to compute the JSD were the propor-

tion of examinees, that resided in the η = 0 and 1 groups, assuming a uniform

attribute distribution. To find the average test discrimination, JSD values were

averaged. These values were approximately .14, .21, and .28 for the low, medium,

and high discrimination conditions, respectively.

The next task was to find parameters for the C-G-DINA items that yielded

similar average test discriminations to those found under the C-DINA model.

Although there were many solutions to this problem, the method we used was to

adjust the range of the µη parameters, and to equally space them across the range.

The lower endpoint used was the same as the lower endpoint used of the C-DINA

µ0. The σ parameters were found such that the curves were approximately the

same height as the C-DINA curves. Weights were also assigned to each of the

curves for the computation of the JSD, but all weights were equal because of the

way the C-G-DINA forms latent groups.

A small simulation study was conducted to compare the classification rates for

each of the models for each of the JSD values given above. The correct attribute

classification rates for the low, medium, and high discrimination condition were
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.915, .966, and .987, respectively, for the C-DINA model, whereas the same rates

for the C-G-DINA model were slightly lower at .896, .949, .978, respectively. The

correct vector classification rates for the same order of discrimination conditions

were .716, .875, and .949, respectively, for the C-DINA model, and .596, .785, and

.900, respectively, for the C-G-DINA model. These classification rates suggest

that the levels of discrimination are somewhat similar, but not exactly the same.

Results were measured by tabulating the proportion of times that an incorrect

q-vector was corrected and that a correct q-vector “corrected” (i.e., misspecified).

These quantities are the true positive and false positive rates, respectively. The

vector-level true positive rate was computed as

T+
v =

∑R
r=1

∑
j∈M I(qj = q̂j)

|M | ×R
, (4.20)

and the vector-level false positive rate was computed as

F+
v =

∑R
r=1

∑
j /∈M I(qj = q̂j)

[J− |M |]×R
. (4.21)

The attribute-level true positive rate was computed as

T+
a =

∑R
r=1

∑
j∈M

∑K
k=1 I(qjk = q̂jk)

|M | ×K ×R
, (4.22)

and the attribute-level false positive rate was computed as

F+
a =

∑R
r=1

∑
j /∈M

∑K
k=1 I(qj = q̂j)

[J− |M |]×R×K
, (4.23)

where M is the set of misspecified q-vectors, | M | is the size of set M , and

R = 100 replications. The true and false negative rates can be obtained from

these quantities, if desired. Results were averaged over 100 replications; both

Q-matrix misspecifications and response data were replicated. All computations
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were performed in R (R Core Team, 2015).

4.5 Results

Tables 4.3 and 4.4 display the true and false positive rates for data generated

with the C-DINA model using the WLS method, Table 4.5 displays the mean true

positive rates for the C-DINA model using the Max R2 method, and Tables 4.6

and 4.7 display the rates for the same quantities for the C-G-DINA model. Table

4.3 shows that discrimination affected the true positive rate to a greater degree

than either the number of misspecifications or the sample size. For example,

the vector-level true positive rate for the small sample size condition decreased

from .87 to .81 when moving from the 5% to 10% misspecification level, but for

either level of misspecification, the rate increased to 100% when the discrimination

condition was medium. For the medium and large sample size, increasing the level

of misspecification reduced rates from .85 and .85 to .83 and .81, respectively.

As the discrimination increased, the algorithm’s ability to determine the cor-

rect q-vector increased due to the greater distinctness in the responses of each of

the latent groups. Also, the attribute-level true positive rates were always at least

as high as their vector-level counterparts, and never less than .96. The reduction

in the true positive rates when increasing the level of misspecification was only

.01, and was only seen for the low discrimination condition; all other rates were

100%.

This method showed some robustness to the level of misspecification in the

Q-matrix, as only small reductions in the true positive rates were seen, and only

for the low discrimination condition. Increasing the sample size had a small

and inconsistent effect. Near perfect true positive rates were found at medium

and high discriminations, for which the method was robust to the number of

misspecifications. Finally, greater improvements were seen at the vector level.
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Table 4.3: C-DINA WLS Mean True Positive Rates
T+
v T+

a

% Misspec. Disc. S M L S M L

5%
Low 0.87 0.85 0.85 0.97 0.97 0.97
Med 1.00 1.00 1.00 1.00 1.00 1.00
High 1.00 1.00 1.00 1.00 1.00 1.00

10%
Low 0.81 0.83 0.81 0.96 0.96 0.96
Med 1.00 1.00 1.00 1.00 1.00 1.00
High 1.00 1.00 1.00 1.00 1.00 1.00

Note. Misspec.: Misspecification. Disc.: Discrimination. S: Small sample size.
M: Medium sample size. L: Large sample size.

In Table 4.4, false positive rates are tabulated for both misspecification levels,

and also for the condition in which no entries were misspecified (0% misspecifica-

tion), which shows the method’s Type I Error. False positive rates were zero (to

the second decimal place), with the exception of the low discrimination condition.

All false positive rates for the low discrimination condition, however, were well

below the significance level of .05. The false positive rates for the 0% misspeci-

fication condition were always equal to or lower than those for either the 5% or

10% misspecification conditions, which was likely due to a slight deterioration in

the accuracy of the candidate posterior distributions for the conditions in which

the Q-matrix was misspecified.

Table 4.4: C-DINA WLS Mean False Positive Rates
F+
v F+

a

% Misspec. Disc. S M L S M L

0%
Low 0.02 0.01 0.02 0.00 0.00 0.00
Med 0.00 0.00 0.00 0.00 0.00 0.00
High 0.00 0.00 0.00 0.00 0.00 0.00

5%
Low 0.02 0.02 0.02 0.00 0.00 0.00
Med 0.00 0.00 0.00 0.00 0.00 0.00
High 0.00 0.00 0.00 0.00 0.00 0.00

10%
Low 0.03 0.02 0.02 0.01 0.00 0.00
Med 0.00 0.00 0.00 0.00 0.00 0.00
High 0.00 0.00 0.00 0.00 0.00 0.00

Note. Misspec.: Misspecification. Disc.: Discrimination. S: Small sample size.
M: Medium sample size. L: Large sample size.
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Table 4.5: C-DINA Max R2 Mean True Positive Rates
T+
v T+

a

% Misspec. Disc. S M L S M L

5%
Low 0.96 0.94 0.95 0.99 0.99 0.99
Med 1.00 1.00 1.00 1.00 1.00 1.00
High 1.00 1.00 1.00 1.00 1.00 1.00

10%
Low 0.79 0.79 0.79 0.96 0.96 0.96
Med 0.97 0.97 0.98 0.99 0.99 1.00
High 0.98 0.99 0.97 1.00 1.00 0.99

Note. Misspec.: Misspecification. Disc.: Discrimination. S: Small sample size.
M: Medium sample size. L: Large sample size.

Table 4.5 shows the mean true positive rates for the Max R2 method for

the C-DINA model. With respect to the false positive rates, the Max R2 method

always had a rate of 0 for this set of conditions, whereas the WLS method had false

positive rates of 0 only for medium and high discrimination conditions. For the

low discrimination condition, the highest false positive rate for the WLS method

was for the 10% misspecification, small sample size condition at the vector level

(i.e., the least ideal condition and the most stringent performance criteria) of .03,

which was still very low.

Next, the comparison of the Max R2 method to the WLS method with re-

spect to the true positive rates revealed that for the 10% level of misspecification,

the WLS method always performed equivalently to or better than the Max R2

method, with the differences being slightly more notable at the vector level. For

example, with a small sample size, the mean true positive vector-level rates were

.79, .97, and .98 for low, medium, and high discriminations for the Max R2

method, whereas the WLS counterparts were .81, 1.00, and 1.00. For the 5% mis-

specification level, the Max R2 method outperformed the WLS method only for

the low discrimination condition. The vector-level differences were approximately

.09 or .10, whereas the attribute level differences were about .02.

Tables 4.6 and 4.7 show the mean true and false positive rates, respectively,

for the C-G-DINA model. Taken together, these tables show that the item quality
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had the largest effect on the true positive rates compared to the other factors.

In examining the true positive rates, the results for the small sample size and

5% level of misspecification condition increased from .56 to .83 and .95 as the

discrimination increased from small to medium and large. The rates for the 10%

level were very similar. Conversely, increasing the sample size at the 5% level

only increased rates by .01 to .03, and the level of misspecification resulted in

maximum differences of only about .02.

Unlike Table 4.4, Table 4.7 shows highly elevated false positive rates for the

low discrimination condition, and moderately elevated false positive rates for the

medium discrimination condition. For the low discrimination conditions, rates

were .39 for all levels of misspecification except the 10% level, in which they were

.40. For the medium discrimination conditions, rates were between .11 and .13,

with the higher rates generally being found in conditions with more misspecifica-

tions. For the high discrimination condition, however, false positives were below

the nominal level. Again, neither sample size nor level of misspecification had a

large effect on the results.

Table 4.6: C-G-DINA WLS Mean True Positive Rates
T+
v T+

a

% Misspec. Disc. S M L S M L

5%
Low 0.53 0.53 0.55 0.89 0.89 0.90
Med 0.73 0.77 0.77 0.95 0.95 0.95
High 0.93 0.95 0.93 0.99 0.99 0.99

10%
Low 0.53 0.54 0.54 0.89 0.89 0.90
Med 0.74 0.76 0.75 0.95 0.95 0.95
High 0.92 0.93 0.92 0.98 0.99 0.98

Note. Misspec.: Misspecification. Disc.: Discrimination. S: Small sample size.
M: Medium sample size. L: Large sample size.
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Table 4.7: C-G-DINA WLS Mean False Positive Rates
F+
v F+

a

% Misspec. Disc. S M L S M L

0%
Low 0.44 0.42 0.44 0.09 0.09 0.09
Med 0.18 0.19 0.18 0.04 0.04 0.04
High 0.05 0.05 0.05 0.01 0.01 0.01

5%
Low 0.44 0.43 0.43 0.09 0.09 0.09
Med 0.18 0.18 0.17 0.04 0.04 0.04
High 0.05 0.07 0.05 0.01 0.01 0.01

10%
Low 0.44 0.44 0.44 0.09 0.09 0.09
Med 0.21 0.21 0.18 0.04 0.04 0.04
High 0.05 0.06 0.05 0.01 0.01 0.01

Note. Misspec.: Misspecification. Disc.: Discrimination. S: Small sample size.
M: Medium sample size. L: Large sample size.

4.6 Real Data Example

Data Description

In their paper introducing the C-DINA model, Minchen, de la Torre, and Liu (in

press) demonstrated the viability of their model on a set of response times (which

also included an analysis of response accuracies) to balance scale questions, which

was originally collected and subsequently analyzed by van der Maas and Jansen

(2003). Each question presented a balance scale, centered on a fulcrum, with

one or more equal weights on either side. Examinees were expected to use the

positioning and magnitude of the weights to determine if the scale would lean to

either side or remain balanced. The combination of the number of weights and

their locations determine the type (and difficulty) of the problem.

The final dataset included 146 examinees and 40 questions, and represented

a subset of the original dataset. The rationale for the subset can be found in

Minchen, de la Torre and Liu (in press). The 40 items were comprised of four

types, as shown in Table 4.8. Each of the item descriptions indicates the nature

of the questions. For example, conflict-distance means that the side of the scale
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with more weights are placed closer to the fulcrum than the weights on the other

side. The question cannot be solved by examining only the number and locations

of the weights. Rather, the two pieces of information must be integrated using

the torque rule. Additional descriptions are available in van der Maas and Jansen

(2003). Although it would have been desireable to find a dataset with a greater

number of attributes, we were unable to find one that was amenable to this

analysis.

Table 4.8: Reduced Q-matrix for the Balance Scale Data

Attribute
Item Type # Items Description Distance Torque

I 10 Simple-distance 1 0
II 10 Conflict-balance B 1 1
III 10 Conflict-distance 1 1
IV 10 Conflict-balance A 1 1

Analysis

All 40 items were examined using the WLS method, and only one correction was

made. Item 39, which was a Type III item with q = 11, was “corrected” to have

q = 10. Although it had a slightly lower R2 value of .13, it was not significantly

different than the R2 value of .16 for the correct q-vector. Unfortunately, the item

was not available, so further analysis to remedy the discrepancy cannot be done.

However, in this case, the question is whether or not item 39 can be performed

without the torque rule. To address this question, the item should be returned to

the subject matter experts to investigate whether the question can be solved using

an alternative strategy, or perhaps there is a shortcut to solving this problem that

does not involve the torque rule.

The Max R2 method was also applied the data, but it always chose a q-vector

of qj = 10. That method, however, should only be considered for data that truly
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conforms to the C-DINA. When applying the WLS method to the data, which

fits a C-G-DINA model, it was confirmed that the choosing the q-vector that

maximized the R2 value always resulted in choosing qj = 11. Therefore, the

WLS method presented in this paper provided results closest to the established

Q-matrix for this dataset.

Table 4.9: SSE From Real Data Example
qc SSE R2 P-value DF
10 35.97 0.13 0.051 144
11 34.49 0.16 - 142

Finally, the entries of the Q-matrix were randomly misspecified at the 5- and

10-% levels and replicated 100 times, with a maximum of one misspecification per

item was permitted. True- and false-positive and negative rates were recorded for

each level of misspecification, and are shown in Table 4.10. True positive rates

were slightly lower for the 10% level than they were for the 5% level, but the

differences were not large. For example, the true positive vector rate only de-

creased by about .02 when doubling the misspecification rate. Also, as expected,

vector-wise rates were lower than their corresponding attribute-wise rates.

False positive rates increased slightly as the level of misspecification increased,

but these differences were also not large. For example, the false positive vector

rate increased from .04 to .06 when increasing the misspecification rate from 5-

to 10%. These findings echo a previous finding, which suggests that the level

of misspecifications does not have a dramatic effect on the performance of the

method.

4.7 Discussion and Summary

The WLS Q-matrix validation method was proposed and tested. The method was

developed in the context of a generalized continuous response model, for which the
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Table 4.10: Real Data True and False Positive Rates
Misspecifications

Index 5% 10%
T+
a .92 .91
T+
v .88 .86
F+
a .02 .03
F+
v .04 .06

Max R2 method would always choose the fully-specified q-vector. Generally, the

WLS method has been shown to be an effective method in Q-matrix validation for

both the C-DINA and C-G-DINA. For the C-DINA, the results were somewhat

mixed; for the lower level of misspecification, the Max R2 method outperformed

the WLS method, but this trend reversed for the higher level of misspecification.

The WLS method was also compared to the MaxR2 method when the C-DINA

model was used to generate the data - the only case in which the application of the

latter method would be appropriate. The Max R2 method was only superior to the

WLS method in one condition: for the 5% level of misspecification at the vector

level. For all other conditions, the methods performed similarly. The advantage of

the WLS method is that it is more flexible - it does not assume a restrictive model

like the Max R2 method does. To date and to our knowledge, the C-DINA and

the C-G-DINA models are the only continuous response CDMs that have been

developed, but they are also perhaps the simplest and most complex models,

respectively, possible under this framework. If other intermediate continuous

response models were to be developed that were less complex than the saturated

model but more complex than the C-DINA model, the WLS method could prove

useful.

For the C-G-DINA model, the method had strong performance when the

item quality was high, but the performance diminished as the item quality was

decreased, a result that was expected. This trend was also seen with the C-DINA

data, but to a smaller degree. Although the test composition was designed to
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be similar for both models, the development of a measure for discrimination for

the C-G-DINA (i.e., the JSD) is in its infancy and needs additional study to

more fully understand its behavior. Specifically, the upper bound of the JSD

increases as the number of distributions increases, and it is not entirely clear how

the JSD values of two systems with different numbers of probability distributions

should be compared. The JSD, however, has been shown to be highly effective

as a computerized adaptive testing item selection index (Minchen & de la Torre,

2016), thus warranting our use of it here. However, our conclusion that the

method worked better on the C-DINA than it did on the C-G-DINA is tentative.

A finding that was consistent across all the simulation study results was that

sample size did not affect performance greatly. The level of misspecification af-

fected the C-DINA results, but did not have much effect on the C-G-DINA results.

It is conceivable, however, that increasing the level of misspecification to some

larger value may negatively affect the performance of the method, but doing so

may also affect the convergence of the models. All replications for all conditions

in this study converged.

The real data example demonstrated that the WLS method is very consistent

with the opinions of experts. Unfortunately, the items are not available to the

public, so it was not possible to examine the one item that the method flagged as

incorrectly specified. However, it is possible that there is an alternate strategy to

solving this problem that does not employ the torque rule. Further consultations

with subject matter experts, teachers, and researchers would be required to resolve

this discrepancy. The second part of the real data analysis suggested that the

method performs reasonably well on real data when simulating misspecifications,

and, again, that the level of misspecification does not have a dramatic effect on

performance of the method.

Key to our goal of demonstrating the viability of the method is that this study

shows that this method may be useful with real data. The Max R2 method did
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not appear to be helpful. The advantage of the WLS method is that it does

not require a model specification (although it implicitly assumes a generalized

model), whereas the Max R2 method explicitly assumes a C-DINA model. To

the extent that the C-DINA model does not fit the data, the Max R2 method

will fail. A model fit evaluation may be helpful in determining whether to use the

Max R2 method, but even if the C-DINA fits the data, this method should only

be preferred if the number of misspecifications is thought to be small. Further

study and model development is necessary to understand the behavior of the WLS

method for other applications in continuous response CDMs. The method also

could be made iterative, an adaptation that would likely improve performance.

As a final note, it should be reiterated that the proposed method relies on

the robustness of the F-test to both nonnormality and heterogeneity of variance,

both of which may be violated when the various groupings are made. Corrections

could potentially be made to this method, or a nonparametric alternative that

does not rely on these assumptions could be considered.
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Chapter 5

Conclusion

Cognitively diagnostic assessments (CDAs; de la Torre & Minchen, 2014) are

designed from the outset to provide diagnostic feedback with respect to a set of

discrete attributes. To translate the responses from CDAs into attribute mastery

profiles, cognitive diagnosis models (CDMs) are employed to analyze the response

data. Whereas the purpose of CDAs is diagnostic, the purpose of the traditional

assessement framework is typically to rank-order students.

Although interest in CDMs has grown over the last two decades, most of the

technical advancements have been developed in the context of a dichotomous,

or sometimes a polytomous, response. However, continuous response measures

also exist and have been studied in IRT, but not extensively in CDM. As such,

this dissertation builds on the work of Minchen, de la Torre, and Liu (in press)

and Minchen and de la Torre (2016), in which the continuous deterministic in-

puts, noisy “and” gate (C-DINA) and continuous generalized DINA (C-G-DINA)

models were developed, respectively.

In the first study, van der Linden’s (2007) hierarchical framework was used as

a way to jointly estimate latent variables governing response time and response

accuracy. Two separate item response models were used in the framework - one

for response time and one for response accuracy. For response time, a lognormal

model (van der Linden, 2006) was used, and a person-level latent variable, τ , was

estimated. On the response accuracy side of the model, a higher-order attribute

distribution was used to provide a statistical link between a general ability and
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the probability of mastering attributes, allowing a CDM to be used to model

response accuracy. (In van der Linden’s (2007) original formulation, the general

ability was directly responsible for correct item response probabilities.)

Based on this adaptation, both a general ability, θ, and an attribute pattern,

α, were estimated for each examinee. The simulation study demonstrated that

the inclusion of response time improved the estimation of θ, which was expected.

It was also hypothesized that improvements in θ estimates would in turn lead to

improvements in classification accuracy. Such improvements in α were observed,

and they were more substantial both for lower quality items and at the vector level.

One unexpected finding was that the range of θ̂ increased when using response

time, resulting in better estimates with less bias. Because one of the benefits of

the higher-order attribute formulation is that both α̂ and θ̂ are provided in a

single model (de la Torre & Douglas, 2004), improving the estimation of θ was

not a trivial benefit. The effect of the estimation error in τ was not examined

systematically, but could be in future work.

The second study discussed the challenges of attempting to apply existing

computerized adaptive testing (CAT) algorithms to a continuous response CDM.

In particular, extending such algorithms to a generalized continuous response

CDM may not be possible without a substantial loss of information. Thus, the

Jensen-Shannon divergence (JSD; Lin, 1991), which quantifies the degree of di-

vergence in a system of multiple probability density functions, was adapted for

use as a selection algorithm, where examinees’ current posterior estimates were

used as weights.

The logic of the proposed procedure is to find the next item that is maximally

discriminating for each examinee by computing the degree of posterior-weighted

variation in the item response function; this logic is identical to that used by

Kaplan, de la Torre, and Barrada (2015) when they adapted the generalized

DINA (de la Torre, 2011) discrimination index (de la Torre & Chiu, 2016) for use
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as a selection algorithm in CDMs with a dichotomous response. The algorithm

was found to be superior to random item selection by most measures, although

the benefit of using the JSD algorithm over random item selection diminished for

examinees who had more attributes.

A few issues remain to be resolved. One is that the range of the JSD is not

fixed; as there are more distributions being compared, the maximum possible

JSD grows. Note that this will not be a concern when applying the algorithm

to C-DINA data, because all items only have two response distributions. When

applied to the C-G-DINA, however, this property could lead to items with more

attributes having higher JSDs than items with fewer attributes, but based on

item usage, this did not appear to be a serious concern. A number of factors in

the study could be adjusted to more fully explore the behavior of the JSD. For

example, item parameters in this study resulted in lognormal distributions that

spanned approximately the same range and were symmetric, both of which need

to be adjusted for greater generalization. To examine the performance of the JSD

relative to established selection algorithms, the JSD could be compared to the

GDI, which works only with the mean of the distributions. In such a study, the

response types and shapes of the response distributions would be manipulated.

In the last study, a Q-matrix validation method for use with continuous re-

sponse was presented. The performance of the method was most affected by item

discrimination (quality). The method implicitly assumes a C-G-DINA model. It

appeared that performance when using C-DINA data was better than when using

C-G-DINA data, in spite of an attempt to ensure that the average discriminations

for both models were similar. This finding warrants additional study into the be-

havior of the JSD. Also, the groupings of log times formed when testing various

q-vectors may not form normal distributions, and they may also not have similar

variances, leading to a potential violation of the assumptions of the F-test. It is

unclear to what degree such violations reduced the effectiveness of the method,



118

but this could be explored in future studies. As a final note, with regard to both

the second and third studies, the descriptors used for item quality (i.e., “low,”

“medium,” “high”) should only be interpreted relative to each other. More real

data examples are needed to determine what a “typical” set of item parameters

are in practice.

Each of these studies explored applications of continuous response in CDMs.

The first study modeled two responses per person per item, one of which was

continuous, whereas the second and third studies only modeled one continuous

response per person per item. The real data examples from all three studies

used time as the continuous response variable. From a psychometric standpoint,

response time may provide additional information beyond what the response accu-

racy provides, or it may be of interest by itself. In the case of the former, prudent

researchers must understand the meaning of response time if it is to affect the

ability estimates, particularly in high-stakes settings. They must also understand

the political consequences of using response time to estimate a different ability.

Failing to do so may negatively affect the validity of the scores.

With respect to the first study, other types of models that use response time to

aid in ability estimation and/or classification accuracy should also be considered.

One such model assumes that the response times arise from examinees’ attribute

profiles, rather than a separate latent trait representing speed. Based on the

example provided using van der Maas and Jansen’s (2003) data in Chapter 2 and

in Minchen, de la Torre, and Liu (in press), the response times are hypothesized

to be a function of attribute mastery, providing theoretical justification for using

a single α. A possible complication would be examinees who are attempting to

apply a skill but are doing so incorrectly. In such a case, response time data may

suggest that an examinee possesses a skill, but response accuracy data suggests

the opposite (Minchen, de la Torre, & Liu, in press).

Such a model may make use of the developments in the second and third
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studies in this dissertation. For example, Q-matrix validation in this type of a

dual-response model may be challenging. Perhaps the method presented Chapter

4 may be used in tandem with an existing procedure for dichotomous response.

Similarly, the JSD CAT algorithm presented in Chapter 3 may be useful, partic-

ularly if it were shown to perform well for dichotomous data.

Finally, a theme that arose across Chapters 3 and 4 was that additional work

is needed to better understand the characteristics of the JSD, particularly with

regard to its behavior across its support. Presently, it is not entirely clear to

what degree it is nessessary to adjust the scale of the JSD such that the upper

limit of its range is always one. Although this may be attractive mathematically,

it may be unnecessary, unless C-G-DINA items that measure many attributes

have lognormal distributions that are very spaced out. Although this issue can

be studied from a theoretical standpoint, more continuous response CDM data

needs to be collected to determine the typical ranges of the parameters.
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