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Central aortic blood pressure waveform (╟╪) is a critical determinant of the state of 

overall cardiovascular function, but it cannot be measured directly by noninvasive means. 

Numerous attempts were made to derive ╟╪ from noninvasively measured peripheral 

pressure (╟▬) using mathematical transformations, transfer function or arterial system 

modeling approaches.  These techniques, in general, do not account for inter-subject or 

intra-subject variability. A few methods have recently been proposed to generate 

personalized adaptive transfer function employing arterial system modeling. However, 

these personalized models have to be calibrated across different patients at different times 

and the model algorithms are very sensitive to calibration technique and calibration error. 

More recently, multi-channel blind system identification (MBSI) have been implemented 

on these systems to mathematically derive common source ╟╪ based on multiple ╟▬ 

inputs. This method seems to afford self-calibrating and minimizes estimation error. In 
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general, MBSI approaches are more convenient and practical for aortic pressure 

estimation, but have not been widely adopted. 

In this thesis, the arterial system is proposed to be modeled as a Weiner System with 

linear finite impulse response (FIR) filter accounting for larger arteries transmission 

channel and non-linear memoryless function block accounting for all nonlinearities due 

to narrowing of arteries, branching and visco-elastic forces. This model is then 

experimentally validated with seven human blood pressure datasets.  Single input and 

multiple output (SIMO) or aortic-to-radial arterial transmission channel and aortic-to-

femoral arterial transmission channel are established. To model the nonlinear memoryless 

monotonic function in the Wiener System model a correlation study is performed for 

linear finite impulse response (FIR) filter simulated peripheral pressure vs. measured 

peripheral pressure waveform.  Each of this correlation curves were fitted to linear, 

quadratic and cubic polynomial equation. It was found that Wiener model with 3
rd

 order 

polynomial function yielded better modelling accuracy than that from 2
nd

 order 

polynomial function which in turn was better than mere linear FIR filter. 

╟╪ estimation technique is then presented by modeling arterial system as Multi-

channel Weiner System. With this structure when pressure waveforms are measured from 

two distinct peripheral locations, multichannel blind system identification (MBSI) 

technique can be used to estimate common input pressure signal or ╟╪. Nonlinear MBSI 

method was employed on human blood pressure waveforms (7 datasets).  Results show 

╟╪ can be accurately derived. This method by nature is self-calibrating to account for any 

inter-personal, along with intra-personal, vascular dynamics inconstancy. Besides ╟╪ 

estimation, the proposed MBSI method also allows extraction of system dynamics for 
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vascular channels. Initially, linear finite impulse response (FIR) filter is assumed to be of 

fixed 10
th
 order in the Wiener System model across all patient dataset. To further improve 

performance of this aortic pressure estimation method, a new and improved method is 

developed which estimates channel order preceding arterial system identification. By 

using effective channel order, system identification is optimized which then enhances 

aortic pressure estimation. Results showed significant improvement over our earlier 

method with far more accurate aortic pressure estimation. The outcome of the novel 

method as presented by this dissertation has the potential to enhance clinical diagnostic 

accuracy and subsequent treatment efficacy assessment. 
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Chapter 1: Introduction 

1.1 Background 

Knowledge about the magnitude and shape of the central aortic pressure wave 

provide very important information regarding cardiac function and heart-blood vessel 

interaction. Furthermore, aortic pressure waveform can be used to derive valuable clinical 

information particularly in hypertension an in patients with coronary arterial disease (Li, 

2000) regarding vascular stiffness, wave reflections, augmentation index, aortic flow, 

ventricular ejection duration, arterial compliance and systolic load and other features 

useful in the clinical examination (Li, 2000; Li, 2004; O'Rourke et al., 1992; Murgo et al., 

1980; Wesseling et al., 1993; Li et al., 1990; Li and Zhu, 1994). Thus, analysis of aortic 

pressure waveform morphology has recognized significance during patient assistance and 

also to monitor drug-cardiovascular system interaction. 

Despite the vast usefulness of aortic pressure waveform, its routine utilization is 

hampered due to invasiveness of aortic pressure measurement procedures through 

catheterization (Li et al., 1976). This is not a preferred method for routine screening, 

diagnosis or therapy follow-up, because of its invasiveness and large underlying cost. 

Noninvasive continuous monitoring of peripheral artery pressure with 

photoplethysmography and applanation tonometry (Imholz et al., 1998; Kelly et al., 

1989; Söderström et al., 2002) are preferred. For the latter, radial artery is the most 

common application site as its underlying bony tissue aids more optimal applanation as 

flat artery walls features transmural forces to be perpendicular to blood vessel surface 

(Drzewiecki et al., 1983). 

http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=299&UserID=32720&AccessCode=CC0CBC1CA359487A8315DAED367F0101&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=299&UserID=32720&AccessCode=CC0CBC1CA359487A8315DAED367F0101&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=32720&AccessCode=867BBCBE12B6470DA43B9BC1B0C482D2&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=32720&AccessCode=867BBCBE12B6470DA43B9BC1B0C482D2&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=370&UserID=32720&AccessCode=0B5AC0E860CA49339035FE49332C60F5&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=370&UserID=32720&AccessCode=0B5AC0E860CA49339035FE49332C60F5&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=371&UserID=32720&AccessCode=CA602701F0BC4955980DCD28313DF6BC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=345&UserID=32720&AccessCode=1AC408420D34493DB3CBC860AB75965F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=345&UserID=32720&AccessCode=1AC408420D34493DB3CBC860AB75965F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=346&UserID=32720&AccessCode=F3A008EC3BAC4CB297E49895CC6782A9&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=346&UserID=32720&AccessCode=F3A008EC3BAC4CB297E49895CC6782A9&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=323&UserID=32720&AccessCode=F1D39816DAE94DD5BA32B25FF9A99871&CitationSuffix=
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Aortic pressure wave encounters complex wave reflection in arterial network as it 

travels from aorta to peripheral sites (Li, 2004). These wave reflections result in 

amplification of systolic and pulse pressures with their magnitudes depending on arterial 

network properties and its corresponding transmission path (Karamanoglu et al., 1995). 

Systolic pressure in radial arteries becomes significantly larger than in central aorta. So, 

cardiac afterload and perfusion has to be derived from aortic pressure or more central 

arterial pressure rather than calculating them directly from peripheral arterial pressure 

waveforms (Waddell et al., 2001).  

Above mentioned clinical significance of central aortic pressure waveform warrants 

investigation on noninvasive estimation of aortic pressure. Numerous research activities 

have been undertaken to transform non-invasive peripheral pressure data (such as carotid 

artery (Chen et al., 1996), brachial artery (Karamanoglu et al., 1995),  and radial artery 

pressure (Chen et al., 1997) to central aortic pressure waveform using mathematical 

transformations and/or mathematical models (Karamanoglu et al., 1995). Most of these 

methods, generally, involve peripheral-to-aortic pressure transfer function derivation, 

averaged over group of patients (Söderström et al., 2002). This transfer function is then 

used to convert peripheral pressure wave to aortic pressure wave. The ñgeneralized 

transfer functionò techniques are based on the primary assumption that heart and arterial 

tree properties are consistent between all patients and at all times. It is well known that 

these properties differ with different subjects, age and medical condition. Thus, a few 

techniques have been proposed for personalized transfer function employing arterial 

system modeling (Stergiopulos et al., 1998; Karamanoglu and Feneley, 1997; Segers et 

http://wizfolio.com/?citation=1&ver=3&ItemID=365&UserID=32720&AccessCode=DA745BF297FA4B0192B313D5D4F47F50&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=288&UserID=32720&AccessCode=B93E7054141549B0AA1C9048A1AF0A89&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=321&UserID=32720&AccessCode=E39400DB84054BB8B4D8F44517145069&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=281&UserID=32720&AccessCode=7FCD4FDDDAAD4BE99486A35CB5C895D4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=


3 

 

 

 

al., 2000; Sugimachi et al., 2001; Swamy et al., 2009; Stok, 2016; Xiao et al., 2017; 

Guala et al., 2017). 

Some of Medical Devices currently available in the market that provide non-invasive 

aortic pressure estimation solution are: 1. SphygmoCor designed and developed by an 

Australian-headquartered company, AtCor Medical Limited. 2. Mobil-O-Graph designed 

and developed by a German-headquartered company I.E.M. GmbH. (Papaioannou et al., 

2016) 

Several studies have focused on the estimation of central aortic pressure from more 

easily available peripheral pressure waveforms. Lack of standardization, pressure 

waveforms were recorded at different peripheral arterial sites, such as the femoral, 

carotid, radial and finger arteries and transfer function/model is subsequently applied to 

derive estimated aortic pressure waveform. Many of these approaches can broadly be 

classified into three different categories; these are summarized in the following sections:  

1.2 Black Box System Identification or Generalized Transfer Function 

These types of aortic pressure estimation method normally convert peripheral 

pressures to aortic pressure using a general/ generic transfer function. Hence, this type of 

approach does not account for inter-subject as well as intra-subject variability. 

1.2.1 Autoregressive Exogenous (ARX) Method 

Mathematical transformation was applied by Chen et at. (Chen et al., 1997) from 

recorded radial arterial pressure waveform to estimate aortic pressure noninvasively, 

while invasive aortic pressure was measured simultaneously at different hemodynamic 

conditions (steady state, Valsalva maneuver, abdominal compression, nitroglycerin and 

http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=419&UserID=32720&AccessCode=051E6F96ECB245B0BF37F6A687EBD2B4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=419&UserID=32720&AccessCode=051E6F96ECB245B0BF37F6A687EBD2B4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=421&UserID=32720&AccessCode=34408B06A0DD4BD9859BED6D9A2FFE0A&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=422&UserID=32720&AccessCode=D83861CDA1254C4A9A0F6D4E084953FA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=422&UserID=32720&AccessCode=D83861CDA1254C4A9A0F6D4E084953FA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
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vena caval obstruction). For each of this case, individual transfer function between radial 

pressure and its corresponding aortic pressure was calculated using linear Auto-regressive 

exogenous model. According to the linear ARX (autoregressive exogenous) Model a 

causal linear system can be expressed in terms of input (current and past) and output data 

(past) 

 Ὕὸ ὥὝὸ ρ ὥὝὸ ς Ễ ὥ Ὕὸ ὲὥ ὦὖὸ ρ

Ễ ὦ ὖὸ ὲὦ 

(1-1) 

where Ὕὸ ὼȟπ ὼ ὲὥ represent present and past output while ὖὸ ὼȟρ

ὼ ὲὥ are previous input. Here, ὥ, ρ ώ ὲὥ and ὦz, ρ ᾀ ὲὦ are weights for 

respective terms and hence they are characteristics of the model. 

Linear ARX model was found to result in better estimation for a given length of data 

set as compared to Fourier transform based method. These individual transfer functions 

were then averaged to obtain general transfer function. Because of averaging any 

particular difference among individual transfer functions was lost. Albeit this, central 

aortic pressure estimated using generalized transfer function was comparable to measured 

aortic pressure with Ò0.2Ñ3.8 mmHg error, arterial compliance to 6Ñ7% accuracy, and 

augmentation index to within ī7% (30Ñ45% accuracy) (Chen et al., 1997). This ARX 

based generalized transfer function method yielded reasonable estimation for aortic 

pressure and arterial compliance. But augmentation index estimation from this method 

was unacceptable as augmentation index would need higher precision aortic pressure 

wave re-construction. 

http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
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1.2.2 Neural Network Nonlinear ARX (NNARX) Method  

Neural network-based autoregressive exogenous model (NNAW model) was 

proposed by Varanini et al. (Varanini et al., 2003) for central aortic pressure derivation 

from peripheral pressure.  This method first trains a neural network based nonlinear 

model, which is later used to reconstruct central arterial pressure (output) from radial 

pressure waveform (input). A generalized nonlinear autoregressive exogenous (NARX) 

model can be represented by following equation 

 ώὸ Ὢώὸ ρȟȣȟώὸ ὲ ȟὼὸ Ὠȟȣȟὼὸ Ὠ ὲ ρ ‐ὸ (1-2) 

where ὸ is time, ώὸ is model output, ὼὸ is model input, ‐ὸ is white noise and 

ὪȢ is a nonlinear function. The ὪȢ is nonlinear function of past input and out values of 

the model. The problem was defined to estimate the unknown function ὪȢ using 

training data set ὼȟώ with objective to minimize the estimation error Ὡὸ; i.e. is 

disparity between measured output y and estimated ώ. 

http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
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Radial tonometry pressure along with invasive aortic pressure was measured in 20 

patients. Out of these 10 patients data set was used to train the model parameter and rest 

10 patients data set was used to test/ validate the model. It was found that NNARX model 

resulted in more accurate aortic wave reconstruction (especially more detailed dicrotic 

notch and systolic inflexion pressure) as compared to linear ARX model. Thus, 

augmentation index calculated from NNARX method was more accurate than one from 

ARX estimated aortic pressure. (Varanini et al., 2003) 

1.3 Gray Box System Identification (Personalized Transfer function) 

Generalized transfer function initially gained popularity owing to its simplicity; same 

generic transfer function or model is applied to derive aortic pressure curve from 

peripheral pressure for all patients irrespective of their medical condition. Nonetheless, as 

f(x,y)

ŦΩ(x,y) ҍ 

+

x(t)

ȅΩ(t)

Noise

y(t)

e(t)

NARX System

 

Fig. 1-1. Neural Network Auto-regressive exogenous model proposed by Varanini et 

al. for central aortic pressure (input) derivation from peripheral pressure (output) 

http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
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noted previously, cardiovascular properties are different from patient to patient and can 

also vary for a given patient depending on his/her physiological state. Hence generalized 

transfer function does not rationalize either inter-subject or intra-subject variability. 

Generalized transfer function estimated aortic pressure is normally biased depending on 

training set. Having personalized or adaptive transfer function or model will be far more 

valuable as it can accommodate inter-subject and temporal variability of arterial tree. The 

tube model and wave separation method are excellent example of individualized 

peripheral-to-aortic pressure transformation technique. 

 

1.3.1 The Wave Separation Method 

Resolution of blood pressure waveform into its forward (╟█) and reflected (╟ ) or 

backward (╟ ) waves in the time domain was first proposed by Li (Li, 1986). Time 

domain method is efficient and can be easily visualized. An example of this methodology 

is shown below in Figure 1-2. 

http://wizfolio.com/?citation=1&ver=3&ItemID=300&UserID=32720&AccessCode=C1E5A89ED8594A179AFD0807946656EF&CitationSuffix=
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Stergiopulos et al. (Stergiopulos et al., 1998) proposed a time domain approach to 

estimate aortic pressure curve from tonometer measured peripheral pressure and flow 

velocity curve. This method first decomposes measured peripheral pressure ὖ (and 

velocity ὠ) into their forward and backward counterparts: 

 ὖ ὤȢὠ ὸ ὖ ὸ ὤȢὠ ὸȾς (1-3) 

and 

 ὖ ὤȢὠ ὸ ὖ ὸ ὤȢὠ ὸȾς (1-4) 

 

Fig. 1-2. Aortic pressure waveforms resolved into its forward (╟ ) and reflected (╟ ) 

components by Liôs time-domain method. It can be seen that forward and reflected 

pressures undergo constructive addition to result in the measured aortic pressure. 
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where subscripts f and b denote forward and backward waves, respectively, and ὤ is 

the characteristic impedance of the artery. It is noted here that noninvasive flow velocity 

can be commonly measured with an ultrasound Doppler probe. 

In the equations above, characteristic impedance ὤ was calculated as average slope 

of pressure-velocity curve in early systole, as shown by Li (Li, 1986). After separation, 

forward pressure wave is delayed (by time Td) to account for the time it takes for 

travelling from aorta to peripheral site. On the other hand, reflected wave is advanced in 

time as this wave component is approaching toward central aorta. These time shifted 

wave counterparts are summed to recreate aortic pressure. When tested, this method was 

able to estimate aortic systolic pressure, diastolic pressure and complete waveform with 

mean squared error of 0.1, 1.0 and 1.56 mmHg respectively. As this wave separation 

method utilized parameters ὤ and Ὕ obtained on per-patient basis, aortic pressure 

estimated using this personalized transfer function is better predictor of true aortic 

pressure as compared to one derived from generalized transfer function. 

1.3.2 The Tube Model Method 

Characterizing the tube load in order to obtain transfer function was first utilized by 

Sugimachi et al. (Sugimachi et al., 2001) and Westerhof et al. (Westerhof et al., 2007). 

The frequency (ɤ) dependent impedance ὤ‫  of terminal load can be characterized by 

two parameters (see equation below; Ai and Bi, where 0<Ai<Bi). The values of these 

parameters depend on the peripheral resistance and compliance. The resultant pressure 

signal ὴ ὸ {or flow signal ή ὸ} at any arterial tube site can be written in terms of 

forward and backward pressure (or flow) signals after accounting for wave propagation 

http://wizfolio.com/?citation=1&ver=3&ItemID=300&UserID=32720&AccessCode=C1E5A89ED8594A179AFD0807946656EF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=284&UserID=32720&AccessCode=FF2C46DA2BCF41E88FB82CE3B6158982&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=291&UserID=32720&AccessCode=6316841B63CA41DEB5F0DBC966A4DF25&CitationSuffix=
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delay (Ὕ) between signal probe site (peripheral artery) and signal originating site (aorta) 

by proper time shifting of forward/reflected signal.  

 ὴ ὸ ὴ ὸ Ὕ ὴ ὸ Ὕ  (1-5) 

 ή ὸ ή ὸ Ὕ ή ὸ Ὕ  (1-6) 

Swamy et al. modelled arterial tree as parallel tube of pressure and flow (Swamy et 

al., 2009). As shown in Figure 1-3, the arterial system is represented as parallel m tubes 

along with series terminal load elements. Here the aorta is connected to i
th
 peripheral 

artery through i
th
 tube with constant characteristic impedance Zci. This tube allows 

pressure wave to propagate from aorta through peripheral arterial end site with a constant 

time delay Tdi. The i
th
 terminal load implies arterial bed distal to i

th
 peripheral artery. As 

shown in the arterial tree tube model figure below, peripheral artery pressure (ὴ ὸ) can 

be derived from aortic pressure [ὴ ὸ] using transfer function (Stergiopulos et al., 1998). 

Here, the model parameters Ὕ , Ai and Bi are unknown and are characteristic to 

individual subjects transfer function for a given time. 

http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
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Where characteristic impedance ὤ  corresponding to i
th
 tube with constant is given 

by 

 
ὤ‫

ὤ Ὦ‫ὄ

Ὦ‫ὃ
 

(1-7) 

where i=1,2,ém 

Transfer function relating a peripheral pressure waveform ὴ ὸ to the aortic 

pressure waveform ὴ ὸ in terms of the unknown parameters of the model 

Zc1

ZciAortic 
Pressure 

Pa

Peripheral 
Pressure 

Signals Ppi

Zcm

Pp1

Ppm

Pp2

qa1

qai

qam

Z1

Zi

Zm

 

Fig. 1-3. Parallel tube model of pressure and flow in the arterial tree on which the aortic 

pressure estimation technique is based. Here, ὤ  is characteristic impedance and ὤ ‫  is 

terminal load. 
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ὝὊ

ὄ ὃ
ς Ὦ‫Ὡ

ὄ ὃ
ς Ὡ

ὄ Ὦ‫
 

(1-8) 

Transfer function relating ὴ ὸ to the arterial flow waveform at the corresponding 

tube entrance ή ὸ in terms of the same parameters. 

 

ὝὊ

ὄ ὃ
ς Ὦ‫Ὡ

ὄ ὃ
ς Ὡ

ὤ ὄ Ὦ‫
 

(1-9) 

For Ὕ  calculation carotid artery pressure was measure using non-invasive 

tonometry. Ὕ  is estimated a time difference between beginning of systole in carotid 

pressure and measured tonometry peripheral arterial pressure (Sugimachi et al., 2001). 

Ὕ  does not normally vary frequently; Ὕ  measurement once a week or even month is 

generally sufficient for re-calibrating the tube model parameters (Swamy et al., 2009). 

Subsequently, the tube model parameters are computed iteratively using 15 cycles of 

measured peripheral waveform and previously measured Ὕ . Different values of 

parameters are guessed; for each of these value aortic pressure waveforms are derived 

using the tube model peripheral pressure-to-aortic pressure transfer function shown 

above. Only those pairs of parameters that yield physiologically feasible pressure 

waveforms are used to derive flow waveform from peripheral waveform using tube 

model peripheral pressure-to-aortic flow transfer function shown above. Assuming that 

aortic valve closes completely during diastole, blood flow through aorta (and thus 

peripheral artery) during this period can be approximated as negligible. With this 

assumption, the parameters that provide minimum aortic flow during diastole are chosen. 

http://wizfolio.com/?citation=1&ver=3&ItemID=284&UserID=32720&AccessCode=FF2C46DA2BCF41E88FB82CE3B6158982&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
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Ultimately, the trained transfer function with optimized parameters is applied to 

transform measured peripheral pressure wave to aortic pressure wave. As these 

parameters are calibrated for each of the patients, the tube model is capable of adapting to 

inter-subject and intra-subject variation. To validate this method, it was applied on the 6 

healthy dogs for which simultaneous aortic and peripheral pressure signals were acquired. 

Aortic pressure waveforms were constructed from measured peripheral pressure 

waveforms using this method and then compared with measure aortic pressure 

waveforms. RMS error between derived and measured aortic pressure for complete 

waveform, systolic and pulse pressure were 3.7, 4.3 and 3.4 mmHg, respectively. This 

was an improvement over ARX based generalized transfer function with errors of 4.8, 6.1 

and 6.7 mmHg, respectively. 

1.4 Blind System Identification 

More recently, blind system identification are been implemented to predict aortic 

pressure wave from two or more of peripheral arterial pressure wave. These methods 

generally model arterial tree as single input, multiple output (SIMO) system. 

Multichannel blind system identification is applied on these systems to mathematically 

derive common source aortic pressure which, in multichannel system, caused multiple 

outputs (i.e. peripheral pressure). 

1.4.1 Multichannel Blind System Identification (MBSI) Method 

Multichannel blind system identification using eigenvector algorithm based FIR 

filter identification technique was proposed by Swamy et al. (Swamy et al., 

2007),utilizing previously established signal processing methodology (Abed-Meraim et 

al., 1997), for aortic pressure estimation from two or more peripheral pressure signals. 

http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
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Arterial tree is modeled as single-input, multiple-output system with peripheral pressure 

signals ὴ ὸ (where iÓ2) as system output and aortic pressure signal ὴ ὸ as system 

input. Pressure wave transmission channel are modeled by linear time invariant (LTI) 

system impulse responses Ὤὸ; this Ὤὸ is believed to preserve cardiovascular 

dynamic properties of i
th
 transmission channel (arteries). It is assumed that these LTI 

channels can be well defined by finite impulse response and they are coprime with each 

other (i.e. their Z transforms donôt have any common zeros or poles).  

As seen in the diagram below (Figure 1-4), mathematically peripheral pressure 

measured at different peripheral artery can be expressed as convolution of their respective 

transmission channel impulse response hi(t) and aortic pressure signal ὴ ὸ: 

ὴ Ὤṧὴ, where terms with ñiò suffix denotes quantities for i
th 

peripheral 

arterial system 
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Also, every peripheral arterial channel impulse response can be expressed in terms of 

any of other peripheral arterial channel impulse response, i.e. 

 ὴ ὸṧὬὸ ὴ ὸṧὬὸ ṧὬ ὸ 

Ὤὸṧ ὴ ὸṧὬὸ  

Ὤὸṧὴ ὸȟύὬὩὶὩ Ὥ Ὦ 

(1-10) 

For proof of concept, this method was implemented using two peripheral artery 

pressure as two channel blind system identification. Above equation involving 

convolution can be written as convolution sum and also account for measurement noise 

and/or modeling error e(t): 

h1

h2Aortic 
Pressure 
Signal Pa

Peripheral 
Pressure 
Signals 

Ppi

hm

Pp1

Pp2

Ppm

 

Fig. 1-4. The single-input, multi-output model of the arterial tree with peripheral pressure 

signals ὴ ὸ (where iÓ2) as system output and aortic pressure signal ὴ ὸ as system 

input. This is used for multichannel blind system identification to estimate aortic 

pressure. 
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Ὤ Ὧὴ ὸ Ὧ Ὤ Ὧὴ ὸ Ὧ Ὡὸ 

tⱦ[L-1,N-1] 

(1-11) 

here L and N are number of FIR filter order and sample size of acquired discrete 

peripheral pressure wave respectively. This equation can also be represented in cascaded 

matrix form using Hankel Matrix: 

 
ὖ ὖ

Ὤ
Ὤ

Ὡ 
(1-12) 

Hankel Matrix ὖ  is defined as: 

 ὖ  

ụ
Ụ
Ụ
ợ
ὴ π            ὴ ρ

ὴ ρ            ὴ ς

Ễ ὴ ὒ ρ

Ễ ὴ ὒ

ể ể
ὴ ὔ ὒ ὴ ὔ ὒ ρ

Ệ ể
Ễ ὴ ὔ ρỨ

ủ
ủ
Ủ

ȟὭɴ ρȟς 

(1-13) 

Above equation is essentially an optimization problem to minimize error e which can 

be solved using linear algebra concept of null space. The nullspace of matrix ὖ is made 

up of vectors Ὤ for which ╟▐ . Once computed, Ὤ are then used to reconstruct aortic 

pressure ὴ ὸ. 

Each of the measured peripheral pressure and aortic pressure relation can be written 

in form of convolution sum: 
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ὴ ὸ ὬὯὴ ὸ Ὧ ὲ ὸ 

(1-14) 

Where ὲ ὸ represents noise/ error in measurement or system modelling. The set of 

two peripheral pressure equations can laid out in matrix form using Toeplitz matrices Ὄ. 

 ὴ
ὴ

Ὄ
Ὄ
ὴ

ὲ
ὲ  

(1-15) 

Toeplitz matrix Ὄ is defined as: 

 
Ὄ

Ὤὒ ρ Ễ Ὤπ
ể Ễ ể

Ễ       π
Ễ       ể

               π         Ễ Ὤὒ ρ        Ễ      Ὤπ
 

(1-16) 

Above mentioned matrix equation is basically optimization problem to minimize 

noise n which can be solved (to a scale factor) using least square estimation (Abed-

Meraim et al., 1997): 

 ὴ ὌὌ Ὄὖ (1-17) 

Finally, the reconstructed aortic pressure was scaled such that mean peripheral 

pressure is same as mean aortic pressure. This step is justified by Poiseuilleôs law 

(Noordergraaf, 1978). Thus scaled aortic pressure ὴ ὸ can be computed as follows: 

 
ὴ ὸ ὴ ὸȢ

ὓὩὥὲὴ ὸ

ὓὩὥὲὴ ὸ
 

(1-18) 

Thus this method calculates personalized arterial system model transfer function and 

does not resort to generalized transfer function. Swamy et al. (Swamy et al., 2007) 

applied their method using two peripheral (femoral and radial) pressure data from four 

http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=312&UserID=32720&AccessCode=30DF5DF78BA94D03A452931CBD7C7931&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
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swine which was then validated against respective measured aortic pressure. From 

estimated aortic pressure waveform the root mean squared error was found to be 

4.6mmHg, 6.1mmHg and 7.1mmHg for total waveform, Systolic pressure and Pulse 

pressure respectively.  

1.4.2 Laguerre-Model MBSI Method 

    A Laguerre-Model based multichannel blind system identification method was 

shown by McCombie et al. (McCombie et al., 2005)  to estimate common system input 

(aortic flow) from multiple system output (peripheral arterial pressures). This method 

first models the hemodynamics of each branch in form of Laguerre functions as Laguerre 

orthonormal basis functions are known to help reduce number of FIR filter coefficients to 

precisely characterize arterial system irrespective of its slow decaying dynamics. A 

normal Laguerre expansion series is expressed as 

 
ὠ ᾀ

ὑ

ᾀ ὥ
 
ρ ὥᾀ

ᾀ ὥ
ȠύὭὸὬ ὑ ρ ὥ Ὕ 

(1-19) 

Here parameter ñὥò serve as slowest decaying system pole and Ὕ is the sampling 

period. With this Laguerre function representation, arterial system FIR filter can be 

written as 

 

Ὄ ᾀ ὦ
ὑ

ᾀ ὥ

ρ ὥᾀ

ᾀ ὥ
 

(1-20) 

where i denotes i
th
 channel dynamic arterial system. Consider two channel MBSI 

equality condition with Y1 and Y2 being measured peripheral arterial pressures (which are 

input to MBSI model): 

http://wizfolio.com/?citation=1&ver=3&ItemID=307&UserID=32720&AccessCode=1A2EF517CD0145BBA003A07C6740D40F&CitationSuffix=
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 Ὄὣ ὲ Ὄὣὲ (1-21) 

Rewriting above equation with Laguerre function representation of FIR filters: 

 

ὦ
ὑ

ᾀ ὥ

ρ ὥᾀ

ᾀ ὥ
ὣὲ

ὦ
ὑ

ᾀ ὥ

ρ ὥᾀ

ᾀ ὥ
ὣ ὲ 

(1-22) 

Or  

 

ὦ ὼ ὲ ὦ ὼ ὲȠύὭὸὬ ὼ

ὑ

ᾀ ὥ

ρ ὥᾀ

ᾀ ὥ
ὣὲ 

(1-23) 

ὼ ὲ are k
th
 order filter coefficients of i

th
 channel system for a given n

th
 time series 

of observed n
th
 output series ὣὲ. Above mentioned summation equation can written in 

matrix multiplication form: 

 ὼ ὲ Ễ ὼ ὲ

ể Ệ ể

ὼ ὲ ὔ Ễ ὼ ὲ ὔ

ὦ
ể

ὦ

ὼ ὲ Ễ ὼ ὲ

ể Ệ ể

ὼ ὲ ὔ Ễ ὼ ὲ ὔ

ὦ
ể

ὦ

π
ể
π

 

(1-24) 

Or 
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ὢ ὢ Ȣ

ὄ
ὄ

π 
(1-25) 

In order to solve for B1 and B2 in above equation, null space of ὢ ὢ  was 

computed using singular value decomposition. 

Thereafter, with thus computed channel dynamics B1 and B2 the input cardiac output 

u(t) is estimated from measured peripheral pressure by de-convolving one of the transfer 

function from its corresponding channel output. For this a deconvolution method, based 

on Gurelli and Nikias (Gürelli and Nikias, 1995), was used.  

This algorithm was applied to swine data for validation. Catheterization of left radial 

artery and right iliac artery and cardiac output flow were measured to assess the 

performance of the Laguerre based MSBI method. They first compared measured 

peripheral pressures against model estimated peripheral pressures. Two peripheral 

pressure waveforms were used to train the Laguerre model, i.e. two arterial system 

transfer functions. Using these estimated FIR filters along with measured Cardiac output, 

respective radial and iliac arterial pressure data were reproduced. These simulated radial 

and iliac arterial pressures ώ(t) were correlated with corresponding measured signals 

ώ(t) using mean absolute percent error MAPE: 

 

ὓὃὖὉ
ρ

ὔ

ώὲ ώὲ

ώὲ
ρππ 

(1-26) 

For fair comparison simulated data were scaled and also delayed w.r.t to its 

measured counterpart. The MAPE quality was calculated for estimated radial and iliac 

arterial pressure to be 3.3% and 3.2% respectively. Also, the deconvolution algorithm 

http://wizfolio.com/?citation=1&ver=3&ItemID=352&UserID=32720&AccessCode=7BA5F1BDD39249AF91781B4B88D0ED94&CitationSuffix=
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was validated by comparing estimated cardiac output with measured one. Inverse transfer 

functions of these two Laguerre based arterial system FIR filters were computed by 

deconvolution operation. These inverse filters along with two measured peripheral 

pressure signals were later used to estimate the common input cardiac output flow. 

Visually estimated cardiac output was found to closely match with measured one. 
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Chapter 2: Aims and Significance of the Thesis 

2.1 Specific Aims 

The generalized transfer function approaches, despite their simplified 

implementation, renders rather less useful aortic pressure estimation as it does not 

account for inter or intra-subject differences. Gray box system identification models on 

the other hand can be tuned on per-patient basis and also at different times. Hence, it can 

adapt with any patient-to-patient variation and also any changes in time. But, these 

models substantially depend on tuning parameters or calibration techniques. Even a small 

error in calibration parameters can result in to significant modelling error. This constraint 

renders this approach rather impractical despite of its high performance and adaptive 

nature. On the contrary, Blind system identification approach for aortic pressure 

estimation does not require any explicit calibration or personalized measurements. Hence, 

this method by nature is self-calibrating to account for any inter-person along with intra-

person vascular dynamics inconstancy. Besides the application of aortic pressure 

estimation, MBSI method extracts the system dynamics for vascular channels. Thus, 

MBSI approaches for aortic pressure estimation are more convenient and practical. All of 

the MBSI approaches, so far, have assumed the arterial system to be linear time invariant 

(LTI) system. Nonetheless, neglecting nonlinearity of hemodynamics to entertain 

modelling simplicity can result in estimation error. 

A novel Wiener system based arterial channel model is first presented in Chapter 3. 

Human hemodynamic data is used to validate this model. In the model a linear finite 

impulse response (FIR) filter represents pulse transmission in large arteries and a non-
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linear memoryless function block accounts for non-uniform arterial geometric and 

viscoelastic properties (Patel and Li, 2017; Patel et al., 2017). Employing this architecture 

two or more exclusive peripheral pressure signals can be measured and multichannel 

blind system identification (MBSI) technique can be used to estimate common source i.e. 

aortic pressure ╟╪; Chapter 4 introduces this method and demonstrates aortic pressure 

estimation performance. This methodology is self-calibrating in that any inter-personal or 

intra-personal vascular dynamics inconstancy can be accounted for. The simulation 

results showed that nonlinear multichannel blind system identification (MBSI) provides 

much better accuracy than linear approach. One could also derive dynamic behavior of 

the individual pulse transmission paths, i.e. from aorta to the two peripheral arterial sites 

(Patel and Li, 2017; Patel et al., 2017). In Chapter 5, this method is further improved by 

estimating channel order preceding arterial system identification. By using effective 

channel order, system identification is optimized which then enhances aortic pressure 

estimation. 

2.2 Significance of the Thesis 

A well-modelled arterial system can be key in understanding the physical properties 

of arterial wall which in turn could provide insights to cardiovascular function. 

Potentially, this could help identify and monitor or manage cardiovascular disease. It has 

been clearly proven that an elevated arterial blood pressure is an important risk factor for 

cardiovascular pathology ([No, 1999). Being able to identify arterial channel system 

could be a great asset when studying epidemiology when treating common cardiovascular 

diseases like hypertension (MacMahon et al., 1990; Collins et al., 1990). More recently 

several research groups have been investigating the dynamic relation between different 

http://wizfolio.com/?citation=1&ver=3&ItemID=417&UserID=32720&AccessCode=CEDA1F85CB5743CDB39B3C1108836EE4&CitationSuffix=
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arterial mechanical properties and pulse wave transmission phenomenon. For instance, 

the degree of wave reflection is assessed by the augmentation index, as well as vascular 

stiffness and arterial compliance. (O'Rourke et al., 1992; Waddell et al., 2001; Marchais 

et al., 1993; Mohiaddin et al., 1989; Salomaa et al., 1995; Leeson et al., 2000; Martin et 

al., 2000; Li, 2000) 

As an example of the application of this method, two or more peripheral pressure can 

be continuously monitored non-invasively for patient bed side diagnostics. This can be 

then fed in to presented non-linear MBSI based algorithm (implemented in a computer) 

to estimate aortic pressure. As this algorithm is self-calibrating, it is very robust and 

adaptive approach for aortic pressure estimation. Also, this will provide personalized 

solution for human arterial system modelling, i.e. system dynamics identification for 

vascular channels. This accurately estimated aortic pressure waveform can be used to 

derive valuable clinical information to aid patient bed side assistance. 
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Chapter 3: A Novel Nonlinear Black Box Wiener System Model for 

Arterial Pulse Transmission 

3.1 Nonlinearity of Arterial Channels 

The vascular channels through which the pressure wave propagates originating from 

central aorta to the peripheral arteries are inherently nonlinear. The linear approximation 

can result in mismatch in shape of pressure waveform especially peak systolic pressure 

which is crucial for Augmentation Index calculation (Varanini et al., 2003; Stergiopulos 

et al., 1998). It has been shown that when modeling arterial system with a nonlinear 

system yields higher modeling accuracy than when using linear system model. (Varanini 

et al., 2003),(Qasem et al., 2001; Gao et al., 2016). Change in physiological properties of 

arterial system has direct impact on the proper function of the left ventricle (Murgo et al., 

1980; Shimizu and Kario, 2008; Boutouyrie et al., 2010). 

Overall coupling between left ventricle and arterial network is well described by 

prescribing the arterial system as a 3 element Windkessel model with passive circuit 

elements: series resistance Z0 representing characteristic aortic impedance, resistor for 

peripheral resistance/ viscosity and capacitor for arterial compliance. It is known that 

arterial compliance is inversely proportional to the pressure exerted on its wall and so 

using constant arterial compliance could significantly and negatively impact modelling 

accuracy. Li et al. (Li, 1998; Li et al., 1990; Berger and Li, 1992; Li et al., 1997) 

proposed a nonlinear pressure dependent compliance model in lieu of constant 

compliance in the Windkessel model. When simulated this modified Windkessel model 
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(with non-linear compliance) demonstrated better performance than conventional model 

(Fogliardi et al., 1996). 

Complex physiological mechanisms in cardiovascular system aspire to maintain 

arterial blood pressure for biological homeostasis. There are different feedback signals 

such as baroreflex that regulate blood pressure (Karaaslan et al., 2005). Arterial system 

can be speculated as dynamic control systems with various feedback loops and nonlinear 

functions (2017). Hence, by employing system theory to model arterial channels can 

provide knowledge which might not be accessible to measurement. 

3.2 Proposed Arterial System Model 

When cardiovascular transmission channel is modelled across two different arterial 

sites (say aortic-to-peripheral) the system is intrinsically nonlinear. Especially, when 

peripheral arterial pressure waveform is measured at distant peripheral sites, e.g. femoral 

arteries, the effect of narrowing of arteries, branching and visco-elastic force become 

more significant. In this case, the non-linearity of arterial behavior may not be negligible. 

With this consideration the cardiovascular system may be modelled as Wiener system 

with linear filter and memoryless non-linear function block, as shown in Figure 3-1. The 

linear filter can account for larger arteries transmission channel and the non-linear 

memoryless function block can account for all nonlinearities due to tapering of arteries, 

branching and visco-elastic properties. 

http://wizfolio.com/?citation=1&ver=3&ItemID=362&UserID=32720&AccessCode=50E79D371E7F4CFC8E5A2B26E211093E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=392&UserID=32720&AccessCode=63D6C27894124E8D99843A30B5A95A04&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=394&UserID=32720&AccessCode=AEE24CE3595645638032662B863AC982&CitationSuffix=
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The input-output relation of this system can be represented as 

 ὖ ὪὬṧὖ  (3-1) 

Here, ὖ and ὖ are aortic and peripheral pressure signals respectively, Ὤ is linear 

FIR filter, ώ is Ὤ filtered ὖ with ṧ representing convolution operation between Ὤ and ὖ 

and ὪȢ is a memoryless nonlinear function. For present study, nonlinear function ὪȢ 

is assumed to be second Ὢ or third Ὢ order polynomial. To demonstrate modeling error 

caused by neglecting nonlinearity, Ὢ is also estimated as linear function Ὢ. These linear 

Ὢ, quadratic Ὢ and cubic Ὢ polynomial functions are defined as: 

 Ὢ Á ώ Á (3-2) 

 

 Ὢ Á ώ Á ώ ὥ (3-3) 

 

 Ὢ Á ώ Á ώ Á ώ ὥ (3-4) 

Linear 
Filter h

Memoryless 
nonlinear 
function f

y[n]

Aortic 
Pressure 
Signal 

Pa

Peripheral 
Pressure 
Signal 

Pp_nonlin

x[n]

 

Fig. 3-1. Proposed black box Wiener System model for arterial channel with linear filter 

and memoryless non-linear function block 
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Where ὥ ȡ are coefficients of respective linear, quadratic and cubic polynomial 

fitting equation. Hence, arterial transmission channel is modelled and compared as 

Wiener System for three different cases using FIR filter Ὤ and series linear Ὢ, quadratic 

Ὢ and cubic Ὢ polynomial functions. 

 ὖ Ὣ ὖ ὪὬṧὖ  (3-5) 

 

 ὖ Ὣ ὖ ὪὬṧὖ  (3-6) 

 

 ὖ Ὣ ὖ ὪὬṧὖ  (3-7) 

It can be seen that Ὣ corresponds to linear transfer function similar to one referred in 

the previous studies as individual transfer function ITF (Jeon, 2007; Chen et al., 1997; 

Fetics et al., 1999). Hence, Ὣ (with linear Ὢ) serves as baseline comparison to ascertain 

improvement in modeling accuracy by introducing nonlinear function block Ὢ and Ὢ in 

Wiener system Ὣ and Ὣ respectively. 

3.3 Validation of Weiner System based Arterial Pulse Transmission Channel 

Model 

3.3.1 Experimental Data 

In order to validate proposed Wiener system model arterial channel, a correlation 

study was performed on previously acquired hemodynamic measurements (7 datasets 

with University of Alberta IRB approval) which are described in detail elsewhere 

http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=32720&AccessCode=816A96B798AC4B79BE54F481BB7713B7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=32720&AccessCode=816A96B798AC4B79BE54F481BB7713B7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=324&UserID=32720&AccessCode=A52D201EFEB64991A69171858E32760B&CitationSuffix=
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(Rashedi et al., 2013). Here, these hemodynamic signals relevant to our study are 

summarized. First group (Group 1) of data was compiled with seven different dataset of 

simultaneous central aortic (ὖ) and radial (ὖ) pressure waveform recorded for 2 min at 

sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary 

bypass. Table 3-1 lists mean aortic pressure (MBP), systolic pressure (SBP) and diastolic 

pressure (DBP) from aortic as well as radial pressure of seven datasets that were used to 

validate proposed approach. 

 

Similarly, second group (Group 2) of data was compiled with seven different dataset 

of simultaneous central aortic (ὖ) and femoral (ὖ) invasively recorded for 2 min at 

sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary 

bypass. Table 3-2 lists these pressure data for the aorta as well femoral artery of seven 

datasets that were used to validate proposed approach. 

Table 3-1. Group 1: Hemodynamic measures of pressure signals included in the study 

Data 

ID 

Aortic Pressure Radial Pressure 

MBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

1 62.28 84.38 45.94 84.11 48.74 

2 70.49 96.46 48.52 100.30 50.74 

3 68.60 89.06 52.56 90.38 54.76 

4 61.38 82.91 48.83 82.14 51.22 

5 77.99 96.67 56.84 99.82 57.97 

6 58.85 75.39 45.04 77.50 47.75 

7 72.64 92.27 54.38 95.77 55.85 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=377&UserID=32720&AccessCode=F64091DCD771485EBDB2D5045ECBD638&CitationSuffix=
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Note that MBP was computed as average of total central aortic pressure waveform. It 

can be seen that the physiologic conditions of the datasets analyzed are diverse. 

Specifically, SBP varied significantly between different datasets. Thus, this wide range of 

hemodynamic signals allowed us to validate model at distinct physiological conditions. 

3.3.2 Signal pre-processing/ signal conditioning 

From each of the 2min long dataset recorded 35 second segments were extracted 

such that these segments were free from any signal corruption. Also, each of datasets: for 

Group 1 with synchronous aortic and radial pressure waveform; and for Group 2 with 

synchronous aortic and femoral pressure waveform was down-sampled to 100Hz. These 

35 sec segments were then used for analysis. From these 35 sec segments first 25 sec 

waveforms (training dataset) were used for training Wiener Model and rest of 10 sec 

waveforms (test datasets) were used to test validity of the fitted model. Figure 3-2 shows 

Table 3-2. Group 2: Hemodynamic measures of pressure signals included in the study 

Data 

ID 

Aortic Pressure Femoral Pressure 

MBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

8 85.55 126.96 57.07 131.01 58.05 

9 70.49 104.42 51.30 111.41 51.10 

10 82.63 118.13 59.28 129.56 59.14 

11 90.20 117.09 67.61 125.62 66.56 

12 72.32 103.91 57.31 111.87 56.53 

13 65.98 94.85 46.39 117.24 44.82 

14 86.24 107.41 62.88 122.35 61.16 
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sample waveforms for Group 1 with simultaneous ὖ and ὖ. Figure 3-3 shows sample 

waveforms for Group 2 with simultaneous ὖ and ὖ. 

 

 

 

Fig. 3-2. Sample of simultaneously measured aortic and radial pressure waveform (Group 

1) 

7 7.5 8 8.5 9 9.5 10 10.5 11

50

60

70

80

90

100

time(s)

P
re

s
s
u
re

(m
m

H
g

)

Measured Pressure waveforms: Pa and Pr

 

 
Measured Pa

Measured Pr

 

Fig. 3-3. Sample of simultaneously measured aortic and femoral pressure waveform 

(Group 2) 
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3.3.3 Cardiovascular Wiener System model 

3.3.3.1 Arterial linear channel i dentification 

To validate the Cardiovascular Wiener System model each of the training datasets 

(i.e. first 25 sec of waveforms) for Group 1 and Group 2 were fitted to Wiener System. 

Linear FIR filter Ὤ was estimated on individual basis as aortic-to-radial pressure (using 

Group 1 training dataset) and aortic-to-femoral pressure (using Group 2 training dataset) 

transfer function by assuming nonlinearity to be unity. To compute transfer function 

MATLAB function ñtfestò was used with ὖ as input signal and ὖ as output signal for 

aortic-to-radial pressure transfer function for each of the Group 1 training datasets. 

Similarly, ñtfestò was used with ὖ as input signal and ὖ as output signal for aortic-to-

femoral pressure transfer function for each of the Group 2 training datasets. Figure 3-4 

shows example of linear system identification for aortic-to-radial arterial channel and 

Figure 3-5 is an example of for aortic-to-femoral arterial channel linear system 

identification. In the Wiener System model linear transfer function was assumed to be 

finite impulse response (FIR) filter of order 10. 
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Fig. 3-4. Aortic-to-radial pressure signal transmission channel Arterial channel FIR filter 

identification. 
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Fig. 3-5. Aortic-to-femoral pressure signal transmission channel Arterial channel FIR 

filter identification. 
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3.3.3.2 Modelling Non-linear function 

To model the nonlinear memoryless monotonic function in the Wiener System model 

for aortic-to-radial artery (or aortic-to-femoral artery) a correlation study was performed 

for linear FIR filter simulated radial (or femoral) pressure vs. measured radial (or 

femoral) pressure waveform from 25 sec training datasets. Radial (or femoral) arterial 

pressure was simulated by convolving individualized FIR filter Ὤὸ with respective 

aortic pressure signal ὖ. This simulated radial ὖ  (or femoral ὖ ) 

pressure waveforms were then compared against measured radial ὖ  (or femoral 

ὖ ) pressure waveforms. Each of this correlation curves were fitted to linear Ὢ, 

quadratic Ὢ and cubic Ὢ polynomial equation.  

As measure of fitting accuracy Pearson r-value squared (ὶ) was calculated along 

with fitted linear, quadratic and cubic polynomial equations. This correlation analysis 

was carried out using ςυππ data points. Figure 3-6 and 3-7 show the correlation for each 

of seven training datasets from Group 1. 
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Fig. 3-6. Correlation graphs for linear FIR filter simulated radial pressure vs. measured 

radial pressure waveform from seven different datasets (Group 1) of simultaneously 

measured aortic and radial pressure waveforms. 
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Similarly, correlation curves between ὖ  and  ὖ  were fitted to 

linear, quadratic and cubic polynomial equations. Figure 3-7, 3-8 shows the correlation 

for each of seven training datasets from Group 2.  

   

 
 

 

Fig. 3-7. Correlation graphs for linear FIR filter simulated radial pressure vs. measured 

radial pressure waveform from seven different datasets (Group 1) of simultaneously 

measured aortic and radial pressure waveforms. 




























































































































































