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Central aortic blood pressure waveform (𝑷𝒂) is a critical determinant of the state of 

overall cardiovascular function, but it cannot be measured directly by noninvasive means. 

Numerous attempts were made to derive 𝑷𝒂 from noninvasively measured peripheral 

pressure (𝑷𝒑) using mathematical transformations, transfer function or arterial system 

modeling approaches.  These techniques, in general, do not account for inter-subject or 

intra-subject variability. A few methods have recently been proposed to generate 

personalized adaptive transfer function employing arterial system modeling. However, 

these personalized models have to be calibrated across different patients at different times 

and the model algorithms are very sensitive to calibration technique and calibration error. 

More recently, multi-channel blind system identification (MBSI) have been implemented 

on these systems to mathematically derive common source 𝑷𝒂 based on multiple 𝑷𝒑 

inputs. This method seems to afford self-calibrating and minimizes estimation error. In 
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general, MBSI approaches are more convenient and practical for aortic pressure 

estimation, but have not been widely adopted. 

In this thesis, the arterial system is proposed to be modeled as a Weiner System with 

linear finite impulse response (FIR) filter accounting for larger arteries transmission 

channel and non-linear memoryless function block accounting for all nonlinearities due 

to narrowing of arteries, branching and visco-elastic forces. This model is then 

experimentally validated with seven human blood pressure datasets.  Single input and 

multiple output (SIMO) or aortic-to-radial arterial transmission channel and aortic-to-

femoral arterial transmission channel are established. To model the nonlinear memoryless 

monotonic function in the Wiener System model a correlation study is performed for 

linear finite impulse response (FIR) filter simulated peripheral pressure vs. measured 

peripheral pressure waveform.  Each of this correlation curves were fitted to linear, 

quadratic and cubic polynomial equation. It was found that Wiener model with 3
rd

 order 

polynomial function yielded better modelling accuracy than that from 2
nd

 order 

polynomial function which in turn was better than mere linear FIR filter. 

𝑷𝒂 estimation technique is then presented by modeling arterial system as Multi-

channel Weiner System. With this structure when pressure waveforms are measured from 

two distinct peripheral locations, multichannel blind system identification (MBSI) 

technique can be used to estimate common input pressure signal or 𝑷𝒂. Nonlinear MBSI 

method was employed on human blood pressure waveforms (7 datasets).  Results show 

𝑷𝒂 can be accurately derived. This method by nature is self-calibrating to account for any 

inter-personal, along with intra-personal, vascular dynamics inconstancy. Besides 𝑷𝒂 

estimation, the proposed MBSI method also allows extraction of system dynamics for 
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vascular channels. Initially, linear finite impulse response (FIR) filter is assumed to be of 

fixed 10
th

 order in the Wiener System model across all patient dataset. To further improve 

performance of this aortic pressure estimation method, a new and improved method is 

developed which estimates channel order preceding arterial system identification. By 

using effective channel order, system identification is optimized which then enhances 

aortic pressure estimation. Results showed significant improvement over our earlier 

method with far more accurate aortic pressure estimation. The outcome of the novel 

method as presented by this dissertation has the potential to enhance clinical diagnostic 

accuracy and subsequent treatment efficacy assessment. 
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Chapter 1: Introduction 

1.1 Background 

Knowledge about the magnitude and shape of the central aortic pressure wave 

provide very important information regarding cardiac function and heart-blood vessel 

interaction. Furthermore, aortic pressure waveform can be used to derive valuable clinical 

information particularly in hypertension an in patients with coronary arterial disease (Li, 

2000) regarding vascular stiffness, wave reflections, augmentation index, aortic flow, 

ventricular ejection duration, arterial compliance and systolic load and other features 

useful in the clinical examination (Li, 2000; Li, 2004; O'Rourke et al., 1992; Murgo et al., 

1980; Wesseling et al., 1993; Li et al., 1990; Li and Zhu, 1994). Thus, analysis of aortic 

pressure waveform morphology has recognized significance during patient assistance and 

also to monitor drug-cardiovascular system interaction. 

Despite the vast usefulness of aortic pressure waveform, its routine utilization is 

hampered due to invasiveness of aortic pressure measurement procedures through 

catheterization (Li et al., 1976). This is not a preferred method for routine screening, 

diagnosis or therapy follow-up, because of its invasiveness and large underlying cost. 

Noninvasive continuous monitoring of peripheral artery pressure with 

photoplethysmography and applanation tonometry (Imholz et al., 1998; Kelly et al., 

1989; Söderström et al., 2002) are preferred. For the latter, radial artery is the most 

common application site as its underlying bony tissue aids more optimal applanation as 

flat artery walls features transmural forces to be perpendicular to blood vessel surface 

(Drzewiecki et al., 1983). 

http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=299&UserID=32720&AccessCode=CC0CBC1CA359487A8315DAED367F0101&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=299&UserID=32720&AccessCode=CC0CBC1CA359487A8315DAED367F0101&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=32720&AccessCode=867BBCBE12B6470DA43B9BC1B0C482D2&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=310&UserID=32720&AccessCode=867BBCBE12B6470DA43B9BC1B0C482D2&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=370&UserID=32720&AccessCode=0B5AC0E860CA49339035FE49332C60F5&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=370&UserID=32720&AccessCode=0B5AC0E860CA49339035FE49332C60F5&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=371&UserID=32720&AccessCode=CA602701F0BC4955980DCD28313DF6BC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=345&UserID=32720&AccessCode=1AC408420D34493DB3CBC860AB75965F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=345&UserID=32720&AccessCode=1AC408420D34493DB3CBC860AB75965F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=346&UserID=32720&AccessCode=F3A008EC3BAC4CB297E49895CC6782A9&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=346&UserID=32720&AccessCode=F3A008EC3BAC4CB297E49895CC6782A9&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=323&UserID=32720&AccessCode=F1D39816DAE94DD5BA32B25FF9A99871&CitationSuffix=
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Aortic pressure wave encounters complex wave reflection in arterial network as it 

travels from aorta to peripheral sites (Li, 2004). These wave reflections result in 

amplification of systolic and pulse pressures with their magnitudes depending on arterial 

network properties and its corresponding transmission path (Karamanoglu et al., 1995). 

Systolic pressure in radial arteries becomes significantly larger than in central aorta. So, 

cardiac afterload and perfusion has to be derived from aortic pressure or more central 

arterial pressure rather than calculating them directly from peripheral arterial pressure 

waveforms (Waddell et al., 2001).  

Above mentioned clinical significance of central aortic pressure waveform warrants 

investigation on noninvasive estimation of aortic pressure. Numerous research activities 

have been undertaken to transform non-invasive peripheral pressure data (such as carotid 

artery (Chen et al., 1996), brachial artery (Karamanoglu et al., 1995),  and radial artery 

pressure (Chen et al., 1997) to central aortic pressure waveform using mathematical 

transformations and/or mathematical models (Karamanoglu et al., 1995). Most of these 

methods, generally, involve peripheral-to-aortic pressure transfer function derivation, 

averaged over group of patients (Söderström et al., 2002). This transfer function is then 

used to convert peripheral pressure wave to aortic pressure wave. The “generalized 

transfer function” techniques are based on the primary assumption that heart and arterial 

tree properties are consistent between all patients and at all times. It is well known that 

these properties differ with different subjects, age and medical condition. Thus, a few 

techniques have been proposed for personalized transfer function employing arterial 

system modeling (Stergiopulos et al., 1998; Karamanoglu and Feneley, 1997; Segers et 

http://wizfolio.com/?citation=1&ver=3&ItemID=365&UserID=32720&AccessCode=DA745BF297FA4B0192B313D5D4F47F50&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=288&UserID=32720&AccessCode=B93E7054141549B0AA1C9048A1AF0A89&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=321&UserID=32720&AccessCode=E39400DB84054BB8B4D8F44517145069&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=295&UserID=32720&AccessCode=305BD06E5C53413AB6237B68348FD193&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=281&UserID=32720&AccessCode=7FCD4FDDDAAD4BE99486A35CB5C895D4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
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al., 2000; Sugimachi et al., 2001; Swamy et al., 2009; Stok, 2016; Xiao et al., 2017; 

Guala et al., 2017). 

Some of Medical Devices currently available in the market that provide non-invasive 

aortic pressure estimation solution are: 1. SphygmoCor designed and developed by an 

Australian-headquartered company, AtCor Medical Limited. 2. Mobil-O-Graph designed 

and developed by a German-headquartered company I.E.M. GmbH. (Papaioannou et al., 

2016) 

Several studies have focused on the estimation of central aortic pressure from more 

easily available peripheral pressure waveforms. Lack of standardization, pressure 

waveforms were recorded at different peripheral arterial sites, such as the femoral, 

carotid, radial and finger arteries and transfer function/model is subsequently applied to 

derive estimated aortic pressure waveform. Many of these approaches can broadly be 

classified into three different categories; these are summarized in the following sections:  

1.2 Black Box System Identification or Generalized Transfer Function 

These types of aortic pressure estimation method normally convert peripheral 

pressures to aortic pressure using a general/ generic transfer function. Hence, this type of 

approach does not account for inter-subject as well as intra-subject variability. 

1.2.1 Autoregressive Exogenous (ARX) Method 

Mathematical transformation was applied by Chen et at. (Chen et al., 1997) from 

recorded radial arterial pressure waveform to estimate aortic pressure noninvasively, 

while invasive aortic pressure was measured simultaneously at different hemodynamic 

conditions (steady state, Valsalva maneuver, abdominal compression, nitroglycerin and 

http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=419&UserID=32720&AccessCode=051E6F96ECB245B0BF37F6A687EBD2B4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=419&UserID=32720&AccessCode=051E6F96ECB245B0BF37F6A687EBD2B4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=421&UserID=32720&AccessCode=34408B06A0DD4BD9859BED6D9A2FFE0A&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=422&UserID=32720&AccessCode=D83861CDA1254C4A9A0F6D4E084953FA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=422&UserID=32720&AccessCode=D83861CDA1254C4A9A0F6D4E084953FA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
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vena caval obstruction). For each of this case, individual transfer function between radial 

pressure and its corresponding aortic pressure was calculated using linear Auto-regressive 

exogenous model. According to the linear ARX (autoregressive exogenous) Model a 

causal linear system can be expressed in terms of input (current and past) and output data 

(past) 

 𝑇(𝑡) = −𝑎1𝑇(𝑡 − 1) − 𝑎2𝑇(𝑡 − 2) − ⋯− 𝑎𝑛𝑎𝑇(𝑡 − 𝑛𝑎) + 𝑏1𝑃(𝑡 − 1)

+ ⋯+ 𝑏𝑛𝑏𝑃(𝑡 − 𝑛𝑏) 

(1-1) 

where 𝑇(𝑡 − 𝑥), 0 ≤ 𝑥 ≤ 𝑛𝑎 represent present and past output while 𝑃(𝑡 − 𝑥), 1 ≤

𝑥 ≤ 𝑛𝑎 are previous input. Here, 𝑎𝑦, 1 ≤ 𝑦 ≤ 𝑛𝑎 and 𝑏z, 1 ≤ 𝑧 ≤ 𝑛𝑏 are weights for 

respective terms and hence they are characteristics of the model. 

Linear ARX model was found to result in better estimation for a given length of data 

set as compared to Fourier transform based method. These individual transfer functions 

were then averaged to obtain general transfer function. Because of averaging any 

particular difference among individual transfer functions was lost. Albeit this, central 

aortic pressure estimated using generalized transfer function was comparable to measured 

aortic pressure with ≤0.2±3.8 mmHg error, arterial compliance to 6±7% accuracy, and 

augmentation index to within −7% (30±45% accuracy) (Chen et al., 1997). This ARX 

based generalized transfer function method yielded reasonable estimation for aortic 

pressure and arterial compliance. But augmentation index estimation from this method 

was unacceptable as augmentation index would need higher precision aortic pressure 

wave re-construction. 

http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
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1.2.2 Neural Network Nonlinear ARX (NNARX) Method 

Neural network-based autoregressive exogenous model (NNAW model) was 

proposed by Varanini et al. (Varanini et al., 2003) for central aortic pressure derivation 

from peripheral pressure.  This method first trains a neural network based nonlinear 

model, which is later used to reconstruct central arterial pressure (output) from radial 

pressure waveform (input). A generalized nonlinear autoregressive exogenous (NARX) 

model can be represented by following equation 

 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1),… , 𝑦(𝑡 − 𝑛𝑎), 𝑥(𝑡 − 𝑑),… , 𝑥(𝑡 − 𝑑 − 𝑛𝑏 + 1)) + 𝜀(𝑡) (1-2) 

where 𝑡 is time, 𝑦(𝑡) is model output, 𝑥(𝑡) is model input, 𝜀(𝑡) is white noise and 

𝑓(. ) is a nonlinear function. The 𝑓(. ) is nonlinear function of past input and out values of 

the model. The problem was defined to estimate the unknown function 𝑓(. ) using 

training data set (𝑥, 𝑦) with objective to minimize the estimation error 𝑒(𝑡); i.e. is 

disparity between measured output y and estimated �̂�. 

http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
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Radial tonometry pressure along with invasive aortic pressure was measured in 20 

patients. Out of these 10 patients data set was used to train the model parameter and rest 

10 patients data set was used to test/ validate the model. It was found that NNARX model 

resulted in more accurate aortic wave reconstruction (especially more detailed dicrotic 

notch and systolic inflexion pressure) as compared to linear ARX model. Thus, 

augmentation index calculated from NNARX method was more accurate than one from 

ARX estimated aortic pressure. (Varanini et al., 2003) 

1.3 Gray Box System Identification (Personalized Transfer function) 

Generalized transfer function initially gained popularity owing to its simplicity; same 

generic transfer function or model is applied to derive aortic pressure curve from 

peripheral pressure for all patients irrespective of their medical condition. Nonetheless, as 

f(x,y)

f’(x,y) − 

+

x(t)

y’(t)

Noise

y(t)

e(t)

NARX System

 

Fig. 1-1. Neural Network Auto-regressive exogenous model proposed by Varanini et 

al. for central aortic pressure (input) derivation from peripheral pressure (output) 

http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
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noted previously, cardiovascular properties are different from patient to patient and can 

also vary for a given patient depending on his/her physiological state. Hence generalized 

transfer function does not rationalize either inter-subject or intra-subject variability. 

Generalized transfer function estimated aortic pressure is normally biased depending on 

training set. Having personalized or adaptive transfer function or model will be far more 

valuable as it can accommodate inter-subject and temporal variability of arterial tree. The 

tube model and wave separation method are excellent example of individualized 

peripheral-to-aortic pressure transformation technique. 

 

1.3.1 The Wave Separation Method 

Resolution of blood pressure waveform into its forward (𝑷𝒇) and reflected (𝑷𝑟) or 

backward (𝑷𝑏) waves in the time domain was first proposed by Li (Li, 1986). Time 

domain method is efficient and can be easily visualized. An example of this methodology 

is shown below in Figure 1-2. 

http://wizfolio.com/?citation=1&ver=3&ItemID=300&UserID=32720&AccessCode=C1E5A89ED8594A179AFD0807946656EF&CitationSuffix=
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Stergiopulos et al. (Stergiopulos et al., 1998) proposed a time domain approach to 

estimate aortic pressure curve from tonometer measured peripheral pressure and flow 

velocity curve. This method first decomposes measured peripheral pressure 𝑃𝑝 (and 

velocity 𝑉𝑝) into their forward and backward counterparts: 

 𝑃𝑓 = 𝑍𝑐. 𝑉𝑓(𝑡) = [𝑃𝑝(𝑡) + 𝑍𝑐 . 𝑉𝑝(𝑡)]/2 (1-3) 

and 

 𝑃𝑏 = 𝑍𝑐. 𝑉𝑏(𝑡) = [𝑃𝑝(𝑡) − 𝑍𝑐 . 𝑉𝑝(𝑡)]/2 (1-4) 

 

Fig. 1-2. Aortic pressure waveforms resolved into its forward (𝑷𝑓) and reflected (𝑷𝑟) 

components by Li’s time-domain method. It can be seen that forward and reflected 

pressures undergo constructive addition to result in the measured aortic pressure. 
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where subscripts f and b denote forward and backward waves, respectively, and 𝑍𝑐 is 

the characteristic impedance of the artery. It is noted here that noninvasive flow velocity 

can be commonly measured with an ultrasound Doppler probe. 

In the equations above, characteristic impedance 𝑍𝑐 was calculated as average slope 

of pressure-velocity curve in early systole, as shown by Li (Li, 1986). After separation, 

forward pressure wave is delayed (by time Td) to account for the time it takes for 

travelling from aorta to peripheral site. On the other hand, reflected wave is advanced in 

time as this wave component is approaching toward central aorta. These time shifted 

wave counterparts are summed to recreate aortic pressure. When tested, this method was 

able to estimate aortic systolic pressure, diastolic pressure and complete waveform with 

mean squared error of 0.1, 1.0 and 1.56 mmHg respectively. As this wave separation 

method utilized parameters 𝑍𝑐  and 𝑇𝑑 obtained on per-patient basis, aortic pressure 

estimated using this personalized transfer function is better predictor of true aortic 

pressure as compared to one derived from generalized transfer function. 

1.3.2 The Tube Model Method 

Characterizing the tube load in order to obtain transfer function was first utilized by 

Sugimachi et al. (Sugimachi et al., 2001) and Westerhof et al. (Westerhof et al., 2007). 

The frequency (ω) dependent impedance 𝑍𝑖(𝜔) of terminal load can be characterized by 

two parameters (see equation below; Ai and Bi, where 0<Ai<Bi). The values of these 

parameters depend on the peripheral resistance and compliance. The resultant pressure 

signal 𝑝𝑎𝑟𝑡(𝑡) {or flow signal 𝑞𝑎𝑟𝑡(𝑡)} at any arterial tube site can be written in terms of 

forward and backward pressure (or flow) signals after accounting for wave propagation 

http://wizfolio.com/?citation=1&ver=3&ItemID=300&UserID=32720&AccessCode=C1E5A89ED8594A179AFD0807946656EF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=284&UserID=32720&AccessCode=FF2C46DA2BCF41E88FB82CE3B6158982&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=291&UserID=32720&AccessCode=6316841B63CA41DEB5F0DBC966A4DF25&CitationSuffix=
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delay (𝑇𝑑) between signal probe site (peripheral artery) and signal originating site (aorta) 

by proper time shifting of forward/reflected signal.  

 𝑝𝑎𝑟𝑡(𝑡) = 𝑝𝑓(𝑡 + 𝑇𝑑
′) + 𝑝𝑏(𝑡 − 𝑇𝑑

′) (1-5) 

 𝑞𝑎𝑟𝑡(𝑡) = 𝑞𝑓(𝑡 + 𝑇𝑑
′) + 𝑞𝑏(𝑡 − 𝑇𝑑

′) (1-6) 

Swamy et al. modelled arterial tree as parallel tube of pressure and flow (Swamy et 

al., 2009). As shown in Figure 1-3, the arterial system is represented as parallel m tubes 

along with series terminal load elements. Here the aorta is connected to i
th

 peripheral 

artery through i
th

 tube with constant characteristic impedance Zci. This tube allows 

pressure wave to propagate from aorta through peripheral arterial end site with a constant 

time delay Tdi. The i
th

 terminal load implies arterial bed distal to i
th

 peripheral artery. As 

shown in the arterial tree tube model figure below, peripheral artery pressure (𝑝𝑝𝑖(𝑡)) can 

be derived from aortic pressure [𝑝𝑎(𝑡)] using transfer function (Stergiopulos et al., 1998). 

Here, the model parameters 𝑇𝑑𝑖, Ai and Bi are unknown and are characteristic to 

individual subjects transfer function for a given time. 

http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=


11 

 

 

 

 

Where characteristic impedance 𝑍𝑐𝑖 corresponding to i
th

 tube with constant is given 

by 

 
𝑍𝑖(𝜔) =

𝑍𝑐𝑖(𝑗𝜔 + 𝐵𝑖)

𝑗𝜔 + 𝐴𝑖
 

(1-7) 

where i=1,2,…m 

Transfer function relating a peripheral pressure waveform 𝑝𝑝𝑖(𝑡) to the aortic 

pressure waveform 𝑝𝑎(𝑡) in terms of the unknown parameters of the model 

Zc1

ZciAortic 
Pressure 

Pa

Peripheral 
Pressure 

Signals Ppi

Zcm

Pp1

Ppm

Pp2

qa1

qai

qam

Z1

Zi

Zm

 

Fig. 1-3. Parallel tube model of pressure and flow in the arterial tree on which the aortic 

pressure estimation technique is based. Here, 𝑍𝑐𝑖 is characteristic impedance and 𝑍𝑖(𝜔) is 

terminal load. 
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𝑇𝐹𝑝𝑝𝑖2𝑝𝑎 =
(
𝐵𝑖 + 𝐴𝑖
2 + 𝑗𝜔) 𝑒𝑗𝜔𝑇𝑑𝑖 +

𝐵𝑖 − 𝐴𝑖
2 𝑒−𝑗𝜔𝑇𝑑𝑖

𝐵𝑖 + 𝑗𝜔
 

(1-8) 

Transfer function relating 𝑝𝑝𝑖(𝑡) to the arterial flow waveform at the corresponding 

tube entrance 𝑞𝑎𝑖(𝑡) in terms of the same parameters. 

 

𝑇𝐹𝑝𝑝𝑖2𝑞𝑎𝑖 =
(
𝐵𝑖 + 𝐴𝑖
2 + 𝑗𝜔) 𝑒𝑗𝜔𝑇𝑑𝑖 −

𝐵𝑖 − 𝐴𝑖
2 𝑒−𝑗𝜔𝑇𝑑𝑖

𝑍𝑐𝑖(𝐵𝑖 + 𝑗𝜔)
 

(1-9) 

For 𝑇𝑑𝑖 calculation carotid artery pressure was measure using non-invasive 

tonometry. 𝑇𝑑𝑖 is estimated a time difference between beginning of systole in carotid 

pressure and measured tonometry peripheral arterial pressure (Sugimachi et al., 2001). 

𝑇𝑑𝑖 does not normally vary frequently; 𝑇𝑑𝑖 measurement once a week or even month is 

generally sufficient for re-calibrating the tube model parameters (Swamy et al., 2009). 

Subsequently, the tube model parameters are computed iteratively using 15 cycles of 

measured peripheral waveform and previously measured 𝑇𝑑𝑖. Different values of 

parameters are guessed; for each of these value aortic pressure waveforms are derived 

using the tube model peripheral pressure-to-aortic pressure transfer function shown 

above. Only those pairs of parameters that yield physiologically feasible pressure 

waveforms are used to derive flow waveform from peripheral waveform using tube 

model peripheral pressure-to-aortic flow transfer function shown above. Assuming that 

aortic valve closes completely during diastole, blood flow through aorta (and thus 

peripheral artery) during this period can be approximated as negligible. With this 

assumption, the parameters that provide minimum aortic flow during diastole are chosen. 

http://wizfolio.com/?citation=1&ver=3&ItemID=284&UserID=32720&AccessCode=FF2C46DA2BCF41E88FB82CE3B6158982&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
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Ultimately, the trained transfer function with optimized parameters is applied to 

transform measured peripheral pressure wave to aortic pressure wave. As these 

parameters are calibrated for each of the patients, the tube model is capable of adapting to 

inter-subject and intra-subject variation. To validate this method, it was applied on the 6 

healthy dogs for which simultaneous aortic and peripheral pressure signals were acquired. 

Aortic pressure waveforms were constructed from measured peripheral pressure 

waveforms using this method and then compared with measure aortic pressure 

waveforms. RMS error between derived and measured aortic pressure for complete 

waveform, systolic and pulse pressure were 3.7, 4.3 and 3.4 mmHg, respectively. This 

was an improvement over ARX based generalized transfer function with errors of 4.8, 6.1 

and 6.7 mmHg, respectively. 

1.4 Blind System Identification 

More recently, blind system identification are been implemented to predict aortic 

pressure wave from two or more of peripheral arterial pressure wave. These methods 

generally model arterial tree as single input, multiple output (SIMO) system. 

Multichannel blind system identification is applied on these systems to mathematically 

derive common source aortic pressure which, in multichannel system, caused multiple 

outputs (i.e. peripheral pressure). 

1.4.1 Multichannel Blind System Identification (MBSI) Method 

Multichannel blind system identification using eigenvector algorithm based FIR 

filter identification technique was proposed by Swamy et al. (Swamy et al., 

2007),utilizing previously established signal processing methodology (Abed-Meraim et 

al., 1997), for aortic pressure estimation from two or more peripheral pressure signals. 

http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
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Arterial tree is modeled as single-input, multiple-output system with peripheral pressure 

signals 𝑝𝑝𝑖(𝑡) (where i≥2) as system output and aortic pressure signal 𝑝𝑎(𝑡) as system 

input. Pressure wave transmission channel are modeled by linear time invariant (LTI) 

system impulse responses ℎ𝑖(𝑡); this ℎ𝑖(𝑡) is believed to preserve cardiovascular 

dynamic properties of i
th

 transmission channel (arteries). It is assumed that these LTI 

channels can be well defined by finite impulse response and they are coprime with each 

other (i.e. their Z transforms don’t have any common zeros or poles).  

As seen in the diagram below (Figure 1-4), mathematically peripheral pressure 

measured at different peripheral artery can be expressed as convolution of their respective 

transmission channel impulse response hi(t) and aortic pressure signal 𝑝𝑎(𝑡): 

𝑝𝑝𝑖 = ℎ𝑖⊗𝑝𝑎, where terms with “i” suffix denotes quantities for i
th 

peripheral 

arterial system 
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Also, every peripheral arterial channel impulse response can be expressed in terms of 

any of other peripheral arterial channel impulse response, i.e. 

 𝑝𝑝𝑖(𝑡) ⊗ ℎ𝑗(𝑡) = [𝑝𝑎(𝑡) ⊗ ℎ𝑖(𝑡)] ⊗ ℎ𝑗(𝑡) 

= ℎ𝑖(𝑡) ⊗ [𝑝𝑎(𝑡) ⊗ ℎ𝑗(𝑡)] 

= ℎ𝑖(𝑡) ⊗ 𝑝𝑝𝑗(𝑡), 𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗 

(1-10) 

For proof of concept, this method was implemented using two peripheral artery 

pressure as two channel blind system identification. Above equation involving 

convolution can be written as convolution sum and also account for measurement noise 

and/or modeling error e(t): 

h1

h2Aortic 
Pressure 
Signal Pa

Peripheral 
Pressure 
Signals 

Ppi

hm

Pp1

Pp2

Ppm

 

Fig. 1-4. The single-input, multi-output model of the arterial tree with peripheral pressure 

signals 𝑝𝑝𝑖(𝑡) (where i≥2) as system output and aortic pressure signal 𝑝𝑎(𝑡) as system 

input. This is used for multichannel blind system identification to estimate aortic 

pressure. 
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∑ℎ1(𝑘)𝑝𝑝2(𝑡 − 𝑘)

𝐿−1

𝑘=0

−∑ℎ2(𝑘)𝑝𝑝1(𝑡 − 𝑘)

𝐿−1

𝑘=0

= 𝑒(𝑡) 

tϵ[L-1,N-1] 

(1-11) 

here L and N are number of FIR filter order and sample size of acquired discrete 

peripheral pressure wave respectively. This equation can also be represented in cascaded 

matrix form using Hankel Matrix: 

 
[𝑃𝑝2 − 𝑃𝑝1]⏟      

𝑃

[
ℎ1
ℎ2
]

⏟
ℎ

= 𝑒 
(1-12) 

Hankel Matrix 𝑃𝑝𝑖 is defined as: 

 𝑃𝑝𝑖 = 

[
 
 
 

𝑝𝑝𝑖(0)            𝑝𝑝𝑖(1)

𝑝𝑝𝑖(1)            𝑝𝑝𝑖(2)

⋯ 𝑝𝑝𝑖(𝐿 − 1)

⋯ 𝑝𝑝𝑖(𝐿)

⋮ ⋮
𝑝𝑝𝑖(𝑁 − 𝐿) 𝑝𝑝𝑖(𝑁 − 𝐿 + 1)

⋱ ⋮
⋯ 𝑝𝑝𝑖(𝑁 − 1)]

 
 
 

, 𝑖 ∈ [1,2] 

(1-13) 

Above equation is essentially an optimization problem to minimize error e which can 

be solved using linear algebra concept of null space. The nullspace of matrix 𝑃 is made 

up of vectors ℎ for which 𝑷𝒉 = 𝟎. Once computed, ℎ𝑖 are then used to reconstruct aortic 

pressure 𝑝𝑎(𝑡). 

Each of the measured peripheral pressure and aortic pressure relation can be written 

in form of convolution sum: 
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𝑝𝑝𝑖(𝑡) = ∑ℎ𝑖(𝑘)𝑝𝑎(𝑡 − 𝑘)

𝐿−1

𝑘=0

+ 𝑛𝑖(𝑡) 
(1-14) 

Where 𝑛𝑖(𝑡) represents noise/ error in measurement or system modelling. The set of 

two peripheral pressure equations can laid out in matrix form using Toeplitz matrices 𝐻𝑖. 

 
[
𝑝𝑝1
𝑝𝑝2
]

⏟  
𝑃𝑝

= [
𝐻1
𝐻2
]

⏟
𝐻

𝑝𝑎 + [
𝑛1
𝑛2
]

⏟
𝑛

 
(1-15) 

Toeplitz matrix 𝐻𝑖 is defined as: 

 
𝐻𝑖 = [

ℎ𝑖(𝐿 − 1) ⋯ ℎ𝑖(0)
⋮ ⋯ ⋮

⋯       0
⋯       ⋮

               0         ⋯ ℎ𝑖(𝐿 − 1)        ⋯      ℎ𝑖(0)
] 

(1-16) 

Above mentioned matrix equation is basically optimization problem to minimize 

noise n which can be solved (to a scale factor) using least square estimation (Abed-

Meraim et al., 1997): 

 𝑝𝑎 = (𝐻
𝑇𝐻)−1𝐻𝑇𝑃𝑝 (1-17) 

Finally, the reconstructed aortic pressure was scaled such that mean peripheral 

pressure is same as mean aortic pressure. This step is justified by Poiseuille’s law 

(Noordergraaf, 1978). Thus scaled aortic pressure 𝑝𝑎
𝑠(𝑡) can be computed as follows: 

 
𝑝𝑎
𝑠(𝑡) = 𝑝𝑎(𝑡).

𝑀𝑒𝑎𝑛(𝑝𝑝𝑖(𝑡))

𝑀𝑒𝑎𝑛(𝑝𝑎(𝑡))
 

(1-18) 

Thus this method calculates personalized arterial system model transfer function and 

does not resort to generalized transfer function. Swamy et al. (Swamy et al., 2007) 

applied their method using two peripheral (femoral and radial) pressure data from four 

http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=316&UserID=32720&AccessCode=AC52592E501E444FAC71EB62837ADA61&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=312&UserID=32720&AccessCode=30DF5DF78BA94D03A452931CBD7C7931&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=


18 

 

 

 

swine which was then validated against respective measured aortic pressure. From 

estimated aortic pressure waveform the root mean squared error was found to be 

4.6mmHg, 6.1mmHg and 7.1mmHg for total waveform, Systolic pressure and Pulse 

pressure respectively.  

1.4.2 Laguerre-Model MBSI Method 

    A Laguerre-Model based multichannel blind system identification method was 

shown by McCombie et al. (McCombie et al., 2005)  to estimate common system input 

(aortic flow) from multiple system output (peripheral arterial pressures). This method 

first models the hemodynamics of each branch in form of Laguerre functions as Laguerre 

orthonormal basis functions are known to help reduce number of FIR filter coefficients to 

precisely characterize arterial system irrespective of its slow decaying dynamics. A 

normal Laguerre expansion series is expressed as 

 
𝑉𝑘(𝑧) =

𝐾

(𝑧 − 𝑎)
 (
1 − 𝑎𝑧

𝑧 − 𝑎
)
𝑘−1

; 𝑤𝑖𝑡ℎ 𝐾 = √(1 − 𝑎2)𝑇 
(1-19) 

Here parameter “𝑎” serve as slowest decaying system pole and 𝑇 is the sampling 

period. With this Laguerre function representation, arterial system FIR filter can be 

written as 

 

�̂�𝑖(𝑧) = ∑𝑏𝑘
(𝐼) 𝐾

(𝑧 − 𝑎)
(
1 − 𝑎𝑧

𝑧 − 𝑎
)
𝑘−1

𝐿𝑖

𝑘=1

 

(1-20) 

where i denotes i
th

 channel dynamic arterial system. Consider two channel MBSI 

equality condition with Y1 and Y2 being measured peripheral arterial pressures (which are 

input to MBSI model): 

http://wizfolio.com/?citation=1&ver=3&ItemID=307&UserID=32720&AccessCode=1A2EF517CD0145BBA003A07C6740D40F&CitationSuffix=
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 𝐻1𝑌2(𝑛) = 𝐻2𝑌1(𝑛) (1-21) 

Rewriting above equation with Laguerre function representation of FIR filters: 

 

(∑𝑏𝑘
(2) 𝐾

(𝑧 − 𝑎)
(
1 − 𝑎𝑧

𝑧 − 𝑎
)
𝑘−1

𝐿2

𝑘=1

)𝑌1(𝑛)

= (∑𝑏𝑘
(1) 𝐾

(𝑧 − 𝑎)
(
1 − 𝑎𝑧

𝑧 − 𝑎
)
𝑘−11

𝑘=1

)𝑌2(𝑛) 

(1-22) 

Or  

 

∑𝑏𝑘
(2)𝑥𝑘

(1)
(𝑛)

𝐿2

𝑘=1

=∑𝑏𝑘
(1)𝑥𝑘

(2)
(𝑛)

𝐿2

𝑘=1

; 𝑤𝑖𝑡ℎ 𝑥𝑘
(𝑖)

=
𝐾

(𝑧 − 𝑎)
(
1 − 𝑎𝑧

𝑧 − 𝑎
)
𝑘−1

𝑌𝑖(𝑛) 

(1-23) 

𝑥𝑘
𝑖 (𝑛) are k

th
 order filter coefficients of i

th
 channel system for a given n

th
 time series 

of observed n
th

 output series 𝑌𝑖(𝑛). Above mentioned summation equation can written in 

matrix multiplication form: 

 

[

𝑥1
(1)(𝑛) ⋯ 𝑥𝐿2

(1)(𝑛)

⋮ ⋱ ⋮

𝑥1
(1)(𝑛 − 𝑁 ⋯ 𝑥𝐿2

(1)(𝑛 − 𝑁)

]

⏟                    
𝑋1

[

𝑏1
(2)

⋮

𝑏𝐿2
(2)
]

⏟  
𝐵2

− [

𝑥1
(2)(𝑛) ⋯ 𝑥𝐿1

(2)(𝑛)

⋮ ⋱ ⋮

𝑥1
(2)(𝑛 − 𝑁 ⋯ 𝑥𝐿1

(2)(𝑛 − 𝑁)

]

⏟                    
𝑋2

[

𝑏1
(1)

⋮

𝑏𝐿1
(1)
]

⏟  
𝐵1

= [
0
⋮
0
] 

(1-24) 

Or 
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[𝑋1 −𝑋2]. [

𝐵1
𝐵2
] = 0 

(1-25) 

In order to solve for B1 and B2 in above equation, null space of [𝑋1 −𝑋2] was 

computed using singular value decomposition. 

Thereafter, with thus computed channel dynamics B1 and B2 the input cardiac output 

u(t) is estimated from measured peripheral pressure by de-convolving one of the transfer 

function from its corresponding channel output. For this a deconvolution method, based 

on Gurelli and Nikias (Gürelli and Nikias, 1995), was used.  

This algorithm was applied to swine data for validation. Catheterization of left radial 

artery and right iliac artery and cardiac output flow were measured to assess the 

performance of the Laguerre based MSBI method. They first compared measured 

peripheral pressures against model estimated peripheral pressures. Two peripheral 

pressure waveforms were used to train the Laguerre model, i.e. two arterial system 

transfer functions. Using these estimated FIR filters along with measured Cardiac output, 

respective radial and iliac arterial pressure data were reproduced. These simulated radial 

and iliac arterial pressures 𝑦�̂�(t) were correlated with corresponding measured signals 

𝑦𝑖(t) using mean absolute percent error MAPE: 

 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑

𝑦�̂�(𝑛) − 𝑦𝑖(𝑛)

𝑦𝑖(𝑛)

𝑁

𝑛=1

) × 100 

(1-26) 

For fair comparison simulated data were scaled and also delayed w.r.t to its 

measured counterpart. The MAPE quality was calculated for estimated radial and iliac 

arterial pressure to be 3.3% and 3.2% respectively. Also, the deconvolution algorithm 

http://wizfolio.com/?citation=1&ver=3&ItemID=352&UserID=32720&AccessCode=7BA5F1BDD39249AF91781B4B88D0ED94&CitationSuffix=
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was validated by comparing estimated cardiac output with measured one. Inverse transfer 

functions of these two Laguerre based arterial system FIR filters were computed by 

deconvolution operation. These inverse filters along with two measured peripheral 

pressure signals were later used to estimate the common input cardiac output flow. 

Visually estimated cardiac output was found to closely match with measured one. 
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Chapter 2: Aims and Significance of the Thesis 

2.1 Specific Aims 

The generalized transfer function approaches, despite their simplified 

implementation, renders rather less useful aortic pressure estimation as it does not 

account for inter or intra-subject differences. Gray box system identification models on 

the other hand can be tuned on per-patient basis and also at different times. Hence, it can 

adapt with any patient-to-patient variation and also any changes in time. But, these 

models substantially depend on tuning parameters or calibration techniques. Even a small 

error in calibration parameters can result in to significant modelling error. This constraint 

renders this approach rather impractical despite of its high performance and adaptive 

nature. On the contrary, Blind system identification approach for aortic pressure 

estimation does not require any explicit calibration or personalized measurements. Hence, 

this method by nature is self-calibrating to account for any inter-person along with intra-

person vascular dynamics inconstancy. Besides the application of aortic pressure 

estimation, MBSI method extracts the system dynamics for vascular channels. Thus, 

MBSI approaches for aortic pressure estimation are more convenient and practical. All of 

the MBSI approaches, so far, have assumed the arterial system to be linear time invariant 

(LTI) system. Nonetheless, neglecting nonlinearity of hemodynamics to entertain 

modelling simplicity can result in estimation error. 

A novel Wiener system based arterial channel model is first presented in Chapter 3. 

Human hemodynamic data is used to validate this model. In the model a linear finite 

impulse response (FIR) filter represents pulse transmission in large arteries and a non-
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linear memoryless function block accounts for non-uniform arterial geometric and 

viscoelastic properties (Patel and Li, 2017; Patel et al., 2017). Employing this architecture 

two or more exclusive peripheral pressure signals can be measured and multichannel 

blind system identification (MBSI) technique can be used to estimate common source i.e. 

aortic pressure 𝑷𝒂; Chapter 4 introduces this method and demonstrates aortic pressure 

estimation performance. This methodology is self-calibrating in that any inter-personal or 

intra-personal vascular dynamics inconstancy can be accounted for. The simulation 

results showed that nonlinear multichannel blind system identification (MBSI) provides 

much better accuracy than linear approach. One could also derive dynamic behavior of 

the individual pulse transmission paths, i.e. from aorta to the two peripheral arterial sites 

(Patel and Li, 2017; Patel et al., 2017). In Chapter 5, this method is further improved by 

estimating channel order preceding arterial system identification. By using effective 

channel order, system identification is optimized which then enhances aortic pressure 

estimation. 

2.2 Significance of the Thesis 

A well-modelled arterial system can be key in understanding the physical properties 

of arterial wall which in turn could provide insights to cardiovascular function. 

Potentially, this could help identify and monitor or manage cardiovascular disease. It has 

been clearly proven that an elevated arterial blood pressure is an important risk factor for 

cardiovascular pathology ([No, 1999). Being able to identify arterial channel system 

could be a great asset when studying epidemiology when treating common cardiovascular 

diseases like hypertension (MacMahon et al., 1990; Collins et al., 1990). More recently 

several research groups have been investigating the dynamic relation between different 
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arterial mechanical properties and pulse wave transmission phenomenon. For instance, 

the degree of wave reflection is assessed by the augmentation index, as well as vascular 

stiffness and arterial compliance. (O'Rourke et al., 1992; Waddell et al., 2001; Marchais 

et al., 1993; Mohiaddin et al., 1989; Salomaa et al., 1995; Leeson et al., 2000; Martin et 

al., 2000; Li, 2000) 

As an example of the application of this method, two or more peripheral pressure can 

be continuously monitored non-invasively for patient bed side diagnostics. This can be 

then fed in to presented non-linear MBSI based algorithm (implemented in a computer) 

to estimate aortic pressure. As this algorithm is self-calibrating, it is very robust and 

adaptive approach for aortic pressure estimation. Also, this will provide personalized 

solution for human arterial system modelling, i.e. system dynamics identification for 

vascular channels. This accurately estimated aortic pressure waveform can be used to 

derive valuable clinical information to aid patient bed side assistance. 
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Chapter 3: A Novel Nonlinear Black Box Wiener System Model for 

Arterial Pulse Transmission 

3.1 Nonlinearity of Arterial Channels 

The vascular channels through which the pressure wave propagates originating from 

central aorta to the peripheral arteries are inherently nonlinear. The linear approximation 

can result in mismatch in shape of pressure waveform especially peak systolic pressure 

which is crucial for Augmentation Index calculation (Varanini et al., 2003; Stergiopulos 

et al., 1998). It has been shown that when modeling arterial system with a nonlinear 

system yields higher modeling accuracy than when using linear system model. (Varanini 

et al., 2003),(Qasem et al., 2001; Gao et al., 2016). Change in physiological properties of 

arterial system has direct impact on the proper function of the left ventricle (Murgo et al., 

1980; Shimizu and Kario, 2008; Boutouyrie et al., 2010). 

Overall coupling between left ventricle and arterial network is well described by 

prescribing the arterial system as a 3 element Windkessel model with passive circuit 

elements: series resistance Z0 representing characteristic aortic impedance, resistor for 

peripheral resistance/ viscosity and capacitor for arterial compliance. It is known that 

arterial compliance is inversely proportional to the pressure exerted on its wall and so 

using constant arterial compliance could significantly and negatively impact modelling 

accuracy. Li et al. (Li, 1998; Li et al., 1990; Berger and Li, 1992; Li et al., 1997) 

proposed a nonlinear pressure dependent compliance model in lieu of constant 

compliance in the Windkessel model. When simulated this modified Windkessel model 
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(with non-linear compliance) demonstrated better performance than conventional model 

(Fogliardi et al., 1996). 

Complex physiological mechanisms in cardiovascular system aspire to maintain 

arterial blood pressure for biological homeostasis. There are different feedback signals 

such as baroreflex that regulate blood pressure (Karaaslan et al., 2005). Arterial system 

can be speculated as dynamic control systems with various feedback loops and nonlinear 

functions (2017). Hence, by employing system theory to model arterial channels can 

provide knowledge which might not be accessible to measurement. 

3.2 Proposed Arterial System Model 

When cardiovascular transmission channel is modelled across two different arterial 

sites (say aortic-to-peripheral) the system is intrinsically nonlinear. Especially, when 

peripheral arterial pressure waveform is measured at distant peripheral sites, e.g. femoral 

arteries, the effect of narrowing of arteries, branching and visco-elastic force become 

more significant. In this case, the non-linearity of arterial behavior may not be negligible. 

With this consideration the cardiovascular system may be modelled as Wiener system 

with linear filter and memoryless non-linear function block, as shown in Figure 3-1. The 

linear filter can account for larger arteries transmission channel and the non-linear 

memoryless function block can account for all nonlinearities due to tapering of arteries, 

branching and visco-elastic properties. 
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The input-output relation of this system can be represented as 

 𝑃𝑝 = 𝑓(ℎ ⊗ 𝑃𝑎⏟    
𝑦

) (3-1) 

Here, 𝑃𝑎 and 𝑃𝑝 are aortic and peripheral pressure signals respectively, ℎ is linear 

FIR filter, 𝑦 is ℎ filtered 𝑃𝑎 with ⊗ representing convolution operation between ℎ and 𝑃𝑎 

and 𝑓(. ) is a memoryless nonlinear function. For present study, nonlinear function 𝑓(. ) 

is assumed to be second 𝑓2 or third 𝑓3 order polynomial. To demonstrate modeling error 

caused by neglecting nonlinearity, 𝑓 is also estimated as linear function 𝑓1. These linear 

𝑓1, quadratic 𝑓2 and cubic 𝑓3 polynomial functions are defined as: 

 𝑓1 = a1 × 𝑦 + a2 (3-2) 

 

 𝑓2 = a3 × 𝑦
2 + a4 × 𝑦 + 𝑎5 (3-3) 

 

 𝑓3 = a6 × 𝑦
3 + a7 × 𝑦

2 + a8 × 𝑦 + 𝑎9 (3-4) 

Linear 
Filter h

Memoryless 
nonlinear 
function f

y[n]

Aortic 
Pressure 

Signal 
Pa

Peripheral 
Pressure 

Signal 
Pp_nonlin

x[n]

 

Fig. 3-1. Proposed black box Wiener System model for arterial channel with linear filter 

and memoryless non-linear function block 
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Where 𝑎𝑖=1:9 are coefficients of respective linear, quadratic and cubic polynomial 

fitting equation. Hence, arterial transmission channel is modelled and compared as 

Wiener System for three different cases using FIR filter ℎ and series linear 𝑓1, quadratic 

𝑓2 and cubic 𝑓3 polynomial functions. 

 𝑃𝑝1 = 𝑔1(𝑃𝑎) = 𝑓1(ℎ ⊗ 𝑃𝑎) (3-5) 

 

 𝑃𝑝2 = 𝑔2(𝑃𝑎) = 𝑓2(ℎ ⊗ 𝑃𝑎) (3-6) 

 

 𝑃𝑝3 = 𝑔3(𝑃𝑎) = 𝑓3(ℎ ⊗ 𝑃𝑎) (3-7) 

It can be seen that 𝑔1 corresponds to linear transfer function similar to one referred in 

the previous studies as individual transfer function ITF (Jeon, 2007; Chen et al., 1997; 

Fetics et al., 1999). Hence, 𝑔1 (with linear 𝑓1) serves as baseline comparison to ascertain 

improvement in modeling accuracy by introducing nonlinear function block 𝑓2 and 𝑓3 in 

Wiener system 𝑔2 and 𝑔3 respectively. 

3.3 Validation of Weiner System based Arterial Pulse Transmission Channel 

Model 

3.3.1 Experimental Data 

In order to validate proposed Wiener system model arterial channel, a correlation 

study was performed on previously acquired hemodynamic measurements (7 datasets 

with University of Alberta IRB approval) which are described in detail elsewhere 

http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=32720&AccessCode=816A96B798AC4B79BE54F481BB7713B7&CitationSuffix=
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(Rashedi et al., 2013). Here, these hemodynamic signals relevant to our study are 

summarized. First group (Group 1) of data was compiled with seven different dataset of 

simultaneous central aortic (𝑃𝑎) and radial (𝑃𝑟) pressure waveform recorded for 2 min at 

sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary 

bypass. Table 3-1 lists mean aortic pressure (MBP), systolic pressure (SBP) and diastolic 

pressure (DBP) from aortic as well as radial pressure of seven datasets that were used to 

validate proposed approach. 

 

Similarly, second group (Group 2) of data was compiled with seven different dataset 

of simultaneous central aortic (𝑃𝑎) and femoral (𝑃𝑓) invasively recorded for 2 min at 

sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary 

bypass. Table 3-2 lists these pressure data for the aorta as well femoral artery of seven 

datasets that were used to validate proposed approach. 

Table 3-1. Group 1: Hemodynamic measures of pressure signals included in the study 

Data 

ID 

Aortic Pressure Radial Pressure 

MBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

1 62.28 84.38 45.94 84.11 48.74 

2 70.49 96.46 48.52 100.30 50.74 

3 68.60 89.06 52.56 90.38 54.76 

4 61.38 82.91 48.83 82.14 51.22 

5 77.99 96.67 56.84 99.82 57.97 

6 58.85 75.39 45.04 77.50 47.75 

7 72.64 92.27 54.38 95.77 55.85 
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Note that MBP was computed as average of total central aortic pressure waveform. It 

can be seen that the physiologic conditions of the datasets analyzed are diverse. 

Specifically, SBP varied significantly between different datasets. Thus, this wide range of 

hemodynamic signals allowed us to validate model at distinct physiological conditions. 

3.3.2 Signal pre-processing/ signal conditioning 

From each of the 2min long dataset recorded 35 second segments were extracted 

such that these segments were free from any signal corruption. Also, each of datasets: for 

Group 1 with synchronous aortic and radial pressure waveform; and for Group 2 with 

synchronous aortic and femoral pressure waveform was down-sampled to 100Hz. These 

35 sec segments were then used for analysis. From these 35 sec segments first 25 sec 

waveforms (training dataset) were used for training Wiener Model and rest of 10 sec 

waveforms (test datasets) were used to test validity of the fitted model. Figure 3-2 shows 

Table 3-2. Group 2: Hemodynamic measures of pressure signals included in the study 

Data 

ID 

Aortic Pressure Femoral Pressure 

MBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

SBP 

(mmHg) 

DBP 

(mmHg) 

8 85.55 126.96 57.07 131.01 58.05 

9 70.49 104.42 51.30 111.41 51.10 

10 82.63 118.13 59.28 129.56 59.14 

11 90.20 117.09 67.61 125.62 66.56 

12 72.32 103.91 57.31 111.87 56.53 

13 65.98 94.85 46.39 117.24 44.82 

14 86.24 107.41 62.88 122.35 61.16 
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sample waveforms for Group 1 with simultaneous 𝑃𝑎 and 𝑃𝑟. Figure 3-3 shows sample 

waveforms for Group 2 with simultaneous 𝑃𝑎 and 𝑃𝑓. 

 

 

 

Fig. 3-2. Sample of simultaneously measured aortic and radial pressure waveform (Group 

1) 
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Fig. 3-3. Sample of simultaneously measured aortic and femoral pressure waveform 

(Group 2) 
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3.3.3 Cardiovascular Wiener System model 

3.3.3.1 Arterial linear channel identification 

To validate the Cardiovascular Wiener System model each of the training datasets 

(i.e. first 25 sec of waveforms) for Group 1 and Group 2 were fitted to Wiener System. 

Linear FIR filter ℎ was estimated on individual basis as aortic-to-radial pressure (using 

Group 1 training dataset) and aortic-to-femoral pressure (using Group 2 training dataset) 

transfer function by assuming nonlinearity to be unity. To compute transfer function 

MATLAB function “tfest” was used with 𝑃𝑎 as input signal and 𝑃𝑟 as output signal for 

aortic-to-radial pressure transfer function for each of the Group 1 training datasets. 

Similarly, “tfest” was used with 𝑃𝑎 as input signal and 𝑃𝑓 as output signal for aortic-to-

femoral pressure transfer function for each of the Group 2 training datasets. Figure 3-4 

shows example of linear system identification for aortic-to-radial arterial channel and 

Figure 3-5 is an example of for aortic-to-femoral arterial channel linear system 

identification. In the Wiener System model linear transfer function was assumed to be 

finite impulse response (FIR) filter of order 10. 
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Fig. 3-4. Aortic-to-radial pressure signal transmission channel Arterial channel FIR filter 

identification. 
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Fig. 3-5. Aortic-to-femoral pressure signal transmission channel Arterial channel FIR 

filter identification. 
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3.3.3.2 Modelling Non-linear function 

To model the nonlinear memoryless monotonic function in the Wiener System model 

for aortic-to-radial artery (or aortic-to-femoral artery) a correlation study was performed 

for linear FIR filter simulated radial (or femoral) pressure vs. measured radial (or 

femoral) pressure waveform from 25 sec training datasets. Radial (or femoral) arterial 

pressure was simulated by convolving individualized FIR filter ℎ(𝑡) with respective 

aortic pressure signal 𝑃𝑎. This simulated radial 𝑃𝑟
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  (or femoral 𝑃𝑓

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) 

pressure waveforms were then compared against measured radial 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (or femoral 

𝑃𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) pressure waveforms. Each of this correlation curves were fitted to linear 𝑓1, 

quadratic 𝑓2 and cubic 𝑓3 polynomial equation.  

As measure of fitting accuracy Pearson r-value squared (𝑟2) was calculated along 

with fitted linear, quadratic and cubic polynomial equations. This correlation analysis 

was carried out using 2500 data points. Figure 3-6 and 3-7 show the correlation for each 

of seven training datasets from Group 1. 
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Fig. 3-6. Correlation graphs for linear FIR filter simulated radial pressure vs. measured 

radial pressure waveform from seven different datasets (Group 1) of simultaneously 

measured aortic and radial pressure waveforms. 
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Similarly, correlation curves between 𝑃𝑓
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 and  𝑃𝑓

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 were fitted to 

linear, quadratic and cubic polynomial equations. Figure 3-7, 3-8 shows the correlation 

for each of seven training datasets from Group 2.  

   

 
 

 

Fig. 3-7. Correlation graphs for linear FIR filter simulated radial pressure vs. measured 

radial pressure waveform from seven different datasets (Group 1) of simultaneously 

measured aortic and radial pressure waveforms. 
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It can be seen from Figure 3-6, 3-7, 3-8 and 3-9 that 𝑓3 fitted curves resulted in lower 

𝑟2 value than 𝑓2 fitted curves and 𝑓2 fitted curves produced lower 𝑟2 value than 𝑓1 fitted 

curves. That is fitting between 𝑃𝑝
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  and  𝑃𝑝

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is improved for higher order 

polynomial as compared to lower order polynomial. 
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Fig. 3-8. Correlation graphs for linear FIR filter simulated femoral pressure vs. measured 

femoral pressure waveform from seven different datasets (Group 2) of simultaneously 

measured aortic and femoral pressure waveforms. 
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3.3.4 Simulated Waveforms 

Experiment was carried out to study the performance of the Wiener system based 

arterial channel model for 𝑃𝑟 (or 𝑃𝑓) estimation on each of seven datasets. For each of the 

 

 
 

 

Fig. 3-9. Correlation graphs for linear FIR filter simulated femoral pressure vs. measured 

femoral pressure waveform from seven different datasets (Group 2) of simultaneously 

measured aortic and femoral pressure waveforms. 
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datasets (from Group 1 as well as Group 2) Wiener System model was simulated for 

three different cases using estimated individual FIR filter ℎ along with respective 𝑃𝑎 (test 

datasets, i.e. last 10 sec waveforms) and series linear 𝑓1, quadratic 𝑓2 and cubic 𝑓3 

polynomial functions. Radial pressure (or femoral pressure) was generated as 𝑃𝑟1 (or 

𝑃𝑓1), 𝑃𝑟2 (or 𝑃𝑓2) and  𝑃𝑟3 (or 𝑃𝑓3) using Wiener system 𝑔1, 𝑔2 and 𝑔3 with nonlinear 

functions 𝑓1, 𝑓2 and 𝑓3 respectively. 

For comparison, corresponding 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝑃𝑓

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 were plotted alongside 

Wiener model simulated signals. Figure 3-10 illustrates reconstructed 𝑃𝑟 signals using 𝑔1, 

𝑔2 and 𝑔3 Wiener model along with measured 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. 

 

 

Fig. 3-10. Sample waveform of reconstructed 𝑃𝑟 signals using 𝑔1, 𝑔2 and 𝑔3 Wiener 

model along with measured 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
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Likewise, 𝑃𝑓 signals were reconstructed using 𝑔1, 𝑔2 and 𝑔3 Wiener model along 

with measured 𝑃𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑; Figure 3-11 demonstrates an example of these waveforms. It 

can be seen that 𝑔2 constructed 𝑃𝑟 (and 𝑃𝑓) better aligns with measured 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (and 

𝑃𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) as compared to 𝑔1 constructed 𝑃𝑟 (and 𝑃𝑓). Also, 𝑔3 simulated 𝑃𝑟 (and 𝑃𝑓) 

better coheres with measured 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (and 𝑃𝑓

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) as compared to 𝑔2 simulated 𝑃𝑟 

(and 𝑃𝑓); see Figure 3-10 and 3-11.  

3.3.5 Accuracy of Wiener System model for arterial channel 

Besides visual comparison between the measured vs. simulated 𝑃𝑝 (i.e. 𝑃𝑟 and 𝑃𝑓) 

waveforms among different Wiener models 𝑔1, 𝑔2 and 𝑔3 with test datasets 𝑃𝑎, root mean 

squared error were computed for each case and used as figure of merit. 𝑅𝑀𝑆𝐸 was 

computed for the total 10 sec test dataset waveform. Lower the root mean squared error 

implied higher correlation between measured and estimated 𝑃𝑝. 𝑅𝑀𝑆𝐸 is computed as 

 

Fig. 3-11. Sample waveform of reconstructed 𝑃𝑓 signals using 𝑔1, 𝑔2 and 𝑔3 Wiener 

model along with measured 𝑃𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

25.2 25.4 25.6 25.8 26 26.2 26.4

50

60

70

80

90

100

110

time(s)

F
e
m

o
ra

l 
P

re
s
su

re
(m

m
H

g
)

Femoral Pressure: true vs. simulated

 

 

TruePf

g1 simulatedPf

g2 simulatedPf

g3 simulatedPf



42 

 

 

 

sample-by-sample difference between measured 𝑃𝑟
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (or 𝑃𝑓

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) and estimated 

𝑃𝑟1 (or 𝑃𝑓1) for 𝑔1, 𝑔2 and 𝑔3 Wiener models. Data analysis from above mentioned all 

experiments are summarized in the Table 3-3 (for aortic-to-radial arterial channel) and 

Table 3-4 (for aortic-to-femoral arterial channel).  

 

  

Table 3-3. Root mean squared error for radial pressure estimated using Wiener models 

𝑔1, 𝑔2 and 𝑔3. 𝑃𝑟1, 𝑃𝑟2 and 𝑃𝑟3 are simulated radial pressure signals using 𝑔1, 𝑔2 and 𝑔3 

Wiener model 

Dataset ID 

RMSE (mmHg) 

𝑷𝒓𝟏 𝑷𝒓𝟐 𝑷𝒓𝟑 

1 1.971 1.589 1.581 

2 3.209 2.564 2.502 

3 2.618 2.498 2.336 

4 1.823 1.382 1.372 

5 2.966 2.649 2.647 

6 2.739 2.433 2.313 

7 2.901 2.579 2.560 
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Table 3-4. Root mean squared error for femoral pressure estimated using Wiener models 

𝑔1, 𝑔2 and 𝑔3. 𝑃𝑓1, 𝑃𝑓2 and 𝑃𝑓3 are simulated femoral pressure signals using 𝑔1, 𝑔2 and 

𝑔3 Wiener model 

Dataset ID 

RMSE (mmHg) 

𝑷𝒇𝟏 𝑷𝒇𝟐 𝑷𝒇𝟑 

8 3.837 3.706 3.628 

9 3.795 2.975 2.909 

10 5.839 4.617 4.558 

11 5.661 5.405 5.369 

12 4.615 4.563 4.321 

13 5.437 5.304 5.292 

14 4.483 3.915 3.893 
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Chapter 4: Aortic Pressure Estimation using Blind Identification 

Approach on Single Input Multiple Output (SIMO) Non-linear Wiener 

Systems 

4.1 Proposed Multi-Channel Arterial Tree Model 

 

By modeling arterial system as single-input multiple-output (SIMO) MBSI can be 

employed to estimate common source aortic pressure 𝑃𝑎. When MBSI technique is 

implemented using distal peripheral measurement sites, e.g. femoral arteries, the effect of 

narrowing of arteries, branching and visco-elastic force become more significant. In this 

case, the non-linearity of arterial behavior (especially at distal termination) may not be 

negligible. With this consideration, cardiovascular system may be modelled as Wiener 

system with linear finite impulse response or FIR filter and memoryless non-linear 

function block, as shown in Figure 4-1. The linear FIR filter can account for larger 

arteries transmission channel and non-linear memoryless function block can account for 

Linear FIR 
Filter h1

Linear FIR 
Filter h2

Memoryless 
nonlinear 

function f1

Memoryless 
nonlinear 

function f2

s[n]

s[n]

y1[n]

y2[n] x2[n]
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Pressure 
Signal Pa

Radial 
Pressure 
Signal Pr

Femoral 
Pressure 
Signal Pf

x1[n]

 

Fig. 4-1.  Proposed Single Input Multiple Outputs Wiener System model for the arterial 

system. FIR finite impulse response filter. 
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all nonlinearities due to non-uniformities in the arterial system, such as narrowing of 

arteries, branching and visco-elastic forces. To facilitate multi-channel blind system 

identification second Wiener system segment for another cardiovascular transmission 

channel can be modelled. With this structure if pressure waveforms are measured from 

two distinct peripheral locations MBSI technique can be used to characterize the linear 

FIR filters along with non-linear functions for each of the two transmission channels. 

Thus computed linear filter and non-linear functions can be then de-convolved from 

measured output pressure signals to estimate common input pressure signal, in this case 

𝑃𝑎 signal. 

4.2 Aortic Pressure Estimation Method 

 A relatively flexible multi-channel blind system identification method for SIMO 

system was proposed by Van Vaerenbergh et al. (Van Vaerenbergh et al., 2013). This 

Alternating Kernel Canonical Correlation Analysis (AKCCA) method, in specific, targets 

SIMO system with nonlinear Wiener systems.  

To be consistent with the convention, the following notation is used for the analysis 

that follows: lowercase letters 𝑥 are used for scalar variables, lower case boldface letters 

𝒙 represent vectors, uppercase boldface letters 𝑿 stand for matrices, discrete time 

elements are depicted using square bracket 𝑥[𝑛] and caret superscript designate estimated 

value �̂�. 

http://wizfolio.com/?citation=1&ver=3&ItemID=357&UserID=32720&AccessCode=9194B5D07D3440FF933C01E09B2FD9D0&CitationSuffix=
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4.2.1 Blind Identification of Linear SIMO Systems 

This method first formulates blind identification of a linear system with two 

channels. For a given SIMO system with two output signals 𝒙𝟏 and 𝒙𝟐 at linear channels 

𝒉𝟏 and 𝒉𝟐 respectively that are excited by same input signal 𝑠[𝑛] can be written as 

 

𝑥𝑖[𝑛] =∑ℎ𝑖[𝑙]𝑠[𝑛 − 𝑙] =  ℎ𝑖[𝑛] ∗ 𝑠[𝑛]

𝐿−1

𝑙=0

 

(4-1) 

where ℎ𝑖 = [ℎ𝑖[0], … . , ℎ𝑖[𝐿 − 1]]
𝑇is the impulse response vector of the i-th channel, 

L is the maximal channel length (which is assumed to be known), and ℎ𝑖[𝑛]  ∗ 𝑠[𝑛] is the 

convolution between ℎ𝑖 and the input signal 𝑠[𝑛]. Channels, �̂�𝟏 and �̂�𝟐 can be estimated 

by minimizing the following cost function 

 
𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞

�̂�𝟏,�̂�𝟐

𝟏

𝟐
‖𝑿𝟏�̂�𝟐 − 𝑿𝟐�̂�𝟏‖

𝟐
 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝟐�̂�𝟏‖
𝟐
= ‖𝑿𝟏�̂�𝟐‖

𝟐
= 𝟏 

(4-2) 

Equation (4-2) is called canonical correlation analysis (CCA) problem (Xu et al., 

1995), which is solved as principal eigenvector of generalized eigenvalue problem (GEV) 

(Hotelling, 1936) shown below 

 
[
𝟎 𝑿𝟐

𝑻𝑿𝟏
𝑿𝟏
𝑻𝑿𝟐 𝟎

] [
𝒉𝟏
𝑻

𝒉𝟐
𝑻]

⏟
�̂�

= 𝝆[
𝑿𝟐
𝑻𝑿𝟐 𝟎

𝟎 𝑿𝟏
𝑻𝑿𝟏

] [
𝒉𝟏
𝑻

𝒉𝟐
𝑻]

⏟
�̂�

 
(4-3) 

Here 𝑿𝒊 is the data matrix defined as 

http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=358&UserID=32720&AccessCode=A246DCBC526D4449906A794915D1A39B&CitationSuffix=
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𝑿𝒊 = [
𝑥𝑖[𝑛 + 𝐿 − 1] … 𝑥𝑖[𝑛]

⋮ ⋱ ⋮
𝑥𝑖[𝑛 + 𝑁 − 1] … 𝑥𝑖[𝑛 + 𝑁 − 𝐿]

] , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2 

(4-4) 

Full characterization of �̂�𝒊 is only possible if the two channels are co-prime or in 

other words don’t have common zeros (Xu et al., 1995). When solving for �̂�𝒊 a constraint 

has to be applied so as to neglect trivial solution �̂�𝒊 = 𝟎. 

4.2.2 Blind Identification and Equalization of SIMO Wiener Systems 

Consider a nonlinear SIMO system with each of the channels modeled as Wiener 

system as shown in the Figure 4-1. The input-output relation of this system can be 

represented as 

 

𝑥𝑖[𝑛] = 𝑓𝑖 (∑ℎ𝑖[𝑙]𝑠[𝑛 − 𝑙]

𝐿−1

𝑙=0

) 

(4-5) 

The nonlinearities 𝑓𝑖(. ) have to be restricted to monotonous and invertible to allow 

calculating inverse nonlinearities in identification problem. Based on previous study, in 

case of arterial system the nonlinearities due to distal peripheral arteries can be 

approximated as monotonous invertible nonlinear functions without hysteresis. 

(Stergiopulos et al., 1999) 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=381&UserID=32720&AccessCode=161623BADCFE4AA890C83AC1FA35A4C7&CitationSuffix=
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4.2.2.1 Outline of the AKCCA Method 

 

For given two-channel SIMO Wiener system shown in Figure 4-1 the proposed 

identification method can be modeled as two-channel MISO Hammerstein system, see 

Figure 4-2. First, cost function is defined that needs to be minimized 

 

𝐽 =
1

2
∑ |𝑧1[𝑛] − 𝑧2[𝑛]|

2 =
1

2
∑ |𝑒[𝑛]|2
𝑁

𝑛=1

𝑁

𝑛=1

 

(4-6) 

Where 𝒛𝟏 and 𝒛𝟐 are the identification model outputs 

 

𝑧𝑖[𝑛] =∑ℎ̂𝑗[𝑙]�̂�𝑖(𝑥𝑖[𝑛 − 𝑙])

𝐿−1

𝑙=0

, 

𝑤here 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗 

(4-7) 

4.2.2.2 Kernel Methods 

Using Kernel Methods a nonlinear problem of data 𝑥 can be transformed into high-

dimensional reproducing kernel Hilbert space (RKHS), in which transformed data can be 
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Fig. 4-2. Multiple inputs single output or MISO Hammerstein System model for blind 

identification 
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separated linearly. Applying Representer theorem (Schölkopf et al., 2001), a nonlinear 

function 𝑔(. ) can be modeled as shown by equation (4-8). 

 

𝑦 = 𝑔(𝑥) = ∑𝛼[𝑛]𝜅(𝑥, 𝑥[𝑛])

𝑁

𝑛=1

 

(4-8) 

where {𝑥[𝑛] ∣ 𝑛 = 1,… . , 𝑁} are the training data. 

Equation (4-8) can be represented in matrix form as 

 

[
𝑦[1]
⋮

𝑦[𝑛𝑁]
]

⏟    
𝒚

= 𝑲[
𝛼[1]
⋮

𝛼[𝑁]
]

⏟  
𝜶

 

(4-9) 

Here 𝑦[𝑛] are system outputs corresponding to 𝑥[𝑛] and 𝑲 ∈ ℝ𝑁×𝑁 is the kernel 

matrix defined as  

 𝑲[𝑖, 𝑗] = 𝜅(𝒙[𝑖], 𝒙[𝑗]) (4-10) 

4.2.2.3 Optimization Problem 

Incorporating kernel expansion equation (4-7), the identification model output vector  

𝒛𝒊 of i-th channel can be written as 

 

[
𝑧𝑖[1]
⋮

𝑧𝑖[𝑁]
]

⏟    
𝑧𝑖

= �̅�𝒊𝒓𝒋, 
(4-11) 

𝑤here 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗. The elements of �̅�𝒊 ∈ ℝ
𝑁×(𝐿𝑀) are defined in terms of 𝐾𝑖, 

the kernel matrix of the available data 𝑥𝑖[𝑛] of corresponding branch as 

http://wizfolio.com/?citation=1&ver=3&ItemID=334&UserID=32720&AccessCode=968E4CDF2DF24149A0E900A933D73096&CitationSuffix=
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 �̅�𝑖[𝑛, 𝑙𝑀 +𝑚] = 𝐾𝑖[𝑛 − 𝑙,𝑚], (4-12) 

and 𝑟𝑗 represents the Kronecker product 

 

𝑟𝑗 = [

ℎ̂𝑗[1]

⋮
ℎ̂𝑗[𝐿 − 1]

]

⏟      
�̂�𝒋

⊗ [
�̂�𝑖[1]
⋮

�̂�𝑖[𝑁]
]

⏟    
�̂�𝒊

 

(4-13) 

Using kernel expression of two channels for SIMO Wiener the optimization problem 

(equation (4-2)) can be reformed to 

 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
𝒓𝟏,𝒓𝟐,�̂�𝟏,�̂�𝟐,�̂�𝟏,�̂�𝟐

‖�̅�𝟏𝒓𝟐 − �̅�𝟐𝒓𝟏 ‖
𝟐 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖�̅�𝟏𝒓𝟐 ‖
𝟐 = ‖�̅�𝟐𝒓𝟏‖

𝟐 = 𝟏 

𝒓𝟐 = �̂�𝟐⨂�̂�𝟏 

𝒓𝟏 = �̂�𝟏⨂�̂�𝟐 

(4-14) 

This expression can be simplified to 

 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
𝒓𝟏,𝒓𝟐,�̂�𝟏,�̂�𝟐,�̂�𝟏,�̂�𝟐

‖𝒛𝟏 − 𝒛𝟐‖
𝟐 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝒛𝟏‖
𝟐 = ‖𝒛𝟐‖

𝟐 = 𝟏 

(4-15) 

4.2.2.4 Alternating Optimization Procedure 

Equation (4-15) being non-convex optimization problem an iterative strategy is used 

that alternates between estimating linear channels �̂�𝒊 and the nonlinearity estimates �̂�𝒊 so 

that the solution converges to minimize estimation error 
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 Iteration 1: Initial �̂�𝒊 is guessed and used to compute �̂�𝒊. With this �̂�𝒊 the �̂�𝒊[𝒏] 

can be calculated using Equation (4-9). With this �̂�𝒊[𝒏] identification model 

output  𝒛𝒊[𝒏] can be found using Equation (4-3) 

 

𝑧𝑖[𝑛] =∑ℎ̂𝑗[𝑙]�̂�𝑖[𝑛 − 𝑙]

𝐿−1

𝑙=0

, 

𝑤here 𝑖, 𝑗 = 1,2 and 𝑖 ≠ 𝑗 

(4-16) 

Matrix representation of equation (4-16) can be given by 

 𝒛𝒊 = �̂�𝒊�̂�𝒋 (4-17) 

Using this relation equation (4-17) the minimization problem equation (4-15) 

becomes 

 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
�̂�𝟏,�̂�𝟐

‖�̂�𝟏�̂�𝟐 − �̂�𝟐�̂�𝟏‖
𝟐
 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖�̂�𝟏�̂�𝟐‖
𝟐
= ‖�̂�𝟐�̂�𝟏‖

𝟐
= 𝟏 

(4-18) 

Equation (4-18) is identical to the CCA problem (equation (4-2)) which can be 

solved using the GEV (equation (4-3)) (Hardoon et al., 2004) 

 Iteration 2: With �̂�𝒊 estimated from step 1, obtain �̂�𝒊. Using �̂�𝟏 and �̂�𝟐 computed 

from step 1 we can find identification output 

 

𝑧𝑖[𝑛] = ∑ 𝑊𝑖[𝑛,𝑚]�̂�𝑖[𝑚]

𝑁

𝑚=1

, 
(4-19) 

Where auxiliary variable 𝑊𝑖 is defined as 

http://wizfolio.com/?citation=1&ver=3&ItemID=338&UserID=32720&AccessCode=BAFE9AA42AB249B88A25C07CAF891E92&CitationSuffix=
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𝑊𝑖[𝑛,𝑚] =∑ℎ̂𝑗[𝑙]𝐾𝑖[𝑛 − 𝑙,𝑚]

𝐿−1

𝑙=0

 

(4-20) 

Equation (4-19) can be expressed using matrix operation as 

 𝒛𝒊 = 𝑾𝒊�̂�𝒊 , 𝑤𝑖𝑡ℎ 𝑾𝟏 ∈ ℝ
𝑁×𝑁 (4-21) 

With above mentioned derivation minimization problem (equation (4-15)) is 

converted to 

 𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
𝒓𝟏,𝒓𝟐,�̂�𝟏,�̂�𝟐,�̂�𝟏,�̂�𝟐

‖𝑾𝟏�̂�𝟏 −𝑾𝟐�̂�𝟐‖
𝟐 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑾𝟏�̂�𝟏‖
𝟐 = ‖𝑾𝟐�̂�𝟐‖

𝟐 = 𝟏 

(4-22) 

As in step 1 equation (4-22) formulates kernel CCA problem to estimate nonlinear 

𝑔𝑖(. ).which can be solved using the GEV (equation (4-3)). For initialization, assume 

initial nonlinear function as identity function 𝑔𝑖(𝑥)  =  𝑥, then solve linear CCA problem 

(equation (4-9)) to compute the initial estimate of the linear channels �̂�𝒊 for given system 

outputs 𝑥𝑖[𝑛]. Figure 4-3 summarizes AKCCA algorithm. 
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4.3 Experimental Results 

4.3.1 Experimental Data 

In order to study the performance of nonlinear blind system identification for 𝑃𝑎 

estimation (nonlinear MBSI) AKCCA method was employed on previously acquired 

(with University of Alberta IRB approval) hemodynamic measurements (7 datasets) 

Initialize: Assume nonlinearity to be unity

input: Output data sets xi[n] of the 
Wiener system.

Apply CCA to estimate linear FIR filters

Apply KCCA to estimate nonlinear function

Check for convergence?

Minimum mean-square error equalization to 
reconstruct common input s[n]

Scale to obtain the same norm as their true values

YES

NO

 

Fig. 4-3. Flowchart of alternating kernel canonical correlation analysis or AKCCA 

algorithm 
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which are described in detail elsewhere (Rashedi et al., 2013). Here, experimental setup 

to measure these hemodynamic signals is summarized. Simultaneous central aortic (𝑃𝑎), 

radial (𝑃𝑟) and femoral (𝑃𝑓) artery pressures were invasively recorded for 2 min at 

sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary 

bypass. Table 4-1 lists systolic pressure (sBP), diastolic pressure (dBP), mean pressure 

(mean BP), aortic-to-femoral artery pulse transit time (𝑃𝑇𝑇𝑎𝑓) and aortic-to-radial artery 

pulse transit time (𝑃𝑇𝑇𝑎𝑟) of the datasets that were used to validate proposed approach. It 

can be seen that the physiologic conditions of the datasets analyzed are diverse. 

Specifically, 𝑃𝑇𝑇𝑎𝑓 and 𝑃𝑇𝑇𝑎𝑟 varied significantly between different datasets. It has been 

previously studied that 𝑃𝑇𝑇 deviation has considerable influence on the arterial channel 

dynamics (Sugimachi et al., 2001; Westerhof et al., 2007). Thus, wide range of 

hemodynamic signals allowed us to validate our method at distinct physiological 

conditions.  

 

Table 4-1. Hemodynamic measures of pressure signals included in the study 

Data ID 

𝑃𝑇𝑇𝑎𝑓   

(ms) 

𝑃𝑇𝑇𝑎𝑟  

(ms) 

Mean BP 

(mmHg) 

dBP (mmHg) sBP (mmHg) 

1 60 50 55.91 44.35 76.48 

2 50 80 61.38 52.77 87.20 

3 80 110 49.53 49.46 75.66 

4 60 110 58.58 46.41 97.85 

5 50 80 65.98 47.78 96.27 

6 50 130 59.10 49.64 80.05 

7 60 80 62.28 47.28 90.58 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=377&UserID=32720&AccessCode=F64091DCD771485EBDB2D5045ECBD638&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=378&UserID=32720&AccessCode=AFC072CDA0174E24B01D7C0E555BBABB&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=378&UserID=32720&AccessCode=AFC072CDA0174E24B01D7C0E555BBABB&CitationSuffix=
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Note that MeanBP was computed as average of total central aortic pressure 

waveform, dBP and sBP was computed as average of diastole and systole aortic pressure 

respectively measured at each cardiac cycle for 35 sec, 𝑃𝑇𝑇𝑎𝑓 was computed as average 

of femoral pressure foot-to-aortic pressure foot time difference measured at each cardiac 

cycle for 35 sec, 𝑃𝑇𝑇𝑎𝑟 was computed as average of radial pressure foot-to-aortic 

pressure foot time difference measured at each cardiac cycle for 35 sec. 

4.3.2 Signal pre-processing/ signal conditioning 

From each of the 2min long dataset recorded 35 second segments were extracted 

such that these segments were free from any signal corruption. Also, each of aortic, 

femoral and radial pressure waveforms was downsampled to 100Hz. In order to decouple 

the aortic pressure estimation error due to error in arterial channel identification and error 

due to time separation among 𝑃𝑎, 𝑃𝑟 and 𝑃𝑓 these signals were time aligned. Particularly,  

𝑃𝑟 and  𝑃𝑓 were advanced by 𝑃𝑇𝑇𝑎𝑟 and 𝑃𝑇𝑇𝑎𝑓 respectively w.r.t. 𝑃𝑎. These 35 sec 

segments were then used for analysis. Figure 4-4, 4-5 and 4-6 shows sample waveforms 

𝑃𝑎, 𝑃𝑟 and 𝑃𝑓 respectively; bottom graph displays full waveform of 35 sec length and top 

graph is zoomed for 7-10 sec to demonstrate details of recorded signals. 
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Fig. 4-4. Sample of measured aortic pressure waveform. Top: zoomed-in to 7-10 sec. 

Bottom: full 35 sec segment 
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Fig. 4-5. Sample of measured radial pressure waveform. Top: zoomed-in to 7-10 sec. 

Bottom: full 35 sec segment 
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4.3.3 Aortic pressure estimation 

4.3.3.1 Measured vs. Estimated Aortic pressure waveform 

Experiment was carried out to study the performance of the SIMO Wiener system 

based blind system identification for 𝑃𝑎 estimation on each of seven datasets. For 

comparison, SIMO linear system based blind system identification for 𝑃𝑎 estimation was 

applied on each dataset as well. In the Wiener System model linear transfer function was 

assumed to be finite impulse response (FIR) of order 10. First, AKCCA algorithm was 

applied for nonlinear blind system identification. Then same dataset was used as input to 

CCA algorithm for linear blind system identification. Thus, 𝑃𝑎 signals were estimated 

using AKCCA and CCA methods. These estimates were then compared against measured 

 

Fig. 4-6. Sample of measured femoral pressure waveform. Top: zoomed-in to 7-10 sec. 

Bottom: full 35 sec segment 
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aortic pressure signals. AKCCA and CCA reconstructed aortic pressure waveforms were 

found to be noisy; they were low-pass filtered using three tap average FIR filter to filter 

high frequency noise. Figure 4-7 illustrates reconstructed 𝑃𝑎 signals using AKCCA and 

CCA along with measured 𝑃𝑎 for one of the seven pressure signal datasets. Figure 4-7 

top-left shows nonlinear MBSI AKCCA estimated 𝑃𝑎 against measured 𝑃𝑎, top-right is 

the filtered version of AKCCA estimated 𝑃𝑎. Similarly, Figure 4-7 bottom-left shows 

linear MBSI CCA estimated 𝑃𝑎 against measured 𝑃𝑎, bottom-right is the filtered version 

of CCA estimated 𝑃𝑎. It can be seen that AKCCA constructed 𝑃𝑎 better aligns with 

measured 𝑃𝑎 as compared to CCA constructed 𝑃𝑎. Also, when estimated aortic pressure is 

smoothened the correlation is improved; see Figure 4-7. 
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4.3.3.2 Arterial linear channel identification 

Figure 4-8 shows example of linear arterial channel identification using nonlinear 

MBSI and linear MBSI approach. Figure 4-8 left displays FIR channels estimation using 

 
 

 

Fig. 4-7. Measured vs. estimated aortic pressure waveform using AKCCA based 

nonlinear MBSI and CCA based linear MBSI. Top-left: AKCCA generated𝑃𝑎. Top-right: 

filtered AKCCA generated 𝑃𝑎. Bottom-left: CCA generated𝑃𝑎. Bottom-right: filtered 

CCA generated 𝑃𝑎. 
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AKCCA method and right one presents channels estimation using CCA method. Here, ℎ1 

represents aortic-to-radial pressure signal transmission channel and ℎ2 represents aortic-

to-femoral pressure signal transmission channel. 

 

4.3.3.3 Correlation graph and Bland–Altman plot 

The efficacy of nonlinear blind system identification for aortic pressure estimation 

was further assessed by correlation graph and Bland-Altman plot (Figure 4-9) between 

measured versus estimated 𝑃𝑎. For comparison these plots were computed for 𝑃𝑎 

estimated using nonlinear MBSI as well as linear MBSI. In correlation graphs, linear 

fitting was implemented while forcing zero intercept. As measure of fitting accuracy 

Pearson r-value squared (𝑟2) was calculated along with slope of fitted line. Alongside, 

 

Fig. 4-8. Arterial channel identification using AKCCA based nonlinear MBSI (left) and 

CCA based linear MBSI (right). ℎ1: aortic-to-radial pressure signal transmission channel. 

ℎ2: aortic-to-femoral pressure signal transmission channel. 
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root mean squared error between measured and estimated 𝑃𝑎 was computed to appraise 

statistical significance in difference. 

 

 
 

 

Fig. 4-9. Correlation graph for measured versus estimated 𝑃𝑎 using nonlinear MBSI (top-

left) and linear MBSI (bottom-left). Bland-Altman plots of 𝑃𝑎 estimation error w.r.t. 

measured 𝑃𝑎 for nonlinear MBSI (top-right) and linear MBSI (bottom-right). 𝑛: data 

points used for analysis, 𝑟2: Pearson r-value squared, 𝑅𝑀𝑆𝐸: root mean squared error, 

dashed line represents Coefficient of reproducibility (±1.96𝑆𝐷) and solid line is mean of 

𝑃𝑎 estimation error. 
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Bland-Altman plots were obtained as sample-by-sample difference between 

measured and estimated aortic pressure waveform for nonlinear MBSI and linear MBSI. 

Coefficient of reproducibility (i.e. 1.96 times the standard deviation of the difference 

(±1.96𝑆𝐷)) is displayed as dashed lines and solid line is mean of error in estimated 𝑃𝑎 

with respect to measured 𝑃𝑎. This correlation and Bland-Altman analysis was carried out 

using 𝑛 = 3380 data point. Per correlation graphs, it was observed that nonlinear MBSI 

generated 𝑃𝑎 versus measured 𝑃𝑎 exhibited better line fitting (𝑟2 = 0.98) as compared to 

linear MBSI generated 𝑃𝑎 versus measured 𝑃𝑎 (𝑟2 = 0.92). 𝑅𝑀𝑆𝐸 = 1.6𝑚𝑚𝐻𝑔 in case 

of  nonlinear MBSI produced 𝑃𝑎 affirmed lower estimation error than in case of linear 

MBSI 𝑅𝑀𝑆𝐸 = 3.0𝑚𝑚𝐻𝑔. Coefficient of reproducibility (1.96𝑆𝐷) was computed lower 

for nonlinear MBSI (±3.1𝑚𝑚𝐻𝑔) than for linear MBSI (±6.0𝑚𝑚𝐻𝑔). 
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4.3.3.4 Data Analysis 

 

Besides visual comparison between the measured vs. estimated 𝑃𝑎  waveforms 

among nonlinear MBSI method and linear MBSI method, root mean squared error were 

computed for each case and used as figure of merit. 𝑅𝑀𝑆𝐸 was computed for total 

waveform (TW), beat-to-beat systole pressure (SP) and beat-to-beat diastole pressure 

(BP). Lower the root mean squared error implied higher correlation between measured 

and estimated 𝑃𝑎. 𝑇𝑊 𝑅𝑀𝑆𝐸 is computed as sample-by-sample difference between 

measured 𝑃𝑎 and estimated 𝑃𝑎  for nonlinear and linear MBSI. Additionally, for 

Table 4-2. Root mean squared error for aortic pressure estimated using nonlinear MBSI 

and linear MBSI along with radial and femoral artery pressure with respect to measured 

aortic pressure 

Data 

ID 

Estimated Aortic Pressure 

RMSE (mmHg) using 

nonlinear MBSI 

Radial Artery Pressure 

RMSE (mmHg) 

Femoral Artery 

Pressure RMSE 

(mmHg) 

Estimated Aortic 

Pressure RMSE 

(mmHg) using linear 

MBSI 

TW SP DP TW SP DP TW SP DP TW SP DP 

1 1.61 0.78 0.68 5.06 5.75 4.19 5.59 12.68 1.73 3.05 1.79 0.93 

2 1.30 0.93 1.08 5.10 1.90 2.68 5.05 12.47 1.52 1.37 0.94 1.97 

3 2.18 2.28 2.11 5.36 5.32 2.80 3.68 10.49 2.81 2.19 2.32 2.17 

4 2.18 1.34 0.88 9.73 4.47 3.28 5.87 12.95 1.31 2.64 2.24 1.46 

5 2.25 3.11 0.81 8.68 10.39 6.08 8.95 20.86 1.73 7.20 10.46 2.53 

6 2.59 2.71 1.45 7.74 6.45 5.46 9.07 25.37 1.96 3.06 2.78 1.83 

7 3.39 4.24 1.36 6.11 4.81 2.80 8.46 26.55 2.00 4.08 4.30 3.74 
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comparison these error metrics were computed for radial and femoral pressure 

waveforms with respect to measured aortic pressure waveforms. Data analysis from 

above mentioned all experiments is summarized in the Table 4-2. Based on the results, 

nonlinear MBSI demonstrated credible 𝑃𝑎 estimation over variety of clinical dataset. 

Error metric computed on estimated 𝑃𝑎 displayed far superior correlation with measured 

𝑃𝑎 as compared to unprocessed radial and femoral artery pressure waveforms. 

Furthermore, it can clearly be seen that 𝑃𝑎 estimation using nonlinear MBSI outstands 

linear MBSI estimated 𝑃𝑎. Nonlinear MBSI estimated 𝑃𝑎 was able to consistently 

reproduce TW, SP and DP of quality exceeding those from radial BP, femoral BP along 

with linear MBSI generated 𝑃𝑎.  Linear MBSI generated 𝑃𝑎 was observed to exhibit larger 

SP error than nonlinear MBSI based 𝑃𝑎. Lastly, three studied performance parameters of 

estimated aortic pressure were found to be broadly uncorrelated with corresponding 

reference values of these parameters. 

4.3.4 Identification performance vs. data length 

In this experiment, the influence of the number of data, N, on the aortic pressure 

estimation accuracy was studied. For reference, linear blind identification was performed 

on each data set for aortic pressure estimation as well. It can be seen from Table 4-3 that 

the root mean squared error decreases as data length used for non-linear blind 

identification increases; this is expected. Or in other words, performance of non-linear 

MBSI estimated 𝑃𝑎 increases with increase in number of data points. On the other hand, 

the performance of linear MBSI estimated  𝑃𝑎 decreases with increase in data length. This 

can be justified with following argument: linear blind identification assumes the system 

to be linear and hence estimates best linear fit for aortic pressure estimation. Nonlinear 
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aortic to peripheral pressure system can be assumed to be linear for short time. This 

assumption is violated more as the data length is increased. Hence, for linear MBSI 

estimated 𝑃𝑎 with larger data length the error grows. This turns out to be one of the key 

drawbacks of using linear MBSI for 𝑃𝑎 estimation. In order to favor linear assumption, 

very short data length has to be used for aortic pressure estimation. Adversely, shorter 

data length negatively impacts linear FIR filter estimation accuracy. Hence for linear 

MBSI there is trade of between FIR filter size (larger the order higher is filter accuracy) 

and nonlinear/ time invariance (larger the FIR filter length higher would be the error due 

to nonlinearity). 

 

Table 4-3. Root mean squared error vs data length of non-linear MBSI and linear MBSI 

Length of data 

N 

Estimated Aortic Pressure TW Root Mean 

Squared error (mmHg) 

Non-linear MBSI Linear MBSI 

1000 1.7152 2.9789 

2000 1.6423 2.9060 

3000 1.6197 3.0254 

3400 1.6129 3.0502 
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Chapter 5: Reconstruction of Central Aortic Pressure from Varying 

Orders of Finite Impulse Response of Peripheral Arterial Blood Pressures 

5.1 Limitation of previously proposed Aortic Pressure Estimation Technique 

One drawback of using MBSI based estimation technique is that the arterial 

transmission channel order has to be known beforehand (E Moulines et al., 1995; 

Guanghan Xu et al., 1995; Lang Tong and Qing Zhao, 1999) . In the previously-

mentioned aortic pressure estimation method linear finite impulse response (FIR) filter in 

the Wiener System model was assumed to be fixed 10
th

 order across all patient dataset. It 

is known that considerable degradation is observed if the channel order is under or 

overestimated (A P Liavas and P A Regalia, 2001; Liavas et al., ; S Karakutuk and T E 

Tuncer, 2011) by blind system identification. Especially, if the FIR filter coefficients of 

the channel being blind identified has negligible leading or trailing coefficients and the 

training data is noisy the system identification performance is further depreciated. SIMO 

MBSI performance is optimized if accurate channel order is used (S Karakutuk and T E 

Tuncer, 2011). Hence, it is desirable to estimate effective channel order in interest of 

better channel characterization (i.e. arterial channel identification) (A P Liavas et al., 

1999; K Abed-Meraim et al., 1997) and equalization (i.e. 𝑃𝑎 estimation) (Lang Tong and 

Qing Zhao, 1999). Here, a significantly improved technique to prior method is proposed 

by first estimating channel order for arterial transmission channel and then applying 

nonlinear MBSI for personalized aortic pressure estimation applications to cardiovascular 

diagnosis. 

http://wizfolio.com/?citation=1&ver=3&ItemID=412&UserID=32720&AccessCode=BAAFD69966DF401D95DF0C03760EA382&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=412&UserID=32720&AccessCode=BAAFD69966DF401D95DF0C03760EA382&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=404&UserID=32720&AccessCode=148745C5ACD24D47B25F94DB00B9D556&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=404&UserID=32720&AccessCode=148745C5ACD24D47B25F94DB00B9D556&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=408&UserID=32720&AccessCode=E54140829A4D43F5A4FE6F7B271B6444&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=408&UserID=32720&AccessCode=E54140829A4D43F5A4FE6F7B271B6444&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=409&UserID=32720&AccessCode=C4EC70B24A314749ACC65DA1B4AD86EC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=409&UserID=32720&AccessCode=C4EC70B24A314749ACC65DA1B4AD86EC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=409&UserID=32720&AccessCode=C4EC70B24A314749ACC65DA1B4AD86EC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=409&UserID=32720&AccessCode=C4EC70B24A314749ACC65DA1B4AD86EC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=405&UserID=32720&AccessCode=4A2E5F153C0B48ACAC7199C45D49F919&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=405&UserID=32720&AccessCode=4A2E5F153C0B48ACAC7199C45D49F919&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=407&UserID=32720&AccessCode=0665F23A459A4DAF8C483C193433BBE5&CitationSuffix=
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5.2 Improved Aortic Pressure Estimation Method 

5.2.1 Blind order estimation 

For sake of order estimation, the arterial system is assumed to be linear with no 

nonlinear function blocks. Figure 5-1 shows block diagram of SIMO linear model with 

outputs radial 𝑃𝑟 and femoral 𝑃𝑓 pressure signals and common input aortic pressure 𝑃𝑎. 

With this framework orders of linear FIR filters 𝒉𝒊=𝟏,𝟐 can be estimated which then can 

be used for MBSI now with nonlinear function blocks 𝒇𝒊=𝟏,𝟐 in SIMO Wiener  model. 

 

Several methods have been proposed for estimating either true channel order or its 

most significant part (which is effective channel order) (A P Liavas et al., 1999; A P 

Liavas and P A Regalia, 2001). A more flexible and robust method was presented for 

Linear FIR 
Filter h1

Linear FIR 
Filter h2

s[n]

s[n]

x1[n]

x2[n]

Aortic 
Pressure 
Signal Pa

Radial 
Pressure 
Signal Pr

Femoral 
Pressure 
Signal Pf

 

Fig. 5-1. The arterial system represented by the Single Input (aortic pressure) Multiple 

Outputs (radial and femoral arteries) Linear System model. FIR is the  finite impulse 

response filter. 
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SIMO channels order estimation with higher immunity to low signal-to-noise ratios and 

channels with negligible leading or trailing channel filter coefficients (Via et al., 2006). It 

is proved to be able to work with smaller datasets and colored (noisy) signals. This 

method was employed for channel order estimation prior to applying nonlinear MBSI for 

aortic pressure estimation. Here, this method is briefly summarized. 

Consider SIMO system (two channels) with linear FIR filters a shown in Figure 5-1; 

here input signal 𝑠[𝑛] excites two distinct L
th

 order FIR filter channels 𝒉𝟏 and 𝒉𝟐 to 

produce two output signals 𝒙𝟏 and 𝒙𝟐 respectively. This can be expressed mathematically 

as 

 

𝑥𝑖[𝑛] =∑ℎ𝑖[𝑙]𝑠[𝑛 − 𝑙] =  ℎ𝑖[𝑛] ∗ 𝑠[𝑛]

𝐿−1

𝑙=0

 

(5-1) 

Here 𝒉𝒊 = [ℎ𝑖[0], … . , ℎ𝑖[𝐿 − 1]]
𝑇is the impulse response vector of the i-th channel, 

𝐿 is the known channel length, and ℎ𝑖[𝑛]  ∗ 𝑠[𝑛] is the convolution between ℎ𝑖 and the 

input signal 𝑠[𝑛]. Each of the two observations at the output can be compiled into data 

matrices: 

 

𝑿𝒊(�̂�) = [
𝑥𝑖[�̂�] … 𝑥𝑖[0]

⋮ ⋱ ⋮
𝑥𝑖[𝑁 − 1] … 𝑥𝑖[𝑁 − �̂� − 1]

] , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2 

(5-2) 

where 𝑁 is the number of data length,  �̂� is the estimated channel order. 

In non-ideal conditions where measured output signals 𝒙𝟏 and 𝒙𝟐 are corrupted with 

noise channel identification, i.e. channel estimation �̂�𝒊(�̂�), can be performed blindly 

http://wizfolio.com/?citation=1&ver=3&ItemID=330&UserID=32720&AccessCode=A25340F2E307453A8916B852B4EC24ED&CitationSuffix=
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using least square approach. This well-known least squares method, as introduced in 

(Guanghan Xu et al., 1995), minimizes following cost function: 

 
𝐽𝑖𝑑(�̂�) =

𝟏

𝟐
‖𝑿𝟏(�̂�)�̂�𝟐(�̂�) − 𝑿𝟐(�̂�)�̂�𝟏(�̂�)‖

𝟐
 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝟐(�̂�)�̂�𝟏(�̂�)‖
𝟐
= ‖𝑿𝟏(�̂�)�̂�𝟐(�̂�)‖

𝟐
= 𝟏 

(5-3) 

These estimated channel filters �̂�𝒊(�̂�) can be deconvolved from their respective 

outputs 𝒙𝒊 to retrieve the source signal 𝑠[𝑛]. Another, more effective, method is to 

compute two equalizers  𝒘𝒊(�̂�) corresponding to each of 𝒉𝒊(�̂�) such that 

 𝑿𝐢(�̂�) 𝐰𝐢(�̂�) = 𝒔𝒊, 𝑖 = 1, 2 (5-4) 

Accounting for noise, these equalizers 𝒘𝒊(�̂�) can be estimated �̂�𝒊(�̂�) as solution to 

following minimization problem 

 
𝐽𝑒𝑞(�̂�) =

𝟏

𝟐�̂�
‖𝑿𝟏(�̂�)�̂�1(�̂�) − 𝑿𝟐(�̂�)�̂�2(�̂�)‖

𝟐
 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ‖𝑿𝟏(�̂�)�̂�1(�̂�)‖
𝟐
= ‖𝑿𝟐(�̂�)�̂�2(�̂�)‖

𝟐
= 𝟏 

(5-5) 

This technique estimates channel order of FIR based SIMO system by 

simultaneously minimizing blind identification cost function 𝐽𝑖𝑑(�̂�) and blind 

equalization cost function 𝐽𝑒𝑞(�̂�). Hence, a new cost function J(�̂�) for joint identification 

and equalization of the SIMO channel is defined 

 J(�̂�) = 𝐽𝑖𝑑(�̂�) + 𝐽𝑒𝑞(�̂�) (5-6) 

http://wizfolio.com/?citation=1&ver=3&ItemID=404&UserID=32720&AccessCode=148745C5ACD24D47B25F94DB00B9D556&CitationSuffix=
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This method exploits the fact that 𝐽𝑖𝑑(�̂�) decreases while 𝐽𝑒𝑞(�̂�) increases with 

estimated channel order. Also, 𝐽𝑖𝑑(�̂�) is expected to asymptotically flatten out when 

estimated channel order is greater than or equal to true channel order while 𝐽𝑒𝑞(�̂�) is 

expected to be relatively constant for estimated channel order less than or equal to true 

one, i.e. 

 
{
𝐽(�̂�) = 0, 𝑖𝑓 �̂� = 𝐿

𝐽(�̂�) > 0, 𝑖𝑓 �̂� ≠ 𝐿
 

(5-7) 

Consequently, the cost function 𝐽(�̂�) is at its minimum value when estimated channel 

order is equal to the true channel order. 

The algorithm utilizes an iterative approach to estimate optimum channel order. 

First, channel order is guessed and incremented 1 through �̂�𝑚𝑎𝑥 (maximum possible 

channel order). In our application of blind order estimation for blind aortic pressure 

estimation �̂�𝑚𝑎𝑥 was assumed to be 30. For each of these channel order value 𝐽𝑖𝑑(�̂�) and 

𝐽𝑒𝑞(�̂�) is computed. Final order estimate �̂� is chosen as guessed order for which joint 

identification and equalization cost function, i.e. 𝐽(�̂�) is minimum. Arterial tree SIMO 

system FIR filter order was estimated using above mentioned algorithm and thus 

estimated channel order was then consumed for nonlinear MBSI based aortic pressure 

estimation. 
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5.2.2 Estimation of aortic pressure based on nonlinear MBSI  

 

Nonlinear MBSI for SIMO Wiener model as shown in Figure 5-2 with outputs: 

radial 𝑃𝑟 and femoral 𝑃𝑓 pressure signals and common input aortic pressure 𝑃𝑎 was 

engaged for aortic pressure estimation. The representation of this input-output relation is 

given by 

 

𝑥𝑖[𝑛] = 𝑓𝑖 (∑ℎ𝑖[𝑙]𝑠[𝑛 − 𝑙]

𝐿−1

𝑙=0

) 

(5-8) 

Where 𝑓𝑖(. ) is nonlinear memoryless function. 

In particular, alternating Kernel canonical correlation analysis (AKCCA) method, 

introduced by Vaerenbergh et al. (Van Vaerenbergh et al., 2013), was employed. This 

method is explained in detail in our previous work (Patel et al., 2017). Here, high level 

algorithm of AKCCA based nonlinear MBSI is provided for 𝑃𝑎 estimation. This method 

defines and solves the optimization problem. An iterative strategy was carried out that 

alternates between estimating linear channels �̂�𝒊 and the nonlinearity estimates �̂�𝒊 until 
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Femoral 
Pressure 
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x1[n]

 

Fig. 5-2. A modified  Single Input (aortic pressure) Multiple Outputs (radial and femoral 

arterial pressures) arterial system model. 
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the solution converges to minimize the error of estimation. SIMO Wiener model output 

𝑃𝑟 and 𝑃𝑓 are input to this algorithm. Initially, nonlinear function is assumed to be unity 

and Canonical Correlation Analysis (CCA) is applied to estimate linear FIR filters �̂�𝒊, 

where 𝑖 = 1, 2 for two channel SIMO arterial tree. Next, nonlinear memoryless function 

is estimated using Kernel Canonical Correlation (KCCA) algorithm. These steps are 

repeated until the blind identification cost function converges. Similar to most of the 

other blind identification technique this algorithm loses the scale factor of estimates. The 

reconstructed aortic pressure was scaled such that mean peripheral pressure is same as 

mean aortic pressure. This step is justified by Poiseuille’s law (Noordergraaf, 2011). 

http://wizfolio.com/?citation=1&ver=3&ItemID=411&UserID=32720&AccessCode=EEE48FA9B17D48608868BB7A3D95B711&CitationSuffix=
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5.3 Experimental Results 

5.3.1 Experimental Data 

 

With the modified and improved nonlinear model, aortic pressure was estimated 

based on 9 patient datasets previously acquired with  IRB approval at the University of 

Alberta, and described in detail elsewhere (Rashedi et al., 2013).  Briefly, beat-to-beat 

Table 5-1. Summary of Hemodynamic parameters 

Data 

ID 

𝑷𝑻𝑻𝒂𝒇  

(ms) 

𝑷𝑻𝑻𝒂𝒓

(ms) 

𝒎𝒆𝒂𝒏𝑩𝑷 

(mmHg) 

𝒅𝑩𝑷𝒂 

(mmHg) 

𝒔𝑩𝑷𝒂 

(mmHg) 

𝒅𝑩𝑷𝒇 

(mmHg) 

𝒔𝑩𝑷𝒇 

(mmHg) 

𝒅𝑩𝑷𝒓 

(mmHg) 

𝒔𝑩𝑷𝒓 

(mmHg) 

1 60 80 61.38 47.65 79.39 46.14 92.66 50.12 77.66 

2 50 80 70.49 49.6 98.8 48.98 106.5 51.47 103.3 

3 70 110 49.53 43.93 69.05 43.49 80.96 44.54 74.18 

4 130 100 59.81 46.59 78.1 45.32 98.88 48.95 75.08 

5 50 100 58.58 43.27 82.58 42.26 98.57 46.61 78.25 

6 50 70 65.98 46.39 94.85 44.82 117.2 52.5 84.52 

7 60 70 51.55 36.94 86 35.9 115.4 42.48 78.52 

8 70 100 65.96 53.92 87.61 51.99 100.1 56.22 85.13 

9 50 90 59.1 46.64 78.67 44.83 103.1 51.85 72.74 

𝑃𝑇𝑇𝑎𝑓: pulse transit time between aorta and femoral artery, 𝑃𝑇𝑇𝑎𝑟: pulse transit time 

between aorta and radial artery, 𝑚𝑒𝑎𝑛𝐵𝑃: mean blood pressure, 𝑑𝐵𝑃: diastolic blood 

pressure and 𝑠𝐵𝑃: systolic blood pressure, f: femoral artery, r: radial artery.  

http://wizfolio.com/?citation=1&ver=3&ItemID=377&UserID=32720&AccessCode=F64091DCD771485EBDB2D5045ECBD638&CitationSuffix=
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blood pressure waveforms were simultaneously recorded in the radial artery (𝑃𝑟) artery, 

the femoral artery (𝑃𝑓) and the central aorta (Pa).  The data were collected for 120 

seconds and sampled at a rate of 1kHz in patients undergoing cardiopulmonary bypass 

surgery. These hemodynamic data are summarized in Table 4-4.  In addition, pulse transit 

times (PTT) that are commonly used as an index of vascular stiffness is also calculated 

for aorta to femoral artery (𝑃𝑇𝑇𝑎𝑓) and for aorta to radial artery (𝑃𝑇𝑇𝑎𝑟). A wide range of 

variations in pulse pressures and pulse transit times are seen and suitable for evaluation of 

the newly modified It has been recognized that pulse transit time can exert considerable 

influence on the arterial pulse transmission characteristics (Li, 2000),(Li, 2004; 

Sugimachi et al., 2001; Westerhof et al., 2007). These allow us to validate the present 

improved method at varying physiological conditions.  

It should be pointed out that 𝑚𝑒𝑎𝑛𝐵𝑃, 𝑑𝐵𝑃 and 𝑠𝐵𝑃 were calculated as  the average 

values for a duration of 35 sec. Similar average values were obtained for 𝑃𝑇𝑇𝑎𝑓 and for 

𝑃𝑇𝑇𝑎𝑟.  

5.3.2 Signal Pre-processing and Signal Conditioning 

35 second segments of measured pressure signals are extracted from each of the 120 

sec long dataset.  This ensures that these segments were free from any signal corruption. 

Since the original signals were sampled at 1 KHz, the aortic pressure, femoral and radial 

arterial pressures were subsequently downsampled to 100Hz.  This is adequate, since the 

frequency contents of these signals are below 25 Hz.  Arterial system identification 

problem can be isolated from phase delay (among 𝑃𝑎, 𝑃𝑟 and 𝑃𝑓) identification problem. 

This is accomplished by having  𝑃𝑟 and  𝑃𝑓 advanced by 𝑃𝑇𝑇𝑎𝑟 and 𝑃𝑇𝑇𝑎𝑓 respectively, 

http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
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with respect to aortic pressure. The analysis was then applied to these 35 sec segments. 

The sampled waveforms 𝑃𝑎, 𝑃𝑟 and 𝑃𝑓 are shown in Figures 5-3, 5-4 and 5-5.   

 

 

Fig. 5-3. Measured blood pressure waveforms in the aorta. 
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Fig. 5-4. Measured blood pressure waveforms in the radial artery 
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Fig. 5-5. Measured blood pressure waveforms in the femoral artery. 
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5.3.3 Aortic Pressure Estimation 

5.3.3.1 Influence of FIR filter order on MBSI 

 

In order to validate significance of proposed effort influence of FIR filter order was 

studied on MBSI and hence aortic pressure estimation, prediction error was computed as 

a function of filter order. Root mean squared error of total waveform was calculated 

between true 𝑃𝑎 and 𝑃𝑎 estimated using nonlinear MBSI with FIR filter order 1 through 

�̂�𝑚𝑎𝑥 = 25. Figure 5-6 exhibits an example of 𝑇𝑊 𝑅𝑀𝑆𝐸 with respect to estimated 

Wiener model FIR filter order. Estimation error was found to be a convex function of 

channel order with minima occurring at effective channel order (8 in displayed example). 

In other words, if channel order is underestimated or overestimated aortic pressure 

 

Fig. 5-6. Nonlinear MBSI estimated Aortic pressure TW RMSE vs. FIR filter order  
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estimation accuracy is downgraded. MBSI performance is optimized with right choice of 

channel order. 

 

5.3.3.2 Model Estimated vs Experimentally Measured Aortic Pressure Waveform 

The performance of the newly formulated model with effective channel order 

(nonlinear MBSI-Gen2) for aortic pressure estimation was evaluated on each of the nine 

datasets. To demonstrate merit of the present approach, our previously utilized fixed 

order FIR filter (nonlinear MBSI-Gen1) for aortic pressure estimation was also applied to 

all 9 datasets. Waveforms estimated from both MBSI-Gen2 and MBSI-Gen1 were 

compared to those measured.  MBSI-Gen1 and Gen2 resynthesized waveforms tended to 

be somewhat noisy and low-pass filtering was applied through three-tap average FIR 

filter. Figure 5-7 and 5-8 respectively illustrate reconstructed 𝑃𝑎 signals using nonlinear 

MBSI-Gen2 (with estimated 8
th

 order FIR filter) and nonlinear MBSI-Gen1 (with fixed 

10
th

 order FIR filter) along with measured aortic pressure for one of the 9 datasets. It is 

clear that nonlinear MBSI-Gen2 reconstructed 𝑃𝑎 aligns better with measured 𝑃𝑎 as 

compared to nonlinear MBSI-Gen1 reconstructed aortic pressure waveform. 
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Fig. 5-7. Comparison of estimated and measured aortic pressure waveforms using 

nonlinear MBSI-Gen2 
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Fig. 5-8. Comparison of estimated and measured aortic pressure waveform using 

nonlinear MBSI-Gen1 
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5.3.3.3 Arterial linear channel identification 

 

 

Fig. 5-9. Arterial pulse transmission path channel identification using nonlinear MBSI-

Gen2 with estimated FIR filter order 8. ℎ1: aorta to radial artery pulse pressur 

transmission channel. ℎ2: aorta to femoral artery pulse pressure transmission channel. 
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Examples of linear arterial channel identification using nonlinear MBSI-Gen2 (with 

estimated 8
th

 order FIR filter) and nonlinear MBSI-Gen1 (with fixed 10
th

 order FIR filter) 

approach respectively are shown in Figures 5-9 and 5-10. Here, ℎ1 represents aorta to 

radial artery pulse pressure transmission channel and ℎ2 represents aorta to femoral artery 

pulse pressure transmission channel. 

 

5.3.3.4 Assessment by Pearson’s Correlation and the Bland–Altman plot 

To further assess the efficacy of MBSI-Gen2 for estimation of aortic pressure, 

correlation analysis and Bland-Altman plot are performed.  The results are shown in 

 
 

Fig. 5-10. Arterial pulse transmission channel identification using nonlinear MBSI-Gen1 

with fixed FIR filter order 10. ℎ1: aorta to radial artery pressure pulse transmission 

channel. ℎ2: aorta to femoral artery pressure pulse transmission channel. 
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Figure 5-11. In correlation graphs, a linear fit with 0 intercept was implemented. The 

accuracy of the fit was quantified by r
2
 (Pearson’s approach), calculated along with slope 

of fitted line. RMSE (root-mean- squared error) between measured and estimated aortic 

pressure was computed to infer statistical significance in difference. 

Element-by-element deviation of measured 𝑃𝑎 from measured 𝑃𝑎 was computed to 

produce Bland-Altman plots for nonlinear MBSI Gen1 as well as Gen2. Waveforms of 

data length 𝑛 = 3380 were used to generate correlation and Bland-Altman plots. From 

this correlation study it was found that nonlinear MBSI-Gen2 generated 𝑃𝑎 versus 

measured 𝑃𝑎 presented higher correlation (𝑟2 = 0.97) as compared to nonlinear MBSI-

Gen1 generated 𝑃𝑎 versus measured 𝑃𝑎 (𝑟2 = 0.88). 𝑅𝑀𝑆𝐸 = 2.6𝑚𝑚𝐻𝑔 in case of  

nonlinear MBSI-Gen2 produced 𝑃𝑎 confirmed lower estimation error than in case of 

nonlinear MBSI-Gen1 𝑅𝑀𝑆𝐸 = 5.4𝑚𝑚𝐻𝑔. 
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5.3.3.5 Data Analysis 

Quantitative comparison between the measured and estimated aortic pressure 

waveforms betwen the present (nonlinear MBSI-Gen2) and previous (MBSI-Gen1) 

 

 
 

Fig. 5-11. Correlation obtained for measured versus estimated aortic pressure,using 

nonlinear MBSI-Gen2 (top-left) and Gen1 (bottom-left). Bland-Altman plots of aortic 

pressure estimation error with respect to  measured aortic pressure for onlinear MBSI-

Gen2 (top-right) and Gen1 (bottom-right). 𝑛: data points used for analysis.  Dashed line 

represents coefficient of reproducibility (±1.96𝑆𝐷) and solid line is mean of aortic 

pressure estimation error. 
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methods was assessed RMS error, or RMSE. 𝑅𝑀𝑆𝐸 was calculated for the total pulse 

pressure waveform (TW), systole pressure (𝑠𝐵𝑃) and  diastole pressure (𝑑𝐵𝑃). 

Obviously, the lower the RMSE, the higher the correlation between estimated and 

measured aortic pressure waveforms. 𝑇𝑊 𝑅𝑀𝑆𝐸 is computed as sample-by-sample 

difference between estimated and measured aortic pressure waveforms for nonlinear and 

linear MBSI. Table 5-2 summarizes the findings. It is clear from the results that nonlinear 

MBSI-Gen2 demonstrated accurate estimation of aortic pressure waveform over differing 

physiological conditions of the acquired clinical datasets. The computed error metric of 

estimated aortic pressure demonstrated significantly improved correlation  with the 

measured aortic pressure as compared to the previous Gen1 method. Nonlinear MBSI-

Gen2 estimated aortic pressure was able to consistently reproduce TW, systolic and 

diastolic pressures more reliably than those from obtained from nonlinear MBSI-Gen1 

method.  



87 

 

 

 

 

 

Table 5-2. Root mean squared error for aortic pressure estimated using nonlinear MBSI-

GEN2 and GEN1 with respect to measured aortic pressure 

Data 

ID 

Estimated Aortic Pressure 

RMSE (mmHg) using 

nonlinear MBSI with 

estimated order FIR filter 

Estima

ted 

FIR 

filter 

order 

Estimated Aortic 

Pressure RMSE (mmHg) 

using nonlinear MBSI 

with fixed 10
th

 order FIR 

filter 

TW SP DP TW SP DP 

1 1.71 1.03 2.81 8 1.95 1.03 3.04 

2 3.77 2.35 3.44 7 4.70 2.36 3.54 

3 1.96 3.18 1.12 7 2.30 3.49 2.83 

4 4.84 0.58 4.34 12 5.15 0.74 4.65 

5 3.09 0.74 2.78 7 4.76 1.63 5.51 

6 2.58 1.50 3.38 8 5.45 4.07 4.66 

7 2.67 2.30 3.72 6 3.94 2.68 4.35 

8 2.37 1.51 2.47 7 4.99 4.43 3.51 

9 2.29 2.95 1.02 13 3.00 3.62 1.12 
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Chapter 6: Discussion and Suggestions for Future Research 

6.1 Discussion 

Morphological changes in central aortic pressure waveform has been shown to 

reflect overall arterial system function and its interaction with the left ventricle (Li, 2010; 

Kerkhof et al., 2013). Thus, augmentation index, reduced large artery compliance and 

increased vascular stiffness and pulse wave reflections have targeted the aortic pressure 

waveforms as a compass in therapeutic applications. Derivation of central aortic pressure 

from peripheral arterial pressure such as the radial has been traditionally based on the 

model-based or generalized transfer function (Söderström et al., 2002; Fetics et al., 1999; 

Varanini et al., 2003; Karamanoglu and Feneley, 1997; Segers et al., 2000; Sugimachi et 

al., 2001). Several of these are based on linear system or constant compliance model 

assumptions.  It requires calibration adjustment for diastolic pressure and mean blood 

pressure. As such, it is similar to the linear FIR filter model’s  𝑔1 shown in Chapter 3.  

Different approaches in the literature pose their own set of pros and cons; here some of 

these advantages and limitations of these approaches are highlighted:  

6.1.1 Advantages and Limitations of previously presented methods: 

6.1.1.1 Black Box System Identification 

The generalized transfer function techniques with linear ARX (Chen et al., 1997) and 

nonlinear neural network ARX (Varanini et al., 2003) method exploit common filter 

design for aortic pressure estimation. The filter design in this type of methods is generic 

and do not change with respect to time, patient or biological condition. In contrary, this 

presumption results into identical estimated aortic pressure for all patients with identical 

http://wizfolio.com/?citation=1&ver=3&ItemID=415&UserID=32720&AccessCode=27E47DB7602F45B395DBE23D5A43C19C&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=415&UserID=32720&AccessCode=27E47DB7602F45B395DBE23D5A43C19C&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=416&UserID=32720&AccessCode=E4DD037683DD4540A5C12E4ECD49336B&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=281&UserID=32720&AccessCode=7FCD4FDDDAAD4BE99486A35CB5C895D4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=281&UserID=32720&AccessCode=7FCD4FDDDAAD4BE99486A35CB5C895D4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=279&UserID=32720&AccessCode=A5A584461CA0498DB3B960CCC9688F31&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=378&UserID=32720&AccessCode=AFC072CDA0174E24B01D7C0E555BBABB&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=322&UserID=32720&AccessCode=C4437442450A4284A939164AB547A4CC&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=
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radial arterial pressure data independent regardless of their cardiovascular hemodynamic 

condition. Several studies have shown that arterial compliance and impedance, wave 

reflection and heart-artery interaction changes with age, medical condition (which could 

further deviate due to vasoactive drug therapy) (Nichols et al., 1985). Hence, it is 

desirable that the peripheral-to-aortic pressure transfer function accustom to inter-subject 

as well as intra-subject variability. Even Chen and Varanini’s studies have admitted that 

aortic pressure estimation enhances upon using individual transfer function instead of 

generalized transfer function. 

When compared the amplitude and phase plots of transfer function derived from 

different patient dataset differ considerably owing to differences in arterial compliance as 

well as phase and magnitude of reflected pressure waves. The relation between blood 

flow, pressure, arterial compliance and wave reflection differ from person to person and 

also with respect to vascular system dynamics (Li, 2000; Li, 2004). Also, a generalized 

transfer function is not truly an average of entire population as in practice only handful 

number of subjects data are normally used to derive generalized transfer function. Hence, 

in reality averaged transfer function has considerable error due to training data set 

selection bias. 

6.1.1.2 Gray Box System Identification 

The wave separation method (Stergiopulos et al., 1998) provides adequate per patient 

transfer function derivation. But, this method is based on several assumptions and hence 

bears some limitations. This approach assumes blood vessels to be a single frictionless 

uniform branch with linear arterial compliance. This can introduce errors if compliance 

varies greatly with pressure (Li et al., 1990), or if artery network has more than one large 

http://wizfolio.com/?citation=1&ver=3&ItemID=311&UserID=32720&AccessCode=770513CAA9B9478F859DFDD9CF5EE06C&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=283&UserID=32720&AccessCode=5D7872E5797B4F4DB484F172F639C75F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=370&UserID=32720&AccessCode=0B5AC0E860CA49339035FE49332C60F5&CitationSuffix=
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arterial branch. Also, this method relies heavily on time delay between transmitted 

pressure signal and reflected signal. Small measurement error in time delay can result in 

unacceptable aortic pressure estimation. It may also be impractical to continually measure 

time shift to calibrate model on the fly to adapt to any temporal changeability in vascular 

properties. 

The tube model method (Swamy et al., 2009) provides comprehensive adaptive 

transfer function technique. However, parallel tube model assumes that arterial 

compliance is time invariant and that there are no major branching in the arterial tree and 

wave reflection primarily arises at arterial termination due to large impedance. These 

could cost parametric modelling error which would then convolve with reconstruction 

algorithm to result in aortic pressure estimation discrepancy. Similar to the wave 

reflection method, this tube model algorithm extensively depends on delay time 

measurement of wave propagation. Good accuracy in time lag requires invasive 

measurement of travel time of pressure wave from start (aorta) to end (peripheral 

measurement site). Noninvasive time lag measurement techniques are necessary to 

calibrate the estimation model and a small measurement error in time delay can result in 

to significant modelling error. These constraints may render this approach rather 

impractical despite of its high performance and adaptive nature. 

6.1.1.3 Blind System Identification 

Blind system identification approach for aortic pressure estimation does not require 

any explicit calibration or personalized measurements (which in most cases are invasive 

measurements). Hence, this method by nature is self-calibrating to account for any inter-

personal along with intra-personal vascular dynamics inconstancy. Another advantage of 

http://wizfolio.com/?citation=1&ver=3&ItemID=285&UserID=32720&AccessCode=6FFD09B81B344D9281F85D6B42FDD5EA&CitationSuffix=
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this type of technique is that any measurement errors (e.g. two catheter systems) that are 

noncoprime i.e. common between the two measurand peripheral signals are cancelled out 

automatically as blind system identification can only detect coprimeness between the two 

measurands. 

The FIR based MBSI method (Swamy et al., 2007) demonstrated outstanding 

performance to reconstruct aortic pressure by processing two or more peripheral pressure 

waveforms. However, their proposal is established on few assumptions. Each of the 

arterial branches to be modeled is assumed to be linear time invariant for each of 1 min 

segment of signals. Time invariance approximation can be rationalized by the argument 

that 1 min period is short enough for the arterial system to reach almost steady state. 

Nonetheless, neglecting nonlinearity of hemodynamics to entertain modelling simplicity 

can cost aortic pressure estimation error. Swamy’s findings that estimated aortic pressure 

waveforms (with above mentioned assumptions) very closely mimicked measured aortic 

pressure could have been biased by their sample data. It is possible that the data set on 

which Swamy’s FIR MBSI technique was verified might not have covered extreme cases 

with higher nonlinearity. Hence, these MBSI performance study results cannot be 

considered convincing enough to validate vascular properties linearity approximation. 

Similar to the MBSI, the LaMBSI algorithm (McCombie et al., 2005) assumes the 

arterial network channels to be linear time invariant systems. Based on previous studies 

(Fruzzetti et al., 1997) it has been proven that cardiovascular system is neither linear nor 

time invariant. This has been mainly attributed to nonlinear terms in the Navier-Stokes 

equation and nonlinear time varying arterial compliance. To minimize modeling error due 

to these assumptions shorter segments of input signals are used for system modeling 

http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=307&UserID=32720&AccessCode=1A2EF517CD0145BBA003A07C6740D40F&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=356&UserID=32720&AccessCode=68B824CE85F34973B75D1DAA03E468D4&CitationSuffix=
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which would warrant near steady state condition. As MBSI transfer function is computed 

for each of such small segmented signals continuously, the model is believed to adapt to 

vascular dynamics. In order to calculate larger number of FIR filter coefficient (desired 

for better accuracy of filter design) larger window of pressure data is needed (Xu et al., 

1995). This turns out to be trade of between FIR filter size (larger the order higher is filter 

accuracy) and nonlinear/ time invariance (larger the FIR filter length higher would be the 

error due to nonlinearity and also time varying dynamic of the arterial system).  

6.1.2 Contribution of current methodology 

Correlation study presented in Chapter 3 validates the Wiener System based Arterial 

Transmission Channel model. In particular, comparison between linear FIR filter 

simulated radial (or femoral) pressure and measured radial (or femoral) pressure 

waveform showed that the fitting between 𝑃𝑝
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  and  𝑃𝑝

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is improved for 

higher order polynomial as compared to lower order polynomial. In general, it can be 

seen that 2
nd

 and 3
rd

 order term coefficients from 𝑃𝑟
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑-to-𝑃𝑟

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 fitting are 

higher than those computed from 𝑃𝑓
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑-to-𝑃𝑓

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 fitting. Hence, it can be 

inferred that arterial channel is more nonlinear for aortic-to-radial case as compared to 

aortic-to-femoral arterial channel. Besides, linear, quadratic or cubic polynomial fitted 

coefficients from Group 1 studies and Group 2 studies were found to be broadly 

uncorrelated with each other. Upon simulating Wiener model for the three cases it was 

observed that 𝑔1 generated 𝑃𝑟 and 𝑃𝑓 underestimate systole pressures while 𝑔2 or 𝑔3 

generated 𝑃𝑟 and 𝑃𝑓 did better job computing systole pressures. Based on the results, 𝑔2 

Wiener model demonstrated credible 𝑃𝑟 and 𝑃𝑓 estimation as compared to 𝑔1 Wiener 

model (i.e. only linear FIR filter) over variety of clinical dataset. Error metric computed 

http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
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on estimated 𝑃𝑟 and 𝑃𝑓 displayed further improved correlation for 𝑔3 Wiener model 

simulated radial and femoral pressure waveforms. Wiener model with nonlinear functions 

𝑔2 and 𝑔3 were able to consistently reproduce radial and femoral pressure waveforms of 

quality exceeding those from linear FIR model (𝑔1). Noteworthy feature of all of these 

three non-linear models is that they are all monotonic. In other words, they are all 

invertible functions. This aspect is pre-requisite for system identification technique used 

for aortic pressure estimation. 

By fitting arterial pressure waveforms to Wiener system it is found that linear FIR 

filter in series with nonlinear memoryless function (preferably a higher order polynomial) 

exhibited higher accuracy arterial transmission channel model as compared to mere linear 

FIR filter. Also, aortic-to-radial channels were commonly seen to be more nonlinear than 

aortic-to-femoral channels. As computed nonlinear function is invertible, this validates 

the present black box system identification approach, which proves to be invaluable in 

studying arterial system characteristics. It can also be used to accurately simulate 

hemodynamic signals like aortic, radial and femoral pressure signals. In conclusion, our 

study validates the nonlinear Wiener model for aortic-to-radial and aortic-to-femoral 

arterial system– including the nonlinear function which can be further utilized for 

interpretation of underlying biomechanical properties. 

With this Wiener System based model when nonlinear multichannel blind system 

identification is applied results (as shown in Chapter 4) demonstrate far superior 𝑃𝑎 

estimation than that from linear MBSI. It can be seen that the non-linear MBSI performs 

consistently well for all different patient datasets over variety of physiological conditions. 

Nonlinear MBSI estimated 𝑃𝑎 was able to consistently reproduce TW, SP and DP of 
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quality exceeding those from radial BP, femoral BP along with linear MBSI generated 

𝑃𝑎. Other interesting finding is that in case of non-linear MBSI estimation error reduces 

with increase in data length. While for linear MBSI estimation error grows with increase 

in data length. Thus, non-linear MBSI proves to be very robust and adaptive approach for 

aortic pressure estimation. Also, it provides personalized solution for human arterial 

system modelling, i.e. system dynamics identification for vascular channels. This 

accurately estimated aortic pressure waveform can be used to derive valuable clinical 

information to aid patient bed side assistance. 

Key asset of blind system identification approach for aortic pressure estimation is 

that it does not require any explicit calibration or personalized measurements (which in 

most cases are invasive measurements). Hence, this method by nature is self-calibrating 

to account for any inter-personal along with intra-personal vascular dynamics 

inconstancy. Another advantage of this type of technique is that any measurement errors 

(e.g. two catheter systems) that are noncoprime, i.e. common between the two measurand 

peripheral signals, are cancelled out automatically as blind system identification can only 

detect coprimeness between the two measurands. Presented Blind Identification approach 

of single input multiple output non-linear Wiener systems for aortic pressure estimation 

was inspired by comparable research work in literature (Swamy et al., 2007; McCombie 

et al., 2005; Fazeli et al., 2014). However, their proposals assume the arterial network 

channels to be linear time invariant systems. Nonetheless, neglecting nonlinearity of 

hemodynamics to entertain modelling simplicity can cost aortic pressure estimation error. 

Based on previous studies (Fruzzetti et al., 1997) (Patel and Li, 2017)it has been proven 

that cardiovascular system is neither linear nor time invariant. This has been mainly 

http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
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attributed to nonlinear terms in the Navier-Stokes equation (Li et al., 1981) and nonlinear 

time varying arterial compliance (Li, 2000; Li, 2004). 

One of few drawbacks of using blind identification is channel order has to be known 

as priori. To entertain computational simplicity all the comparable research work on 

aortic pressure estimation using MBSI had used fixed FIR order across different patient 

datasets (Swamy et al., 2007; McCombie et al., 2005; Fazeli et al., 2014). It is known that 

considerable degradation is observed if the channel order is under or overestimated by 

blind system identification. In this regards, the present investigation proposed technique, 

perhaps for the first time, estimates channel order preceding arterial system identification. 

By using effective channel order for MBSI, system identification is optimized which then 

enhances aortic pressure estimation.  

Results of the newly introduced multichannel blind system identification-Gen2 

technique (Chapter 5) produced far more accurate estimation of aortic pressure waveform 

than our previous approach.  The present technique performed consistently well for all 

different patient datasets studied under varied physiological conditions. The method was 

able to consistently reproduce accurately the systolic pressure, diastolic pressure, as well 

as the entire aortic pressure waveform.  In addition, it is found that in the case of non-

linear MBSI estimation error when plotted against Wiener model FIR filter order, it has a 

convex shape with least error at effective channel order. Thus, non-linear MBSI 

estimated aortic pressure is optimized by first estimating channel order and then 

executing MBSI for thus computed channel order. Arterial channel FIR order is expected 

to change inter and intra patient. As channel order is dynamically estimated before 

applying MBSI, the current approach can afford a desirable personalized solution for 
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http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=369&UserID=32720&AccessCode=D63184E00014410CA9B961FDB364C6AF&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=315&UserID=32720&AccessCode=7727280F3302495D90D05137D70E9834&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=380&UserID=32720&AccessCode=9A040812679B4BCFB5BE06823F38497D&CitationSuffix=
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modeling the hemodynamics of the patient’s arterial system and in accurately providing 

the central aortic pressure waveform for personalized diagnosis and evaluation of 

therapeutic efficacy. 

6.2 Efficacy of impulse responses estimated using blind system identification 

6.2.1 Comparison of impulse responses estimated using Blind System 

Identification with ones estimated using “tfest” 

 Aortic-to-radial and aortic-to-femoral impulse responses are computed using two 

methods: 

o Using blind identification technique (based on my Thesis proposed 

method): h1 and h2 

o Using MATLAB command “tfest”: g1 and g2 

 Blind estimated impulse responses were compared with “tfest” estimated impulse 

responses.  

 Below please find aortic-to-radial and aortic-to-femoral impulse responses using 

these three methods for different patient datasets: 
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Fig. 6-1. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 1. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-2. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 2. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-3. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 3. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-4. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 4. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-5. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 5. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-6. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 6. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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Fig. 6-7. Comparison of impulse responses estimated using MBSI and “tfest” MATLAB 

command for Dataset 7. Top-left: MBSI estimated h1. Top-right: MBSI estimated g1. 

Centre-left: MBSI estimated h2. Centre-right: MBSI estimated g2. Bottom: Measured vs. 

estimated aortic pressure waveform using MBSI 
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6.2.2 Discussion on comparison of impulse responses estimated using blind 

identification and “tfest” MATLAB command  

 Please note that my model estimated filter coefficients are offset by one sample 

i.e. h1(0)=g1(1) and h2(0)=g2(1). 

 Dataset 1: Overall shape of h1 and h2 is comparable with that of g1 and g2 

respectively. for coefficients with mid ranges values in g1 are accurately 

identified by h1. g1 coefficients with neglible values like g1(7) and g1(8) are 

correctly identified in h1. first coefficient of g1 is correctly identified by h1. g2(2) 

through g2(9) seems to be scaled down in h2. Also g2(10) is scaled up in h2. 

 Dataset 2: h1(0) through h1(7) looks identical to f(1) through f(8). g1(8) and g1(9) 

are not correctly identified in h1. g1(1) through f(8) are accurately identified in 

h1. But h1(8) is different from f(9). Also h1(9) is of lower value than g1(10). 

 Dataset 3: g1(1) and g1(2) are identical to h1(0) and h1(1). g1(3), g1(4), g1(7) and 

g1(8) has identification error in h1(2), h1(3), h1(6) and h1(7). g1(5) and g1(6) 

seems to be identified well by h1(4) through h1(5) . g1(9) and g1(10) are scaled 

down in h1(8) through h1(9) . g2(1) through g2(7) seems to be scaled down in h2. 

g2(9) is shifted by one sample in h2(9) instead of h2(10).  

 Dataset 4: g1 looks very identical to h1. g2(1) and g2(10) are scaled to about half 

value in h2(0) and h2(9). g2(2) and g2(9) are not correctly identified in in h2. Rest 

all coefficients in g2 are negligible and so is the case in h2. 
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 Dataset 5: g1(1) is correctly identified by h1(0). g1(2) through g1(9) looks similar 

to h1(1) through h1(8) except they are scaled up. g1(10) is scaled down in h1(9). 

g2(1) weight is distributed between h2(0) and h2(1). g2(3) through g2(10) have 

values similar to that of h2(2) through h2(9). 

 Dataset 6: Values of coefficients g1(1) and g1(2) are re-distributed such that 

g1(1)+g1(2)=h1(0)+h1(1). g1(8) through g1(10) coefficient weights are re 

distributed in h1(7) through h1(9). Rest of the coefficients in g1 are negligible. 

g2(1) is similar to h2(0). Coefficients g2(2) through g2(6) are not correctly 

identified in h2(1) through h2(5). g2(7) and g2(8) look similar to h2(6) and h2(7). 

g2(9) and g2(10) are scaled up in h2(8) and h2(9). 

 Dataset 7: g1(1) and g1(2) are scaled down in h1(0) and h1(1). The coefficients 

are negligible for g1(3) through g1(8) and also for h1(2) through h1(7). g1(9) and 

g1(10) are scaled down in h1(8) and h1(9). g2 looks quite different from h2. 

g2(10) has identical trend h2(9) except that it is scaled down. 

 Summary of differences 

o In general it was found that impulse response coefficient with negligible 

values were not accurately identified by blind system identification.  

o In particular when leading or trailing coefficients are negligible they 

resulted in system identification error.  

o In some cases it can be seen impulse response with two or more taps/ 

coefficients with small values were estimated as two consecutive taps with 



106 

 

 

 

opposite polarity. In most of the case this type of estimation error 

(consecutive coefficients with opposite polarity) should not affect as blood 

pressure waveforms donot have any frequency components more than 

about 10Hz. But these opposite polarity coefficient could potentially be 

more susceptible to high frequency noise (say measurement noise). 

 Possible reasons for errors in the blind aortic pressure estimations 

o In some of the datasets it is possible the two peripheral sites where 

pressure waveforms are obtained from are not coprime enough. For 

example these sites are not distant enough. In this case arterial channel 

dynamics might have common zeros which is violation to blind system 

identification technique and hence would result into aortic pressure 

estimation error. 

o Another potential source of error can be if the catheters used to acquire 

two peripheral pressure signals have dynamics that are coprime (are not 

identical) could potentially result in error in Aortic pressure waveform 

estimation using multi-channel blind system identification technique. 

6.2.3 Nonlinear MBSI estimated aortic pressure with same peripheral pressure 

waveform 

 Wiener system model was simulated with same peripheral pressure signal (i.e 

same radial pressure signal instead of radial and femoral pressure waveform); the 

aortic pressure estimation method is expected to fail when same peripheral 

pressures are used. 
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a. Using same radial pressure signal for multi-channel blind identification for 

aortic pressure estimation 

 

b. Using same femoral pressure signal for multi-channel blind identification 

for aortic pressure estimation 

 

 

Fig. 6-8. Nonlinear multi-channel blind aortic pressure estimation with same radial 

pressure signal. Top-left: Nonlinear MBSI estimated arterial channel identification. Top-

right: Measured vs. estimated aortic pressure waveform using MBSI. Bottom: Correlation 

graph for measured versus estimated 𝑃𝑎 using nonlinear MBSI 
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6.2.4 Clinical Significance of Aortic Pressure waveform 

Traditional methodology for clinical diagnosis relies on deriving central aortic 

pressure based on blood pressure measurement at a single peripheral arterial site, i.e. the 

radial artery pressure.  The derivation is based on traditional transfer function approach, 

 

 

Fig. 6-9. Nonlinear multi-channel blind aortic pressure estimation with same radial 

pressure signal. Top-left: Nonlinear MBSI estimated arterial channel identification. Top-

right: Measured vs. estimated aortic pressure waveform using MBSI. Bottom: Correlation 

graph for measured versus estimated 𝑃𝑎 using nonlinear MBSI 
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i.e. tfest and that only single pulse transmission path is utilized. The new approach of the 

thesis utilizes Single Input Multiple Output (SIMO) technique, i.e. aortic pressure is 

derived based on two peripheral pressure measurement sites, namely, the femoral arterial 

pressure and the radial arterial pressure. This provides a more comprehensive description 

of the pulse transmission paths.  In particular, the aorta-to-femoral path encompasses the 

entire transmission path of the aorta. In addition, the thesis has shown that MBSI 

technique derived aortic pressure is more accurate when compared with traditional 

transfer function measured aortic pressure.   

The MBSI FIR response is characterized by an initial amplitude and a rapid decline 

(impulse).  Deviations from this may signal a diseased state, i.e. interrupted pulse 

transmission.  A severely hypertensive patient may have a very stiff aorta, as such the 

difference in aorta and femoral pressures may not be too different and impulse amplitude 

could be drastically reduced. This aspect was proposed as a future study in the thesis. 

Since clinical diagnostic indices such as large artery compliance, aortic augmentation 

index and wave reflections are based on central aortic pressure waveform, the accuracy of 

MBSI derived aortic pressure demonstrated here, provides the physicians the confidence 

for computing their diagnostic indices mentioned above and in turn for assessing the state 

of their patients or their drug effectiveness. 

6.2.5 Assumption and Limitation of proposed blind system identification method 

for aortic pressure estimation  

 Full characterization of �̂�𝒊 is only possible if the two channels are co-prime or in 

other words don’t have common zeros (Xu et al., 1995).  

http://wizfolio.com/?citation=1&ver=3&ItemID=293&UserID=32720&AccessCode=B25D775EA7034E2694E05923544174F0&CitationSuffix=
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 Left and right Radial (or Femoral or Carotid) pressures cannot be used as inputs at 

same time as they are similar. 

 Two input pressures on the same transmission path cannot be used for blind aortic 

pressure estimation, e.g. Left or Right Brachial and Radial arteries. 

 Input pressures need to be finite distance apart to allow sufficient resolution 

(pulse transit time) and waveform differences. 

 In general, if any of above mentioned assumption/ limitation is violated could 

result in estimation error. 

6.2.6 Reliability of blind system identification based aortic pressure estimation 

 As in any other Blind system identification technique, presented method assumes 

that the two channels (aortic-to-femoral and aortic-to radial) are well defined by 

finite impulse response and they are coprime with each other (i.e. their Z 

transforms don’t have any common zeros or poles). From all the test results it can 

be inferred that this assumption holds in most of the cases as it was demonstrated 

that estimated aortic pressure waveform aligned very accurately with measured 

aortic pressure waveform. 

 If the catheters used to acquire two peripheral pressure signals have dynamics that 

are coprime (are not identical) could potentially result in error in Aortic pressure 

waveform estimation using multi-channel blind system identification technique. 

 For the purpose of establishing the methodology and its validation the presented 

study was performed on only 14 datasets (7 aortic-to-radial and 7 aortic-to-
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femoral) collected during cardiac surgery. Preliminary study of proposed blind 

system identification based aortic pressure estimation demonstrated promising 

results. However, intensive clinical assessment of this method is suggested for 

future work. Also, presented approach can be extended to other arterial branches, 

e.g. aortic-to-carotid.  

 Cardiovascular properties are known to vary with time and physiological 

conditions. It would be worthwhile investigating change in Wiener model with 

time and also the impact of differing cardiovascular differing interventions. 

6.3 Suggestions for Future Work 

For the purpose of establishing the methodology and its validation the presented 

study was performed on only 14 datasets (7 aortic-to-radial and 7 aortic-to-femoral). It 

would be interesting to perform this study on larger datasets. Presented approach can be 

extended to other arterial branches, e.g. aortic-to-carotid. Cardiovascular properties are 

known to vary with time and physiological conditions. It would be worthwhile 

investigating change in Wiener model (especially nonlinear function) with time and also 

the impact of differing cardiovascular differing interventions. Higher order polynomial 

along with other nonlinear functions like exponential and sigmoidal fitting can be 

employed to further improve Wiener system based model of arterial pulse transmission 

channel. 

The current study can be extended to explore the nonlinear aortic pressure estimation 

performance at various other cardiovascular conditions. In the presented analysis only 

two pressure signals were used for multi-channel (two channels) blind system 
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identification. It would be worthwhile to investigate nonlinear MBSI reconstructed aortic 

pressure using more than two distinct pressure signals. Also, present studies assumed the 

memoryless invertible nonlinear function for SIMO Wiener system to be identical for 

both the channels. Nonlinear blind identification algorithm should be challenged to 

perform blind system identification for non-identical nonlinear functions for the two 

channels of arterial system. 
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