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ABSTRACT OF THE DISSERTATION

New Wiener System Based Modeling and Signal Processing Method
for Characterization of Vascular Function

By AMIT PATEL

Dissertation Director:

John KJ. Li

Central aortic blood pressure waveforqhzl is a critical determinant of the state of
overall cardiovascular function, but it cannot be measured directly by noninvasive means.
Numerous attempts were made to der”agg from noninvasively measured peripheral
pressure |{-_) using mathematical transformations, transfer function or arterial system
modeling approaches. These techniques, in general, do not account fsulméet or
intrarsubject variability. A few methods have recently been proposed to generate
personalized adaptive trsfier function employing arterial system modeling. However,
these personalized models have to be calibrated across different patients at different times
and the model algorithms are very sensitive to calibration technique and calibration error.
More recenty, multi-channel blind system identification (MBSI) have been implemented

on these systems to mathematically derive common sdfceased on multiplef_

inputs. This method seems to afford sefibrating and minimizes estimation error. In



geneal, MBSI approaches are more convenient and practical for aortic pressure

estimation, but have not been widely adopted.

In this thesis, the arterial system is proposed to be modeled as a Weiner System with
linear finite impulse response (FIR) filter acoting for larger arteries transmission
channel and netinear memoryless function block accounting for all nonlinearities due
to narrowing of arteries, branching and visdastic forces. This model is then
experimentally validated with seven human blosdspure datasets. Single input and
multiple output (SIMO) or aortito-radial arterial transmission channel and aeiic
femoral arterial transmission channel are established. To model the nonlinear memoryless
monotonic function in the Wiener System mbdecorrelation study is performed for
linear finite impulse response (FIR) filter simulated peripheral pressure vs. measured
peripheral pressure waveform. Each of this correlation curves were fitted to linear,
quadratic and cubic polynomial equationwhs found that Wiener model witf*®rder
polynomial function yielded better modelling accuracy than that frdth c2der

polynomial function which in turn was better than mere linear FIR filter.

||-+ estimation technique is then presented by modeligrial system as MukHi
channel Weiner System. With this structure when pressure waveforms are measured from
two distinct peripheral locations, multichannel blind system identification (MBSI)
technique can be used to estimate common input pressure ﬁdh@ll‘cbonlinear MBSI
method was employed on human blood pressure waveforms (7 datasets). Results show
||-4= can be accurately derived. This method by nature iscaBbirating to account for any
inter-personal, along with intrpersonal, vascular dgmics inconstancy. Besidd{s%
estimation, the proposed MBSI method also allows extraction of system dynamics for



vascular channels. Initially, linear finite impulse response (FIR) filter is assumed to be of
fixed 10" order in the Wiener System modeiross all patient dataset. To further improve
performance of this aortic pressure estimation method, a new and improved method is
developed which estimates channel order preceding arterial system identification. By
using effective channel order, systenentfication is optimized which then enhances
aortic pressure estimation. Results showed significant improvement over our earlier
method with far more accurate aortic pressure estimation. The outcome of the novel
method as presented by this dissertatios the potential to enhance clinical diagnostic

accuracy and subsequent treatment efficacy assessment.
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Chapter 1introduction

1.1 Background

Knowledge about the magnitude and shape of the central aortic pressure wave
provide very important information regarding cardiac function and {daod vessel
interaction. Furthermore, aortic pressure waveform can be used to derive valuable clinical
information particularly in hypertension an in patients with coronary arterial difease
2000) regarding vascular stiffness, wave reflections, augmentation index, aortic flow,
ventricular ejection duration, arterial compliance and systolic load and other features
useful in the clinical examinatidii, 2000;Li, 2004; O'Rourke et al., 199lurgo et al.,
1980;Wesseling et al., 1993; et al., 1990,Li and Zhu, 1994)Thus, analysis of aortic
pressure waveform manplogy has recognized significance during patient assistance and

also to monitor drugardiovascular system interaction.

Despite the vast usefulness of aortic pressure waveform, its routine utilization is
hampered due to invasiveness of aortic pressuresuna@ent procedures through
catheterization(Li et al., 1976) This is not a preferred method for routine screening,
diagnosis or therapy followp, because of its invasiveness and large underlying cost.
Noninvasive  continuous monitoring of peripheral artery pressure with
photoplethysmography and applanatimmometry (Imholz et al., 1998Kelly et al.,

1989; Soderstrom et al.,, 2008re prefered. For the latter, radial artery is the most
common application site as its underlying bony tissue aids more optimal applanation as
flat artery walls features transmural forces to be perpendicular to blood vessel surface

(Drzewiecki et al., 1983)
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Aortic pressure wave encounters complex wave reflectionmté@ria network as it
travels from aorta to peripheral sit€ki, 2004) These wave reflections result in
amplification of systolic and pulse pressures with their magnitudes depending on arterial
network properties and its corresponding transmission (g&atramanoglu et al., 1995)
Systolic pressure in radial arteries becomes significantly lahger in central aorta. So,
cardiac afterload and perfusion has to be derived from aortic pressure or more central
arterial pressure rather than calculating them directly from peripheral arterial pressure

waveformgWaddell et al., 2001)

Above mentioned clinical significance of cadtaortic pressure waveform warrants
investigation on noninvasive estimation of aortic pressure. Numerous research activities
have been undertaken to transform4orasive peripheral pressure data (such as carotid
artery (Chen et al., 1996)rachial arterfKaramanoglu et al., 1995)and radial artery
pressire (Chen et al., 1997)o cental aortic pressure waveform using mathematical
transformations and/or mathematical mod@&aramanoglu et al., 1995Most of these
methods, generally, involve periphetalaortic pressure transfer function derivation,
averaged over group of patierf&bdderstrom et al., 200ZJ his transfer function ithen
used to convert peripher al pressure wave
transfer functiono techniques are based on
tree properties are consistent between all patients and at all times.elt lsmawn that
these properties differ with different subjects, age and medical condition. Thus, a few
techniqgues have been proposed for personalized transfer function employing arterial

system modelingStergiopulos et al., 199&aramanoglu and Feneley, 199egers et
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al., 2000;Sugimachi et al., 2001Swamy et al., 20095tok, 2016;Xiao et al., 2017;

Guala et al., 2017)

Some of Medical Devices currently available in the market that providénwasive
aortic pressure dstation solution are: 1. SphygmoCor designed and developed by an
Australianheadquartered company, AtCor Medical Limited. 2. M@piGraph designed
and developed by a Germeradquartered company |.E.M. Gmi(Rapaioannou et al.,

2016)

Several studies have focused on the estonatif central aortic pressure from more
easily available peripheral pressure waveforms. Lack of standardization, pressure
waveforms were recorded at different peripheral arterial sites, such as the femoral,
carotid, radial and finger arteries and tran$terction/model is subsequently applied to
derive estimated aortic pressure waveform. Many of these approaches can broadly be

classified into three different categori¢tsese are summiaed in the following sections

1.2 Black Box System Identification or Gereralized Transfer Function
These types of aortic pressure estimation method normally convert peripheral
pressures to aortic pressure using a general/ generic transfer function. Hence, this type of

approach does not account for irseibject as well as iragrsubject variability.

1.2.1 Autoregressive Exogenous (ARX) Method

Mathematical transformation was applied by Chen e{Glten et al., 1997)rom
recorded radial arterial pressure waveform to estimate aortic pressure noninvasively,
while invasive aortic pressure was measured simultaneotglifferent hemodynamic

conditions (steady state, Valsalva maneuver, abdominal compression, nitroglycerin and
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vena caval obstruction). For each of this case, individual transfer function between radial
pressure and its corresponding aortic pressure waslagd using linear Autcegressive
exogenous model. According to the linear ARX (autoregressive exogenous) Model a

causal linear system can be expressed in terms of input (current and past) and output data

(past)

"YO AOYO p OYO ¢ E O YO ¢ ®0o6 p (17D

~

E 000 t®

where"Yo0 wht & £drepresent present and past output whilé o fp
w &dare previous input. Her@) , p & & candd, p & & care weights for

respective terms and hence they are characteristics of the model.

Linear ARX model was found to result in better estimation for a given length of data
set as compared to Fourier transform based method. Thes®luaditransfer functions
were then averaged to obtain general transfer function. Because of averaging any
particular difference among individual transfer functions was lost. Albeit this, central
aortic pressure estimated using generalized transfer fuangas comparabl®tmeasured
aortic pressure with O00.2N3.8 mmHg error,
augmentation index to w(Chehetrml, 1997¥his(AR® N4 5 %
based generalized transfer function method yielded reasonable estimation for aortic
pressure and arterial congoice. But augmentation index estimation from this method
was unacceptable as augmentation index would need higher precision aortic pressure

wave reconstruction.
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1.2.2 Neural Network Nonlinear ARX (NNARX) Method

Neural networkbased autoregressive exogenous @ho(NNAW model) was
proposed by Varanini et alVaranini et al., 2003jor central aortic pressure derivation
from peripheral pressure. This method first trains a neural network based nonlinear
model, which is later used to reconstruct central arterial pressure (output) froin radia
pressure waveform (input). A generalized nonlinear autoregressive exogenous (NARX)

model can be represented by following equation
w0 Qwo pMBho & o QMO Q ¢ p -0 (1-2

whereo is time, @ 0 is model outputew 0 is model input- O is white noise and
"Q8 is a nonlinear function. TH&3 is nonlinear function of past input and out values of
the model. The problem was defined to estimate the unknown fun€i®nusing
training data set ¢cftd with objective to minimize the estimation erréXo : i.e. is

disparity between measured output y and estimated
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Fig. 1-1. Neural Network Auteregressive exogenous modebposed by Varanini €

w

al. for central aortic pressure (input) derivation from peripheral pressure (outpt

Radial tonometry pressure along with invasive aortic pressure was measured in 20
patients. Out of these 10 patis data set was used to train the model parameter and rest
10 patients data set was used to test/ validate the model. It was found that NNARX model
resulted in more accurate aortic wave reconstruction (especially more detailed dicrotic
notch and systolicinflexion pressure) as compared to linear ARX model. Thus,
augmentation index calculated from NNARX method was more accurate than one from

ARX estimated aortic pressui@aranini et al., 2003)

1.3 Gray Box System Identification (Personalized Transfer function)
Generalized transfer fution initially gained popularity owing to its simplicity; same
generic transfer function or model is applied to derive aortic pressure curve from

peripheral pressure for all patients irrespective of their medical condition. Nonetheless, as


http://wizfolio.com/?citation=1&ver=3&ItemID=344&UserID=32720&AccessCode=3748833316084090AF590E05E3ECA88E&CitationSuffix=

noted previouslycardiovascular properties are different from patient to patient and can
also vary for a given patient depending on his/her physiological state. Hence generalized
transfer function does not rationalize either irgebject or intresubject variability.
Generalized transfer function estimated aortic pressure is normally biased depending on
training set. Having personalized or adaptive transfer function or model will be far more
valuable as it can accommodate irgabject and temporal variability of artdrieee. The

tube model and wave separation method are excellent example of individualized

peripherailto-aortic pressure transformation technique.

1.3.1 The Wave Separation Method

Resolution of blood pressure waveform into its forwajg) (and reflected |f ) or
backward {]— ) waves in the time domain was first proposed by(llj 1986) Time
domain method is efficient and can be easily visualized. An example of this methodology

is shown below in Figre 1-2.
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Fig. 1-2. Aortic pressure waveforms resolved intofisvard (|| ) and reflected |f )

component s -dbmain inathdds It can bmseen that forward and reflecte:

pressures undergo constructive addition to result in the measured aortic pressul

Stergiopulos et al(Stergiopulos et al., 1998yoposed a time domain approach to
estimate aort pressure curve from tonometer measured peripheral pressure and flow

velocity curve. This method first decomposes measured peripheral préss(aad

velocity @) into their forward and backward counterparts:
0 @& 6 0 0 08 o I (1-3)
and

0 MO8 6 0 0 &8y o Ic (1-4)
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where subscripts f and b denote forward and backward waves, respectively,igsnd
the characteristic impedance of the artery. It is noted here that noninvasive flow velocity

can be commonly measured with an ultrasound Doppler probe.

In the equations above, characteristic impedanceas calculated as average slope
of pressurevelodty curve in early systole, as shown by (Li, 1986) After separation,
forward pressure wave is delayed (by timg T account for the time it takes for
travelling from aorta to peripheral site. On the other hand, reflected wave is advanced in
time as this wave component is approachiogard central aorta. These time shifted
wave counterparts are summed to recreate aortic pressure. When tested, this method was
able to estimate aortic systolic pressure, diastolic pressure and complete waveform with
mean squared error of 0.1, 1.0 and6lrBmHg respectively. As this wave separation
method utilized paramete® and “Y obtained on pepatient basis, aortic pressure
estimated using this personalized transfer function is better predictor of true aortic

pressure as compared to one derived from generalized transfer function.

1.3.2 The Tube Model Method

Charactering the tube load in order to obtain transfer function was first utilized by
Sugimachi et al(Sugimachi et al., 2001gnd Westerhof et a(Westerhof et al., 2007)
The frequency ( ¥v)®1d eoptermimbkeload can b@a phardctenzedeby
two parameters (see equation below; Ai and BiemhO<Ai<Bi). The values of these
parameters depend on the peripheral resistance and compliance. The resultant pressure
signalfy 0 {or flow signaly 0 } at any arterial tube site can be written in terms of

forward and backward pressu(or flow) signals after accounting for wave propagation
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delay (YY) between signal probe site (peripheral artery) and signal originating site (aorta)

by proper time shifting of forward/reflected signal.
n o n oY no’y (1-5)
" o /oY n oY (1-6)

Swamy et al. modelled arterial tree as parallel tube of pressure an{Sicamy et
al., 2009) As shown in Figurd-3, the arterial system represented as parallel m tubes
along with series terminal load elements. Here the aorta is connect8chésigheral
artery through % tube with constant characteristic impedance Zhis tube allows
pressure wave to propagate from aorta through Iperdb arterial end site with a constant
time delay T. The [" terminal load implies arterial bed distal dperipheral artery. As
shown in the arterial tree tube model figure below, peripheral artery pregsure)(can
be derived from aortipressurerj 0 ] using transfer functiofStergiopulos et al., 1998)
Here, the model parametef¥ , A; and B are unknown and are characteristic to

individual subjects transfer function for a given time.
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Fig. 1-3. Parallel tube model of pressure and flow in the arterial tree on which the ¢

pressure estimation technique is based. Heres characteristic impedance afdd] is

terminal load.

Where characteristic impedanée corresponding té" tube with constant is given
by

©w Q 0O (1-7)

where i =1, 2, ém

Transfer function relating a peripheral pressure wavefgrmo to the aortic

pressure waveform 0 in terms of the unknown parameters of the model
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5 B . 5 b . (1-8)
YO S S

Transfer function relatingg 0 to the arterial flonwaveform at the corresponding

tube entrancg 0 in terms of the same parameters.

5 0 .. . 5 0. (1-9)
“Y'O S . —S

For “Y calculation carotid artery pressure was measure usinginwasive
tonometry.”Y is estimated a time difference between beginning of systole in carotid
pressure and measured tonometry peripheral arterial prg§&ugenachi et al., 2001)

“Y does not nomally vary frequently;’Y measurement once a week or even month is
generally sufficient for realibrating the tube model parametéBwvamy et al., 2009)
Subsequently, the tube model parameters are computed iteratively using 15 cycles of
measured peripheral waveform and pregsly measured’Y . Different values of
parameters are guessed; for each of these value aortic pressure waveforms are derived
using the tube model peripheral pressiaraortic pressure transfer function shown
above. Only those pairs of parameters that yield phygicdlly feasible pressure
waveforms are used to derive flow waveform from peripheral waveform using tube
model peripheral pressute-aortic flow transfer function shown above. Assuming that
aortic valve closes completely during diastole, blood flow thhoworta (and thus
peripheral artery) during this period can be approximated as negligible. With this

assumption, the parameters that provide minimum aortic flow during diastole are chosen.
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Ultimately, the trained transfer function with optimized paranseterapplied to
transform measured peripheral pressure wave to aortic pressure wave. As these
parameters are calibrated for each of the patients, the tube model is capable of adapting to
inter-subject and intrgubject variation. To validate this methodwas applied on the 6
healthy dogs for which simultaneous aortic and peripheral pressure signals were acquired.
Aortic pressure waveforms were constructed from measured peripheral pressure
waveforms using this method and then compared with measure goessure
waveforms. RMS error between derived and measured aortic pressure for complete
waveform, systolic and pulse pressure were 3.7, 4.3 and 3.4 mmHg, respectively. This
was an improvement over ARX based generalized transfer function with errors @fl4.8,

and 6.7 mmHg, respectively.

1.4 Blind System Identification

More recently, blind system identification are been implemented to predict aortic
pressure wave from two or more of peripheral arterial pressure wave. These methods
generally model arterial treeas single input, multiple output (SIMO) system.
Multichannel blind system identification is applied on these systems to mathematically
derive common source aortic pressure which, in multichannel system, caused multiple

outputs (i.e. peripheral pressure).

1.4.1 Multichannel Blind System Identification (MBSI) Method

Multichannel blind system identification using eigenvector algorithm based FIR
filter identification technique was proposed by Swamy et (@wamy et al.,
2007)utilizing previously established signal processing methodo(@dpedMeraim et

al., 1997) for aortic pressure estimation from two or ma@eripheral pressure signals.
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Arterial tree is modeled as singlgut, multipleoutput system with peripheral pressure

signalsf o (where i 02) as system ofytopassystemnd a or
input. Pressure wave transmissicmannel are modeled by linear time invariant (LTI)

system impulse responsé®Q o0 ; this 'Q 0 is believed to preserve cardiovascular
dynamic properties of"i transmission channel (arteries). It is assumed that these LTI
channels can be well de@éd by finite impulse response and they are coprime with each

other (i.e. their Z transforms dondt have

As seen in the diagram below (BHrg 1-4), mathematically peripheral pressure
measured at different peripheral artery carekpressed as convolution of their respective

transmission channel impulse respongg and aortic pressure signal o :

n Qs n, where tigrmauffvi xh déno t"@eripharal ant i t

arterial system
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h1 PpL

_ Peripheral
Aortic TRz Pp2 Pressure
Signal Pa— Ppi

_hm { Ppm

Fig. 1-4. The singleinput, multroutput model of the arterial tree with peripheral pres
signalsf 6 (where i O2) as system adud gseystena |
input. Thisis used for multichannel blind system identification to estimate aortic

nreacqlirm

Also, every peripheral arterial channel impulse response can be expressed in terms of

any of other peripheral arterial channel impuksgponse, i.e.

R 6086 1§ 68& Q6 & Qo (1-10)

For proof of concept, this method was implemented using twqlpEal artery
pressure as two channel blind system identification. Above equation involving
convolution can be written as convolution sum and also account for measurement noise

and/or modeling error e(t):
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i i i i (1-12)
0y o6 N0 6 Q Qo
t7[L-1,N-1]

here L and N are number of FIR filter order and sample size of acquired discrete
peripheral pressure wave respectively. This equation can also be represented in cascaded

matrix forom using Hankel Matrix:

- ” (O (1-12

Hankel Matrix0 is defined as:

0 (1-13
o 1 EAD ey
i n P n ¢ n v O ol
L) é é E é ] PIt
M o 0 5 6 0 p E N 0 pu

Above equation is essentially an optimization problem to minimize error e which can
be solved using linear algebra concephull space. The nullspace of matfixis made

up of vectorsQfor which | | . Once computedQ are then used to reconstruct aortic

pressurd] 0.

Each of the measured peripheral pressure and aortic pressure relation can be written

in form of convolution sum:
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. . (1-14)
n o QQn 0 Q £ 0

Where¢ 0O represents noise/ error in measurement or system modelling. The set of

two peripheral pressure equations can laidmuatatrix form using Toeplitz matricé®.

n , € (1-15)
f o ¢
Toeplitz matrixXO is defined as:
Q0 p E Qm E T (1-16)
(@] é E é E é
T E Q0 p E Qmn

Above mentioned matrix equation is basically optimization problem to minimize
noise n which can be solved (to a scale factorpguéeast square estimatigdbed

Meraim et al., 1997)
N 00 00 (1-17)

Finally, the reconstructed aortic pressure was scaled such that mean peripheral
pressure i s same as mean aortic pressure.
(Noordergraaf, 1978)rhus scaled aortic pressute 0 can be computed as follows

0 QMY o (1-18)
g - -

N1 0 N 08—
L d UV Qwy o

Thus this method calculates personalized arterial system model transfer function and
does not resort to generalized transfer function. Swamgl.Swamy et al., 2007)

applied their method using two peripheral (femoral and radial) pressure data from four
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swine which was then validated against respective measured aortic pressure. From
estimated aortic pressure waveform the root mean squared error was found to be
4.6mmHg, 6.1mMg and 7.1mmHg for total waveform, Systolic pressure and Pulse

pressure respectively.

1.4.2 Laguerre-Model MBSI Method

A LaguerreModel based multichannel blind system identification method was
shown by McCombie et alMcCombie et al., 2005)0 estimate common system input
(aortic flow) from multiple system output (peripheral arterial pressures). This method
first models the hemodynamics of each branch in form of Laguerre functions as Laguerre
orthonormal basis functions are known to help reduce number of FIR filter coefficients to
precisely characterize arterial system irrespective of its slow decaying dynamics. A

normal Laguerre expansion series is expressed as

0 p Ba S (1-19)

Here parctiamedreve fias sl owest "Wietheasgmplng sy st
period. With this Laguerre function representation, arterial syd#R filter can be

written as

. 0 p Ga (1-20

a ® a

where i denotes"i channel dynamic arterial system. Consider two channel MBSI
equality condition with Y and Y, being measured peripheral arterial pressures (which are

input to MBSI model):
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0 & OG & (1-22)

Rewriting above equation with Laguerre function representation of FIR filters:

. o (1-22)
~ v p wa .
— Q€
a © a o
. O p A& .
W — —— w £
a & a o
Or
(1-23)

o & are K" order filter coefficients of'l channel system for a giveff time series
of observed fi output seriegd £ . Above mentioned summation equatican written in

matrix multiplication form:

@ & O (1-24)

D>
Mk Ty M
D

w & E o ¢ @ n
€ E é é é
w ¢ 0 E ® & 0 Tt

Or
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In order to solve for Band B in above equation, null spacd © ® was

computed using singular value decomposition.

Thereafter, with thus computed channel dynamicaril B the input cardiac output
u(t) is estimated from measured peripheral pressure {opmelving one of the transfer
function fram its corresponding channel output. For this a deconvolution method, based

on Gurelli and NikiagGurelli and Nikias, 1995)was used.

This algorithm was applied to swine data for validation. Catheterization of left radial
artery and right iliac artery and cardiac output flow wereasured to assess the
performance of the Laguerre based MSBI method. They first compared measured
peripheral pressures against model estimated peripheral pressures. Two peripheral
pressure waveforms were used to train the Laguerre model, i.e. two astesti@m
transfer functions. Using these estimated FIR filters along with measured Cardiac output,
respective radial and iliac arterial pressure data were reproduced. These simulated radial
and iliac arterial pressuras(t) were correlated with corresponding measured signals

w(t) using mean absolute percent error MAPE:

(1-26)

For fair comparison simulated dataeme scaled and also delayed w.r.t to its
measured counterpart. The MAPE quality was calculated for estimated radial and iliac

arterial pressure to be 3.3% and 3.2% respectively. Also, the deconvolution algorithm
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was validated by comparing estimated cardiaiput with measured one. Inverse transfer
functions of these two Laguerre based arterial system FIR filters were computed by
deconvolution operation. These inverse filters along with two measured peripheral
pressure signals were later used to estimagecttmmon input cardiac output flow.

Visually estimated cardiac output was found to closely match with measured one.
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Chapter2: Aims and Significance of the Thesis

2.1 Specific Aims

The generalized transfer function approaches, despite their simplified
implementation, renders rather less useful aortic pressure estimation as it does not
account for inter or intrgubject differences. Gray box system identification models on
the other hand can be tuned on-patient basis and also at different times. Hencent c
adapt with any patiefib-patient variation and also any changes in time. But, these
models substantially depend on tuning parameters or calibration techniques. Even a small
error in calibration parameters can result in to significant modelling erngg.constraint
renders this approach rather impractical despite of its high performance and adaptive
nature. On the contrary, Blind system identification approach for aortic pressure
estimation does not require any explicit calibration or personalizedune@asnts. Hence,
this method by nature is sadélibrating to account for any intperson along with intra
person vascular dynamics inconstancy. Besides the application of aortic pressure
estimation, MBSI method extracts the system dynamics for vascodamels. Thus,
MBSI approaches for aortic pressure estimation are more convenient and pralttafal.
the MBSI approaches, so far, have assumed the arterial system to be linear time invariant
(LTI) system. Nonetheless, neglecting nonlinearity of hemauyrs to entertain

modelling simplicity can result in estimation error.

A novel Wiener system based arterial channel model is first presented in Chapter 3.
Human hemodynamic data is used to validate this mdaléhe modela linear finite

impulse respons@-IR) filter represents pulse transmissionlarge arteries and a non
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linear memoyless function block account®r nontuniform arterial geometric and
viscoelastic propertie@atel and Li, 201 7Patel et al., 2017Employing this architecture

two or more exclusive peripheral pressure signals can be measureduliithannel

blind system identification (MBSI) technique can be used to estimate common source i.e.
aortic pressurd|—+; Chapter 4 introducethis method and demonstrates aortic pressure
estimation performanc&his methodology is selfalibrating inthat any intespersonal or
intra-personal vascular dynamics inconstancy can be accounted for. The simulation
results showed that nonlinear multichannel blind system identification (MBSI) provides
much better accuracy than linear approach. One could atae a@/namic behavior of

the individual pulse transmission paths, i.e. from aorta to the two peripheral arterial sites
(Patel and Li, 2017Patel et al., 2017)n Chapter 5, this method is furthienprovedby
estimatingchannel order preceding arterial system identification. By using effective
channel order, syste identification is optimized which then enhances aortic pressure

estimation.

2.2 Significance of the Thesis

A well-modelled arterial system can be key in understanding the physical properties
of arterial wall which in turn could provide insights to cardiowdac function.
Potentially, this could help identify and monitor or manage cardiovascular disease. It has
been clearly proven that an elevated arterial blood pressure is an important risk factor for
cardiovascular patholog{{No, 1999) Being able to identify arterial channel system
could be a great asset when studying epidemiology when treating common cardiovascular
diseases like hypertensigMacMahon et al., 199QCollins et al., 1990)More recently

several research groups have been investigating the dynamic relation between different
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arterial mechanical properties and pulse wave trassonigphenomenon. For instance,

the degree of wave reflection is assessed by the augmentation index, as well as vascular
stiffness and arterial compliand®'Rourke et al., 1992Vaddell et al., 2001Marchais

et al., 1993Mohiaddin et al., 1989%Galomaa et al., 199%eeson et al., 200W0artin et

al., 2000:Li, 2000)

As an example aheapplicationof this method, two or more peripheral pressure can
be continuously monitored nenvasivelyfor patient bed sideliagnostics This can be
then fed in to presgednonlinear MBSl based algorithnfimplemented in a computer)
to estimate aortic pressurAs this algorithm is sel€alibrating, it isvery robust and
adaptive approach for aortic pressure estimation. Alss, will provide personalized
solution for luman arterial system modelling, i.e. system dynamics identification for
vascular channels. This accurately estimated aortic pressure waveform can be used to

derive valuable clinical information to aid patient bed side assistance.
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Chapter 3: ANovel Nonlnear Black Box Wiener System Model for

Arterial Pulse Transmission

3.1 Nonlinearity of Arterial Channels

The vascular channels through which the pressure wave propagates originating from
central aorta to the peripheral arteries are inherently nonlineatinEae approximation
can result in mismatch in shape of pressure waveform especially peak systolic pressure
which is crucial for Augmentation Index calculativiaranini et al., 2003Stergiopulos
et al., 1998) It has been shown that when modeling arterial system with a nonlinear
system yields higher naeling accuracy than when using linear system mddekanini
et al., 2003)Qasem et al., 200Gao et al., 2016)Change in physiological properties of
arterial system has direct impact on the proper function of the left verfiMualgo et al.,

1980;Shimizu and Kario, 2008outouyrie et al., 2010)

Overall coupling between left ventricle and arterial network is well described by
prescribing the arterial system as a 3 element Wirsdkemodel with passive circuit
elements: series resistance rBpresenting characteristic aortic impedance, resistor for
peripheral resistance/ viscosity and capacitor for arterial compliance. It is known that
arterial compliance is inversely proportiortal the pressure exerted on its wall and so
using constant arterial compliance could significantly and negatively impact modelling
accuracy. Li et al(Li, 1998; Li et al., 1990;Berger and Li, 1992Li et al., 1997)
proposed a nonlinear pressure dependent compliance model in lieu of constant

compliance in the Windkessel model. When simulated this modified Windkessel model
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(with nontlinear compliance) demonstrated better performance than conventional model

(Fogliardi et al., 1996)

Complex physiological mechanisms in cardiovascular system aspire to maintain
arterial blood pressure for biological homeostasis. There are different feedback signals
such as barofiex that regulate blood pressufi€araaslan et al., 20057rterial system
can be speculated as dynamic control systems with various feedback loops and nonlinear
functions (2017) Hence, by employing system theory to model arterial channels can

provide knowledge which might not be accessible to measurement.

3.2 ProposedArterial System Model

When cardiovascular transmission channel is modelled across two different arterial
sites (say aortito-peripheral) the system is intrinsically nonlinear. Especially, when
peripheral arterial pressure waveform is measured at distaptpral sites, e.g. femoral
arteries, the effect of narrowing of arteries, branching and “@kxsiic force become
more significant. In this case, the nlimearity of arterial behavior may not be negligible.
With this consideration the cardiovasculgstem may be modelled as Wiener system
with linear filter and memoryless ndimear function block, as shown in kige 3-1. The
linear filter can account for larger arteries transmission channel and thinean
memoryless function block can account &irnonlinearities due to tapering of arteries,

branching and viscelastic properties.
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Fig. 3-1. Proposed black box Wiener System model for arterial channel with litiear

and memoryless nelmear function block

The inputoutput relation of this system can be represented as

0 QW 0 (3-1)

Here,0 and0 are aortic and peripheral pressure signals respecti@ily,linear
FIR filter, wis "Qfiltered 0 with § representing convolution operation betwé@andv
and™Q8 is a memoryless nonlinear function. For present study, nonlinear furi@®n
is assumed to be secoftdor third "Q order polynomial. To demonstrate modeling error
caused by neglecting nonlinearit@is also estimated as linear functi@ These linear

"Q quadraticQand cubicQpolynomial funcions are defined as:

M A o A (3-2)

M A O A O ® (3-3)

M OA O A O A O O (3-4)
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Wherew 4 are coefficients of respective linear, quadratic and cubic polynomial
fitting equation. Hence, arterial transmission channel is modelled and compared as
Wiener System for three different cases using FIR fidand series linedf), quadratic

"Qand cubicQpolynomial functions.

0 Q0 QDO (3-5)
0 Q0 MQOQ®WDI (3-6)
0 MO0 QB0 (3-7)

It can be seen tha® corresponds to linear transfer function similar to one referred in
the previous studies as individual transfer functidoF (Jeon, 2007Chen et al., 1997,
Fetics et al., 1999Hence, Q (with linearQ) serves as baseline comparison to ascertain
improvement in modeling accuracy by introducing nonlinear function bleehnd ™ Qin

Wiener systenQQ and™Q respectively.

3.3 Validation of Weiner System based Arterial Pulse Transmission Channel

Model

3.3.1 Experimental Data
In order to validate proposed Wiener system model arterial channel, a correlation
study was performed on previously acquired hemodynamic measurements (7 datasets

with University of Alberta IRB approval) which are described in degdsewhere


http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=32720&AccessCode=816A96B798AC4B79BE54F481BB7713B7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=414&UserID=32720&AccessCode=816A96B798AC4B79BE54F481BB7713B7&CitationSuffix=
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(Rashedi et al.2013) Here, these hemodynamic signals relevant to our study are
summarized. First group (Group 1) of data was compiled with seven different dataset of
simultaneous central aortid () and radial § ) pressure waveform recorded for 2 min at
samping rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary
bypass. Tabl&-1 lists mean aortic pressure (MBP), systolic pressure (SBP) and diastolic
pressure (DBP) from aortic as well as radial pressure of seven datasets that wéve used

validate proposed approach.

Table 31. Group 1: Hemodynamic measures of pressure signals included in the stL

Aortic Pressure Radial Pressure
Data

MBP SBP DBP SBP DBP
P (mmHg) (mmHg) (mmHg) (mmHg) (mmHg)
1 62.28 84.38 45.94 84.11 48.74
2 70.49 96.46 48.52 100.30 50.74
3 68.60 89.06 52.56 90.38 54.76
4 61.38 82.91 48.83 82.14 51.22
5 77.99 96.67 56.84 99.82 57.97
6 58.85 75.39 45.04 77.50 47.75
7 72.64 92.27 54.38 95.77 55.85

Similarly, second group (Group 2) of data was compiled with seven different dataset
of simultaneous central aorti® | and femoral § ) invasively recorded for 2 min at
sampling rate of 1kHz from patients undergoing cardiac surgery with cardiopulmonary
bypass. Tabl&-2 lists these pressure data for the aorta as well femoral artery of seven

datasets that weresed to validate proposed approach.
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Table 32. Group 2: Hemodynamic measures of pressure signals included in the st

Aortic Pressure Femoral Pressure
Data
MBP SBP DBP SBP DBP

P (mmHg) | (mmHg) | (mmHg) | (mmHg) | (mmHg)
8 85.55 126.96 57.07 131.01 58.05
9 70.49 104.42 51.30 111.41 51.10
10 82.63 118.13 59.28 129.56 59.14
11 90.20 117.09 67.61 125.62 66.56
12 72.32 103.91 57.31 111.87 56.53
13 65.98 94.85 46.39 117.24 44.82
14 86.24 107.41 62.88 122.35 61.16

Note that MBP was computed as average of total central aortic pressure waveform. It
can be seen that the physiologic conditions of the datasets analyzed are diverse.
Specifically, SBP varied significantly between ditfat datasets. Thus, this wide range of

hemodynamic signals allowed us to validate model at distinct physiological conditions.

3.3.2 Signal pre-processing/ signal conditioning

From each of the 2min long dataset recorded 35 second segments were extracted
such thathese segments were free from any signal corruption. Also, each of datasets: for
Group 1 with synchronous aortic and radial pressure waveform; and for Group 2 with
synchronous aortic and femoral pressure waveform was-dampled to 100Hz. These
35 sec sgments were then used for analysis. From these 35 sec segments first 25 sec
waveforms (training dataset) were used for training Wiener Model and rest of 10 sec

waveforms (test datasets) were used to test validity of the fitted model. Bigigieows
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sampe waveforms for Group 1 with simultaneolisand 0 . Figure3-3 shows sample

waveforms for Group 2 with simultaneoisand0 .

Fig.
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Measured Pressure waveforms: Pa and Pr

. : : : L : - Measured Pa
100 Measured Pr
> 90
I
=
E 80
(0]
5
?
4 70
o
60 -
50 e r [ [ [ r [ [
7 7.5 8 8.5 9 9.5 10 10.5 11
time(s)

3-2. Sample of simultaneously measured aortic and radial pressure waveform
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3-3. Sample of simultaneously measured aortic and femoral pressure wavefor
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3.3.3 Cardiovascular Wiener System model

3.3.3.1 Arterial linear channel i dentification

To validate the Cardiovascul@Viener System model each of the training datasets
(i.e. first 25 sec of waveforms) for Group 1 and Group 2 were fitted to Wiener System.
Linear FIR filter Qwas estimated on individual basis as aeudicadial pressure (using
Group 1 training datasethd aorticto-femoral pressure (using Group 2 training dataset)
transfer function by assuming nonlinearity to be unity. To compute transfer function
MATLAB function ft)fas mputsignaleasd as sutpdt signal foh
aorticto-radal pressure transfer function for each of the Group 1 training datasets.
Similarly, #ft fleas tngut sigralsandu as euwtputwsignal ior aortio-
femoral pressure transfer function for each of the Group 2 training datasetg F#u
shows example of linear system identification for aewdicadial arterial channel and
Figure 3-5 is an example of for aortio-femoral arterial channel linear system
identification. In the Wiener System model linear transfer function was asstoniesl

finite impulse response (FIR) filter of order 10.
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Aortic-to-Radial Arterial linear channel filter
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Fig. 3-4. Aortic-to-radial pressure signal transmission channel Arterial channel FIR

1

Estimated FIR filter coefficients

-0.1

identification.

Aortic-to-Femoral Arterial linear channel filter
08 L L L L

0.6

]
1

0.4 -

e TTTCPO?O
6

1

-0.2

1

-04

1
!

Estimated FIR filter coefficients

-0.6

]
1

[ [ [ [ ()
0 0.02 0.04 0.06 0.08 0.1

time(s)
Fig. 3-5. Aortic-to-femoral pressure signal transmission channel Arterial channel Fl

-0.8

filter identification.



34

3.3.3.2 Modelling Non-linear function

To model the nonlinear memoryless monotonic function in the Wiener System model
for aorticto-radial artery (or aortito-femoral artery) a correlation study wasfpemed
for linear FIR filter simulated radial (or femoral) pressure vs. measured radial (or
femoral) pressure waveform from 25 sec training datasets. Radial (or femoral) arterial
pressure was simulated by convolving individualized FIR filtéd with respective
aortic pressure signab . This simulated radiaD (or femoral 0 )
pressure waveforms were then compared against measurediradial ~ (or femoral
0 ) pressure waveforms. Each of this correlation curves were fitted to Rear

guadraticQand cubic'Qpolynomial equation.

As measure of fitting accuracy Pearsewvalue squaredi() was calculated along
with fitted linear, quadratic andubic polynomial equations. This correlation analysis
was carried out using v Tdata points. Figur8-6 and3-7 showthe correlation for each

of seven training datasets from Group 1.
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Fig. 3-6. Correlation graphs for linear FIR filter simulated radial pressure vs. meas!

radial pressure waveform from seven different datasets (Group 1) of simultaneous

measured aortic and radial pressure waveforms.
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Fig. 3-7. Correlation graphs for linear FIR filter simulatediial pressure vs. measure
radial pressure waveform from seven different datasets (Group 1) of simultaneous

measured aortic and radial pressure waveforms.

Similarly, correlation curves betweeh and 0 were fitted to
linear, quadratic and cubpolynomial equations. Figuré7, 3-8 shows the correlation

for each of seven training datasets from Group 2.










































































































































































































































