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Characterizing the specificity of proteases is important to illuminate their role as 

signaling moieties in a range of diverse biological processes. Proteases often display 

multispecificity, which is the ability of a single receptor protein molecule to interact with 

multiple substrates. The ability to accurately recapitulate protease specificity profiles 

would aid in the design of custom proteases designed to cleave targets in biotechnology 

or therapeutic scenarios.  Current specificity prediction methods use machine - learning 

techniques that are not generalizable and relatively slow, and thus limited in use for 

prediction and especially design of multispecificity.  

 

We tackle these challenges using a two - pronged approach - by increasing the accuracy 

of scoring for biophysical protease substrate models as well as by hastening the process 

of sampling.  We develop a general approach for prediction of protease specificity 

through the construction of high - resolution atomic models, using protein structure 
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modeling and biophysical energetic evaluation of enzyme substrate complexes. 

Specifically, we develop a discriminatory scoring function using enzyme design modules 

from Rosetta and Amber-MMPBSA. Analysis of structural models provides physical 

insight into the structural basis for the observed specificities. We further test the 

predictive capability of the model by designing and experimentally characterizing the 

cleavage of four novel substrate motifs for the Hepatitis C virus NS3/4A protease using 

an in vivo assay. The presented structure-based approach is generalizable to other 

protease enzymes with known or modeled structures, and complements existing 

experimental methods for specificity determination. To improve our sampling approach, 

we develop a rapid, flexible-backbone self-consistent mean field theory-based technique, 

MFPred, for multispecificity modeling at protein-peptide interfaces. We benchmark our 

method by predicting experimentally determined peptide specificity profiles for a range 

of receptors. Our approach should enable the design of a wide range of altered receptor 

proteins with programmed multispecificities. 

 

Viral systems encoding proteases are exemplars of multispecificity. Multispecific 

proteases mediate the precise cleavage of the polyprotein during replication and viral 

assembly. The HCV NS3/4A protease is a multispecific protease, which is likely a result 

of both positive selection pressure to maintain cleavability of its four native substrates, 

i.e. known sites on the polyprotein, and negative selection pressure to avoid cleavage of 

other sites in the polyprotein. We map the specificity landscape of the HCV NS3/4A 

protease to obtain a comprehensive understanding of the protease–substrate interaction 

network. Using an in vivo yeast surface display assay, Fluorescence Assisted Cell 
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Sorting, Next Generation Sequencing technology and computational modeling using 

Rosetta and Amber packages, we were able to reconstruct the entire (3.2 million 

sequences) HCV NS3/4A substrate landscape learning from the sequences identified in 

our experiment, using an SVM based approach. 

 

The work discussed in this thesis gives us insight into the biophysical basis of protease 

specificity. This work can further be used in rational design of custom proteases and in 

understanding the mechanisms underlying co-evolution of protease substrate interactions 

in viral proteases, as well as robustness of the interaction. 
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Chapter 1: Introduction 

Proteases (also known as peptidases, proteinases) are enzymes that cleave the peptide 

bond. Proteases were perceived to be enzymes with a principally catabolic function, 

especially digestive enzymes such as trypsin and chymotrypsin,(Bender & Kaiser 1962; 

Kasserra & Laidler 1969; Celis-Guerrero et al. n.d.) that demonstrate wide specificities of 

cleavage thus mediating the truncation of proteins into smaller peptide fragments e.g. 

Digestive enzyme trypsin is secreted as trypsinogen(Abita et al. 1969) - an inactive 

precursor, further activated by enteropeptidase. Once activated, trypsin itself continues to 

activate its inactive zymogen. Digestive proteases often display broad specificity and are 

thus secreted as zymogens(Khan & James 1998) to regulate indiscriminate proteolytic 

activity. Proteases that regulate biological pathways have a narrower specificity profile, 

e.g. caspases(Riedl & Shi 2004; Pop & Salvesen 2009) are involved in apoptotic pathway 

regulation, cathepsin B(Alapati et al. 2014) is involved in tumor metastasis, 

MMP2(Jezierska & Motyl 2009; Bauvois 2012) modulates cancer cell migration and 

growth. Several such examples underline the fact that proteases are ubiquitous in 

biological regulation and contribute to delicate modulation of pathway regulation to carry 

out diverse functions. The promiscuity/ specificity of a protease cleavage profile is 

observed to dictate its functional role in a biological context.  

 

1.1. Diversity in mechanism, occurrence, architecture and specificity  

Proteases have evolved multiple times to perform the same reaction via completely 

different mechanisms, using a variety of different active site architectures and are found 

to exist in all five kingdoms: Animalia, Plantae, Fungi, Bacteria, Archaea, 
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Viruses(Nemova & Lysenko 2013). They display a variety of folds and thus a diverse 

range of interactions at the substrate – protease interface.  Several commonly encountered 

interface interactions between the protease and substrate are hydrogen bonding (HCV 

protease - substrate(Lin 2006), TEV protease substrate(Phan et al. 2002)), shape 

complementarity(Prabu-Jeyabalan et al. 2002; Romano et al. 2010; Shen et al. n.d.)(HCV 

substrate, HIVPR - 1 substrate), electrostatic binding (Harris et al. 1998; Casciola-Rosen 

et al. 2006; Matthews et al. 1994; Rockwell et al. 2002; Walker et al. 1994)(Granzyme B, 

Furin). Proteases bind their substrates in a variety of different ways.  TEV protease 

adopts a two-domain antiparallel beta barrel fold wherein the catalytic domain is located 

at the interface between the two domains creating a specific groove for the substrate 

binding. This kind of an interface creates specific pockets that define grooves for the side 

chains of the substrate to fit in, with favorable contacts. Specificity is endowed by large 

contact surface between the substrate and enzyme (Phan et al. 2002). Most proteases that 

adopt this fold create a closed binding groove for the substrate have narrow specificity 

profiles e.g. TEV protease (ENLYFQ -- G), TVMV (ETVRFQ -- G/S), and the 3C 

protease family of enzymes.  In contrast, enzymes such as the HCV protease that adopt 

the chymotrypsin - fold of proteases, as well as the HIV protease 1 – which is a dimer, 

have exposed active sites – with defined substrate pockets at only a few positions. 

Substrate binding in such cases is primarily governed by favorable hydrogen bonds rather 

than the architecture of the active site groove. HCV protease has a network of hydrogen 

bonds between the backbone of a bound substrate and a beta strand on the protease. This 

strand runs parallel to the substrate - binding groove and mediates the binding interaction 

between the substrates for proteases that display a chymotrypsin like fold. The HIV PR1 
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does not have a preferred consensus substrate sequence, instead the selection for 

substrates that are cleaved occurs by choosing substrates that “fit” best in the substrate - 

binding pocket. Proteases such as HCV and HIV demonstrate relaxed, multi specificities 

in their substrate preference both in high throughput assays as well as in a biological 

context. Another commonly seen mode of substrate binding is favorable electrostatic 

interactions. The substrates for such proteases are highly enriched in charged residues 

that are complementary to the charge on the protease active site e.g. Furin, Granzyme. 

Proteases such as HTRA-1(Clausen et al. 2011), have a catalytic domain and an 

additional binding domain. All of the specificity is dictated by the binding domain where 

as the catalytic part is indiscriminate.  

 

1.2. Biophysical consequence of substrate binding, chemical transformation on 

protease specificity 

Across diverse protease families it is observed that the active site architecture has a dual 

role - substrate binding as well as efficient catalysis. Schechter and Berger(Schechter & 

Berger 1967) devised a series of experiments to determine proteolysis rates for poly-

alanine peptides of various lengths. Based on the proteolytic constant for substrates of 

different polyalanine lengths, Schechter and Berger determined the sites on the substrate, 

which play an important role in efficient binding and catalysis events. They described 

seven sites on the substrate on either side of the scissile bond – the N terminal sites were 

termed the S sites labeled as S1, S2, … SN outward from the scissile bond where as the C 

terminal sites were labeled as S’ sites labeled S1’, S2’, S3’, … SN’. The sites on the 

protease side were correspondingly labeled as P1 and P1’, etc.  This nomenclature is 
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extensively used and is highly effective as a descriptor for protease – substrate binding 

specificities. Apart from the binding site architecture, the mechanistic steps involved in 

the proteolysis reaction also contribute to the substrate selectivity(Hedstrom 2002).  For 

instance, serine proteases act via a multistep mechanism consisting of the following steps 

(a) formation of enzyme substrate complex (b) formation of the acyl enzyme intermediate 

(c) hydrolysis of acyl enzyme intermediate. Notably that the hydrolysis step (product 

dissociation) is assumed to be faster than the chemical transformation step. If substrate 

selection could be considered as governed by the rate determining step, it is assumed to 

be primarily influenced by the formation of the acyl enzyme intermediate and much less 

by binding affinity. 

 

In summary, the architecture of the binding site influences substrate selectivity by 

allowing/ disallowing certain residue types to “fit” into the active site substrate pockets, 

whereas the mechanistic steps contribute to substrate selectivity by enhancing the rate of 

chemical transformation for certain substrates over others. Substrates are considered to be 

better “cleaved” than others depending on their comparative rates of chemical 

transformation, rather than a comparison between substrate binding affinity. Thus, when 

constructing a static biophysical model of proteolysis, the most accurate structural 

representation of substrate selection is the acyl enzyme intermediate step. It is well 

understood that the active site geometry and substrate binding groove as well as the 

overall fold of the protease are universal determinants of specificity and function(Tyndall 

et al. 2005; Hedstrom 2002). In understanding the biophysical rules that underlie protease 

specificity, it is important to contemplate the role of substrate binding (energetic 
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determinants in binding) as well as catalytic turnover geometry (formation of the 

intermediate, geometry of scissile bond and active site residues). 

 

1.3. Statement of the problem 

In consideration of the biological discussion of understanding protease specificity this 

dissertation attempts to answer the following questions: Is there a common underlying 

biophysical basis of protease specificity?  If so, can we use these biophysical rules to 

recapitulate known specificities across diverse sets of proteases? Can we understand 

protease specificity well enough for a diverse set of enzymes to not only recapitulate 

known/ existing specificities, but also to modulate it and engineer new specificities that 

are unexplored in nature? Specifically we explored the interaction landscape for a multi-

specific viral protease – Hepatitis C NS3 protease – by asking, if the protease is capable 

of cleaving a more diverse substrate profile than is sampled by it in its native biological 

context. 

 

1.4. Protease specificity prediction and design	

Proteases are useful synthetic biology tools. For mass spectrometry experiments, a 

common preparation step involves proteolysis of complex protein mixtures. For protein 

purification experiments, the constructs often are fused with an N or C terminal His tag, 

which bind to the Nickel resin during purification. These tags need to be cleaved off in 

order to regain enzyme folding, function, sometimes so that the enzymes can crystallize 

well. Proteases, especially TEV and thrombin(Waugh 2011), act as cleavage agents 

facilitate the removal of the His tag.   
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Proteases have widespread use in industrial, biotechnological and therapeutic scenarios. 

USFDA approved uses for proteases include use as digestive aids (Zenpep), u-PA 

(urokinase) and t – PA (reteplase and tenecteplase) indicated for thrombotic disease, 

Factor IX indicated in hemophilia, as well as Botulinum Toxin A (Botox)(Craik et al. 

2011). Several of these proteases although extremely active, are very unstable for 

administration directly to the blood stream. Protease engineering efforts are directed in 

two ways – (a) increasing the half-life/ stability of these enzymes(Craik et al. 2011; 

Taguchi et al. 1998; Choudhury et al. 2010) and (b) efforts geared toward increasing 

activity(Varadarajan et al. 2005; Yi et al. 2013; Flowers & Ann 2013; Li et al. n.d.; 

Guerrero et al. 2016; Wang et al. 2016; Chang et al. 1994; Khouri et al. 1991; Hill et al. 

2016). Competing antibody based therapies work through a stoichiometric effect, hence 

an advantage of enzyme - based therapies is that lower doses can be administered due to 

catalytic turnover of the therapeutic protease(Craik et al. 2011).  There are several 

instances of increase in localized protease activity in tumorigenic cells. Recently 

designed cancer therapies use pro-drug approaches that are activated in the presence of 

up-regulated cellular proteases(Choi et al. 2012). These therapies provide a means to 

reduce cytotoxicity, which is a commonly known side effect.  

 

Several successful specificity-switching studies(Hill et al. 2016; Hashimoto et al. 2011) 

have been performed on enzymes such as TEV protease, caspases and metalloproteases. 

The studies focus on proteases that have similar active site architecture. It has also been 

observed that the broad/narrow nature of specificity changes with the architecture of the 
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active site, which is predetermined by the overall protease fold. In order to successfully 

predict and modulate protease specificity it is evident that we need to understand better 

how the rules of specificity are governed by the active site architecture and identity of 

residues in the fold.  Elucidating the specificity profile for proteases and designing 

experiments outside of their biological context enables further understanding of 

specificity rules. Several library-based techniques are used to investigate the substrate site 

preferences of protease enzymes. While positional scanning libraries(Backes et al. 2000; 

Schneider & Craik 2009) are highly recommended for investigating the average 

preferences at a given position on the substrate site, microarrarys(Salisbury et al. 2002; 

Gosalia et al. 2005) offer the advantage of quicker testing times for individual substrates 

and thus to discover substrate cooperativity effects that are invariably averaged out by 

other techniques. Gosalia and Diamond(Gosalia & Diamond 2003) developed a nano-

droplet microarray using glycerol and DMSO to form a suspension of the peptides. Using 

an aerosol to activate the system, the study was able to not only detect positional 

preferences but also detect covariance, which would have been averaged out by methods 

like positional scanning. Biological display systems (phage display(Ratnikov et al. 2009; 

Matthews et al. 1994; Smith 1985; and & Petrenko 1997), mRNA display(Liu et al. 2000; 

Amstutz et al. 2001) and ribosome display(He & Taussig 2002; Zahnd et al. 2007), 

bacterial display(Kenrick & Daugherty 2010; Daugherty 2007; Getz et al. 2012), yeast 

display(Gai & Wittrup 2007; Yi et al. 2015; Park et al. 2006; Cherf & Cochran 2015), 

mammalian display(Ho & Pastan 2009; Zhou et al. 2010; Bowers et al. 2014)) have been 

used traditionally to test a high number of sequences (107 -109).  While prokaryotic 

display techniques have been used previously, eukaryotic display techniques such as 
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yeast surface display and mammalian display are better suited to realize better expression 

and folding of the proteins to be tested.  Cell based techniques also lend the added 

advantage of being amenable to rounds of directed evolution that are useful in protein 

engineering(Bloom & Arnold 2009; Traxlmayr & Shusta 2017; Boder & Wittrup 2000). 

 

Experimental exploration of sequence space is often rendered incomplete due to the 

demands of time, resource and other limiting factors. The results are also prone to biases 

depending on the assay system. Computational biology tools serve to support such 

experimental searches by guiding experimental techniques to narrow down searchable 

sequence space(Punta et al. 2008). The proteolysis reaction is tied to the spatial 

conformation of the two proteins, their relative configuration related to one another and 

conformational changes that may occur during a binding step. It has been previously 

shown that cleavage can be predicted with accuracy from knowledge of the amino acid 

sequence alone(von Heijne 1986). These computational techniques rely on machine 

learning(Tarca et al. 2007), pattern recognition and structure - energetics based 

macromolecular modeling software(Maximova et al. 2016; Alford et al. 2017). Several 

pattern recognition-based tools such as MEROPS(Rawlings et al. 2010), PoPs(Boyd et al. 

2004), Prosper(Song et al. 2012) have been developed in order to predict protease 

recognition profiles. While these tools are useful in predicting profiles of extremely 

specific proteases they do not perform accurately for proteases that demonstrate wider, 

relaxed specificities. Once trained on a protease, the algorithm cannot be used in a 

transferrable manner across all protease classes. The algorithms are trained based on 

knowledge from experiment, which might introduce sampling bias into the training set 
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from which rule extraction occurs. Thus the training occurs on an incomplete dataset and 

the recognition software does not reflect the underlying biological model of the protease 

but rather is indicative of the sampling limits of the experiment.  

 

Because of diversity in protease families the development of prediction software often 

tied to a single family. Research favored artificial neural networks and then shifted 

towards SVMs. For some linearly separable datasets, linear SVMs or decision trees could 

also be useful(duVerle & Mamitsuka 2012). One of the strengths of supervised learning 

models is to be able to work across various kinds of biological models. The quality of the 

supervised learning method is based upon feature selection – amino acid sequences are an 

obvious choice however some empirical data indicates that secondary or tertiary 

structural preference has shown to improve learning(Sakai et al. 1987). For feature 

inputting, the amino acid sequences need to be translated as a vector - encoding scheme 

for the supervised learning algorithm to work. The most commonly used scheme is the 

canonical binary encoding where each residue is assumed to be a unique 20- long binary 

vector(Qian & Sejnowski 1988). The problem with this scheme is that the amino acids 

are considered to be equidistant from one another and this scheme has no basis in 

chemistry or biology. However, this method has been noted to generally work better than 

other encoding schemes(Yang & Chou 2004; Barkan et al. 2010). A common issue is the 

imbalance between the positive (cleaved) and negative (uncleaved) classes for a 

proteolytic learning study. To encounter this, one can increase the penalty factor 

associated with misclassification of positive class sequences or increase the sampling of a 

subset of negative sequences to increase the parity between the two data classes(Akbani 
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et al. 2004). Supervised learning methods are frequently evaluated using an AUROC 

(Area Under the Receiver Operator Characteristic)(Hand & Till 2001). Efforts to increase 

the AUROC value sometimes leads to over-fitting of the data, and the best way to 

generalize this is to use cross validation and a considerably large experimental set for 

training to ensure that feature set size is not large compared to the learning data. 

 

One of the commonly used methods to study cleavability of a substrate is to calculate the 

position specific probability of occurrence for each amino acid. This is represented via a 

sequence logo, which can represent the likelihood of occurrence corresponding to the size 

of the represented amino acid at a certain substrate position. Work by Poorman et 

al(Poorman et al. 1991)  is equivalent to the work on position specific scoring matrix 

(PSSM)(Henikoff & Henikoff 1994). PSSMs have been applied to protease systems like 

caspases with a certain amount of success(Backes et al. 2005; Wilkins et al. 1999; Garay-

Malpartida et al. 2005). However, the biologically inaccurate assumption that substrate 

positions are independently governed in substrate recognition events makes it harder to 

apply this to other complex protease systems. Several other techniques such as artificial 

neural networks, decision trees, rule extraction methods, hidden markov models and 

kernels each with its own set of advantages and limitations( duVerle & Mamitsuka 2012). 

 

Calculation of interaction energies at the protease substrate interface can be performed 

using macromolecular modeling software such as Rosetta(Leaver-Fay et al. 2011; 

Fleishman et al. 2011; Alford et al. 2017), AMBER(Case et al. 2005),etc. Recapitulation 

of protease specificity using energy based techniques promises to capture the underlying 
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biophysical rules governing specificity. Thus, learning these biophysical rules would 

enable us to recapitulate protease specificity for narrow/broadly specific proteases. This 

method would also be transferable across various protease datasets irrespective of 

sampling and training biases. However, due to the intricate nature of interactions that 

need to be computed to calculate all possible interaction energies, several of theses 

interactions have to be simplified in the energy models. A result of this simplification is 

that certain interactions are disregarded. Sequence based learning can help to provide 

orthologous information that could be missing in our repertoire of energy based learning. 

Thus with current technologies considered our best strategy to decode protease specificity 

is to use both sequence information as well as energetic interactions in prediction and 

design.  

 

1.5. Viral proteases: a model multi-specific system  

Many viruses use a replication strategy that involves the translation of a large 

polyprotein, which is cleaved into its functional units by cellular or viral proteases. Viral 

proteases face heavy selection pressure since they need to evolve to cleave only specific 

parts of the polyprotein (positive selection) and not the rest (negative selection). Viral 

proteases are thus natural model systems that have evolved for multi-specific 

cleavage(Yost & Marcotrigiano 2013). The cleavage sites that are N terminal to the 

protease are cleaved by signal peptidases and the NS2 auto-protease(Carrère-Kremer et 

al. 2004). The four canonical cleavage sites are cleaved specifically by the NS3 protease. 

This cleavage event is highly specific since it allows for further maturation and viral 

assembly. The protease has evolved to cleave its canonical sequences but not other sites 
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on the viral polyprotein. The NS5B (RNA polymerase) present in this system is highly 

error prone(Ribeiro et al. 2012). It has an error rate two fold higher than the human 

polymerase enzymes. This creates quasi-species of the virus with each replication cycle. 

In spite of the high mutational rate, this protease has evolved to maintain its specific yet 

broad cleavage profile.  

 

There are several viral systems that contain multi-specific proteases of similar nature. 

Nature has successfully modeled multi -specificity into viral protease systems, very 

precisely cleaving only the sequence of interest. Modeling our design strategy using viral 

proteases as a template would help to unravel the biophysical rules of multispecificity.  

 

1.6. Protease – substrate interaction landscape 

The concept of an evolutionary landscape is used to describe the process of genetic drift 

on a gene, protein, population or species. In the context of a protein, we can visualize the 

protein to be sampling several areas of sequence space. This searchable sequence space 

lies on the x - y plane of the evolutionary landscape. The z plane describes the function, 

stability, foldability, in other words a “fitness” parameter expressed as height where 

fittest variants lie on “peaks” and unfit variants are sampled in “valley” regions. The idea 

of representing genotype – phenotype correlation in a 3D space was first described by 

Sewall Wright (Sewall Wright 1932). If movements along the landscape lead to changes 

in fitness that are small then this leads to landscapes that are smooth, whereas if 

movements along landscapes lead to large changes the landscape is described to be 
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rugged. The term “evolutionary landscape” is used interchangeably with “adaptive 

landscape” and “fitness landscape”.  

 

Maynard Smith (1970) was the first to look at molecular evolution as a landscape 

phenomenon(Svensson & Calsbeek 2012). This means to observe the biophysical 

landscape of a protein as a network of mutants as being steps away from each other. 

Thus, there needed to be paths connecting two functional forms of a protein. Maynard 

Smith was the first to point out that these steps (proteins along the connecting paths) may 

not be as/ at all functional. This means that moves in different directions of this landscape 

may not all be movements in an upward direction. This points to the neutral drift theory 

of evolution. While the fitness landscapes have been investigated since as early as 1932, 

it has only recently become possible to experimentally explore fitness landscapes via 

advances in library design and next generation sequencing technologies(Head et al. 

2014).  In our work, we study the biophysical interactions between a viral protease – 

substrate as an interaction landscape, keeping the protease sequence constant and varying 

substrate sequence at all positions of the specificity determining N-terminal pentapeptide.  

 

We envision the problem of protease specificity as a landscape that we need to traverse. 

Substrates for a given protease can be ranked according to their cleavability. Thus a 

“good” substrate would be situated on a high, wide peak and would thus be cleavable 

whereas a “bad” substrate would be situated in a valley and be functionally uncleaved. 

The ability to predict the consequence of each mutation on specificity would supplement 

the process of rational design. In traversing the landscape we come across a biological 
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phenomenon termed epistasis(Breen et al. 2012; Sailer et al. 2017; Weinreich et al. 

2005). Epistasis is said to occur when the effect of single mutants is not additive to the 

effect of the double. For instance, an example where two single mutants A and B are 

cleaved however the double mutant AB is uncleaved would be a presentation of epistasis. 

Efforts have driven further understanding and even prediction of epistasis – most notably 

investigations carried out by Harms(Harms & Thornton 2013; Sailer & Harms 2017; 

Sailer et al. 2017), Tokuriki(Miton & Tokuriki 2016), etc.  Studies by Tokuriki et al have 

shown that the order of mutations matters in consideration of which functional peak is 

reached and that it is not necessary that the most functional intermediates will lead to the 

fittest point on the interaction landscape.  

 

1.7. Outline of the dissertation 

Using the aforementioned design tools our overarching goal was to take forward steps 

toward engineering a library of proteases – Restriction endopeptidases. Similar to 

restriction enzymes that exist to cleave very specific DNA sequences, we were motivated 

to develop a variety of proteases that could selectively and specifically cleave protein 

sequences of choice. This enables several applications for protease use in therapy, 

biotechnology and synthetic biology. We tackle this problem of specificity by using 

available cleaved and uncleaved substrate sets (from high - throughput assay literature) to 

develop a generalizable, biophysical structure based energy function that increases the 

ability of Rosetta’s energy function to distinguish between cleaved and uncleaved 

substrates for a myriad of proteases (Chapter 2). We also investigate faster techniques to 

recapitulate multispecificity in proteases by developing a faster sampling technique, 
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MFPred – discussed in Chapter 3. Further, (Chapter 4) we explore the substrate protease 

interaction of a multispecific viral protease – Hepatitis C NS3 protease – known to cleave 

four canonical substrates as part of its biological role. We explore the biophysical basis of 

this interaction by generating a library of substrates and testing it using a high - 

throughput yeast based assay. Results from this exploratory study as well as further 

computation using an SVM based approach, lead to insights in evolutionary trends and 

future directions in the protease design field. 
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Chapter 2: Large-scale structure-based prediction and identification of novel 

protease substrates using computational protein design 

 

2.1. Abstract  

Characterizing the substrate specificity of protease enzymes is critical for illuminating the 

molecular basis of their diverse and complex roles in a wide array of biological 

processes. Rapid and accurate prediction of their extended substrate specificity would 

also aid in the design of custom proteases capable of selectively and controllably cleaving 

biotechnologically or therapeutically relevant targets. However, current in silico 

approaches for protease specificity prediction, rely on, and are therefore limited by, 

machine learning of sequence patterns in known experimental data. Here, we describe a 

general approach for predicting peptidase substrates de novo using protein structure 

modeling and biophysical evaluation of enzyme-substrate complexes. We construct 

atomic resolution models of thousands of candidate substrate-enzyme complexes for each 

of five model proteases belonging to the four major protease mechanistic classes – serine-

, cysteine-, aspartyl- and metallo-proteases, and develop a discriminatory scoring 

function using enzyme design modules from Rosetta and Amber-MMPBSA. We rank 

putative substrates based on calculated interaction energy with a modeled near-attack 

conformation of the enzyme active site. We show that the energetic patterns obtained 

from these simulations can be used to robustly rank and classify known cleaved and 

uncleaved peptides and that these structural-energetic patterns have greater 

discriminatory power compared to purely sequence-based statistical inference. 

Combining sequence and energetic patterns using machine-learning algorithms further 
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improves classification performance, and analysis of structural models provides physical 

insight into the structural basis for the observed specificities. We further tested the 

predictive capability of the model by designing and experimentally characterizing the 

cleavage of four novel substrate motifs for the Hepatitis C virus NS3/4 protease using an 

in vivo assay. The presented structure-based approach is generalizable to other protease 

enzymes with known or modeled structures, and complements existing experimental 

methods for specificity determination.  

 

2.2. Introduction 

Proteolytic cleavage is a ubiquitous post-translational modification that controls the 

transmission of biological information(López-Otín & Bond 2008; Hedstrom 2002a; 

Hedstrom 2002b). Proteases encompass a structurally and mechanistically diverse class 

of enzymes that display a range of cleavage specificities reflecting their complex and 

diverse biological roles (Hedstrom 2002b; Tyndall et al. 2005; Powers et al. 1993; 

Rawlings & Salvesen 2013). For example, proteases involved in digestion and 

extracellular matrix degradation, e.g. trypsins and matrix metalloproteases, respectively, 

show relatively relaxed specificity profiles(Rawlings et al. 2010), whereas those involved 

in apoptotic and thrombolytic cascades, e.g. caspases(Julien et al. 2016) and thrombin(Di 

Cera & Cantwell 2001), respectively, are more selective in their cleavage motifs. In many 

viruses, protease-mediated cleavage of the viral polyprotein at specific sites is crucial for 

viral maturation(Scheel & Rice 2013); as a result, these enzymes are highly selective in 

cleaving only a small set of polypeptide sequences, while not acting on other sequences 

in the polyprotein. Accordingly, these enzymes have been successful drug targets for 
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developing anti-viral therapies (Drag & Salvesen 2010; Eder et al. 2007). Thus, proteases 

are exemplars of enzymatic multispecificity, which have likely evolved to act upon and 

cleave a range of substrates – their specificity profile – while simultaneously avoiding the 

cleavage of other substrates (Tawfik 2014). Modeling of protease substrate specificity 

would illuminate the structural and physiochemical basis of these observed positive and 

negative selectivities, and aid protease biology by identifying novel substrates and 

biological roles of proteolysis.  

 

Experimental methods to characterize protease specificity (Poreba & Drag 2010) range 

from low-throughput methods in which individual peptides or mixtures of peptides are 

assayed for cleavage(Turk et al. 2001; Backes et al. 2000; Fretwell et al. 2008) to high-

throughput methods that allow identification of substrates on a proteome-wide scale (van 

den Berg & Tholey 2012; Ratnikov et al. 2009; Agard et al. 2012; Julien et al. 2016; 

Vizovišek et al. 2016). However, substrate sequence space is large and different 

proteome-wide datasets often have little overlap, suggesting that a large number of 

substrate sequences remain to be identified. Moreover, each experiment is limited to a 

single enzyme variant (typically the wild type). Computational approaches could, in 

principle, enable more rapid construction of specificity profiles, especially for naturally 

occurring or drug-resistant protease variants, and/or assist in library design for 

experimental specificity determination in a specific region of sequence space. Pattern 

recognition-based approaches have been used to predict substrate sequence preferences 

for various proteases based on machine learning from available experimental data 

(Barkan et al. 2010; Boyd et al. 2004; Song et al. 2011; Song et al. 2012; Verspurten et 
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al. 2009; Li et al. 2012). However, these sequence-only approaches are constrained by the 

quality of the input data, and cannot be generalized to other proteases, or to variants of 

the same protease enzyme.  

 

Figure 1.1. Overview of a general, energy-based discriminator  
An illustration of the mechanism of steps leading to the formation of a common 
tetrahedral intermediate (TI) for serine-, cysteine-, threonine (A), aspartic, glutamic (B), 
and metallo-proteases (C). Protease active site cleft is depicted as a dashed arc. (D) 
Generation of atomic resolution models of the near attack conformation using high - 
resolution crystallographic structures and known cleaved and uncleaved sequence 
datasets. (E) The resulting complexes were allowed to relax into a minimum energy 
conformation using the described protocol (FastRelax) and scored using a linear 
combination of (F) the sum of the interface residues’ Rosetta energy, (G) the sum of the 
interface residues’ AMBER MMPBSA electrostatic scores, (H) a score that describes the 
propensity of the peptide to adopt an extended conformation (reorganization penalty), and 
(I) the deviation of the active cleft residues from the idealized active conformations (a 
pseudo score-term). The linear combination of weighted scores were recombined 
according to this equation: Total_score = w1*Rosetta_Interface_Energy(Protease energy) 
+ w2*Rosetta_Interface_Energy (Peptide energy) + w3* Catalytic constraint penalty + 
w4 *Reorganization Penalty + w5* Electrostatic Binding Energy; where w1 =1, w2 =1, 
w3 = 3.5, w4 = 0.01 ,  w5 = 0.5  
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Proteolysis is a multi-step reaction involving the binding of the substrate and subsequent 

nucleophilic attack on the carbonyl group carbon of the scissile peptide bond to yield a 

tetrahedral intermediate (TI; Figure 1.1A-C) (Hedstrom 2002a). Steps after TI formation 

are mechanism-dependent: in cysteine, serine (and threonine) proteases, the intermediate 

disproportionates to yield one product and the reaction proceeds via the formation of an 

enzyme-bound intermediate that is deacylated to yield the second product (Figure 1.1A). 

In aspartic (and glutamic), and metallo-proteases, which use a hydroxide nucleophile 

generated from a bound water molecule, the tetrahedral intermediate directly 

disproportionates into both products (Figure 1.1B,C). In principle, different steps could 

determine substrate specificity depending on the substrate and the mechanism under 

consideration. However, for all proteases, regardless of the mechanistic class they belong 

to, the first step, i.e., enzyme nucleophilic attack is required for turnover (Hedstrom 

2002a). This observation led us to hypothesize that a model of the enzyme with the bound 

substrate and catalytic machinery modeled in a near-nucleophilic attack conformation 

would enable us to capture the energetics involved in substrate recognition and 

specificity. 

 

Here, we develop a predictive biophysical model aimed at uncovering the underlying 

rules that govern protease-peptide molecular recognition and test its ability to classify 

known protease substrates from uncleaved ones. We construct a discriminative scoring 

function that includes descriptors of the energetics (including long-range electrostatic 

interactions) at the interface of the protease–peptide complex, the geometric 

compatibility of the substrate with the catalytically active state of the protease, and the 
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reorganization penalty of a given substrate to adopt a favorable conformation in the 

protease active site (Tyndall et al. 2005). We demonstrate the predictive capacity of this 

discriminator by the recapitulation of known cleavage specificities of five experimentally 

characterized proteases representing all the major mechanistic protease classes (Powers et 

al. 1993) (serine, cysteine, aspartic, and metallo- proteases). We demonstrate an 

application of our biophysical discriminator by exploring previously uncharacterized, 

novel sequence motifs cleaved by the HCV NS3/4A protease via a yeast surface display-

based assay (Yi et al. 2013) to identify novel cleaved sequences. Our biophysical 

structure-based model should allow the prediction of substrate specificities of 

experimentally uncharacterized proteases as well as protease variants (e.g. drug-resistant 

variants) and enable the structure-based design of proteases targeted to novel substrates. 

 

2.3. Results 

2.3.1. Rationale for the curation of Benchmark Datasets: 

To develop and test a general structure- and energy-based prediction approach for 

protease specificity, we curated benchmark sequence sets for five diverse proteases. Each 

of these exhibit diverse mechanisms of action, varied folds and biological functions – 

TEV Protease (cysteine proteases), HCV NS3/4A protease (serine proteases), Granzyme 

B (serine protease), HIV Protease-1 (aspartyl protease) and Matrix Metalloprotease -2 

(Metalloprotease). The sequence sets were composed of cleaved and uncleaved 

sequences identified in experiments or generated by examining naturally occurring 

targets (and non-targets) of each protease (see Materials and Methods). We preferentially 

chose datasets in which cleaved and uncleaved sequences were identified in the same 
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experiment. For HCV NS3/4A protease, HIV Protease 1 and Granzyme B, we were able 

to identify experiment-derived datasets (Shiryaev et al. 2012; Rögnvaldsson et al. 2009a; 

Barkan et al. 2010). For TEV protease and MMP2 protease, we were able to obtain 

experimentally cleaved datasets(Kostallas et al. 2011; Boulware et al. 2010; Ratnikov et 

al. 2014) but uncleaved sequences were not available. Therefore, we generated a 

synthetic dataset of uncleaved sequences using a two-residue protein walk approach, 

utilized in previous computational and experimental work (Shiryaev et al. 2012; Barkan 

et al. 2010). It is possible that these synthetically generated uncleaved sequences may 

include a small number of cleaved sequences. However, experimental results from 

Shiryaev et al (Shiryaev et al. 2012) suggest that misclassification of uncleaved 

sequences obtained using this approach is low. Therefore, in the absence of a directly 

experimentally determined uncleaved dataset for TEV protease and MMP2, we utilized 

this previously validated approach for uncleaved dataset creation.   

 

2.3.2. Developing an energetic discriminatory scoring function based on structural 

simulations:  

We hypothesized that determinants of substrate cleavage include (a) protease-peptide 

interfacial interactions, (b) the adoption of a catalytically competent conformation of the 

protease active site machinery in the bound state (near-attack conformation), and (c) a 

reorganization penalty that captures the propensity of a given substrate to adopt the 

extended conformation required for positioning the scissile bond in a cleavage-prone 

location in the protease active site. We created atomic resolution models for each peptide-

protease complex and computed each of these terms as described below. 
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To model the conformation of each substrate peptide complexed with the active 

conformation of the protease, we created atomic resolution models within the context of 

the Rosetta macromolecular modeling software. Each known peptide substrate was 

threaded on the respective modeled near-attack conformation generated from the protease 

crystal structures (Figure 1.1D), and the resulting complex was allowed to 

computationally relax into a local energy minimum using Rosetta FastRelax(Tyka et al. 

2011), followed by scoring this modeled conformation using Rosetta and Amber’s 

MMPBSA modules (Figure 1.1E).  

 

In addition to the interaction energy evaluated using Rosetta (Figure 1.1F), which 

includes a model of electrostatics, (called fa_elec), we also evaluated binding 

electrostatics by using Amber’s MMPBSA module (Figure 1.1G). We reasoned that the 

Rosetta energy function has been weight optimized for all of its component terms 

including fa_elec. Thus, we decided to include fa_elec even upon inclusion of the 

AMBER electrostatics score.  We included two other terms in our discriminator scoring 

function: First, we included a term (“reorganization penalty”) that captures the propensity 

of a given substrate to adopt the extended conformation observed in crystal structures of 

all proteases (Figure 1.1H). Second, the deviation of the active site from ideal catalytic 

geometry (a pseudo-energy term) upon energy minimization (Figure 1.1I), which 

captures the fit of a given substrate to the catalytically competent conformation of the 

protease, was included. These scores – energetic descriptors of the peptide-protease 

complex in a near-attack conformation – were combined using a linear weighting 
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approach to obtain a discriminatory score function such that lower scores are predicted to 

energetically fit better in the active site (Figure 1.1F-I).  

 

2.3.3 Recapitulation of known protease specificity profiles: 

Each predicted substrate-binding set for each protease consists of a large set of evaluated 

peptide sequences, atomic-resolution bound structures, and predicted binding energies of 

individual peptides to the near-attack state of the enzyme. We compared our predictions 

with experimentally determined specificity data from peptide library screening. Briefly, 

in these experiments, peptide (or peptide-cDNA fusion) libraries are generated and 

treated with protease of interest, cleaved and uncleaved populations of peptides are 

captured and identified using (deep) sequencing or mass spectrometry, and cleavage 

probability is assigned using Enrichment of a given peptide sequence in the cleaved 

population versus the uncleaved.  
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Figure 1.2. Distribution of Discriminator Scores.  
Score distributions for cleaved sequences (depicted in black) and uncleaved (depicted in 
dotted bars) for  (A) TEV protease (B) Granzyme B (C) HCV (D) HIV (E) MMP2. The 
p–values were calculated using a Wilcoxon rank test. A threshold based binary 
classification of sequences into cleaved and uncleaved sequences using these scores was 
performed and the auROC (F) for the five proteases are indicated. (G) Enrichment of true 
cleaved sequences in the top-ranked pools. Enrichment ratio (black bars)  = #true 
cleaved/ # of cleaved sequences in datatset. Background Enrichment (white bars), which 
represents fraction of cleaved sequences in the dataset, and Enrichment obtained from 
SitePrediction model (wavy bars) with 20% of the known cleaved sequences. In each 
case, the structure-based discriminator performs comparably to or better than 
SitePrediction. 
 

We found that for each of the five proteases, the distribution of discriminator scores was 

bimodal and cleaved and uncleaved sequences were separated in a statistically significant 

manner (p-values calculated using the Wilcoxon rank test; Figure 1.2A-E). To quantify 

the performance of the discriminator in the task of separating cleaved from uncleaved 
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substrates, we performed a score threshold-based binary classification of the sequences 

into cleaved and uncleaved sets and calculated the area under the resulting receiver-

operator curve (auROC; perfect discrimination would yield an auROC of 1.0; the 

expected auROC for a random ordering of the peptides is 0.5). The auROC values for the 

five proteases ranged between (0.86 for MMP-2 to 0.98 for TEV-PR), demonstrating 

robust discrimination using energetics (Figure 1.2G). The critical point of the auROC plot 

represents the optimal tradeoff between false positive and false negative rates.  We found 

that false positive rates at critical points ranged from 0.04 (TEV-PR) to 0.24 (MMP-2), 

suggesting robust discrimination of the substrates into cleaved and uncleaved sets with a 

small but significant false positive rate (Table 1.1). We note that weights used for 

combining the five score terms were initially optimized to maximize discrimination for 

HCV NS3/4A protease (five weight terms over approximately 2100 data points), yet 

TEV-PR displays the best performance in terms of both auROC and critical point values 

using this weight set. These results demonstrate the generality and robustness of the 

energy-based scoring function. 

 
Protease TPR FPR 

HCV 0.92 0.08 
TEV 0.96 0.04 
HIV 0.82 0.18 

Granzyme B 0.93 0.07 
MMP2 0.76 0.24 

 
Table 1.1: True Positive and False Positive Rates observed for critical point of 
auROC 
 

To evaluate the ability of the discriminator to identify cleaved sequences from the entire 

pool of sequences – a task that would aid in novel substrate identification – we calculated 
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the fraction of truly cleaved sequences in the top-scoring Ncleaved sequences, where Ncleaved 

is the number of cleaved sequences in the dataset. This Enrichment value is compared to 

background Enrichment, i.e. fraction of cleaved sequences in the dataset (reflecting a 

scenario when the ranking is performed by randomly shuffling the list of sequences). We 

find that in all cases a significantly higher fraction of sequences was enriched compared 

to the background with Enrichment ratios ranging from 3-fold (HIV-PR) to 19-fold 

(TEV-PR) (Figure 1.2F).  We compared the Enrichment obtained using our discriminator 

with that obtained using SitePrediction (Verspurten et al. 2009)– a sequence-based 

machine learning method that relies on training with experimental data. For each 

protease, we trained a SitePrediction model with randomly chosen 20% of the known 

cleaved sequences and used the remaining dataset for testing.  For all proteases, we find 

that our unbiased, biophysics-based approach yielded similar or higher Enrichment 

values as SitePrediction models trained separately on each individual protease. The lack 

of training on known experimental data makes the structure-based discriminator more 

widely applicable. 
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Figure 1.3. The additive effect of each energy term to the auROC.  
Each plot shows the representative ROC curve for Rosetta Energy (sum total of peptide 
and protease interface energy; depicted in light blue), Rosetta Energy + constraint score 
(green), Rosetta Energy + constraint score + secondary structure propensity (red), Rosetta 
Energy + constraint score + secondary structure propensity + Electrostatic binding energy 
(dark blue). All score terms are seen to contribute to the discriminative efficiency of the 
score function. 
 

2.3.4. Optimization of scoring and sampling strategies: 

To investigate the contribution of each score term and its weight in the discriminator 

scoring function, we evaluated the discrimination performance of various score term 

combinations.  We found that while the majority of the discriminatory power could be 

attributed to Rosetta interface residue energies, all five terms do contribute to the 

observed prediction metrics when they are serially included along with the Rosetta 

energy.  While the increases in auROC compared to Rosetta energies-only scoring 

functions were modest, Enrichment values benefited significantly by the inclusion of the 

additional terms e.g., for Granzyme B inclusion of the AMBER electrostatics score and 

secondary structure propensity increases Enrichment from 0.70 to 0.87 (Figure 1.3, Table 

1.2). As auROC measures the overall difference in the two distributions (cleaved and 

uncleaved) and Enrichment measures the rank ordering of sequences, we conclude that 

inclusion of additional terms serves to subtly alter the calculated energy landscape and 

“rescue” some false negatives (cleaved sequences that score comparably to low-energy 

uncleaved ones). 
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Protease  RE+CST RE+CST+Elec RE+CST+Elec+SS 
     

Granzyme B Enrichment 0.70 0.68 0.87 
 Fold increase 4.6 4.5 5.7 
 AUC 0.93 0.93 0.98 
     

HCV Enrichment 0.64 0.76 0.80 
 Fold increase 6.2 7.3 7.6 
 AUC 0.93 0.97 0.97 
     

TEV Enrichment 0.72 0.72 0.80 
 Fold increase 16.68 16.68 18.35 
 AUC 0.98 0.98 0.98 
     

HIV Enrichment 0.69 0.68 0.69 
 Fold increase 3.2 3.2 3.2 
 AUC 0.90 0.90 0.90 

 
Table 1.2: Results of a calculation to investigate the additive effect of each score 
term in the discriminatory score function 
 

We next investigated whether optimization of weights of the energetic scoring terms 

could improve performance. We used a grid-based optimization scheme in weight space 

to maximize Enrichment.  While keeping Rosetta protease energy fixed, we optimized 

four free parameters by enumerating all combinations of peptide residue energy (0.3-1.3 

in increments of 0.1, constraints (2.5-3.5 in increments of 0.1), secondary structure 

(0.005-0.02 in increments of 0.005), and electrostatics (0.1-0.3 in increments of 

0.05).  The ranges were chosen after a coarse-grained parameter sweep to find good 

starting parameters, and by considering the orders of magnitudes of raw scores of the 

score terms. For example, the raw score for the Secondary Structure Propensity term 

ranges between 0-200 (number of fragments from the top 200 that have an RMSD greater 

than 3.0 Å compared to the crystallographic conformation of the peptide). As the Rosetta 
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residue energy weight was 1, we explored weight ranges of 0.005-0.02 for the secondary 

structure term. The results of this optimization are listed in Table 1.3. 

 
 Enrichment protease peptide cst ss Elec 

TEV 0.8088 1 0.3 2.5 0.005 0.25 
HCV 0.7806 1 1 3.5 0.001 0.5 
HIV 0.7112 1 0.8 3.4 0.013 0.1 
GrB 0.8867 1 0.5 2.5 0.005 0.3 
MMP2 0.6747 1 0.7 2.6 0.007 0.1 
 
Table 1.3: Results of a grid-based optimization scheme to maximize enrichment 
 

We next examined the impact of sampling flexibility of the backbone and side chain 

degrees of freedom (DOF) at the protease-peptide interface (Figure 1.4) and found that 

limiting the backbone degrees of freedom of the protease, while sampling the full 

backbone DOFs of the peptide, yielded the highest Enrichment values. Previous studies 

with farnesyltransferase enzyme similarly observed that greater sampling of the peptide 

degrees of freedom increased performance (London et al. 2011). When the protease 

backbone was allowed to move in an unconstrained manner, several uncleaved sequences 

adopted energetically favorable conformations. While some of these false positives can 

be attributed to limitations of the simulation force fields and sampling strategies, these 

results indicate that side chain flexibility in the protease pockets coupled to peptide 

backbone flexibility are key contributors to the molecular recognition observed at these 

interfaces.  
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Figure 1.4. Impact of sampling flexibility of the protease backbone and sidechain 
degrees of freedom.  
The peptide backbone and sidechains were flexible in all of the simulations depicted in 
the figure. “bb” refers to the backbone of the protease such that bb=0 indicates that the 
backbone was not allowed to relax, bb=1 that backbone was allowed to relax. “j” refers to 
the rigid body freedom of the peptide with respect to the protease. j=0 means that rigid 
body freedom was constrained during the simulation; j=1 rigid body flexibility allowed 
during simulation. The highest efficiency of discrimination was observed when the 
protease backbone was not allowed to relax, and the protease sidechains were flexible 
during the simulation. 
 

Finally, we explored the contribution of maintaining, during each simulation, the scissile 

peptide bond in a near-attack conformation with respect to the protease catalytic 

machinery using geometric constraints, by performing simulations without these 

geometric constraints, and/or removing the constraint scores from the discriminator 

scoring function. In each case, a decrease in Enrichment was observed (Figure 1.5), 

providing further support for our rationale that specificity in protease-peptide molecular 

recognition is not simply a ground state binding phenomenon, but is contingent upon the 
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relative energetics of the near attack substrate conformation during the nucleophilic 

attack step.  

 
Figure 1.5.  Contribution of maintaining near attack conformation with respect to 
protease catalytic machinery.  
Three FastRelax protocols were performed to compare the effect of the presence of 
catalytic constraints during the FastRelax and scoring stage. Scores (white bars) depict 
enrichment values obtained when enzymatic constraints were excluded in the FastRelax 
step but were included in the scoring step. Scores_wocst (blue) depict experimental 
results where constraints were excluded from the FastRelax step as well as from the 
scoring calculation. Original_wcst (black) depict experimental results where FastRelax 
was performed with constraints and the constraint score was included in calculation of 
Enrichment. Highest enrichment is observed when catalytic constraints are included in 
both the FastRelax as well as scoring steps. 
 

2.3.5. Combining sequence and energetic signatures using machine learning leads to 

higher discriminatory power  
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Figure 1.6. Combining sequence and energy signatures leads to higher 
discriminatory power  
(A) The energetic features were used to train an SVM using a radial based function, 
which yielded higher auROC values for all proteases as compared to a linear combination 
of optimized weights.  (B) auROCs obtained from support vector machines (SVMs) 
trained with sequence only(blue), energetic only(gray) and both sequence and energetic 
features(wavy) in a 5-fold cross-validation test.  Black bars indicate auROC for the linear 
combination of weighted score terms. The combination of sequence and energy features 
consistently results in higher auROC values. (C) Accuracy as a function of training set 
size used for training for the (C) sequence, (D) energetic features, and (E) both sequence 
and energetic features for the HCV protease. The accuracy values are not altered 
appreciably when a significantly smaller training dataset is used. In-set classification and 
generalization curves converge as a progressively higher fraction of the dataset is used 
for training. The classification curve is shown in red whereas the generalization curve is 
depicted in blue.  
 

Current approaches for protease specificity prediction, including the SitePrediction tool 

discussed above, PCSS server (Barkan et al. 2010) and PROSPER(Song et al. 2012), use 

machine learning of sequence patterns in known experimental data. To more extensively 

compare our structure-based specificity prediction with current sequence-based 

approaches we trained support vector machines (SVMs) with sequence-only, energetic-

only and both sequence and energetic features (Methods). For the energy-based SVM, the 

(unweighted) energy terms described above were treated as features (“interface protease 
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residue energy”, “interface peptide residue energy”, “constraints energy”, “reorganization 

penalty” and “MMPBSA electrostatic binding energy”), whereas sequence-based features 

were generated using a protocol described by Barkan et al.(Barkan et al. 2010). We found 

robust discrimination of the substrate sequences using energy-based SVMs trained 

individually on each protease in 5-fold cross-validation test (Figure 1.6A). The values of 

auROC obtained using these SVMs are higher than those obtained with scoring using a 

linear weighting scheme (Figure 1.6B, black and gray bars), due likely to the use of a 

non-linear kernel function and training on individual datasets. When compared to a 

purely sequence-based SVM, the energy-based SVM consistently leads to higher auROC 

values for all datasets, and an SVM constructed based on sequence and energy features 

displays a high AUC value when compared to solely sequence-based and energy-based 

based SVMs (Figure 1.6B). These results indicate that structural/energetic features 

contribute information that is orthogonal to that obtained from sequence-only features.  

 

To ensure that the increased discriminatory ability observed upon combining sequence- 

and energy-based features is not a result of data over-fitting, we performed a cross-

validation procedure where in-set training (classification) and out-of-set testing 

(generalization) was performed by randomly splitting the datasets into training and test 

subsets (Baugh et al. 2016) . We find that the performance of the method as indicated by 

the accuracy of prediction, does not appreciably alter when a significantly smaller 

training dataset is used for the energy-based SVMs, and the classification and 

generalization performance converge as the training set size increases (Figure 1.6C-E, 

Figure 1.7). The convergence between classification and generalization occurs at higher 
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training set fraction for the sequence-based SVMs than energy-based ones, demonstrating 

that the key energetic signatures underlying discrimination can be captured with a smaller 

dataset compared to the corresponding sequence signatures (Figure 1.7). Thus, energetic 

feature-based SVMs can outperform sequence-based ones, and the two sets of features 

can be combined to obtain more accurate classification than either set of features 

independently. 
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Figure 1.7. Accuracy versus Training Data size plots for Sequence, Structure and 
Combination SVMs.  
To avoid over-fitting we performed a jack-knifing procedure where classification and 
generalization was performed by randomly splitting the datasets into training and test.  
(A) TEV (B) HIV (C) HCV (D) Granzyme B (E) MMP2 
 
 

2.3.6. Multi-body interaction networks at the interface underlie improved 

discrimination 	
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To investigate the underlying reasons for the observed increase in prediction efficiency 

when structural features are used, we identified several peptide sequences that are 

consistently misclassified by the sequence-based approach but are correctly classified by 

the structure-based approach. In several cases, we find that the increased classification 

ability could be attributed to interaction networks composed of multiple substrate and 

protease residues. A sequence-only approach would require a significantly larger training 

data than a relatively unbiased energy-based approach to directly “learn” multi-body 

correlations (interactions).   

 

Figure 1.8. Multi-body interaction networks at the interface underlie improved 
discrimination.  
Several sequences are misclassified by the Sequence-Based Discriminator whereas they 
are correctly classified when the Structure based Discriminator is used. (A) The sequence 
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‘GPGTARSP’ is misclassified by the sequence based SVM as ‘cleaved’ for the HIV 
protease sequence set.  Residue P3’ of the peptide is packed in the vicinity of ARG 8; 
which is involved in a key interaction with ASP 29 necessary in maintaining the dimer 
interface. The P3’ – ARG 8 repulsion leads to a destruction of one of the key interactions 
involved in dimer interface stabilization. One half of dimer surface is shown as a cartoon 
representation and the other as a charged surface in order to highlight the dimer interface 
of the HIV protease. This electrostatic repulsion is captured by the energy-based 
approach but not the sequence based approach, leading to a misclassification by the latter  
(B) ‘SQAYPIVQ’ is misclassified as an uncleaved sequence present in the HIV protease 
sequence set. The P1 tyrosine residue (yellow) along with the serine at P4 forms a 
favorable hydrogen bond network with ARG 8 (green) allowing for substrate cleavage. 
This favorable hydrogen-bonding network is likely not directly recognized by the 
sequence-based approach. (C)  ‘KPAIIPDR’ belongs to the HCV Protease sequence set 
which is misclassified as cleaved by the sequence-based approach. The presence of 
proline at positions P5 and P1 (yellow) bends the substrate chain in an orientation that is 
unfavorable for cleavage. The extended conformation of a peptide, which allows 
hydrogen bond formation, leading to binding of the peptide and eventually cleavage, is 
highlighted (purple).  The Rosetta energies correctly detect this disruption of the 
hydrogen bond network caused by the presence of proline residues between peptide 
(yellow) and protease. 
 
 

Three examples of these interaction networks are described below: 

 

1. The structure-based discriminator can identify context-dependence of the substrate 

residue interactions more readily than a sequence-based approach, especially in cases 

where sequence preference at a given substrate site is not pronounced. For example, for 

the HIV protease, cleavage occurs between small non-polar amino acids and sequence 

preference at any other site is not particularly pronounced. As a result, GPGTASRP 

(Figure 1.8A) is misclassified as “cleaved” by the sequence-based SVM for HIV 

protease-1. There are no pronounced sequence preferences at position P3’ (Figure 1.10). 

The structural model of this sequence, however, shows that the guanidinium group of the 

arginine sidechain (P3’) is packed in the vicinity of R8, a key residue, whose interaction 

with D29 is critical for HIV protease structural (dimer) stability (Appadurai & Senapati 
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2016). Thus, the presence of an arginine at this P3’ position would lead to lack of 

cleavage of the substrate, unless a secondary interaction relieves the electrostatic 

repulsion between the substrate arginine sidechain and the guanidinium group of R8. The 

subtle balance of these protease-substrate interactions can be captured by the 

electrostatics calculations in our approach.  

 

2. The energy-based discriminator is able to detect hydrogen bond networks between 

substrate residues, including those mediated by the protease structure. For example, for 

the sequence SQAYPIVQ (Figure 1.8B), the sidechain of the tyrosine residue at position 

P1 forms a hydrogen bond network with the P4 position on the substrate and the R8 of 

the protease chain. This likely allows the protease to recognize and cleave this substrate.  

 

3. Another set of interactions that our structural approach correctly characterizes are 

those mediated by proline and glycine residues, as these have specific backbone 

preferences that can affect the peptide backbone conformation. Figure 1.8C is an example 

of a sequence, KPAIIPDR, which is experimentally shown to be uncleaved by the HCV 

NS3/4A protease.  The sequence-only approach misclassifies this sequence as cleaved, 

likely on account of the non-polar isoleucine residues at the P1, P1’ residues. However, 

the proline residues present at P5 and P1 substrate positions bend the substrate backbone 

into a conformation that results in the disruption of the stabilizing backbone hydrogen 

bond network, which drives the extended substrate conformation optimal for cleavage. 

The Rosetta energy function detects the disruption of this backbone hydrogen bond 
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network, and thus the energy-based approach correctly classifies this sequence as 

‘uncleaved’.  

 

Figure 1.9. Discovering novel sequence specificities HCV/NS3 4A Protease 
(A) Sequence Logo plots of the identified four novel sequence motifs whose scores 
overlapped with the cleaved sequences in the benchmark dataset  (B) Schematic of the 
vector (LY104) used for the YESS assay. The vector contains Aga2 cell surface signaling 
moiety followed by the substrate flanked between HA tag and FLAG tag which can be 
detected on the cell surface by fluorescently tagged antibodies. The protease and 
substrate are co-expressed in the ER of the yeast cell. If cleavage occurs the FLAG:HA 
ratio is 0, if substrate is uncleaved ratio is 1. (C) Results of the YESS assay test of the 
predicted cleaved sequences. Three out of the four tested sequences (predicted cleaved; 
green bar) showed a FLAG:HA ratio <0.5. The positive control (wild type shown in blue) 
showed an expected low FLAG/HA ratio whereas the negative control (known and 
predicted uncleaved sequences, red bars) showed high FLAG:HA ratios >0.85. The 
protease activity knockout mutant S139A (dotted red bars) showed FLAG:HA ratio 
>0.85 for all sequences, confirming that the sequences were cleaved because of the co-
expressed HCV NS3/4A protease from the assay vector and not an endogenous yeast ER 
enzyme. (D) Cell cytometry histograms of LEEFFCSG, predicted cleaved sequence 
showing a 62.1% cell population signal for HA tag, 11.4% cell population signal for 
FLAG, thus showing a FLAG:HA ratio of 0.18 (E)  Cell cytometry histograms for the 
negative control sequence DKNQVEGE, showing a 38.3% cell population signal for HA 
tag, and 34.0% for FLAG tag, thus exhibiting a FLAG:HA ratio of 0.88. 
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2.3.7. Discovering novel sequence specificities HCV NS3/4A Protease  

To further investigate the predictive ability of the energetic-discriminator in a blind test, 

we used our simulations to identify novel cleaved substrates for the HCV NS3/4 protease. 

The residue identities on the substrate peptide at positions P6 through P2 were sampled 

and scored as described in Methods using the structure-based discriminator. A total of 

26,400 candidate sequences were evaluated (out of the possible 205 = 3.2 million) in a 

two-step procedure of sequence sampling as described in Methods, low-scoring 

sequences were clustered and were further pruned to identify sequence motifs that were 

novel (i.e., absent from the dataset used for developing the discriminator). We identified 

four such sequence motifs (Figure 1.9A), whose scores overlapped with the distribution 

of scores obtained from known cleaved sets. At least one peptide sequence was selected 

from three of the four identified motifs, and these were tested experimentally using a 

Yeast Endoplasmic Reticulum Sequestration Screen (YESS system) based assay (Yi et al. 

2013; Yi et al. 2015) (Figure 1.9B).  

 

In this assay, the protease and substrate are co-expressed in active forms in the ER of 

yeast, and the substrate is targeted to the cell surface by fusion to the cell surface protein 

Aga2p. Proteolysis is detected using fluorescent antibodies against the HA and FLAG 

tags that flank the substrate. We confirmed that the cleavage of the wild type substrate 

sequence (DEMEECA- canonical HCV NS3/4A cleavage sequence present between 

NS4A/4B on the polyprotein) results in the detachment of the FLAG tag from the AGA2 
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surface-signaling moiety, thus resulting in a FLAG:HA ratio of zero for complete 

cleavage and a ratio of one for no cleavage when an inactive variant of the protease 

(S139A) is used (Figure 1.9C).  Several previous studies (Shiryaev et al. 2012; Grakoui, 

McCourt, et al. 1993; Grakoui, Wychowski, et al. 1993)have shown that the HCV 

protease cleaves between C/S or C/A residues (P1/P1’) – however, the specificity at other 

positions can be broad and has not been explored fully. In all our predicted substrates 

(that we tested experimentally) the P1/P1’ positions are still maintained as the known 

canonical sequence C/S, and our goal was prediction of different P6-P2 patterns. We, 

therefore, reasoned that the cleavage position of our substrates would not be altered as 

they retain the canonical P1/P1’ cleavage pattern. The FLAG and HA signals were 

detected using flow cytometry. The observed FLAG/HA ratios (Figure 1.9 C, D) 

demonstrate that three out of four predicted sequences showed cleavage with ratios <0.5, 

whereas control assays with the S139A inactive protease variant showed significantly 

higher (>0.85) ratio, demonstrating that the observed cleavage is not due to a non-specific 

endogenous yeast enzyme.  

 

Out of the four sequences that are predicted as cleaved, one sequence – CEDYFCSG – 

shows a high FLAG/HA ratio, and represents a prediction failure. These results are 

consistent with the ~75% True Positive and ~25% False Positive rates (Figure 1.2F) 

observed in the performance of the discriminator on known cleaved and uncleaved 

datasets, i.e., approximately one out of four sequences identified is expected to be a false 

positive sequence. We also identified two predicted uncleaved substrates, and these show 

lack of cleavage when co-expressed with either wild type protease or the inactive 
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protease variant, as expected. The FLAG:HA ratios for the novel identified substrates are 

higher than positive control LY104, indicating that the substrates identified are 

suboptimal. However, our test for novel substrates is particularly stringent as we chose 

sequence motifs that have previously not been identified in multiple studies of HCV 

NS3/4 protease. Thus, the developed discriminative score function and validating assay 

provide a method to screen for potential novel biological targets of this viral protease that 

is also a drug target. 

 

2.4. Discussion 

 

Proteolytic cleavage is a key component of diverse and ubiquitous biological processes 

such as apoptosis, blood clotting, viral maturation, and cancer(Puente et al. 2003). 

Developing a generalizable, predictive model for protease specificity would enable 

identification of potential novel substrates for furthering our understanding of protease 

biology and enhancing our ability to design inhibitor small molecules to chosen 

proteases. We developed a structure-based approach for specificity prediction using 

Rosetta and Amber force fields that provides atomic resolution insights into the 

molecular recognition at protease-substrate interfaces. We found that structural models 

robustly recapitulate known protease specificities for each of the four major protease 

classes (serine, cysteine, aspartic, and metallo-proteases) with little training on 

experimental data, and in several cross-validation tests. When combined with a machine 

learning algorithm our energy-based approach outperforms current bioinformatics-based 

approaches (Song et al. 2011) on benchmark sets, and a further increase in discrimination 
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is achieved when both structure-based and sequence-based approaches are combined. To 

further test the utility of our approach in a blind manner, we used it to predict four novel 

substrate sequences for HCV NS3/4A protease, tested these predictions experimentally, 

and found that three of the four novel predicted cleaved sequences were cleaved by the 

protease; a success rate similar to the benchmark set was achieved in the blind 

experimental test. 

 

The value of using energetic information in the discriminator is evident in the protease 

structure-dependent interaction networks that are captured in the energetic signatures. 

These interaction networks are equivalent to pairwise and multi-body correlations in the 

sequence data. Given 20 amino acid types at every substrate peptide position, a relatively 

large number of training sequences are required to “learn” pairwise and higher-order 

correlations between positions, whereas only ~2000 sequences (among them ~200 

cleaved) are available in the experimental benchmark datasets. The structure-guided, 

energy-based discriminator has the advantage of being generalizable, relatively unbiased 

and is able to recapitulate key interactions that stabilize the peptidase – peptide interface 

as well as predict novel interactions not present in the training data.  Success in using 

structure-based energetic signatures and molecular docking for binding partner 

identification has been achieved for several peptide recognition modules such as SH3 and 

PDZ domains(Hou et al. 2008; Teyra et al. 2012; Li et al. 2011; Smith & Kortemme 

2010; Crivelli et al. 2013), major histocompatibility complex (Yanover & Bradley 2011)  

and for the enzymes methyltransferase(Lanouette et al. 2015), farnesyltransferase 

(London et al. 2011), and HIV protease (Chaudhury & Gray 2009; Jensen et al. 2014). 
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We show here that a structure-based approach, guided by the knowledge of mechanism, 

can be successfully integrated with machine learning to predict substrates for a 

mechanistically diverse enzyme family such as proteases with high accuracy. 

  

Proteolytic sites in full-length proteins are more often found in exposed regions of the 

structure, and more frequently in flexible loops and beta conformations compared to 

buried regions and alpha helices (Agard et al. 2012). A substrate sequence generally 

adopts an extended conformation in the protease active site (Tyndall et al. 2005), and 

surface-exposed loops and beta-strand regions are likely to pay a smaller reorganization 

penalty to adopt this extended conformation. Therefore, we incorporated the local 

structure preferences of the substrates in our datasets by computing local sequence-

structure compatibility – an implicit assumption in our approach is that every candidate 

peptide sequence is equally accessible to the protease active site. This assumption is valid 

when analyzing the extended substrate specificity of the protease, but for the task of 

predicting cleavage sites in a given whole protein sequence, additional solvent 

accessibility and structural information are expected to modulate cleavability. Barkan et 

al. have shown that incorporation of such features improved prediction of cleavage sites 

in whole protein sequences. Furthermore, Julien et al. (Julien et al. 2016) found that 

cleavage efficiencies of protein substrates identified using a high throughput mass 

spectrometry-based approach and their synthetic peptide counterparts were correlated. 

Taken together, it appears likely that local primary sequence specificity (modeled here) 

largely determines the identity of cleavage sites, although the context of the cleavage site 

modulates the kinetics of cleavage. 
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Comparing the performance of the discriminator for the different protease systems 

included in the benchmark set highlights the strengths and limitations of our approach. 

Highest Enrichment of cleaved sequences in the top-ranked population is observed for 

TEV and Granzyme B proteases (Figure 1.2), where the active site is relatively rigid and 

steric effects and hydrogen bond interactions are the major contributors to specificity, 

highlighting the strength of the Rosetta force field in modeling these effects. However, 

performance is more modest for the metalloenzyme MMP-2, which features a zinc ion in 

the active site, and for the HIV protease, in which loop residues mediate molecular 

recognition. For these systems, inaccuracies in the modeling of flexibility of the active 

site conformation, and lack of explicit consideration of entropy changes can lead to 

increased misclassification. More exhaustive sampling of the backbone degrees of 

freedom of the loop structural elements is likely to improve performance as observed in 

other studies of peptide-protein molecular recognition (Smith & Kortemme 2011; London 

et al. 2011). Finally, while modeling catalytic residue conformations using geometric 

constraints appears to be a reasonable approximation for most systems considered here as 

evidenced by success in discrimination, electronic effects may be involved in the vicinity 

of the active site, especially for the metalloenzyme MMP-2. We also investigated 

alternative protonation states of key catalytic residues (nucleophiles serine, cysteine, 

hydroxyl and bases histidine, aspartic acid) in the MM-PBSA pipeline, but these charge 

changes did not lead to any appreciable increase in the performance (data not shown). It 

is likely that quantum mechanical (QM) calculations may be required to model these 

effects more accurately. However, the high computational cost of detailed QM 
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simulations precludes the use of such calculations for the thousands of substrate-enzyme 

pairs considered in our study. Advances in QM simulation methodology(Liu et al. 2015) 

and computational infrastructure are likely to bridge this gap in the future. 

 

In contrast with sequence-based specificity prediction approaches, the unbiased nature of 

the biophysical substrate specificity predictor developed here should allow the modeling 

of specificity of protease variants for which experimental data are not available, such as 

newly emerged drug-resistant variants(Romano et al. 2012) of viral proteases as well as 

newly-discovered and/or uncharacterized proteases, whose sequences are homologous to 

proteases of known structure. Energy-based specificity prediction will also aid in the 

design of protease variants targeted to specific substrates. Current approaches for 

protease design rely on library-based screening/selection(Varadarajan et al. 2008; Yi et 

al. 2013; Boulware et al. 2010) in vivo. These directed evolutionary trajectories often 

proceed via incremental “generalist”(Khersonsky & Tawfik 2010) intermediates that 

display relaxed specificity, and are, therefore, toxic to cells (or the proteases undergo 

self-cleavage) and are never identified in the selection. A structure-guided computational 

design approach based on the evaluation of interaction energies of substrates with 

protease variants should allow for multiple simultaneous substitutions (“jumps” in the 

sequence landscape) to allow specificity switching without generating generalist toxic 

intermediates. Combining structural computation using the discriminator described here 

with directed evolution should enable more efficient protease specificity design. 
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2.5. Materials and Methods 

 

Figure 1.10. The cleaved and uncleaved dataset distributions, model generation and 
active site geometry of the starting crystal structure and mode of recognition of 
proteases used in the study  
(A) HCV Protease (PDB ID: 3M5N), a serine protease shows recognition via interfacial 
hydrogen bonding. (B) Granzyme B (PDB ID: 1FI8) a serine protease shows an 
electrostatic mode of substrate recognition (C) TEV Protease, (PDB ID: 1LVB), a 
cysteine protease displaying extensive hydrogen bonding at the protease-substrate 
interface (E) HIV Protease I (PDB ID: 1MT9), a symmetric aspartyl protease, working 
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via proposed recognition mechanism - substrate-envelope hypothesis. (F) MMP2 (PDB 
ID: 3AYU) includes a zinc catalytic center 
 

 

2.5.1. Curation of Benchmark Datasets 

Each protease used in the study exhibits diverse mechanisms of action, interface 

recognition modes, varied folds and biological functions (Figure 1.10) – e.g. TEV 

Protease (cysteine proteases), HCV NS3/4A protease (serine proteases), Granzyme B 

(serine protease), HIV Protease-1 (aspartyl protease) and Matrix Metalloprotease -2 

(Metalloprotease). The sequences of cleaved and uncleaved substrate peptides for each 

protease were obtained as detailed below:  

 

HCV protease: We obtained the cleaved and uncleaved sequence sets from a deep 

sequencing study by Shiryaev et al (Shiryaev et al. 2012). Only sequences with signals 

above a threshold (Z-score value> 3) at all three time points in their study were 

considered in order to avoid noise from deep sequencing analyses. We also incorporated 

sequences from a study by Rögnvaldsson et al(Rögnvaldsson et al. 2009b). Merging both 

individual sets generated a set with 196 cleaved and 1943 uncleaved sequences. 

 

HIV-PR: 374 cleaved and 1251 uncleaved sequences were obtained from Rögnvaldsson 

et al(Rögnvaldsson et al. 2009b) .  

 

TEV protease: The cleaved set of 68 sequences was curated from results obtained by 

Kostallas et al. (Kostallas et al. 2011) and Boulware et al. (Boulware et al. 2010). Due to 
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the absence of a large uncleaved sequence dataset for the TEV protease, we synthetically 

generated the uncleaved dataset using a two-residue walk on the TEV polyprotein 

sequence. The TEV protease is expected to cleave only at one specific site in the 

polyprotein. Half of the sequences were randomly discarded to generate a dataset of 1520 

uncleaved sequences. We ensured that the sequence distribution was not biased toward 

any specific amino acid type at any peptide position (Figure 1.10).  

 

Granzyme B:  The cleaved sequence set was obtained and uncleaved sequence set was 

adapted from Barkan et al. (Barkan et al. 2010). A subset of the uncleaved sequences was 

randomly chosen and the amino acid identity at P1 was randomly mutated to all amino 

acid identities except aspartate and glutamate. A total of 353 cleaved and 1973 uncleaved 

sequences were chosen. 

  

Matrix Metalloprotease: The cleaved sequence set of 455 sequences was obtained from 

Ratnikov et al (Ratnikov et al. 2014). To curate the uncleaved sequence set, we scanned 

the CutDB(Igarashi et al. 2007) database for MMP-2 protein substrates. Excluding the 

known cut sites in these proteins, the rest of the protein sequence was treated as 

uncleaved using a two-residue walk to generate an uncleaved sequence set of 1818 

sequences for MMP-2.  
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2.5.2. Starting model generation for simulations:	

Protease PDB 
ID 

Resolution Model Generation 

HCV 
NS3/4A 
Protease 

3M5L, 
3M5N 

1.9 Å The P’ residues of the bound peptide 
were built by overlaying PDB ID: 
3M5N and PDB ID: 3M5L (inhibitor 
bound crystal structure) thus allowing 
us to build a complete substrate bound 
complex 
 

TEV 
Protease 

1LVB, 
1LVM 

2.2 Å Starting model generated from PDB by 
reverting C151A to WT 
 

MMP2 3AYU, 
1BQQ 

2.0 Å Starting model was generated by 
superimposing PDB ID: 1BQQ with 
PDB ID: 3AYU(MMP2). The N 
terminal (P side) residues of the 
substrate were extended outward to 
build the complete substrate and were 
then relaxed to find an optimal 
substrate conformation 
 

Granzyme B 1FI8 2.2 Å The interface of the ecotin chain in the 
crystal structure, spanning eight 
residue substrate chain was used as the 
starting point for further calculations 
 

HIV Protease 
1 

1MT9 2.0 Å Starting model generated by inverting 
D25N and V82N from crystal structure 
to native residue identities 

 

Table 1.4: Details of starting Model Generation for five proteases 
 
We constructed models of peptide-protease bound complexes using high-resolution 

crystal structures culled from the Protein Data Bank (PDB) (Table 1.4)(Romano et al. 
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2010; Prabu-Jeyabalan et al. 2003; Waugh et al. 2000; Phan et al. 2002; Hashimoto et al. 

2011). Crystal structures were filtered based on the following criteria: a resolution lower 

than 2.6 Å and a peptide or peptidomimetic inhibitor bound in the crystal structure. We 

remodeled the crystallographic conformation of the bound peptide to mimic the near-

attack conformation for nucleophilic addition step of the proteolysis reaction by 

enforcing catalytic geometries obtained from mechanistic quantum mechanics 

simulations and/or crystal structures of proteases bound to inhibitors during Rosetta 

FastRelax simulations. The selected crystal structures were optimized using a Rosetta 

FastRelax protocol to find a low energy, stable structure, which was used as a starting 

point in further calculations. Constraints were applied during FastRelax in order to 

maintain active site geometry and keep the protease in a catalytically active 

conformation. Co-ordinate constraints were also applied to the protease backbone to 

ensure that the structure does not drift away from the crystallographic conformation, 

while still minimizing energy, as previously described (Nivón et al. 2013). 

 

2.5.3. Calculating Rosetta and Amber energies: 

Starting from the relaxed crystal structure described above, we threaded the candidate 

peptide sequences to generate models of the protease-peptide complex corresponding to 

each sequence. The energy of the resulting conformation was minimized with constraints 

using Rosetta FastRelax and ten models were generated for each sequence. During this 

protocol, the protease backbone was constrained, protease side chains were allowed 

complete conformational flexibility, whereas peptide side chains and backbone were 

allowed to sample all degrees of freedom including backbone, sidechain and rigid body 
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orientation with respect to the protease. The side chains of the catalytically active 

residues were constrained with respect to the scissile peptide bond of the substrate using 

enzyme design-style Rosetta constraints. This model represents a pre-transition state 

near-attack conformation for each of the peptide substrates for the protease. The resulting 

models were scored with Rosetta’s Talaris2013 energy function.  

 

Total residue energies for protease interface residues were extracted for all ten structures 

representing a single sequence, averaged and stored as “protease energy”. Interface 

residues were defined as those whose C-alpha atom was within 8 Å of any peptide 

residue’s C-alpha atom. We experimented with 8, 10, and 12 Å as the cutoff distance for 

defining the protease shell, but we found that the discriminator performance was robust to 

this cutoff value. The sum of total residue energies over all peptide residues was averaged 

and stored as “peptide energy”. Total interface energy was defined as the sum of protease 

and peptide energies. These models were also scored for “constraint energy” based on the 

deviation of active site residues geometries from idealized ones. Each energy term was 

used as a feature during machine learning (see below).  

 

Sampling of the peptide backbone and protease and peptide side chains degrees of 

freedom was performed before calculating scores for a given complex structure. We 

optimized the structure sampling protocol by investigating several combinations of 

sidechain and backbone flexibility for the peptide and the protease, and their relative 

rigid-body transform. Allowing peptide backbone and sidechain flexibility, and protease 

sidechain flexibility afforded the highest discriminatory capability (Figure 1.4). All 
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calculations were performed with the interface RosettaScripts(Fleishman et al. 2011; 

Richter et al. 2011). Sample xml files used can be found in Supplementary Methods. The 

AMBER Tools 12 MMPBSA(Miller et al. 2012) application was used to calculate the 

electrostatic contribution to the bound state energy over the unbound energy for the 

protease–peptide complex.  Run scripts are provided in Supplementary Methods.  

 

2.5.4. Local sequence-structure compatibility 

Rosetta’s FragmentPicker (Gront et al. 2011) Tool was used to analyze the propensity of 

a peptide sequence to adopt an extended conformation that is found in protease active 

sites. We picked 200 fragments for a given peptide sequence, and calculated the RMSD 

of each fragment with the bound conformation of the peptide. The number of fragments 

with RMSD > 2.0 in the set of 200 top fragments compared to the bound conformation 

was used as the score. 

 

2.5.5. Support Vector Machines	

An SVM constructs a hyper plane between two sets of data points in multi-dimensional 

“feature” space, based on a predefined kernel function in order to maximally separate the 

two datasets. We used the built-in SVM function (MATLAB 2015) with a radial-based 

kernel function following Barkan et al. (Barkan et al. 2010). In the RBF kernel, 

parameters C and γ need to be adjusted: C, also called cost factor, is a regularization 

parameter that controls the trade-off between maximizing the margin and minimizing the 

prediction error, while γ is a kernel-type parameter that dominates the generalization 

ability of SVM by regulating the amplitude of the kernel function. We optimized the 
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training parameters of SVM based on 5-cross-validation tests. C- and γ-values of 10 and 

10, respectively, were used. 

 

Sequence features: Each position within the sequence was considered to be one feature. 

The one letter amino acid codes were transformed into an index, which was calculated 

from the rank of the amino acid residue in an alphabetical ordering of all amino acids as 

well as on its position in the sequence from N to C terminus on the substrate chain as in 

Barkan et al.(Barkan et al. 2010). All 20 amino acids at each position in the peptide were 

assigned a number using the formula n*20+i, where n represents the position of the 

residue in the peptide sequence and i represents the position of the residue in an 

alphabetical ordering of amino acids by their one letter code.  

 

Structure features: Each contributing discriminator energy score was imported into the 

SVM as an independent feature. The structure-based Rosetta energies (“Interface residue 

peptide energy”, “Interface residue protease energy”, “Reorganization penalty”, 

“constraint energy”) and Amber energy (“electrostatic energy”) were used as features. 

The SVMs were cross-validated using an 80-20 bootstrap over 1000 iterations.  

 

2.5.6. Generation of a computational library for HCV NS3/4A substrate from P6 

through P2 positions: 

The mutational scanning was executed in two parts. We generated models of the 

protease–peptide complex for substrate positions P6 through P4, energy minimized and 

scored them using the computational protocol descried above.  Ten structures were 
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generated for each sequence. The models were evaluated using the weighted optimized 

energies as used in the discriminator. The top scoring 66 sequences were identified, and 

26,400 models were generated by sampling P3 and P2 substrate positions for each 

sequence. These 26,400 models were subjected to energy minimization and score 

calculations as previously described. To calculate their final score, Rosetta interface 

energy, constraint energy, and AMBER MMPBSA electrostatic energy were used at the 

optimized Enrichment values. To reduce computational costs, the reorganization penalty 

score was not included in the final score calculation since it did not measurably change 

the auROC value in the benchmark set (Figure 1.3). The sequences that lay in the score 

distribution of the native cleaved sequences were further analyzed. These were filtered to 

be most different from the initial HCV cleaved sequence distribution and clustered using 

Hamming distance into 4 main sequence pools- CED*, LEE*, FED*, YED*. 

Representative sequences from the first three sequence clusters were tested 

experimentally. 

 

2.5.7. Flow Cytometry: 

We used the Yeast ER Sequestration and Screening Assay (YESS) for in vivo testing of 

predicted substrates of the HCV protease. The LY104 construct for the assay was a gift 

from Y. Li, B. Iverson, and G. Georgiou (University of Texas at Austin). The sequences 

to be tested were cloned into LY104 using a Restriction Free Cloning method(Bond & 

Naus 2012). Table 1.5 lists all the primers associated with the cloning protocol. 

 
Sequence Primers 
LEEFFC
SG 

FOR:  
CGGTAGCGGAGGCGGAGGGTCGTTGGAAGAATTCTTCTGTTCAGG
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C 
 REV: 

CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACAGA
AGAATTCTTCC 

LEEYQC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTTGGAAGAATATCAATGTTCAG
GCG 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACATT
GATATTCTTCCAA 

CEDYFC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTGTGAAGATYMTTTCTGTTCAG
GCG 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACAGA
AAKRATCTTCACA 

FEDFQC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTTCGAAGATTTCCAATGTTCAGG
C 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACATT
GGAAATCTTCG 

 
Table 1.5: Primers used for molecular cloning the sequences to be tested in the 
YESS assay into the assay (LY104) vector using RF cloning 
 

The positive control and test plasmids were then transformed into the EBY100 competent 

yeast strain. They were plated on selective complete (SC) media (20 g/L glucose) with a 

selective amino acid mix ( -Trp, - Ura). After two days of growth, a single colony was 

transferred to a 2 mL SC media culture tube supplemented with 2 µL of 1000x antibiotics 

(carbenicillin, kanamycin). The growth cultures were incubated for ~24h (OD600 2.0 – 

3.0) in a 30 oC shaking incubator. 1.5 x 107cells(OD600 ~0.5) were pelleted and 

resuspended in 2 mL induction media (20 g/L galactose, 2 g/L glucose) supplemented 

with 2 µL each of 1000x antibiotics (carbenicillin, kanamycin). The induction cultures 

were grown overnight at 30 oC to an OD600 of 1-1.5. All spins in the protocol were done 

at 3000 r.c.f for 5 min. The induced cultures were pelleted and washed with 500 µL PBS 
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followed by 500 µL PBS+ 0.5% BSA.  1 µL of each antibody stain(anti-FLAG, anti-HA) 

was incubated with 107 cells for 30 min at 4 oC. The samples were resuspended by 

vortexing and incubated at RT for an additional 30 min. The cells were washed with 

100µL PBS with 0.5% BSA, pelleted and then resuspended in 500 µL PBS. Samples 

were diluted to achieve a final concentration of 106 cells/mL and then FITC (anti-HA) 

and PE(anti-FLAG) intensities were detected using a Flow Cytometer (Beckman Coulter 

Gallios). 
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2.7. Supplementary Methods: 

 

The MMPBSA calculation includes the following steps: 

 

1. Preparation of AMBER input .pdb files 

2. Preparation of input parameter and topology files  

3. MMPBSA Calculation 

  

Description of each of the steps below: 

 

In order to transform a pdb file into an AMBER readable format the hydrogens and 

virtual atoms are stripped.  The subsequent file is loaded into AMBER using the 

following script using a tleap interface. 

 

source leaprc.gaff 

source leaprc.ff12SB 

loadamberparams frcmod.ionsjc_tip3p 

d$i = loadpdb "toload_$i.pdb" 

addions d$i Cl- 0 

charge d$i 

saveamberparm d$i d$i.prmtop d$i.inpcrd 

quit 
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The files saved as d$i.prmtop and d$i.inpcrd are inputs to the ante-MMPBSA.py program 

which generates the receptor-ligand, receptor only and ligand only topology files. An 

AMBER topology file is used to specify atom types, charges, etc. The inpcrd / input 

coordinate file is used to build the connections which forms the overall structure of the 

pdb.  

 

ante-MMPBSA.py -p d$i.prmtop -c d_c$i.prmtop -s @Cl- 

ante-MMPBSA.py -p d_c$i.prmtop -r d_r$i.prmtop -l d_l$i.prmtop -n : “residue range” 

 

Residue range: specify the pose numbering of the peptide 

 

The final step involves using the inpcrd and prmtop files to calculate the MMPBSA 

contribution of the complex. This is done by calculating the electrostatic energy of the 

peptide and protease separately as well as in a bound state  

 

 

The following commandline is used for MMPBSA calculation 

MMPBSA.py -O -i mmpbsa.in -o FINAL_RESULTS_MMPBSA.dat -sp d$i.prmtop -cp 

d_c$i.prmtop -rp d_r$i.prmtop -lp d_l$i.prmtop -y *.inpcrd 
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For MMP2: The pdbs in these cases needed to be analyzed differently because of the 

presence of heteroatoms such as Zinc and Water that are involved in the active sites 

respectively. 

 

The water is modeled using the TP5.lib and the following command is added to the prep 

script 

 

 

Sample Scripts: 

 

Sample xml for initial Relax: 

<dock_design> 

      <SCOREFXNS> 

         <myscore weights=enzdes.wts/> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 

         <ProteinInterfaceDesign name=pido design_chain2=0 modify_after_jump=1/> 

         <InitializeFromCommandline name=init/> 

         <ReadResfile name=rrf filename="PATH TO RESFILE"/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 
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      <MOVERS> 

        <AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 

        <FastRelax name=fastrelax scorefxn=myscore repeats=8 task_operations=pido,init> 

        <MoveMap name=mm> 

                        <Chain number=2 chi=1 bb=1/> 

                        <Chain number=1 chi=1 bb=1/> 

                        <Jump number =1 setting=1/> 

        </MoveMap> 

        </FastRelax> 

        <TaskAwareMinMover name =min_pro task_operations=rrf scorefxn=myscore 

chi=1 bb=0 jump=0/> 

        <PackRotamersMover name=repack task_operations=rrf/> 

        <ConstraintSetMover name=protease_cst 

cst_file="PATH_TO_PROTEASE_BACKBONE_HEAVY_ATOM_CONSTRAINT_FI

LE"/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name=protease_cst/> 
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              <Add mover_name=repack/> 

              <Add mover_name=min_pro/> 

              <Add mover_name=cstadd/> 

              <Add mover_name=fastrelax/> 

</PROTOCOLS> 

</dock_design> 

 

Command line: 

~<PATH_TO_ROSETTA_BIN> rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

nstruct 20  -parser:protocol <PATH_TO_RELAX_XML> -database 

<PATH_TO_DATABASE> -out::prefix Job_${i}_ -s <PATH_TO_STARTING_PDB> -

run:preserve_header -enzdes::cstfile <PATH_TO_CONSTRAINT_FILE>  -

out:file:output_virtual @<PATH_TO_FLAGS_FILE> 

 

 

Sample Script For Mutate, FastRelax, Scoring 

#MUTATERUN 

<PATH_TO_EXECUTABLE>/rosetta_scripts.static.linuxgccrelease -nstruct 10  -

jd2:ntrials 1 -parser:protocol <PATH_TO_XML> -database <PATH_TO_DATABASE> 

-out::prefix $1_mut_ -s <PATH_TO_STARTING_PDB> -enzdes:cstfile 

<PATH_TO_CSTFILE> -run:preserve_header @<PATH_TO_FLAGSFILE> > 

design.log 
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find `pwd` -name "$1_mut_*00*pdb" > tlist 

 

cp ~/Rosetta/main/database/scoring/weights/talaris2013 ./ 

 

#SCORINGRUN 

~/Rosetta/main/source/bin/rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

parser:protocol <PATH_TO_SCORING_XML> -database <PATH_TO_DATABASE> -

out::prefix Scores_ -l tlist -in:file:native <PATH_TO_STARTINGPDB> -

run:preserve_header @<PATH_TO_FLAGSFILE> -score:weights talaris2013 > 

scoring.log 

 

ls Scores_*.pdb > slist 

 

#CSTRUN 

~/Rosetta/main/source/bin/rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

parser:protocol <PATH_TO_XML> -database ~/Rosetta/main/database/  -out::prefix 

$1_cst_  -l tlist -enzdes:cstfile <PATH_TO_CSTFILE> -run:preserve_header 

@<PATH_TO_FLAGSFILE> -jd2:enzdes_out > cst.log 

 

Protease Mutate: 

<dock_design> 

      <SCOREFXNS> 

                <myscore weights=enzdes.wts/> 
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      </SCOREFXNS> 

      <TASKOPERATIONS> 

         <ProteinInterfaceDesign name=pido design_chain2=0 modify_after_jump=0/> 

         <InitializeFromCommandline name=init/> 

         <ReadResfile name=rrf filename="PATH_TO_RESFILE"/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 

 

      <MOVERS> 

        <MutateResidue name=mut1 target=Res#1 new_res=DM1/> 

        <MutateResidue name=mut2 target= Res#2 new_res=DM2/> 

        <MutateResidue name=mut3 target= Res#3new_res=DM3/> 

        <MutateResidue name=mut4 target= Res#4 new_res=DM4/> 

        <MutateResidue name=mut5 target= Res#5 new_res=DM5/> 

        <MutateResidue name=mut6 target= Res#6 new_res=DM6/> 

<AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 

        <FastRelax name=fastrelax scorefxn=myscore repeats=8 task_operations=pido,init> 

        <MoveMap name=mm> 

                        <Chain number=2 chi=1 bb=1/> 

                        <Chain number=1 chi=1 bb=0/> 

                        <Jump number =1 setting=1/> 
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        </MoveMap> 

        </FastRelax> 

        <TaskAwareMinMover name =min_pro task_operations=rrf chi=1 bb=0 jump=0/> 

        <PackRotamersMover name=repack task_operations=rrf/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name=mut1/> 

              <Add mover_name=mut2/> 

              <Add mover_name=mut3/> 

              <Add mover_name=mut4/> 

              <Add mover_name=mut5/> 

              <Add mover_name=mut6/> 

<Add mover_name=repack/> 

              <Add mover_name=cstadd/> 

              <Add mover_name=fastrelax/> 

</PROTOCOLS> 

</dock_design> 

 

SCORING XML 



79	

	

 

CST XML 

<dock_design> 

      <SCOREFXNS> 

                <myscore weights=enzdes.wts/> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 

        <InitializeFromCommandline name=init/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

        <EnzScore name="cstenergy" scorefxn=myscore whole_pose=1 score_type=cstE 

energy_cutoff=99999.0/> 

      </FILTERS> 

 

      <MOVERS> 

        <AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 

      </MOVERS> 

 

      <APPLY_TO_POSE> 

      </APPLY_TO_POSE> 

 

      <PROTOCOLS> 
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        <Add mover_name=cstadd/> 

        <Add filter_name=cstenergy/> 

      </PROTOCOLS> 

</dock_design> 

 

 

AMBER MMPBSA  

 

cat >tleap.in <<EOF 

source leaprc.gaff 

source leaprc.ff12SB_manasi 

loadamberparams frcmod.ionsjc_tip3p 

loadamberparams frcmod.ionslrcm_hfe_tip3p 

d$i = loadpdb "toload_$i.pdb" 

charge d$i 

saveamberparm d$i d$i.prmtop d$i.inpcrd 

quit 

EOF 

tleap -f tleap.in 

 

ante-MMPBSA.py -p d$i.prmtop -c d_c$i.prmtop -s @Cl- 

ante-MMPBSA.py -p d_c$i.prmtop -r d_r$i.prmtop -l d_l$i.prmtop -n :199-208 
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MMPBSA.py -O -i mmpbsa.in -o FINAL_RESULTS_MMPBSA.dat -cp d_c$i.prmtop -

rp d_r$i.prmtop -lp d_l$i.prmtop -y d$i.inpcrd 

 

MATLAB  

 

function [test, testlab, ttcleaved, to, ts, train, trainlab,  a, f, X, Y, T, AUC, AUCav, Std, 

Performanceav,Stdp] = coduh(A, LABELS, cleaved, uncleaved, boxconstraint, rbfsigma) 

  

clearvars -except A LABELS cleaved uncleaved boxconstraint rbfsigma TABLE 

  

X = []; 

Y = []; 

T = []; 

AUC = []; 

  

 

 [numberofelements len] = size(A); 

tic 

   

for s = 1:1000 

     

    zcleaved = ceil(0.2%*cleaved);                  

    zuncleaved = ceil(0.2%*uncleaved); 
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    ttcleaved = randperm(cleaved,zcleaved);               

%generatingRandomFromNumLength 

    ttuncleaved = randperm((numberofelements - cleaved), zuncleaved) + cleaved; 

    t = vertcat(ttcleaved',ttuncleaved'); 

    to(:,s) = vertcat(ttcleaved',ttuncleaved'); 

    ts(s) = length(t); 

    z = zcleaved + zuncleaved; 

     

test(:,:,s) = A(t,:); 

testlab(:,:,s) = LABELS(t,:); 

  

    x = numberofelements - z; 

    train(:,:,s) = zeros(x, len); 

    trainlab(:,:,s)= cell(x,1); 

        

    clear n1; 

    n1 = 1; 

     

    for i = 1:numberofelements 

         

        if i ~= t(:) 

            train(n1,:,s) = A(i,:); 

            trainlab(n1,s) = LABELS(i); 
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            n1 = n1 + 1; 

        end 

         

    end 

     

     

svmrbf =[]; 

svmrbf=svmtrain(train(:,:,s), trainlab(:,s), 'kernel_function', 'rbf', 'boxconstraint', 

boxconstraint, 'rbf_sigma', rbfsigma); 

  

  

%%TEST%%     

V = svmclassify(svmrbf,test(:,:,s)); 

result = transpose(V); 

a(:,s)=transpose(result); 

  

shift = svmrbf.ScaleData.shift; 

scale = svmrbf.ScaleData.scaleFactor; 

Xnew = bsxfun(@plus,test(:,:,s),shift); 

Xnew = bsxfun(@times,Xnew,scale); 

sv = svmrbf.SupportVectors;  

alphaHat = svmrbf.Alpha;     

bias = svmrbf.Bias; 
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kfun = svmrbf.KernelFunction; 

kfunargs = svmrbf.KernelFunctionArgs; 

f(:,s) = kfun(sv,Xnew,kfunargs{:})'*alphaHat(:) + bias; 

 

[X(:,s),Y(:,s),T(:,s),AUC(s)] = perfcurve(testlab(:,:,s), f(:,s) ,'CLEAVED', 'Xcrit','reca', 

'YCrit', 'prec' ); 

  

AUCav = mean(AUC); 

Std = std(AUC);  

     

%ACCURACY        

tf(:,s) = strcmp (a(:,s), testlab(:,s)); 

Performance(s) = sum(tf(:,s)) / numel(a(:,s)); 

Performanceav = mean(Performance); 

Stdp = std(Performance); 

    

% %TRAIN 

Vtrain = svmclassify(svmrbf,train(:,:,s)); 

resulttrain = transpose(Vtrain); 

      

%clear train end 

atrain(:,s)=transpose(resulttrain); 

      



85	

	

 

shift = svmrbf.ScaleData.shift; 

scale = svmrbf.ScaleData.scaleFactor; 

 

Xnew1 = bsxfun(@plus,train(:,:,s),shift); 

Xnew1 = bsxfun(@times,Xnew1,scale); 

sv = svmrbf.SupportVectors;  

alphaHat = svmrbf.Alpha;     

bias = svmrbf.Bias; 

kfun = svmrbf.KernelFunction; 

kfunargs = svmrbf.KernelFunctionArgs; 

ftrain(:,s) = kfun(sv,Xnew1,kfunargs{:})'*alphaHat(:) + bias; 

display(f(:,s)); 

  

[Xtraintemp,Ytraintemp,Ttraintemp,AUCtrain(s)]= 

perfcurve(trainlab(:,:,s),ftrain(:,s),'CLEAVED'); 

[r] = length(Xtraintemp); 

Xtrain(1:r, s) = Xtrain(1:r, s) + Xtraintemp; 

Ytrain(1:r, s) = Ytrain(1:r, s) + Ytraintemp; 

Ttrain(1:r, s) = Ttrain(1:r, s) + Ttraintemp; 

      

clear Xtraintemp Ytraintemp Ttraintemp                      
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[Xtrain(:,s),Ytrain(:,s),Ttrain(:,s),AUCtrain(s)]= 

perfcurve(trainlab(:,:,s),ftrain(:,s),'CLEAVED'); 

      

AUCtrainav = mean(AUCtrain); 

Stdtrain = std(AUCtrain); 

      

tftrain(:,s) = strcmp (atrain(:,s), trainlab(:,s)); 

Performancetrain (s)= sum(tftrain(:,s)) / numel(atrain(:,s)); 

Performancetrainav = mean(Performancetrain);  

Stdptrain = std(Performancetrain);  

  

s        

end 

toc 
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Chapter 3: MFPred - Rapid and Accurate Prediction of Protein-peptide Recognition 

Multispecificity Using Self-Consistent Mean Field Theory 

  

3.1. Abstract 

Multispecificity – the ability of a single receptor protein molecule to interact with 

multiple substrates – is a hallmark of molecular recognition at protein-protein and 

protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform 

structure-based prediction of multispecificity would aid in the identification of novel 

enzyme substrates, protein interaction partners, and enable design of novel enzymes 

targeted towards alternative substrates. The relatively slow speed of current biophysical, 

structure-based methods limits their use for prediction and, especially, design of 

multispecificity.  Here, we develop a rapid, flexible-backbone self-consistent mean field 

theory-based technique, MFPred, for multispecificity modeling at protein-peptide 

interfaces. We benchmark our method by predicting experimentally determined peptide 

specificity profiles for a range of receptors: protease and kinase enzymes, and protein 

recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe 

robust recapitulation of known specificities for all receptor-peptide complexes, and 

comparison with other methods shows that MFPred results in equivalent or better 

prediction accuracy with a ~10-1000-fold decrease in computational expense. We find 

that modeling bound peptide backbone flexibility is key to the observed accuracy of the 

method. We used MFPred for predicting with high accuracy the impact of receptor-side 

mutations on experimentally determined multispecificity of a protease enzyme. Our 
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approach should enable the design of a wide range of altered receptor proteins with 

programmed multispecificities. 

 

3.2. Introduction 

Many natural proteins, including signal transduction hubs and enzymes that process 

biological information, have evolved to be multispecific – they participate in specific 

interactions with several interaction partners (Kim et al. 2006; Erijman et al. 2011). 

Evolution of multispecificity includes selection for both positive and negative specificity, 

involving recognition and non-recognition, respectively, of sets of interaction partners 

(Tawfik 2014). Most multispecific interactions arise when the active site of a single 

receptor protein interacts with multiple binding partners of differing sequence (Schreiber 

& Keating 2011). Nature uses structurally conserved protein-recognition domains 

(PRDs), e.g., SH2, SH3 and PDZ domains, to mediate many multispecific interactions 

(Schutkowski et al. 2004; Khati & Pillay 2004; Tonikian et al. 2008; Vouilleme et al. 

2010; Stiffler et al. 2007; Sparks et al. 1996). Thus, it is crucial that methods that model 

and modulate PRD specificity are able to accurately recapitulate their multispecific 

nature. 

 

Similar to cascades composed of multispecific PRDs like SH3, SH2 and PDZ domains 

that mediate signal transduction, proteolytic cascades are ubiquitous in the post-

translational transduction of biological information (Li et al. 2013). Protease activity and 

selectivity is involved in a diverse range of biological processes including digestion, 

blood clotting, apoptosis and cancer (Chapman et al. 1997; Hirsch et al. 1998; Monahan 
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& Di Paola 2010; Pampalakis & Sotiropoulou 2007).  Proteases are inherently 

multispecific such that they recognize and proteolyze (or cleave) a range of substrates 

(positive specificity) while not recognizing others (negative specificity) (Tawfik 2014). 

For example, viral proteases such as HCV protease that are involved in viral maturation 

cleave only specific sites in the viral polyprotein but do not cleave others (Scheel & Rice 

2014). These proteases may also have evolved the ability to cleave specific host proteins 

(Kerekatte et al. 1999). Prediction of protease multispecificity is, therefore, key for 

identifying their substrates under healthy and disease conditions.  Additionally, designed 

proteases with programmed multispecificity have the potential to be used as therapeutics 

and protein-level knockout reagents in cell culture (Craik et al. 2011).  The ability to 

manipulate protease specificity computationally would enable the creation of such 

designer proteases with dialed-in recognition specificity, thereby providing tools to 

interrogate and intervene in biological processes.  

 

Rational modulation of protein-protein or protein-peptide interaction multispecificity has 

met with limited success, except in a few notable cases, such as coiled-coil interfaces 

(Newman & Keating 2003; Havranek & Harbury 2002).  In principle, computational 

structure-based modeling methods should be able to recapitulate and modulate 

multispecificity.  In fact, several methods relying on, among others, Monte-Carlo (MC) 

simulations in sequence and conformation space, and genetic algorithms (GA) have been 

developed to predict PRD multispecificity (King & Bradley 2010; Smith & Kortemme 

2010; Wollacott & Desjarlais 2001; Lanouette et al. 2015; Grigoryan et al. 2009).  

However, these methods are limited by the time required to enumerate a sufficiently large 
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number of sequences to sample the substrate/peptide sequence space. As multispecific 

design entails additional sampling of (thousands) of receptor variants and modeling the 

multispecificity of each variant separately, using current methods to design receptors for 

and against specificity profiles is not computationally feasible.  

 

We have developed a structure-based method that eliminates the expense of explicit 

sequence enumeration in multispecificity modeling. The method uses a self-consistent 

Mean-Field theory-based Prediction (MFPred) approach that expresses specificity as a 

sitewise probability distribution function that can be calculated relatively rapidly.  We 

have benchmarked MFPred on four diverse proteases and compared the results to MC- 

and GA-based methods.  MFPred has comparable accuracy to MC-based and GA-based 

methods and provides a tens- to thousands-fold speedup.  We demonstrate the generality 

of MFPred by obtaining significant multispecificity predictions for five diverse classes of 

protein-recognition domains (PRDs).  Finally, as a proof-of-concept for design, we 

demonstrate that MFPred can recapitulate experimentally determined changes in 

specificity profiles due to receptor-side mutations. 

 

3.3. Results 

3.3.1. Self-Consistent Mean Field Theory-Based Specificity Profile Prediction 

Algorithm 

To predict the specificity profile, we consider an ensemble of peptide backbone 

conformations bound to a receptor. For each peptide backbone conformation, we 

simultaneously sample all rotameric conformations of all amino acids at all peptide 
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residue positions while keeping the receptor backbone and sidechains in their 

crystallographic conformations. The sidechain conformations at a given peptide position 

are sampled in the “mean field” of all other sidechain conformations at all other positions 

and (fixed) receptor residues, as described in Methods. Next, the contribution of each 

peptide backbone conformation at each peptide position is accounted for by Boltzmann 

averaging the mean-field specificity profile solution obtained in the previous step. The 

final specificity profile is constructed by combining these individual predictions. While 

the sequence specificity prediction described here can be performed using any (pairwise 

decomposable) energy function, we implemented our prediction method in the context of 

the Rosetta modeling suite, thus combining its sophisticated energy function with the 

speed of mean-field sampling (Figure 2.1).   
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Figure 2.1.  MFPred workflow. 
MFPred input is a backbone ensemble of a protein/peptide complex, which is generated 
from a protein structure from the PDB (1CKA here) as described in Methods.  For each 
backbone, Rosetta pre-calculates the interaction graph, which stores intrinsic rotamer 
one-body energies on the vertices (blue circles) and matrices of rotamer-rotamer two-
body energies on the edges (black lines).  A probabilities matrix (P) is initialized. Mean-
field energies (E) are calculated using the interaction graph and P, and a new matrix, P’ is 
generated from E.  If P’ is equal to P, convergence has been reached. If not, the process is 
repeated by updating P with a combination of P and P’.  Once convergence is reached, 
the final energies matrix and probabilities matrix is used to generate the Boltzmann 
weights of each backbone position, which is then used to average all the backbone 
specificity profiles together.  This specificity profile is divided by the background 
specificity profile to reach the final predicted specificity profile. 
 

3.3.2. Rationale for Choice of Benchmark Datasets 

To test our MFPred method, we sought to first recapitulate experimentally determined 

specificity profiles of a variety of PRDs. We chose PRDs where both structural as well as 
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specificity information has been experimentally determined. We focused primarily on 

protease enzymes for methodology development, and tested the generality of our 

approach with previously developed benchmarks for multispecificity prediction on PRDs 

such as a kinase enzyme, and SH3, SH2, MHC, and PDZ domains. 

  

Figure 2.2. Protease benchmark specificity profiles, models, active centers, and 
recognition modes.  
(a) Tobacco etch virus (TEV) protease is a cysteine protease displaying extensive 
hydrogen bonding recognizes substrates via interfacial hydrogen bonding at the protease 
substrate interface. (b) Hepatitis C virus (HCV) NS3 protease, a serine protease 
recognizes substrates through electrostatic interactions (c) Granzyme B, a serine protease 
recognizes substrates through electrostatic interactions (d) Human immunodeficiency 
virus (HIV) protease I, a symmetric aspartyl protease, has been proposed to recognize 
substrates via the substrate – envelope hypothesis. 
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Protease set. We benchmarked our method on four protease enzymes that had both high-

resolution crystal structures with a bound peptide in the Protein Data Bank (PDB) and 

experimental cleavage data (see Methods for details). The chosen proteases represent the 

vast diversity seen in structural fold, biological function, and mechanism of action 

amongst the protease enzyme family (Figure 2.2).  Additionally, there is a mix of highly 

conserved and less specific positions among their specificity profiles, thus enabling us to 

determine how well MFPred performs with regard to varying degrees of flatness in the 

experimental specificity profile. 

 

Testing on protein-recognition domains. To test the generality of the MFPred method, 

we curated a dataset consisting of a variety of non-protease PRDs that had high-

resolution crystal structures as protein-peptide complexes in the PDB and experimental 

binding specificity data available.  We tested fourteen PRDs that comprise five classes of 

PRDs: kinases, SH2 domains, SH3 domains, PDZ domains, and MHC-I proteins.  

Including these diverse domains allows us to test the method on a range of underlying 

recognition modes, binding affinities and specificities; while proteases bind with 

relatively high dissociation constants to their substrates (KM ~10 uM), SH2 domains have 

been known to bind with dissociation constants as low as 0.3 nM (Felder et al. 1993).    

 

The binding specificities and mechanisms for each of these domains are distinct, thereby 

adding to the diversity of the test set. PDZ domains bind up to 7 C-terminal residues in a 

highly specific manner (Tonikian et al. 2008). SH3 domains bind proline-rich regions that 
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often form PPII helices (Sparks et al. 1996). SH2 domains show a preference for pTyr-

containing peptides (Waksman et al. 1993), while the context surrounding the pTyr 

residue determines the specificity of the peptide towards a distinct SH2 domain 

(Domchek et al. 1992).  Kinases are one of the largest families in the eukaryotic genome 

and share a common fold that allows for the binding of ATP and a Ser, Thr, or Tyr 

residue-containing substrate (Ubersax & Ferrell 2007).  Finally, MHC-I domains bind 

short pathogenic peptides to be presented to cytotoxic T lymphocytes (CTLs). MHC-I 

domains are promiscuous and may bind many peptides; generally, one or two substrate 

positions are conserved, while others are tolerant to mutations (Lundegaard et al. 2010). 

 

Figure 2.3. Specificity profile metric correlation   
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Correlation coefficients between pairs of metrics are shown in the upper diagonal while 
scatterplots are shown in the lower diagonal. Cosine similarities and AUC values are 
shown as 1 – cosine and 1- AUC, respectively, so that a lower value represents a better 
prediction. Scatterplot points are colored by the number of bits in the predicted profile, 
with a darker blue representing fewer bits, or more peaked profiles 
 

3.3.3. Choosing Metrics for Evaluation of Prediction Accuracy 

We evaluated the performance of MFPred by quantifying the differences between 

predicted and experimentally determined specificity profiles using several metrics (see S1 

Note for detailed descriptions of these metrics).  Four of these metrics, the cosine 

similarity, Frobenius norm, average absolute distance (AAD) and Jensen-Shannon 

divergence (JSD) are correlated, as shown in Figure 2.3.  The Frobenius norm and AAD 

are distance-based metrics that have been used previously to compare profiles (Smith & 

Kortemme 2010; King & Bradley 2010).  The Frobenius norm is more sensitive to 

flatness in the specificity profile than the AAD (Figure 2.4). Additionally, we evaluated 

the profiles by their cosine similarity, which is another distance-based metric that is less 

sensitive to flatness than either AAD or Frobenius norm. The Jensen-Shannon divergence 

(JSD) has also been used in the past to evaluate profiles (King & Bradley 2010).  We 

used cosine distance as the general score of a profile, as it is easy to visualize and 

interpret.  It falls between 0 and 1, where 0 denotes a random prediction and 1 denotes a 

perfect prediction.  For each position, we evaluated the significance of its JSD score by 

scoring 100,000 random profiles against the experimental profile and thus determining 

the p-value of the JSD score (see S1 Note for details).   
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Figure 2.4. Profile shape affects evaluation metrics differently  
(a) “Experimental” profile to compare to. (b) Each metric is affected differently by the 
shape of the profile (x- axis). Accuracy is normalized for all metrics so that the worst 
metric corresponds to one. Both AUC and cosine are subtracted from 1, as well. Cosine 
similarity varies slightly with regard to flatness of the profile, whether or not the most 
frequent amino acid is correct. Frobenius distance varies more than the cosine similarity; 
it decreases somewhat consistently with the shape of the profile. While AAD does not 
vary much with regard to flatness when the most frequent amino acid is incorrect, it 
decreases very quickly when the most frequent amino acid is correct. JSD also varies 
more frequent amino acid is incorrect, t is ~0.5 (or random), and if the most frequent 
amino acid is correct, it is zero. 
 

We also used a second metric as a general score for each profile: area under the ROC 

(receiver operating characteristic) curve (AUC) is a non-distance-based metric that 

evaluates predictions based on their ranking more tolerated amino acids correctly (Smith 

& Kortemme 2010).  It is relatively unaffected by flatness (Figure 2.4) but will not 

evaluate well if either the experimental or predicted profile is close to uniform.  It is not 

correlated with the above metrics. Additionally, we developed a new metric, Score 
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Sequence AUC Loss (SSAL), which encapsulates the efficacy of the predicted specificity 

profile in differentiating between substrates which are recognized and cleaved by a given 

protease (cleaved sequences) and substrates which are not cleaved by that protease 

(uncleaved sequences).  A perfect prediction scores an SSAL of zero.  It does not 

correlate well with any other metric (Figure 2.3). 

 

3.3.4. Recapitulation of protease specificity profiles 

Proteolysis is a multi-step reaction, which involves substrate peptide binding, the 

formation of a tetrahedral intermediate (acylation) and hydrolytic cleavage of the 

tetrahedral intermediate (deacylation). We have previously found that modeling a near-

attack conformation for the acylation step was successful in discriminating between 

known cleaved and uncleaved peptides (Pethe et al. 2017). Therefore, starting from 

structures of protease-substrate complexes in a near-attack conformation, we performed 

MFPred-based specificity prediction. We found that MFPred robustly recapitulates 

protease specificity profiles (Figure 2.5b) in our benchmark set.  The cosine similarities 

of the entire profiles range from 0.66 to 0.89, AUC ranges from 0.73 to 0.86, and SSAL 

ranges from 0.21 to 0.002.  Out of 31 substrate positions across the protease dataset, 20 

were predicted with a significant JSD p-value. The best prediction is obtained for the 

common biotechnologically used protease TEV-PR. The predicted profile has a high 

cosine similarity of 0.89 (1 would be a perfectly accurate prediction). The primarily steric 

and hydrogen-bonding-based nature of molecular recognition at TEV-PR-substrate 

interfaces is well suited to the strengths of the Rosetta energy function underlying 

MFPred.  Similarly, the profiles of HCV protease and granzyme B (GrB) protease are 
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also generally recapitulated with a high degree of accuracy, except for positions with no 

marked preference for specific amino acids (flat positions) – positions P5 and P2 in HCV 

protease and positions P4, P1’, and P2’ in granzyme B protease.   We attribute the lack of 

correlation at these flat positions to small errors in energy evaluations being equivalent to 

the size of the energy gaps being modeled, thus leading to erroneous ranking. Challenges 

in measuring prediction accuracy at flat positions have indeed been noted before (Smith 

& Kortemme 2010). 
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Figure 2.5.  Comparison of backbone ensemble generation methods.   
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(a) Experimental specificity profiles. (b) MFPred on FastRelax backbone ensemble. The 
p-value of the JSD for a given position is represented by the color of the square under 
that position; white denotes a p-value > 0.5 and dark blue denotes a p-value of 0.  A given 
circle to the right of a profile represents the cosine similarity (white) and AUC (black) of 
that profile.  The ROC plots beneath each profile depict the SSAL calculation via the 
experimental ROC (blue) and predicted ROC (red) with their respective AUC values.  (c) 
MFPred on FlexPepDock backbone ensemble. (d) MFPred on Backrub backbone 
ensemble. 
 

The worst performance among the proteases in the benchmark set is observed for the 

prediction of HIV protease-1 (HIVPR1) specificity. This protease is known to have a 

relaxed specificity profile, with preference for small hydrophobic residues at P1 and P1’ 

positions. The cavity of HIV protease-1 is large and peptides may adopt large variations 

in backbone conformation depending on their sidechains.  Additionally, substrate binding 

involves flexibility on the protease side, with two loops (“flaps”) that are mobile and 

close over the binding pocket. Incorporation of greater backbone flexibility on both the 

receptor and peptide parts of the HIVPR1-peptide interface may help improve 

predictions, as previously observed by us and others (London et al. 2011; Smith & 

Kortemme 2011; Pethe et al. 2017). 

 

3.3.5. Modeling Backbone Flexibility is Key for Prediction Accuracy 

To determine the contribution of modeling backbone flexibility to the accuracy of 

prediction and to investigate if backbone sampling could be optimized for specificity 

prediction, we generated MFPred profiles with different levels of backbone flexibility.  
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Figure 2.6. Number of sequence vs. accuracy and number of backbones vs. accuracy 
for methods of backbone ensemble generation  
(a)- (d) Number of backbones per sequence vs. accuracy for TEV, HCV, Granzyme B 
and HIV, respectively. Each protocol begins with five sequences, which are then relaxed 
using FR, FPD or BR 1,2,5 or 10 times each. (e)-(h) Number of sequences vs. accuracy 
for TEV, HCV, Granzyme B and HIV, respectively. Number of sequences is varied over 
1,5,10, all experimentally derived sequences, which is different for each protease. 
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Table 2.1. Results of all methods of backbone generation - FastRelax (FR), 
FlexPepDock (FPD), and backrub (BR) - on variously-sized backbone ensembles. 
 
Protease Method #Seq Cosine Frob AAD JSD AUC SSAL Bits 

TEV FR 1 0.86 1.06 0.04 0.22 0.87 0.00 0.43 
    5 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
    10 0.88 0.86 0.04 0.20 0.91 0.00 -0.55 
    All (68) 0.89 0.84 0.03 0.20 0.91 0.00 -0.69 
  FPD 1 0.84 1.08 0.04 0.23 0.86 0.00 0.23 
    5 0.80 1.10 0.04 0.27 0.85 0.01 -0.64 
    10 0.84 0.99 0.04 0.24 0.91 0.00 -0.64 
    All (68) 0.88 0.87 0.04 0.20 0.91 0.00 -0.72 
  BR 1 0.82 1.11 0.04 0.25 0.84 0.00 -0.06 
    5 0.82 1.06 0.05 0.26 0.87 0.00 -0.70 
    10 0.77 1.17 0.05 0.29 0.89 0.00 -0.91 
    All (68) 0.82 1.06 0.05 0.27 0.89 0.00 -0.87 

HCV FR 1 0.59 1.37 0.06 0.35 0.77 0.08 -0.51 
    5 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
    10 0.71 1.15 0.05 0.30 0.82 0.02 -1.28 
    All (196) 0.71 1.14 0.05 0.29 0.84 0.02 -1.29 
  FPD 1 0.57 1.45 0.06 0.35 0.76 0.09 -0.39 
    5 0.74 1.10 0.05 0.30 0.83 0.02 -1.29 
    10 0.71 1.14 0.05 0.30 0.80 0.01 -1.29 
    All (196) 0.73 1.12 0.05 0.28 0.87 0.01 -1.35 
  BR 1 0.39 1.67 0.06 0.44 0.69 0.17 -0.83 
    5 0.64 1.23 0.05 0.32 0.80 0.05 -1.20 
    10 0.63 1.25 0.06 0.32 0.81 0.04 -1.22 
    All (196) 0.62 1.26 0.05 0.32 0.81 0.05 -1.31 

GrB FR 1 0.82 0.85 0.04 0.23 0.71 0.20 0.60 
    5 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
    10 0.89 0.60 0.03 0.17 0.80 0.17 0.06 
    All (356) 0.91 0.53 0.03 0.13 0.87 0.15 -0.08 
  FPD 1 0.78 1.04 0.04 0.25 0.72 0.19 0.83 
    5 0.88 0.62 0.03 0.17 0.76 0.18 0.10 
    10 0.90 0.59 0.03 0.15 0.80 0.17 0.02 
    All (356) 0.93 0.49 0.03 0.11 0.83 0.13 -0.08 
  BR 1 0.85 0.74 0.04 0.22 0.71 0.19 0.38 
    5 0.83 0.74 0.04 0.20 0.71 0.22 0.14 
    10 0.85 0.70 0.04 0.19 0.72 0.22 0.09 
    All (356) 0.86 0.68 0.04 0.18 0.72 0.21 0.08 

HIV FR 1 0.47 1.55 0.06 0.42 0.66 0.17 0.96 
    5 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
    10 0.70 0.88 0.04 0.23 0.78 0.08 -0.04 
    All (374) 0.72 0.82 0.04 0.21 0.81 0.05 -0.21 
  FPD 1 0.38 1.78 0.07 0.47 0.69 0.22 1.22 
    5 0.66 0.96 0.05 0.28 0.70 0.13 -0.04 
    10 0.74 0.81 0.04 0.22 0.78 0.07 -0.18 
    All (374) 0.75 0.77 0.04 0.19 0.83 0.05 -0.32 
  BR 1 0.39 1.48 0.06 0.41 0.67 0.23 0.47 
    5 0.57 1.06 0.05 0.30 0.74 0.15 -0.04 
    10 0.62 0.98 0.05 0.27 0.73 0.14 -0.11 
    All (374) 0.62 0.96 0.05 0.27 0.73 0.11 -0.16 
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Most Similar   1.00 0.00 0.00 0.00 1.00 0.00 0.00 
Most Different   0.00 √(2n)1 0.06 1.00 0.00 1.00 4.32 

 
 
First, we found that predictions generated by starting from a single crystallographically-

determined backbone structure for the peptide led to poor accuracy for HCV and HIV 

proteases (panels f,h in Figure 2.6), indicating that incorporating peptide backbone 

diversity is a key requirement for the observed accuracy of prediction. Second, we 

generated peptide backbone ensembles by threading on a varying number of known 

substrate (cleaved) peptides using three different Rosetta-based backbone sampling 

protocols (FastRelax (Tyka et al. 2011), FlexPepDock (Raveh et al. 2010), and Backrub 

(Smith & Kortemme 2008)) separately to further diversify the peptide backbone 

ensemble.  In each case, geometric constraints (Pethe et al. 2017) were used to limit the 

scissile peptide bond to a near-attack conformation and the catalytic residues to an active 

conformation. The MFPred simulations were then performed on all backbone ensembles 

and their results were compared to each other (Figure 2.5, Table 2.1). 

  

While the algorithm is relatively robust to the method of backbone generation as long as 

scissile bond geometry is maintained, the FastRelax (FR) protocol has a small 

improvement in overall performance over the FlexPepDock (FPD) protocol, with 20 

significant p-values (out of 31) for FR vs. 19 for FPD, and FPD has a minor increase in 

overall performance over Backrub (BR), with 19 significant p-values for FPD vs. 18 for 

BR.  The profile for TEV-PR is predicted best by FR, due to better prediction of Q at P1 

and S at P1’.  In the case of HIV protease-1, FR recapitulates the profile better than FPD 

and BR do. However, the performance of FPD is marginally better than that of FR and 
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significantly more accurate than that of BR in the cases of HCV protease and granzyme B 

protease.  

 

To determine how MFPred accuracy depends on the number and sequences of known 

cleaved substrates used to generate the backbone ensemble, we generated a peptide 

backbone conformational ensemble that was independent of peptide sequence.  For all 

positions on the peptide backbone, we enumerated every combination of phi/psi dihedral 

angles that were x-15, x, and x+15, where x is the dihedral angle of the relaxed crystal 

structure peptide backbone.  The resulting structures were filtered to remove those with 

clashes and to preserve hydrogen-bond interactions.  The remaining structures were 

further clustered by all-heavy-atom RMSD of the peptide residues (see S2 Note for 

details) and MFPred was performed on the cluster centers.  The resulting predictions are 

significantly less accurate than those of FR, FPD, or BR (Figure 2.7), indicating that 

successful prediction requires a backbone ensemble that is optimally positioned in the 

binding site for cleavage. 



106	

	

 

Figure 2.7. Incorporating cleaved sequences into backbone ensemble generation 
improves MFPred’s accuracy.  
(a) Experimental specificity profiles (b) Results of running MFPred on backbone 
ensemble of five cleaved sequences FastRelaxed (c) Results of running MFPred on 
backbone ensemble generated by enumerating combinations of phi/psi angles. (d) Results 
of running MFPred on backbone ensemble of five uncleaved sequences FastRelaxed. 
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As a second test of the dependence of MFPred on the cleaved sequence information, we 

threaded five known uncleaved (i.e., not bound by the protease in a productive 

conformation) sequences on the peptide backbone and then performed FastRelax on the 

resulting structures.  The prediction accuracy of MFPred decreased on these structures 

(Figure 2.7), to the extent that the specificity profiles are almost uniform.  Therefore, 

diversifying the peptide structure in suboptimal sequence space led to worse predictions 

than those obtained while diversifying it without any sequence information. 

 

Figure 2.8. Using structures of receptor peptide complexes vs. apo structures 
improves the accuracy of MFPred.  
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(a) Experimental specificity profiles. (b) MFPred prediction on receptor – peptide 
complexes. (c) MFPred prediction on HCV NS3 Protease apo structure(PDB 3KF2) (d) 
MFPred prediction on HIV protease 1 closed form apo structure (PDB: 2HB4). (e) 
MFPred prediction on HIV protease 1 open form apo structure (PDB: 1PCO) 
 
Next, to determine the impact of starting from bound complexes to generate MFPred 

predictions, we performed MFPred simulations on apo structures of two proteases: HCV 

NS3/4A protease and HIV protease-1 (Figure 2.8).  As HIV protease-1 has two flaps that 

can assume either a closed or open form (Heaslet et al. 2007), we used both a ‘closed 

apo’ structure and an ‘open apo’ structure for our simulations.  In each case the protease 

all-atom RMSD between bound and open states, as determined by PyMol (Anon n.d.), 

were 1.04 Å, 1.85 Å, and 2.00 Å. In all three cases, MFPred accuracy was higher when 

starting from the bound complex compared to the apo state.  While the number of 

significant p-values remains similar, the overall cosine similarities, AUC, and SSAL 

decreased for the apo structure-based simulations. Additionally, the information content 

decreased significantly for the apo structures of HIV (0.72-0.74 bits) as opposed to the 

bound complex (1.18 bits). Overall, the prediction accuracies between apo and bound 

states were more similar for the HCV protease where small backbone changes in the 

protease are incurred upon binding, compared to HIV protease where larger differences 

in prediction accuracy were apparent. These results suggest that especially in cases where 

there is significant backbone conformational change in the receptor upon peptide binding, 

such as the HIV protease, the incorporation of receptor flexibility may be needed for 

maintaining MFPred accuracy.   

 

Finally, to investigate the dependence of performance accuracy on the number of known 

cleaved (recognized) sequences, we executed MFPred simulations on backbone 
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ensembles generated from differing numbers of starting peptide sequences threaded on to 

the crystallographic backbone conformation. We varied the number of sequences used to 

generate the backbone ensemble from one sequence to five sequences to ten sequences to 

all known sequences in the benchmark set.  We found that MFPred is highly dependent 

on N, the number of cleaved sequences used, when N is small (panels e-h in Figure 2.6). 

However, as N increases, this effect is decreased.  For TEV-PR and HCV protease, which 

have relatively few sequences (68 and 198 respectively), the prediction accuracy plateaus 

after ten sequences, although in some cases it may fluctuate slightly from five to ten to all 

sequences.  However, for granzyme B and HIV proteases (356 and 374 cleaved 

sequences respectively), the accuracy of MFPred has a minor increase from ten to all 

sequences.  Thus, there is a near-maximum of accuracy for each system; once that point 

of diminishing returns has been reached, incorporating more cleaved sequences does not 

lead to significant increases in the accuracy.  
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Table 2.2: Effect of various Rosetta settings on MFPred predictions on five sequence 
backbones. 
 

 

 

Besides determining that the level of backbone sampling was optimal for prediction, we 

also optimized sidechain sampling (Table 2.2). Using an older version of the rotamer 

library (2002) (Dunbrack 2002) decreased scores for all systems.  Increasing the fineness 

Protease Method Cosine Frob AAD JSD AUC SSAL Bits 
TEV Current 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 

  Dun02 0.86 0.97 0.04 0.24 0.86 0.00 -0.14 
  Ex1aro,ex2aro 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
  Ex3,ex4 0.88 0.87 0.04 0.22 0.86 0.00 -0.38 
  No input sc 0.88 0.88 0.04 0.22 0.86 0.00 -0.46 
  Pack prot 4 0.81 1.07 0.04 0.25 0.90 0.00 -0.56 
  Pack prot 6 0.81 1.07 0.04 0.25 0.91 0.00 -0.59 
  Pack prot 8 0.81 1.07 0.04 0.25 0.91 0.00 -0.60 

HCV Current 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
  Dun02 0.64 1.24 0.06 0.35 0.78 0.02 -1.19 
  Ex1aro,ex2aro 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
  Ex3,ex4 0.71 1.14 0.05 0.31 0.77 0.03 -1.27 
  No input sc 0.71 1.15 0.05 0.31 0.78 0.02 -1.29 
  Pack prot 4 0.67 1.20 0.06 0.33 0.73 0.04 -1.21 
  Pack prot 6 0.67 1.20 0.06 0.33 0.74 0.04 -1.21 
  Pack prot 8 0.67 1.20 0.06 0.33 0.74 0.04 -1.20 

GrB Current 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
  Dun02 0.82 0.78 0.04 0.23 0.79 0.22 0.21 
  Ex1aro,ex2aro 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
  Ex3,ex4 0.84 0.73 0.04 0.20 0.76 0.21 0.08 
  No input sc 0.84 0.73 0.04 0.20 0.75 0.22 0.06 
  Pack prot 4 0.81 0.80 0.04 0.23 0.77 0.25 0.22 
  Pack prot 6 0.80 0.82 0.04 0.23 0.75 0.26 0.18 
  Pack prot 8 0.81 0.80 0.04 0.23 0.76 0.25 0.21 

HIV Current 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
  Dun02 0.59 1.08 0.05 0.32 0.68 0.14 0.10 
  Ex1aro,ex2aro 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
  Ex3,ex4 0.65 0.97 0.05 0.27 0.71 0.14 -0.01 
  No input sc 0.63 0.98 0.05 0.28 0.70 0.15 -0.06 
  Pack prot 4 0.63 1.01 0.05 0.30 0.71 0.14 0.08 
  Pack prot 6 0.61 1.04 0.05 0.32 0.71 0.15 0.11 
  Pack prot 8 0.60 1.05 0.05 0.31 0.69 0.15 0.05 

Most Similar   1.00 0.00 0.00 0.00 1.00 0.00 0.00 
Most Different 0.00 √(2n)1 0.06 1.00 0.00 1.00 4.32 
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of rotamer chi-angle sampling or removing the starting sidechain conformation from the 

rotamer sampling had little impact on the results.  Packing protease sidechains around the 

peptide (between distances of 4-8 Angstroms) decreased the accuracy of the results.  This 

may be explained by the finding that hot spot residues at protein-protein interfaces often 

adopt strained rotamer configurations (Watkins et al. 2016); packing protease interface 

sidechains while designing peptide residues within MFPred may force protease 

sidechains to adopt conformations that are unfavorable for productive substrate binding. 
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Figure 2.9.  MFPred vs. other Rosetta prediction techniques on ensemble of five 
sequences.   
(a) Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance. 
 
3.3.6. Comparison of MFPred with Other Structure-Based Approaches	

Table 2.3. Results of all methods - MFPred (MF), sequence_tolerance (ST), and 
pepspec (PS) - on variously-sized backbone ensembles.	
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Prote
ase 

Metho
d 

#Seq Time(m) 
(m) 

Cosi
ne 

Fro
b 

AA
D 

JS
D 

AU
C 

SSA
L 

Bit
s TEV MF 1 0.18 0.86 1.06 0.0

4 
0.2
2 

0.8
7 

0.00 0.4
3     5 0.80 0.89 0.85 0.0

4 
0.2
1 

0.8
6 

0.00 -
0.3
4 

    10 2.08 0.88 0.86 0.0
4 

0.2
0 

0.9
1 

0.00 -
0.5
5 

    All (68) 11.97 0.89 0.84 0.0
3 

0.2
0 

0.9
1 

0.00 -
0.6
9 

  ST 1 195.65 0.84 1.49 0.0
4 

0.2
8 

0.8
3 

0.00 1.8
2     5 923.91 0.84 1.49 0.0

4 
0.2
8 

0.8
4 

0.00 1.7
9     10 1827.32 0.84 1.49 0.0

4 
0.2
8 

0.8
5 

0.00 1.8
2     All (68) 12333.94 0.84 1.44 0.0

4 
0.2
8 

0.8
4 

0.00 1.6
5   PS 1 17.46 0.72 1.50 0.0

5 
0.3
6 

0.8
1 

0.01 0.8
3     5 96.01 0.85 1.06 0.0

4 
0.2
4 

0.9
2 

0.00 0.4
4     10 189.43 0.82 1.17 0.0

4 
0.2
4 

0.8
5 

0.00 0.3
4     All (68) 1290.41 0.86 1.04 0.0

3 
0.2
1 

0.8
6 

0.00 0.2
7 HCV MF 1 0.68 0.59 1.37 0.0

6 
0.3
5 

0.7
7 

0.08 -
0.5
1 

    5 3.61 0.72 1.13 0.0
5 

0.3
1 

0.7
9 

0.02 -
1.2
8 

    10 7.14 0.71 1.15 0.0
5 

0.3
0 

0.8
2 

0.02 -
1.2
8 

    All (196) 
(196) 

132.15 0.71 1.14 0.0
5 

0.2
9 

0.8
4 

0.02 -
1.2
9 

  ST 1 115.04 0.30 1.77 0.0
7 

0.5
3 

0.6
3 

0.30 -
0.5
9 

    5 574.01 0.43 1.54 0.0
6 

0.4
6 

0.6
8 

0.21 -
0.9
3 

    10 1101.15 0.44 1.49 0.0
7 

0.4
4 

0.7
0 

0.17 -
1.1
6 

    All (196) 22239.05 0.43 1.51 0.0
7 

0.4
4 

0.6
7 

0.17 -
1.0
8 

  PS 1 17.78 0.24 2.19 0.0
8 

0.6
3 

0.6
1 

0.34 0.6
6     5 91.68 0.37 1.69 0.0

7 
0.5
5 

0.5
5 

0.20 -
0.5
3 

    10 171.30 0.61 1.30 0.0
6 

0.3
9 

0.7
3 

0.05 -
0.7
3 

    All (196) 3462.64 0.63 1.26 0.0
6 

0.3
6 

0.7
1 

0.05 -
1.1
9 

GrB MF 1 0.34 0.82 0.85 0.0
4 

0.2
3 

0.7
1 

0.20 0.6
0     5 2.39 0.84 0.73 0.0

4 
0.2
0 

0.7
6 

0.21 0.0
7     10 5.24 0.89 0.60 0.0

3 
0.1
7 

0.8
0 

0.17 0.0
6     All (356) 145.63 0.91 0.53 0.0

3 
0.1
3 

0.8
7 

0.15 -
0.0
8 

  ST 1 114.80 0.28 2.02 0.0
7 

0.4
6 

0.7
6 

0.26 1.2
9     5 544.28 0.33 1.71 0.0

6 
0.3
5 

0.7
8 

0.26 0.6
8     10 1109.45 0.35 1.62 0.0

5 
0.3
1 

0.8
2 

0.17 0.5
5     All (356) 39036.17 0.34 1.67 0.0

5 
0.3
2 

0.8
4 

0.21 0.5
3   PS 1 19.58 0.62 1.45 0.0

6 
0.5
1 

0.6
1 

0.38 1.5
9     5 101.24 0.63 1.15 0.0

6 
0.3
9 

0.7
0 

0.34 0.6
8     10 203.69 0.76 0.99 0.0

5 
0.2
9 

0.7
8 

0.27 0.6
1     All (356) 6814.15 0.88 0.64 0.0

3 
0.1
7 

0.8
6 

0.18 0.1
3 HIV MF 1 0.23 0.47 1.55 0.0

6 
0.4
2 

0.6
6 

0.17 0.9
6     5 1.29 0.65 0.96 0.0

5 
0.2
7 

0.7
3 

0.14 -
0.0
1 

    10 3.15 0.70 0.88 0.0
4 

0.2
3 

0.7
8 

0.08 -
0.0
4 

    All (374) 110.65 0.72 0.82 0.0
4 

0.2
1 

0.8
1 

0.05 -
0.2
1   ST 1 92.37 0.40 2.48 

0.0
8 

0.6
4 

0.6
2 0.19 

2.7
8 

    5 453.18 0.41 2.20 0.0
7 

0.5
7 

0.6
7 

0.24 2.1
4     10 907.90 0.45 2.05 0.0

7 
0.5
1 

0.7
3 

0.16 1.9
3     All (374) 34090.45 0.48 1.81 0.0

6 
0.4
2 

0.7
3 

0.14 1.3
8   PS 1 23.05 0.37 2.13 0.0

7 
0.6
0 

0.5
9 

0.22 2.0
5     5 109.77 0.55 1.54 0.0

6 
0.4
0 

0.6
9 

0.11 1.2
1     10 218.41 0.53 1.51 0.0

6 
0.3
9 

0.7
0 

0.16 1.0
4     All (374) 8134.56 0.57 1.23 0.0

5 
0.2
8 

0.7
6 

0.10 0.3
3 
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Most Similar     1.00 0.00 0.0
0 

0.0
0 

1.0
0 

0.00 0.0
0 Most Different     0.00 √(2n

)1 
0.0
6 

1.0
0 

0.0
0 

1.00 4.3
2 1n refers to the number of positions in the profile 

 

We compared our results to the two previously developed methods for specificity 

prediction that have been implemented in the Rosetta software. MFPred performed with 

comparable or greater accuracy than the sequence_tolerance (Smith & Kortemme 2010) 

and pepspec (King & Bradley 2010) methods (Table 2.3).  Additionally, MFPred was 

between 23-fold to 120-fold faster than the pepspec method and between 154-fold to 

1154-fold faster than the sequence_tolerance method, depending on the number of 

peptide backbone conformations and rotamers (Table 2.3).  Furthermore, MFPred is more 

accurate on single backbones and smaller backbone ensembles than the other two 

methods; when performed on a backbone ensemble generated from five substrate 

sequences, MFPred predicts 19 out of 31 positions with a significant p-value, whereas 

only 11 of the positions predicted by sequence_tolerance and 8 of the positions predicted 

by pepspec yield significant p-values (Figure 2.9).  When executed on a single backbone 

conformation, MFPred predicts 12 positions with a significant p-value, while both 

sequence_tolerance and pepspec predict only 8 positions with a significant p-value.  Both 

sequence_tolerance and pepspec are designed to be used with larger peptide ensembles – 

their success is dependent on a diverse backbone ensemble – and, as expected, their 

prediction accuracy increases as the number of backbones in the ensemble rises (Figure  

2.10a-d), with sequence_tolerance predicting 15 significant positions and pepspec 

predicting 16 significant positions on the backbone ensemble generated from all cleaved 

sequences (Figure 2.11).  When performed on this expanded backbone ensemble, 

MFPred prediction accuracy was also higher, with 25 significant predictions. Thus, 
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compared to two state-of-the-art existing methods, MFPred-based predictions are of 

comparable or higher accuracy, and can be obtained with 10-1000-fold higher 

computational efficiency. 
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Figure 2.10. Number of sequences vs. accuracy and information for methods of 
profile prediction   
(a)-(d) Number of sequences vs. accuracy for TEV, HCV, GrB, and HIV, respectively.  
Number of sequences is varied over 1-5-10-All experimentally derived sequences, which 
is different for each protease.  (e)-(h) Number of sequences vs. information content (i.e. 
shape of profile) difference for TEV, HCV, GrB, and HIV, respectively.  Information 
difference is equal to the predicted bits minus the experimental bits.  An information 
difference that is close to zero approximates the experimental information content well; a 
highly positive information difference indicates a more peaked predicted than 
experimental profile while a highly negative information difference denotes a flatter 
predicted than experimental profile. 
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Figure 2.11.  MFPred vs. other Rosetta prediction techniques on ensemble of all 
sequences.   
(a) Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance. 
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Besides informing us about the accuracy and speed of MFPred relative to existing 

methods, the comparison of MFPred to pepspec and sequence_tolerance allows us to 

categorize inaccuracies in MFPred predictions into those obtained from incorrect 

sequence sampling and those due to the Rosetta energy function or incomplete backbone 

conformational diversity.  For example, MFPred on all cleaved backbones does not 

recover the experimentally determined high frequency for G at P2 of TEV-PR.  Since 

both pepspec and sequence_tolerance also do not recover G at P2 with the same peptide 

backbone conformational ensemble, we attribute this inaccuracy to imperfections in the 

underlying Rosetta energy function and/or an incomplete peptide backbone ensemble 

used for prediction. 

 

Generally, MFPred predicts lower information content (i.e. flatter shape) for the profiles 

than both sequence_tolerance and pepspec (Table 2.3, Figure 2.10e-h).  In the cases of 

granzyme B protease and HIVPR1, the predicted lower information content is reflective 

of the experimentally determined profiles; however, in the case of TEV-PR MFPred 

underestimates the information content relative to pepspec and sequence_tolerance.  All 

protocols underestimate the information content of the profile of HCV protease.  This 

underestimation may be due to an incomplete experimental dataset or sampling/scoring 

inaccuracies as discussed above.  Overall, the difference between the predicted 

information content and the experimental information content was smaller for MFPred 

than for sequence_tolerance and pepspec, especially when performed with smaller 

backbone ensembles. 
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3.3.7. Generalizing MFPred to other Protein-Recognition Domains 

To investigate the generality of our method for specificity prediction, we utilized the 

MFPred method to predict the specificity profiles for a variety of peptide-recognition 

domains: kinase, SH2, SH3, PDZ, and MHC domains. We achieved 17 significant p-

values out of 31 positions and high cosine similarities (0.77-0.85) for three out of five 

PRD classes: PKA (kinase), Src (SH2), and c-Crk (SH3) domains (Figure 2.12).   

However, these three systems had lower AUCs (0.60-0.65).  This may be due to the 

inadequacy of AUC as a metric for scoring positions that have low information content in 

the experimentally-derived profile; if few of the experimental amino acid frequencies are 

greater than 10%, the AUC reveals little about the prediction accuracy.   

 

Figure 2.12:  Generalize MFPred to PRD benchmark.   
(a) Experimental specificity profiles. (b) MFPred prediction.  The p-value of the JSD for 
a given position is represented by the color of the square under that position; white 
denotes a p-value > 0.5 and dark blue denotes a p-value of 0.  A given circle to the right 
of a profile represents the cosine similarity (white) and AUC (black) of that profile.  For 
the PDZ domain, prediction was performed at a kT of 0.6, which was found to be optimal 
for PDZ domains. 
 

We predicted the specificity profiles of seven different PDZ domains: NHERF-2 PDZ2, 

PSD-95, AF-6 PDZ, Erbin PDZ, MPDZ-13, ZO-1 PDZ1, and DLG1-2 PDZ (Figure 2.12, 
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Figure 2.13). The specificity of NHERF-2 PDZ-2 was already predicted computationally 

by Zheng et al. (Zheng et al. 2015), who were able to achieve good prediction via the use 

of CLASSY and FlexPepDock.  King and Bradley previously predicted the specificity 

profile for PSD-95 computationally using pepspec (King & Bradley 2010), while the five 

other PDZ domain specificities were previously predicted by Smith and Kortemme via 

sequence_tolerance (Smith & Kortemme 2010). Six out of seven PDZ domains were 

predicted with medium to high accuracies, with cosine similarities of 0.63-0.86, AUCs of 

0.60 to 0.88, and 25 out of 38 significant p-values. However, the prediction accuracy of 

the final PDZ domain, AF-6 PDZ was much lower, with a cosine similarity of 0.43, AUC 

of 0.59, and no significant p-values.  This low accuracy may be due to the flexibility of 

the AF-6 PDZ domain, which has been known to bind in multiple binding modes and can 

be characterized as belonging to multiple classes of PDZ domain specificity (Chen et al. 

2007; Fujiwara et al. 2015).  Similar to the HIVPR1 case above, addition of receptor 

flexibility to MFPred may assist in AF-6 specificity profile recapitulation. 
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Figure 2.13. MFPred prediction for six PDZ domains.  
(a,c) Experimental specificity profiles. (b,d) MFPred prediction.  Prediction was 
performed at a kT of 0.6, which was found to be optimal for PDZ domains. 
 

Finally, we tested the performance of MFPred on predicting MHC-I peptide recognition 

specificities. We selected four MHC-I domains with crystallographic structure 

availability and a large pool of known peptide binders (Vita et al. 2015).  The 

experimentally derived specificity profiles for the MHCs were highly conserved at one or 

two positions but relatively flat at others (Figure 2.12, Figure 2.14).  The MFPred 

predictions reflected this pattern: while 30 out of 36 positions had p-values that were not 

significant, due to the high tolerance of a diversity of amino acid at those positions, the 

cosine similarity of the predictions was high (0.63-0.78), reflecting good overall profile 
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recapitulation (Figure 2.12, Figure 2.14).  These results indicate that robust and accurate 

predictions of the specificity profiles of a variety of peptide-recognition domains can be 

obtained using the MFPred approach, pointing to its wide applicability, especially for 

cases where receptor backbone flexibility is minimal. Improved modeling of backbone 

conformational diversity, an area where methodological improvements are needed (Khare 

& Fleishman 2013), is likely to improve prediction accuracy further.  

 

Figure 2.14. MFPred prediction for three MHC-I domains.  
(a) Experimental specificity profiles. (b) MFPred prediction.  
 

Prediction of changes in multispecificity upon receptor mutation 

When used to design receptors for and against specificity profiles, MFPred should be able 

to accurately recapitulate changes in specificity profiles due to protease mutations, when 

simulations are performed on a constant set of backbones. As a proof of concept, we 

predicted the changes in the specificity profiles of two variants of granzyme B protease 

for which altered multispecificity has been experimentally determined (Figure 2.15).  

R192E granzyme B protease and R192E/N218A granzyme B protease have been shown 

to have decreased specificity for glutamic acid and increased specificity for lysine and 

arginine at P3 (Harris et al. 1998; Ruggles et al. 2004).  To investigate whether MFPred 
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can recapitulate mutant specificity profiles without changing the peptide backbone, we 

modeled the variants of granzyme B protease by performing the necessary mutations in 

Rosetta on the five FastRelaxed granzyme B protease backbones. 

 

Figure 2.15.  Proof-of-concept for design.  Changes in specificity profile upon 
granzyme B protease mutation are recapitulated by MFPred.   
(a) Experimental (bold) specificity (average of Harris et al. (Harris et al. 1998) and 
Ruggles et al. (Ruggles et al. 2004)) and predicted P3 specificity for WT granzyme B 
protease.  (b)-(c), WT granzyme B protease structure.  (d) R192E granzyme B protease 
active site.  (e) Experimental specificity (bold) (Harris et al. 1998) and predicted P3 
specificity for R192E granzyme B protease. (f) R192E/N218A granzyme B protease 
active site. (g) Experimental specificity (bold) (Ruggles et al. 2004) and predicted P3 
specificity for R192E/N218A granzyme B protease.   
 

The MFPred-predicted specificity profile for the mutated structures accurately 

recapitulated the experimentally predicted specificity profile for the mutants.  In the case 

of R192E, the change from a positively-charged arginine to a negatively-charged 

glutamic acid yields an increased frequency of positive amino acids such as lysine and 

arginine and a decreased frequency of negative amino acid glutamic acid.  MFPred 

predicts the shift toward lysine and arginine and away from glutamic acid correctly, 

although it upweights the frequency of arginine and downweights the frequency of 
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glutamic acid relative to the experimental profile.  In the case of R192E/N218A, the shift 

towards arginine and lysine is even more pronounced in the experimentally-derived 

profile.  Sterically, the mutation of N to A may allow for the longer sidechains of R and 

K (relative to E) to fit at P3.  MFPred correctly predicts this shift as well. The sensitivity 

of MFPred to altered multispecificity at a given position due to a given receptor mutation 

should enable its use in designing for or against a given specificity profile. 

 

3.4. Discussion 

Protein-peptide interactions underlie much of biology, and the ability to computationally 

manipulate these interactions would enable intervention in many biological processes.  

The rational design of receptor proteins, including enzymes that act upon peptide 

substrates, for and against peptide recognition specificity profiles is an open challenge.  

Such design would benefit from a specificity profile prediction technique that is both (i) 

rapid enough to be used in each step of the design process, and (ii) able to predict 

changed specificity for receptor variants with a constant peptide backbone 

conformational ensemble.  The MFPred method developed here represents a step forward 

in achieving in both of these goals. MFPred is able to predict profiles for both proteases 

and a diverse set of PRDs, and it can recapitulate changes in the profile of variant 

granzyme B. This result sets the stage for application of the MFPred algorithm to enable 

the design of proteins for and against specificity profiles, by combining the MFPred 

algorithm with multi-state design (Leaver-Fay et al. 2011). 
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The MFPred method, implemented in the context of the Rosetta software, performs 

specificity profile prediction with equivalent or better accuracy when compared to two 

previously developed methods (pepspec, sequence_tolerance) in the Rosetta framework, 

but with a significant decrease in run time (~10- to 1000-fold). Practically, this means 

that given a receptor variant and a peptide backbone ensemble, a specificity profile can 

be obtained, on a standard single processor, on a time-scale of seconds vs. hours required 

for other approaches.  While pepspec and sequence_tolerance are less accurate on a 

smaller peptide backbone ensemble, MFPred is relatively robust to the size of the 

backbone ensemble. Additionally, MFPred can predict information content (determined 

from the amino acid frequency distribution at a given peptide position) better than other 

methods (Figure 2.10e-h).  The ability to recapitulate information content should enable 

design for a narrow or wide range of amino acid types at a given peptide position, thereby 

allowing greater control over binding selectivity.  The speed, prediction accuracy on a 

small backbone ensemble, and robust recapitulation of information content of MFPred 

are due to the mean-field approach of MFPred: rather than attempt to enumerate many 

sequences on varying backbones, MFPred predicts a specificity profile by treating amino 

acid energies as a Boltzmann probability distribution.  However, optimal sampling of the 

peptide backbone conformational space by MFPred does require some prior knowledge 

in the form of several (~5) recognized substrates, which is not required for pepspec or 

sequence_tolerance.    

 

While MFPred can rapidly and consistently generate recognition profiles with high 

accuracy compared to experimental data, it was not possible to achieve a perfect 
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prediction using MFPred. Several reasons may underlie these limitations of MFPred.  

First, our experimental dataset may be incomplete: it comprises various in vitro and in 

vivo sources in the literature, each of which may have their biases.  In vitro experimental 

profiles vary with the definition of a cleaved sequence; when few sequences are included 

in this definition, the profile will converge on a few optimal sequences.  In vivo 

experimental profiles are subject to biases due to biological factors (King & Bradley 

2010). Second, any specificity prediction challenge is composed of several, smaller 

problems – sampling the vast sequence space, sampling the significantly larger 

conformational space, and scoring the structures – each of contributes multiplicatively to 

the error-rate.  In our study, the sequence sampling problem is solved by MFPred itself.  

As it is an approximation, MFPred may not sample the sequence space effectively; the 

free parameters, which are optimized for overall success, are sub-optimal for each 

system.  This is especially true in the case of the temperature parameter, which we found 

to be the most system-dependent. Thus, application of MFPred to domain families that 

are not included in our benchmark set may require further system-specific optimization of 

model parameters to achieve comparable accuracy.  In terms of structure sampling, our 

method of utilizing a small number of known recognized peptides to generate a backbone 

ensemble is an attempt to more efficiently sample the large backbone conformational 

space (which also determines sidechain sampling due to the use of a backbone-dependent 

rotamer library (Shapovalov & Dunbrack 2011)); however, this space is so large, 

especially in the case of a flexible binding pocket such as the HIV protease-1, that 

sampling efficiency is still limited. The sampling of receptor backbone flexibility is also 

required in such cases, as evidenced by decreased prediction accuracy when the apo-
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structure of the complex is used (Figure 2.8). Finally, we score the structures using an 

empirical energy function (from Rosetta); subtle errors in the energy function may also 

contribute to the observed inaccuracies. As both conformational and sequence sampling 

in the MFPred approach rely on, and are limited by, the underlying rotamer library and 

energy function as implemented in Rosetta, improvements in these features (Park et al. 

2016; Shapovalov & Dunbrack 2011) should yield higher accuracy predictions.  

 

3.5. Methods 

3.5.1. Inputs 

Table 2.4: Details of model generation for four proteases and fourteen PRDs 
Protein PDB ID Resolution Notes 

HCV NS3/4A 

Protease 

3M5L, 

3M5N 

1.9 Å The P’ residues of the bound peptide were built 

by overlaying PDB ID: 3M5N and PDB 

ID:3M5L (inhibitor-bound crystal structure) thus 

allowing us to build a complete substrate bound 

complex 

HCV NS3 

Protease 

(apo) 

3KF2 2.5 Å PDB ID: 3KF2, the apo structure of HCV NS3 

protease, was superimposed with the complex 

built from 3M5L and 3M5N (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model.  

TEV 

Protease 

1LVB, 

1LVM 

2.2 Å Starting model generated from PDB by reverting 

C151A to WT 
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Granzyme B 

(Protease) 

1FI8 2.2 Å The interface of the ecotin chain in the crystal 

structure, spanning eight residue substrate chain 

was used as the starting point for further 

calculations 

HIV Protease 

1 

1MT9 2.0 Å Starting model generated by inverting D25N and 

V82N from crystal structure to native residue 

identities 

HIV Protease 

1 (apo) 

2HB4 2.15 Å PDB ID: 2HB4, the closed-form apo structure of 

HIV protease-1, was superimposed with the 

complex built from 1MT9 (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model. 

HIV Protease 

1 (apo) 

2PC0 1.4 Å PDB ID: 2PC0, the open-form apo structure of 

HIV protease-1, was superimposed with the 

complex built from 1MT9 (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model. 

c-Crk SH3-N 1CKA 1.5 Å  

cAMP-

dependent 

PKA (kinase) 

1L3R 2.0 Å   
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Src SH2 1SPS 2.7 Å  

PSD-95 

PDZ3 

1TP3 1.99 Å  

NHERF-2 

PDZ2 

2HE4 1.45 Å  

AF-6 PDZ 2AIN (NMR) First model in NMR ensemble was taken. 

Erbin PDZ 1N7T (NMR) First model in NMR ensemble was taken. 

MPDZ-13 

(PDZ) 

2FNE 1.83 Å  

ZO-1 PDZ1 2H2B 1.6 Å  

DLG1-2 

(PDZ) 

2I0L 2.31 Å  

HLA-A*0201 

(MHC) 

1QSF 2.8 Å  
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HLA-B*1501 

(MHC) 

1XR9 1.79 Å  

HLA-B*4402 

(MHC) 

1M6O 1.6 Å  

HLA-B*4403 

(MHC) 

1N2R 1.7 Å  

 

 

 

Structure Preparation. Crystal structures of the four protease-peptide complexes, 

fourteen protein-recognition domains, and three protease apo structures were procured 

from the Protein Data Bank (PDB) (Table 2.4) (Phan et al. 2002; Prabu-Jeyabalan et al. 

2003; Waugh et al. 2000; Romano et al. 2010; Saro et al. n.d.; Madhusudan et al. 2002; 

Wu et al. 1995; Elkins et al. 2007; Skelton 2003; Appleton et al. 2006; Zhang et al. 2007; 

Ding et al. 1999; Røder et al. 2006; Macdonald et al. 2003; Cummings et al. 2010; 

Heaslet et al. 2007; Waksman et al. 1993; Chen et al. 2007).  Structures were filtered for 

a resolution equal to or lower than 2.8 Å and a bound peptide or peptidomimetic 

inhibitor.  Active site mutations were reverted to the wild-type residues.  

  

The selected crystal structures were optimized using Rosetta FastRelax to find a low 

energy structure, which was used as a starting point in further calculations. In the case of 

the protease enzymes, constraints were applied to catalytic residues during FastRelax to 
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maintain active site geometry and keep the protease in a pre-transition-state near-attack 

conformation, and coordinate constraints were applied to the backbone to ensure that the 

enzyme did not unfold; we did not apply constraints in the general PRD benchmark, as 

constraints were found to decrease prediction accuracy in those cases.  Peptide side 

chains and backbone were allowed to sample all degrees of freedom including rotation, 

translation, and rigid body orientation with respect to the protease.  The models were 

scored with Rosetta’s talaris2013 energy function. 

 

The apo crystal structures were aligned with the relaxed models of the protease-peptide 

complexes using PyMol (Anon n.d.), and the peptides from the protease-peptide 

complexes were placed within the apo models.  The crystal structures were further 

optimized using Rosetta FastRelax as described above. 

 

Experimental Sequence Profiles and Cleaved/Uncleaved Sequences. The sequences of 

cleaved and uncleaved substrate peptides for each protease and bound peptides for each 

PRD were obtained as described in Table 2.5. For further details on the curation of the 

protease datasets, please see our recent study (Pethe et al. 2017). To generate a specificity 

profile for each protease, we first removed duplicates from the set of cleaved peptides 

and then calculated the frequency of each amino acid at each position.  We followed the 

same procedure for the PRDs; however, we did not remove duplicates from those sets.  

The sequence sets are provided in S1 Dataset.  
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Table 2.5. Substrates for proteases and PRDs. 
Protease # Cleaved # Uncleaved References 
TEV-PR 68 1520 • Kostallas et al. (Kostallas 

et al. 2011) 
• Boulware et al. 

(Boulware et al. 2010) 
 

HCV protease 196 1943 • Shiryaev et al. (Shiryaev 
et al. 2012) 

• Rögnvaldsson et al. 
(Rögnvaldsson et al. 
2009) 

Granzyme B 
protease 

353 1973 • Barkan et al. (Barkan et 
al. 2010) 

HIV-PR 374 1251 • Rögnvaldsson et al. 

(Rögnvaldsson et al. 

2009) 

PRD #Bound in 

vitro 

#Bound in 

vivo 

References 

c-Crk SH3-N 13 N/A • Sparks et al. (Sparks et al. 
1996) 

cAMP-dependent 
PKA 

346 19 • PhosphoELM (Dinkel et 
al. 2011) 

• Schutkowski et al. 
(Schutkowski et al. 2004) 

Src SH2 13 117 • PepCyber (Gong et al. 
2008) 

• Khati et al. (Khati & 
Pillay 2004) 

PSD-95 PDZ3 93 2 • PDZBase (Beuming et al. 
2005) 

• Tonikian et al. (Tonikian 
et al. 2008) 

NHERF-2 PDZ2 132 N/A • Vouilleme et al. 
(Vouilleme et al. 2010) 

• Stiffler et al. (Stiffler et 
al. 2007) 

• Tonikian et al. (Tonikian 
et al. 2008) 

AF-6 PDZ 176 N/A • Tonikian et al. (Tonikian 



134	

	

et al. 2008) 
Erbin PDZ 86 N/A • Tonikian et al. (Tonikian 

et al. 2008) 
MPDZ-13 (PDZ) 91 N/A • Tonikian et al. (Tonikian 

et al. 2008) 
ZO-1 PDZ1 71 N/A • Tonikian et al. (Tonikian 

et al. 2008) 
DLG1-2 (PDZ) 58 N/A • Tonikian et al. (Tonikian 

et al. 2008) 
HLA-A*0201 
(MHC) 

3273 N/A • Vita et al. (Vita et al. 
2015) 

HLA-B*1501 
(MHC) 

1187 N/A • Vita et al. (Vita et al. 
2015) 

HLA-B*4402 
(MHC) 

236 N/A • Vita et al. (Vita et al. 
2015) 

HLA-B*4403 
(MHC) 

207 N/A • Vita et al. (Vita et al. 
2015) 

 

 

3.5.2. Backbone Ensemble Generation 

We generated a flexible backbone ensemble by constructing models of the proteins bound 

to several cleaved sequences, and then diversifying those models via FastRelax (Tyka et 

al. 2011), FlexPepDock (Raveh et al. 2010), or Backrub (Smith & Kortemme 2008) 

backbone sampling protocols, as described in detail below.  For each protein, N cleaved 

sequences were chosen from the dataset by sorting the sequences in alphabetical order 

and then choosing evenly spaced sequences from the sorted dataset.  Two alternative 

methods of picking cleaved sequences - randomly, or at even intervals from a set sorted 

by hamming distance from an arbitrarily chosen cleaved sequence - did not impact the 

results. 

 

Then those N cleaved sequences were threaded onto the original FastRelaxed protein-

peptide complex to create N structure-sequence models. Each model was subjected to 10 
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trajectories of FastRelax simulations, 10 trajectories of FlexPepdock refine simulations, 

or 10 trajectories of Backrub simulations, and the resulting 10 models were considered to 

be the backbone conformational ensemble.  As we found that the FastRelax protocol was 

more accurate than FlexPepDock and Backrub, we used FastRelax alone in the final 

version of the protocol.  The model was constrained to active catalytic geometry for the 

proteases; we did not apply constraints to the PRD systems.  Finally, the x lowest-scoring 

models for each sequence (with x dependent on the protocol in question, and generally 

set as 1) were chosen as the final backbone ensemble. 

 

3.5.3. Mean-Field Algorithm 

Various self-consistent mean-field theory-based methods have been developed for use in 

protein sidechain packing and design (Koehl & Delarue 1994; Delarue & Koehl 1997; 

Lee 1994; Voigt et al. 2001; Saven & Wolynes 1997; Xiao et al. 2014; Mendes et al. 

1999; Kono 1996). In the canonical self-consistent mean field theory-based method for 

protein sidechain packing as proposed by Koehl and Delarue (Koehl & Delarue 1994), 

the energy landscape is investigated by using an effective energy potential to approximate 

the effects of all possible rotamers at all positions to be modeled.  Thus, the mean-field 

energy of rotamer r occurring at position i is determined by Eq. 1:  

𝐸 𝑖, 𝑟 =  𝑒 𝑖! + 𝑒 𝑖! , 𝑗! 𝑃 𝑗, 𝑠

!!

!!!

!

!!!,!!!

 

 (1) 

𝑒 𝑖!  represents the one-body energy of the rotamer, or the energy between a residue and 

the fixed components of the protein.  𝑒 𝑖! , 𝑗!  represents the two-body energy between a 
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rotamer r at position i and a rotamer s at position j.  Energies are truncated at a threshold 

that we optimized as a free parameter.  P(j, s) represents the probability of rotamer s 

occurring at position j and is initially given as 1/Kj, where Kj is the total number of 

available rotamers at position j (obtained from a rotamer library).    

 

A probability matrix (P) of size N × Kmax , where N is the number of positions to be 

analyzed and Kmax is the maximum number of rotamers at any position, is used to model 

the probabilities of each rotamer occurring.  Once the effective energy of each rotamer is 

determined using (1), the probability of each rotamer is: 

𝑃 𝑗, 𝑠 =  
𝑒!!" !,!

𝑒!!" !,!!!
!!!

 

 (2) 

𝛽 (= 1/kT) is also optimized as a free parameter. The algorithm iterates between the two 

equations until convergence is reached.  We use a pre-calculated interaction graph in 

Rosetta (Leaver-Fay et al. 2005) to store the one-body and two-body energies, which do 

not change between iterations, so the iteration is rapid. Convergence is improved with the 

use of a memory in the updating of P, so that the probability matrix after iteration x is 

given by 𝑃!  =  λ𝑃!!! +  (1− λ)𝑃!, where λ is a free parameter between 0 and 1.  Once 

convergence is reached, the probability matrix P can be used to obtain the probability for 

every rotamer.  

 

We extended the algorithm for use with a flexible backbone and with any given amino 

acid alphabet.  Given an ensemble of backbone conformations, the probability matrix P is 

calculated for each backbone using the canonical self-consistent mean field method, 
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while allowing each position to take on any amino acid, so that the vector for that 

position contains all the rotamers for all amino acids at that position.  Paa(bb, i), the 

probability of amino acid aa occurring at position i in backbone bb, is determined for all 

amino acids at all positions in all backbones:   

𝑃!! 𝑏𝑏, 𝑖 =  

𝑃!!(𝑖, 𝑟)
!!!
!!!

𝐾!!
!

𝑃!!(𝑖, 𝑟)
!!
!!!

𝐾!
!

!"
!!!

 

 (3)  

 

where Kaa is the number of rotamers available to amino acid aa at position i, and γ is a 

free parameter optimized to 0.8 in our implementation.  Dividing the sum of probabilities 

over all amino acids by 𝐾!!
!  thus corrects for cases where numerous rotamers of an amino 

acid artificially inflate the probability of a specific amino acid occurring (Figure 2.16). 

The probability matrices for all backbones are then averaged together using a Boltzmann-

weighting scheme in a two-step process.  First, Ebb(i,aa), the weighted sum of the 

energies for rotamers of amino acid aa at position i in backbone bb, divided by 𝐾!!
! , is 

calculated (Eq. 4).  Then Ebb(i,aa) is used to find W(i), the probability of backbone bb 

occurring at position i (Eq. 5).  M is the number of (peptide) backbones in the ensemble. 

𝐸!! 𝑖,𝑎𝑎 =  
𝐸!! 𝑖, 𝑟 𝑃!!(𝑖, 𝑟)

!!!
!!!

𝐾!!
!  

 (4) 

𝑊 𝑖 =  
𝑒!! !!!(!,!!)!"

!!!!

𝑒!! !!(!,!!)!"
!!!!!

!!!
 

 (5) 



138	

	

 

Finally, a weighted average P is determined and taken to be the predicted specificity 

profile for that protease:  

𝑃 𝑖,𝑎𝑎 =  𝑃!! 𝑏𝑏, 𝑖 𝑊 𝑖
!

!!!!

  

 

 (6) 

Thus, MFPred can be used for prediction of multispecificity for both one backbone and 

multiple backbone conformations. 

 

Figure 2.16.  The need for γ in the mean-field algorithm when averaging rotamers of 
an amino acid to find the probability of that amino acid.  
(a) Background amino acid composition as defined in Rosetta database (P_AA).  This is 
the gold-standard which we attempted to match in our background profile generation (see 
Methods.3).  (b) MFPred’s background prediction with γ=0, i.e. the rotamer probabilities 
are simply summed to find the amino acid probability.  Serine and threonine are 
overrepresented as the Rosetta Dunbrack library contains many more rotamers for S and 
T, and glycine and alanine are underrepresented due to having only one rotamer each.  (c) 
MFPred’s background prediction with γ=0.8 (current settings).  This is closest to the 
P_AA distribution (Frobenius distance of 0.24). (d) MFPred’s background prediction 
with γ=1.0, i.e. the amino acid probability is simply the average of the rotamer 
probabilities.  While this is better than γ=0, alanine and glycine are now overrepresented 
and serine and threonine are underrepresented.  Frobenius distance is 0.39. 
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3.5.4. Parameter Optimization of MFPred 

To optimize four free parameters for MFPred (lambda, γ, threshold, and kT), we 

enumerated all combinations of lambda (0.25, 0.5, 0.75), γ (0, 0.2, 0.4, 0.6, 0.8, 1.0), 

threshold (5, 10, 50, 100, 250, 500), and kT (0.2, 0.4, 0.6, 0.8, 1.0).  We selected 68 

structures from the peptiDB (a peptide-protein complex database) (London et al. 2010) 

that met our criteria of having at least eight peptide residues.  The structures were input 

into MFPred as a backbone ensemble and all combinations of the above parameters were 

tested.  The resulting background specificity profiles were compared to the background 

residue distribution in the Rosetta database (Figure 2.16, Figure 2.17) and the 

combination of parameters with the lowest cosine distance from the known background 

distribution was chosen as our final set of parameters.  While varying lambda had little 

impact on the results, all other parameters had a significant, system-dependent impact on 

the results. 
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Figure 2.17. Enriching specificity profiles over background specificity profile 
improves accuracy.   
(a) Experimental specificity profiles. (b) Initial MFPred-predicted specificity profiles. (c) 
Specificity profiles divided by background specificity profile. (d) Background specificity 
profile. 
 

3.5.5. Enrichment over Background 

Since the MFPred predictions did include some noise due to the background distribution, 

we divided its predictions by the background profile to find the final prediction.  The 
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background profile was determined by averaging the frequencies of each position in the 

peptiDB profile.  We divided each amino acid frequency in the initial predicted profile by 

the frequency of that amino acid in the background profile to find the final profile (Figure 

2.17). 

 

3.5.6. Software Availability 

MFPred is available as a RosettaScripts Mover within the master branch of Rosetta. 

Sample cases for how to use MFPred can be found in S2 Note and in online Rosetta 

documentation.  

 

3.6. References 

Anon, The PyMol Molecular Graphics System. , p.Version 1.8.0.3, Schrodinger, LLC. 

Appleton, B.A. et al., 2006. Comparative Structural Analysis of the Erbin PDZ Domain 
and the First PDZ Domain of ZO-1. Journal of Biological Chemistry, 281(31), pp.22312–
22320. 

Barkan, D.T. et al., 2010. Prediction of protease substrates using sequence and structure 
features. Bioinformatics (Oxford, England), 26(14), pp.1714–22. Available at: 
http://bioinformatics.oxfordjournals.org/content/26/14/1714.abstract  

Beuming, T. et al., 2005. PDZBase: A protein-protein interaction database for PDZ-
domains. Bioinformatics, 21(6), pp.827–828. 

Boulware, K.T., Jabaiah, A. & Daugherty, P.S., 2010. Evolutionary optimization of 
peptide substrates for proteases that exhibit rapid hydrolysis kinetics. Biotechnology and 
bioengineering, 106(3), pp.339–46.  

Chapman, H.A., Riese, R.J. & Shi, G.P., 1997. Emerging roles for cysteine proteases in 
human biology. Annual Reviews in Physiology, 59, pp.63–88. 

Chen, Q. et al., 2007. Solution structure and backbone dynamics of the AF-6 PDZ 
domain/Bcr peptide complex. Protein Science, 16(6), pp.1053–1062.  

Craik, C.S., Page, M.J. & Madison, E.L., 2011. Proteases as therapeutics. Biochemical 



142	

	

Journal, 435, pp.1–16. 

Cummings, M.D. et al., 2010. Induced-fit binding of the macrocyclic noncovalent 
inhibitor TMC435 to its HCV NS3/NS4A protease target. Angewandte Chemie - 
International Edition, 49(9), pp.1652–1655. 

Delarue, M. & Koehl, P., 1997. The inverse protein folding problem: self consistent mean 
field optimisation of a structure specific mutation matrix. Pac.Symp.Biocomput., p.109. 

Ding, Y.H. et al., 1999. Four A6-TCR/peptide/HLA-A2 structures that generate very 
different T cell signals are nearly identical. Immunity, 11(1), pp.45–56. 

Dinkel, H. et al., 2011. Phospho.ELM: A database of phosphorylation sites-update 2011. 
Nucleic Acids Research, 39(SUPPL. 1), pp.D261-7. 

Domchek, S.M. et al., 1992. Inhibition of SH2 domain/phosphoprotein association by a 
nonhydrolyzable phosphonopeptide. Biochemistry, 31, pp.9865–9870. 

Dunbrack, R., 2002. Rotamer Libraries in the 21st Century. Current Opinion in Structural 
Biology, 12(4), pp.431–440. 

Elkins, J.M. et al., 2007. Structure of PICK1 and other PDZ domains obtained with the 
help of self-binding C-terminal extensions. Protein Science, 16, pp.683–694. 

Erijman, A., Aizner, Y. & Shifman, J.M., 2011. Multispecific recognition: mechanism, 
evolution, and design. Biochemistry, 50, pp.602–611. 

Felder, S. et al., 1993. SH2 domains exhibit high-affinity binding to tyrosine-
phosphorylated peptides yet also exhibit rapid dissociation and exchange. Molecular and 
Cellular Biology, 13(3), pp.1449–1455. 

Fujiwara, Y. et al., 2015. Crystal structure of afadin PDZ domain-nectin-3 complex 
shows the structural plasticity of the ligand-binding site. Protein Science, 24(3), pp.376–
385. 

Gong, W. et al., 2008. PepCyber:P~PEP: a database of human protein protein interactions 
mediated by phosphoprotein-binding domains. Nucleic Acids Res, 36(Database issue), 
pp.D679-83. 

Grigoryan, G., Reinke, A.W. & Keating, A.E., 2009. Design of protein-interaction 
specificity gives selective bZIP-binding peptides. Nature, 458(7240), pp.859–864.  

Harris, J.L. et al., 1998. Definition and redesign of the extended substrate specificity of 
granzyme B. Journal of Biological Chemistry, 273(42), pp.27364–27373. 

Havranek, J.J. & Harbury, P.B., 2002. Automated design of specificity in molecular 



143	

	

recognition. Nature Structural Biology, 10, pp.45–52. 

Heaslet, H. et al., 2007. Conformational flexibility in the flap domains of ligand-free HIV 
protease. Acta Crystallographica Section D: Biological Crystallography, 63(8), pp.866–
875. 

Hirsch, T. et al., 1998. Caspases : Enemies Within. Science, 281(August), pp.1312–1316. 

Kerekatte, V. et al., 1999. Cleavage of Poly(A)-binding protein by coxsackievirus 2A 
protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? 
Journal of virology, 73, pp.709–717. 

Khare, S.D. & Fleishman, S.J., 2013. Emerging themes in the computational design of 
novel enzymes and protein – protein interfaces. FEBS Letters, 587(8), pp.1147–1154.  

Khati, M. & Pillay, T.S., 2004. Phosphotyrosine phosphoepitopes can be rapidly analyzed 
by coexpression of a tyrosine kinase in bacteria with a T7 bacteriophage display library. 
Analytical Biochemistry, 325(1), pp.164–167. 

Kim, P. et al., 2006. Relating Three-Dimensional Structure to Protein Network Provides 
Evolutionary Insights. Science, 314(December), pp.1938–1941. 

King, C.A. & Bradley, P., 2010. Structure-based prediction of protein– peptide specificity 
in Rosetta. Cancer Research, pp.3437–3449. 

Koehl, P. & Delarue, M., 1994. Application of a Self-consistent Mean Field Theory to 
Predict Protein Side-chains Conformation and Estimate Their Conformational Entropy. 
Journal of Molecular Biology, 239(2), pp.249–275. 

Kono, H., 1996. A new method for side‐chain conformation prediction using a Hopfield 
network and reproduced rotamers. Journal of computational chemistry, 17(14), pp.1667–
1683. 

Kostallas, G., Löfdahl, P.-Å. & Samuelson, P., 2011. Substrate profiling of tobacco etch 
virus protease using a novel fluorescence-assisted whole-cell assay. PloS one, 6(1), 
p.e16136. 

Lanouette, S. et al., 2015. Discovery of substrates for a SET domain lysine 
methyltransferase predicted by multistate computational protein design. Structure 
(London, England : 1993), 23(1), pp.206–15.  

Leaver-Fay, A. et al., 2011. A generic program for multistate protein design. PLoS ONE, 
6(7). 

Leaver-Fay, A., Kuhlman, B. & Snoeyink, J., 2005. An adaptive dynamic programming 
algorithm for the side chain placement problem. Pacific Symposium on Biocomputing, 



144	

	

pp.16–27. 

Lee, C., 1994. Predicting protein mutant energetics by self-consistent ensemble 
optimization. Journal of Molecular Biology, 236(3), pp.918–939. 

Li, Q. et al., 2013. Commercial proteases: present and future. FEBS Letters, 587, 
pp.1155–1163. 

London, N. et al., 2011. Identification of a novel class of farnesylation targets by 
structure-based modeling of binding specificity. PLoS computational biology, 7(10), 
p.e1002170.  

London, N., Movshovitz-Attias, D. & Schueler-Furman, O., 2010. The Structural Basis of 
Peptide-Protein Binding Strategies. Structure, 18(2), pp.188–199. 

Lundegaard, C. et al., 2010. Major histocompatibility complex class I binding predictions 
as a tool in epitope discovery. Immunology, 130(3), pp.309–318. 

Macdonald, W.A. et al., 2003. A naturally selected dimorphism within the HLA-B44 
supertype alters class I structure, peptide repertoire, and T cell recognition. The Journal 
of experimental medicine, 198(5), pp.679–691.  

Madhusudan et al., 2002. Crystal structure of a transition state mimic of the catalytic 
subunit of cAMP-dependent protein kinase. Nature Structural & Molecular Biology, 9(4), 
pp.273–277.  

Mendes, J., Soares, C.M. & Carrondo, M.A., 1999. Improvement of side-chain modeling 
in proteins with the self-consistent mean field theory method based on an analysis of the 
factors influencing prediction. Biopolymers, 50(2), pp.111–131. 

Monahan, P. & Di Paola, J., 2010. Recombinant Factor IX for Clinical and Research Use. 
Seminars in Thrombosis and Hemostasis, 36(5), pp.498–509. 

Newman, J.R.S. & Keating, A.E., 2003. Comprehensive identification of human bZIP 
interactions with coiled-coil arrays. Science, 300(5628), pp.2097–2101. 

Pampalakis, G. & Sotiropoulou, G., 2007. Tissue kallikrein proteolytic cascade pathways 
in normal physiology and cancer. Biochimica et Biophysica Acta - Reviews on Cancer, 
1776(1), pp.22–31. 

Park, H. et al., 2016. Simultaneous Optimization of Biomolecular Energy Functions on 
Features from Small Molecules and Macromolecules. Journal of Chemical Theory and 
Computation, 12(12), pp.6201–6212.  

Pethe, M.A., Rubenstein, A.B. & Khare, S.D., 2017. Large-Scale Structure-Based 
Prediction and Identification of Novel Protease Substrates Using Computational Protein 



145	

	

Design. Journal of Molecular Biology, 429(2), pp.220–236.  

Phan, J. et al., 2002. Structural basis for the substrate specificity of tobacco etch virus 
protease. The Journal of biological chemistry, 277(52), pp.50564–72.  

Prabu-Jeyabalan, M. et al., 2003. Viability of a drug-resistant human immunodeficiency 
virus type 1 protease variant: structural insights for better antiviral therapy. Journal of 
virology, 77(2), pp.1306–15.  

Raveh, B., London, N. & Schueler-Furman, O., 2010. Sub-angstrom modeling of 
complexes between flexible peptides and globular proteins. Proteins: Structure, Function 
and Bioinformatics, 78(9), pp.2029–2040. 

Røder, G. et al., 2006. Crystal structures of two peptide-HLA-B*1501 complexes; 
structural characterization of the HLA-B62 supertype. Acta Crystallographica Section D: 
Biological Crystallography, 62(11), pp.1300–1310. 

Rögnvaldsson, T. et al., 2009. How to find simple and accurate rules for viral protease 
cleavage specificities. BMC bioinformatics, 10(1), p.149.  

Romano, K.P. et al., 2010. Drug resistance against HCV NS3/4A inhibitors is defined by 
the balance of substrate recognition versus inhibitor binding. Proceedings of the National 
Academy of Sciences of the United States of America, 107(49), pp.20986–91.  

Ruggles, S.W., Fletterick, R.J. & Craik, C.S., 2004. Characterization of structural 
determinants of granzyme B reveals potent mediators of extended substrate specificity. 
Journal of Biological Chemistry, 279(29), pp.30751–30759. 

Saro, D. et al., Structure of the third PDZ domain of PSD-95 protein complexed with 
KKETPV peptide ligand. To be Published.  

Saven, J.G. & Wolynes, P.G., 1997. Statistical mechanics of the combinatorial synthesis 
and analysis of folding macromolecules. Journal of Physical Chemistry B, 101(41), 
pp.8375–8389. 

Scheel, T. & Rice, C., 2014. Understanding the HCV life cycle paves the way for highly 
effective therapies. Nat.Med, 19(7), pp.837–849. 

Schreiber, G. & Keating, A.E., 2011. Protein binding specificity versus promiscuity. 
Current Opinion in Structural Biology, 21(1), pp.50–61. 

Schutkowski, M. et al., 2004. High-content peptide microarrays for deciphering kinase 
specificity and biology. Angewandte Chemie - International Edition, 43(20), pp.2671–
2674. 

Shapovalov, M. V & Dunbrack, R.L., 2011. A smoothed backbone-dependent rotamer 



146	

	

library for proteins derived from adaptive kernel density estimates and regressions. 
Structure, 19(6), pp.844–858. 

Shiryaev, S.A. et al., 2012. New details of HCV NS3/4A proteinase functionality 
revealed by a high-throughput cleavage assay. PloS one, 7(4), p.e35759.  

Skelton, N.J., 2003. Origins of PDZ Domain Ligand Specificity. STRUCTURE 
DETERMINATION AND MUTAGENESIS OF THE ERBIN PDZ DOMAIN. Journal of 
Biological Chemistry, 278(9), pp.7645–7654. 

Smith, C.A. & Kortemme, T., 2008. Backrub-Like Backbone Simulation Recapitulates 
Natural Protein Conformational Variability and Improves Mutant Side-Chain Prediction. 
Journal of Molecular Biology, 380(4), pp.742–756. 

Smith, C.A. & Kortemme, T., 2010. Structure-based prediction of the peptide sequence 
space recognized by natural and synthetic PDZ domains. Journal of molecular biology, 
402(2), pp.460–74.  

Smith, C. & Kortemme, T., 2011. Predicting the tolerated sequences for proteins and 
protein interfaces using RosettaBackrub flexible backbone design. PLoS ONE, 6(7), 
p.e20451. 

Sparks, A.B. et al., 1996. Distinct ligand preferences of Src homology 3 domains from 
Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proceedings of the 
National Academy of Sciences of the United States of America, 93(4), pp.1540–1544. 

Stiffler, M.A. et al., 2007. PDZ domain binding selectivity is optimized across the mouse 
proteome. Science, 317(5836), pp.364–369.  

Tawfik, D.S., 2014. Accuracy-rate tradeoffs: how do enzymes meet demands of 
selectivity and catalytic efficiency? Current opinion in chemical biology, 21, pp.73–80.  

Tonikian, R. et al., 2008. A specificity map for the PDZ domain family. PLoS Biology, 
6(9), pp.2043–2059. 

Tyka, M.D. et al., 2011. Alternate states of proteins revealed by detailed energy 
landscape mapping. Journal of molecular biology, 405(2), pp.607–18.  

Ubersax, J.A. & Ferrell, J.E., 2007. Mechanisms of specificity in protein 
phosphorylation. Nature Reviews Molecular Cell Biology, 8, pp.530–541. 

Vita, R. et al., 2015. The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 
43(D1), pp.D405–D412. 

Voigt, C.A. et al., 2001. Computational method to reduce the search space for directed 
protein evolution. Proceedings of the National Academy of Sciences, 98(7), pp.3778–



147	

	

3783. 

Vouilleme, L. et al., 2010. Engineering peptide inhibitors to overcome PDZ binding 
promiscuity. Angewandte Chemie - International Edition, 49(51), pp.9912–9916. 

Waksman, G. et al., 1993. Binding of a high affinity phosphotyrosyl peptide to the Src 
SH2 domain: crystal structures of the complexed and peptide-free forms. Cell, 72, 
pp.779–790. 

Watkins, A.M., Bonneau, R. & Arora, P.S., 2016. Side-chain conformational preferences 
govern protein−protein interactions. Journal of the American Chemical Society, 138, 
p.10386−10389. 

Waugh, S.M. et al., 2000. The structure of the pro-apoptotic protease granzyme B reveals 
the molecular determinants of its specificity. Nature structural biology, 7(9), pp.762–5.  

Wollacott, A.M. & Desjarlais, J.R., 2001. Virtual interaction profiles of proteins. Journal 
of molecular biology, 313(2), pp.317–342.  

Wu, X. et al., 1995. Structural basis for the specific interaction of lysine-containing 
proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure, 3(2), pp.215–
226. 

Xiao, X., Hall, C.K. & Agris, P.F., 2014. The design of a peptide sequence to inhibit HIV 
replication: a search algorithm combining Monte Carlo and self-consistent mean field 
techniques. Journal of biomolecular structure & dynamics, 32(10), pp.1523–1536. 

Zhang, Y. et al., 2007. Structures of a human papillomavirus (HPV) E6 polypeptide 
bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk 
HPV oncoprotein. Journal of virology, 81(7), pp.3618–3626. 

Zheng, F. et al., 2015. Computational design of selective peptides to discriminate 
between similar PDZ domains in an oncogenic pathway. Journal of Molecular Biology, 
427(2), pp.491–510. 

 

 

 

 

 

 



148	

	

3.7. S1 Note. Explanation of metrics. 

We used several metrics and distances to evaluate specificity profile predictions.   The 

Frobenius distance is defined as: 

𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠(𝐸,𝑃) = (𝐸! − 𝑃!

!

!!!

)! 

where E is a vector of experimentally determined amino acid frequencies and P is a 

vector of predicted frequencies.  To calculate the Frobenius distance of the entire profile, 

we simply flattened the experimental and predicted profiles into one vector each.   Two 

identical probability distributions have a Frobenius distance of 0, while two most 

divergent distributions have a Frobenius distance of (2n)1/2, where n is equal to the 

number of positions in the profile.   

 The Average Absolute Distance (AAD) is defined as: 

𝐴𝐴𝐷(𝐸,𝑃) =
1
𝑁 𝐸! − 𝑃!

!

!!!

 

Again, to calculate the AAD of the entire profile, we flattened each profile to a single 

vector.  AAD ranges between 0 to 1, with 0 as the best score and 1 as the worst score.  

According to Smith and Kortemme, an AAD of less than 6% (or 0.06) is considered to be 

a good prediction. 

 The cosine similarity is defined as: 

  

𝐶𝑜𝑠𝑖𝑛𝑒(𝐸,𝑃) =
𝐸!!

!!! 𝑃!

𝐸!!!
!!! 𝑃!!!

!!!
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We flattened each profile to a single vector.  Two identical specificity profiles have a 

cosine distance of 1 whereas two most divergent profiles have a similarity of 0.   

 Jensen-Shannon Divergence (JSD) is defined as: 

    

 

𝐽𝑆𝐷 𝐸,𝑃 = 𝐻 0.5𝐸! + 0.5𝑃!

!

!!!

−  0.5 𝐻 𝐸!

!

!!!

− 0.5 𝐻 𝑃!

!

!!!

 

 

where H is Shannon entropy, defined as: 

  

𝐻 𝐸 = − 𝐸! log! 𝐸!

!

!!!

 

We calculated the JSD of the entire profile by averaging the JSD of each vector (or 

position) in the profile.  A JSD of zero denotes two identical profiles, whereas a JSD of 1 

denotes two entirely divergent profiles.  While JSD is not considered a proper metric, it 

does provide information regarding how divergent two profiles are. 

 Area under the ROC curve, or AUC, as developed by Smith and Kortemme 

(Smith & Kortemme, 2010) , is another measure that we used to evaluate the profiles. We 

plotted an ROC curve for each predicted profile based on how well the most frequent 

experimental amino acids (defined as > 10%) are recapitulated in the predicted profile. 

We then calculated the area under the curve, which denotes the probability that the 

predicted profile ranks a positive amino acid as higher than a negative amino acid.  An 

AUC of 1 represents a perfect prediction, while an AUC of 0.5 is equivalent to a random 

prediction.  
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 Last, we developed a new distance, referred to as the Score-Sequence AUC Loss 

(SSAL).  This distance also takes advantage of an ROC curve, although this one is 

slightly different.  We use the experimental profile to generate a score for each cleaved 

and uncleaved sequence by taking the sum of the probabilities of each amino acid in the 

sequence occurring at its position: 

𝑆𝑐𝑜𝑟𝑒 𝑆 = 𝐸!(𝑆!)
!"#(!)

!!!

 

We then plot an ROC curve that demonstrates how well the scores rank the cleaved vs. 

uncleaved sequences and calculate its AUC.  We repeat the entire process with the 

predicted profile, and then subtract the predicted ROC-AUC from the experimental ROC-

AUC.  The result is the SSAL, which denotes how well the predicted profile 

differentiates between cleaved/uncleaved sequences vs. the experimental profile. 

 In order to transform the values of the distances to p-values, we generated 

100,000 random profiles by randomly sampling columns of our protease and PRD 

experimental profile library and randomly shuffling the amino acid identity of their 

frequencies so as to generate profiles with similar information content.  We then 

calculated their per-column and overall distance from each experimental profile for each 

of the six measures.  The ranking of a given predicted profile distance value in its given 

distance list was then used to find the p-value. 
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3.8. S2 Note. Supplementary Software. 

Running Entire MFPred pipeline: 

Inputs 

• Crystallographic pdb of protein-peptide complex  

• List of five substrate sequences to thread on 

Process 

1. Initial Relax 

a. Run on initial crystallographic pdb to get rid of internal clashes 

2. Thread Peptide-FastRelax 

a. Run this step for each substrate sequence 

3. MFPred 

a. Choose the lowest-scoring pdb from 2a for each substrate sequence and 

use a list of paths to these pdbs as the input for MFPred 

4. Distances.py (optional) 

Outputs 

• Transfac file for each pdb and averaged transfac file 

• Distance file (distances per-column and overall) 

 

Initial Relax 

 

Inputs 

 

1. <PATH_TO_XTAL_PDB> Crystallographic pdb of protein-peptide complex 
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Retrieve from pdb 

2. <PATH_TO_ENZDES_CSTFILE> (for proteases only)  

Generate yourself based on protease catalytic geometry 

3. <PATH_TO_COO_CSTFILE> (for proteases only) 

Use a modified version of sidechain_cst_3.py (at 

/source/src/apps/public/relax_w_allatom_cst/sidechain_cst_3.py in the Rosetta source 

code) to generate constraints with settings of 0.1 and 0.5 on the protease atoms. 

4. <RESFILE> 

NATRO all, NATAA peptide residues 

5. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

                <ScoreFunction name="myscore" weights="<SCORE_FUNCTION>".wts/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

               <ProteinInterfaceDesign design_chain2="0" modify_after_jump="1" 

name="pido"/> 

               <InitializeFromCommandline name="init"/> 

               <ReadResfile name="rrf"/> 

        </TASKOPERATIONS> 

        <FILTERS/> 

        <MOVERS> 
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                <AddOrRemoveMatchCsts cst_instruction="add_new" name="cstadd"/> 

                <FastRelax name="fastrelax" repeats="8" scorefxn="myscore" 

task_operations="pido,init"> 

                        <MoveMap name="mm"> 

                                <Chain bb="1" chi="1" number="2"/> 

                                <Chain bb="1" chi="1" number="1"/> 

                                <Jump number="1" setting="1"/> 

                        </MoveMap> 

                </FastRelax> 

                <TaskAwareMinMover bb="0" chi="1" jump="0" name="min_pro" 

scorefxn="myscore" task_operations="rrf"/> 

                <PackRotamersMover name="repack" task_operations="rrf"/> 

                <ConstraintSetMover name="protease_cst"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

                <Add mover_name="protease_cst"/> 

                <Add mover_name="repack"/> 

                <Add mover_name="min_pro"/> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="fastrelax"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 
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6. <PATH_TO_FLAGS> 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

 

Process 

Run on initial crystallographic pdb to get rid of internal clashes. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -jd2:ntrials 1 -nstruct 1000 -

parser:protocol <XML_FILE> -database <ROSETTA_DB> -s 

<PATH_TO_XTAL_PDB> -run:preserve_header -enzdes::cstfile  

<PATH_TO_ENZDES_CSTFILE> -constraints:cst_file <PATH_TO_COO_CSTFILE> -

resfile <PATH_TO_RESFILE> @<PATH_TO_FLAGS> 

 

Outputs 

1000 “relaxed” pdb files. Use lowest scoring pdb file as input for the next step. 

 

Remarks 
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Differences between protease and PRD: 

Protease: 

command line includes: -enzdes::cstfile  <PATH_TO_ENZDES_CSTFILE> -

constraints:cst_file <PATH_TO_COO_CSTFILE> 

<SCORE_FUNCTION>: talaris2013_cst 

PRD: 

command line does not include constraint parameters 

<SCORE_FUNCTION>: talaris2013 

 

Thread Peptide-FastRelax 

Inputs 

 

1. <STARTING_RELAXED_MODEL> Lowest scoring pdb from Initial Relax step. 

2. <PATH_TO_ENZDES_CSTFILE> (for proteases only)  

Generate yourself based on protease catalytic geometry 

3. <RESFILE> 

NATRO all, NATAA peptide residues 

4. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

      <SCOREFXNS> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 
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         <ProteinInterfaceDesign name="pido" design_chain2="0" 

modify_after_jump="1" /> 

         <InitializeFromCommandline name="init"/> 

         <ReadResfile name="rrf" filename=<RESFILE> /> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 

 

      <MOVERS> 

        <MutateResidue name="mut1" target="<PEPT_RES1>" new_res="DM1"/> 

        <MutateResidue name="mut2" target="<PEPT_RES2>" new_res="DM2"/> 

        <MutateResidue name="mut3" target="<PEPT_RES3>" new_res="DM3"/> 

        <MutateResidue name="mut4" target="<PEPT_RES4>" new_res="DM4"/> 

        <MutateResidue name="mut5" target="<PEPT_RES5>" new_res="DM5"/> 

        <MutateResidue name="mut6" target="<PEPT_RES6>" new_res="DM6"/> 

        <MutateResidue name="mut7" target="<PEPT_RES7>" new_res="DM7"/> 

        <AddOrRemoveMatchCsts name="cstadd" cst_instruction="add_new" /> 

        <FastRelax name="fastrelax" repeats="8" task_operations="pido,init"> 

        <MoveMap name="mm"> 

                        <Chain number="2" chi="1" bb="1"/> 

                        <Chain number="1" chi="1" bb="0"/> 

                        <Jump number="1" setting="1"/> 
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        </MoveMap> 

        </FastRelax> 

        <PackRotamersMover name="repack" task_operations="rrf"/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name="mut1"/> 

              <Add mover_name="mut2"/> 

              <Add mover_name="mut3"/> 

              <Add mover_name="mut4"/> 

              <Add mover_name="mut5"/> 

              <Add mover_name="mut6"/> 

              <Add mover_name="mut7"/> 

              <Add mover_name="cstadd"/> 

              <Add mover_name="repack"/> 

              <Add mover_name="fastrelax"/> 

</PROTOCOLS> 

</ROSETTASCRIPTS> 

5. <PATH_TO_FLAGS> 

-mute core.io.database 
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-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

 

Process 

Run on lowest scoring relaxed pdb from Initial Relax one time per substrate sequence.  

Substitute your peptide sequence for <PEPT_RES1>, etc. in xml script.  Add more 

<MutateResidue> movers as needed.  Generates 10 relaxed protease-peptide complexes 

with that substrate sequence threaded on.  Select lowest-scoring complex from these 10 

complexes for MFPred step. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -nstruct 10  -jd2:ntrials 1 -

parser:protocol <XML_FILE> -database /home/arubenstein/Rosetta/main/database/ 

<CONST_ARG> -s <STARTING_RELAXED_MODEL> -run:preserve_header -

overwrite @<PATH_TO_FLAGS> -score:weights <SCORE_FUNCTION> 

 

Outputs 

10 “relaxed” pdb files. Use lowest scoring pdb file as input for the next step. 
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Remarks 

Differences between protease and PRD: 

Protease: 

command line includes <CONST_ARG>: -enzdes::cstfile  

<PATH_TO_ENZDES_CSTFILE> 

<SCORE_FUNCTION>: talaris2013_cst 

PRD: 

command line does not include constraint parameters 

<SCORE_FUNCTION>: talaris2013 

 

MFPred 

Inputs 

 

1. <PATH_TO_INPUT_PDB> Lowest scoring pdb from Initial Relax step. 

2. <LIST_PDB_COMPLEXES>  

List of paths to lowest-scoring pdbs for each of the Thread Peptide runs in the 

previous step. 

3. <RESFILE> 

NATRO all, NATAA peptide residues that should not be designed (flanking residues), 

ALLAA peptide residues for which a specificity profile should be predicted. 

4. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 
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        <TASKOPERATIONS> 

                <InitializeFromCommandline name="init" /> 

                <ReadResfile name="rrf" /> 

        </TASKOPERATIONS> 

        <SCOREFXNS> 

        </SCOREFXNS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

                <GenMeanFieldMover name="boltz" threshold="5" lambda_memory="0.5" 

tolerance="0.0001" temperature="0.8" task_operations="rrf,init"/> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

                <Add mover_name="boltz"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

5. <PATH_TO_FLAGS> 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 



161	

	

-packing::ex2 

-out:file::output_virtual 

6. <EXPT_SPEC_PROFILE> (optional) 

Path to known (experimentally-derived) specificity profile.  MFPred protocol will 

output certain distances from this profile in the log if this parameter is given. 

7. <ROT_NORM_PARAM> (optional) 

This is the γ parameter described in the paper.  The default is 0.8. 

8. <BB_AVERAGE_PARAM> 

This is the γ parameter described in the paper.  The default is 0.8. 

 

Process 

Run on backbone ensemble as generated in Thread Peptide step.  Runs MFPred algorithm 

on residues that are designated as packed/designed in the TaskOperations. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -database <ROSETTA_DB> -

parser:protocol <XML_FILE> -s <PATH_TO_INPUT_PDB> -rot_norm_weight 

<ROT_NORM_PARAM> -bb_average_weight <BB_AVERAGE_PARAM> -

spec_profile <EXPT_SPEC_PROFILE> -bb_list <LIST_PDB_COMPLEXES> -

dump_transfac <PATH_TO_OUTPUT_TRANSFAC> -resfile <RESFILE> -nooutput 

true –score:weights talaris2013 @<PATH_TO_FLAGS> 

 

Outputs 
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Log contains probabilities per rotamer, probabilities per amino acid, and distances from 

experimental specificity profile (if provided).  If <PATH_TO_OUTPUT_TRANSFAC> 

is provided, dumps one transfac file per backbone, file with backbone Boltzmann 

probabilities, and one averaged transfac file for the ensemble as a whole. 

 

Distances.py 

Inputs 

1. Transfac file as output by MFPred 

2. Experimental specificity profile 

Process 

import os 

import sys 

import numpy as np 

import math 

from sklearn import metrics 

import matplotlib.pyplot as plt 

from pylab import * 

 

def binarizeList ( firstList ): 

    binary_freq = [] 

 

    choose_val = 0.10 
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    max_val = max(firstList) 

    if max_val < 0.10: 

        if max_val > 0.09: 

          choose_val = 0.09 

        elif max_val > 0.08: 

            choose_val = 0.08 

        elif max_val > 0.07: 

            choose_val = 0.07 

 

    for val in firstList: 

        if val > choose_val: 

            binary_freq.append( 1 ) 

        else: 

            binary_freq.append( 0 ) 

    return binary_freq 

 

def areaUnderCurve ( firstList, secondList ): 

    binary_freq = binarizeList( firstList ) 

    fpr, tpr, _ = metrics.roc_curve(binary_freq, secondList) 

    auc = metrics.auc(fpr,tpr) 

    return auc 

 

def shannonEntropy( firstList ): 
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    sE = -1.0 * np.sum( [ p * math.log(p,2) for p in firstList if p != 0.0 ] ) 

    return sE 

 

def JSDivergence( firstList, secondList ): 

 

    firstSE = shannonEntropy( firstList ) 

 

    secondSE = shannonEntropy( secondList ) 

 

    combList = [ 0.5 * fL + 0.5 * sL for fL,sL in zip(firstList, secondList) ] 

 

    combSE = shannonEntropy( combList ) 

 

    return combSE - 0.5 * firstSE - 0.5 * secondSE 

 

def cosineDist( firstList, secondList): 

 

    dotP = np.dot(firstList, secondList) 

 

    sqrt_1 = math.sqrt( np.sum( np.power( firstList,2 ) ) ) 

    sqrt_2 = math.sqrt( np.sum( np.power( secondList,2 ) ) ) 

 

    return dotP/(sqrt_1 * sqrt_2) 
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def frobDist( firstList, secondList): 

 

    diff_lists = np.subtract(firstList,secondList) 

    terms = np.power( diff_lists,2) 

    return math.sqrt( np.sum( terms ) ) 

 

def aveAbsDist( firstList, secondList ): 

 

    diff_lists = np.fabs( np.subtract( firstList, secondList) ) 

    return sum( diff_lists ) / len( diff_lists ) 

 

def readSpecProfileList( filename ): 

    with open(filename) as transfac_file: 

        transfac = transfac_file.readlines() 

 

    motifWidth = len(transfac)-2 

 

    aaAlpha = transfac[1].split()[1:] 

 

    freq = [{k: 0.0 for k in aaAlpha} for i in range(motifWidth)] 

 

    t_read = transfac[2:] 
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    for pos,line in enumerate( t_read,0 ): 

        for aa_ind,f in enumerate( line.split()[1:], 0): 

            freq[pos][aaAlpha[aa_ind]] = float(f) 

 

    freqList = [ [ val for key,val in sorted(pos.iteritems()) ] for pos in freq ] 

 

    return freqList 

 

def main(args): 

    infile = args[1] 

    infile_expt = args[2] 

 

 

    expt = os.path.basename(infile_expt).rstrip() 

    expt = expt.rsplit('.',1)[0] 

 

    tokens=infile.rsplit('.',1) 

    file=tokens[0] 

 

    outfile= '%s_dist.txt' % (file) 

    outfile_heat= '%s_heat.png' % (file) 
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    freq_in = readSpecProfileList( infile ) 

    freq_expt = readSpecProfileList( infile_expt ) 

    nda_freq_in = np.array( [ freq_in] ) 

    nda_freq_expt = np.array( [ freq_expt] ) 

    flat_freq_in = np.ndarray.flatten( nda_freq_in ) 

    flat_freq_expt = np.ndarray.flatten( nda_freq_expt ) 

 

    c = [ cosineDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    f = [ frobDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    a = [ aveAbsDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    jsd1 = [ JSDivergence ( i, g ) for i,g in zip( freq_in, freq_expt )]  

    auc = [ areaUnderCurve ( i, g ) for i, g in zip( freq_expt, freq_in )] 

    avg_c = cosineDist( flat_freq_in, flat_freq_expt ) 

    avg_f = frobDist( flat_freq_in, flat_freq_expt ) 

    avg_a = aveAbsDist( flat_freq_in, flat_freq_expt ) 

    avg_jsd = np.sum(jsd1) / len(jsd1) 

    avg_auc = np.sum(auc) / len(auc) 

 

    c.append(avg_c) 

    f.append(avg_f) 

    a.append(avg_a) 

    jsd1.append(avg_jsd) 

    auc.append(avg_auc) 
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    dist_out = open(outfile,"w") 

 

    dist_out.write("Metric\t") 

    dist_out.write("\t".join([ "Col{0}".format(i) for i in xrange(1,len(c)) ])) 

    dist_out.write("\tAvg\nCosine\t") 

 

    dist_out.write("\t".join(map(str,c))) 

    dist_out.write("\nFrobenius\t") 

    dist_out.write("\t".join(map(str,f))) 

    dist_out.write("\nAAD\t") 

    dist_out.write("\t".join(map(str,a))) 

    dist_out.write("\nJSD\t") 

    dist_out.write("\t".join(map(str,jsd1))) 

    dist_out.write("\nAUC\t") 

    dist_out.write("\t".join(map(str,auc))) 

    dist_out.write("\n") 

 

    dist_out.close() 

 

if __name__ == "__main__": 

  main(sys.argv) 

Outputs 
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Distances file: the name of this file is <INPUT_FILE>_dist.txt.  Contains one line per 

metric.  Each line contains one value per column and the last value is the average of the 

columns. 

Non-MFPred pipeline software – used for controls and/or optimization of protocol: 

 

Backbone Ensemble Generation 

 

Thread Peptide Alone (pre-flexpepdock or pre-backrub) 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -nstruct 1 -jd2:ntrials 1 -

parser:protocol <XML_FILE> -database <ROSETTA_DB> <CONST_ARG> -s 

<STARTING_RELAXED_MODEL> -run:preserve_header -overwrite 

@<PATH_TO_FLAGS> 

 

 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS/> 

        <TASKOPERATIONS> 

                <InitializeFromCommandline name="init"/> 

                <ReadResfile filename=”<RESFILE>” name="rrf"/> 

        </TASKOPERATIONS> 

        <FILTERS/> 
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        <MOVERS> 

                <MutateResidue name="mut1" target="<PEPT_RES1>" new_res="DM1"/> 

                <MutateResidue name="mut2" target="<PEPT_RES2>" new_res="DM2"/> 

                <MutateResidue name="mut3" target="<PEPT_RES3>" new_res="DM3"/> 

                <MutateResidue name="mut4" target="<PEPT_RES4>" new_res="DM4"/> 

                <MutateResidue name="mut5" target="<PEPT_RES5>" new_res="DM5"/> 

                <MutateResidue name="mut6" target="<PEPT_RES6>" new_res="DM6"/> 

                <MutateResidue name="mut7" target="<PEPT_RES7>" new_res="DM7"/> 

              <AddOrRemoveMatchCsts cst_instruction="add_new" name="cstadd"/> 

              <PackRotamersMover name="repack" task_operations="rrf,init"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

                <Add mover_name="mut1"/> 

                <Add mover_name="mut2"/> 

                <Add mover_name="mut3"/> 

                <Add mover_name="mut4"/> 

                <Add mover_name="mut5"/> 

                <Add mover_name="mut6"/> 

                <Add mover_name="mut7"/> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="repack"/> 

        </PROTOCOLS> 
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</ROSETTASCRIPTS> 

Resfile: 

NATRO all, NATAA peptide residues 

 

Flags: 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

FlexPepDock 

Command line: 

<ROSETTA_BIN>_scripts.static.linuxgccrelease -parser:protocol 

~/mean_field/xml/flexpepdock.xml -database <ROSETTA_DB> -s 

<STARTING_THREADED_MODEL>  -ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 -

nstruct 10 -enzdes:cstfile <PATH_TO_ENZDES_CSTFILE> -score:weights 

talaris2013_cst -run:preserve_header -packing:use_input_sc 

 

Sample xml: 

<ROSETTASCRIPTS> 
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        <TASKOPERATIONS> 

        </TASKOPERATIONS> 

        <SCOREFXNS> 

        </SCOREFXNS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

                <AddOrRemoveMatchCsts name="cstadd" cst_instruction="add_new" /> 

                <FlexPepDock name="fpd" pep_refine="1" /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="fpd"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Backrub 

Command line: 

<ROSETTA_BIN>backrub_cst.linuxgccrelease -run:preserve_header -score:weights 

talaris2013_cst -database <ROSETTA_DB> -s <STARTING_THREADED_MODEL> -

ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 -backrub:minimize_movemap 
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<MOVEMAP_FILE> -backrub:ntrials 10000 -backrub:pivot_residues 215 216 217 218 

219 220 221 222 223 224 -overwrite -enzdes:cstfile <PATH_TO_ENZDES_CSTFILE> -

packing:use_input_sc 

 

Movemap: 

RESIDUE * CHI 

JUMP * YES 

CHAIN 2 BBCHI 

 

Backrub_cst app: 

This app is a version of the general backrub app that includes Enzdes style constraint as a 

mover.  Currently, the general backrub app has been moved to a new Mover called 

BackrubProtocol mover – had this been available at the time of benchmarking, this would 

have been used instead. 

 

Enumerate_dihedral 

Command line: 

<ROSETTA_BIN>enumerate_dihedral.linuxgccrelease -database <ROSETTA_DB> -s 

<STARTING_RELAXED_MODEL> -anchor_res <FIXED_RES_P1> -

run:preserve_header 

 

Enumerate dihedral app: 
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This app is in my pilot apps folder within the Rosetta source code 

(Rosetta/main/source/src/apps/pilot/arubenstein/enumerate_dihedral.cc). 

 

Clustering via AmberTools cpptraj: 

 

Run tleap to convert pdb to topology and coordinate files: 

tleap.in: 

source leaprc.ff14SB 

source leaprc.phosaa10 

loadAmberParams frcmod.ionsjc_tip3p 

pdb = loadpdb <PDB_NAME> 

addions pdb Cl- 0 

addions pdb Na+ 0 

#solvatebox pdb TIP3PBOX 10.0 

saveamberparm pdb <PDB_NAME>.top <PDB_NAME>.crd 

 

Run: 

tleap -f tleap.in 

 

Run cpptraj to cluster: 

cpptraj.in file: 

parm <TOPO_FILE_1> 

trajin <COORD_FILE_1> 
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parm <TOPO_FILE_2> 

trajin <COORD_FILE_2> 

. 

. 

. 

cluster hieragglo clusters <N_CLUSTERS> rms :<PEPT_BEG_RES>-

<PEPT_END_RES> repout <N_CLUSTERS> repfmt pdb 

 

Run: 

cpptraj -i 'cpptraj.in' 

 

Multispecificity Prediction Controls for MFPred 

 

Monte-Carlo (pepspec) 

Command-line: 

<ROSETTA_BIN>mc_no_sa.linuxgccrelease -database <ROSETTA_DB> -

pepspec:pdb_list <BACKBONE_ENSEMBLE_LIST> -save_low_pdbs false -

pepspec:n_peptides 1 -pepspec:use_input_bb true -ex1 -ex2 -extrachi_cutoff 0 -

pepspec:diversify_lvl 50 -pepspec:run_sequential  -use_input_sc 

 

Mc_no_sa app: 

This app is a version of the general pepspec app that includes profiling (necessary to 

extract running times and determine speedup). 
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Genetic Algorithm (sequence_tolerance) 

Command-line: 

<ROSETTA_BIN>sequence_tolerance_control.linuxgccrelease -database 

<ROSETTA_DB> -s <MODEL_FROM_BACKBONE_ENSEMBLE> -ex1 -ex2 -ex1aro 

-ex2aro -extrachi_cutoff 0 -ms:generations 5 -ms:pop_size 2000 -ms:pop_from_ss 1 -

ms:checkpoint:prefix <PREFIX> -ms:checkpoint:interval 200 -ms:checkpoint:gz -

seq_tol:fitness_master_weights 1 1 1 2 -resfile <RESFILE> 

 

Resfile: 

NATAA residues according to seqtol_resfile.py, ALLAA peptide residues 

 

Sequence_tolerance_control app: 

This app is a version of the general sequence_tolerance app that includes profiling 

(necessary to extract running times and determine speedup). 
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Chapter 4: Biophysical determinants of mutational robustness in a viral molecular 

fitness landscape 

 

4.1. Abstract  

Biophysical interactions between proteins and peptides are key determinants of genotype-

fitness landscapes, but an understanding of how molecular structure and residue-level 

energetics at protein-peptide interfaces shape functional landscapes remains elusive. 

Combining information from yeast-based library screening, next-generation sequencing 

and structure-based modeling, we report comprehensive sequence-energetics-function 

mapping of the specificity landscape of the Hepatitis C Virus (HCV) NS3/4A protease, 

whose function – site-specific cleavages of the viral polyprotein – is a key determinant of 

viral fitness. We elucidate the cleavability of 3.2 million substrate variants by the HCV 

protease and find extensive clustering of cleavable and uncleavable motifs in sequence 

space indicating mutational robustness, thereby providing a plausible molecular 

mechanism to buffer the effects of low replicative fidelity of this RNA virus. Specificity 

landscapes of known drug-resistant variants are similarly clustered. Our results highlight 

the key and constraining role of molecular-level energetics in shaping plateau-like fitness 

landscapes from quasi-species theory. 

 

4.2. Introduction 

RNA viruses, e.g., influenza, Hepatitis C Virus (HCV) and Human Immunodeficiency 

Virus (HIV), are under a heavy mutational load due to the extremely high error-rates of 

their RNA polymerases(Domingo and Holland, 1997; Holland et al., 1982; Lauring et al., 
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2013). As a result of this low replication fidelity, these viruses exist as a population of 

variants called quasispecies (Andino and Domingo, 2015; Eigen, 1993), even within a 

single host individual (Cristina et al., 2007). While this genetic diversity and a large 

population size is believed to increase viral adaptive potential against antiviral 

therapies(Elde et al., 2012; Goldberg et al., 2012; Wilke et al., 2001), low replication 

fidelity may also lead to too many mutations, causing an “error catastrophe” and 

extinction(Eigen, 2002; Lauring and Andino, 2010). The underlying biomolecular 

structures and interactions in the virus must, therefore, be robust to genetic variability 

such that they provide a buffer against the deleterious impacts of a high mutational load 

(Elena et al., 2006; Masel and Siegal, 2009). Tawfik and co-workers have hypothesized 

that viral proteins possess “gradient robustness” in which individual mutations have small 

and largely additive effects on stability leading to a slower loss of function compared to 

“threshold robustness” exhibited by proteins in general (Tokuriki et al., 2009). It has been 

argued that mutational robustness may itself promote adaptiveness if the number of 

phenotypes accessible to a variant through mutation is smaller than the total number of 

phenotypes possible(Draghi et al., 2010; Wilke and Adami, 2003). How is mutational 

robustness encoded at the molecular level in RNA viruses such as HCV? How is 

structural integrity and interaction fidelity maintained in the face of a large mutational 

load, and what, if any, are the limits imposed by the underlying molecular interactions on 

mutational robustness and adaptive potential? The degeneracy of the genetic code, the 

thermodynamic and kinetic stabilities of RNA and proteins, and the presence of 

molecular chaperones, may all contribute to the robustness of the structures of individual 

viral biomolecules (Lauring et al., 2013). However, how viral protein-based interactions, 
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especially those that are critical for viral propagation, encode “fuzziness” (Tokuriki et al., 

2009) leading to mutational robustness at the molecular level is not well understood.  

 

At the molecular level, the balance between mutational robustness and functional 

plasticity is encapsulated in the notion of molecular fitness landscapes(Smith, 1970), 

which are high-dimensional maps that relate the function of individual biomolecular 

variants to their functional and/or evolutionary fitness (de Visser and Krug, 2014; Wright, 

1931). Analysis of mutational trajectories on these landscapes provides insight into the 

constraints placed on evolution by the physiochemical properties of biomolecules, 

allowing, in principle, reconstruction as well as forward prediction of molecular 

evolution (Bridgham et al., 2006; Harms and Thornton, 2013; Kondrashov and 

Kondrashov, 2015; Romero and Arnold, 2009; Weinreich et al., 2006). The molecular 

fitness landscape has long been theoretically postulated (Smith, 1970) and recent 

empirically determined sequence-function mappings of proteins (Bandaru et al., 2017; 

Firnberg et al., 2014; Fowler et al., 2010; Hietpas et al., 2011; Kim et al., 2013; 

McLaughlin et al., 2012; Podgornaia and Laub, 2015; Sarkisyan et al., 2016; Wrenbeck et 

al., 2017) have enabled the partial construction of fitness landscapes. These reconstructed 

landscapes permit testing of possible evolutionary scenarios and provide insight into 

properties such as mutational robustness and non-additivity (epistasis) of mutational 

effects (Blanquart and Bataillon, 2016; Breen et al., 2012; Harms and Thornton, 2013; 

Hartl, 2014; Sailer and Harms, 2017a; Thyagarajan and Bloom, 2014; Weinreich et al., 

2013; Wu et al., 2016). Empirical sequence-function relationships also enable 
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biomolecular engineering for new or improved functions (Jenson et al., 2017; Klesmith et 

al., 2015; McLaughlin et al., 2012; Tinberg et al., 2013; Whitehead et al., 2012).  

 

Typically, sequence-function mapping of proteins and protein-protein interactions 

described above involves partial enumeration of the possible sequence diversity (for 

example, all single mutations and a subset of double mutations at a large number of 

protein residue positions) and high-throughput functional evaluation coupled with deep 

sequencing(Fowler and Fields, 2014; Klesmith et al., 2017; Reich et al., 2015). Statistical 

and/or biophysical models can be used to make inferences about the regions of sequence 

space not sampled(Jenson et al., 2017; Klesmith et al., 2017). However, comprehensive 

construction of the fitness landscape requires enumeration and evaluation of the complete 

sequence diversity (all higher-order mutations at all residue positions). Laub and co-

workers have pioneered studies in which the entire combinatorial diversity is 

experimentally sampled, albeit at a smaller number of positions(Aakre et al., 2015; 

Podgornaia and Laub, 2015). The astronomical size of sequence space, however, makes 

the comprehensive experimental evaluation of sequence-function landscapes with any 

one experimental approach difficult. Computational biophysical methods may, in 

principle, assist in creation and analysis of functional and fitness landscapes (Rodrigues 

et al., 2016).  Indeed, evolutionary landscapes of simple protein models, such as lattice 

models, have been extensively investigated using biophysical evolutionary theory and 

computational simulations(Bloom et al., 2004; Bornberg-Bauer and Chan, 1999; DePristo 

et al., 2005; Ding and Dokholyan, 2006; Drummond and Wilke, 2008; Echave and Wilke, 

2017; Manhart and Morozov, 2015; Sailer and Harms, 2017b; Sikosek and Chan, 2014; 
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van Nimwegen et al., 1999; Yang et al., 2012), and deep connections with population 

genetics theories have been discovered (Bershtein et al., 2017; Echave and Wilke, 2017; 

Serohijos and Shakhnovich, 2014). While pioneering and crucial insights have been 

obtained in these studies, chemically realistic atomic-resolution structure-based 

elucidation of functional landscapes has not been performed so far, due both to high 

computational cost as well as inaccuracies in simulation force fields which preclude 

accurate biophysical evaluation of mutational effects on protein-protein interactions.  

 

Here, we use a combination of experimental (biochemical) and computational techniques 

to elucidate the specificity landscape of the interaction between HCV NS3/4A protease 

enzymes and its substrates. This enzyme-substrate interaction is key for viral maturation 

as it cleaves exclusively at four specific sites in the viral polyprotein (Figure 3.1A) to 

release individual non-structural proteins(Scheel and Rice, 2013), and also mediates 

inactivation of key human immunity proteins(Meylan et al., 2005). The cleavage 

specificity of the protease is thus a key determinant of viral fitness, and its proper 

functioning includes negative specificity – the lack of cleavage of non-canonical sites on 

the viral protein and of most host cell proteins (Figure 3.1A). The molecular interactions 

underlying both positive and negative specificities must be robust to mutations as the 

HCV virus RNA polymerase has a high error-rate (Powdrill et al., 2011), but how and 

whether this robustness is encoded in the protease-substrate interactions is not known. 

Using yeast surface display, next-generation sequencing and a machine-learning 

approach which combines features from experimental data and atomistic computational 

simulations (utilizing the Rosetta and Amber force fields) that we recently developed 
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(Pethe et al., 2017; Rubenstein et al., 2017), we construct the specificity landscape (with 

cleavability assignments made for 3.2 million substrate pentapeptide sequences) of the 

HCV NS3/4A protease and three of its known drug-resistant variants(Romano et al., 

2012). We demonstrate that energetic features of protease-substrate interactions 

inherently encode mutational robustness, and that the connectivity patterns in the 

specificity landscape may act as a “biophysical capacitor” for maintaining protease 

function in the face of high mutational load.  

 

Figure 3.1. Overview of experimental workflow, validation of results 
(A) The HCV viral polyprotein depicting marked biological cleavage sites for the HCV 
NS3/4A protease (B) overview of the experimental and computational workflow. (C) 
Validation of FACS gates for cleaved, partially cleaved and uncleaved sequences using 
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yeast surface display assay (D) Sequences taken from in vivo samples of HCV patients 
(8726) as compared to (E) sequences determined by our assay as cleaved(7472), (F) as 
partially cleaved (8737) and (G) as uncleaved (14702) 
 
4.3. Results 

HCV NS3/4A protease is known to cleave four canonical cleavage sites on the hepatitis C 

viral polyprotein (Fig. 3.1A), causing a cascade of viral assembly and maturation events. 

These cleavages (and a lack of cleavage of other parts of the polyprotein) are thus, critical 

for viral fitness. The high mutational load on the HCV polyprotein can lead to sequence 

variation in both the protease and substrate regions (Geller et al., 2016a). At the protein 

level, the distribution of mutational effects in a folded protein (protease) are modulated 

by both the thermodynamic stability and function (binding and cleavage), while the 

peptide substrate regions, which are found in flexible linker regions of the HCV 

polyprotein and connect component proteins, do not have a native tertiary structure. 

Therefore, we reasoned that a more direct sequence-cleavability mapping can be made 

for diversity in the substrate region without the need to additionally deconvolute the 

contribution from stability effects on tertiary structure. Secondly, it is more feasible to 

enumerate and evaluate by sequencing the substrate combinatorial diversity due to its 

shorter length (~7 residues) compared to the protease (>200 residues). Therefore, we 

mapped the viral protease-substrate interaction landscape for the HCV NS3/4A protease 

by considering all possible pentapeptide sequence combinations in its sequence 

recognition site at positions P6 through P2 following the Schechter and Berger 

nomenclature(Schechter and Berger, 1967). Positions P1 and P1’, between which the 

scissile bond is present, were maintained as C and A, respectively, in this study. In the 

rest of this chapter, we refer to individual pentapeptide patterns (e.g. the canonical 



184	

	

cleavage sites DEMEE, EDVVC, ECTTP, ALVTP) and omit the identity of the P1,P1’ 

residues. 

 

4.3.1. Exploration of the (P6-P2) specificity landscape of the HCV NS3/4A protease 

reveals a diverse specificity profile  

 

To mimic the viral intrachain arrangement of substrate libraries and the protease, we 

utilized a modified version of the assay described by Iverson, Georgiou and co-

workers(Yi et al., 2013) as depicted in Figure 3.1B. A mutagenic library was created 

incorporating degenerate codons at P6-P2 specificity defining substrate positions 

(Benatuil et al., 2010; Kowalsky et al., 2015). In our assay, substrates are transported to 

the surface of yeast cells in a cleavage-dependent manner: the degree of cleavage is 

estimated by measuring the relative levels of substrate-flanking FLAG and HA tags using 

fluorescent, labeled antibodies. We have previously used this assay to test known and 

novel substrates of the HCV protease (Pethe et al., 2017). A first round of yeast surface 

display assay and Fluorescence Assisted Cell Sorting (FACS) was performed with an 

inactive protease variant (S139A) to select for high expression of library variants, for 

removing sequences containing stop codons in the substrate region, and to deplete 

substrate sequences that are cleaved by yeast ER proteases (Li et al., 2017).  
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Figure 3.2. Threshold determination  
(A) Threshold vs. percentage of initial overlap between cleaved and uncleaved sequences 
for all variants. The final threshold beyond which all other thresholds have a percentage 
overlap that is <= 10% is marked with an arrow (B) Duplicate population analysis. 
Normalized error is calculated for technical duplicates of cleaved samples by the formula: 
| (counts_S2- counts_S)|/ counts_S2, where sample S and S2 are technical duplicates (C) 
the Area Under the Curve for the ROC plot, when the SVM is used to classify cleaved 
versus uncleaved sequence pools at various count thresholds. 
 
The resulting substrate variants from the pre-selection were subjected to rounds of yeast 

surface display assay and FACS with an active protease containing construct to select 

cleaved, partially cleaved and uncleaved variants using three sorting gates (Figure 3.1B), 

based on the relative levels of anti-HA and anti-FLAG fluorescence values (FLAG/HA 
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ratio, ranging between 0, for completely cleaved, and 1, for completely uncleaved). 

Sorting gates were defined based on the distribution of populations observed for known 

cleaved and uncleaved sequences (Pethe et al., 2017). This procedure was coupled with 

rounds of growth and selection to improve signal:noise for variants in each pool. 

Sequence profiles of the unselected population and isolated functional variants were 

determined using next-generation sequencing technology (Illumina NextSeq). Analysis of 

unique sequences in all sequenced pools showed that we identified a total of ~1.3 million 

sequences corresponding to ~30% of the possible amino acid diversity (3.2 million; 

Supplementary Methods). Analysis of sequencing and technical duplicates as well as 

overlap between the sequence pools was used to determine a count threshold (raw count 

11) to remove noise from the sequencing data (Methods, Figure 3.2). Based on these 

criteria, we identified 7472, 8737 and 14702 unique pentapeptide sequences in the 

cleaved, partially cleaved and uncleaved pools. In parallel, we performed Rosetta 

simulations on all 3.2 million sequences in the P6-P2 region, and used a Support Vector 

Machine to predict the complete protease-substrate interaction landscape using sequence 

information procured from the aforementioned library and Rosetta-generated energetic 

features (Figure 3.1B).  
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Figure 3.3. 2D plots of anti HA and anti FLAG antibody signals seen in the flow 
cytometry assay  
(A) Display controls (B) Epistatic pathway validation (C) Drug resistant mutant 
validation plots 
 

Several novel substrates identified from the three variant populations were tested as 

clonal populations in the yeast surface display assay system (Figure 3.1C, Figure 3.3) to 

validate that individual sequences fall into the gates used for selection from the library 

(Figure 3.4A-C). A subset of these sequences was also tested in vitro to ensure that the 
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cleavage properties observed in the yeast system were reproduced with purified protease 

and substrates (Figure 3.4D). 

 

Figure 3.4. Flow cytometry 2D plots showing anti HA and anti FLAG stains for cell 
populations collected after enrichment round three  
(A) Plot showing gate and cell population for cleaved (B) partially cleaved and (C) 
uncleaved populations (D) in vitro gel based assay using an MBP- GST fusion protein 
(70KDa). Upon overnight incubation with increasing concentrations of the protease – 500 
nM, 700 nM, 1	 µM, 2µM, 3µM, 4µM (well#1 through #6) results in cleavage for 
substrate TLIIPCASHL whereas HNTSNCASHL displays no cleavage 
 
We next analyzed the profiles of sequences in each pool. For the cleaved sequence pool, 

the obtained substrate sequence ensemble has greater diversity compared to substrates 

identified from viral genomes sequenced from patient populations (Supplementary 

Methods, Figure 3.1D). For example, we observe that a more diverse subset of amino 

acids is tolerated at substrate positions P6 and P5 in our cleaved and partially cleaved 

pools (Figure 3.1E, F) whereas the patient isolated genomes display a high enrichment of 

Asp and Glu specifically at these positions. Another notable difference observed was the 

enrichment of small hydrophilic residues (Figure 3E, F), Ser (at P5) and Thr (at P4) in the 
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cleaved and partially cleaved populations, in contrast to enrichment at P3 and P2 in the 

uncleaved population (Figure 3.1G). Strikingly, we found prolines enriched at position P2 

in the cleaved and partially cleaved populations and at P3 in the uncleaved populations, 

which corresponds well with the fact that 2 out of 4 canonical cleaved sequences have 

proline at P2 (ECTTP, ALVTP). While some of the above trends are also reflected in the 

sequences we tested in the course of our method validation (Figure 3.1C), it is evident 

that individual positional enrichments cannot be directly used to predict the pool 

assignments of individual sequences. For example, His is enriched at P6 in the cleaved 

sequence pool, however the sequence HNTSN is experimentally determined to be in the 

uncleaved pool (Figure 3.1C, Figure 3.4). While individual positional preferences of 

amino acids are useful, these results clearly indicated that molecular recognition between 

the protease and substrate pools is highly (sequence) context-dependent. We concluded 

that interactions between amino acids at various substrate positions (mediated possibly 

through interaction networks in the protease) influence the cleavability, thereby 

motivating the need for an analysis of the determined specificity landscape using 

properties of whole pentapeptide sequences. 
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Figure 3.5. Force directed graph representation of experimental landscape; 
Neighbor analysis 
(A) Force - directed graph of amino acid sequence space. Blue nodes are cleaved, red are 
uncleaved, and black is partially cleaved. Edges connect nodes that are within one 
hamming distance of each other (B) Force- directed graph of cleaved sequence. Colors 
denote clusters which are shown as specificity profiles outlined in the same color as the 
corresponding cluster (C) Frequency of neighbors for cleaved, partially cleaved, and 
uncleaved sequences denoting cleaved neighbors shown in blue bars, uncleaved 
neighbors depicted in red and partially cleaved neighbors depicted as black. 
 

4.3.2. Clustering among cleaved, partially cleaved and uncleaved substrates  

To visualize the functionally labeled sequence space of the experimentally derived 

substrates, we generated a force-directed graph (Figure 3.5A) (Amat, 2016; Jacomy et al., 

2014) in which each node represents a sequence and is colored according to the 

functional pool to which it belongs. Nodes are connected by an edge if they differ by one 
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amino acid (Hamming distance = 1). Cleaved substrates exhibit significant clustering in 

the resulting graph (Figure 3.5A). To examine the landscape in greater detail around the 

cleaved sequences, we generated a sub-graph of the cleaved sequences (Figure 3.5B). We 

identified four clusters in this graph using the Gephi (Amat, 2016) modularity algorithm 

and determined corresponding profiles for each cluster.  One identified cluster is clearly 

related to a canonical substrate, DEMEE. The other three clusters appear to have 

similarities with the other three canonical substrates (ALVTP, ECTTP, and EDVVC) but 

are less distinct from each other compared to the DEMEE cluster. These results indicate 

that the four canonical cleaved sites in the viral polyprotein are all members of 

mutationally robust clusters. Single amino acid changes within the cluster lead to other 

cleaved sequences, thereby buffering the impact of the heavy mutational load on the 

virus. 

 

To determine if this clustering behavior observed in the cleaved sequence pool is also 

found in the partially cleaved and uncleaved pools, we calculated the fraction of 

neighbors for sequences with neighbors that belong to the same functional pool (Figure 

3.5C). We find that similar to cleaved sequences, uncleaved sequences are also most 

frequently surrounded by uncleaved neighbors indicating clustering behavior for this 

functional pool as well. On average, cleaved sequence neighbors are 66.4% cleaved, and 

uncleaved sequence neighbors are 83.3% uncleaved. Partially cleaved sequences are the 

least clustered among the three pools, having on average 53% neighbors belonging to the 

same pool. These distributions indicate that in the specificity landscape, clusters of 

partially cleaved sequences surround clusters of cleaved and uncleaved ones.  
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Figure 3.6. Graph metrics for WT and mutant protease 
Cleaved (blue), uncleaved (red) and partially cleaved (black) graph metrics for (A) wild 
type HCV (B) randomly generated graph (C) R155K/A156T/D168A triple mutant (D) 
A156T and (E) D168A. Partially cleaved sequences generally have higher pageranks and 
lower eccentricity. Number of mutations vs. fraction cleaved variants reached for (F) 
experimental and (G) SVM- generated graphs. (H) Degree distribution for cleaved 
sequences in SVM derived graph (I) degree distribution for uncleaved sequences 
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To delineate how the three functional populations, which appear to be individually 

clustered in sequence space, are connected to each other, we used the PageRank metric 

(Brin and Page, 1998). This metric predicts the likelihood of reaching a node given a 

random walk on the substrate specificity landscape starting from a chosen sequence. 

Strikingly, partially cleaved substrates have higher pageranks (Figure 3.6A) than either 

cleaved or uncleaved substrates, indicating that they are most likely to be reached on long 

unbiased evolutionary trajectories starting from the canonical cleaved sequence DEMEE, 

the sequence that was used as the template for library generation. These connectivity 

patterns imply that partially cleaved node clusters may act as an evolutionary buffer on 

the substrate landscape, thereby enhancing robustness.  
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Figure 3.7. Force – directed graphs for WT and mutant proteases 
 (A) Randomly generated graph (B) wild type HCV protease (C) R155K/A156T/D168A 
triple mutant (D) D168A variant (E) A156T mutant 
 
The graph generated by the experimentally derived sequences is incomplete (~30,000 

nodes out of the 3.2 million possible). To test if the observed clustering and PageRank 

distributions are an artifact of the limited sampling in the experiment, we generated a 
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control random graph (Figure 3.7A) with the same number of nodes and edges, but 

having a randomly rewired connectivity. Both partially cleaved and uncleaved sequences 

are found to have higher pageranks than cleaved sequences in this random graph, 

indicating that the higher pageranks of partially cleaved sequences than cleaved and 

uncleaved sequences in the original experimental graph is significant.  

 

Figure 3.9. Structural basis for SVM prediction & validation 
 (A) Validation assay performed for three predicted cleaved and uncleaved sequences 
using a yeast surface display based technique (B) and (C) depict the volume occupied by 
TATTA and EDVVC, EDVVC occupies an optimal volume, making good contacts with 
the protease residue side chains. TATTA fits in the available space but does not make 
optimal contacts, thus resulting in suboptimal interaction energetics making TATTA a 
suboptimal substrate (D) Peptide (surface shown in blue) “FWPPM” sterically clashing 
against the protease chain (E) Structure of two models, ECTIP (cleaved) and 
RPGPG(uncleaved) 
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Figure 3.8. SVM generation workflow, contingency table and validation results 
(A) Schematic workflow for SVM generation (B) Sub-graph of SVM predicted cleaved 
sequences with a distance > 2 from the SVM hyperplane. Experimental cleaved 
sequences are dark blue and experimental partially cleaved sequences are depicted as 
black. (C) Contingency table for SVM prediction (D) ROC plot of cross-validation on 
training set for SVM (E) Flow cytometry plot for ECTIP (SVM- predicted cleaved) (F) 
Flow cytometry plot for RPGPG (SVM – predicted uncleaved) 
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4.3.3. Energetic features derived from Rosetta modeling enable reconstruction of the 

complete protease-pentapeptide substrate landscape  

While the experimentally-derived populations of the cleaved, partially cleaved and 

uncleaved sequences revealed striking clustering patterns in sequence space, it is not 

clear if these connectivity patterns would be preserved in a complete graph containing the 

complete diversity at five positions (3.2 million sequences). Therefore, to predict 

cleavability of all possible 3.2 million sequences in the interaction landscape, we used a 

Support Vector Machine (SVM)-based method that we developed previously (Pethe et 

al., 2017). Briefly, each sequence was threaded onto a bound complex based on a 

modeled near-attack conformation a crystal structure of the protease, and the complex 

was then relaxed to maintain favorable catalytic geometry. Energy evaluation of each of 

the 3.2 million complexes was performed using Rosetta and Amber simulation packages. 

A binary classification (cleaved/uncleaved) SVM was trained on a subset of 

experimentally identified sequences that passed a more stringent threshold of enrichment 

compared to the unselected pool in our assay (1817 cleaved and 3605 uncleaved 

sequences) as well as sequences identified by Shiryaev et al (Shiryaev et al., 2012) for a 

total of 7342 unique sequences. Training features consisted of structure-based features 

(energies of interaction) and sequence-based features (see Supplementary Methods, 

Figure 3.8A). We initially cross-validated the SVM on the training set using an 80:20 

split with 100 iterations, which yielded an average AUROC of 0.96 (Figure 3.8B) 

indicating high recapitulation of training data (a perfect performance would lead to an 

AUROC of 1).  We then used the SVM to predict cleaved and uncleaved labels for the 

remaining 3,192,658 sequences. These predictions have a precision of 0.96 at a recall 
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level of 0.91 for an overall accuracy of 0.96 (Figure 3.8B) for the experimentally-derived 

assignments that were left out of the training set (~10000 sequences). We experimentally 

validated cleavage predictions for six substrates as clonal populations using the yeast 

assay and find good agreement with the SVM-based predictions (Fig. 3.9A). We 

visualized a sub-graph of predicted cleaved sequences, present at a distance > 2 from the 

hyper-plane constructed by the SVM (Figure 3.8C). The experimentally identified 

cleaved sequences are recapitulated well, and distributed evenly across the predicted 

cleaved population.  

 
4.3.4. Structural and energetic bases for observed specificity patterns 

Having obtained and validated predictions of cleavability by combining experimental and 

computational data, we turned to structural models of protease-substrate complexes to 

obtain insight into the underlying structural basis of observed specificity patterns. For 

example, a comparative analysis of the partially cleaved substrate ‘TATTA’ and 

canonical substrate ‘EDVVC’ reveals that the former, composed of small residues does 

not completely occupy the substrate cavity volume (Figure 3.9B, C) whereas ‘EDVVC’ 

occupies the entire cavity. The lack of voids at the interface and several hydrogen bonds 

formed by the canonical lead to better binding (Binding interaction energy = -80.2 

Rosetta energy units (Reu), as opposed to -77.5 Reu for TATTA), resulting in better 

cleavage for this substrate. Similarly, models of the uncleaved sequence FWPPM (Figure 

3.9D) reveals that the side chains are found to have steric clashes with the protease side 

chains. Apart from sidechain-based interaction patterns, models also capture backbone 

conformational changes that affect the orientation of the substrate in the active site. For 

example, in the model corresponding to the sequence RPGPG (uncleaved), the proline 
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present at P3 in RPGPG (Fig. 3.9E) bends the peptide chain away from the protease, 

resulting in breaking of the crucial backbone hydrogen bond patterns that are 

characteristic of protease-substrate interactions (Tyndall et al., 2005).  

 

Figure 3.10. Structural basis underlying epistasis found on the interaction 
landscape. 
(A) Examples of positive and negative epistasis. Cleaved sequences are highlighted in 
blue, partially cleaved in red. (B) Specificity profiles for entire cleaved set (left), 
sequences with glutamine at P3 (middle), and proline at P4 (right). (C) Heatmap of 
correlations between positions 3 and 4, as measured by mutual information.  (D) 
Polyproline II structure propensity of peptides (see text). (E) Experimental validation of 
the sequences in both positive and negative epistatic pathways, performed using yeast 
surface display. Blue bars indicate sequences that are expected to be cleaved and black 
bars indicate sequences that are expected to be partially cleaved.   
 

Structural analysis also allows rationalization of non-additive (epistatic) patterns between 

amino acid substitutions. We detected the presence of both positive and negative epistasis 

in our experimental data, and further investigated two cases (Figure 3.10A). We 

examined a predicted negative epistasis pathway (Figure 3.10B), where single-mutant P 

at position P4 and single-mutant Q at position P3 both result in a cleaved substrate but the 
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double-mutant PQ at position P3-P4 is uncleaved. We measured the mutual information 

(Figure 3.10C; Methods) between positions P3 and P4 in the experimentally derived 

cleaved sequence pool and found that both L at P3 and Q at P4 (corresponding to 

sequence LSLQP) and P at P3 and I at P4 (corresponding to sequence LSPIP) are 

correlated, indicating that these two amino acid preferences are found in the 

experimentally-derived cleaved population at a higher incidence than expected by their 

individual incidence.  However, the correlation for P at P4 and Q at P3 (corresponding to 

sequence LSPQP) is low, suggesting that the PQ pattern is depleted in the cleaved 

sequence population. Structurally, the sequence LSPQP (Figure 3.10D) may have an 

increased PPII (polyproline-II) helix propensity (Kelly et al., 2001; Vila et al., 2004), 

causing the substrate to twist out of a catalysis-competent binding conformation in our 

models. The PPII helix propensity for the sequence LSPIP is lower thus resulting in 

retention of the extended substrate binding conformation that is favorable for catalysis 

(Tyndall et al., 2005). Thus, analysis of models of individual substrates provides atom-

resolution insights into how the underlying biophysics of molecular recognition by the 

protease shapes the observed specificity landscapes, including non-additive effects.  

 

Having validated (Figure 3.10E) these examples of double-mutant epistatic networks, we 

enumerated the double mutant epistatic networks present in the experimental data, and 

found that the majority of these epistatic networks (60.7%) involved cleaved and partially 

cleaved sequences only. The preponderance of epistatic networks at the cleaved/partially 

cleaved boundary indicates that the boundary between cleaved and partially cleaved 

sequences is more rugged than the boundary between cleaved and uncleaved sequences, 
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further highlighting the role of partially cleaved sequences as a biophysical buffer in 

sequence space, leading to “gradient robustness” proposed by Tawfik and co-workers. 

 

4.3.5. Mutational robustness and possible evolutionary trajectories in the 

experimentally-determined and computationally reconstructed landscape 

Having computed the entire P6-P2 specificity landscape, we next examined the 

connectivity patterns between cleaved and uncleaved sequences in this reconstructed 

landscape. As with the experimentally determined landscape, the reconstructed landscape 

also shows clear evidence of clustering between cleaved and uncleaved nodes (Figure 

3.6E-I), indicating that mutational robustness extends to regions of sequence space not 

covered in our library, and is an essential feature of this protease-substrate interface. As 

our SVM-based approach is a binary classification scheme, partially cleaved sequences 

are classified in either cleaved or uncleaved pools. Attempts to build a 3-way classifier 

failed due both to the noise from the experiments as well as difficulty in estimating small 

energy differences in Rosetta simulations. Further improvements in each methodology 

may allow the prediction of partially cleaved sequences. 

  

As the Hepatitis C virus is subject to a considerable amount of evolutionary drift, we 

investigated the impact of the pathways of drifting on the landscape on maintaining 

function. For the experimentally determined landscape, we calculated the number of 

mutations from each canonical sequence to the functional boundary and plotted the 

fraction of cleaved substrates that can be reached at each step (Figure 3.6E). The curves 

for both DEMEE and EDVVC reach a small initial plateau and then rise sharply, 
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indicating that both are surrounded by a cluster of cleaved sequences and then must 

bridge a largely non-functional region of the graph to reach the rest of the cleaved 

sequences, whereas the curves for both ALVTP and ECTTP rise steadily, indicating that 

the topology surrounding these sequences is less rugged.  

 

Figure 3.11. Force directed graph representation between five canonical and novel 
sequences and graph metrics for validation 
(A) A Force-directed interaction graph between the five canonical sequences – DEMEE, 
ECTTP, EDVVC, ALVTP and the novel cleaved sequence PSTVF (depicted by large 
blue nodes). The graph depicts neighbors of all intermediate sequences between PSTVF 
and all canonical sequences. The cleaved sequences in the interaction pathways are 
denoted by blue nodes and the uncleaved are denoted by red (B) The fraction of 
uncleaved nodes present in the shortest paths from both canonical sequences and novel 
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sequences to all canonical sequences (C) Degree vs. fraction of the shortest paths 
uncleaved between all novel sequences and all canonical sequences. 
 
Both the reconstructed and experimentally-derived landscapes feature several “novel” 

cleaved sequence patterns (defined as >3 substitutions away from a canonical recognition 

motif). To investigate if these novel sequences can be reached, as an example, we 

generated a sub graph of the sequence space connecting the canonical cleaved sequences 

(DEMEE, EDVVC, ECTTP, ALVTP) with each other as well as the novel cleaved 

sequences, e.g., PSTVF (Figure 3.11A). Analysis of all inter-node shortest paths on these 

networks shows that there exist many paths between canonical and novel sequences that 

do not include uncleaved nodes (viable paths) while some paths involve traversal of at 

least one predicted uncleaved node (unviable paths; Figure 3.11B). All canonical 

sequences are more highly connected to each other than to any of the novel sequence 

motifs, suggesting that the latter may be “kinetically” less accessible during evolutionary 

drifts. We calculated the fraction of non-viable paths between canonical sequences and 

compared it to the fraction of non-viable paths between canonical sequences and novel 

sequences. The latter shows a higher, albeit still small, fraction of non-viable paths 

(Figure 3.11B). We also find that those novel cleaved sequences that have a higher 

fraction of cleaved neighbors (higher degree) are more likely to have a higher fraction of 

viable trajectories to canonical nodes (Figure 3.11C). Thus, it appears that the higher 

single mutational robustness of a given novel sequence is correlated with its ability to be 

reachable from/to canonical sequences that are at least three amino acid substitutions 

away in sequence space. Further contributions from codon usage in the host context may 

modulate the reachability of different substrates by making some amino acid changes 
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even less likely. Our analysis above leaves out these contributions to selectively delineate 

the impact of amino acid-level effects. 

 

Figure 3.12. Evidence for negative selection of canonical substrate areas 
(A) Bar plot depicting the number of DNA mutations required to mutate from current 
protein sequence to ‘CS’ which is the scissile bond sequence for the HCV NS3/4A 
protease (B) Table depicting the classification of all genotype derived 5-mers as 
classified by our SVM based predictor 
 
4.3.6. Protease specificity landscape may contribute to purifying selection 

Sequences of patient-derived genomes indicate that the HCV virus is under strong 

negative selection (Campo et al., 2008; Cuypers et al., 2015). Although the underlying 

mechanisms are not well understood, several factors have been invoked to explain the 

observation of a low dN/dS ratio (number of non-synonymous to synonymous 

substitutions in the genome) in the patient-derived populations including intrahost 

competition between quasispecies, and immune evasion (Skums et al., 2015). Given the 

centrality of the protease in viral maturation, we asked if maintenance of cleavability (and 

uncleavability) in different parts of the polyprotein also contributes to negative/purifying 

selection, and what, if any, are the limits imposed by the recognizability of different 

polyprotein regions by the protease on their variability.  
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Figure 3.13. Plot depicting the number of DNA mutation required to mutate from 
current protein sequence to ‘CS’, which is the scissile bond sequence for the HCV 
NS3/4A protease for all genotypes 
(A) strain 1a (B) strain 1b (C) strain 2 (D) strain 3 (E) strain 4 (F) strain 5 (G) strain 6 (H) 
control. Control is the distance from CA/CS for all 2-mers in all genotypes 
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As our reconstructed landscape provides information on all pentapeptide sequence 

combinations (followed by Cys-Ala), we asked if overlapping pentapeptides in the other 

parts of the polyprotein (apart from the known cleavage sites) are likely to be cleaved, 

especially if they acquired a Cys-Ala pattern in the two immediately downstream residues 

(thereby acquiring the necessary heptapeptide pattern that would be cleaved). If several 

regions of the polyprotein are poised to be cleaved upon acquisition of the Cys-Ala motif, 

an error catastrophe may ensue upon increasing the mutational load. We performed a 

genome-wide comparison of patient derived sequences with sequences predicted as 

cleaved by our SVM classifier. Each viral genome (Cuypers et al., 2015) was split into 

overlapping 5-mer peptide sequence fragments using a one-residue sliding window 

method. These 5-mers were compared to the pentapeptide sequences predicted by our 

approach as cleaved. If the patient-derived pentapeptide sequence was found in the 

cleaved pool, we calculated the minimum nucleotide mutational distance of the 

successive two residues from the DNA sequences that code for ‘CA’ and ‘CS’ which are 

known to be the canonical P1-P1’ sites favoring cleavage by the HCV NS3/4A protease 

(Figure 3.1A). The results (Figure 3.12A,B, Figure 3.13A-H) indicate that the majority 

(~70%) of patient-derived translated pentapeptides are found the uncleaved pool. Of the 

remaining (~30%) 5-mer sequences that are identified as potentially cleavable (if they 

acquire a CA or CS as the following two amino acids), 74.1% pentapeptides from all 

genotypes of the virus require more than three nucleotide changes to acquire a ‘CA’ or 

‘CS’ at the P1-P1’ sites (Figure 3.13A-H). The avoidance of acquisition of a cleavable 

sequence in other regions of the protein, made feasible by codon usage, may thus, 

contribute to the previously described negative selection pressure on the HCV 
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genome(Campo et al., 2008), and may be reflected in the measured low dN/dS rates in 

the non-structural regions of the protein(Cuypers et al., 2015). Additional avoidance of 

non-productive cleavage may also result at the structural level from altered dynamics 

(Fuchs et al., 2014) and/or the post-translational structural context of the potentially 

cleavable regions – these may be buried (inaccessible to the protease) or adopt secondary 

structures that are incompatible with the extended conformation required to fit in the 

protease active site(Barkan et al., 2010; Julien et al., 2016).    
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Figure 3.14. Validation, graph metrics and specificity profile for Drug resistant 
mutant proteases 
(A) Drug-resistant variant structures. Mutations are outlined in sticks and WT residues in 
lines. Active site residues are represented as green sticks (B) Validation assay performed 
using yeast surface display for each of the mutants (C-F) Mutant specificity logos for the 
triple mutant, D168A, A156T and wild type showing that the mutants have very similar 
specificity profiles with slight variation as compared to the WT (G-H) Substrate 
sequences that are recognized by a greater number of protease variants have higher 
degrees (G) and pageranks (H) 
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4.3.7. Specificity landscapes of Drug Resistant Protease variants  

As the NS3/4A protease plays a key role in the viral assembly and maturation process, it 

is a target for therapeutics that aim to neutralize viral activity. However, due to 

prevalence of quasispecies that are lurking at low levels in the population (Farci et al., 

2000), several viral variants get exposed to the drug. Some of these develop resistance, 

and propagate to form Resistance Associated Variants (RAVs). To investigate how drug-

resistant variants of the protease affect the mutational robustness, we explored the 

specificity landscape for three RAVs – A156T, D168A, R155K/A156T/D168A (Figure 

3.14A). If the connectivity patterns of the sequences recognized by the RAVs are 

dramatically different (e.g., less clustered), it would indicate that their evolutionary 

fitness might be more limited under the heavy mutational load, as drifts on the substrate 

side would abolish the molecular interaction required for viral maturation. In this 

scenario, treatment with mutagens may be a desirable therapeutic strategy to induce error 

catastrophes. On the other hand, if similar mutationally robust connectivity is detected, 

the RAVs are likely to have a similar evolutionary potential as the wild type, and have an 

additional selective advantage in the population in the presence of the drug. 

 

To obtain the landscapes of the protease variants (Figure 3.5B-E), we generated the 

library using a PCR amplification based strategy; isolated functional variants using 

FACS, deep sequenced the isolated populations and validated mutants (Figure 3.14B, 

Figure 3.5) identified from these populations using the yeast surface display assay. We 

find that the RAVs demonstrate a similar sequence profile to each other and to the wild 

type protease (Figure 3.14C-F). Upon comparing the graphical properties of the 
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specificity landscapes of the various protease variants, we observe that substrates that are 

experimentally detected in the cleaved pools of a greater number of protease variants are 

more reachable (higher pageranks) and more connected (higher degree) in each graph 

(Figure 3.14G,H). As our goal was to compare gross features of the specificity landscapes 

for the wild type and variant proteases, we did not perform detailed structure-based 

calculations for RAVs. Nonetheless, these data indicate that more recognizable substrates 

appear to be more robust to changes in the protease, and indeed, mutational robustness is 

a key feature of this specificity landscape. 

 

4.4. Discussion 

For RNA viruses, such as HCV, which have a high mutation rate, it has been 

hypothesized that viral evolution occurs via “survival of the flattest”: the most conserved 

viral form is not necessarily the most fit, but instead is the one most robust to mutation – 

thus mutational robustness may provide an evolutionary advantage (Lauring and Andino, 

2010; Lauring et al., 2013; Wilke et al., 2001). Our data, based on combining, using a 

machine learning framework, information gleaned from library screening in yeast, deep 

sequencing, and structure-based modeling, provide atomic-resolution insight into how 

mutational robustness may be encoded in the molecular recognition landscapes involved 

in viral maturation, and indicate that cleavage specificity of the HCV NS3/4A protease is 

robust to patient-derived mutations in both the substrate regions as well as the protease. 

However, molecular interaction between the protease and substrate, which key for viral 

survival, is but one of the many evolutionary forces at play, especially in the 

“wild”(Boucher et al., 2016). Other factors such as the intrahost population size, stability 



211	

	

and structure of the viral RNA genome, and interactions between the host and viral 

machineries and other environment dependent factors are also important to consider 

while considering evolutionary demands and trajectories. 

 

We used a yeast surface display-based assay that relies on the cleavage of the substrate 

region in the ER of yeast followed by cell sorting into gates and deep sequencing. We 

note that our assay is qualitative, and does not permit association of the detected signal 

from deep sequencing with quantitative cleavability of substrates. Indeed, while we have 

validated that assignments to the three different pools is accurate with at least ~20 

individual sequences, the identified cleaved and partially cleaved substrates may 

represent a wide range of catalytic efficiencies. A limitation of our technique is that it 

flattens this diversity into two pools. On the other hand, the assay construct with the 

protease and substrate on the same chain is a good representation of the situation in the 

virus, where the substrates of the protease are part of the same polyprotein (although both 

cis and trans cleavages occur) leading to high effective concentrations of substrates ([S] 

>> KM) in vivo. Under these saturating conditions in the virus and in our assay, we argue 

that selectivity and catalytic efficiency are both determined to a great extent by the 

goodness of fit of various substrates in the protease active site (i.e. by the relative binding 

between the different substrates).  Similarly, our machine learning approach to combine 

experimental and computational data also is not without errors, showing a false-positive 

rate of ~5-10% on the experimental data. While we have validated several predictions on 

individual sequences (Figures 3.1, 3.9, 3.14), it is possible that some individual sequences 

may be mispredicted. However, the overall trends regarding the connectivity patterns 
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observed for the entire landscape should be robust to the misprediction noise. Further 

ongoing development of the computational and experimental methods that we utilized is 

expected to help increase the accuracy of the approach.  

 

HCV infects ~3% of the world population and the limited number of available viral 

genome sequences show low sequence heterogeneity in the substrate regions for the HCV 

protease. Nevertheless, resistance mutations upon protease inhibitor drug treatment arise 

in a facile manner in the patient population, suggesting that genetic heterogeneity 

(quasispecies) indeed exists, possibly at levels too low for being captured in patient-

derived sequencing. Spontaneous emergence of diverse HCV protease mutations 

(including drug-resistant mutations) was demonstrated recently by Liu and colleagues in 

continuous evolution studies of the protease (Dickinson et al., 2014), as well as by 

Sanjuan and colleagues in viral replicon assays coupled to ultradeep sequencing (Geller 

et al., 2016b). Our results show how genetic heterogeneity is entirely consistent with the 

robustness of a key protease-peptide interaction in the virus, and therefore, provide a 

biophysical baseline for understanding evolvability of HCV, and for evaluating inhibitor 

drug resistance risks. For example, our analysis suggests that viral evolution occurring at 

the substrate sites on the polyprotein could also contribute to drug resistance. Due to the 

flatness of the specificity landscape and high inter-connectedness of partially cleaved and 

fully cleaved clusters, novel sequences that are better substrates of drug-resistant variants 

may easily arise. Thus, considering both substrate and protease variation in evaluating 

and designing anti-viral therapies may be necessary. This mode of substrate coevolution-

based drug resistance has been observed in HIV-1(Dam et al., 2009). At the same time, 
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our analysis of the dominant HCV sequences obtained from patients suggests that the 

protease substrate interactions may also contribute to negative selection and help limit the 

acquisition of heterogeneity – the sequences of sites in the protease that are potentially 

cleavable upon acquisition of CA/CS at the P1-P1’ junction (Figure 3.12) appear to be 

mutationally distant from doing so. Thus, the protease-substrate interaction landscape 

reveals that the balance between mutational robustness, negative selection and adaptive 

potential to environmental changes may be necessary to consider for understanding and 

therapeutic interventions. 

 

In summary, our exploration of a viral molecular specificity landscape uncovers novel 

specificities for the HCV NS3/4A protease and data provides a biophysical basis for the 

mutational robustness observed for a key interaction required in HCV propagation. Given 

the widespread prevalence of HCV, insights obtained here may help in better 

understanding, and tackling the evolutionary trajectories of this ever-changing virus. The 

developed specificity landscape enumeration approach is general, and combining 

experimental deep sequencing and Rosetta-based structural modeling at a matching high 

throughput, followed by statistical machine learning, may be useful for elucidating a 

significantly larger space of sequence-function relationships for a variety of other 

systems.  
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4.6. Supplementary Methods 

Two step screening approach to avoid stop codons: 

The LY104 vector was a gift from Y. Li, B. Iverson, and G. Georgiou (University 

of Texas at Austin).  The library was constructed using a two-step screening approach to 

avoid enrichment of false positives. The first step was an expression screen, which was 

done by combining the library with a protease inactive vector (LY104 S139A knockout). 

The recombination was performed by homologous recombination technique in yeast 

EBY100 cells. We modified an electroporation-based method as described in  (Benatuil 

et al., 2010). The transformed library was allowed to grow for 48 hours at 30 C, up to an 

OD600 of 2.0. Dilutions of 1/10, 1/100 and 1/1000th were plated from the initial culture to 

calculate the transformation efficiency and library size. The double positive cell 

population was isolated and enriched using a Fluorescence Assisted Cell Sorting 

technique. The expressible library was then recombined with a vector containing the 

active protease, using the aforementioned homologous recombination technique.  This 

library of functional variants was allowed to grow up to 48 hours at 30 C and then sorted 

into three sequence pools – cleaved, partially cleaved and uncleaved. The gates for the 

FACS were defined using clonal substrates that displayed varying levels of cleavage 

activities. The three sequence pools were enriched via three rounds of successive 

selection (using FACS) and growth. The DNA from the three sequence pools was 

extracted using the Omega E.Z.N.A yeast plasmid kit. Technical duplicates were 

sequenced to get an estimate of error correction necessary for post processing this data. 
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Library Generation methodology: 

The library was constructed using a PCR amplification based technique using 

NNK mixed base oligonucleotides (Integrated DNA Technologies). The LY104 vector 

was linearized using DNA oligonucleotides (IDT).  The NNK library insert (~576 bp) 

and linearized vector (~6000 bp) were combined using Homologous Recombination 

using electro-competent EBY100 yeast cells. The transformed EBY100 cells were 

rescued using a YPD medium and allowed to grow in a 250 mL Selective Complete 

Growth Medium (-UW). The media was supplemented with 250 µL of Ampicillin and 

Kanamycin to avoid bacterial contamination.  

 

Library Testing and Enrichment: 

The transformed library was allowed to grow for ~48 hrs (up to OD600 2.0) and then 

induced and tested using Flow cytometry. 1.5 x 107cells(OD600 ~0.5) were pelleted and 

resuspended in 2 mL induction media (20g/L galactose, 2 g/L glucose) supplemented 

with 2 µL each of 1000x antibiotics (carbenicillin, kanamycin). The induction cultures 

were grown overnight at 30 C (225 rpm) to an OD600 of 1-1.5. All spins in the protocol 

were done at 3000 r.c.f for 5 min. The induced cultures were pelleted and washed with 

500 µL PBS followed by 500 µL PBS+ 0.5% BSA. 1 µL of each antibody stain (anti-

FLAG PE from Prozyme, PJ315 and anti-HA FITC from Genscript, A01621) was 

incubated with 107 cells for 30 min at 4 C. The samples were resuspended by vortexing 

and incubated at RT for an additional 30 min. The cells were washed with 100µL PBS 

with 0.5% BSA, pelleted and then resuspended in 500 µL PBS. Samples were diluted to 
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achieve a final concentration of 106 cells/mL and then FITC (anti-HA) and PE (anti-

FLAG) intensities were detected using a Flow Cytometer (Beckman Coulter Gallios). 

 

The tested cells were then enriched using a MoFlo XDP Cell Sorter (final cell density 

107). Up to 106 cells were collected and grown in the Selective Complete Growth Media 

for 48 Hours. Two rounds of sorting and enrichment were carried out to select for clones 

that were expressed. The selected cells were grown for 48 hours. The DNA from the 

selected cell population was extracted using E.Z.N.A Zymoprep Kit (Omega).  

 

Cell Sorting into Cleaved, Uncleaved, Partially Cleaved Populations: 

The expressible fraction of the library was combined with the active LY104 

vector using a second round of Homologous recombination following the same protocol 

as mentioned above. Using the MoFlo XDP Cell Sorter we defined Cleaved, Uncleaved 

and Partially cleaved gates for further selection of this population.  These gates were 

defined based on previously experimentally tested sequences.  

These cells from the selected population were put through three rounds of enrichment and 

sorting. In the first round of sorting, cells were collected into two gates – Cleaved and 

Uncleaved. The Uncleaved sample was further enriched in the second sorting round 

whereas the Cleaved population was separated into Cleaved and Partially cleaved gates. 

Cells were collected for each sorting round until a cell count of 106 was reached. At the 

culmination of each sorting round, DNA was collected from each population by using a 

Zymoprep Kit (Omega). 
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Preparation for Illumina Sequencing Run: 

The DNA samples collected from each of the populations were prepared by 25 

cycle amplification (Kowalsky et al. 2015) with inner primers (Supplementary Table 3). 

The samples were then run on a 1% Agarose gel to confirm the amplification of a single 

species. These were further amplified using 8 PCR cycles to include the DNA barcode 

used in the deep sequencing protocol and checked for quality using a Bioanalyzer 2100. 

The Deep sequencing was performed on a NextSeq 500 (Illumina) giving a 75 bp paired 

end read.  

I. Expression Protocols: 

II. Protease expression: 

 

Expression and purification protocol was a modification of previously published 

protocols (Wittekind et al. 2001; Gallinari et al. 1998; Romano et al. 2012).  Transformed 

BL21 (DE3) E. coli cells were grown at 37°C and induced at an optical density of 0.6 by 

adding 1 mM IPTG. Cells were harvested after 5 hours of expression, pelleted, and 

frozen at −80°C for storage. Cell pellets were thawed, resuspended in 5 mL/g of 

resuspension buffer (50 mM phosphate buffer, 500 mM NaCl, 10% glycerol, 30 mM 

imidazole, 2 mM β-ME, pH 7.5) and lysed with a sonicator. The soluble fraction was 

retained, applied to a nickel column (Qiagen), washed with resuspension buffer, and 

eluted with resuspension buffer supplemented with 200 mM imidazole. The eluent was 

dialyzed overnight (MWCO 10 kD) into a protease storage buffer (20mM Tris.HCl,pH 
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8.0, glycerol 20%, 100 mM KCl, 1mM DTT, 0.2 mM EDTA) to remove the imidazole. 

The purified protein was then flash frozen and stored at -80 C. 

 

Substrate (MBP-GST construct) expression:  The transformed BL21(DE3) cells were 

grown at 37 C to an optical density of 0.6 and induced using 0.2 mM IPTG. Upon 

induction the cells were grown overnight at 18 C. the cells were harvested and the cell 

pellet was resuspended in a resuspension buffer (50 mM Tris.HCl, pH8.0, 500 mM NaCl, 

30 mM immidazole).  The resuspended cells were lysed via sonication and the soluble 

fraction was applied to a Nickel column (Qiagen). The column was washed using the 

resuspension buffer and then the protein eluted using an Elution buffer- 50 mM Tris.HCl, 

pH8.0, 150 mM NaCl, 300 mM imidazole. The protein was dialyzed overnight to remove 

the imidazole and frozen until use. 

 

Gel based validation assay: The frozen aliquots of substrate solutions were thawed and 

dialyzed overnight into the reaction buffer (50mM HEPES (pH 7.5), 150 mM NaCl, 0.1% 

Triton X-100, 15% glycerol, 10mM DTT). 28.5 nM substrate was incubated overnight 

with 500nM, 700nM, 1µM, 2µM, 3µM and 4 µM protease. The resultant reactions were 

run on a SDS PAGE gel to check for cleavage activity. 

III. Sequence Processing 

A. Sequence Alignment and Trimming 

 Data was received oriented in the correct orientation and filtered for quality of 20.  

Each sequence was searched for the presence and location of “TCTTTATAA”, a unique 
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string within the WT sequence, to align the sequences.  If the index of “TCTTTATAA” 

in sequence a is less than the index of “TCTTTATAA” in the WT sequence, the 

beginning of sequence a is padded to match the beginning of the WT sequence.   If the 

index of “TCTTTATAA” in sequence a is greater than the index of “TCTTTATAA” in 

the WT sequence, the beginning of sequence a is truncated to match the beginning of the 

WT sequence.   If “TCTTTATAA” is not found in sequence a, it is discarded.  If the 

padded or truncated sequence a is shorter than the index of the library region in the WT 

sequence, sequence a is discarded.  If sequence a is longer than the index of the library 

region but shorter than the WT sequence, the end of sequence a is padded to match the 

WT sequence.  Finally, we check that the padded or truncated sequence a matches the 

WT sequence entirely except for the library region.  If it does not match the WT 

sequence, we discard sequence a. 

 

B. Threshold Determination 

 After aligning and trimming sequences, we calculate a normalized count of each 

sequence so that the sum of the normalized counts in each population is equal.  This is 

achieved by multiplying each sequence count in population a by a normalization factor 

that is equal to the number of sequences in the largest library divided by the number of 

sequences in library a.  Then, to determine the minimum frequency of each sequence in 

the population above which we are confident of the validity of its representation in the 

library, we used several methods: 

1)  Overlap between cleaved and uncleaved sequences:  
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We expect little overlap between the populations of cleaved and uncleaved sequences.  

However, at low counts, there is some overlap between the two populations. For each 

threshold, we calculated the number of sequences that overlapped between cleaved and 

uncleaved sequences, and normalized by the count of unique translated cleaved DNA 

sequences at that threshold.  We determined the amount of overlap as a percentage of the 

initial overlap between the populations at a threshold of 1, and then found the threshold 

that gave <= 10% of the initial overlap (see Figure 3.2).  We repeated this analysis for all 

four variant populations.  The threshold was less than or slightly greater than 11 for all 

variants.  

2) Duplicate population error:    

We sampled technical duplicates for the third round of enrichment for cleaved, uncleaved 

and partially cleaved sequence pools. As a post - processing step in the pipeline, we 

introduced duplicate population error correction, by plotting the difference in counts for 

common sequences of the technical duplicate samples and plotting against the counts in 

the first sample.  

3) SVM Convergence: 

In order to select for the threshold that gave us the most distinct populations, we 

generated cleaved and uncleaved sequence sets for thresholds 5,10,11,12,13,14, 15, 16, 

25, 50, 75 and 100. Using an SVM based technique described previously (Chapter 2) we 

calculated the auROC for all cleaved and uncleaved sequence populations for the listed 

thresholds. This enabled us to identify which threshold increases the distinction between 

the two populations.  
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We decided upon a frequency threshold of 11 as one that satisfies all categories of 

threshold determination.   

 

C. Enrich Software 

 We used a modified version of the Enrich software (Fowler et al. 2010) to find an 

enrichment ratio (ER) for each sequence.  We only included sequences that had a 

normalized count (as defined above) of greater than or equal to eleven for both the 

unselected and selected populations.  The enrichment ratio of sequence v in population X 

is defined using Equation 1. Fv,X is the frequency of sequence v in population X.  

 

𝐸𝑅!,! =  log!
𝐹!,!

𝐹!,!"#$%
	

 

           (1) 

D. Population Categorization 

 Sequences were sorted into one of three pools (cleaved, uncleaved and partially 

cleaved), based on the following criteria.  Sequences that had a positive ER for more than 

one pool were discarded.  Sequences that had a positive ER for either or both replicates 

for one pool only were assigned to that pool.  Negative ERs were ignored. 

 We also sorted a second set with more stringent criteria, which was then used for 

training the SVM.  For this set, if a sequence was found in more than one pool (even if it 

had a negative ER in the second pool), it was discarded.  Additionally, only sequences 

with a positive ER > 2.0 were considered. 
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Computational 

Graph Generation 

 Graph generation was done using Gephi 0.9.1 (Bastian et al. 2009).  Nodes were 

assigned a fitness of 2.0 for cleaved nodes, 1.5 for partially cleaved nodes, and 1.0 for 

uncleaved nodes.  Edge directionality was determined by distance from DEMEE, the 

starting sequence for library generation; in the case of edge a connecting nodes b and c, 

the node with a smaller hamming distance from DEMEE was chosen as the source for 

edge a.  Edge weight was defined as the ratio of the starting sequence fitness to the 

ending sequence fitness.  The graph layout was run in two steps, starting with a 

Fruchterman-Reingold layout to separate the nodes and then ending with the ForceAtlas2 

layout to generate a force-directed graph.  All statistics were run with Gephi default 

settings. 

 

Random Graph 

 The edges in the wild-type HCV graph were randomized using the following 

process.  The source of each edge was kept and a population (cleaved, partially cleaved, 

or uncleaved) was randomly chosen for the target of the edge.  The target of the edge was 

then randomly chosen from among that population. 

 

SVM Sequence Features 

 We used an encoding scheme that included twenty binary features per amino acid 

residue, where one of those features was a one and the rest were zeroes.  The placement 
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of the one was dependent on the identity of the amino acid.  With five amino acid 

residues per sequence, this resulted in 100 total sequence features.  

 

Mutual Information 

 Correlation between residues at different positions was calculated using a mutual-

information based metric (Equation 2), with modifications based on Buslje et al. 

(Equation 3) (Buslje et al. 2009) and Gouveia-Oliveira and Pedersen (Equation 4) 

(Gouveia-Oliveira & Pedersen 2007).  We begin with MI between amino acid a at 

position i and amino acid b at position j defined as: 

 

𝑀𝐼!!!! = log
𝑃(𝑎!𝑏!)

𝑃 𝑎! ∙ 𝑃(𝑏!)
  

 (2) 

𝑃(𝑎!) and 𝑃(𝑎!𝑏!) are defined with a pseudocount to correct for MSAs with low counts.  

 

𝑃 𝑎! =  
𝜆 + 𝑁(𝑎!)
𝜆 + 𝑁(𝑥!)!

 

(3) 

𝑁(𝑎!) is the count of amino acid a appearing at position i.  𝜆 is equal to the length of 

sequences in the MSA divided by 20 for single-amino acid counts (𝑁(𝑎!)) and 400 for 

double-amino acid counts 𝑁(𝑎!𝑏!).  We also modified MI to include row-column 

weighting: 
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𝑀𝐼!"# =  
𝑀𝐼!!!!

( 𝑀𝐼!!!!! +  𝑀𝐼!!!!! −𝑀𝐼!!!!)/19  

 (4) 

Obtaining viral genomes from patient populations: The list of complete viral 

polyprotein genomes was accessed and downloaded from NCBI. These genomes were 

checked to ensure that the sequence covered all NS3 substrate regions. We translated the 

DNA sequence that we downloaded from NCBI into a protein sequence and compared 

the five substrate regions “DLEVVTST”, “DEMEECASHL”, “EDVVCCSM”, 

ECTTPCSGS” and “ALVTPCASH” to discover the diversity found in the substrate 

region for the patient genomes. 

 

The dataset of aligned genomes utilized in Cuypers et al. was used for dN/dS 

measurements and for the mapping of predicted cleaved and uncleaved sequences within 

the genome (Cuypers et al. 2015). 

 

Supplementary Tables: 
 

1. Genes: 
Gene DNA sequence 
HCV 
protease 
(PDB ID: 
3SV6) 

CGGATAACAA TTCCCCTCTA GAAATAATTT TGTTTAACTT 
TAAGAAGGAG ATATACATATGGGC AGT CAC ATG GCC TCG 
ATG AAA AAG AAA GGC TCT GTG GTG ATC GTG GGG CGC 
ATC AAC CTG TCT GGC GAT ACC GCG TAC GCG CAA CAG 
ACG CGG GGT GAG GAA GGC TGT CAG GAG ACC TCG CAA 
ACG GGT CGT GAT AAA AAC CAG GTA GAG GGT GAA GTG 
CAG ATT GTG AGT ACA GCG ACG CAG ACC TTT CTG GCC 
ACC TCG ATC AAT GGT GTA CTG TGG ACG GTA TAT CAT 
GGT GCT GGC ACA CGT ACT ATT GCG TCG CCG AAA GGC 
CCT GTG ACG CAG ATG TAC ACA AAT GTG GAC AAA GAT 
TTG GTG GGA TGG CAG GCT CCG CAA GGT AGC CGC AGT 
TTG ACT CCT TGT ACG TGC GGT TCG TCA GAT CTG TAT CTT 
GTG ACT CGC CAC GCG GAT GTC ATC CCG GTA CGC CGC 
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CGT GGC GAT TCC CGT GGT TCT CTG CTT TCT CCG CGC CCT 
ATC TCA TAT CTT AAA GGT TCA AGT GGA GGA CCA CTG 
TTA TGT CCG GCG GGG CAC GCA GTC GGA ATT TTT CGT 
GCG GCG GTT TCT ACT CGG GGA GTT GCA AAA GCT GTT 
GAC TTC ATT CCG GTT GAA TCT TTG GAA ACA ACC ATG 
CGG TCG CCG CTCGAGCAC CATCACCACC ACCACTGA 
 

 
 

2. Cell sorting statistics: 
 

 Functional pool Sort Round Cell # 
1 CLEAVED 1 420 K 

UNCLEAVED 109 K 
CLEAVED 2 

 
1.05M 

MIDDLE 105K 
UNCLEAVED 775K + 295K 
CLEAVED  

3 
1.55M 

MIDDLE 89K 
UNCLEAVED 675K 

2 CLEAVED 1 1 M 
UNCLEAVED 205 K 
CLEAVED 2 

 
1.15M 

MIDDLE 300K 
UNCLEAVED 1.05 M 
CLEAVED  

3 
2M 

MIDDLE 262K 
UNCLEAVED 707K 

9 CLEAVED 1 812K + 2.65 M 
UNCLEAVED 359K 
CLEAVED 2 

 
1.4 M 

MIDDLE 94 K 
UNCLEAVED 1.02 M 
CLEAVED  

3 
1.77 M 

MIDDLE 324 K 
UNCLEAVED 1.5 M 

10 CLEAVED 1 2.7 M 
UNCLEAVED 646 K 
CLEAVED 2 

 
1.04M 

MIDDLE 183K 
UNCLEAVED 1.06 M 
CLEAVED  

3 
1.59M 

MIDDLE 1.16M 
UNCLEAVED 1.5M 
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3. List of oligomers for next - sequencing library generation 

Primer DNA Sequence 
NNK library 
reverse primer 

TTTCACTGCCTTTATCATCATCATCTTTATAATCACTGCC
CAAATGAGAAGCACAMNNMNNMNNMNNMNNCGACCC
TCCGCCTCCGCTACCGCCTCCACC 

Library insert 
forward primer 

CTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTA
TTAACAGATATATAAATGC 

Vector forward 
primer 

GGCAGTGATTATAAAGATGATGATGATAAAGGCAGTGA
AA 

Vector reverse 
primer 

GCATTTATATATCTGTTAATAGATCAAAAATCATCGCTT
CGCTGATTAATTACCCCAG 

Insert 
amplification 
post library 
generation 

TTTCACTGCCTTTATCATCATCATCTTTATAATCACTGCC 

 
 

4. List of oligos for Illumina sample prep and sequencing 
 

Primers Sequence 
Illumina Insert 
Amplification Forward  

CGT TCC AGA CTA CGC TCT GCA GGC TA 

Illumina Insert 
Amplification Reverse  

GGC AGT GAT TAT AAA GAT GAT GAT GAT AAA 
GGC AGT G 
 

Sequencing LYSeq_114 GCC GGA CAG GAT GAT TCT GCC TAC GAT TAC 
TAC TGA GCC 

Sequencing P104 GGATATTACATGGGAAAACATGTTGTTTACGGAG 
 

 
5. Deep sequencing processing statistics 

Variant Population 
Initial Post-thresholding Post-

categorization 
Unique 
Counts 

Unique 
Ratios 

Unique 
Counts 

Unique 
Ratios 

Unique 
Sequences 

WT Background 379361  74575   
Cleaved-Rep1 216254 84773 30328 23550 

7472 
Cleaved-Rep2 260764 95730 29238 23692 
Partial-Rep1 219369 89830 32355 22690 8737 Partial-Rep2 354253 123573 28631 21986 
Uncleaved-Rep1 587740 183536 39235 32298 14702 
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Uncleaved-Rep2 473115 160980 39115 32053 
R155K/ 
A156T/ 
D168A 

Background 339049  64406   
Cleaved 139722 50895 16374 10948 3135 
Partial 270663 108408 40602 29624 11562 
Uncleaved 209209 75869 23432 10425 3703 

A156T Background 367896  68199    
Cleaved 140479 52199 18718 9911 3644 
Partial 251274 95066 26348 17151 8461 
Uncleaved 277994 109684 29935 17594 9564 

D168A Background 314942  65787   
Cleaved 197578 65957 19018 10348 4350 
Partial 336654 108567 30535 16929 5780 
Uncleaved 286784 96578 26993 15155 7514 

 
 

6. List of oligos for testing substrates in yeast surface display 
 

Primers DNA Sequence 
TLIIPCASHL 
forward 

CGGTAGCGGAGGCGGAGGGTCGACATTGATTATTCCTTG
TGC 

TLIIPCASHL 
reverse 

CTTTATAATCACTGCCCAAATGAGAAGCACAAGGAATAA
TCAATGTCGAC 

ASIIPCASHL 
forward 

CGGTAGCGGAGGCGGAGGGTCGGCGTCAATTATTCCTTG
TG 

ASIIPCASHL 
reverse 

CTTTATAATCACTGCCCAAATGAGAAGCACAAGGAATAA
TTGACGCCGA 

TATTA 
forward 

CGGTAGCGGAGGCGGAGGGTCGACAGCGACAACAGCGT 

TATTA reverse CTTTATAATCACTGCCCAAATGAGAAGCACACGCTGTTGT
CGCTGT 

LHTNI forward GGTAGCGGAGGCGGAGGGTCGTTGCAT ACAAATATT 
TGTGCTTCTCATTTG 

LHTNI reverse TTATCATCATCATCTTTATAATCACTGCCCAAATGAGAAG
CACAAATATTTGTATGCAA 

HNTSN 
forward 

GGTAGCGGAGGCGGAGGGTCGCAT AAT ACA TCA AAT 
TGTGCTTCTCATTTG 

HNTSN reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAATTTGATGTATTATG 

SQTGQ 
forward 

GGTAGCGGAGGCGGAGGGTCGTCA CAA ACA GGT CAA 
TGTGCTTCTCATTTG 

SQTGQ reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTGACCTGTTTGTGA 

PSTVL forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA GTG TTG 
TGTGCTTCTCATTTG 

PSTVL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
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ACACAACACTGTTGAAGG 
PSTTL forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA ACA TTG 

TGTGCTTCTCATTTG 
PSTTL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACACAATGTTGTTGAAGG 
PSTVF forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA GTG TTC 

TGTGCTTCTCATTTG 
PSTVF reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAGAACACTGTTGAAGG 
PSTTF forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA ACA TTC 

TGTGCTTCTCATTTG 
PSTTF reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAGAATGTTGTTGAAGG 
LSLQP forward GGTAGCGGAGGCGGAGGGTCGTTG TCA TTG CAA CCT  

TGTGCTTCTCATTTG 
LSLQP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAAGGTTGCAATGACAA 
LSPQP forward GGTAGCGGAGGCGGAGGGTCG TTG TCA CCT CAA CCT  

TGTGCTTCTCATTTG 
LSPQP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAAGGTTGAGGTGACAA 
LSLIP forward  GGTAGCGGAGGCGGAGGGTCG TTG TCA TTG ATT CCT   

TGTGCTTCTCATTTG 
LSLIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAAGGAATCAATGACAA 
LSPIP forward GGTAGCGGAGGCGGAGGGTCG TTG TCA CCT ATT CCT  

TGTGCTTCTCATTTG 
LSPIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAAGGAATAGGTGACAA 
LTTQA 
forward 

GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA CAA GCG 
TGTGCTTCTCATTTG 

LTTQA reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACGCTTGTGTTGTCAA 

LTTKA 
forward  

GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA AAG GCG  
TGTGCTTCTCATTTG 

LTTKA reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACGCCTTTGTTGTCAA 

LTTQL forward GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA CAA TTG 
TGTGCTTCTCATTTG 

LTTQL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAATTGTGTTGTCAA 

LTTKL forward GGTAGCGGAGGCGGAGGGTCG  TTG ACA ACA AAG TTG  
TGTGCTTCTCATTTG 

LTTKL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAACTTTGTTGTCAA 

ECTIP forward GGTAGCGGAGGCGGAGGGTCG  GAA TGT ACA ATT 
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CCTTGTGCTTCTCATTTG 
ECTIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAAGGAATTGTACATTC 
DTMEE 
forward 

GGTAGCGGAGGCGGAGGGTCG  GAT ACA ATG GAA 
GAATGTGCTTCTCATTTG 

DTMEE reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTCTTCCATTGTATC 

DEMIE forward GGTAGCGGAGGCGGAGGGTCG  GAT GAA ATGATT 
GAA TGTGCTTCTCATTTG 

DEMIE reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTCAATCATTTCATC 

ALGTG 
forward 

GGTAGCGGAGGCGGAGGGTCG  GCG TTG GGT ACA 
GGT  TGTGCTTCTCATTTG 

ALGTG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCTGTACCCAACGC 

RPGPG forward GGTAGCGGAGGCGGAGGGTCG CGC CCT GGT CCT GGT 
 TGTGCTTCTCATTTG 

RPGPG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCAGGACCAGGGCG 

ALVTG 
forward 

GGTAGCGGAGGCGGAGGGTCG GCG TTG GTG ACA 
GGT TGTGCTTCTCATTTG 

ALVTG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCTGTCACCAACGC 

EEMIQ forward GGTAGCGGAGGCGGAGGGTCG  GAA GAA ATG ATT CAA 
TGTGCTTCTCATTTG 

EEMIQ reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTGAATCATTTCTTC 

QTSEM 
forward 

GGTAGCGGAGGCGGAGGGTCG  CAA ACA TCA GAA ATG 
TGTGCTTCTCATTTG 

QTSEM reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACATTTCTGATGTTTG 

WSAIP forward GGTAGCGGAGGCGGAGGGTCG TGG TCA GCG ATT CCT 
TGTGCTTCTCATTTG 

WSAIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATCGCTGACCA 

STPNK forward GGTAGCGGAGGCGGAGGGTCG TCA ACA CCT AAT AAG 
TGTGCTTCTCATTTG 

STPNK reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACTTATTAGGTGTTGA 

GTTIP forward GGTAGCGGAGGCGGAGGGTCG GGT ACA ACA ATT CCT 
TGTGCTTCTCATTTG 

GTTIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATTGTTGTACC 

HNLAP 
forward 

GGTAGCGGAGGCGGAGGGTCG CAT AAT TTG GCG CCT 
TGTGCTTCTCATTTG 

HNLAP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
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ACAAGGCGCCAAATTATG 
FDTLN forward GGTAGCGGAGGCGGAGGGTCG TTC GAT ACA TTG AAT 

TGTGCTTCTCATTTG 
FDTLN reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC

ACAATTCAATGTATCGAA 
SDYDL 
forward 

GGTAGCGGAGGCGGAGGGTCG TCA GAT TAT GAT TTG 
TGTGCTTCTCATTTG 

SDYDL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAAATCATAATCTGA 

 
7. Primers to generate Drug Resistant Mutants  

 
Primer Sequence 
A156T forward CGTGGGCATATTTAGGACAGCGGTGTGCACCCG 
A156T reverse CGGGTGCACACCGCTGTCCTAAATATGCCCACG 
D168A forward CTAAGGCGGTGGCGTTTATCCCTGTGGAGAAC 
D168A reverse GTTCTCCACAGGGATAAACGCCACCGCCTTAG 
Triple Mutant forward CGTGGGCATATTTAAGACAGCGGTGTGCACCCG 
Triple Mutant reverse CGGGTGCACACCGCTGTCTTAAATATGCCCACG 
 

8. Vector amplification primers for YESS assay 
Primers DNA Sequence 
Vector 
amplification 
LY104 for- 
Gibson 

CGACCCTCCGCCTCCGCTACC 

Vector 
amplification 
LY104 rev- 
Gibson 
 

TGTGCTTCTCATTTGGGCAGTGATTATAAAGATGATGATGATA
A 

 
9. SVM parameter tuning: grid search for optimal boxconstraint and rbfsigma 

parameters.  Average AUC is for each set of parameters run with an 80:20 split on 
the WT experimental full data set for 100 iterations.  N/A is shown if the SVM 
did not converge with these parameters.  A boxconstraint of 1 and rbfsigma of 10 
was decided on for future calculations. 
 

  boxconstraint 
 AUC 0.01 0.1 1 10 100 1000 

rb
fs

ig
m

a 0.01 0.5 0.5 0.5 0.5 0.5 0.5 
0.1 0.5 0.5 0.5 0.5 0.5 0.5 

1 0.8715 0.8718 0.872 0.872 0.8723 0.8721 
10 0.9549 0.9811 0.9839 0.9829 0.9809 0.981 
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100 0.9695 0.9696 0.975 0.919 0.9825 N/A 
1000 0.9691 0.9691 0.9693 0.9691 0.9748 0.9819 
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Chapter 5: Conclusion 

 
 
5.1. Summary 

 
Proteases are ubiquitous to the process of biological signaling. Uncovering the 

biophysical basis of protease specificity may not only lead to the possibility of designing 

rational therapies and designing new synthetic biology tools, but also would be important 

for understanding the general principles of biological information transfer. This 

dissertation aimed at deepening the understanding of the biophysical basis of protease 

specificity through the development of generalizable methods for recapitulation and 

prediction of specificity for varied classes of proteases. We successfully recapitulated the 

specificity profile for the substrate- protease recognition of the HCV NS3 protease and 

uncovered biophysical rules that underlie the process of protease – substrate coevolution. 

 We demonstrated successful use of a generalizable; structure based biophysical 

approach for protease specificity recapitulation and prediction(Pethe et al. 2017).  In this 

study, we tested that a near attack, pre transition model of substrate acylation was a good 

static model representative of substrate selectivity in the mechanism of proteolysis. We 

constructed thousands of high - resolution models of protease- substrate interactions from 

high resolution crystal structures accessed from the Protein Data Bank as well as cleaved 

and uncleaved substrate sets available through literature databases. Rosetta and AMBER 

were used to calculate energies that describe the protease – substrate interaction interface. 

We uncovered that a linear combination of these energies robustly recapitulated 
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specificity profiles across our protease datasets. While our structure guided, energy based 

method outperformed available sequence based methods when tested with an SVM based 

approach, we noted that adding sequence information to the SVM added orthologous 

information increasing the SVMs discriminatory power. We further used the SVM to 

predict novel specificities for the Hepatitis C NS3 viral protease and successfully 

validated these novel sequences using a yeast based cell surface display assay(Yi et al. 

2015; Pethe et al. 2017). 

Structure based prediction methods are relatively slow and thus impede the 

process of predicting and designing multispecificity. We developed a rapid, flexible-

backbone self-consistent mean field theory-based technique, MFPred(Rubenstein et al. 

2017), for multispecificity modeling at protein-peptide interfaces. Recapitulating 

specificities for a range of receptors benchmarked the method: protease and kinase 

enzymes, and protein recognition modules including SH2, SH3, MHC Class I and PDZ 

domains. We observed robust recapitulation of peptide specificity as well as ~10-1000-

fold decrease in computational expense. 

 

Hepatitis C NS3 protease is multispecific, and a key functional player in the viral 

replication and maturation process. Viral replication operates via a polyprotein that is 

translated containing core, non - structural and structural proteins that assemble to form a 

mature, functional virus. The polyprotein is selectively and specifically cleaved by the 

multispecific viral protease. We mapped the specificity landscape of the HCV NS3/4A 

protease to obtain a comprehensive understanding of the protease substrate interaction 

network. Using an in vivo yeast surface display assay, Fluorescence Assisted Cell 
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Sorting, Next Generation Sequencing technology we were able to experimentally explore 

~ 30% of the interaction landscape. To reconstruct the entire landscape, we used the 

aforementioned SVM based approach using sequence-based information as well as 

calculated interaction energies. We find extensive clustering of cleavable and uncleavable 

motifs in sequence space indicating mutational robustness, and thereby providing a 

plausible molecular mechanism to buffer the effects of low replicative fidelity(Cuypers et 

al. 2015) of this RNA virus. Specificity landscapes of known drug-resistant(Romano et 

al. 2010; Romano et al. 2012; Li et al. 2017) variants are similarly clustered indicating 

that substrates that are recognized by several mutant proteases are not only robust to 

changes on the protease but also the to changes in substrate residue identity. Our results 

highlight the key and constraining role of molecular-level energetics in shaping plateau-

like fitness landscapes from quasi-species theory. 

 

5.2. Future Directions & Implications 

 
Interrogating the interaction landscape of HCV NS3/4A protease – substrates in our 

study, brings to light the fact that traversing across the substrate landscape is not 

constrained by biophysical barriers. This suggests that there are other factors involved in 

viral evolution that are contributing to purifying selection of canonical substrate sites to 

preserve residue identity in these regions. So far, we have witnessed viral evolution in 

nature that increases diversity(Romano et al. 2010; Romano et al. 2012; Li et al. 2017) on 

the protease interface to compete with antiviral drugs that are introduced to combat 

Hepatitis C infection. These mutations work via allosteric effects or by introducing 

clashes in the binding site making it harder for the drug to bind in the active site of the 
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protease causing weaker binding and reduced effect. Our studies hint at a population of 

substrates that are biophysically unhindered (on trajectories starting from canonical 

substrates) and thus able to be sampled in nature, on the substrate landscape and are 

efficient substrates for not only the drug resistant mutant but also the wild type protease. 

Through the study we identify the possibility of protease substrate co-evolution of the 

virus that would evade antiviral therapies aimed at the hepatitis C protease. 

 
The yeast based assay that was chosen for this study has a few limitations – first, being a 

cell - based study, the inherent bias towards enrichment in each generation is towards 

faster growing clones as opposed to functional clones.  We aim to balance this effect by 

introducing structure - based features into the SVM classifier, which solely accounts for 

function. Some of the enrichment profiles are reflective of the yeast codon bias and not of 

humans (the host where the canonical substrates are evolving). The scheme of the assay 

involves testing of one substrate per protease and thus other constraining factors such as 

DNA, RNA secondary structure effects, order of substrate cleavage cannot be tested. 

Through this assay we do not have sufficient information to predict whether the novel 

cleaved sequences would indeed produce a functional virus. This would then reduce 

barriers to resistance associated substrate variants and thus explain the narrow diversity 

of substrates found in nature.  

 
Our study brings up several avenues to further explore the molecular evolution landscape 

of the virus as well as questions regarding the emerging drug resistance in the 

quasispecies of the hepatitis C virus infective population.  The yeast based assay followed 

by a FACS screen and NGS technology coupled with structure based and SVM learning 
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tools enable several exploratory experiments that could provide answers to these 

questions. Our experimental scheme is well set up to test the cleavage profiles of 

proteases in the presence of an antiviral drug. Using this methodology, we could 

investigate the following questions – does the WT/Drug resistant mutant protease 

cleavage profile substantially change in the presence of the drug? Can we isolate 

substrate variants that are partially cleaved/ uncleaved for the WT protease but shift to the 

cleaved population in the presence of the drug with the drug resistant mutant protease? 

This assay could also enable the elucidation of the full resistance profile on both the 

protease as well as the substrate, for a new drug that is designed against Hepatitis C.   

 

A comprehensive exploration of the protease – substrate network, such as our study, 

strengthens our understanding of the nuances of protease – substrate interface 

interactions. To enable progress in protease design it is essential to account for protease – 

substrate covariance data in the design algorithm. Designing smart libraries at the 

protease interface residues, as well as at substrate positions (P6-P2; known to be 

specificity determining) and investigating the cleavage profile by comparing and 

contrasting changes in these protease mutants would give us an understanding of this 

covariance network. This study of the robustness on the protease side of this interaction 

network would be the next natural step in generation of designer proteases. 

 

We hope that the dissertation will further provide measures to understand the biophysical 

basis of protease specificity and further our understanding of the biophysical interaction 
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landscape of the Hepatitis C NS3 protease, as well as aid in the development in rational 

design of proteases for therapeutic and synthetic biology use. 
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