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This	 thesis	 introduces	 a	 new	 experimental	 paradigm	 and	 offers	 a	 unifying	 statistical	

framework	 to	 characterize	 possible	 interdependencies	 among	 signals	 of	 the	 nervous	

systems	 through	 three	proposed	 fundamentally	different	 types	of	processes.	We	have	

coined	the	terms	deliberate,	spontaneous	and	inevitable	for	these	processes.	Deliberate	

processes	 manifest	 through	 overt	 movements	 executed	 during	 goal-directed	 actions	

(e.g.,	when	instructed	to	point	to	a	visual	target).	They	are	systematic	in	nature,	and	are	

well	 characterized	 by	 low	 variability	 and	 robustness	 to	 changes	 in	 bodily	 physical	

dynamics.	 Spontaneous	 processes	 manifest	 through	 highly	 automatic	 and	 covert	

movements,	that	are	uninstructed	and	goal-less	(e.g.,	retracting	the	hand	from	a	visual	

target),	 and	 are	 characterized	 by	 high	 variability	 and	 susceptibility	 to	 environmental	
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cues	and	changes	in	bodily	motion	dynamics.	These	processes	occur	largely	beneath	the	

person’s	awareness,	but	can	be	brought	up	to	conscious	control	when	instructed	to	do	

so.	 They	 co-exist	 with,	 and	 are	 incidental	 to	 the	 goal-directed	 segments	 of	 complex	

motions,	 as	 they	 provide	 fluidity	 to	 behavior	 at	 large.	 The	 inevitable	 processes	 are	

generated	by	autonomic	activities	such	as	the	heartbeat.	They	have	a	narrower	range	of	

change	 in	 dynamics	 and	 cannot	 be	 volitionally	 controlled	 or	 be	 perturbed	 by	

environmental	cues,	unlike	the	deliberate	and	spontaneous	processes.	These	processes	

are	robust	and	provide	a	unique	signature	of	the	person’s	nervous	systems.		

Here,	we	study	these	processes	in	tandem	as	participants	perform	a	basic	pointing	task	

with	different	levels	of	cognitive	load	in	the	context	of	decision	making.	We	assess	the	

continuous	somatic-motor	performance	of	 the	nervous	system	through	a	personalized	

statistical	analysis	of	the	moment-by-moment	fluctuations	in	the	amplitude	and	timing	

of	 various	 biophysical	 parameters.	 These	 include	 variations	 in	 the	 amplitude	 of	 the	

angular	 acceleration	 peaks	 and	 their	 inter-peak	 interval	 timing,	 and	 variation	 in	 the	

inter-heartbeat-interval	timings	(IBI).	We	find	that	the	interdependency	is	funneled	out	

through	 one	 of	 the	 processes	 depending	 on	 the	 demands	 of	 the	 task.	 Tasks	 with	

differing	 levels	 of	 cognitive	 load	 manifest	 the	 interdependency	 through	 inevitable	

processes	 with	 shifts	 in	 the	 IBI	 stochastic	 signatures.	 Decision-making	 (a	 form	 of	

cognitive	 load)	 manifests	 the	 interdependency	 through	 deliberate	 processes	 with	

fluctuations	 in	 the	 amplitude	 of	 the	 angular	 acceleration	 peaks,	 and	 through	

spontaneous	processes	with	the	inter-peak	interval	variations.	We	emphasize	that	these	

findings	do	not	refer	to	discrete	mouse-clicks	or	verbally	reported	data.	They	are	rather	
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in	reference	to	continuous	physiological	data	harnessed	from	the	central,	peripheral	and	

autonomic	 nervous	 systems.	 As	 such,	 our	methods	 are	 novel	 to	 the	 field	 of	 cognitive	

psychology.	We	discuss	our	results	along	with	possible	applications	of	this	paradigm	to	

basic	 science	 and	 clinical	 practices.	 Specifically,	 we	 invite	 their	 use	 in	 expanding	 the	

analytical	tools	for	the	nascent	field	of	embodied	cognition,	and	suggest	these	metrics	

to	 be	 used	 as	 dynamic	 outcome	 measures	 of	 voluntary,	 automatic,	 and	 autonomic	

control	in	clinical	settings.	
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1. Introduction		

1.1	Biorhythms	as	afferent/reafferent	signals		

The	 human	 body	 continuously	 generates	 biophysical	 rhythms	 throughout	 the	 multiply	

interconnected	 layers	of	the	peripheral	and	central	nervous	systems	(PNS	and	CNS),	 including	

the	 layers	of	 the	autonomic	nervous	systems	 (ANS)	within	 the	PNS.	These	biorhythms	can	be	

registered	 non-invasively	 by	 contemporary	 instruments	 that	 measure	 e.g.,	 heart	 rate,	

respiration,	 brain	 waves	 (electroencephalography),	 muscle	 function	 (electromyography)	 and	

bodily	kinematics,	among	others.		

The	waveforms	 of	 these	 biophysical	 rhythmic	 signals	 are	 generated	 and	 expressed	 as	

time	 series	 of	 peaks	 and	 valleys	 that	 fluctuate	 over	 time,	 as	 we	 naturally	 and	 continuously	

behave	 and	 move	 around.	 Such	 fluctuations	 can	 be	 understood	 as	 sensory	 feedback	 of	

consequence	 to	 the	 estimation	 and	 predictive	 planning	 of	 our	 self-generated	 actions	 and	

decisions.	The	central	controllers	 in	our	brain	are	thought	to	utilize	such	 information	to	build	

internal	models	for	motor	control	in	guiding	a	variety	of	cognitively	registered	processes	[1-3].		

For	 example,	 when	 we	 move	 in	 the	 dark,	 in	 the	 absence	 of	 any	 visual	 feedback,	 the	

kinesthetic/proprioceptive	 signals	 would	 allow	 us	 to	 perceive	 the	 changes	 in	 body	 positions	

over	time,	and	in	turn,	motion	representations	from	this	feedback	can	be	incorporated	within	

the	flow	of	conscious	decisions	to	execute	movement	in	a	timely	fashion.	

Such	 afferent	 signals	 are	 necessary	 to	 execute	 any	 purposeful	 actions,	 because	 we	

would	need	to	continuously	sense	the	motions	of	the	body,	and	update	our	motor	and	sensory	

maps	based	on	the	sensory	 flow.	 Indeed,	 in	 the	words	of	Von	Holst	and	Mittelstaedt	 [7],	 the	
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principle	of	reafference		states	that,	“Voluntary	movements	show	themselves	to	be	dependent	

on	the	returning	stream	of	afference	which	they	themselves	cause.”		

To	 illustrate	 the	 importance	of	 this	principle	 in	 the	context	of	kinesthetic	 reafference,	

we	bring	up	the	case	of	a	deafferented	subject	Ian	Waterman	[8].	Ian	transiently	lost	the	ability	

to	control	his	body	due	to	a	 lack	of	kinesthetic	 reafference.	His	afferent	 fibers	 from	the	neck	

down	 were	 destroyed	 by	 a	 viral	 infection	 when	 he	 was	 19	 years	 old.	 Although	 his	 nervous	

system	could	produce	efferent	motor	output	to	tense	up	the	muscles	across	his	body,	without	

the	 continuous	 afferent	 feedback	 flow	 from	 his	 bodily	 motions,	 he	 could	 not	 move	 in	 any	

controlled	 fashion.	 His	 case	 is	 one	 of	 extraordinary	 importance	 in	 the	 field	 of	 neuromotor	

control	because	 it	demonstrates	that	sensory	substitution	of	kinesthetic	reafference	by	vision	

was	possible	through	a	combination	of	visual	guidance	and	motor	 imagery.	 In	the	absence	of	

proprioception,	 Ian	 learned	 to	 remap	 his	 sense	 of	 movement	 and	 the	 consequences	 of	 his	

movements	by	deliberately	planning	ahead	every	single	bodily	motion	with	the	help	of	visually	

monitoring	his	 limbs	 [9].	His	 brain	 regained	 the	 ability	 to	 compensate	 for	 sensory-processing	

delays,	 enabling	 him	 to	 better	 predict	 the	 sensory	 consequences	 of	 his	 impending	 action.	

Because	Ian	had	already	built	sensory-motor	maps	in	his	brain	by	the	age	of	nineteen	(when	the	

viral	 infection	destroyed	his	afferent	channels),	he	was	able	 to	 rebuild	a	predictive	code	 that	

connected	external	sources	of	sensory	guidance	with	internal	sources	of	guidance,	anchored	in	

a	mental	 representation	of	his	deafferented	body	 (i.e.,	motor	 imagery).	This	 representational	

map	 closed	 the	 sensory-motor	 feedback	 loops	 using	 the	 fluctuations	 of	 the	 rhythms	 from	

different	biophysical	channels.	
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It	has	been	our	proposition	that	in	the	process	of	executing	movements	using	the	closed	

feedback	loop,	we	may	have	probabilistic	maps	of	sensory	consequences	for	impending	motor	

actions	 and	 decisions.	 Such	 maps	 would	 be	 acquired	 by	 our	 brain	 through	 sampling	 the	

consequences	of	our	physical	acts	through	kinesthetic	reafference,	as	well	as	other	extraneous	

sources	 of	 sensory	 reafference,	 thus	 allowing	 for	 the	 development	 of	 representational	 and	

adaptive	probability	landscapes.		

In	 fact,	 because	 biorhythms	 across	 multiple	 layers	 of	 the	 nervous	 systems	 are	

quantifiable,	 we	 know	 that	 their	 continuity	 and	 historicity	 are	 vital	 to	 the	 development	 and	

maintenance	of	a	predictive	code	 in	our	motor	and	sensory	maps	[10].	Along	these	 lines,	 the	

variations	 produced	 by	 prior	 self-generated	movements	 across	multiple	 contexts	 accumulate	

probabilistic	information	that	enables	the	nervous	systems	to	generate	subsequent	movements	

in	 a	 well-informed	 manner.	 By	 sending	 the	 mixture	 of	 signals	 and	 noise	 embodied	 in	 the	

sensory	motor	priors	to	the	brain	(via	afferent	pathways),	the	past	can	influence	the	mixture	of	

signals	 and	 noise	 generated	 by	 the	 subsequent	 movements	 (via	 efferent	 pathways),	 which	

would	then	transport	a	new	set	of	signals	and	noise	to	the	brain	(via	reafferent	pathways).	

1.2.	Interdependency	among	Signals	from	Different	Nervous	Systems		

The	biophysical	rhythmic	signals	within	the	multiply	interconnected	layers	of	the	peripheral	and	

central	nervous	systems	(PNS	and	CNS)	are	 in	constant	motion	as	we	naturally	behave.	These	

signals	may	be	interdependent	with	each	other,	or	may	be	orthogonal	with	one	another.			

We	posit	that	in	order	to	develop	and	maintain	deliberate	autonomy,	 i.e.	the	ability	to	

deliberately	 maintain	 a	 robust	 course	 of	 action	 on	 demand	 that	 is	 impervious	 to	
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external/environmental	influences,	interdependencies	among	biophysical	signals	from	different	

nervous	systems	would	be	required.	These	interdependencies	can	be	manifested	by	examining	

the	 inter-relations	 of	 three	 proposed	 processes:	 the	 deliberate,	 spontaneous,	 and	 inevitable	

processes	 (Fig.1A).	 These	 processes	 likely	 emerge	 from	 the	 interactions	 across	 the	

phylogenetically	 ordered	 structures	 and	 the	 functional	 neurophysiology	 of	 our	 nervous	

systems,	 including	 information	 processed	 by	 our	 sensory	 organs	 and	 information	 flowing	

through	the	efferent-afferent	channels	(Fig.1B-C).		

Prior	work	concerning	the	neuromotor	control	of	complex	actions	has	used	movement	

segments	to	examine	the	interplay	between	deliberate	and	spontaneous	processes.	Movement	

signals	 produced	 during	 natural	 behaviors	 are	 obtained	 from	 a	 blend	 of	 motion	 segments	

involving	various	levels	of	intent	[4],	spanning	from	those	that	are	conscious	and	voluntary	(i.e.,	

high	intent	movements	such	as	pointing	at	a	screen)	to	those	that	are	automatic	and	beneath	

the	 awareness	 (i.e.,	 low	 intent	 movement	 such	 as	 rhythmical	 swaying	 of	 the	 arms	 while	

walking),	 as	 shown	 in	 Fig.1B.	 Deliberate	 processes	 map	 well	 onto	 voluntary	 goal-directed	

motions	and	spontaneous	processes	onto	automatic	uninstructed/goal-less	motions,	where	the	

former	is	primarily	driven	by	top-down	processes	from	the	CNS,	generating	biophysical	rhythms	

that	are	more	robust	to	changes	in	dynamics	[4,	10,	13],	while	the	latter	is	primarily	driven	by	

bottom-up	processes,	broadcasting	different	signatures	of	statistical	variability	[4,	10,	14].	Using	

this	 aspect	 of	 movement	 characteristics,	 recent	 studies	 have	 revealed	 that	 the	 statistical	

features	of	motor	signals	reflect	the	level	of	intent	that	is	involved	in	complex	sports	behaviors	

[12],	and	 these	statistical	 features	have	been	 further	explored	among	athletes	vs.	novices	 [4]	

and	among	individuals	with		autism	spectrum	disorders	[5,	6].	
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At	 this	 point,	 inevitable	 processes	 from	 the	 ANS	 (unavoidable	 and	 impervious	 to	

volitional	 control)	 have	 not	 been	 characterized	 under	 a	 common	 statistical	 umbrella	 with	

deliberate	 and	 spontaneous	 processes.	 As	 such,	 there	 is	 an	 open	 question	 on	 whether	

peripheral	 biorhythms	 such	 as	 those	 generated	 by	 the	 heart	 in	 the	 ANS	 would	 also	 contain	

statistical	information	about	cognitive	activity,	such	as	the	level	of	intent.	(Fig.	1B-C).	

	

Figure	1.	Interdependencies	among	signals	from	different	nervous	systems	manifested	through	the	proposed	fundamentally	
different	 types	 of	 processes	 and	 the	 assessment	 of	 their	 roles	 through	 the	 statistical	 signatures	 of	 variability	 (statistical	
variability	is	explained	further	in	section	2.4).	(A)	Proposed	processes	and	the	nervous	systems	that	is	predominantly	involved	
in	 each	 of	 those	 processes,	 along	with	 their	 interdependencies	 during	 natural	 behaviors	 that	 require	 cognitive	 decisions.	 A	
possible	scenario	is	given	here	by	the	prevalence	of	the	CNS	on	deliberate	processes	during	voluntary	goal-directed	behaviors;	
the	 prevalence	 of	 the	 PNS	 instantiated	 through	 efferent-afferent	 influences	 on	 spontaneous	 processes	 manifested	 in	
uninstructed/goal-less	motions,	taking	place	beneath	the	person’s	awareness;	the	inevitable	processes	with	a	prevalence	of	the	
ANS	involvement	in	e.g.,	rhythmic	motions	of	the	heart	as	an	autonomic	pacemaker	underlying	all	actions.	The	shortness	of	the	
arrow	 connecting	 the	 inevitable	 process	 implies	 a	 narrower	 bandwidth	 of	 dynamics	 reflected	 within	 the	 ANS	 processes,	
supposedly	 due	 to	 the	 ANS	 system’s	 stability	 and	 survival.	 (narrower	 bandwidth	 explained	 further	 in	 section	 4.1)	 (B)	 A	
continuum	 from	 conscious	 to	 unconscious	 processes	 spanning	 the	 PNS	 and	 CNS,	where	 each	 processes	map	 onto	 different	
layers	of	statistical	variability.	 (C)	Bi-directional	efferent	 (blue)	and	afferent	 (red)	signals	continuously	 flowing	 in	closed	 loops	
between	the	central	and	the	peripheral	nervous	systems	with	the	underlying	presence	of	the	ANS.	Extracted	from	[4,	11].		
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1.3.	Embodied	Approach		

Since	 movement	 signals	 are	 a	 blend	 of	 deliberate	 and	 spontaneous	 processes	 with	

varying	 levels	 of	 intent,	 each	 layer	 of	 the	 nervous	 system	 would	 be	 contributing	 to	 the	

functionality	 of	 one’s	 movement	 behavior	 with	 varying	 degrees,	 within	 the	 closed	 feedback	

loop	of	CNS	and	PNS	signals	(i.e.,	brain	and	body)	(Fig.1A).	This	perspective	highlights	the	need	

to	understand	cognition	 from	an	embodied	standpoint,	as	 the	 level	of	cognitive	activity	 (e.g.,	

level	of	intent)	involves	signals	from	both	CNS	and	PNS.	

However,	 much	 of	 the	 research	 on	 cognition	 focuses	 solely	 on	 the	 deliberate	

component	 of	 behaviors.	 Although	 there	 are	 merits	 in	 exploring	 this	 subset	 of	 behaviors,	

neglecting	 to	 consider	a	wider	 scope	of	movements	may	 result	 in	an	 incomplete	view	of	 the	

human	 nervous	 system.	 For	 instance,	 behaviors	 that	 occur	 automatically/spontaneously	

beneath	 the	 awareness	 are	 known	 to	 aid	 in	 the	 fluidity	 of	 movements	 by	 supporting	 the	

deliberate	segments	of	behaviors	[4,	14,	15].	The	variability	contained	in	these	types	of	motions	

are	informative	in	characterizing	an	individual’s	disposition	and	pathological	condition	[16],	and	

have	helped	design	personalized	interventions	in	autism	[17].	Indeed,	recent	research	suggests	

that	 there	 is	 a	 wealth	 of	 information	 in	 the	 spontaneous	 behaviors	 that	 are	 commonly	

discarded	or	 simply	neglected	 in	many	cognitive	neuroscience	studies	 [18],	and	 these	studies	

instead	 rely	 on	 tasks	 that	 use	 discrete	 data	 (e.g.,	 obtained	 from	mouse	 clicks	 or	 pencil-and-

paper	means)	to	quantify	unambiguous	aspects	of	behavior.	These	methods	describe	conscious	

motor	 processes	 at	 the	 expense	 of	 discarding	 processes	 that	 occur	 largely	 beneath	 the	

awareness.	The	 latter	are	 in	 fact	the	bulk	of	what	comprise	human	behaviors.	Studying	these	
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automatic/spontaneous	segments	are	bound	to	fill	a	large	gap	of	our	knowledge	base	and	are	

likely	to	reshape	the	way	we	think	the	brain	works.	

1.4.	Cognitive	Load	under	SPIBA		

In	 this	 thesis,	we	attempt	 to	characterize	different	 levels	of	 cognitive	 load	with	an	embodied	

approach.	Given	the	closed	loop	nature	of	the	brain-body	interactive	control,	it	may	be	possible	

to	 explicitly	 vary	 the	 level	 of	 cognitive	 load	 an	 individual	 is	 exposed	 to,	 and	 examine	 the	

consequent	 patterns	 of	 variability	 in	 the	 underlying	 biophysical	 signals.	 Indeed,	 because	 the	

level	 of	 intent	 can	 be	 reflected	 in	 the	 statistics	 of	 an	 individual’s	 movement	 fluctuations	

(explained	more	in	detail	in	section	2.4.3)	we	may	be	able	to	characterize	the	level	of	cognitive	

load	through	the	movement	statistics.		

In	order	to	characterize	cognitive	load	from	the	signals	obtained	from	different	layers	of	

the	 nervous	 systems,	 we	 intend	 to	 employ	 a	 new	 statistical	 platform	 for	 the	 individualized	

behavioral	 analyses	 (SPIBA)	 [19].	 Deployed	 by	 Torres’s	 research	 team,	 SPIBA	 enables	

characterizing	the	variability	in	multi-sensory-motor	signals	under	a	common	unifying	scale,	as	

the	individual	performs	natural	movements.	More	specifically,	the	new	methods	track	minute	

fluctuations	 in	 the	amplitude	and	 timing	of	waveforms	derived	 from	 the	biophysical	 rhythms	

during	natural	movements	that	span	across	varying	levels	of	intent,	ranging	from	those	that	are	

voluntary	 to	 those	 that	 are	 autonomic.	 By	 adopting	 well-known	 statistical	 techniques	 and	

adapting	 them	 to	 the	 analyses	 of	 human	 biorhythms,	 we	 are	 able	 to	 track	 the	 participant’s	

cognitive	 behaviors	 and	decisions,	 and	 further	 obtain	 a	 glimpse	of	 the	 afferent	 feedback	 the	

brain	may	receive	during	natural	movements.		
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Employing	the	SPIBA	on	biophysical	signals	gathered	under	different	levels	of	cognitive	

load	can	potentially	be	an	objective,	novel,	and	a	robust	way	to	comprehensively	characterize	

cognitive	loads	across	different	layers	of	the	nervous	systems,	and	would	help	guide	research	in	

the	 field	 of	 embodied	 cognition.	 Cognitive	 load	 can	 be	 considered	 a	 multidimensional	

construct,	 where	 the	 load	 represents	 how	 a	 certain	 task	 may	 be	 imposing	 on	 the	 ongoing	

cognitive	processes	[20].	Most	cognitive	studies	that	attempt	to	measure	cognitive	load	do	so	

via	post-hoc	subjective	assessments	[20-22].	There	is	a	paucity	of	studies	that	have	objectively	

assessed	 cognitive	 load	 by	 examining	 the	 continuous	 psycho-physiological	 changes	 under	

different	 levels	of	 cognitive	 load.	 The	extant	 literature	on	 this	 subject	 reports	 the	use	of	eye	

movement	 signals,	 eye	 blink	 intervals,	 heart	 rate	 and	 heart	 rate	 variability,	 galvanic	 skin	

response,	 and	brainwave	 signals	 [23-27].	However,	 these	 studies	often	 show	differing	 results	

among	each	other,	presumably	due	to	the	type	of	tasks	they	tested.	Indeed,	there	are	multiple	

dimensions	 in	 cognitive	 capacities,	 so	 different	 tasks	 may	 result	 in	 different	 changes	 of	 the	

physiological	signals.	Also,	if	the	physiological	waveforms	are	examined	under	disparate	scales	

without	considering	the	heterogeneity	of	the	human	phenotypes,	the	results	will	be	difficult	to	

interpret	and	generalize.	Moreover,	the	analytics	of	these	studies	oftentimes	assume	a	priori	a	

theoretical	 normal	 distribution	 without	 empirically	 testing	 the	 validity	 of	 such	 assumption	

across	 the	 population	 at	 large.	 This	 is	 such	 a	 common	 practice	 that	 paradigms	 such	 as	 the	

significant	 hypothesis	 testing	 (see	 proposed	 alternatives	 here	 [28])	 lead	 to	 the	 infamous	 p-

hacking	 issues	Psychology	as	a	 field	 faces	 today	 (see	 for	example	 [29-31]).	The	 indiscriminate	

use	of	parametric	models	and	linear	methods	in	data	generated	by	complex	systems	with	non-

linear	dynamics	also	casts	doubt	on	many	of	the	claims	thus	far	assessed	by	these	studies,	and	
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the	imposition	of	such	assumptions	tends	to	mask	the	data	variability	as	noise,	thus	ignoring	a	

wealth	 of	 physiological	 signals	 contained	 in	 the	 data.	 Lastly,	 these	 studies	 assess	 signals	

harnessed	 from	 one	 aspect	 of	 the	 nervous	 systems	 and	 study	 their	 variations	 in	 isolation,	

without	assessing	the	interdependencies	among	the	signals	from	different	layers	of	the	nervous	

system.	 All	 these	 aspects	 of	 the	 current	 paradigms	 contribute	 to	 the	 general	 confusion	 or	

contradictory	results	of	these	studies,	and	thus	call	for	more	robust	and	standardized	metrics	of	

physiological	signals	to	objectively	characterize	the	effects	of	cognitive	loads	on	the	interactions	

across	different	layers	and	processes	of	the	nervous	systems	(Fig.1A).	Here,	we	start	by	relaxing	

some	of	the	theoretical	assumptions	on	normality,	 linearity,	and	stationarity	to	systematically	

test	the	variability	inherently	present	in	the	empirical	data	harnessed	in	tandem	from	multiple	

processes	and	layers	of	the	CNS,	the	PNS	and	the	ANS,	as	the	person	physically	executes	tasks	

with	varying	levels	of	cognitive	load.	

1.5.	Our	Goal	

In	this	thesis,	we	examine	the	moment-by-moment	minute	fluctuations	in	the	motor	and	heart	

signals	of	an	 individual	under	different	 levels	of	 cognitive	 load,	and	address	 the	possibility	of	

interdependencies	within	the	nervous	systems	by	examining	the	three	processes	–	deliberate,	

spontaneous,	 and	 inevitable.	 If	 cognitive	 activities	 impact	 signals	 across	 the	 closed	 feedback	

loop	of	different	nervous	systems	due	to	the	interdependencies	of	these	signals,	we	expect	to	

see	shifts	 in	 the	signals’	statistics	obtained	from	the	three	processes	under	different	 levels	of	

cognitive	loads.	However,	if	cognitive	activities	do	not	impact	signals	that	occur	largely	beneath	

the	 awareness	 (e.g.,	 heart	 signals	 from	 inevitable	 processes),	we	may	 not	 see	 any	 statistical	

shifts	in	those	signals	under	different	cognitive	load	levels.		
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	 It	should	be	noted	that	 for	this	study,	we	apply	a	novel	platform	SPIBA	to	analyze	the	

physiological	 signals	 with	 varying	 levels	 of	 control	 (ranging	 from	 voluntary,	 automatic	 to	

autonomic	 levels)	 in	 different	 processes	 (deliberate,	 spontaneous	 and	 inevitable).	 Under	 the	

SPIBA	 framework,	we	do	not	make	a	priori	 assumptions	of	normality	or	 linearity	 in	 the	data,	

and	empirically	characterize	the	stochastic	signatures	of	the	variability	of	movement	kinematics	

in	 tandem	 with	 the	 underlying	 heartbeat	 variability.	 We	 estimate	 the	 continuous	 family	 of	

probability	 distributions	most	 likely	 fitting	 the	motion/heart	 data,	 acquired	 in	 tandem	under	

explicitly	manipulated	levels	of	cognitive	load	conditions.	
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2.	Materials	and	methods		

2.1.	Participants		

Nine	 undergraduate	 students	 (2	 males	 and	 7	 females)	 between	 the	 ages	 18	 and	 22	 were	

recruited	 from	 the	 Rutgers	 human	 subject	 pool	 system,	 and	 received	 credit	 for	 their	

participation.	 Participants	 provided	 informed	 consent,	 which	 was	 approved	 by	 the	 Rutgers	

University	Institutional	Review	Board.	Two	participants	were	left-handed,	and	all	had	normal	or	

corrected-to-normal	vision.		

During	the	experiment,	the	motor	and	heart	signals	were	recorded	for	each	participant.	

However,	 one	 participant’s	 heart	 signals	 did	 not	 record	 successfully	 due	 to	 instrumentation	

malfunctioning,	 resulting	 in	an	analysis	on	motor	data	 for	nine	 individuals	and	heart	data	 for	

eight	individuals.		

2.2.	Sensor	Devices			

In	this	study,	two	sensor	devices	–	motion	capture	system	and	a	wireless	heart	rate	monitor	–	

were	used	to	record	the	signals	coming	from	the	motion	and	the	heart.		

2.2.1.	Motion	capture		

15	electromagnetic	sensors	at	a	sampling	 frequency	of	240	Hz	 (Polhemus	Liberty,	Colchester,	

VT)	were	used	to	capture	the	participant’s	continuous	motion.	Nine	sensors	were	placed	on	the	

following	body	segments	using	sports	bands	to	optimize	unrestricted	movement	of	 the	body:	

center	of	the	forehead,	thoracic	vertebrate	T7,	right	and	left	scapula,	right	and	left	upper	arm,	

right	 and	 left	 forearm,	 the	 dominant	 hand’s	 index	 finger.	 An	 additional	 sensor	 was	 used	 to	
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digitize	the	body	in	constructing	a	biomechanical	model	using	the	Motion	Monitor	(Innovative	

Sports	Training	Inc.,	Chicago,	IL)	software.	Among	the	remaining	sensors,	one	was	placed	at	the	

backside	 center	 of	 the	 iPad	 (Apple,	 Cupertino	 CA)	 display	 screen,	 which	 the	 participant	 was	

interacting	with	during	the	experiment,	and	four	sensors	were	placed	at	the	four	corners	of	the	

table,	 on	which	 the	 iPad	was	 standing.	 During	 the	 experiment,	 the	 participant’s	motion	was	

captured	in	real-time,	recording	the	location	and	speed	of	the	upper	body	movement.		

2.2.2.	Heart	rate	monitor		

Heart	signals	were	obtained	via	electrocardiogram	(ECG)	from	a	wireless	Nexus-10	device	(Mind	

Media	BV,	The	Netherlands)	and	Nexus	10	software	Biotrace	(Version	2015B)	at	a	sampling	rate	

of	 256Hz.	 Three	 electrodes	 were	 placed	 on	 the	 chest	 according	 to	 the	 standardized	 lead	 II	

method,	 and	 were	 attached	 with	 adhesive	 tape.	 A	 typical	 ECG	 data	 includes	 a	 set	 of	 QRS	

complexes,	 and	 detecting	 R-peaks	 (within	 the	 QRS	 complex)	 is	 essential,	 as	 the	 heart	 rate	

metrics	 needed	 for	 this	 study	 focuses	 on	 the	 oscillation	 of	 intervals	 between	 consecutive	

heartbeats.	 In	order	to	remove	any	baseline	wandering	and	to	accurately	detect	the	R-peaks,	

ECG	data	were	preprocessed	using	the	Butterworth	IIR	band	pass	filter	for	5-30Hz	at	2nd	order.	

The	 range	 of	 the	 band	 pass	 filter	 was	 selected	 based	 on	 the	 finding	 that	 a	 QRS	 complex	 is	

present	in	the	frequency	range	of	5-30Hz	[32].	To	retrieve	the	time	between	R-peaks	(i.e.,	inter-

beat	 intervals,	 IBI)	from	the	preprocessed	ECG	data,	simple	peak	detection	method	was	used,	

and	was	plotted	using	Matlab	graphics	to	ensure	that	there	were	no	missed	R-peaks.		



13 
 

 
 

2.3.	Stimulus	apparatus	and	experimental	procedure		

Once	all	sensors	were	donned	and	calibrated,	participants	were	seated	at	a	table	facing	an	iPad	

used	 as	 a	 touchscreen	 display.	 An	 in-house	 developed	 MATLAB	 (Release	 2015b,	 The	

MathWorks,	 Inc.,	 Natick,	Massachusetts,	 United	 States)	 program	 controlled	 the	 presentation	

displayed	on	the	touchscreen	display,	and	also	recorded	the	timing	and	location	of	the	touches	

made	by	the	participant.	The	MATLAB	program	was	presented	on	the	touchscreen	display	using	

the	TeamViewer	(Germany)	application.		

As	 shown	 in	 Fig.	 2,	 for	 each	 trial,	 the	 participant	was	 presented	with	 a	 circle	 on	 the	

center	of	the	display	screen.	This	presentation	prompted	the	participant	to	touch	the	circle	on	

the	 screen	 within	 five	 seconds.	 Subsequent	 to	 the	 touch,	 the	 participant	 heard	 a	 tone	 at	

1000Hz	 for	 100ms.	 The	 duration	 between	 the	 touch	 and	 the	 tone	 was	 randomly	 set	 to	 be	

100ms,	 400ms,	 or	 700ms.	 Then,	 on	 the	display	 screen,	 the	participant	was	 presented	with	 a	

sliding	scale	ranging	from	0	to	1.	On	the	sliding	scale,	the	participant	indicated	how	long	they	

perceived	 the	 time	 to	 have	 elapsed	 between	 the	 touch	 and	 the	 tone,	 by	 touching	 the	

corresponding	number	on	 the	 scale	within	 five	 seconds.	Note,	 the	 five	 seconds	 time	window	

allowed	ample	time	for	 the	participant	 to	 touch	the	screen	at	 their	own	pace,	as	 the	time	to	

reach	the	screen	and	then	to	retract	the	hand	took	approximately	1.5s.	Table	A1	summarizes	

the	median	 time	to	move	 the	hand	under	each	condition.	The	experiment	consisted	of	 three	

conditions	–	 control,	 low-cognitive-load,	and	high-cognitive-load	condition.	Under	 the	control	

condition,	the	participant	simply	performed	this	task	for	60	trials.	Under	the	low-cognitive-load	

condition,	 the	 participant	 performed	 these	 tasks	 for	 60	 trials,	while	 repeatedly	 counting	 out	

loud	 one	 through	 five.	 Under	 the	 high-cognitive-load	 condition,	 the	 participant	 performed	
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these	tasks	for	60	trials,	while	counting	backwards	from	400	subtracting	by	3.	For	both	low-	and	

high-cognitive-load	conditions,	the	participant	was	instructed	to	count	at	a	pace	that	was	most	

comfortable	 to	 oneself.	 Participants	 took	 breaks	 in	 between	 conditions,	 and	 the	 entire	

experiment	took	about	40	minutes.	

	

Figure	2.	Experimental	design.	The	participant	was	presented	with	a	display	screen	as	shown	in	the	top	panel.	During	the	first	
five	 seconds,	 the	 screen	presented	a	 circle	prompting	 the	participant	 to	 touch	 the	circle	on	 the	 screen.	After	 the	 touch,	 the	
participant	heard	a	tone.	The	duration	between	the	touch	and	the	tone	was	randomly	set	to	be	100ms,	400ms,	or	700ms.	In	the	
next	 five	 seconds,	 the	 participant	 was	 presented	 with	 a	 sliding	 scale,	 where	 the	 participant	 would	 indicate	 how	 long	 they	
perceived	the	time	to	have	elapsed	between	the	touch	and	the	tone,	by	touching	the	corresponding	the	number	on	the	scale.	
For	each	trial,	the	participant	made	a	pointing	gesture	to	touch	the	circle	and	to	indicate	their	time	estimation	on	the	sliding	
scale.	The	pointing	movement	is	composed	of	a	goal-directed	segment	(red)	and	a	spontaneous	segment	(blue)	as	shown	in	the	
bottom	panel.		

2.4.	Data	analysis		

2.4.1.	The	Statistical	Platform	for	Individualized	Behavioral	Analyses	(SPIBA)			

The	 current	 study	 employs	 a	 new	 platform,	 SPIBA	 [19],	 which	 was	 created	 for	 personalized	

assessments	 required	 in	 the	Precision	Medicine	and	mobile	Health	concepts	 [33]	 (Fig.	3).	 For	

this	 study,	 the	SPIBA	was	used	 to	 first	 characterize	each	participant	 individually,	which	 could	

potentially	be	used	to	identify	groups	based	on	their	similar	statistical	patterns	 in	subsequent	
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studies.	This	platform	stands	in	stark	contrast	to	current	approaches	in	science	(e.g.,	significant	

hypothesis	 testing	 method),	 which	 compare	 groups	 that	 are	 assumed	 to	 follow	 a	 Gaussian	

distribution	with	homogenous	variance.	The	pitfalls	of	 such	methods	have	been	discussed	by	

others	[28,	34]	and	the	Bayesian	framework	was	offered	as	an	alternative	to	address	some	of	

the	 known	 weaknesses.	 However,	 the	 Bayesian	 approach	 has	 not	 been	 adapted	 to	 analyze	

multiple	types	of	biophysical	data	obtained	from	different	layers	of	the	nervous	systems.		

	

Figure	 3.	 Comparison	 between	 traditional	 analytics	 and	 a	 personalized	 statistical	 approach	 (Statistical	 Platform	 for	 the	
Individualized	Analyses	of	Behavior	 -	SPIBA)	used	 in	 the	current	study	 (A)	Raw	kinematic	 signals	are	obtained	 from	motion	
trajectories	during	forward	goal-directed	(red)	and	backward	spontaneous	(blue)	movements.	“S”	indicates	the	starting	location	
of	the	hand,	“T”	indicates	the	target	location,	and	arrows	indicate	the	flow	of	the	motion.	Based	on	the	positional	trajectories	
as	 such,	 velocity-dependent	 metrics	 are	 obtained	 and	 converted	 to	 speed	 temporal	 profiles;	 then	 the	 fluctuations	 in	 the	
amplitudes	 of	 peaks	 are	 obtained	 and	 normalized	 to	 range	 between	 0	 and	 1.	 These	 are	 the	 micro-movement	 waveforms	
extracted	from	any	nervous	systems	-	in	this	case,	hand	kinematics.	(B)	Traditional	models	assume	that	the	data	follows	a	priori	
Gaussian	random	process	with	additive	statistics.	As	such,	the	assumed	theoretical	Gaussian	moments	(e.g.,	the	mean	and	the	
variance)	 are	 used	 to	 analyze	 data,	 by	 averaging	 the	 waveform’s	 peaks	 across	 a	 pre-set	 number	 of	 frames.	 Typically,	 pre-
selected	epochs	would	be	averaged	to	determine	the	Gaussian	mean,	and	fluctuations	beyond	a	standard	deviation	from	the	
Gaussian	mean	 (denoted	 by	 the	 red	 lines)	would	 be	 smoothed	 out	 as	 “noise”	 resulting	 in	 data	 loss.	 The	 assumed	 standard	
deviation	would	simply	be	the	average	of	that	“noise”.	This	is	the	traditional	“one-size-fits-all”	approach	that	is	applied	in	the	
data	analysis	of	health	and	brain	sciences	today.	(C)	The	same	micro-movements	waveform	is	analyzed	using	SPIBA.	SPIBA	does	
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not	 assume	 a	 priori	 any	 theoretical	 distribution.	 Instead,	 it	 accumulates	 events	 until	 the	 estimation	 process	 yields	 tight	
confidence	 intervals	 to	 fit	 various	 families	 of	 probability	 distribution	 functions.	 In	 this	 case,	 the	 Gaussian	 distribution,	 the	
lognormal	distribution,	and	the	Gamma	distribution	are	used	to	illustrate	the	process	of	finding	the	best	fitting	distribution	to	
characterize	the	data.	Maximum	likelihood	estimation	was	used	with	a	95%	confidence	interval	criterion	to	determine	the	best	
fitting	 distribution.	We	 will	 later	 show	 that	 micro-movements	 generally	 follow	 a	 continuous	 Gamma	 process,	 and	 that	 the	
noise-to-signal	ratio	of	these	micro-movements	are	of	interest	in	the	SPIBA	framework.		
	

The	 SPIBA	 framework,	 with	 the	 use	 of	 a	 new	 data	 type	 coined	 “the	 micro-movements”	 of	

biophysical	 signals	 (explained	 in	 the	 following	 section	 2.4.2.),	 was	 precisely	 designed	 to	

longitudinally	tackle	the	emergence,	dynamic	development,	maintenance	and	degeneration	of	

the	 signals	 generated	 by	 the	 multi-layered	 nervous	 systems,	 including	 those	 with	 different	

pathologies	over	the	human	lifespan	[16].	

2.4.2.	Definition	of	micro-movements		

The	raw	biophysical	data	continuously	registered	from	physiological	sensors	(i.e.,	physiological	

signals	obtained	from	brain	waves	(EEG),	heart	activities	(ECG),	respiration	patterns,	kinematics	

from	bodily,	head	and	eye	movements,	tremor	data,	etc.)	give	rise	to	a	time	series	of	peaks	and	

valleys,	which	varies	in	amplitude	and	timing	(Fig.	4).	The	fluctuations	in	amplitude	and	timing	

of	 the	peaks	 are	 assumed	 to	 characterize	 a	 continuous	 random	process	where	 events	 in	 the	

past	 may	 (or	 may	 not)	 accumulate	 evidence	 towards	 prediction	 of	 future	 events.	 These	

fluctuations	 (e.g.,	 peak	 amplitude,	 inter-peak	 intervals)	 are	 the	 “the	 micro-movements”	 of	

biophysical	signals.	

The	micro-movement	waveforms	derived	from	the	time	series	of	biophysical	signals	are	

used	 to	 represent	 a	 continuous	 random	process	 under	 the	 general	 rubric	 of	 Poison	 Random	

Process.	 To	 be	more	 precise,	we	 examine	 the	 kinematic/physiological	 signals	 and	 detect	 the	

peaks,	and	consider	them	random	amplitudes	and	random	times.	To	model	them,	we	build	on	
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our	 original	 work	 [6]	 whereby	 the	 amplitudes	 and	 inter-peak	 intervals	 are	 modeled	 as	

independent	 and	 identically	 distributed	 (I.I.D.)	 random	 variables	 following	 a	 Gamma	

distribution	(rationale	behind	this	is	explained	in	section	2.4.4).		

	 	In	 the	 current	 study,	we	 show	an	example	of	 using	 SPIBA	and	micro-movement	data	

involving	signals	harnessed	in	tandem	from	the	CNS,	PNS	and	ANS.	To	that	end,	we	will	examine	

biophysical	data	 from	body	movements	and	the	heart	of	an	 individual	exposed	to	a	decision-

making	task	with	different	levels	of	cognitive	load.	

2.4.3.	Different	Classes	of	Movement	Segments	-	Forward	versus	backward		

For	this	study,	the	continuous	trajectory	of	the	participant’s	dominant	hand	index	finger	

was	 decomposed	 into	 forward	 and	 backward	 movements	 (Fig.	 2).	 The	 forward	 movement	

corresponds	to	the	movement	when	the	hand	resting	at	the	table	would	reach	out	to	touch	the	

display	 screen.	 As	 this	movement	 involves	 an	 explicit	 goal	 in	mind	 (i.e.,	 to	 touch	 the	 display	

	

Figure	4.	Micro-movements	from	different	nervous	systems’	biorhythms	(e.g.,	heart	activity,	temperature,	and	movement)	
registered	from	physiological	sensors.	Raw	biophysical	signals	give	rise	to	a	time	series	of	peaks	and	valleys,	which	vary	in	
amplitude	and	timing.	The	fluctuations	in	the	amplitude	and	timing	of	the	peaks	are	the	‘micro-movements’	of	biophysical	
signals.	
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screen),	 this	movement	 involves	 a	 high	 level	 of	 intention.	 On	 the	 other	 hand,	 the	 backward	

movement	 corresponds	 to	 the	movement	when	 the	hand	 touching	 the	display	 screen	would	

spontaneously	 (without	 any	 instruction)	 retract	 back	 to	 the	 table.	 Because	 this	 uninstructed	

movement	does	not	involve	an	explicit	goal	and	is	more	automatic,	it	involves	a	relatively	lower	

level	of	intention.	The	heart	inevitably	beats	throughout	both	motions,	and	as	such,	provides	a	

third	type	of	process	to	follow	in	tandem	with	the	action.	

For	each	trial,	as	the	participant	moved	the	dominant	hand	from	the	table	to	the	display	

screen	 and	 back	 to	 the	 table,	 the	 movement	 trajectory	 consisted	 of	 forward	 and	 backward	

movements.	The	two	types	of	movements	were	separated	for	each	trial,	by	identifying	the	time	

when	the	distance	of	the	sensor	locations	between	the	index	finger	and	the	display	screen	was	

at	 the	minimum.	Naturally,	 at	 this	 time	point,	 the	 linear	 velocity	 of	 the	 index	 finger	 reaches	

near	 instantaneous	zero	 (see	Fig.	A1-A).	Hence,	 the	 forward	movement	would	correspond	 to	

the	movement	 from	the	time	when	the	 index	finger	 is	 resting	on	the	table	until	 the	time	the	

finger	 stops	 at	 the	 display	 screen.	 The	 backward	 movement,	 on	 the	 other	 hand,	 would	

correspond	to	the	movement	from	the	time	when	the	index	finger	stops	at	the	display	screen	

until	it	reaches	back	to	the	table	and	rests	(i.e.,	the	speed	value	is	near	zero	again).	

The	rationale	behind	the	separation	between	forward	and	backward	movement	is	that	

one	is	instructed	and	goal-directed	while	the	other	is	not.	As	such,	their	levels	of	intent	differ,	

and	 the	 statistical	 characteristics	 have	 been	 shown	 to	 differ	 between	 forward	 and	 backward	

movements	 (i.e.,	 motion	 segment	 with	 high	 versus	 low	 level	 of	 intent)	 during	 reaching,	

pointing,	 and	 grasping	 actions	 among	 different	 patient	 populations	 and	 across	 the	 general	
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human	population	[6,	9,	11,	14,	35].	For	that	reason,	we	expect	that	separating	the	movements	

in	 such	 a	 manner	 would	 allow	 us	 to	 examine	 the	 impact	 of	 cognitive	 load	 on	 movements	

involving	different	levels	of	intent.		

Analyses	of	 the	sensors	 from	other	body	parts	are	beyond	the	scope	of	 this	paper,	as	

signals	 obtained	 from	 those	 parts	 involve	 different	 levels	 of	 control,	 and	 therefore	 different	

processes	from	those	obtained	from	the	dominant	hand’s	 index	finger	(i.e.,	end	effector).	For	

that	 reason,	 analysis	 of	 the	 signals	 obtained	 from	 other	 parts	 of	 the	 other	 body	 will	 be	

disseminated	in	future	work.	

2.4.4.	Micro-Movements	Analytics	for	Motor	Signals		

For	each	forward	and	backward	movement,	we	examined	the	linear	and	angular	positional	data	

and	their	higher	order	derivatives:	linear	velocity,	angular	velocity,	linear	acceleration,	angular	

acceleration	 (Fig.	 A1).	 For	 each,	 peak	 data	 (e.g.,	 peak	 amplitudes,	 inter-peak	 intervals)	were	

identified,	 converted	 to	micro-movements	 (see	 below)	 and	 gathered	 across	 all	 trials.	 Among	

the	four	types	of	parameters,	for	both	forward	and	backward	movements,	angular	acceleration	

was	analyzed,	as	it	showed	to	have	the	largest	number	of	peaks.	

The	current	paradigm	relies	on	the	statistical	power	of	an	estimation	procedure	(which	

will	be	detailed	in	the	next	paragraph)	so	the	higher	the	number	of	samples	used	to	make	an	

estimation,	the	less	taxing	the	experiment	is	to	the	participant,	as	it	takes	less	time	to	attain	a	

robust	estimate.	For	instance,	during	a	typical	point-to-point	reaching	action,	which	consists	of	

a	 single	 forward	 and	 backward	 movement,	 the	 linear	 velocity	 would	 typically	 provide	 two	

samples	 of	 peak	 data–	 one	 for	 forward	 and	 one	 for	 backward	 movement.	 In	 order	 to	 gain	
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enough	peak	data	 from	the	 linear	velocity	speed	profile	during	a	single	experimental	session,	

the	 participant	 would	 need	 to	 perform	 at	 least	 100	 reaches,	 which	 would	 lead	 to	 fatigue-

related	effects.	Instead,	using	data	that	produces	the	largest	number	of	peak	data	would	result	

in	 shorter	 experiments,	 allowing	 us	 to	 include	 other	 conditions.	 For	 that	 reason,	 the	 current	

study	 focused	on	examining	 the	peak	data	obtained	 from	angular	acceleration,	as	 this	would	

provide	the	most	power	in	the	statistics	with	the	shortest	time.	

	

Figure	 5.	 Analytical	 and	 Visualization	Methods	 (A)	 A	 typical	 trajectory	 of	 the	 dominant	 hand	 performing	 a	 single	 pointing	
movement.	 The	 movement	 trajectory	 was	 separated	 by	 forward	 (red)	 and	 backward	 segments	 (blue),	 where	 the	 forward	
movement	corresponds	to	the	movement	from	the	time	when	the	index	finger	is	resting	on	the	table	until	the	time	the	finger	
stops	at	the	target	display	screen.	The	backward	movement	corresponds	to	the	movement	from	the	time	the	index	finger	stops	
at	the	display	screen	until	the	time	it	reaches	back	to	the	table.	(B)	Time	series	of	angular	acceleration	of	the	dominant	hand’s	
index	finger	during	a	typical	pointing	task.	Peaks	(maxima)	and	valleys	(minima)	are	shown	in	red	and	black	dots,	respectively.	
The	 inset	 shows	 a	 zoomed-in	 picture	 of	 a	 single	 angular	 acceleration	 segment	 (i.e.,	 two	 local	 minima	 and	 a	 single	 peak	 in	
between).	This	is	a	schematic	of	computing	the	AM	(normalized	peak	amplitude)	from	a	continuous	time	series	of	signal	data,	
where	 the	 AM	 is	 computed	 by	 dividing	 the	 peak	 value	 by	 the	 sum	 of	 the	 peak	 value	 and	 the	 average	 of	 the	 signal	 values	
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In	 analyzing	 the	 peak	 data,	 peak	 amplitudes	 and	 inter-peak	 intervals	were	 examined.	

First,	 to	 avoid	 allometric	 effects	 [36]	 due	 to	 different	 anatomical	 sizes	 across	 different	

participants,	 peak	 amplitude	 data	 were	 normalized.	 Normalized	 peak	 amplitude	 (coined	

amplitude	 micro-movements	 ‘AM’)	 was	 thus	 computed	 by	 dividing	 the	 peak	 angular	

acceleration	by	the	sum	of	the	peak	angular	acceleration	and	the	average	angular	acceleration	

between	 the	 two	 local	 minima	 (Fig.	 5B).	 Generally,	 higher	 average	 values	 result	 in	 lower	

normalized	peak	amplitude	values.	Likewise,	shifts	towards	higher	values	of	this	index	indicate	

lower	average	values.	

Normalized	peak	amplitude	(AM)	=	 !"#$ !"#$%&'()
(!"#$ !"#$%&'()!!"#$%&# !" !"#$%&' !"#!!" ! !"#$%& !"#$"%& )

	

Inter-peak	interval	(coined	timing	micro-movement	‘TM’)	index	was	computed	by	extracting	the	

time	 elapsed	 between	 consecutive	 peaks.	 These	 two	 types	 of	 peak	 data	 (AM,	 TM)	 can	 be	

visualized	in	a	peak	train	as	shown	in	Fig.	5C.		

The	two	types	of	peak	data	were	then	accumulated	across	all	trials	for	each	condition,	

and	a	frequency	histogram	was	plotted	using	optimal	binning	[37,	38]	(Fig.	5D).		The	histogram	

between	the	two	local	minima.	(C)	Peak	train	for	a	typical	pointing	task.	All	peak	values	from	‘B’	are	normalized	between	0	and	
1,	while	all	non-peak	values	are	set	to	0.	(D)	All	AMs	values	were	identified	and	gathered	across	all	trials.	For	these	peak	data,	a	
frequency	histogram	was	 then	plotted,	 and	 fitted	with	 a	Gamma	probability	distribution	 function	using	maximum	 likelihood	
estimation.	In	addition	to	the	AM	values,	we	can	also	plot	the	histogram	of	TM	values,	and	proceed	to	the	next	step.	(E)	The	
estimated	Gamma	parameters	 from	the	fitted	probability	distribution	were	then	plotted	on	a	Gamma	parameter	plane,	with	
lines	 representing	 the	95%	confidence	 interval.	 (F)	Empirically	estimated	mean,	variance,	and	skewness	of	 the	 fitted	Gamma	
PDFs	were	plotted	on	the	x,	y,	and	z	axes	respectively.	The	size	of	the	marker	reflects	the	 level	of	kurtosis,	where	 larger	size	
indicates	high	kurtosis	level	of	the	fitted	PDF.	The	arrows	connecting	the	markers	indicate	the	order	of	the	task	conditions.		The	
marker’s	 face	 color	 represents	 the	 median	 values	 of	 the	 underlying	 physical	 unit.	 The	 marker	 with	 green	 edge	 color	
corresponds	to	the	instance	of	estimated	distribution	described	in	‘D’	and	‘E’,	and	markers	with	black	edge	color	are	shown	to	
illustrate	other	instances	of	estimated	distributions.		



22 
 

 
 

was	 then	 fitted	 using	maximum	 likelihood	 estimation	 (MLE)	 to	 estimate	 the	 best	 continuous	

family	of	probability	distributions	that	fit	the	data.	

Prior	 work	 from	 our	 lab	 had	 explored	 the	 differences	 between	 multiplicative	 (e.g.,	

lognormal	 family)	 and	 additive	 (e.g.,	 exponential	 families)	 random	 processes	 of	 the	 micro-

movement	data	on	motor	signals	extracted	from	voluntary,	automatic,	and	involuntary	motions	

across	 thousands	 of	 participants.	 Among	 these	 are	 micro-movements	 data	 from	 boxing	

routines	 involving	 voluntary	 and	 spontaneously	 performed	 movements	 [4,	 5],	 forward-

retracting	 loops	 during	 target	 directed	 reaches	 [6,	 9,	 11,	 14,	 35],	 natural	 walking	 involving	

automatic	 gait	 patterns	 [39],	 and	 involuntary	 head	motions	 during	 resting	 state	within	 fMRI	

experiments	 [18].	 In	 all	 cases,	 the	 continuous	 Gamma	 family	 of	 probability	 distributions	 has	

been	 the	 best	 fit	 (based	 on	 MLE	 and	 Kolmogorov-Smirnov	 tests	 for	 empirically	 derived	

cumulative	 distributions),	 since	 these	 data	 would	 widely	 range	 from	 the	 exponential	 to	 the	

normal	 distribution.	 As	 such,	 the	 human	motion	 data	 across	 different	 levels	 of	 control	 (e.g.,	

high	 level	 of	 voluntary	 control	 and	 low	 level	 of	 autonomic	 control)	 seem	 to	 be	 well	

characterized	 by	 the	 Gamma	 family	 of	 distributions	 (which	 is	 inclusive	 of	 exponential	 and	

normal	 distributions),	 reflecting	 additive	 random	 processes	 in	 continuous	 physiological	 data	

during	natural	states	of	behavior.		

As	in	other	studies	of	motor	behavior	[4],	here	we	found	the	lognormal	distribution	as	a	

good	fit	for	the	motor	data.	However,	given	that	the	difference	in	the	goodness	of	fit	 is	small	

relative	to	that	for	the	Gamma	estimates,	and	that	exponential	distributions	are	best	fit	in	the	

motor	data	of	pathological	 cases	 (not	 included	 in	 this	 thesis)	 [5,	6]	we	opted	 for	 the	Gamma	
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family.	 This	 family	 encompasses	 a	 wider	 range	 of	 distributions	 (e.g.,	 normal,	 skewed,	

exponential),	 allowing	 us	 to	 utilize	 a	 unifying	 family	 of	 distributions	 across	 different	

physiological	 signals	 and	 across	 different	 population	 (Fig.	 A2).	 For	 that	 reason,	 we	 used	 the	

micro-movements	of	motor	data	as	input	to	a	continuous	Gamma	process.	

From	 the	Gamma	probability	distribution	 function	 (PDF),	 the	 two	parameters	–	 shape	

(a)	and	scale	(b)	-	were	estimated	for	each	histogram	of	the	micro-movement	data,	using	MLE	

with	95%	confidence	 intervals	 (CI).	The	estimated	parameters	with	their	CI	were	plotted	on	a	

Gamma	parameter	 plane,	where	 the	 x-axis	 represents	 the	 shape	 parameter	 value	 and	 y-axis	

represents	the	scale	parameter	value	(Fig.	5E).	This	plot	would	allow	us	to	interpret	the	level	of	

noise	and	 regularity	 inherent	 in	 the	biophysical	 signal.	 This	point	 is	 further	elaborated	 in	 the	

subsequent	section	2.4.5.		Additionally,	the	estimated	Gamma	PDF	was	visualized	by	computing	

the	PDF	moments	and	plotting	them	in	a	four-dimensional	graph	(Fig.	5F).	Here,	the	empirically	

estimated	mean,	variance,	and	skewness	of	 the	 fitted	Gamma	PDFs	were	plotted	on	the	x,	y,	

and	z	axes	respectively.	The	size	of	the	marker	reflects	the	level	of	kurtosis,	where	larger	size	

indicates	higher	 kurtosis	 level	 (distributions	with	 sharper	peaks)	of	 the	 fitted	PDF	and	a	 zero	

skewness	values	indicates	a	symmetric	distribution.	This	graph	would	allow	us	to	visualize	the	

statistical	 features,	 and	 understand	 how	 the	 stochastic	 signatures	 shift	 across	 different	

conditions	 or	 individuals.	 The	 arrows	 were	 included	 to	 indicate	 the	 orderly	 flow	 of	 change	

across	 different	 conditions.	Note,	 since	we	 scale	 the	 peak	 amplitude	 values	 along	 a	 unit-less	

range	from	0	to	1	to	represent	AM,	for	the	4D	graph	of	AM	Gamma	moments,	we	also	included	

the	actual	physical	ranges	of	the	data	underlying	the	AM	(expressed	in	deg/s2.)	To	that	end,	we	
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color	the	marker’s	face	to	represent	the	median	of	the	physical	values,	and	the	marker’s	edge	

to	represent	the	condition	(i.e.,	cognitive	load	type).	

2.4.5.	Stochastic	signatures	of	micro-movements		

It	 is	 noteworthy	 that	 the	 statistics	 of	 an	 individual’s	micro-movements	 (i.e.,	 fitted	 shape	 and	

scale	parameters	of	the	estimated	Gamma	PDF)	reflect	the	individual’s	features	within	a	given	

context	 along	 with	 the	 individual’s	 level	 of	 intent.	 In	 fact,	 the	 quantification	 of	 how	 these	

individual’s	 fitted	 parameters	 shift	 on	 the	 Gamma	 parameter	 plane	 (e.g.,	 location,	

frequency/magnitude	 in	shifts	across	time)	across	contexts	are	unique	to	each	 individual,	and	

thus	have	been	referred	to	as	the	‘stochastic	signatures’	[6,	16].	

Within	 the	 Gamma	 family	 of	 distributions,	 the	 estimated	 PDFs	 from	 human	motions	

plotted	 on	 the	 Gamma	 parameter	 plane	 have	 a	 characteristic	 range:	 along	 the	 shape	

(horizontal)	 axis	 the	 empirically	 estimated	 values	 range	 from	 the	 memory-less	 exponential	

distribution	 (where	 the	 shape	 parameter	 is	 1)	 to	 the	 symmetric	 Gaussian-like	 distribution	

(where	 the	 shape	 parameter	 is	 high),	with	 skewed	 distributions	 in	 between.	 Along	 the	 scale	

(vertical)	 axis	 the	 empirically	 estimated	 values	 represent	 the	 level	 of	 variability	 of	 the	

distribution,	from	low	to	high	dispersion	levels.		

In	general,	 stochastic	signatures	of	healthy	adults,	particularly	skilled	athletes,	 tend	to	

exhibit	 a	 higher	 shape	 and	 lower	 scale	 parameter	 values	 (i.e.,	 follow	 a	 Gaussian-like	

distribution)	[4,	5],	while	individuals	with	compromised	systems	concerning	pathologies	such	as	

Autism	 spectrum	disorder,	 schizophrenia,	 Parkinson’s	 disease,	 etc.	 or	 injury	 due	 to	 stroke	 or	
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coma	states,	 tend	 to	exhibit	a	 lower	 shape	and	higher	 scale	parameter	values	 (i.e.,	 statistical	

signatures	closer	to	exponential	distribution)	[6,	11,	14,	16,	35].		

Furthermore,	 when	 an	 individual’s	 movement	 involves	 a	 higher	 level	 of	 intent	 (e.g.,	

forward	movements	such	as	pointing	at	a	target),	the	statistics	tend	to	exhibit	a	higher	shape	

and	lower	scale	parameter	values,	while	those	involving	a	lower	level	of	intent	(e.g.,	backward	

movement	 such	 as	 retracting	 the	 hand)	 tend	 to	 exhibit	 a	 broader	 range	 of	 shape	 and	 scale	

parameter	 values	 [4].	 It	 is	 worth	 mentioning	 that	 the	 noise-to-signal	 ratio	 (NSR,	 otherwise	

known	as	 the	 Fano	 Factor	 [40])	 in	 a	Gamma	PDF	 is	 equivalent	 to	 the	 scale	parameter	 value.	

Hence,	as	the	scale	value	increases	so	does	the	NSR.	Interestingly,	it	has	been	found	that	during	

repeated	motor	performance,	fatigue	contributes	to	the	micro-movements	of	motor	signals	by	

exhibiting	higher	NSR	in	the	statistics,	as	the	dispersion	of	the	empirically	estimated	distribution	

broadens	[41,	42].	

2.4.6.	Micro-Movements	Analytics	for	Heart	Signals	(inter-beat	interval)		

Similar	to	the	analysis	performed	on	the	micro-movement	peak	data	of	motor	signals	(i.e.,	AM,	

TM),	we	applied	the	distributional	analyses	on	the	IBI	data	for	each	condition.	As	with	the	hand	

kinematics,	we	 fitted	 the	 PDF	 using	MLE.	Histograms	 for	 the	 IBI	 data	were	 fitted	 among	 the	

Gamma,	exponential,	 lognormal,	and	normal	 for	each	condition,	and	we	determined	that	 the	

Gamma	 family	of	distribution	would	be	appropriate	 for	 fitting	 the	 IBI	data	 (Fig.	A3).	 For	 that	

reason,	the	parameters	of	the	Gamma	PDF	were	estimated	for	each	histogram	of	the	IBI	data,	

and	 the	 shape	 and	 scale	 values	 were	 plotted	 on	 the	 Gamma	 parameter	 plane	 with	 95%	

confidence	intervals.	 	
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3.	Results		

3.1.	Low	Cognitive	Load	vs.	High	Cognitive	Load	

3.1.1.	 Deliberate	 vs.	 Spontaneous	 Processes:	 CNS	 Assessment	 of	 Voluntary	 and	 Automatic	

Control	of	Hand	Kinematics			

The	 estimated	 Gamma	 parameters	 of	 motor	 signals’	 micro-movement	 peak	 data	 were	 first	

compared	 between	 the	 two	 conditions	 –	 low	 cognitive	 load	 and	 high	 cognitive	 load.	 These	

micro-movements	were	 extracted	 from	 segments	 of	 pointing	 gestures,	 when	 the	 participant	

merely	reached	the	display	screen	to	touch	the	circle.	The	shape	and	scale	parameters	of	the	

continuous	Gamma	family	of	probability	distributions	with	95%	confidence	were	plotted	on	the	

Gamma	parameter	plane,	and	compared	between	the	two	conditions	for	the	following	micro-

movement	data	–	AM	and	TM.		

Goal-Directed	 (Forward)	 Segment	 For	 the	 forward	 movement,	 which	 involves	 a	

relatively	high	level	of	intent,	the	estimated	Gamma	parameters	of	the	AM	PDF	did	not	show	a	

distinct	trend	in	the	separation	between	the	two	conditions	at	95%	confidence	interval	(Fig.	A4-

A,	B).	Specifically,	one	participant	showed	distinct	estimated	Gamma	parameters	between	the	

two	conditions,	such	that	movements	under	the	low-cognitive-load	condition	showed	a	 lower	

shape	 and	 higher	 scale	 parameter	 than	 movements	 under	 high-cognitive-load	 condition.	

However,	 the	 other	 eight	 participants	 did	 not	 show	 such	 a	 distinction	 between	 the	 two	

conditions.	The	estimated	Gamma	parameters	of	the	TM	PDF	also	did	not	show	a	distinct	trend	

in	 the	 separation	 between	 the	 two	 conditions	 at	 95%	 confidence	 interval	 (Fig.	 A4-C,	 D).	

Specifically,	 one	 participant	 showed	distinct	 estimated	Gamma	parameters	 between	 the	 two	
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conditions,	such	that	movement	statistics	under	the	low-cognitive-load	condition	had	a	higher	

shape	 and	 lower	 scale	 parameter	 than	 movement	 statistics	 under	 high-cognitive-load	

condition.	 However,	 other	 eight	 participants	 did	 not	 show	 such	 distinction	 between	 the	 two	

conditions.	Table	A2	 summarizes	 the	p-values	of	 the	statistical	comparisons	across	 these	two	

conditions	for	each	participant	using	a	non-parametric	one-way	ANOVA.	

Spontaneous	 Retraction	 (Backward	 segment)	 For	 the	 backward	 movement,	 which	

involves	a	relatively	 low	level	of	 intent,	the	estimated	Gamma	parameters	of	the	AM	PDF	did	

not	 show	 distinct	 separation	 between	 the	 two	 conditions	 at	 95%	 confidence	 interval	 for	 all	

participants	(Fig.	A5-A,	B).	The	estimated	Gamma	parameters	of	the	TM	PDF	also	did	not	show	

distinct	separation	between	the	two	conditions	at	95%	confidence	 interval	 for	all	participants	

(Fig.	A5-C,	D).		

Overall,	 the	estimated	Gamma	parameters	of	 the	micro-movement	peak	data	did	not	

show	 any	 consistent	 pattern	 in	 distinguishing	 between	movements	 under	 low-cognitive-load	

condition	(i.e.,	dual	task	of	counting	forward)	and	high-cognitive-load	condition	(i.e.,	dual	task	

of	counting	backwards)	across	all	participants.		

3.1.2.	Inevitable	Processes:	ANS	assessment	of	Autonomic	Control	of	IBI		

The	 estimated	 Gamma	 parameters	 of	 the	 heart’s	 IBI	 data	were	 compared	 between	 the	 two	

conditions.	 Similar	 to	 the	 analysis	 performed	 for	 the	 motor	 data,	 the	 shape	 and	 scale	

parameters	of	 the	 IBI’s	estimated	probability	distributions	with	95%	confidence	were	plotted	

on	the	Gamma	parameter	plane,	and	compared	between	the	two	conditions.		
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Figure	6.	ANS	autonomic	control	assessment	under	high-	and	low-cognitive-load	conditions.	IBI	signal.	(A)	Estimated	Gamma	
moments,	(B)	PDF,	and	(C)	parameters	of	IBI	for	low-cognitive-load	condition	(blue)	and	high-cognitive-load	condition	(red)	per	
participant	(P1-P8).	The	estimated	Gamma	parameters	of	the	IBI	probability	distribution	function	showed	a	distinct	trend	in	the	
separation	between	the	two	conditions,	such	that	IBIs	under	the	low-cognitive-load	condition	showed	a	higher	shape	and	lower	
scale	parameter	than	IBIs	under	the	high-cognitive-load	condition.			
	

Contrary	 to	 the	 hand	 kinematics	 data	 (AM	 and	 TM)	 from	 the	 forward	 and	 backward	

motions	 tapping	 into	 deliberate	 and	 spontaneous	 processes	 respectively,	 the	 estimated	

Gamma	parameters	characterizing	the	PDFs	of	the	IBI	showed	a	distinct	trend	in	the	separation	

between	the	two	conditions	at	95%	confidence	interval.	Specifically,	seven	participants	showed	

distinct	 estimated	Gamma	parameters	 between	 the	 two	 conditions,	 such	 that	 IBIs	 under	 the	

low-cognitive-load	condition	showed	a	higher	shape	and	lower	scale	parameter	than	IBIs	under	
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high-cognitive-load	condition	(Fig.	6).	One	participant	did	not	show	such	distinct	separation	at	

95%	confidence	interval,	but	exhibited	a	similar	trend.	Fig.	6A	shows	the	individualized	profiling	

of	each	participant’s	stochastic	transitions	from	low	to	high-cognitive-load	condition,	with	the	

arrow	 marking	 the	 order	 of	 those	 conditions.	 As	 the	 cognitive	 load	 increases,	 there	 is	 a	

tendency	across	participants	(six	out	of	eight	participants)	to	increase	the	PDF	skewness	(note,	

the	PDF	is	symmetrical	when	the	skewness	value	is	0),	and	an	overall	tendency	to	increase	the	

PDF	variance.		

The	 increase	 in	 the	 IBI’s	 variance	 as	 the	 cognitive	 load	 increases	 is	 reflected	 in	 the	

increase	of	 the	noise-to-signal	 ratio	 (i.e.,	 the	value	of	 the	Gamma	scale	parameter)	across	all	

participants.	On	the	other	hand,	there	is	no	consistent	trend	in	the	mean	IBI	across	participants	

when	cognitive	load	increases,	since	the	mean	IBI	is	higher	in	some	cases	and	lower	in	others.	

As	such,	the	dispersion	of	the	distribution	is	more	informative	as	it	systematically	separates	the	

performance	between	the	two	conditions	for	all	participants.	

Overall,	 the	 IBI’s	 estimated	 PDF	 under	 the	 high-cognitive-load	 condition	 showed	 less	

symmetry	(i.e.,	lower	shape	parameter	value)	and	higher	noise-to-signal	ratio	(i.e.,	higher	scale	

parameter	value)	than	under	the	low-cognitive-load	condition.	Based	on	our	empirical	evidence	

from	other	experiments,	and	the	fact	that	a	leftward	shift	along	the	shape	axis	on	the	Gamma	

parameter	 plane	 tends	 towards	 the	 limiting	 exponential	 case	of	 the	Gamma	 family,	we	 infer	

that	under	high	cognitive	load,	an	individual’s	IBI	tends	to	become	noisier	and	less	predictable.	

As	such,	we	can	see	that	the	impact	of	higher	cognitive	load	is	funneled	through	the	inevitable	

processes	–	characterized	here	through	the	IBI	timing.	
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3.2.	Pointing	vs.	Time	estimation	(decision	making)	task		

To	 compare	 different	 levels	 of	 cognitive	 load,	micro-movements	 of	motor	 and	 IBI	 data	were	

also	compared	between	two	different	types	of	tasks	–	pointing	and	time	estimation.	Each	trial	

lasted	 for	10	 seconds	–	 in	 the	 first	 five	 seconds,	 the	participant	performed	a	 simple	pointing	

task,	where	she	simply	pointed	at	the	circle	presented	at	the	display	screen;	in	the	subsequent	

five	 seconds,	 the	 participant	 performed	 a	 time	 estimation	 task,	 where	 she	 made	 the	 same	

pointing	gesture	towards	the	display	screen,	but	was	thinking	about	the	elapsed	duration	while	

deciding	on	inputting	the	response.	Data	corresponding	to	the	pointing	task	(i.e.,	data	from	the	

first	five	seconds	of	each	trial)	were	aggregated	across	all	trials	of	each	experimental	condition	

(i.e.,	control,	low-cognitive-load,	and	high-cognitive-load	conditions).	Data	corresponding	to	the	

time	estimation	task	(i.e.,	data	from	the	latter	five	seconds	of	each	trial)	were	also	aggregated		

across	 all	 experimental	 conditions	 (i.e.,	 control,	 low	 cognitive	 load,	 and	 high-cognitive-load	

conditions).	The	data	from	these	two	tasks	were	then	compared,	under	the	assumption	that	the	

pointing	task	would	entail	a	lower	level	of	cognitive	load	than	the	time	estimation	task.	This	is	

because	while	the	participant	makes	the	same	reaching	gesture	towards	the	display	screen	with	

one’s	 dominant	 hand	 for	 both	 tasks,	 the	 time	 estimation	 task	 involves	 an	 additional	 task	 of	

making	 decisions.	 Indeed,	 decision	 making	 entails	 higher	 order	 representations,	 retrieval	 of	

memories,	and	error	estimation,	all	of	which	would	require	more	thought.		
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Figure	7.	CNS	voluntary	control	assessment	of	goal-directed	forward	movement	during	pointing	and	time	estimation	tasks.	
Kinematics	signal	of	the	hand	for	goal-directed	forward	segments.	(A)	Estimated	Gamma	moments,	(B)	PDF,	and	(C)	parameters	
of	the	AM	metric,	and	(D)	estimated	PDF	and	(E)	parameters	of	the	TM	metric,	for	the	pointing	(blue)	and	time	estimation	task	
(red)	per	participant	(P1-P9).	The	estimated	Gamma	parameters	of	the	AM	probability	distribution	function	showed	a	trend	in	
separation	 between	 the	 two	 tasks,	 such	 that	 the	 PDF	 during	 the	 pointing	 task	 entailed	 a	 lower	 shape	 and	 higher	 scale	
parameter	than	the	PDF	during	the	time	estimation	task.	On	the	other	hand,	the	estimated	Gamma	parameters	of	the	TM	PDF	
did	not	show	a	consistent	pattern	across	all	participants.		
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3.2.1.	Deliberate	 and	 Spontaneous	processes:	 CNS	Assessment	of	Voluntary	 and	Automatic	

Control	of	Hand	Kinematics			

Deliberate	 Processes	 –	 Voluntary	 (Forward)	 Segment	 	 For	 the	 forward	 movement,	 which	

involves	 a	 relatively	 high	 level	 of	 intent,	 the	 estimated	 Gamma	 parameters	 of	 the	 AM	 PDF	

showed	a	separation	between	the	pointing	and	time	estimation	task	at	95%	confidence	interval	

(Fig.	 7).	 Specifically,	 on	 the	 Gamma	 parameter	 plane,	 for	 seven	 out	 of	 nine	 participants,	

movements	during	 the	pointing	 task	 showed	a	 lower	 shape	and	higher	 scale	parameter	 than	

movements	during	 the	 time	estimation	 task.	 Two	participants	did	not	 show	as	much	distinct	

separation	at	95%	confidence	interval,	but	exhibited	a	similar	trend.	Further,	when	augmenting	

the	parameter	space	to	the	four-dimensions	(Fig	7A),	we	see	that	all	participants	show	a	major	

statistical	 transition	 across	 all	 moments.	 In	 particular,	 transitioning	 from	 pointing	 to	 time	

estimation	task	increased	the	speed	of	hand	kinematics	on	average	(lower	AM	suggests	higher	

speed;	see	section	2.4.4),	while	the	PDF	became	less	variable	with	lower	dispersion	(NSR)	level	

and	 more	 symmetrical	 in	 it	 shape.	 This	 result	 suggests	 that	 the	 statistics	 of	 the	 kinematics	

during	 time	estimation	 tasks	yield	a	very	different	outcome	than	 those	during	pointing	 tasks,	

even	 though	 both	 involve	 a	 similar	 biomechanical	 structure.	 Specifically,	 the	 motor	 signals	

during	 the	decision	making	 task	 show	 to	have	better	predictability	 in	 its	 signal	 than	during	a	

simple	pointing	task.		

On	 the	other	hand,	during	 the	 forward	 reaches,	 the	estimated	Gamma	parameters	of	

the	TM	PDF	did	not	show	a	systematic	pattern	of	distinct	separation	across	all	participants	(Fig.	

7D-E).	Specifically,	one	participant’s	movement	during	the	pointing	task	showed	a	higher	shape	

and	 lower	 scale	 parameter	 than	 during	 a	 time	 estimation	 task.	 However,	 four	 participants	
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showed	 an	 opposite	 pattern,	 such	 that	movement	 during	 the	 pointing	 task	 showed	 a	 lower	

shape	 and	 higher	 scale	 parameter	 than	 during	 a	 time	 estimation	 task.	 The	 rest	 of	 the	

participants’	 movement	 did	 not	 show	 separation	 between	 the	 two	 tasks	 at	 95%	 confidence	

interval.			

Spontaneous	 Processes	 –	 Automatic	 (Backward)	 segment	 	 For	 the	 backward	

movement,	which	involves	a	relatively	low	level	of	intent,	as	it	was	not	instructed	and	had	no	

explicit	 visual	 goal,	 the	 estimated	 Gamma	 parameters	 for	 the	 AM	 did	 not	 show	 separation	

between	the	pointing	and	time	estimation	task	at	95%	confidence	 interval	 for	all	participants	

(Fig.	 8D-E).	 On	 the	 other	 hand,	 the	 estimated	 Gamma	 parameters	 of	 the	 TM	 PDF	 did	 show	

separation	 between	 the	 two	 tasks	 for	 all	 participants	 (Figure	 8B-C).	 	 Specifically,	 for	 six	

participants,	 movement	 during	 the	 pointing	 task	 showed	 a	 lower	 shape	 and	 higher	 scale	

parameter	 than	 during	 the	 time	 estimation	 task	 at	 95%	 confidence	 interval.	 The	 remaining	

three	participants	 did	not	 show	as	much	distinct	 separation,	 but	 exhibited	 a	 similar	 trend	 as	

those	 six	 participants.	 The	 statistical	 effects	 are	 also	 reflected	 in	 the	 Figure	 8A	 across	 all	

estimated	 Gamma	 moments,	 where	 estimating	 time	 (i.e.,	 decision	 making)	 tends	 to	

systematically	decrease	the	noise-to-signal	ratio	and	the	skewness	of	the	distribution.	Here,	the	

timing	 is	 shorter	 (i.e.,	mean	of	 TM	are	 smaller),	 thus	 indicating	 a	 faster	 speed	 in	 the	motion	

with	 lower	variance	 (i.e.,	 lower	noise-to-signal	 ratio).	As	such,	 retractions	made	while	making	

decisions	are	more	focused	than	while	retracting	without	making	any	decisions,	since	motions	

are	executed	in	a	fast	manner	with	low	noise	while	decisions	are	being	made.	
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Figure	8.	CNS	automatic	control	assessment	of	spontaneous	backward	movement	during	pointing	and	time	estimation	tasks.	
Kinematics	 signal	 of	 the	 hand	 for	 spontaneous	 backward	 segments.	 (A)	 Estimated	 Gamma	 moments,	 (B)	 PDF,	 and	 (C)	
parameters	 of	 TM	 metric,	 and	 (D)	 estimated	 PDF	 and	 (E)	 parameters	 of	 the	 AM	 metric,	 for	 the	 pointing	 (blue)	 and	 time	
estimation	 task	 (red)	 per	 participant	 (P1-P9).	 The	 estimated	Gamma	 parameters	 of	 the	 TM	probability	 distribution	 function	
showed	a	trend	 in	separation	between	the	two	tasks,	such	that	the	PDF	during	the	pointing	task	entailed	a	 lower	shape	and	
higher	scale	parameter	than	the	PDF	during	the	time	estimation	task.	On	the	other	hand,	the	estimated	Gamma	parameters	of	
the	AM	PDF	did	not	show	a	consistent	pattern	across	all	participants		
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Overall,	different	micro-movement	metrics	were	shown	to	be	informative	in	separating	

the	two	tasks	–pointing	and	time	estimation	tasks	-	for	the	forward	and	backward	movements.	

In	 differentiating	 the	 two	 tasks,	 if	 the	movement	 entailed	 a	 higher	 level	 of	 intent	 (i.e.,	 goal-

directed	forward	movement),	it	was	more	informative	to	use	the	estimated	Gamma	parameters	

of	the	AM	PDF,	reflecting	the	moment-by-moment	fluctuations	in	peak	amplitude.	However,	if	

the	movement	entailed	a	lower	level	of	intent	(i.e.,	spontaneous	backward	movement),	it	was	

more	 informative	 to	 use	 the	 estimated	 Gamma	 parameters	 of	 TM	 PDF,	 reflecting	 the	

fluctuations	in	the	peak	timing.	For	both	forward	and	backward	movements,	those	involving	a	

lower	 level	 of	 cognitive	 load	 (i.e.,	 pointing	 task)	 exhibited	 a	 lower	 shape	 and	 higher	 scale	

parameter	 than	 movements	 involving	 a	 higher	 level	 of	 cognitive	 load	 (i.e.,	 time	 estimation	

task).	This	 implies	 that	movements	 involving	a	higher	 level	of	cognitive	 load	tend	to	exhibit	a	

more	predictable	(i.e.,	higher	shape	parameter	towards	a	symmetric	Gaussian	distribution)	and	

less	variable	(i.e.,	lower	dispersion	registered	in	the	scale	parameter)	statistical	distribution.		

3.2.2.	Inevitable	Process:	ANS	assessment	of	Autonomic	Control	using	IBI		

Contrary	to	the	kinematics	data	(AM	and	TM),	the	estimated	Gamma	PDF	parameters	of	the	IBI	

did	not	show	any	separation	between	the	pointing	and	time	estimation	task	at	95%	confidence	

interval	 for	 all	 participants	 (Fig.	 A6-B).	 In	 general,	 the	 estimated	 IBI	 PDF	 showed	 to	 be	 fairly	

similar	for	both	tasks	(Fig.	A6-A).			
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4.	Discussion		

In	 this	 study,	 we	 were	 able	 to	 detect	 interdependencies	 between	 signals	 by	 examining	 the	

three	processes	–	deliberate,	spontaneous,	and	inevitable	–	using	a	new	set	of	analytics	and	an	

experimental	 paradigm	 that	 probes	 the	 variability	 in	 the	 biophysical	 rhythms	 across	multiple	

control	 levels	 of	 the	 nervous	 systems,	 as	 participants	 were	 exposed	 to	 different	 levels	 of	

cognitive	 load.	 These	 interdependencies	 were	 examined	 from	 the	 various	 motor	 and	 heart	

signals	harnessed	in	tandem.	

We	 were	 able	 to	 capture	 the	 effect	 of	 cognitive	 load	 at	 the	 voluntary,	

automatic/spontaneous,	and	autonomic	control	levels	(i.e.,	from	deliberate,	spontaneous,	and	

inevitable	 processes)	 and	 identified	 parameters	 characterizing	 cognitive	 load	 through	 the	

stochastic	 shifts	 of	 biophysical	 signals.	 Specifically,	 using	 a	 personalized	method	 of	 statistical	

analysis,	 we	 detected	 the	 effects	 of	 cognitive	 load	 on	 the	 somatic-motor	 parameters,	 by	

contrasting	signals	obtained	during	basic	pointing	and	pointing	 to	 indicate	a	decision	on	time	

estimation.	Even	though	the	underlying	biomechanics	of	the	pointing	action	was	the	same,	we	

were	able	to	quantify	the	interdependencies	from	deliberate	and	spontaneous	processes,	with	

more	saliency	in	deliberate	processes	during	goal-directed	reaches	through	spatial	parameters	

in	the	angular	acceleration,	where	significant	shifts	in	the	stochastic	signatures	of	the	AM	were	

quantified;	 and	 with	 more	 saliency	 in	 spontaneous	 processes	 during	 uninstructed	 hand	

retractions	through	temporal	parameters	of	 the	angular	acceleration,	with	stochastic	shifts	 in	

the	TM.	We	also	identified	the	effects	of	cognitive	load	on	the	heart	parameters,	by	contrasting	

signals	obtained	while	participants	counted	forward	and	while	they	counted	backwards.	Here,	
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we	 were	 able	 to	 quantify	 the	 interdependencies	 from	 inevitable	 processes	 through	 the	

temporal	parameters	of	the	IBIs.		

When	we	detected	effects	of	cognitive	 load	on	the	somatic-motor	patterns	(i.e.,	when	

contrasting	a	simple	pointing	task	against	a	 time	estimation	pointing	task),	we	did	not	detect	

interdependencies	 from	 inevitable	 processes	 linked	 to	 the	 heart	 signals.	 Also,	 when	 we	

detected	effects	of	cognitive	load	on	the	heart	signals	(contrasting	a	simple	pointing	task	while	

counting	backwards	 as	 opposed	 to	 counting	 forward),	we	 found	no	effects	 on	 the	 stochastic	

signatures	of	the	kinematics	motor	signal.	This	result	implies	that	additional	cognitive	load	can	

significantly	change	the	physical	states	reflected	in	the	motor	kinematics	without	impacting	the	

ANS	signals,	and	 that	 the	ANS	signals	can	also	be	affected	by	mental	activity,	even	when	 the	

physical	 activity	 captured	 through	 the	 kinematics	 may	 show	 very	 subtle	 to	 no	 significant	

changes.	 In	 this	 sense	we	 have	 demonstrated	 quantifying	 the	 interdependencies	 at	 different	

levels,	spanning	from	the	brain	to	the	body	to	the	heart.	We	next	discuss	the	details	of	these	

results	summarized	in	Fig.	9.	

4.1.	Cognitive	load	is	reflected	differently	in	motor	and	heart	signals		

Under	 the	 high-cognitive-load	 condition,	 where	 the	 participant	 was	 given	 a	 challenging	 dual	

task,	 the	 estimated	 Gamma	 PDF	 of	 IBIs	 showed	 to	 be	 more	 variable	 (i.e.,	 higher	 scale	

parameter)	 and	 less	 predictable	 (i.e.,	 lower	 shape	 parameter)	 than	 under	 the	 low-cognitive-

load	 condition,	where	 the	 participant	was	 given	 an	 easier	 dual	 task.	 Although	 the	 estimated	

Gamma	 parameters	 of	 the	 IBI	 varied	 from	 subject	 to	 subject,	 there	 was	 a	 general	 trend	 to	

change	 signatures	 across	 all	 estimated	moments	 (Fig.	 6A).	 This	 suggests	 that	 the	 autonomic	
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heartbeat	 is	 affected	 by	 different	 cognitive	 loads	 in	 ways	 that	 are	 measurable	 using	

simple/existing	instrumentation.		

	

Figure	9.	Summary	of	the	statistical	results	(Top)	Between	the	high	and	low-cognitive-load	conditions,	the	statistics	of	the	
heart	signal	(IBI)	significantly	changed	(signified	in	red	upright	triangle),	such	that	signals	were	more	predictive	and	less	variable	
under	the	high-cognitive-load	condition	than	under	the	low	load	condition.	However,	the	statistics	of	motor	signals	(kinematics)	
for	both	forward	and	backward	segments	did	not	significantly	change	(signified	in	blue	square).	(Bottom)	Between	the	pointing	
and	time	estimation	task,	the	statistics	of	heart	signals	did	not	change	significantly	(signified	in	blue	square).	However,	the	
statistics	of	the	AM	from	the	kinematics	of	forward	segment	(‘KIN-F	AM’)	and	the	TM	from	the	kinematics	of	backward	segment	
(‘KIN-B	TM’)	showed	significant	changes	(signified	in	red	inverted	triangle),	such	that	signals	were	more	predictive	and	less	
variable	during	pointing	tasks	than	during	time	estimation	tasks.	
	

Given	that	 the	CNS	seems	to	steer	goal-directed	movements	while	 the	ANS	drives	 the	

heart,	 it	 is	 possible	 that	 the	 changes	 in	 heart	 signals	 reflect	 the	 dynamics	 of	 a	 quantifiable	

relationship	between	 these	 two	systems.	However,	other	hidden	parameters	may	also	play	a	

role	in	the	statistical	shifts	of	the	heart	signal	with	varying	levels	of	cognitive	load.	For	example,	

arousal	 may	 have	 played	 a	 mediating	 role.	 In	 fact,	 all	 participants	 expressed	 challenges	 in	
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performing	 the	 task	 under	 the	 high-cognitive-load	 condition,	 where	 they	 were	 to	 count	

backwards.	As	such,	the	task	may	have	induced	stress	and	thus	changed	the	level	of	arousal	in	

their	system.	It	is	possible	that	arousal	played	a	direct	role	on	the	heart	signals	while	it	played	a	

minor	role	on	the	motor	signals.	One	possible	interpretation	is	that	signals	from	the	CNS	(e.g.,	

voluntary	 motor	 signals)	 may	 often	 be	 influenced	 by	 many	 factors,	 thus	 providing	 more	

flexibility	and	allowing	for	more	variations	before	shifting	its	statistical	signature.	In	contrast,	it	

may	be	 that	 signals	 from	 the	ANS	 (e.g.,	 heart	 signals)	 remain	within	a	 tighter	 range,	 and	are	

more	robust	to	change,	responding	mainly	to	primitive	survival-related	factors	such	as	stress-

induced	 shifts	 in	 arousal	 levels.	 Perhaps	 combining	 the	 heart	 signal	 with	 other	 physiological	

outputs	 (e.g.,	 galvanic	 skin	 response)	 could	 clarify	 the	effects	of	 cognitive	 load	on	 the	motor	

system.	Here,	we	learned	that	even	a	minor	change	in	the	cognitive	task	alters	the	variability	of	

the	heart’s	IBI	in	quantifiable	ways.	As	such,	we	may	be	able	to	use	this	paradigm	to	study	other	

aspects	 of	 performance,	 including	 a	 characterization	 of	 stress	 levels	modulated	 by	 cognitive	

loads,	and	their	influences	on	the	motor	signals.	At	the	end,	the	susceptibility	of	the	heart	signal	

to	 stress	may	 provide	 an	 outcome	measure	 to	 assess	 the	 extent	 to	which	 elevated	 levels	 of	

cognitive	load	may	or	may	not	disrupt	behavioral	performance.	

As	 an	 alternative	 way	 of	 examining	 the	 effect	 of	 cognitive	 load,	 we	 gathered	 the	

statistics	of	the	signals	in	response	to	two	different	tasks–	the	basic	pointing	task	and	the	time	

estimation	 pointing	 task.	 Both	 tasks	 required	 the	 participant	 to	 make	 the	 same	 gesture	 of	

touching	the	display	screen,	but	the	time	estimation	task	incurred	higher	cognitive	load	as	the	

participant	 was	 simultaneously	making	 a	 decision	 on	 the	 estimated	 time	while	 touching	 the	

display	screen.		
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During	 the	 time	 estimation	 task,	 the	 estimated	Gamma	PDF	of	 the	micro-movements	

harnessed	from	goal-directed	forward	segments,	specifically	the	AM	metric,	showed	to	be	less	

noisy	 (i.e.,	 lower	 scale	 parameter)	 	 and	more	 symmetric	 (i.e.,	 higher	 shape	 parameter)	 than	

during	 the	 pointing	 task.	 The	 shift	 in	 the	 statistical	 signatures	 was	 consistent	 across	 all	

participants	 during	 the	 forward	 motions.	 For	 spontaneous	 backward	 segments,	 the	 same	

distributional	 shift	 of	 the	 fitted	 Gamma	 PDF	was	 found	 in	 the	 signal’s	 TM	metric,	 such	 that	

there	 were	 less	 variability	 and	 more	 symmetry	 in	 the	 estimated	 PDFs	 during	 the	 time	

estimation	task.	Interestingly,	participants	did	not	explicitly	express	difficulty	in	performing	the	

time	estimation	task	relative	to	the	pointing	task.	These	tasks	required	the	same	biomechanical	

solution	and	were	executed	with	the	same	arm-hand	linkage.	Pointing	is	a	very	automatic	task,	

and	yet	several	motor	signals	from	the	peripheral	limbs	were	significantly	affected.	This	implies	

involvement	of	the	central	controllers	at	the	CNS	level.	Overall,	these	findings	indicate	that	at	

the	 voluntary	 (forward)	 and	 automatic/spontaneous	 (backwards)	 levels	 of	 control,	 congruent	

changes	in	the	statistics	of	spatio-temporal	parameters	of	motor	signals	are	found	between	the	

two	tasks.		

This	finding	has	some	parallel	with	previous	findings	on	how	the	statistics	of	deliberate	

goal-directed	motor	signals	 (i.e.,	movement	with	a	higher	 level	of	 intent)	are	more	predictive	

and	less	variable	than	spontaneous	motor	signals	(i.e.,	movements	with	a	lower	level	of	intent)	

[4].	 Since	 movements	 during	 the	 time	 estimation	 task	 required	 more	 cognitive	 focus	 than	

during	the	pointing	task,	and	goal-directed	movements	required	more	focus	than	spontaneous	

movements,	 it	may	be	that	movements	 involving	a	high	 level	of	cognitive	 focus	 influence	the	

statistics	of	motor	signals	to	be	less	variable	and	more	predictable.	For	future	studies,	it	would	
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be	helpful	to	examine	the	motor	signals	under	differing	levels	of	attentional	focus	with	marked	

cognitive	goals	to	verify	whether	this	is	indeed	the	case.		

Overall,	 the	 results	 suggest	 that	kinematic	and	autonomic	parameters	are	 sensitive	 to	

the	 level	 of	 cognitive	 loads.	 Indeed,	 these	 parameters	 may	 provide	 outcome	 measures	 of	

performance	during	tasks	with	varying	degrees	of	cognitive	loads.	

4.2.	Temporal	and	spatial	metrics	of	micro-movement	data		

In	analyzing	the	micro-movements	of	motor	signals,	their	fluctuations	were	represented	by	two	

different	metrics	 –	AM	and	TM.	AM	 represents	 the	 spatial	 aspect	of	movement,	 since	 speed	

profiles	are	a	function	of	distance	(i.e.,	space)	over	time,	while	the	unit	time	remains	constant	

in	 our	 case.	 Hence,	 the	 amplitude	 of	 speed	 profiles	 can	 simply	 be	 reduced	 to	 a	 function	 of	

distance.	TM,	on	 the	other	hand,	 represents	 the	 temporal	aspect	of	movements.	Overall,	 the	

spatial	 metric	 was	 informative	 in	 differentiating	 the	 levels	 of	 cognitive	 load	 between	 the	

pointing	task	and	time	estimation	task	for	forward	movements,	while	the	temporal	metric	was	

more	informative	for	backward	movements.	Given	that	the	spontaneous/backward	movement	

was	 not	 instructed	 to	 the	 participant,	 the	 forward	movements	may	 entail	 higher	 awareness	

about	the	external	visual	 target	than	backward	movements.	 In	contrast,	given	that	backward	

movements	 are	 automatically	 performed	 towards	 the	body,	 they	may	entail	 a	more	 internal	

proprioceptive	awareness	about	the	body	position	(so	as	to	not	hit	the	body	on	the	way	back	

from	the	target).	As	such,	 it	 is	possible	that	the	spatial	statistics	of	forward	reaches	may	be	a	

better	 outcome	 measure	 of	 voluntary	 performance	 with	 higher	 awareness,	 whereas	 the	

temporal	statistics	of	backward	reaches	may	be	more	informative	of	spontaneous	performance	
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under	 lower	awareness.	These	hypotheses	can	be	 further	 tested	 in	 the	 future	using	 the	data	

from	the	postural	domain,	as	another	layer	of	internally	generated	variability.	

Part	 of	 our	 interpretation	 of	 these	 results	 is	 that	 there	 may	 be	 a	 developmental	

explanation	behind	this	finding.	A	newborn	infant	starts	life	with	little	deliberate	autonomy	and	

awareness	of	the	body.	At	this	nascent	stage,	the	nervous	system	will	react	reflexively	and	will	

most	 likely	 rely	 on	 signals	 that	 are	 internally	 driven.	 This	 is	 because	 the	 infant	 has	 yet	 to	

develop	vision	and	acquire	 the	deliberate	autonomy	to	maneuver	 the	body	at	will	within	 the	

external	space.	Consequently	the	nascent	nervous	system	may	primarily	rely	on	internal	signals.	

Because	 most	 movements	 at	 this	 stage	 are	 reflexive	 and	 spontaneous,	 thus	 involving	 a	

relatively	low	level	of	intent,	the	statistics	of	such	micro-movements	may	be	most	informative	

from	 internally	 driven	metrics,	 such	 as	 the	 TM.	As	 an	 individual	matures,	 the	 brain	may	 rely	

more	 on	 external	 sources	 of	 sensory	 guidance	 in	 controlling	 one’s	 movement.	 As	 such,	

movements	directed	at	visual	targets	will	become	more	deliberate	and	will	necessarily	involve	a	

higher	level	of	intent	than	spontaneous	reflexes.	Because	goal-directed	movements	require	the	

individual	 to	 understand	 one’s	 body	 in	 relation	 to	 the	 external	 space,	 the	 statistics	 of	 such	

micro-movements	 may	 be	 most	 informative	 from	 externally	 driven	 sources,	 such	 as	 those	

based	on	spatial	metrics	(e.g.,	AM).	

4.3.	Embodied	approach	to	studying	cognition		

To	 approach	 the	 study	 of	 cognitive	 performance,	 the	 current	 study	 employs	 a	 novel	

methodology.	The	new	method	extracts	 the	signals	obtained	 from	the	CNS	and	the	ANS,	and	

statistically	characterizes	those	signals	as	a	function	of	cognitive	load	to	gain	a	glimpse	into	the	
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brain	 and	 body	 dynamics.	 In	 this	 sense,	 we	 characterized	 cognitive	 load	 with	 sensory	 and	

somatic-motor	signals,	alluding	to	processes	that	occur	in	a	closed	loop	between	the	brain	and	

the	body.	 For	 instance,	 the	 input	 signals	 from	 the	micro-movements	of	 the	motor	 and	heart	

signals	can	be	an	important	source	of	guidance	to	the	brain,	as	they	may	be	a	form	of	feedback	

to	help	the	brain	compensate	for	synaptic	transductions	and	transmission	delays.	By	selectively	

shifting	the	signatures	of	statistical	variability	under	different	levels	of	cognitive	load,	different	

functional	 relations	 (maps)	between	bodily	 responses	and	environmental	demands	 (including	

cognitive	loads)	may	be	built,	to	be	able	to	predict	ahead	the	consequences	of	bodily	actions,	

even	in	the	absence	of	or	the	intermittent	availability	of	relevant	sensory	information.	

	 This	embodied	approach	to	the	study	of	cognitive	processes	has	the	potential	to	provide	

a	 more	 holistic	 perspective	 on	 our	 overall	 understanding	 of	 cognition	 and	 its	 development.	

Indeed,	 this	 simple	 paradigm	 was	 useful	 to	 examine	 the	 changes	 in	 bodily	 signals	 across	

multiple	layers	of	the	nervous	systems,	and	characterize	the	sensory-motor	behavior	underlying	

cognitively	driven	performance.	Furthermore,	by	adopting	the	kinesthetic	reafferent	framework	

in	this	study,	we	were	able	to	capture	the	variations	of	motor	and	multifaceted	sensory	inputs	

that	must	be	integrated	to	drive	cognitive	processes	(e.g.,	selection,	planning,	decision	making)	

under	varying	levels	of	control,	ranging	from	voluntary	to	automatic	to	autonomic.	

4.4.	Individualized	and	empirical	approach	for	biophysical	data	analyses	

The	methods	presented	in	this	study	are	aimed	at	transforming	basic	research	in	the	cognitive	

and	psychological	science	in	three	fundamental	ways:	
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(1) By	studying	naturalistic	behavior	on	a	continuous	timeframe,	as	opposed	to	constraining	

it	 to	 discrete	 events	 such	 as	 motion	 within	 epochs,	 mouse	 clicks,	 or	 hand	 coding	 of	

videos.	

(2) By	 providing	 a	 more	 comprehensive,	 multilayered	 profiling	 of	 the	 nervous	 systems’	

activity	underlying	the	execution	of	tasks	with	varying	levels	of	cognitive	load.	

(3) By	offering	a	new	unifying	statistical	platform	that	enables	a	personalized	assessment	of	

behavior	rather	than	adopting	a	“one-size-fits-all	model”	without	empirical	verification	

of	assumed	normality,	linearity	and	stationarity	in	the	biophysical	data.	

Here,	the	biorhythms	of	each	individual	are	continuously	profiled	using	the	statistics	of	micro-

movements	 with	 high-resolution	 instrumentation,	 and	 using	 an	 experimental	 paradigm	 that	

captures	 varying	 levels	 of	 control	 from	 different	 nervous	 systems.	 The	 work	 also	 offers	 an	

example	of	using	a	unifying	statistical	platform	(SPIBA),	which	can	be	applicable	across	different	

tasks	 and	 instrumentations,	 and	 on	 different	 biophysical	 waveforms	 examined	 under	 a	

common	 standardized	 scale.	 We	 also	 show	 examples	 of	 an	 objective	 and	 personalized	

assessment	of	an	individual,	which	can	produce	biometrics	from	naturalistic	behaviors	that	can	

be	 easily	 translated	 from	 the	 lab	 to	 the	 home/clinical	 environment.	 As	 such,	 this	 approach	

invites	 further	developments	 towards	 the	new	concept	of	 precision	medicine	 [33],	 and	away	

from	current	behavioral	assessments	which	tends	to	obstruct	progress	 towards	 individualized	

targeted	 treatments.	 Precision	 medicine	 is	 a	 new	 approach	 in	 acquiring	 and	 integrating	

information	from	biomedical	research	and	clinical	practices,	to	develop	therapies	based	on	an	

individual’s	unique	biological	signatures.	The	present	work	is	in	line	with	the	goals	of	precision	

medicine,	as	it	moves	beyond	the	“one	size	fits	all”	traditional	model	of	behavior,	and	provides	
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new	means	to	assess	and	dynamically	track	the	single	individual’s	performance	across	different	

naturalistic	contexts.	

Also,	 the	methods	 used	 in	 this	 study	 adopt	 an	 empirical	 approach	 in	 analyzing	 data.	

Traditional	 researches	 have	 analyzed	 psycho-physiological	 data	 assuming	 that	 they	 were	

stationary	and	normally	distributed,	resulting	in	gross	data	loss.	This	is	because	the	traditional	

approach	tends	to	smooth	out	the	variability	that	occurs	from	trial	to	trial	and	lump	together	

individuals	 with	 different	 statistical	 signatures.	 However,	 the	 variability	 that	 is	 otherwise	

smoothed	out	as	noise	or	treated	as	nuisance	can	be	informative	both	at	the	individual	and	at	

the	group	 level,	 as	we	have	demonstrated	here.	 Furthermore,	 the	 statistical	 shifts	of	metrics	

used	in	the	current	study	can	be	examined	on	different	time	scales	(e.g.,	minutes,	days),	making	

these	 a	 good	 candidate	 for	 outcome	 measures	 to	 dynamically	 track	 the	 evolution	 of	 the	

stochasticity	 of	 one’s	 performance	 under	 different	 experimental	 conditions,	 behavioral	

treatments,	or	clinical	 interventions.	As	such,	the	methods	can	be	used	in	longitudinal	studies	

assessing	a	developmental	progression	or	a	pathological	condition	of	certain	nervous	systems,	

and	more	generally	in	profiling	neurotypical	progression	along	an	individual’s	lifespan.	

Overall,	the	current	study	is	a	step	forward	from	the	traditional	approach,	as	it	analyzes	

physiological	data	on	an	individualized	basis	and	empirically	characterizes	the	variations	in	the	

nervous	systems’	performance	in	response	to	subtle	manipulations.	

4.5.	Other	clinical	applications	and	limitations		

The	 results	 showed	 that	 the	 micro-movement	 statistics	 of	 motor	 and	 heart	 signals	 are	

informative	in	characterizing	cognitive	load.	The	findings	can	be	extended	and	applied	to	many	
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clinical	 situations.	 Since	 therapies	 involve	 cognitive	 load,	 it	 is	 possible	 that	 sometimes	 the	

treatments	may	be	ineffective	when	the	load	is	more	than	tolerable.	In	this	case,	the	statistical	

metrics	 from	 the	 heart	 signals	 would	 be	 informative	 in	 keeping	 the	 treatments	 at	 its	 most	

effective	level	(e.g.,	lower	stress	level).	Further,	while	some	patients	may	benefit	from	external	

sources	 of	 sensory	 guidance,	 others	may	 benefit	 instead	 from	 internal	 sources.	 As	 such,	 the	

methods	provide	the	means	to	flexibly	probe	which	parameters	(externally	driven	vs.	internally	

driven)	may	be	most	 informative	as	outcome	measures	 in	maximally	separating	the	effects	of	

experimental	manipulations	within	 the	 lab	or	 clinical	 interventions.	 In	 this	 sense,	 the	metrics	

provided	 by	 the	 kinematics	 and	 heart	 signal	 outcomes	 can	 help	 in	 identifying	 the	 best	

treatments	for	the	nervous	systems	to	habilitate	and	rehabilitate	motor	control	in	tandem	with	

cognitive	performance.	

The	current	study	has	several	limitations:	

(1) First,	the	results	are	based	on	merely	nine	healthy	participants.	To	make	a	more	robust	

conclusion	about	estimates	of	the	population	at	large,	more	participants	would	need	to	

be	 tested	 on,	 including	 individuals	 with	 pathological	 conditions	 affecting	 the	 heart	

and/or	movements.	This	is	because	data	obtained	from	healthy	young	individuals	would	

be	 restricted	 to	 a	 particular	 range,	 while	 data	 from	 the	 patient	 population	 would	

provide	 us	 with	 value	 ranges	 closer	 to	 extreme	 cases.	 Indeed,	 combining	 various	

population	groups	would	help	in	building	a	scale	across	the	human	continuum.		

(2) As	mentioned	earlier,	cognitive	load	is	a	multi-dimensional	construct,	so	it	needs	to	be	

probed	using	different	means	of	sensory	information	beyond	visual	and	auditory	inputs.	

Moreover,	increasing	levels	of	cognitive	load	may	not	necessarily	impact	the	statistics	of	
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one’s	physiological	signals	in	a	linear	fashion.	For	that	reason,	testing	different	types	of	

cognitive	load	at	varying	degrees	would	be	helpful	to	delineate	important	parameters	of	

cognitive	performance.		

(3) We	merely	focused	on	the	hand	kinematics	and	the	raw	heart	data	but	it	is	possible	to	

study	 the	 internal	 representation	 of	 posture	 and	muscle	 activity	 underlying	 the	 hand	

movements,	as	well	as	other	signals	from	the	ANS.	

(4) The	biophysical	signals	in	the	current	results	may	have	had	a	combined	effect	of	arousal	

and	cognitive	load.	Although	these	are	different	constructs,	they	may	be	confounded	in	

various	 settings.	 It	will	be	 interesting	 to	explore	 their	 relationship	 in	 future	studies	by	

measuring	the	arousal	level	and	examining	the	kinematics	and	heart	signals,	because	it	

is	possible	that	the	statistics	of	the	heart	signals	are	largely	influenced	by	arousal	that	is	

induced	by	increased	cognitive	load.	As	such,	it	would	be	helpful	to	directly	test	the	level	

of	arousal	to	verify	whether	this	is	the	case.		

(5) Lastly,	 the	 proposed	 statistical	 platform	 makes	 a	 series	 of	 assumptions	 (e.g.,	

independent	 and	 identically	 distributed	 events	 and	 focuses	 on	 the	 exponential	 family	

with	 additive	 statistics).	While	 such	 assumptions	 enable	 a	 standardized	metric	 to	 use	

across	the	population	at	large,	including	those	with	pathologies	of	the	nervous	systems,	

we	 may	 incur	 other	 forms	 of	 data	 loss.	 Future	 work	 will	 explore	 other	 statistical	

scenarios	and	further	assess	the	variability	of	physiological	and	cognitive	signals,	using	

other	types	of	processes	to	compare	with	the	Gamma	process.	



48 
 

 
 

4.6.	Conclusions		

The	current	study	demonstrated	interdependencies	among	signals	from	multiple	 layers	of	the	

nervous	 systems,	 through	 a	 proposed	 nervous	 systems	 architecture	 involving	 fundamentally	

different	processes.	 The	proposed	processes	 are	different	 in	 nature:	 deliberate,	 spontaneous	

and	 inevitable,	 thus	 encompassing	 very	 segregated	 types	of	 activities	with	 specific	 stochastic	

characteristics.	 Nonetheless,	 the	 interdependencies	 of	 signals	 during	 the	 experimental	 tasks	

designed	 for	 this	 thesis	were	 clearly	quantifiable	 and	 significant.	 These	 tasks,	which	 required	

varying	degrees	of	cognitive	load,	provide	important	evidence	to	justify	the	embodied	approach	

to	cognition.	The	thesis	offers	a	new	unifying	statistical	approach,	data	types	and	experimental	

paradigms	 to	 assess	 voluntary,	 automatic	 and	 autonomic	 signals	 through	 a	 common	 lens.	 As	

such	this	thesis	provides	tools	to	help	advance	the	field	of	embodied	cognition.	
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Appendices	

 

A1.	Four	types	of	speed	profile		

	
Figure	A1.	Four	types	of	speed	profile	of	a	typical	pointing	movement.	(A)	Linear	velocity	(B)	Angular	velocity	(C)	Linear	
acceleration	(D)	Angular	acceleration.	Because	angular	acceleration	showed	to	have	the	largest	number	of	peaks	during	a	single	
pointing	movement,	peak	data	obtained	from	the	angular	acceleration	speed	profile	was	analyzed,	as	this	would	provide	the	
highest	statistical	power	for	the	MLE	process.		
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A2.	MLE	for	kinematic	parameters

	
	
	

Figure	A2.	Maximum	 likelihood	estimated	values	 for	AM	 index	 (top)	and	TM	 index	 (bottom)	 for	3	different	 conditions,	 for	a	
typical	 participant.	 The	 horizontal	 axis	 contains	 the	 value	 of	 the	 gradient	 at	 the	 end	 of	 the	 optimization	 process	 (-5x10-4	 ~	
1.5x10-3	 range	 according	 to	 the	 set	 tolerance	 value	 of	 10-30	 for	 the	 optimization	 process).	 The	 vertical	 axis	 contains	 the	
maximum	 likelihood	 estimation	 value	 for	 the	 Gamma,	 normal,	 exponential	 and	 lognormal	 distributions	 (see	 legend).	 The	
respective	 values	 are:	 AM	 for	 control	 condition	 [1279.0,1256.6,-366.9,1288.7],	 AM	 for	 low	 load	 condition	 [1203.9,1186.6,-
345.2,1211.2],	AM	for	high	 load	condition	 [1111.0,1090.4,-314.2,1120.1],	TM	for	control	condition	 [943.4,854.7,651.7,961.3],	
TM	for	low	load	condition	[841.1,733.5,564.9,863.4],	TM	for	high	load	condition	[787.1,715.0,508.7,799.7].			
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A3.	MLE	for	inter-beat	interval		
	

	
A3.	Maximum	 likelihood	 estimated	 values	 for	 inter-beat	 interval	 for	 3	 different	 conditions,	 for	 a	 typical	 participant.	 The	
horizontal	axis	contains	the	value	of	the	gradient	at	the	end	of	the	optimization	process	(-1x10-3	~	3x10-3	range,	according	to	the	
set	tolerance	value	of	10-30	for	the	optimization	process).	The	vertical	axis	contains	the	maximum	likelihood	estimation	value	for	
the	 Gamma,	 normal,	 exponential	 and	 lognormal	 distributions	 (see	 legend).	 The	 respective	 values	 are:	 control	 condition	
[1090.3,1100.8,-595.1,1083.9],	low	load	condition	[1175.9,1176.1,-590.1,1175.2],	high	load	condition	[946.75,	944.99,	-589.92,	
946.65].		
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A4.	CNS	voluntary	control	assessment	under	high-	and	low-cognitive-load	conditions	

	
	

Figure	A4.	CNS	voluntary	control	assessment	under	high-	and	low-cognitive-load	conditions.	Kinematics	signals	of	the	hand	for	
goal-directed	forward	segments.	(A,B)	Estimated	Gamma	PDF	and	parameters	of	the	AM	and	(C,D)	TM	for	low-cognitive-load	
condition	 (blue)	 and	 high-cognitive-load	 condition	 (red)	 per	 participant	 (P1-P9).	 The	 estimated	Gamma	parameters	 for	 both	
metrics	did	not	show	a	distinct	trend	in	the	separation	between	the	two	conditions.		
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A5.	CNS	automatic	control	assessment	under	high-	and	low-cognitive-load	conditions	
	

	

Figure	A5.	CNS	automatic	control	assessment	under	high-	and	low-cognitive-load	conditions.	Kinematics	signal	of	the	hand	for	
spontaneous	backwards	segments.	(A,B)	Estimated	Gamma	PDF	and	parameters	of	the	AM	and	(C,D)	TM	for	low-cognitive-load	
condition	 (blue)	 and	 high-cognitive-load	 condition	 (red)	 per	 participant	 (P1-P9).	 The	 estimated	Gamma	parameters	 for	 both	
metrics	did	not	show	a	distinct	trend	in	the	separation	between	the	two	conditions.		
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A6.	ANS	autonomic	control	assessment	during	pointing	and	time	estimation	tasks	
	

	

Figure	A6.	ANS	autonomic	control	assessment	under	high-	and	 low-cognitive-load	conditions.	 (A)	Estimated	Gamma	PDF	and	
(B)	parameters	of	IBI	for	the	pointing	task	(blue)	and	time	estimation	task	(red)	per	participant	(P1-P8).	The	estimated	Gamma	
parameters	of	the	IBI	probability	distribution	function	did	not	show	any	separation	between	the	pointing	and	time	estimation	
task	for	all	participants.		
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Table	A1.	Median	time	(ms)	elapsed		to	complete	a	pointing	gesture	

(composed	of	a	forward	and	backward	movement	segment)	for	each	condition	

	

Participant	 Low	Load	 High	Load	 Pointing	 Time-Estimation	

P1	
1325	

1535	 1415	 1405	

P2	 1570	 1620	 1675	 1765	

P3	 1210	 1740	 1368	 1340	

P4	 1475	 1655	 1483	 1370	

P5	 1520	
1535	

1598	 1510	

P6	 1190	 1395	 1445	 1333	

P7	 1845	 1943	 1865	 1985	

P8	 1405	 1760	 1750	 1565	

P9	 1763	 2145	 1820	 1770	
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Table	A2.	Comparison	of	micro-movement	of	motor	signals	between	low	

vs.	high	cognitive	load	using	Kruskal-Wallis	non-parametric	test		

	

Participant	
AM	 TM	

𝓧
2
	 df	 p-value	 𝓧

2
	 df	 p-value	

P1	 1.91	 (1,749)	 0.17	 0.02	 (1,631)	 0.88	

P2	 0.41	 (1,643)	 0.52	 0.13	 (1,524)	 0.71	

P3	 17.89	 (1,604)	 <0.01**	 3.95	 (1,491)	 0.05	

P4	 0.01	 (1,648)	 0.91	 0.01	 (1,529)	 0.91	

P5	 10.32	 (1,708)	 <0.01**	 4.77	 (1,591)	 0.03*	

P6	 0.34	 (1,818)	 0.56	 4.73	 (1,709)	 0.03*	

P7	 2.86	 (1,625)	 0.09	 0.17	 (1,509)	 0.68	

P8	 3.17	 (1,676)	 0.07	 1.69	 (1,579)	 0.19	

P9	 11.52	 (1,804)	 <0.01**	 1.63	 (1,688)	 0.20	
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