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ABSTRACT OF THE DISSERTATION

Lagrangian Floer theory in symplectic fibrations

by Douglas Schultz

Dissertation Director: Christopher Woodward

Consider a fibration of compact symplectic manifolds F → E → B with a compatible symplectic

form on E, and an induced fibration of Lagrangian submanifolds LF → L → LB . We develop

a Leray-Serre type spectral sequence to compute the Floer cohomology of L in terms of the

Floer complex of LF and LB when F is symplectically small. Moreover, we write down a

formula for the leading order superpotential when F is a Kähler homogeneous space. To solve

the transversality and compactness problem, we use the classical approach in addition to the

perturbation scheme recently developed by Cieliebak-Mohnke [CM07] and Charest-Woodward

[CWb; CWa]. As applications, we find Floer-non-trivial tori in complex flag manifolds and

ruled surfaces.
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Chapter 1

Introduction

In topology, the idea of a fibration is of central importance. In a certain sense, this is the topo-

logical version of a short exact sequence. A fibration provides a natural way of viewing a large

space as two smaller ones that are twisted together, or a way of constructing one space from two.

To say something about the topology of a fibration, one typically uses some sort of long exact

sequence, or more generally a spectral sequence. This idea was made popular by Leray, Serre,

Grothendieck, and others [Ser51; Ler50a; Ler50b; Gro57; Wei94]. For example, to compute the

de Rham cohomology of a fiber bundle F → E → B, where B has a good cover U, one can

use a spectral sequence whose second page is Ep,q2 = Hp(U,Hq), the C̆ech cohomology of the

cover, where Hq is the presheaf U 7→ Hq(π−1(U)). The idea goes back to one of Leray [Ler50a;

Ler50b], where he develops his spectral sequence to compute sheaf cohomology groups.

We would like to develop a Leray-Serre type spectral sequence in the setting of pseudo holo-

morphic curves and Lagrangian Floer theory. Pseudo holomorphic curves were introduced circa

1985 by Gromov [Gro85], and have become a powerful tool in symplectic topology. One of

the original applications was in defining a quantum cup product on the usual cohomology that

allows interactions between cocycles (or their Poincaré duals) that do not ”intersect” in the

classical situation. Further dynamical applications were considered by Floer and others [Flo88;

Flo89].

In this paper, the invariant of interest is Lagrangian intersection Floer cohomology [Flo88;
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Oh93]. This theory takes as input two transversely intersecting Lagrangians (or often, a single

Lagrangian) and in nice cases provides an obstruction to displacement by a Hamiltonian isotopy.

Fukaya et. al. (culminating in [FOOO09]) have discovered an underlying algebraic and

categorical structure in the information given from Lagrangian intersection theory, called the

Fukaya category of a symplectic manifold. Through homological mirror symmetry, the derived

Fukaya category is expected to be equivalent to the derived category of coherent sheaves in

the mirror manifold. Therefore, it seems feasible to try to find some generators for the Fukaya

category, or at least some Floer non-trivial Lagrangians.

The Floer cohomology for a single Lagrangian is constructed as follows: Choose a Morse-

Smale function on L and form the usual Morse complex CF (L). The Floer differential then

counts quantized Morse flows–isolated pseudo holomorphic disks u : (D, ∂D) → (M,L) with

boundary markings that map to specified stable/unstable manifolds. Assuming that we have

made the right assumptions (L is monotone or weakly unobstructed) and have perturbed the

almost complex structure correctly, this differential is well-defined and squares to zero, which

gives us a homology theory HF (L).

In this thesis, we will study compact fiber bundles where the base, fiber, and total space

are symplectic. We will denote this F → E → B, where (F, ωF ) and (B,ωB) are symplectic,

and E has an appropriately compatible symplectic form. We suppose further that we have a

Lagrangian L ⊂ E that fibers over a Lagrangian LB ⊂ B with Lagrangian fibers LF ⊂ F , and

we proceed to compute the invariant HF (L) from information about HF (LB) and HF (LF ).

The first main result is the derivation of a spectral sequence in the vein of Leray [Ler50a;

Ler50b]. Each Morse-Floer configuration u : (C, ∂C)→ (E,L) has a notion of energy, which is

the symplectic area under pullback e(u) =
∫
C
u∗ω. The energy of the configurations under the

projection π : E → B provides a filtration to induce a spectral sequence.
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To provide a better method of computation of this Floer theory, we prove a formula for the

disk potential of a fibered Lagrangian. A version of the potential function was introduced in

[FOOO; FOOO09], and provides a concrete way to show that the Floer cohomology of a La-

grangian torus is isomorphic to the Morse cohomology. Our formula gives the first and second

order terms in the disk potential as a computation that takes place in (B,LB) and (F,LF ). We

then show that solving for critical points of this second order potential allows us to say that

the particular fibered Lagrangian is Hamiltonian non-displaceable.

Let us now outline the project in further detail. Consider a fiber bundle of smooth compact

manifolds F → E → B where (F, ωB) and (B,ωB) are symplectic, and the symplectic form on

E is the weak coupling form:

ωK = a+Kπ∗ωB

i∗a = ωF

da = 0

for large K. The two-form a is what’s known as the minimal coupling form, and is devel-

oped in Guillemin-Lerman-Sternberg [GLS96]. The essence is as follows: Let TF ⊕ H be a

connection on E. We say that H is Hamiltonian if the holonomy maps are Hamiltonian diffeo-

morphisms of the fibers. Further suppose that H = TF a⊥. Then for v1, v2 ∈ H the assignment

(v1, v2) 7→ a(v1, v2) is defined as the unique zero average Hamiltonian associated to the vertical

component of [v1, v2]. Since a may degenerate in the horizontal direction, so we choose K large

enough so that ωK is non-degenerate. In section 2, we give more details of this construction.

In order for the Floer theory to work, we have to make some assumptions on the base and

fiber. These assumptions involve a crucial quantity assigned to holomorphic curves that is

known as the energy. For a symplectic manifold (E,ω), choose an almost complex structure J
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(where J2 = −I) such that ω(·, J ·) is positive definite. A differentiable map from a Riemann

surface u : (C, ∂C) → (E,L) is said to be J-holomorphic if J ◦ du = du ◦ j, where j is an

integrable complex structure on C.

Definition 1. For a map u : (C, ∂C) → (E,L), the energy of u is the symplectic area of C

under pullback:

e(u) =

∫
C

u∗ω

Since ω is closed and L is Lagrangian, it follows from Stokes’ theorem that this is a homotopy

invariant. For curves that are J-holomorphic we have the energy identity [MS04]:

∫
C

|du|2JdvolC =

∫
C

u∗ω

Thus, for a fixed homology class we get an L2 bound on the derivative of a J-holomorphic

representative, and this is crucial to the compactness results in Floer theory.

We will need LF to be monotone and B to be rational. Let µ(u) be the boundary Maslov

index associated to a homology class [u] ∈ h2 ◦ π2(F,LF ), where h2 : π2(E,L) → H2(E,L)

is the Hurewicz homomorphism. We say that LF is monotone if there is a λ > 0 such that

µ(u) = λ
∫
C
u∗ωF for any [u] ∈ h2 ◦ π2(F,LF ). We say that B is rational if ωB has a non-zero

representative in H2(B,Q). Moreover, we say that LB is rational if there is an e ∈ R such that

h2 ◦ π2(B,LB) ⊂ e · Z.

Given LF ⊂ F and LB ⊂ B as above, some natural questions one can ask are:

1. Can we produce a Lagrangian L ⊂ E as fiber bundle LF → L→ LB given some assump-

tions on the topology of F → E|LB → LB?

2. If L ⊂ E of the form LF → L→ LB , what can we say about the Floer cohomology of L

given that of LF and LB?

In this paper, much of the work will culminate to a definitive answer for (2). We will provide
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an answer for (1) in some special cases.

We set the following definition:

Definition 2. A Symplectic Mori Fibration is a fiber bundle of compact symplectic manifolds

(F, ωF ) → (E,ωK)
π−→ (B,ωB), whose transition maps are symplectomorphisms of the fibers,

(F, ωF ) is monotone, (B,ωB) is rational, and ωK = a + Kπ∗ωB for large K where a is the

minimal coupling form associated to a Hamiltonian connection.

Usually, one defines Lagrangian Floer theory over some sort of Novikov ring. In our frame-

work, it is natural to work in a Novikov ring with two formal variables q and r, in which the

r-exponent is allowed to be as negative as a multiple of the q-exponent. For 0 < ε < 1, denote

Λ2 :=

{∑
i,j

cijq
ρirηj |cij ∈ C, ρi, ηj ∈ R, ρi ≥ 0, (1− ε)ρi + ηj ≥ 0

#{cij 6= 0, ρi + ηj ≤ N} <∞
}

Let

Λq =

∑
i≥0

ciq
ρi : ci ∈ C, ρi ∈ R≥0, #{i : ci 6= 0, ρi ≤ N} <∞


be the universal Novikov ring with non-negative powers of q and let

Λ[q] =

{∑
i∈N0

ciq
iρ

}

for some ρ > 0. Filtration of the Floer chain complex by base energy induces a spectral sequence,

which is our first main theorem:

Theorem 1. Let (F, ωF ) → (E,ωK) → (B,ωB) be a symplectic Mori fibration. Suppose we

have a fibration of Lagrangians LF → L→ LB, with LF monotone, LB rational, L Lagrangian

with respect to ωK , and a divisor D = π−1(DB) for a Donaldson hypersurface [DB ]PD = n[ωB ]

of large degree in the base. Choose an a regular, coherent, stabilizing, convergent perturbation

datum (PΓ)Γ (for each configuration type Γ). Then there is a spectral sequence E∗s that converges
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to HF ∗(L,Λ2) whose second page is the Floer cohomology of the family of LF over LB. The

latter is computed by a spectral sequence with second page

Ẽ2 = H∗(LB ,HF(LF ,Λ[r]))⊗ Λ[q] (1.1)

where the coefficients come from the system that assigns the module HF (LFp ,Λ[r]) to each

critical fiber.

In many cases, it is convenient to use the disk potential to compute the Floer cohomology

of L. In case the fibers of E are Kähler with a G-invariant integrable complex structure, we

use Donaldson’s version of the Oka principle to trivialize the bundle u∗E for any holomorphic

disk u : (D, ∂D) → (B,LB). This allows us to produce J-holomorphic lifts of configurations

into (E,L) that are vertically constant (and hence regular!). We use this lifting operation

and a small perturbation of almost complex structures to write down a formula for the ”sec-

ond order” potential for L in terms of the leading order potential of LB and the potential for LF .

Let ev(u) =
∫
C
u∗a, e(π ◦ u) =

∫
C
Kπ ◦ u∗ωB , and Holρ(u) be the evaluation at a represen-

tation ρ ∈ Hom(π1(L),Λ2×) on the boundary of a configuration u. Define the 0th-order A∞

composition map as

µ0
L,ρ =

∑
u∈M(E,L,x)0

k=1,...,m

±(m!)−1Holρ(u)qe(π◦u)rev(u)x (1.2)

where m is the number of marked points on the domain of u. Here we are assuming that the

0-dimensional moduli spacesM(E,L, x)0 of holomorphic configurations with one output are of

expected dimension, which is a large technical obstruction that will be detailed in chapter 4.

Let x ∈ crit(f) ⊂ CF (L,Λ2) refer to a generating critical point of a Morse function f .

Definition 3. The second order potential for a symplectic Mori fibration is

WL
0 (ρ) =

∑
u∈Ix

x∈crit(f)

ε(u)(m!)−1Holρ(ui)q
e(π◦u)rev(u)x
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where for each x

Ix =

{
u ∈M(E,L, x)0 |e(π ◦ u) = 0

}
∪
{
u |e(u) = min

v∈M(E,L,x)0

{e(v) : e(π ◦ v) 6= 0}
}

The number m is the number of marked points on the domain of ui, and ε(u) is ±1 depend-

ing on a choice of orientation on the moduli space.

The second order potential counts the holomorphic disks contained in a single fiber, or those

with minimal total energy among the homology classes with non-zero base energy. For mono-

tone LF and large enough K in the weak coupling form, the second order potential becomes

the terms of lowest and second lowest total degree in 1.2.

The utility of this definition is the following: We view it as a functionW0 : Hom(π1(L),Λ2)→

CF (L,Λ2) and attempt to find critical points. Once one has a non-degenerate critical point ρ,

we show that it induces a critical point ξ of µ0. Finally, we show that at a critical point ξ we

have H(L, µ1
ξ)
∼= HMorse(L,Λ2). The cohomology H(L, µ1

ξ) is by definition the Floer cohomol-

ogy of L.

To this end, let WLB
0 (ρ) be the terms of minimal energy appearing in µ0

LB
, and ixM∗ :

CF (LF ,Λ[r]) → CF (L,Λ2) the map induced from inclusion of the fiber above the unique

maximum of the Morse function on LB . In subsection 4.5, we will introduce a lifting operator

L :M(B,LB , x)0 →M(E,L, y)0

that lifts unbroken holomorphic configurations in the base to regular holomorphic configurations

in the total space with a chosen output y. One can pick y to be the unique maximum of the

Morse function restricted to the fiber, and we denote this operator L∧. This operator induces

a count of holomorphic disks L∧ ◦WLB
0 arising from the count that one does in the base, and
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induces a function

L∧ ◦WLB
0 : Hom(π1(L),Λ2)→ CF (L,Λ2)

Theorem 2. Let E be a compact symplectic fibration with Kähler fibers, and let (PΓ)Γ be

an appropriate choice perturbation data for each configuration type Γ. Then the second order

potential for (E,L) decomposes into a sum of a lifted leading order potential and the full potential

for the fiber:

WL
0 (ρ) = L∧ ◦WLB

0 (ρ) + ixM∗ ◦ µ0
LF ,ι∗ρ (1.3)

As a corollary 4, we show that if LB has a well defined Floer cohomology (that is, (µ1
LB

)2 = 0

for an undeformed µ1
LB

), then so does L. The details of this theorem and corollaries are carried

out precisely in section 5.2.

Before any of the results come about, sections 4.3 4.4 develops the usual transversality and

compactness results for the moduli space of J-holomorphic disks. We use a system of domain

dependent almost complex structures, as developed in Cieliebak-Mohnke [CM07] and Charest-

Woodward [CWb; CWa], to overcome the multiple cover problem in achieving transversality

in the base manifold. We summarize the technicalities for rational symplectic manifolds: In

order to make use of domain dependent perturbation data on the space of k differentiable, p

integrable maps from a disk into E, denoted Map(D,E,L)k,p, one needs the domain to be stable

(no non-trivial automorphisms), since when defining the moduli of pseudo-holomorphic curves

one identifies domains up to reparameterization. To stabilize our J-holomorphic domain con-

figurations, we use the idea of a stabilizing divisor [CM07] (the existence attributed to [Don96])

that is typically Poincaré dual to some large multiple of the symplectic class. By requiring

additional marked points on our configurations to map to the divisor, we obtain stable domains

and can therefore use a more refined perturbation system.

The transversality and compactness results in the fibration setting F → E → B requires us

to balance the aforementioned technique for a rational (B,LB) with the more classical results
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for a monotone (F,LF ). The main transversality result requires the use of an upper triangu-

lar perturbation system (with respect to a symplectic connection TF ⊕ H) to show that the

linearized Cauchy-Riemann operator is surjective in the particular case that a disk is constant

along the fibers. One can then apply the classic density argument from [MS04] that uses the

regularity for the ajoint of the linearized CR operator. The fact we are using domain-dependent

perturbation data for B allows us to choose a section of TJJ that is only non-zero in a small

neighborhood of some point p in the domain, thus bypassing the multiple cover problem in-

herent in the base manifold. For surjectivity in the fiber, we use the decomposition result for

monotone manifolds due to Lazzarini [Laz10]. This removes the need to stabilize components

that are horizontally constant, and allows us to use a single almost complex structure for each

component that is contained in a fiber. Compactness in this situation is a similar combination

of techniques from the rational and monotone cases: basically, we use the divisor in the base

to rule out any unstable bubble components under the projection, and the classical type of

regularization/dimension count to rule out vertical bubbles. The net result is that the only

possibility for an unusual configuration in the limit is the formation of a stable disk component

that does not break over critical points and is non-constant in the horizontal direction. Due

to the assumption that the minimal Maslov index of LF is 2, we do get the usual disk bubble

connected to a constant disk that cancels in the differential due to the different orderings of the

boundary markings.

In order to write down a spectral sequence, we use coefficients from Λ2, with r appearing

as r
∫
C
u∗a and q appearing as q

∫
C
Kπ◦u∗ωB . Filtering the complex CF (L,Λ2) with respect to

q degree induces a spectral sequence similar to the one in [FOOO09] section 6.2. However,

the result here is that the second page is the cohomology of the complex CF (L,Λ≥0[r]) with

respect to the differential d0 that counts configurations with no q degree. Morally, the second

page contains the Floer theory of the fiber Lagrangian along with the Morse theory of the base.
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Once the usual technical results are out of the way, we get a Floer cohomology theory that

accepts as input Lagrangian fibrations LF → L→ LB that is about as computable as the the-

ory for the base and fiber. Using this, we find some Floer-non-trivial tori in certain classes of

minimal models, e.g. P1 bundles over a Riemann surface; we compute some lower dimensional

examples at the end of the paper. The implication of this is further reaching than one would

expect, due to a program of Gonzalez-Woodward [GW; WC]. In their program, they use the

minimal model program from algebraic geometry to produce Floer-non-trivial generators for

the Fukaya category. The starting point is what some refer to as a Mori fibration, and at each

stage of a running of the minimal model program, more generating Lagrangians are created that

persist to the beginning of the running, i.e. the original space. Thus, finding Floer-non-trivial

Lagrangians in a Mori fibration will (in nice cases) give Floer-non-trivial Lagrangians in the

original space. Moreover, the end stage Mori fibration typically has Fano fiber.

In addition to the Mori surfaces exemplified at the end of this paper, the following example

of full flags has been a toy model for this project.

1.1 Example: Full Flags in C3

We expose a 3-torus T in the three dimensional complex flag manifold that fibers over the

Clifford torus in P2 that is Floer-non-trivial. It is conjectured that this is the same torus as in

[NNU], but viewed from the perspective of our fibration machinery.

Consider the space of nested complex vector spaces V1 ⊂ V2 ⊂ C3. We can realize this as a

symplectic fiber bundle P1 → Flag(C3)→ P2, with the both the base and fiber monotone. The

type of Lagrangian that we are looking for is of the form LF → L→ LB , where LB and LF are

the so-called Clifford tori in Pn. More generally, LF is any smooth, simple, closed curve that

divides the symplectic area of P1 into halves. By the Riemann mapping theorem, the Floer

cohomology of LF is isomorphic to that of any equator. Such an L constructed this way should
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be non-displacable, and we describe the construction after some preliminaries.

Holomorphic (but not symplectic) trivializations for Flag(C3) can be realized as follows.

Start with a chain of subspaces V1 ⊂ V2 ⊂ C3 with V1 ∈ P2 represented as [z0, z1, z2] with

z0 6= 0. Using the reduced row echelon form, there is a unique point in P(V2) with first

coordinate zero, [0, w1, w2]. On the open set U0 of P2, we get a trivialization

Ψ0 : Flag(C3)→ U0 × P1

([z0, z1, z2], V2) 7→ ([z0, z1, z2], [w1, w2])

If z1 6= 0, then the transition map U0 × P1 → U1 × P1 is given by

g01([w1, w2]) = [−z0w1

z1
, w2 −

z2w1

z1
]

which is a well defined element −z0z1 0

−z2
z1

1


in PGL(2). A similar transition matrix works for the other trivializations.

Unfortunately, the above algebraic viewpoint does not contain any sort of symplectic struc-

ture. There is a natural symplectic form that we could use given by viewing Flag(C3) as a

coadjoint orbit U(3)/T with

ωξ(X,Y ) = ξ([X,Y ])

where X,Y are in su(3)/{stab(ξ)} [Sil01].

Finding a fibered Lagrangian requires a careful argument based on results from Guillemin-

Lerman-Sternberg [GLS96]. In Pn, there is a distinguished Clifford torus, denoted Cliff(Pn) of

the form

[z0, . . . , zn] : ‖zi‖ = ‖zj‖ ∀i, j
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that is also realized as the central moment fiber with regard to the action of Tn. It was

demonstrated in [Cho04] that this is a monotone, Floer-nontrivial Lagrangian. In P1, this is

simply an equator with respect to a Hamiltonian height function. The main idea is that we

want to find a Lagrangian sub-bundle

Cliff(P1)→ L→ Cliff(P2)

for which we will be able to compute the Floer cohomology.

The relevant result that we will use gives a description of the moment map for a symplectic

fibration over a Hamiltonian base manifold that will trivialize the fibration above Cliff(P2).

Let F → E → B be a symplectic fibration with a compact G-action where the projection is

equivariant. Denote ψ as the moment map for the action of G on B. Let ∆ be an open set

of the moment polytope where the action is free. Given these assumptions, the discussion in

[GLS96] section 4.6 leads to the following theorem:

Theorem 3. [GLS96] Over U = ψ−1(∆), there is a symplectic connection Γ such that the

moment map for the action on π−1(E) with the weak coupling form a+ π∗ωU is ψ ◦ π

See chapter 4 of [GLS96] for a proof.

In lieu of the ability to change the connection on an open set (see the G-equivariant versions

of theorems 6 and 7), this new symplectic structure is not much different from (in fact, isotopic

to) the weak coupling form associated the original fiber-wise structure.

We sketch the proof of this theorem, as well as how it ties into our example: The key

component involves constructing a space EW that is a symplectic fibration over the family of

reduced spaces W , and one obtains a new symplectic connection (and associated weak coupling

form) on E|U → U by pulling back the connection from this new space. Moreover, the fibration

EW → W can be shown to induce a fibration of reduced spaces (ψ ◦ π)−1(α)/G→ ψ−1(α)/G.
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In our situation, we take G = T 2, ψ : P2 → t∨ to be the associated moment map, and α as the

barycenter of the moment polytope for P2. Thus, the modified connection on E|U → U is trivial

over ψ−1(α) due to the fact that it is induced from (ψ ◦ π)−1(α)/G→ {point}. Therefore, the

fibration is symplectically trivial above Cliff(P2) with the new connection.

1.1.1 Choosing a Lagrangian and computing Floer cohomology

Once we have the trivialization, we pick a trivial section of Cliff(P1), so our Lagrangian is T 3.

On the other hand, there may be more ways to pick a non-trivial S1 bundle over Cliff(P2); this

is currently under investigation.

To start, we pick a Morse-Smale function on Cliff(P2), such as the sum of two height functions

h1 +h2. In the case that the Lagrangian we pick is trivially Cliff(P2)×Cliff(P1), we can use the

three-way sum of S1 height functions h1 + h2 + h3 as our Morse-Smale function. Alternatively,

one can follow a standard recipe when the fibration is non-trivial: Choose a Morse-Smale

function on each critical fiber π−1(xi) and extend to the rest of the space using cutoff functions

in local trivializations. Explicitly, let φi : Cliff(P2) → R be a cutoff function that is 1 in a

neighborhood of xi and 0 outside of some local trivialization Ui 3 xi, with the Ui disjoint. Pick

an identification of each critical fiber π−1(xi) with S1, a height function g : S1 → R, and form

f(p) = h1 ◦ π(p) + h2 ◦ π(p) +

3∑
i=0

φi ◦ π(p)g(θ)

We will assume that we can perturb this function in a neighborhood near each critical point to

make it Morse-Smale and not change the individual critical points.

We use the 2nd order potential from theorem 20 to show that this Lagrangian is Floer-

non-trivial. First, we compute the first order potential for P2: Let the stabilizing divisor

be ∪3
i=1Φ−1(∂Pi) the inverse image of the faces of the moment polytope. For the standard
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integrable complex structure JB , take the holomorphic disks

u1(z) = [z, 1, 1], u2(z) = [1, z, 1], u3(z) = [1, 1, z]

and suppose that −h1−h2 takes its maximum at x0 = [1, 1, 1]. By the classification of disks with

boundary in Cliff(P2) and the fact that the integrable complex structure is regular [Cho04], these

are the only Maslov index 2 disks (up to reparameterization) through [1, 1, 1]. By monotonicity

and an index count, x0 is the only term showing up in µ0
Cliff(P2). Thus, the leading order

potential for the base is

WCliff
0 (P2)(y1, y2) =

(
y1q

ρ + y2q
ρ +

1

y1y2
qρ
)
x0

where ρ = K
∫
D
u∗iωFS . Let x be the unique maximum of f (in the fiber above x0). The lifted

leading order potential 45 is

L ◦WCliff(P2)
0 (y1, y2) =

(
y1y

k
3q
ρrev(Lu1) + y2y

l
3q
ρrev(Lu2) +

1

y1y2y
j
3

qρrev(Lu3)

)
x

for some integers k, l, and j. The inclusion of the potential for Cliff(P1) in the fiber above x0 is

ix0∗ ◦WCliff(P1)(y3) =
(
y3r

ev(v1) + y−1
3 rev(v2)

)
x (1.4)

where v1(z) = [z, 1] resp. v2(z) = [1, z]. Thus, the second order potential for the total La-

grangian is

WL
0 (y1, y2, y3) = y3r

ev(v1) + y−1
3 rev(v2)

+ y1y
k
3q
ρrev(Lu1) + y2y

l
3q
ρrev(Lu2) +

1

y1y2y
j
3

qρrev(Lu3)

Let us change basis of Hom(π1(L),Λ2,×) so that the second order potential takes the form

WL
0 (y1, y2, y3) = y3r

ev(v1) + y−1
3 rev(v2)

+ y1q
ρrev(Lu1) + y2q

ρrev(Lu2) +
1

y1y2ym3
qρrev(Lu3)

for some m ∈ Z. Since the first part of this expression is symmetric in y3, we can assume that

m ≥ 0 by a further change of basis.
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For the partial derivatives of WL
0 , we have

∂y1
WL

0 = qρrev(Lu1) − 1

y2
1y2ym3

qρrev(Lu3) (1.5)

∂y2WL
0 = qρrev(Lu2) − 1

y1y2
2y
m
3

qρrev(Lu3) (1.6)

∂y3WL
0 = rev(v1) − y−2

3 rev(v2) − m

y1y2y
m+1
3

qρrev(Lu3) (1.7)

The S3 action on C3 gives an action on Flag(C3) that permutes the relative homology classes

of the lifted disks Lui. If we assume that the form a is invariant under this action, then we

have that ev(Lu1) = ev(Lu2) = ev(Lu3). Hence, setting expressions 1.5 and 1.6 equal to 0 gives

three convenient solutions y1 = y2 = y
m/3
3 . It remains to solve 1.7, which we sketch. Making

the substitutions for y1, y2, and setting equal to zero gives us

rev(v1) − y−2
3 rev(v2) − m

y
5m/3+1
3

qρrev(Lu3) = 0

We normalize via the transformation y3 7→ y3
3

rev(v1) − y−2
3 rev(v2) − m

y5m+3
3

qρrev(Lu3) = 0

and clear the denominator

y5m+3
3 rev(v1) − y5m+1

3 rev(v2) −mqρrev(Lu3) = 0

Let η = ev(Lu3)− ev(v2). Dividing by the appropriate power of r gives:

y5m+3 − y5m+1
3 −mqρrη = 0 (1.8)

While the power of r is negative, we can pick K large enough in the weak coupling form so that

qρrη is in the ring Λ2.

The ring Λt becomes a Λ2-algebra via the homomorphism q, r 7→ t, so let us instead solve

the equation

y5m+3
3 − y5m+1

3 −mtα = 0 (1.9)

with α > 0.
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Equation 1.9 has two unital solutions in the universal Novikov ring Λt. Indeed, the reduction

mod t has 1 and −1 as solutions. By Hensel’s lemma, there are unique solutions y1 ≡ 1 (mod t)

and y2 ≡ −1 (mod t) in Λt.

By proposition 21, there is a representation η ∈ Hom(π1(L),Λ×t ) such that

HF (L,Λt, η) ∼= H∗(L,Λt)

which says that this Lagrangian is non-displacable via Hamiltonian isotopy and recovers the

result from [NNU].

Remark 1. As suggested by Marco Castronovo, one can take the base Lagrangian as one of

Vianna’s exotic tori [Viab; Viaa]. The computation of the potential for an exotic torus is done

in [Viab]. Using this, we believe that the construction and Floer-non-triviality of a Lagrangian

which fibers over an exotic torus should be similar to the Clifford case.

1.2 Outline

The paper is divided into six sections and an appendix. In section 2, we follow the literature to

lay the necessary groundwork to discuss symplectic fiber bundles.

In section 3, we give a review of Floer theory for rational symplectic manifolds, as developed

in [CWa; CM07].

In section 4, prove the transversality and compactness results fibered setting.

In section 5, we define Floer theory for a symplectic Mori fibration.

Section 6 is devoted to explicit examples in the case of ruled surfaces.

The appendix is background taken from [CWa].
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Chapter 2

Background: Symplectic fibrations

We would like to unravel what we mean by the definition of a symplectic Mori fibration 2, and

state some results pertaining to our situation. The idea is that we require the transition maps

of our fiber bundle to be symplectomorphisms of the fibers. Then, for any global form a such

that ι∗a = ωF , we get a connection by taking the symplectic complement H = TF⊥a . If B is

also symplectic then the form a+Kπ∗ωB is non-degenerate for large K. The main obstruction

in this setup is finding such an a that is closed. We elaborate.

Following [MS98] chapter 6, we start with fiber bundle with connected total space E with

a compact symplectic base (B,ωB) and fiber (F, ωF ). A symplectic fibration is such a space E

where the transition maps are symplectomorphisms of the fibers:

Φi : π−1(Ui)→ Ui × F

Φj ◦ Φ−1
i : Ui ∩ Uj × F → Ui ∩ Uj × F

(p, q) 7→ (p, φji(q))

where φji : Ui ∩ Uj → Symp(F, ωF ) are C̆ech co-cycles.

Assume that there is a class [b] ∈ H2(E) such that ι∗[b] = [ωFp ] for all p. Then for large K,

a theorem of Thurston (Theorem 6.3 in [MS98]) tells us that there is a symplectic form ωK on

E that represents the class [b+Kπ∗ωB ] and is compatible with the fibration structure.

Theorem 4 (Thurston, theorem 6.3 from [MS98]). Let (F, ωF ) → E → (B,ωB) be a compact

symplectic fibration with connected base. Let ωFp be the canonical symplectic form on the fiber
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Fp and suppose that there is a class b ∈ H2(E) such that

ι∗pb = [ωFp ]

for some (and hence every) p ∈ B. Then, for every sufficiently large real number K > 0, there

exists a symplectic form ωK ∈ ∧2(T∨E) that makes each fiber into a symplectic submanifold

and represents the class b+K[π∗ωB ]

The existence of the class b is not, a priori, easy. However, one can assume that F is a

surface of genus g 6= 1.

Lemma 1 (lemma 6.6 from [MS98]). Let (F, ωF ) → E → (B,ωB) be a compact symplectic

fibration such that the first Chern class c1(TF ) = λ[ωF ] for λ 6= 0. Then the class λ−1c1(TM)

pulls back to [ωF ]

One then applies Thurston’s theorem to get a symplectic representative of λ−1c1(TM) +

K[π∗ωB ]. Thus, if F is a Riemann surface but not a torus, then E has compatible structure.

From here on, let us denote the two-form representative of the class b from theorem 4 by

a. Given that (Fp, a) is fiberwise symplectic, we get a well defined connection by taking the

symplectic complement of TF , denoted H = TF⊥a . We will call a connection arising in this

way a symplectic connection, or equivalently a connection whose parallel transport maps are

symplectomorphisms on the fibers. While there may be many (closed) such a that define the

same connection H, Guillemin-Lerman-Sternberg [GLS96] and McDuff-Salamon [MS98] give a

construction that uses the (assumed) Hamiltonian action of parallel transport.

Theorem 5 ([GLS96],theorem 6.21 from [MS98]). Let H be a symplectic connection on a

fibration F → E → B with dimF = n. The following are equivalent:

1. The holonomy around any contractible loop in B is Hamiltonian.

2. There is a unique closed connection form ωH on E with i∗ωH = ωF and∫
F

ω
(n+2)/2
H = 0
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where
∫
F

is the map from TB that lifts v1 ∧ v2 and integrates ιv1∧v2ω
2n+2
H over the fiber.

The form ωH is called the minimal coupling form of the symplectic connection H. Any (sym-

plectic) form ωH +Kπ∗ωB is called a weak coupling form.

The idea is that ωH is already determined on vertical and verti-zontal components, so it

remains to describe it on horizontal components. This is done assigning the value of the zero-

average Hamiltonian corresponding to [v]1, v
]
2]− [v1, v2]], where the v]i are horizontal lifts of base

vectors vi.

One might then ask: if we have two connection forms ωH1 and ωH2 , how are the symplectic

forms ωH1
+Kπ∗ωB and ωH1

+Kπ∗ωB related. We have the following result.

Theorem 6 (theorem 1.6.3 from [GLS96]). For two symplectic connections Hi, i = 1, 2, the

corresponding forms ωHi +Kπ∗ωB are isotopic for large enough K.

The hard part is actually finding a Lagrangian in the form LF → L → LB . If we can find

such an L, it is not guaranteed to be Lagrangian due to small contributions from the horizontal

part of ωH . However, it seems feasible that we could alter the connection in a neighborhood of

L to make it Lagrangian. Precisely, we have

Theorem 7 (theorem 4.6.2 from [GLS96]). Let A ⊂ B be a compact set, A ⊂ U an open

neighborhood, and H ′ a symplectic connection for π−1(U). Then there is an open subset A ⊂

U ′ ⊂ U and connection H on E such that H = H ′ over U ′.

In light of theorem 6, nothing is lost if we modify the connection on our candidate La-

grangian and then extend it using theorem 7.

Methods to construct a submanifold L ⊂ E of the form LF → L→ LB seem to be dependent

on the situation. In the case when the ambient base manifold is dimension 2, we do not need

to worry about horizontal contributions to ωH so long as the candidate Lagrangian is parallel
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to the connection. In particular, we detail some examples of ruled complex surfaces in a later

section of this paper.
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Chapter 3

Background: Perturbation in rational symplectic

manifolds

3.1 Moduli space of treed stable disks

In this section we include the background and results of Charest-Woodward [CWa]. They prove

transversality and compactness for rational, non-fibered symplectic manifolds and Lagrangians

[CWb; CWa], following the techniques of [CM07]. This section is included for completeness and

will be adapted for our use in later sections.

A fundamental problem in defining and Floer theory lies in making the right choices of per-

turbation data to resolve the problems of transversality and compactness. There are a number

of methods, including the polyfolds approach and the method of Kuranishi structures. The

author chose to use a more geometric approach developed in [CM07; CWb; CWa]. The main

idea is to use the existence of a symplectic almost complex divisor that represents the Poincaré

dual of (a large multiple) of the symplectic class [Don96] in order to stabilize domains and

allow the use of domain dependent almost complex structures. We consider Morse-Floer trees

that are stabilized by extra marked points that map to the divisor. We then show that we can

choose an appropriate system of perturbation data that regularizes any reasonable configuration,

including those with sphere or disk ”bubbles”. This regularization of bubble configurations al-

lows us to then proof appropriate compactness results (which in turn rules out sphere bubbling).

A tree is a planar graph Γ = (Edge(Γ),Vert(Γ)) with no cycles, that can be decomposed as
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follows:

1. For nonempty Vert(Γ), Edge(Γ) consists of

(a) finite edges Edge<∞(Γ) connecting two vertices,

(b) semi-infinite edges Edge∞ with a single endpoint, or

2. if Vert(Γ) is empty, then Γ has one infinite edge and let Edge∞ denote its two ends.

From Edge∞(Γ) we can distinguish one open endpoint as the root or the tree, and the other

semi-infinite edges being referred to as the leaves.

A metric tree is a tree with an assignment of length to each finite edge, denoted l :

Edge<∞(Γ)→ [0,∞]. If a finite edge has infinite length, we call that edge broken, and thus we

have a broken metric tree. We think of this as two metric trees, where the first has a leaf with

extremal point ∞1, that is glued to the extremal point ∞2 of the root of the second. Finally,

a broken metric tree is stable if the valence of each vertex is at least 3.

Definition 4. Let D be a collection of disk and sphere domains equipped with an identification

to D ⊂ C resp. P1, and a distinguished set of boundary marked points {xi} on the disk bound-

aries resp. interior marked points {zi} on the disk interiors and sphere components. A nodal

n-marked disk is the collection of domains together with identifications among the {xi} resp.

among the {zi} such that at most two points are identified and the resulting topological space is

simply connected. The boundary resp. interior nodes are the points where two boundary resp.

two interior markings are identified. We equip the unidentified boundary markings {x0, . . . , xn}

with a counter-clockwise cyclic order around the boundary starting with a distinguished root

x0, and the unidentified interior markings with an order z1, . . . , zn. A special point is a node or

marking. A nodal marked disk is stable if each sphere component has at least 3 special points,

and if each disk component has least three boundary special points or at least one interior
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special point and one boundary special point.

Denote a nodal n-marked disk as a triple (S, x, z), where S is the surface component together

with the nodes, and x resp. z are the boundary markings resp. the interior markings.

Definition 5. A treed disk C is a triple (T,D, o) consisting of

1. a broken metric tree T = (Γ, l),

2. a collection D = (Sv, xv, zv)v∈Vert(Γ) of stable marked nodal disks for each vertex v of T ,

with the number of boundary markings xv equal to the valence of v, and

3. an ordering o of the set of interior markings ∪vzv ∈ int(D), so that we may denote the

interior markings z1, . . . , zm.

We will be studying J-holomorphic maps from a geometric realization of C, given by replac-

ing the vertices with their corresponding nodal disks by attaching the boundary markings xv

to the appropriate edges at v. A treed disk is stable if and only if each nodal disk is stable and

each vertex in T has valence at least three.

For a nodal marked disk D, there is an associated metric tree Γ(D) constructed as follows:

Transform each disk/sphere component to a vertex and each node to a length zero edge between

the corresponding vertices. Further, replace each boundary marking and interior marking with

a semi-infinite edge.

The combinatorial type of a treed disk C = (T,D, o) includes the type of tree Γ obtained by

gluing Γ(Dv) into T such that the root of Dv is closest to the root of T , as well as a labeling of

1. the set of edges Edge<∞(Γ) of length 0 or ∞, and

2. the set of Edge<∞(Γ) with finite non-zero length.
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The vertices partition into the set

Vert(Γ) = Vertd(Γ) tVerts(Γ)

that represent disk resp. sphere domains, and the edges decompose as follows:

Edge(Γ) =Edge<∞,s(Γ) t Edge<∞,d(Γ) t Edge∞,s

t Edge0
<∞(Γ) t Edge∞<∞(Γ) t Edge

(0,∞)
<∞ (Γ) t Edge∞(Γ)

that are the spherical nodes, boundary nodes, interior markings, finite edges with zero, infinite,

and finite non-zero length, as well as semi-infinite edges.

Moreover, the combinatorial type includes a label of homology classes on the vertices:

[v] ∈ H2(X,L) if v ∈ Vertd(Γ) and [v] ∈ H2(X) if v ∈ Verts(Γ).

For each e ∈ Edge∞,s ∪ Edge<∞,s(Γ), let m(e) ∈ Z≥0 be a non-negative integer labeling.

This will represent the intersection multiplicity with the divisor.

We encode this data into a moduli space of stable treed disks Mn,m, where n is the number

of semi-infinite edges and m the number of interior markings. The connected components of this

moduli space can be realized as a product of Stasheff’s associahedra, and thus it is a cell complex.

One can stratify Mn,m by combinatorial type, i.e., for each stable combinatorial type Γ, let

MΓ be the subset of treed disks of type Γ endowed with the subspace topology. We have a

universal treed disk of type UΓ → MΓ that consists of points (Cm,m), where m is of type Γ

and Cm is its geometric realization. UΓ has the structure of a fiber bundle.

We can view a universal treed disk as a union of two sets: SΓ ∪ TΓ. The former being the

two dimensional part (with boundary) of each fiber, and the later being the one dimensional

part. SΓ ∩ TΓ is the set of nodes, interior markings, and boundary markings. Given a treed



26

disk C, we can identify nearby disks with C using a local trivialization. This gives us a map

for each chart

Mi
Γ → J (C) (3.1)

where J (C) are holomorphic structures on the surface part of C.

Definition 6. (Behrend-Manin morphisms of graphs) A morphism of graphs Υ : Γ → Γ′ is

a surjective morphism on the set of vertices obtained by combining the following elementary

morphisms:

(a) (Cutting edges) Υ cuts an edge e ∈ Edge<∞(Γ) with infinite length resp. an edge e ∈

Edge∞,s(Γ) (spherical node) if the map on vertices is a bijection and

Edge(Γ′) ∼= Edge(Γ)− {e}+ {e+, e−}

where e± ∈ Edge∞(Γ′) are attached to the vertices contained in e. We view Γ′ as two

disconnected graphs Γ+,Γ−.

(b) (Collapsing edges) Υ collapses an edge if the map on vertices Vert(Υ) : Vert(Γ)→ Vert(Γ′)

is a bijection except the indentification of two vertices in Vert(Γ) that are joined by an

edge in e ∈ Edge0
<∞(Γ) and

Edge(Γ) ∼= Edge(Γ′)− {e}

(c) (Making an edge length finite or non-zero) Υ makes an edge finite or non-zero if Γ has

the same tree as Γ′ and the lengths of the edges `(e) for e ∈ Edge<∞(Γ′) are the same

except for a single edge e where `(e) =∞ resp. 0 and the length `′(e) in Γ′ is in (0,∞).

(d) (Forgetting tails)Υ forgets a semi-infinite edge and collapses edges to make the result-

ing combinatorial type stable. The ordering on Edge∞,s(Γ) naturally defines one on

Edge∞,s(Γ
′).

Each of the above operations on graphs corresponds to a map of moduli spaces of stable

marked treed disks.
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Definition 7. (Morphisms of moduli spaces)

(a) (Cutting edges) Suppose that Γ′ is obtained from Γ by cutting an edge of infinite length.

There are diffeomorphisms MΓ → MΓ′ obtained by identifying the two endpoints corre-

sponding to the cut edge and choosing the ordering of the interior markings to be that of

Γ.

(b) (Collapsing edges) Suppose that Γ′ is obtained from Γ by collapsing an edge. There is an

embedding MΓ →MΓ′ whose image is a 1-codimensional corner of MΓ′

(c) (Making an edge finite or non-zero) If Γ′ is obtained from Γ by making an edge finite resp.

non-zero, then MΓ embeds in MΓ′ as the 1-codimensional corner where e reaches infinite

resp. zero length, with trivial normal bundle.

(d) (Forgetting tails) Suppose that Γ′ is obtained from Γ by forgetting i -th tail, either in

Edge∞,s(Γ) or Edge∞(Γ). Forgetting the i -th marking and collapsing the unstable com-

ponents and their distance to the stable components (if any) defines a map MΓ →MΓ′ .

We note that all of these maps extend to smooth maps of the corresponding universal treed

disks. If Γ is disconnected, say the disjoint union of Γ1 and Γ2, then the universal disk is the

disjoint union of the pullbacks of the universal disks UΓ1
and UΓ2

.

Orientations can be put on the space of treed disks as follows:

(a) (For a single disk) For m ≥ 1, we can identify any point in the open stratum of Mn,m

with the half space H ⊂ C. To be consistent, say we map the root x0 to ∞, an interior

marking z1 to i and the boundary markings xi to an n− 1-tuple of R ⊂ C. We then use

standard orientations on these spaces.

If m = 0, send x0 to ∞, x1 to 0, x2 to 1, and the remaining boundary markings to an

ordered tuple of (1,∞) ⊂ R ⊂ C.

(b) (Treed disks with multiple disk components) Given a treed disk in Um,n with an edge of

zero length, we can realize it as being in the closure of a higher dimensional stratum by
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identifying the edge with a node. To obtain an edge of finite non-zero length, we use part

(c) from the definition above. That is, the 1-codimensional corner where we have an edge

of zero length is also realized as the boundary of the higher dimensional stratum where that

edge has finite and non-zero length. Choose orientations on the top dimensional strata

that induce the opposite orientations on the aforementioned 1-codimensional corners.

3.2 Treed holomorphic disks

Now that we have the notion of a treed disk, we can begin constructing the moduli of Floer

trajectories. The vertices will represent domains for J-holomorphic maps (with boundary in a

Lagrangian) while the edge parts will represent flow lines for a domain dependent Morse func-

tion.

Fix a metric G on L that extends to a metric on X for which L is totally geodesic. Pick a

Morse-Smale function F on L that has a unique maximum xM . The gradient flow equation is

the following initial value problem:

dφp(t)

dt
= −gradφp(t)(F )

φp(0) = p

where X is the gradient vector field of F with respect to g, so the image defines a unique set

of points φp(−∞,∞) that doesn’t depend on p ∈ φp(−∞,∞). Denote the critical set as I(L),

and for x ∈ I(L) denote the stable and unstable manifolds of x as

W±F (x) =

{
φp(t) : lim

t→∓∞
φp(t) = x

}
The difference in sign is a convention that we will follow as though we are considering the sta-

ble/unstable manifolds of F , while the gradient flow is morally that of −F . The requirement

that F is Morse-Smale guarantees that all of these submanifolds intersect transversely, and thus

have smooth intersections. The index I(x) is defined to be the dimension of W−F (x) = W+
−F (x)
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An almost complex structure for a X is a fiber-preserving linear map J : TX → TX such

that J2 = −I. J is tamed with respect to ω if ω(·, J ·) is positive definite. Let Jτ (X) denote

the space of tamed almost complex structures.

Given a disk or sphere domain S equipped with a complex structure j and a taming almost

complex structure J on X, the J-holomorphic curve equation for a map u : S → X is

J ◦ du = du ◦ j

that will have boundary in a Lagrangian in the case S is a disk. Achieving transversality for

solutions to the gradient flow resp. holomorphic curve equation will involve Morse functions

resp. almost complex structures that depend on the domain of the solution. First, we fix sets

in the domain on which the perturbation will be non-constant. Let SΓ ⊂ UΓ be the two-

dimensional part of the universal treed disk, and T Γ ⊂ UΓ be the tree part of the universal

treed disk. Fix a compact set

SoΓ ⊂ SΓ

not containing the boundary, nodes, or interior markings, but having open interior in every

fiber of the universal disk UΓ. Also fix a compact set

T oΓ ⊂ T Γ

that intersects each universal fiber. Thus, the compliments

SΓ − S
o

Γ

T Γ − T
o

Γ

are neighborhoods of the boundary, interior markings, and nodes resp. neighborhoods of ∞ in

each fiber of the universal disk.

Definition 8. (a) (Domain-dependent Morse functions) Let (F, g) be a Morse-Smale pair,

and l > 0 an integer. A domain-dependent perturbation for F of class Cl for type Γ is a



30

Cl map

FΓ : T Γ × L→ R

equal to F on T Γ − T
o

Γ.

(b) (Domain-dependent almost complex structure) Let J ∈ Jτ (X) an l > 0 an integer. A

domain-dependent almost perturbation for J of class C l for type Γ is a C l class map

JΓ : SΓ → Jτ (X)

that is equal to J on SΓ − S
o

Γ.

Definition 9. [CWa](Perturbation Data) A Cl-perturbation datum for type Γ is a Cl pair

PΓ = (FΓ, JΓ) consisting of a domain-dependent Cl Morse function FΓ for type Γ and a domain-

dependent Cl almost complex structure JΓ for type Γ. A perturbation datum is a family (PΓ)Γ∈γ

for types Γ ∈ γ.

It will be important to choose a perturbation datum that is compatible with operations on

treed disks:

Definition 10. (a) (Cutting edges) Suppose that Γ is a combinatorial type and Γ′ is ob-

tained by cutting an edge of infinite length. A perturbation datum on Γ′ gives ruse to a

perturbation datum for Γ by pushing forward P ′Γ under the map U ′Γ → UΓ

(b) (Collapsing edges/making an edge finite or non-zero) Suppose that Γ′ is obtained from Γ

by collapsing an edge or making an edge finite or non-zero. Any perturbation datum P ′Γ

for Γ′ induces a datum for Γ by pullback of P ′Γ under U ′Γ → UΓ.

(c) (Forgetting tails) Suppose that Γ′ is a combinatorial type of stable treed disk obtained

from Γ by forgetting a marking. In this case there is a map of universal disks UΓ → U
′
Γ

given by forgetting the marking and stabilizing. Any perturbation datum P ′Γ induces a

datum PΓ by pullback of P ′Γ

Thus, it makes sense to define a perturbation datum that is compatible with the morphisms

on graphs and moduli spaces. We will call this property coherence:
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Definition 11. A perturbation datum P = (PΓ) is coherent if it is compatible with the mor-

phisms between different MΓ in the sense that

(a) (Cutting edges axiom) If Γ is obtained from Γ′ by cutting an edge of infinite length, then

PΓ′ is the pushforward of PΓ.

(b) (Collapsing edges/making an edge finite or non-zero axiom) If Γ is obtained from Γ′ by

collapsing an edge or making an edge finite or non-zero, then PΓ′ is the pullback PΓ.

(c) (Product axiom) If Γ is the union of types Γ1,Γ2 obtained from cutting an edge of Γ′,

then PΓ is obtained from PΓ1 and PΓ2 as follows: Let πk : MΓ
∼= MΓ1 ×MΓ2 → MΓk

denote the projection onto the kth factor, so that UΓ is the unions of π∗1UΓ1 and π∗2UΓ2 .

Then we require that PΓ is equal to the pullback of PΓk on π∗kUΓk

(d) (Ghost-marking independence) If Γ′ is obtained from Γ by forgetting markings on com-

ponents corresponding to vertices with [v] = 0, then JΓ is the pullback of JΓ′ .

Definition 12. Given a perturbation datum PΓ, a holomorphic treed disk in X with boundary

in L consists of a treed disk C = S ∪ T and a continuous map u : C → X such that

(a) (Boundary condition) u(∂S ∪ T ) ⊂ L.

(b) (Surface equation) On the surface part of S of C the map u is J-holomorphic for the

given domain-dependent almost complex structure: if j denotes the complex structure on

S, then

JΓ,zdu|S = du|sj.

(c) (Tree equation) On the tree part T ⊂ C the map u is a collection of gradient trajectories:

d

ds
u|T = −gradFΓ,s

(u|T )

where s is a local coordinate with unit speed so that for every e ∈ Edge<∞(Γ), we have

e ∼= [0, `(e)] or e ∼= [0,∞) via s.

A holomorphic treed disk u : C → X is stable iff
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(a) Each disk on which u is constant contains at least three special points or at least one

interior special point and one other special point.

(b) Each sphere on which u is constant contains at least three special points.

We denote the moduli space of isomorphism classes of connected treed holomorphic disks with

n leaves and m interior markings by Mn,m(L,P ). For a connected combinatorial type Γ,

MΓ(L,PΓ) denotes the subset of type Γ.

Denote I(L) as the set of critical points of F . For a tuple of critical points x = (x0, . . . , xn) ⊂

I(L)n let MΓ(L, x) ⊂ MΓ(L) denote the subset of isomorphism classes of holomorphic treed

disks u that have limits lims→−∞u(φei(s)) = xi for i 6= 0 and lims→∞u(φe0(s)) = x0.

The expected dimension of the moduli space is as follows:

i(Γ, x) := dimW−F (x0)−
n∑
i=1

W−F (xi) +

k∑
i=1

I(ui) + n− 2− |Edge0
<∞(Γ)|

−
(
|Edge∞(Γ)| − (n+ 1)/2

)
− 2|Edge<∞,s(Γ)| −

∑
e∈Edge∞,s

m(e)−
∑

e∈Edge<∞,s

m(e).

We note that
(
|Edge∞(Γ)| − (n+ 1)/2

)
is the number of breakings on Γ.

3.3 Transversality

In order to achieve transversality for the moduli space of stable treed J-holomorphic curves, we

need to restrict to a certain class of symplectic manifolds and Lagrangian submanifolds:

Definition 13. (Rationality)

(a) A symplectic manifold (X,ω) is rational if the cohomology class [ω] exists as an element

in H2(X,Q). Equivalently, X is rational if it has a linearization: there is a line bundle

X̃ → X with a connection whose curvature is (2πk/i)ω for k ∈ Z.

(b) Let h2 : π2(X,L)→ H2(X,L) be the relative Hurewicz morphism. Let [ω]∨ : H2(X,R)→

R be the map given by pairing with ω. A Lagrangian L ⊂ X is rational if [ω]∨ ◦

h2(π2(X,L)) = Z · e for some e > 0
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As we will see later, the rationality assumption will allow the existence of a stabilizing divisor

to kill any automorphisms of C ⊂ UΓ and make sense of domain-dependent data.

Definition 14. (Stabilizing Divisors)

(a) A divisor in X is a closed codimension two symplectic submanifold D ⊂ X. An almost

complex structure J : TX → TX is adapted to a divisor D if D is an almost complex

submanifold of (X, J).

(b) A divisor D ⊂ X is stabilizing for a Lagrangian submanifold L if

(1) D ⊂ X − L, and

(2) There exists an almost-complex structure JD ∈ (J , ω) adapted to D such that any

JD holomorphic disk u : (C, ∂C) → (X,L) with ω([u]) > 0 intersects D in at least

one point.

We get the following theorem (from [CWb; CWa; CM07]) as an application of various

techniques:

Theorem 8. [CWa] There exists a divisor D ⊂ X that is stabilizing for L. Moreover, if L is

rational then there exists a divisor D ⊂ X that is stabilizing for L and such that L is exact in

the compliment (X \D,ω).

We will need conditions on the interaction between the treed disks and the divisor:

Definition 15. (Adapted stable treed disks) Let (X,L) be a symplectic manifold with La-

grangian L and a codimension two submanifold D disjoint from L. A treed disk u : C → X with

boundary in L is adapted to D iff

(a) (Stable domain) The domain C is stable;

(b) (Non-constant spheres) Each component of C that maps entirely to D is constant;

(c) (Markings) Each interior marking zi maps to D and each component of u−1(D) contains

an interior marking.
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From here on out, we will use the notationMΓ(L,D, PΓ) to denote the space of holomorphic

tree disks with boundary in L that are adapted to D. We will prove a transversality result for

this moduli space, so long as Γ is uncrowded. A combinatorial type is called uncrowded if each

ghost component has at most one interior marking. This condition is necessary to prevent the

expected dimension from running away to negative infinity.

For a partial ordering on combinatorial types of treed disks, we say that Γ′ ≤ Γ iff Γ is

obtained from Γ′ by (Collapsing edges/making edge lengths finite or non-zero). Suppose that

perturbation data PΓ′ has been chosen for all Γ′ ≤ Γ (i.e. boundary types UΓ′ ⊂ UΓ). Denote

P lΓ,PΓ′
(X,D) as the space of perturbation datum PΓ = (FΓ, JΓ) of class Cl equal to the given

pair (F, J) on (T Γ − T
o

Γ,SΓ − S
o

Γ), and such that the restriction of PΓ to (T oΓ′ ,S
o

Γ′) is equal

to PΓ′ for each boundary type Γ′. Prescribing this equality guarantees that the resulting col-

lection satisfies the (Collapsing edges/Making edges finite or non-zero) axiom of the coherence

condition. Let PΓ(X,D) be the intersection of the spaces P lΓ(X,D) for all l ≥ 0.

Theorem 9. [CWa] (Transversality) Suppose that Γ is an uncrowded type of stable treed marked

disk of expected dimension i(Γ, x) ≤ 1. Suppose regular coherent perturbation data for types

of stable treed marked disks Γ′ with Γ′ ≤ Γ are given. Then there exists a comeager subset

Preg
Γ (X,D) ⊂ PΓ(X,D) of regular perturbation data for type Γ compatible with the previously

chosen perturbation data such that if PΓ ⊂ Preg
Γ (X,D) then

1. (Smoothness on each stratum) The moduli space MΓ(L,D, PΓ) of adapted stable treed

disks of type Γ is a smooth manifold of expected dimension.

2. (Tubular neighborhoods) If Γ is obtained from Γ′ by collapsing an edge of Edge<∞,d(Γ
′)

of making an edge finite or non-zero or by gluing Γ′ at a breaking, then the stratum

MΓ′(L,D, PΓ′) has a tubular neighborhood in MΓ(L,D, PΓ).

3. (Orientations) There exist orientations on MΓ(L,D, PΓ) compatible with the morphisms
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(Cutting an edge) and (Collapsing an edge/Making an edge finite or non-zero) in the

following sense:

(a) If Γ is obtained from Γ′ by (Cutting an edge) then the isomorphismMΓ′(L,D, PΓ′)→

MΓ(L,D, PΓ) is orientation preserving.

(b) If Γ is obtained from Γ′ by (Collapsing an edge) or (Making an edge finite or non-

zero) then the inclusion MΓ′(L,D, PΓ′) →MΓ(L,D, PΓ) has orientation (from the

decomposition

TMΓ(L,D)|MΓ′ (L,D,PΓ′ )
∼= R⊕ TMΓ′(L,D, PΓ′)

and the outward normal orientation on the first factor) given by a universal sign

depending only on Γ,Γ′.

Proof. See [CWa]

3.4 Compactness

We wish to have compactness of the 0 and 1 dimensional components of the moduli space

MΓ(L,D) satisfying a certain energy bound, and a natural realization of the boundary ∂MΓ(L,D)

as a concatenation of treed disks inMΓ′(L,D) for Γ′ < Γ. We record the following theory from

[CWa]:

Definition 16. For e > 0, we say that an almost complex structure JD ∈ Jτ (X,D) is e-

stabilized by a divisor D iff

(a) (Non-constant spheres) D contains no non-constant JD-holomorphic spheres of energy less

than e.

(b) (Sufficient intersections) each non-constant JD-holomorphic sphere u : S2 → X resp. JD-

holomorphic disk u : (D, ∂D) → (X,L) with energy less than e has at least three resp.

one intersection points with the divisor D. That is, u−1(D) has order at least three resp.

one.
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Definition 17. A divisor D with Poincaré dual [D]∧ = k[ω] for some k ∈ N has sufficiently

large degree for an almost complex structure JD iff

• ([D]∧, α) ≥ 2(c1(X), α) + dim(X) + 1 for all α ∈ H2(X,Z) representing non-constant

JD-holomorphic spheres.

• ([D]∧, β) ≥ 1 for all β ∈ H2(X,L,Z) representing non-constant JD-holomorphic disks.

Given J ∈ Jτ (X,ω) denote by Jτ (X,D, J, θ) as the space of tamed almost complex struc-

tures JD ∈ Jτ (X,ω) such that ‖JD − J‖ < θ (in the sense of [[CM07],lemma 8.3] or 4.1) and

JD preserves TD. We need the following lemma.

Lemma 2. [CWa] For θ sufficiently small, suppose that D has sufficiently large degree for

an almost complex structure θ-close to J . For each energy e > 0, there exists an open and

dense subset J ∗(X,D, J, θ, e) ⊂ Jτ (X,D, J, θ) such that if JD ∈ J ∗(X,D, J, θ, e), then JD is

e-stabilized by D. Similarly, if D = (Dt) is a family of divisors for J t, then for each energy

e > 0, there exists a dense and open subset J ∗(X,Dt, J t, θ, e) in the space of time-dependent

tamed almost complex structures J ∗(X,Dt, J t, θ) such that if JDt ∈ J ∗(X,Dt, J t, θ, e), then

JDt is e-stabilized for all t.

Let Γ be a type of stable treed disk, and let Γ1, . . . ,Γl be the components formed by deleting

boundary nodes of positive length, and UΓ1
, . . . , UΓl the corresponding decomposition of the

universal curve. In case L is rational and exact in the complement of D, any stable treed disk

with domain of type Γ and transverse intersections with the divisor has energy at most

n(Γi, k) :=
n(Γi)

k

on the component UΓi , where n(Γi) is the number of markings on UΓi with D.

Let JD ∈ Jτ (X,D, J, θ) be an almost complex structure that is stabilized for all energies, (e.g.,

something in the intersection of JD ∈ J ∗(X,D, J, θ, e) for all energies). For each energy e, there

is a contractible open neighborhood J ∗∗(X,D, JD, θ, e) of JD in JD ∈ J ∗(X,D, J, θ, e) that is

e-stabilized.



37

Definition 18. A perturbation datum PΓ = (FΓ, JΓ) for a type of stable treed disk Γ is

stabilized by D if JΓ takes values in J ∗(X,D, J, θ, n(Γi, k)) on UΓi

Theorem 10. (Compactness for fixed type)[CWa] For any collection P = (PΓ) of coherent,

regular, stabilized perturbation data and any uncrowded type Γ of expected dimension at most

one, the moduli space MΓ(L,D) of adapted stable treed marked disks of type Γ is compact and

the closure of MΓ(L,D) contains only configurations with disk bubbling.

Proof. See [CWa].
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Chapter 4

Transversality and compactness in the fibered setting

We would like to use parts of the previous scheme to help us achieve transversality for the

moduli space of curves into symplectic Mori fibrations. To recall:

Definition 19. A symplectic Mori fibration is a fiber bundle of symplectic manifolds (F, ωF )→

(E,ωK)
π−→ (B,ωB), where (F, ωF ) is monotone, (B,ωB) is rational, and ωK = a+Kπ∗ωB for

large K with ι∗a = ωF .

Definition 20. A fibered Lagrangian is a Lagrangian in a symplectic Mori fibration L ⊂ E such

that there are Lagrangians LF ⊂ F and LB ⊂ B and π induces a fiber bundle LF → L→ LB

In general, the Floer cohomology of LB may not be defined due to bubbling. However, the

usual transversality and compactness should still hold for L if we combine the technical results

for LF and LB . On the other hand, our primary interest is in L ⊂ E which, a priori, is neither

monotone nor part of a rational symplectic manifold, so we take care in this section to make

sure that the usual results hold. Even if the pair (E,L) were rational, we would like a nice way

to compute invariants in the fibered case.

Summarily, we pull back the divisor from the base to stabilize Floer trajectories that intersect

fibers transversely, and use the usual monotone results for pseudo holomorphic curves that lie

completely in a fiber.



39

4.1 Divisors

This is an expository section on the existence of a Donaldson hypersurface that is stabilizing

for a given Lagrangian. To start, we repeat the definition of a weakly stabilizing divisor.

Definition 21. [CWa]

(a) A symplectic divisor in B is a closed codimension two symplectic submanifold D ⊂ B.

An almost complex structure J : TB → TB is adapted to a divisor D if D is an almost

complex submanifold of (B, J).

(b) A divisor D ⊂ B is stabilizing for a Lagrangian submanifold L if

(1) D ⊂ B − L, and

(2) There exists an almost complex structure JD adapted to D such that any JD-

holomorphic disk u : (C, ∂C) → (B,L) with ω(u) > 0 intersects D in at least

one point.

(c) An almost complex structure is adapted to D if D is an almost complex submanifold of

B.

The existence of this is highly non-trivial. In the case of a smooth projective variety Bertini’s

theorem tells us that there are plenty of smooth hypersurfaces D ⊂ B [Har97]. Picking one

that does not intersect L requires a further analysis as in [AGM01].

To find at least one symplectic divisor D ⊂ B \ L in the general case, we appeal to the fact

that B is rational. Let K be an integer such that K[ω] ∈ H2(M,Z). Then there is a complex

line bundle B̃ → B such that c1(B̃) = K[ω]. Since 0 = K[ω|L] ∈ H2(L,Z), there is some

power t so that B̃⊗t|L is topologically trivial over L. Thus, choose a section l of B̃⊗t that is

non-vanishing on L, and take a small smooth perturbation so that that l intersects the zero

section transversly, so that l−1(0) is smooth. [CWa]
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For a given J , we would like to know if we can find a symplectic divisor that also stabilizes

L and such that J is adapted to D. While this may seem like a lot to ask, one can use the

techniques of Donaldson [Don96] and Auroux-Gayet-Mohsen [AGM01] to find an approximately

J-holomorphic submanifold. For a symplectic divisor D, and an ω-compatible J , let us define

the Kähler angle of D with respect to J as

ΘD(J) : D → [0, π], x 7→ cos−1

(
ωkx

k!ΩTxD

)
(4.1)

where ΩTxD is the volume form induced from the metric ω(·, J ·) and an orientation (see section

8 of [CM07]). One says that a symplectic divisor is θ-approximately holomorphic for J if its

Kähler angle is ΘD(J) ≤ θ for all x ∈ D. Let t0 = |Tor(H(L))|. We say that a symplectic

divisor is of degree d if [D]PD = d[ω]. We have the following lemma:

Lemma 3 (lemma 4.17 from [CWb]). Let B be rational and J ∈ J (ω). There exists an integer

km > 0 such that for every θ > 0 there is an integer kθ > 0 such that for every k > kθ there

exists a θ-approximately holomorphic symplectic divisor D of degree t0kmk that is stabilizing

for L.

Remark 2. More is true if we are to assume that there is a line bundle with connection B̃ → B

that is covariant constant when restricted to L (or L is rational in the sense of [CWb]). In

this case, L becomes exact in the compliment of (B \D,ω), and so the symplectic area of any

[u] ∈ π2(B,L) is proportional to the intersection number with the divisor.

A major result from [CWb][CM07] is that we can actually find an almost complex symplectic

divisor that is stabilizing for L:

Lemma 4 (lemma 4.18 from [CWb]). Let (B,ω) be a rational and compact symplectic manifold.

Then there exists divisors Dd ⊂ B of arbitrarily large degree d with adapted almost complex

structures JDd such that the pair (Dd, JDd) stabilize L.
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4.1.1 Divisors in the fibered setting

To be able to use the perturbation scheme from section 3, we pick a divisor in B and take its

inverse image under π to get a divisor in E.

For a compatible almost complex structure JB on (B,ωB), there exists a natural almost

complex structure π∗JB on the connection bundle H = TF⊥a of E. We will denote this a.c.s.

JB by abuse of notation. An almost complex structure on the sub-bundle H is called basic if it

is the pullback of some a.c. structure from the base.

We will achieve transversality by using almost complex structures of the form

Jut =

JF K

0 JB


where the block decomposition is with respect to the connection TF ⊕H on E.

Thus, for a stabilizing pair (DB , JDB ) for LB , the pair (π−1(DB), JD) with

JD =

JF K

0 π∗JDB

 (4.2)

forms an almost complex submanifold for any particular choice of JF and K. This almost

complex submanifold is stabilizing for L with respect to JD-holomorphic disks that have positive

area when projected to the base.

Definition 22. 1. A divisor D is stabilizing for L if it is the inverse image of a stabilizing

divisor DB for LB in sense of definition 21 :

There exists an almost-complex structure JDB ∈ (J , ωB) adapted to DB such that any

JDB holomorphic disk u : (C, ∂C) → (B,LB) with ωB([u]) > 0 intersects DB in at least

one point.

2. We label an adapted a.c.s. as in 4.2 JD.



42

4.2 Perturbation Data

4.2.1 Adapted Morse functions and pseudo-gradients

Part of the input data requires the choice of a Morse-Smale function and a Riemannian metric

on L. It will be important later on that we choose the function so that it descends to a datum

on B. We can construct a Morse function on L by the following recipe: take Morse functions b

resp. g on LB resp. LF . Take trivializations {(Ui,Ψi)} with the Ui small neighborhoods of the

critical points {xi} for b. Let φ be a sum of bump functions equal to ε << 1 in a neighborhood

of each xi and 0 outside Ui. The function f = π∗b+ επ∗φg is a Morse function for L with the

property that its restriction to fibers near critical points of b is also Morse.

To ensure that critical points only occur in critical fibers of f , the ε can be made small enough

so that the derivative of the bump function doesn’t contribute significantly to the horizontal

component of the flow. The Morse function can then be perturbed in small neighborhoods

outside of critical points to a Morse-Smale function.

An approach to Morse theory that is more adapted to the fibration setting is that of a

pseudo-gradient with details carried out in [[Hut] section 6.3]. The connection H on E induces a

connection TL∩H⊕TF on L (this particular connection is merely convenient and can be chosen

in many ways). Let us choose a Riemannian metric GB on LB and let Xb := gradGBb ∈ TLB .

Assume that GB is given by the Euclidean metric in neighborhood of critical points of b. Then

Xb has a horizontal lift to the connection on TL. Next, choose a metric GF on LF and denote

Xg := gradGF g, with GF the pullback of the Euclidean metric in a neighborhood of critical

points of g. We will show that

Xg ⊕Xb ∈ TLF ⊕ TL ∩H

has the property of a pseudo-gradient for the Morse function f with respect to the metric

GF ⊕GB . By this, we mean the following:
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Definition 23. Let f be a Morse function on a Riemannian manifold (M,G). A pseudo-gradient

for f is a vector field X such that Xp = 0 for p ∈ crit(f) and

1. G(gradG(f), X) ≤ 0 and equality holds only at critical points of f

2. In a Morse chart for f centered at p ∈ Crit(f), gradef = X where e is the standard

Euclidean metric.

We check that our construction satisfies the pseudo-gradient property: Let G := GF ⊕GB .

From the construction of f , we have

gradGf = φ · gradGF g ⊕ (gradGBb+ g · gradGBφ)

By the Morse lemma and the local Euclidean property of the metric GB , there are coordi-

nates centered at p ∈ Crit(b) so that GB is Euclidean and

b(x) = ±x2
1 ± · · · ± x2

n.

In this chart, we choose φ to be a bump function that is radial, with

‖g‖|∂iφ| < 2|xi|

and such that dφ has annular support. It is clear that G(gradGBb+g ·gradGBφ,Xb) ≤ 0 in these

coordinates (with equality as in property 1). It is also clear that G(gradGBb+g ·gradGBφ,Xb) <

0 outside of these coordinates where φ vanishes. Moreover, we have that G(φ ·gradGF g,Xg) ≤ 0

with equality only at critical points of g and outside the support of φ. The locality property 2

follows from the Euclidean-near-critical-points property of GF ⊕GB and the Morse lemma for

b and g.

Morse theory for pseudo-gradients is spelled out in chapter 2 of [AD14]. In particular, the

Smale condition can be achieved by perturbing the pseudo gradient X := Xg ⊕ Xb in finitely

many neighborhoods outside of critical points.
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A particular nicety of the pseudo-gradient approach is the following: any flow line γ for X

on L projects to a flow line π ◦ γ for XB in LB . This feature makes it so that Morse-Floer

trajectories behave well under the projection π : E → B.

Finally, we can define the type of perturbation data that we will be using: Fix a Morse

function f and pseudo gradient Xg⊕Xb as in the above connection. In regards to the connection

TF ⊕H on E, let

J lut(E,ωK) =

Jut,τ =

JTF JH

0 JB

 |J2
ut = −I, Jut ∈ J lτ (E,ωK)


be the space of taming upper triangular almost complex structures for (E,ωK). Let TL =

TLF ⊕ TLH be a connection on L.

Definition 24. An M-type perturbation datum for (F → E → B,ω) of type Γ, denoted

PΓ(E,D), is a map UΓ → J lut(E,ωK) × Vectl(TF ) ⊕ Vectl(HL) where the first factor has

JB resp. JH equal to JD resp. 0 in a neighborhood of the interior markings, spherical nodes,

and on the boundary component of each disk. The vector field factor is required to be equal to

X in a neighborhood of ∞. Denote the set of all perturbation data for type Γ by PΓ(E,D).

Definition 25. A perturbation datum for a collection of combinatorial types γ is a family

(PΓ)Γ∈γ

We modify our definition of treed holomorphic disk 12 to be a flow on edges:

Definition 26. A treed holomorphic disk with respect to the pseudo-gradient Xf for f satisfies

the properties of 12 with the following instead of the (Tree equation):

(c)’ (Tree equation’) On the tree part T ⊂ C the map u is a collection of flows:

d

ds
u|T (p) = Xf (u(p))

We will also refers to the above as a pearly Morse trajectory or a Morse-Floer trajectory.

From here on, we use the terms ”Morse flow” or ”Morse trajectory” to describe a flow of

any pseudo-gradient that is compatible with our Morse function.
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4.2.2 Block upper triangular almost complex structures

For an even dimensional real vector space V with V = X⊕Y , the space Jut(V ) can be viewed as

a (trivial) vector bundle K → Jut → JX×JY , where the base are the bundles of a.c. structures

on X resp. Y respectively. Suppose that dimX = 2m resp dimY = 2n with almost complex

structure J resp. K. The matrices L that make

J L

0 K

 into an almost complex structure

on V structure satisfy the linear relation JL + LK = 0. For J0 resp. K0 in normal form 0 I

−I 0

, this is the set of matrices

A B

B −A

 where A and B are m × n. The set of almost

complex structures on X resp. Y are given by the homogeneous space GL(2n,R)/GL(n,C)

resp. GL(2m,R)/GL(m,C). For J = CJ0C
−1, K = DK0D

−1, the fiber at (J,K) is given by

matrices of the above form conjugated by C,D−1.

For a contractible open neighborhood U of (J,K), choose a section of the bundle GL(2n,R)×

GL(2m,R) → JX × JY . This gives a smooth choice of coset representatives ([A], [B]) 7→

(s1(A), s2(B)) ∈ A ·GL(n,C)× B ·GL(m,C). We define a local trivialization of J lut(V ) on U

by

([A], [B], L) 7→ ([A], [B], s−1
1 (A) · L · s2(B)).

Transition maps for a choice of section ([A], [B]) 7→ (t1(A), t2(B)) over an intersecting V are

given by

L 7→ t−1
1 (A)s1(A) · L · s−1

2 (B)t2(B).

Now let us choose a symplectic form ωk = a + kω on V with V = X ⊕ Y , a|X is non-

degenerate, Y = Xa⊥ and ω is a symplectic form on Y with k >> 1. We would like to pick an

open set of Jut,τ (V, ωk) (that we will also denote Jut,τ (V, ωk) by abuse of notation) such that

there is a well defined projection to Jτ (X, a) × Jτ (Y, ω): Indeed, write v = x ⊕ y ∈ X ⊕ Y .

Then we can write down the fiber of this projection as the open set of L such that

a(x, Jx) + a(y,Ky) + kω(y,Ky) > a(x, Ly)
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for all x⊕y. Let us see that this is open: By Cauchy-Schwarz, |a(x, Ly)| ≤ ‖x‖a · ‖JLy‖a. Thus

we need to choose L such that

‖x‖2a − ‖x‖a‖JLy‖a + a(y,Ky) + kω(y,Ky) > 0

We notice that a(y,Ky) + kω(y,Ky) is positive definite for large enough k. Viewing this as

quadratic in ‖x‖a, it is sufficient to only consider L’s such that

‖JLy‖2a < 4(a(y,Ky) + kω(y,Ky)) (4.3)

for all y in a compact set. This is equivalent to choosing an L whose (a+ kω, a) norm is suffi-

ciently small.

The above argument establishes J lut,τ (V, ω) as a fiber bundle over JX,τ (ω)×JY,τ (ω), whose

fiber is an open ball in a linear space.

In general we will consider an open set of the space J lut,τ (E,ωK) (by abuse of notation,

also denoted J lut,τ (E,ωK)), that is a Banach manifold and can be realized as a Banach bundle

JA → J lut,τ (E,ω)→ J lTF,τ × J lB,τ , where the fiber at a point (JF , JB) is the space of sections

over E such that JFJH + JHJB = 0 and the supremum norm of JH with respect to (JB , JF ) is

sufficiently small. Thus the tangent space to a pointJF JA

0 JB



is given by the set of matrices

WF WA

0 WB

 where the WF resp. WB anti-commute with their

respective almost complex structure and WA satisfies JFWA +WAJB = 0.

It should be noted that the space of such upper triangular structures that are adapted the the di-

visor is still a Banach bundle, as this only imposes a constraint on the base part of the structure.
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4.2.3 Coherence and π-stability

The type of requirements that we need for stability are slightly more delicate than those in the

case from section 3.

As above, the combinatorial type Γ of a treed disk will contain the following information:

1. the set of vertices, edges, edges lengths, and node/marking type where edges meet vertices,

2. the homotopy class that each vertex is required to represent as a domain for a map u,

3. the tangency of each interior marking to the divisor π−1(DB) along the connection H,

and

4. a binary marking that dictates how each vertex as a disk/sphere domain behaves with

respect to π (see below).

Definition 27. A binary marking of a combinatorial type Γ is a subset of the vertices and

edges, denoted mVert(Γ) and mEdge(Γ), for which any map u : C → E is required to map the

domain for mv ∈ mVert(Γ) resp. me ∈ mEdge(Γ) to a constant under π. The set of unmarked

vertices and edges will be denoted uVert(Γ) resp. uEdge(Γ).

Let (Γ, x) be a combinatorial type and let [vi] denote the homology class of the vertex vi.

Let Si denote the disk/sphere domain corresponding to the vertex vi.

Definition 28. The combinatorial type (π∗Γ, π(x)) is the combinatorial type of the underlying

metric tree of Γ along with the labeling π∗[vi] and boundary markings π(xi).

Definition 29. The π-stabilization map Γ 7→ Υ(Γ) is defined on combinatorial types by for-

getting any unstable vertex vi for which [vi] = 0 and identifying edges as follows:

1. If vi has one incoming edge ei and one outgoing edge fi that is closer to the root,

then Vert(Υ(Γ)) = Vert(Γ) − {vi} and we identify the edges ei and fi: Edge(Υ(Γ)) =

Edge(Γ)/{fi ∼ ei} where `(Υ(fi)) = `(Υ(ei)) = `(ei) + `(fi)



48

2. If vi has one outgoing edge ei and no incoming edge, then Υ(Γ) has vertices Vert(Υ(Γ)) =

Vert(Γ)− {vi} and edges as follows:

(a) If `(ei) = 0, then Edge(Υ(Γ)) = Edge(Γ)− {ei}

(b) If `(ei) > 0, then Edge(Υ(Γ)) = Edge(Γ) and set `(Υ(ei)) = `(ei)

It follows that Υ(π∗Γ) forgets (unstable) marked vertices and identifies the adjacent edges.

This is precisely the combinatorial type of π ◦ u if u is of type Γ.

Definition 30. A combinatorial type is called π-stable if Υ(π∗Γ) is stable.

Definition 31. A coherent M-type perturbation datum (PΓ)Γ for π-stable types is one with

the following properties:

1. JΓ,TF is constant on each surface component of the universal treed disk UΓ

2. On domains corresponding to marked vertices, all perturbation data is constant and JH =

0 on the corresponding surface component.

3. If Γ′ is obtained from Γ by forgetting a marked vertex and stabilizing the domain, then the

perturbation data PΓ agrees with the pullback of PΓ′ under the natural map of universal

disks.

4. The collection {(JΓ,H , JΓ,B , fΓ)}Γ obeys the axioms for a coherent perturbation system

from the rational case (11).

4.3 Transversality

This section establishes the smoothness of moduli spaces whose expected dimension is 0 or 1.

Definition 32. A Floer trajectory u : C → E based on a π-stable combinatorial type is called

π-adapted to D if π ◦ u is adapted to DB in sense of definition 15:

(a) (Stable domain) The geometric realization of Υ(π∗Γ) is a stable domain;
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(b) (Non-constant spheres) Each component of C that maps entirely to D is constant;

(c) (Markings) Each interior marking zi maps to D and each component of u−1(D) contains

an interior marking.

Denote by MΓ(L,D, P ) the moduli space of type Γ Floer trajectories with boundary in L

that are π-adapted to D with respect to some M -type perturbation datum P , and for a tuple

(x0, . . . , xn), by MΓ(L,D, P, x) the ones that limit to x0 along the root and (x1, . . . , xn) along

the leaves, arranged in counterclockwise order.

The expected dimension of the stratum MΓ(E,D,P, x) is

ι(Γ, x) :=dimW+
X (x0)−

n∑
i=1

dimW+
X (xi) +

m∑
i=1

I(ui) + n− 2− |Edge0
<∞(Γ)|

− (|Edge∞(Γ)| − (n+ 1)) /2− 2|Edge<∞,s(Γ)| − |Edge∞,s(Γ)|

−
∑

e∈Edge∞,s

m(e)−
∑

e∈Edge<∞,s

m(e).

Let SΓ ⊂ UΓ be the two-dimensional part of the universal treed disk, and T Γ ⊂ UΓ be the tree

part of the universal treed disk. Fix a compact set

SoΓ ⊂ SΓ

not containing the boundary, nodes, or interior markings, but having open interior in every

fiber of the universal disk UΓ. Also fix a compact set

T oΓ ⊂ T Γ

having non-trivial intersection with each universal fiber. Thus, the complements

SΓ − S
o

Γ

T Γ − T
o

Γ

are neighborhoods of the boundary, interior markings, and nodes resp. neighborhoods of ∞ in
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each fiber of the universal disk. We require that the perturbation data vanish in these neigh-

borhoods. In addition, we only consider types Γ that are uncrowded.

We say that a type Γ′ ≤ Γ iff Γ is obtained from Γ′ by (collapsing edges/making an edge

length finite or non-zero).

Theorem 11 (Tranversality). Suppose Γ is an uncrowded combinatorial of expected dimension

ι(Γ, x) ≤ 1. Suppose that a coherent system of M -type perturbation data has been chosen for

all types Γ′ ≤ Γ. Then there is a comeager subset of M-type perturbation datum Preg
Γ (E,D) ⊂

PΓ(E,D), that is coherently compatible with the previously chosen data, such that the following

hold:

1. The moduli space MΓ(L,D, P ) for P ∈ PregΓ is a smooth manifold of expected dimension.

2. The (orientations) and (tubular neighborhoods) statements from theorem 9 hold.

Proof. The proof follows some of the ideas in [CWa] in addition to making special choices of

perturbation data for the fiber and upper triangular part. If C is a nodal disk of type Γ, for

p ≥ 2 and k > 2/p let Map0(C,E,L)k,p denote the space of (continuous) maps from C to E

with boundary and edge components in L that are of the class W k,p on each disk, sphere, and

edge. We have the following standard result:

Lemma 5. Map0(C,E,L)k,p is a Cq Banach manifold, q < k− n/p, with local charts centered

at u given by the product space of vector fields that agree at disk nodes and interior markings:

⊕
(v,e)∈Vert(Γ)⊕Edge(Γ)

W k,p(C, u∗vTE, u
∗
v,∂CTL)⊕Edged W

k,p(C, u∗eTL)

where the chart into Map0 is given by geodesic exponentiation with respect to some metric on

E that makes L and D totally geodesic.

Let Map0
Γ(C,E,L)k,p ⊂ Map0(C,E,L)k,p denote the submanifold of maps whose spheres

and disks map to the labeled homology classes that have the prescribed tangencies to the divisor,

and whose marked vertices are constant with respect to π.
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In general, the space Map0
Γ(C,E,L)k,p is a Cq Banach submanifold where q < k − n/p −

maxem(e). Following Dragnev [Dra04], the universal space is constructed as follows. Given a

trivialization of the universal disk C ∈ U iΓ →Mi
Γ,we get a map m 7→ j(m) ∈ J (S) obtained by

identifying nearby curves with C. Consider the space

Bik,p,Γ,l := Mi
Γ ⊕Map0

Γ(C,E,L)k,p ⊕ P lΓ(E,D). (4.4)

Over this Banach manifold we get a vector bundle E ik,p,Γ,l given by

(E ik,p,Γ,l)m,u,J,F ⊂
⊕
v,e∈Γ

Λ0,1
j,J,Γ(C, u∗v(TF ⊕H))k−1,p (4.5)

⊕ Λ1(C, u∗eTL)k−1,p (4.6)

where Λ0,1
j,J,Γ(C, u∗v(TF ⊕H))k−1,p resp. Λ1(C, u∗eTL)k−1,p denote the space of sections of (0, 1)-

forms resp 1-forms, and (E ik,p,Γ,l)m,u,J,F is the subspace of sections that vanish to order m(e)−1

at the node or marking corresponding to e. Local trivializations of this bundle are given by

parallel transport along geodesics in E via the associated Hermitian connection in the fibers.

For the transition maps to be Cq, we need the l in J lut,τ large enough so that q < l − k.

There is a Cq section ∂ : Bik,p,Γ,l → E ik,p,Γ,l via

(m,u, J, F ) 7→ (∂j(m),JuS , (
d

ds
−X)uT ) (4.7)

with

∂j(m),JuS := duS + J ◦ duS ◦ j(m) (4.8)

The a.c. structure J depends on (m, p) ∈Mi
Γ ⊕ C. The local universal moduli space is defined

to be

Muniv,i
Γ (E,L,D) := ∂

−1Bik,p,Γ,l (4.9)

where Bik,p,Γ,l is identified with the zero section.

With respect to the variable in Map0
Γ(C,E,L)k,p, the linearization of the Cauchy Riemann
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operator ∂j(m),J is

Du,J,j(ξ) = 5ξ + J ◦ 5ξ ◦ j − J(u)(5ξJ)∂j(m),Jus (4.10)

We also have zeroth order terms coming from the domain dependent data: The differential of

∂j(m),J at a JΓ holomorphic map with respect to the variable in PΓ(E,D) is given by

TJΓPΓ → Λ0,1(C, u∗TE)k−1,p, K 7→ K ◦ duS ◦ j (4.11)

The surjectivity argument for linearized ∂ is divided into multiple cases: given a component

uv of a Floer trajectory, the component can either be constant in the horizontal direction,

the vertical direction, both, or neither. Notably, we have the splittings of the domain of the

linearized Cauchy-Riemann operator:

Du(K) : W k,p(S, u∗TF, u∗∂STF ∩ TL)⊕W k,p(S, u∗H,u∗∂SH ∩ TL)

→ Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p (4.12)

While the range does not split in such a manner (unless JH ≡ 0), we have the nice feature of

additional freedom in the choice of perturbation data. Now, supposing that u is J-holomorphic,

Du restricts to a map

Du : W k,p(S, u∗TF, u∗∂STF ∩ TL)→ Λ0,1
j,JΓ

(S, u∗TF )k−1,p (4.13)

By construction, any J-holomorphic disk/sphere u gives rise to a JB holomorphic disk/sphere

π ◦ u. We use this fact in each of the following 3 cases:

Case 1: u is only constant in the horizontal direction.

In this case, the domain corresponds to a marked vertex of Γ. In the vertical direction, we

have that duF ◦ j = JTF duF since the horizontal differential vanishes. Thus, u is a JTF -

holomorphic curve in the monotone manifold Fp (with boundary conditions in Fp ∩ L in

the disk case). First, assume that u is simple. In this case, we use the standard argument

from [MS04] to get surjectivity for the restriction of the linearized operator in (4.13).
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Now suppose u is a disk component but not simple. Then by decomposition results due to

[Laz10], we have that u represents a sum of elements of H2(E,L). If dimF ≥ 3, we must

have that I(u) = mI(ũ), where ũ ◦ p = u for simple J-holomorphic ũ and holomorphic

covering map p. Replacing u with ũ in the configuration Γ gives a simple configuration

Γ̃, which can be made regular by the above paragraph. Since I(ũ) ≥ 2 and ι(Γ̃, x) ≥ 0,

we must have had that ι(Γ, x) ≥ 2, which is a contradiction. The case when dimF = 2 is

similar, see [Cha].

If u is a non-constant and nowhere injective sphere component attached to a configuration

Γ̃, then we must have that u = ũ ◦ p for a degree d > 1 branched covering map p. From

this, we get that 2c1(Au) = 2dc1(Aũ) > 0 since u is non-constant and F is monotone.

The configuration Γ with u replaced by ũ is regular by the above paragraph, and so it has

expected dimension. This gives us that Γ with the map u must be of index ≥ 2, which

goes against the assumption.

The above argument tells us that

DTF
u : W k,p(S, u∗TF, u∗TF ∩ TL)→ Λ0,1

j,JΓ
(S, u∗TF )k−1,p

is surjective. To see that

Du : W k,p(S, u∗TF, u∗TF ∩ TL)⊕W k,p(S, u∗H,u∗H ∩ TL)

→ Λ0,1
j,J,Γ(S, u∗TF ⊕H)k−1,p

is surjective, it suffices to check surjectivity after composing with the projection

Λ0,1
j,J,Γ(S, u∗TF ⊕H)k−1,p

dπ∗−−→ Λ0,1
j,JB

(S, π ◦ u∗TB)k−1,p

since Λ0,1
j,J,Γ(S, u∗TF )k−1,p = ker dπ∗. We have the following commutative diagram
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W k,p(S, u∗TE, u∗TL)

Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p

W k,p(S, π ◦ u∗TB, π ◦ u∗TLB) Λ0,1
j,JB

(S, π ◦ u∗TB)k−1,p

πk,p

Du

dπ∗

Dπ◦u

where Dπ◦u is surjective by a doubling argument for constant disks; see the argument in

theorem 15.

Case 2: u is only constant in the vertical direction.

To get surjectivity onto the first summand we leverage the upper triangular part of the

a.c. structure. First consider the case when u has no tangencies to the divisor. Following

the type of argument in [MS04], we prove that the image of the linearized map is dense

in Λ0,1(S, u∗TF )k−1,p. Suppose that the image is not dense. Since this is a Fredholm

operator, the image is closed. By the Hahn-Banach theorem, there is an non-zero element

η ∈ Λ0,1(S, u∗TF )k−1,q such that

∫
C

〈DTF
u ξ +K ◦ duH ◦ j, η〉 = 0 (4.14)

for every ξ ∈ W k,p(S, u∗TF ) and K with JFK +KJB = 0. Thus, we have the following

identities:

∫
C

〈DTF
u ξ, η〉 = 0 (4.15)∫

C

〈K ◦ duH ◦ j, η〉 = 0 (4.16)

It follows [MS04] that η is a solution the Cauchy-Riemann type equation

DTF∗
u η = 0

where DTF∗
u is the formal adjoint. Thus, η is of class (k − 1, q), and it follows that η 6= 0

on a dense subset of S.
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Lemma 6. Let 0 6= η ∈ Y and 0 6= ξ ∈ X with corresponding a.c. structures JY resp.

JX . Then there is a K with JYKJX = K such Kξ = η

Proof. This requires us to find a complex anti-linear K such that Kξ = η, which is

straightforward. See [MS04].

Pick a point p where duH 6= 0 6= η that is contained in the complement of U thin

Γ . Then

there is a K0 ∈ TJu(p)
J such that 〈K0 ◦ duH,p ◦ j, η(p)〉 > 0. From the perturbation data

JΓ : C → Jut(ω,D), we construct a section KΓ : C → TJΓJut such that KΓ(p, u(p)) = K0

and KΓ is supported in a sufficiently small neighborhood U ×V with u injective on U and

〈KΓ(x, u(x)) ◦ duH,x ◦ j, η(x)〉 > 0 whenever KΓ(x, u(x)) 6= 0. We must then have that∫
C

〈K ◦ duH ◦ j, η〉 > 0

which is a contradiction. Therefore, the linearized operator must be surjective onto the

TF part of the summand in this case.

When there are tangencies to the divisor, the above method in combination with Lemma

6.6 from [CM07] gives surjectivity.

To check surjectivity onto the compliment of Λ0,1(S, u∗TF )k−1,q, we again use the fact

that Λ0,1(S, u∗TF )k−1,q = ker dπ∗ and that the diagram from case 1 commutes. It is then

enough to check the surjectivity of

W k,p(S, π ◦ u∗TB, π ◦ u∗TLB)
Dπ◦u−−−→ Λ0,1

j,JB
(S, π ◦ u∗TB)k−1,p

wherefore π ◦ u is adapted to DB after forgetting constant and unstable surface compo-

nents, so surjectivity follows from the work of [CWa].

Case 3: duH , duF 6= 0

This is a combination of cases 1 and 2 by working with the splitting Λ0,1
j,J,Γ(S, u∗TF ⊕

H)k−1,p
∼= ker dπ∗ ⊕ Λ0,1

j,JB
(S, π ◦ u∗TB)k−1,p
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Surjectivity on the edges is a matter of a standard argument: The linearization of the

operator d
ds −X at a solution uT is

(V,XΓ) 7→ ∇sV −XΓuT

where (V,XΓ) ∈ u∗TTL × Vectlc(T ◦ × L,R). If x ∈ u∗TTL is in the cokernel this linearization,

then we have ∫
T

〈 d
ds
V, x〉 = 0∫

T

〈XΓuT , x〉 = 0

for all V ∈ u∗TTL and XΓ ∈ Vectlc(T ◦ × L,R). Thus, if x 6= 0, choose XΓ so that the pairing

〈XΓuT , v〉 is non-trivial and positive. This gives a contradiction.

By the implicit function theorem, this universal moduli space is a Cq Banach manifold.

The general theory of real Cauchy-Riemann operators [MS04] tells us that the linearization

Du+K ◦du◦ j is Fredholm, so has finite dimensional kernel. We now consider the restriction of

the projection Π : Bik,p,Γ,l → P lΓ(E,D) to the universal moduli space. The kernel and cokernel

of this projection are isomorphic the kernel and cokernel of the operator Du, respectively. Thus,

Π is a Fredholm operator with the same index as Du. Let Muniv,i
d be the component of the

universal space on which Π has Fredholm index d. By the Sard-Smale theorem, for q large

enough, the set of regular values of Π, P l,regΓ (E,D)d,i, is comeager. Let

P l,regΓ (E,D)d =
⋂
i

P l,regΓ (E,D)d,i

Then this is also a comeager set. An argument due to Taubes (see [MS04]) shows that the set

of smooth regular perturbation datum

PregΓ (E,D)d =
⋂
l

P l,regΓ (E,D)d

is also comeager. For PΓ = (JΓ, fΓ) in the set of smooth regular data, notate Mi
Γ(E,L,D, PΓ)

as the space of PΓ trajectories in the trivialization i, a Cq manifold of dimension d. By elliptic

regularity, every element of Mi
Γ(E,L,D, PΓ) is smooth. Using the transition maps for the
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universal curve of Γ, we get maps gij :Mi
Γ ∩M

j
Γ →Mi

Γ ∩M
j
Γ that serve as transition maps

for the space

MΓ(E,L,D, PΓ) =
⋃
i

Mi
Γ(E,L,D, PΓ)

Since each pieceMi
Γ(PΓ) and the moduli space of treed disks is Hausdorff and second countable

and the moduli space of treed disks is, it follows thatMΓ(PΓ) is Hausdorff and second countable.

The gluing argument that produces the tubular neighborhood ofM′Γ(E,L,D, P ) inMΓ(E,L,D, P )

is the same as in [CWb; CWa]. The matter of assigning compatible orientations is also similar.

4.4 Compactness

The main goal of this section is to establish the boundary strata of the compactified moduli

space MΓ(L,D, PΓ) as a product of moduli MΓ′(L,D, PΓ′) ×MΓ′′(L,D, PΓ′′) of sub types

when we have a coherent perturbation datum. We use the existence of a divisor DB and

an appropriate choice of perturbation datum to rule out sphere bubbling in the base, and then

complete the result with well known facts about compactness in monotone symplectic manifolds.

Definition 33. For a divisor D = π−1(DB), we say that an adapted (upper triangular) a.c.

structure J with basic lower block diagonal JDB is e-stabilized by D if JDB is e-stabilized by

DB as in definition 16:

(a) (Non-constant spheres) DB contains no non-constant JDB -holomorphic spheres of energy

less than e.

(b) (Sufficient intersections) each non-constant JDB -holomorphic sphere u : S2 → B resp.

JDB -holomorphic disk u : (D, ∂D) → (B,LB) with energy less than e has at least three
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three resp. one intersection points resp. point with the divisor DB . That is, u−1(DB)

has order at least three resp. one.

.

Definition 34. We say that D is of large enough degree for an adapted J if DB is for JDB as

in definition 17:

1. ([DB ]∧, α) ≥ 2(c1(B), α) + dim(B) + 1 for all α ∈ H2(B,Z) representing non-constant

JDB -holomorphic spheres.

2. ([DB ]∧, β) ≥ 1 for all β ∈ H2(B,LB ,Z) representing non-constant JDB -holomorphic disks.

A similar result holds as in Lemma 2 for a dense open set that is e stabilizing. Indeed,

suppose we have a basic a.c. structure JDB for which DB is of sufficiently large degree and

is θ-close to JB . There is an open, dense set J ∗τ (B,DB , JB , θ, e) ⊂ Jτ (B,DB , JB , θ) given by

Lemma 2. To get a collection of upper triangular e-stabilizing a.c. structures on E, we take the

inverse image of this set under the projection π : Jut,τ → JB,τ . We shall denote the (dense,

open) set obtained in this manner J ∗τ (E,D, JB , θ, e).

For a π-stable combinatorial type Γ, let Γ1, . . . ,Γl be the decomposition obtained by cutting

at boundary disk nodes of positive finite length. Let UΓ1
, . . . , UΓl be the corresponding decom-

position of the universal curve. In the case where LB is rational, any stable treed holomorphic

disk projected to B with domain of unmarked type Γi and transverse intersections with the

divisor has energy at most

n(Γi, k) :=
n(Γi)

C(k)
(4.17)

on the component UΓi , where n(Γi) is the number of markings on UΓi and C(k) is an increasing

linear function of k arising in the construction of DB in [CM07].

Definition 35. A perturbation datum PΓ(E,D) = (FΓ, JΓ) for a type of stable treed disk Γ is

stabilized by D if JΓ takes values in π−1J ∗τ (B,DB , JB , θ, n(Γi, k)) on UΓi
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If the sub types Γi are only obtained by deleting positive finite length nodes, then we must

have

ι(Γ, x) =

l∑
i=1

ι(Γi)

Moreover, if ι(Γ, x) ≤ 1, then regularity can be achieved for Γ by theorem 11, so each of

the sub types Γi are also regular and therefore of positive index. On the other hand, if the

configuration Γ has an edge of length 0, then we can obtain a configuration of index ι(Γ) + 1

by either deforming the node into a single disk or making the edge length non-zero by (tubular

neighborhood) part of theorem 11. Therefore, the limit of configurations that leave a length 0

edge unchanged will not contribute to the A∞ algebra, so we will not pay heed to this case.

Theorem 12. For any collection P = (PΓ) of coherent, regular, stabilized M -type pertur-

bation data and any uncrowded type Γ of expected dimension at most one, the moduli space

MΓ(L,D, PΓ) of π-adapted stable treed marked disks of type Γ is compact and the closure of

MΓ(L,D, PΓ) only contains configurations with horizontally non-constant disk bubbles.

Proof. We check sequential compactness. Let Γ be a connected, uncrowded, π-stable combi-

natorial type, and let uν : Cν → E be a sequence of JΓ-holomorphic maps. As in the above

discussion, decompose Γ into regular sub types Γ1, . . . ,Γl of index 0 or 1 that contain only

marked or unmarked vertices.

Case 1: Γi is an unmarked partial sub type.

Since we are on an unmarked subtype, the π-adapted Floer trajectories are actually

adapted to D in the sense of [CWa]. The sequence uν : Cνi → E has a subsequence

that converges in the Gromov topology to u : C ′i → E for a possibly unstable curve class

[C ′i] of combinatorial type Γ∞i . Since π(uν) 7→ π(u), the fact that u is π-adapted follows

from [CWa]. We include the argument here for completeness’ sake.

Since JΓ = JD ∈ J ∗τ (B,DB , JB , θ, n(Γi, k)) over D, DB contains no π∗JD-holomorphic

spheres from π(u). Thus, the (non-constant spheres) property.
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Any unstable disk component uj in the limit would be JD-holomorphic. Unless it is con-

stant, π ◦ uj would be JDB -holomorphic and have at least one intersection with DB by

the stabilizing property of DB . Thus, unstable disk components can only occur in the

vertical direction.

Similarly, suppose we have a non-constant unstable sphere component uj . Then π ◦ uj

has energy at most n(Γi, k) since it is the limit of types with this energy bound. Since

JΓ = JD on π ◦ uj , there must be at least three intersection points with DB on this

component, unless π ◦uj is constant. Thus, unstable sphere components only occur in the

vertical direction.

Therefore, for an unmarked sub-type, the only unstable component that we can pick up is

constant in the horizontal direction (a marked vertex). We argue that this cannot occur:

If we have a vertical sphere bubble v from an unmarked disk, then it must have positive

energy and hence positive Chern number by the monotone property of the fiber. The lim-

iting configuration is regular by appropriate choice of coherent perturbation data, and by

the coherence condition we also have regularity for the configuration without the sphere

bubble, so both are of non-negative expected dimension. This tells us that a vertical

sphere bubble is a codimension 2 phenomenon. However, the index of Γi is at most 1, and

since the index of the limit is at most the limit of the indices, we arrive at a contradiction.

We would like to rule out vertical disk bubbles, which the rest of case 1 is devoted to.

Suppose that in the limit, we get a vertical disk bubble u1 : C1 → (F,LF ) off of an un-

marked sub type u2 : C2 → (E,L). Let us first consider the case that u2 is non-constant:

The index of the limiting configuration Γ∞i is either 0 or 1, and so u lies in a smooth

moduli space by 11. The minimal Maslov index for a JF holomorphic disk with boundary

in LF is 2 by assumption, so the map u2 lies in a moduli space of type Γ̂∞i that is smooth

of expected dimension by theorem 11 since ι(Γ̃∞i ) ≤ ι(Γ∞i ) ≤ 1. However, this tells us

that u2 is a codimension 2 configuration, which is a contradiction.

Next, suppose that u1 is constant on surface components (so a Morse flow tree). First
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suppose that the total limiting configuration has only one input (so u1 has two inputs).

Then there are algebraic cancellations in the output of µ1 given by considering the dif-

fering orientations on the moduli spaces corresponding to the different orderings of the

marked points on u1.

In the case where we have more than one input, we see that u1 must be equal to a critical

point x0. The disk bubble u2 must be part of a non-constant JF -holomorphic configuration

u2 with a single output to x0. By monotonicity of LF and the assumption on the minimal

Maslov number, I(u2) ≥ 2. Moreover, u2 is regular by the coherence assumptions on

the perturbation datum. In order for the total configuration to be isolated, we must

have that that dimW+
f (x0) = 0. Therefore, all of the inputs of the original sequence of

configurations are x0. Since the Maslov index is preserved under taking limits, this shows

that the original combinatorial type has an expected dimension of at least 2: This is a

contradiction.

Case 2: Γi is a marked sub type.

By construction, the pseudo-gradient X restricted to any critical fiber is Xg, a pseudo-

gradient for g. Thus, for a connected marked sub type mapping to a critical fiber, we are

considering Morse-Floer trajectories on a monotone Lagrangian LFb ⊂ Fb. Away from

the critical fibers, the flow lines intersect the fibers transversely, so the only marked con-

figurations contained in non-critical fibers are nodal-disks with zero length edges.

The index formula that gives us that the dimension of the open strata for an admissible

set of critical points (x0, . . . , xn), after modding out by isomorphism, is:

ι(Γ, x) :=dimW+
X (x0)−

n∑
i=1

dimW+
X (xi) +

n∑
i=1

I(ui) + n− 2

− |Edge0
<∞(Γ)| − |Edge∞(Γ)− (n+ 1)|/2− 2|Edge<∞,s(Γ)|

where I(ui) is either the Maslov index of ui or 2c(Ai) with Ai as the spherical homology
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class of ui. For a fixed energy, Gromov compactness gives us a subsequence that Gromov-

Floer converges to a limiting treed holomorphic trajectory u of the same energy, that is

again contained in a single fiber. The total Maslov/Chern class
∑
i I(ui) is preserved

under limits (see [Oh93]), and this configuration is of expected dimension ≤ 1. Thus it

can be made regular by the transversality argument above. First assume that the limiting

configuration Γ contains a non-constant sphere bubble. Because of the spherical node

and the fact that c1(Ai) = λE(Ai), this configuration is of codimension at least 2, giving

negative expected dimension. This is a contradiction.

The case against a vertical disk bubble is the same as at the end of Case 1.

4.5 The case of a Kähler fiber

When the fibers are Kähler, we prove a version of the Oka principle to lift holomorphic curves

in the base to the total space. The Kähler structure need not be regular, so we describe a

correspondence between disks/spheres for a fiber wise integrable JI and disks for a small per-

turbation of JI . Later, this correspondence will help us compute the associated superpotential

for a fibered Lagrangian and subsequently some Floer cohomology groups.

We set blanket assumptions for this section. Let G be a compact lie group and GC its

complexification.

Definition 36. 1. A symplectic Kähler fibration is a symplectic Mori fibration

(F, ωF )→ (E,ωK)→ (B,ωB)

with structure group G such that (F, ωF ) is a Hamiltonian G space. We assume that the

action of G extends to an action of GC for which there exists a GC-invariant integrable

ωF -compatible complex structure JG.
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2. A fibered Lagrangian in this situation is a sub-bundle LF → L → LB of Lagrangians

such that LB is rational and LF is monotone G-invariant. We assume that the transition

functions are C̆ech co-cycles in G, so that E has an associated principle G-bundle.

An example of a symplectic Kähler fibration a Hirzebruch surface, with structure group S1.

The flag manifold 1.1 is not a good example, as the structure group can only be reduced to

SU(2), so there is no invariant Lagrangian LF ⊂ P1. However, we will see that results of this

section can still be applied, due to the fact that SU(2) is simply connected.

On the other hand, any bundle of the form P(O⊕Om)→ P2 is an example of a symplectic

Kähler fibration, for which one can find fibered Lagrangians.

Let TF ⊕H be a symplectic connection on (E,ωK), and denote JG as an almost complex

structure that tames ωK of the form

JG =

JG 0

0 JB


where the block decomposition is with respect to the decomposition TF ⊕H, and JB is part of

a coherent, domain dependent perturbation datum for (B,LB , DB). Denote

JΓ =

JF K

0 JB


as part of a domain-dependent coherent perturbation datum for E given in theorem 9.

Let u : D → B be a JB holomorphic map. The pullback of the fiberwise Kähler form a

induces a connection TF ⊕HD on u∗E, where HD = TF⊥u
∗a such that the projection u∗π is

holomorphic with respect to the structure JG 0

0 j

 (4.18)
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on u∗E and j on D.

Let Pu∗E be the associated principle G-bundle to u∗E. Since parallel transport on u∗E is

G valued, HD defines a connection on Pu∗E . We also denote this connection HD.

The space of diffeomorphisms of Pu∗E covering the identity form an infinite dimensional Lie

group, called the group of gauge transformations G(Pu∗E). Let φ ∈ G(Pu∗E), and let gp be the

unique element in G such that φ(p) = p · gp. We require that φ preserve the G-structure of

Pu∗E : φ(p · g) = φ(p) · g. From this we get

p · g · gp·g = p · gp · g

so that gp·g = g−1gpg. Thus G(Pu∗E) ∼= C∞(Pu∗E , G)G, where the superscript denotes the

equivariance f(p · g) = g−1f(p)g. When the domain of u is a disk, we have that Pu∗E ∼= D×G

as a smooth G-bundle, so the group of gauge transformations becomes C∞(D,G).

In a similar manner, we denote the complexified gauge group as GC := C∞(D,GC).

Given a G ∈ GC(Pu∗E) we can obtain a different connection via G(HD). Thus, the complex

gauge transformations act on the space of connections of Pu∗E . Moreover, we can consider

holomorphic gauge transformations, that we define as elements in Hol(D,GC).

We will expose the following result:

Theorem 13. There is a holomorphic gauge transformation G ∈ Hol(D,GC) that is G-valued

along ∂D such that G(HD) is a flat connection on Pu∗E. Thus, u∗E ∼= D × F as a (j, JG)

holomorphic fiber bundle via an isomorphism that preserves Lagrangian boundary conditions.

We will see that this theorem is a corollary of a result by Donaldson, which is an h-principle

for complex manifolds with boundary:

Theorem 14. [Don92] Let V → Z be a holomorphic vector bundle over a complex manifold
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with boundary. Let f be a metric over the boundary. Then there is a unique Hermitian metric

h satisfying:

1) h|∂Z = f

2) iΛFh = 0

Item (2) is known as the Hermitian Yang-Mills equation. Fh is the curvature of the con-

nection associated to h, and Λ : Map(1,1) → Ω0 is the Kähler component in the decomposition

Ω(1,1) ⊗ V ∼= Ω
(1,1)
0 ⊗ V + Ω0ω ⊗ V .

When Z is complex dimension one, the Hermitian Yang-Mills equation says that the Chern

connection induced by h is flat. Moreover, when Z = (D, ∂D), the existence of a flat connection

allows trivialization via parallel transport.

Sketch of proof for 14. We study the evolution equation

h−1 ∂h

∂t
= −2iΛFh, h|∂Z = f (4.19)

starting with some arbitrary smooth extension h0 of f . The key facts to establish a limiting

solution to this heat flow are short/long time existence, the observation that the highest order

term of −2iΛFh is the laplacian, and the following lemma:

Lemma 7. [Don92]Suppose θ ≥ 0 is a sub-solution to the heat equation on Z × [0,∞), e.g.

∂θ

∂t
+ ∆θ ≤ 0. If θ ≡ 0 on ∂Z for all time, then θ decays exponentially

sup θ(z, t) ≤ Ce−µt

where µ depends only on Z, and C on the initial value of θ.

One then observes that for a solution to 4.19, the quantity ε = ‖iΛFh‖2h is non-negative

sub-solution to the homogeneous heat flow.

On the other hand, consider the bundle of metrics H → V , with transition functions given by

some reduction of structure group on V and metric . The quantity iΛFh is the time derivative
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of h in this bundle, and the quantity
√
ε is the velocity of the family ht(z). By the above

exponential bound, ht(z) has finite length as a path in the fiber Hz. By completeness of Hz,

there is a limiting metric in each fiber. Then by [Don92], there is a subsequence of hn that

converges in C∞ to h∞ that by (4.19) is a solution to the Yang-Mills problem.

Proof of 13 following 14. Since JG is GC invariant and G acts by symplectomorphisms on F ,

we get an induced representation ρ : G→ Symp(V, ωF )∩GL(V, JG) for some symplectic vector

space V . We form the associated vector bundle V := u∗E ×ρ V that has an integrable complex

structure and Hermitian metric arising from (ωF , JG) := h0. Applying Donaldson’s result 13

we get a flat Hermitian metric h∞ that agrees with h0 on ∂D. The following is immediate:

1. There is a complex gauge transformation G ∈ Hol(D,GC) so that G∗h0 = h∞.

2. By GC invariance, G∗JG = JG, so JG is compatible with h∞.

3. Since h0 = h∞ on ∂D, so G is constant there.

4. (V, h∞, JG) has a flat Chern connection, so it can be trivialized by parallel transport.

This induces a further isomorphism

Φ : V
∼=−→ D × V (4.20)

which corresponds to an element GΦ ∈ C∞(D,G) since the connection is G-valued.

Applying the complex gauge transformation GΦ◦G to u∗E we have an isomorphism of (j, JG)

complex manifolds

u∗E
∼=−→ (D × F, ∂D × LF ) (4.21)

that preserves the sub-bundle (u|∂D)∗L by the G-invariance of LF .

Corollary 1. For a symplectic Kähler fibration and any JG-holomorphic disk u : (D, ∂D) →

(E,L), the bundle (π ◦ u)∗E is holomorphically trivial. Thus u can be written as π ◦ u × ũ :
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(D, ∂D)→ (B,LB)× (F,LF ), where ũ is a JG-holomorphic section of the bundle π ◦ u∗E with

boundary values in LF .

Remark 3. In the case of Flag(C3), the structure group is SU(2). Since SU(2) is simply

connected, the boundary values of the complex gauge transformation GΦ ◦G can be extended to

a gauge transformation GR ∈ C∞(D,G). The resulting bundle G−1
R ◦GΦ ◦G has a flat connection

(since C∞(D,G) preserves curvature), so it is trivial. The result of Theorem 13 and the above

corollary continue to hold in this situation.

4.5.1 Existence of regular lifts

Given a regular JB-holomorphic disk, we show that we can find a regular lift using the results

of the previous section.

It follows from theorem 13 that any section ũ : (D, ∂D) → D × (F,LF ) will induce a JG-

holomorphic section of the bundle û : D → u∗E with LF boundary values. In particular, we can

choose a p ∈ LF and take the constant section ũp(z) = (z, p). We will prove a theorem below

that such a section is regular in the sense that the linearized ∂ is surjective. However, we would

like to characterize these ”vertically constant” sections based on their covariant derivatives. To

this end, let H be a connection on E → B, and for Y ∈ TB let Φt,Y be the associated flow of

the horizontal lift of Y to H.

Definition 37. The covariant derivative of a section s with respect to Y and H is

∇HY s :=
d

dt
|0Φ−t,Y (sΦt,Y )

This is going to be a section of the bundle s∗TF → B. It is a general fact that ∇Y s(p) only

depends on the value of Y at the particular point p, see [DK90] for instance.

For a smooth map u : D → B, we can define a covariant derivative on u∗E by ∇u∗HY X :=

u∗∇du(Y )X. We note again that the dependence in Y is only at a single point z ∈ D, so we
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need not define du(Y ) everywhere.

If G is an element of the complex gauge group of E, then the covariant derivative of G(H)

is given by ∇G(H)s = G∇H(G−1s) [DK90]. Therefore, if s is an H covariant constant section in

the sense that

∇Hs ≡ 0

then Gs is a G(H) covariant constant section. This shows that the following definition is

independent of complex gauge transformation:

Definition 38. A JG-holomorphic map u is vertically constant with respect to H if it induces

a covariant-constant section of π ◦ u∗E.

When π ◦ u∗E ∼= D × F and TD is the trivial connection, we have that πTF ◦ du = ∇TDu,

so the covariant derivative agrees with the derivative of a section in the vertical direction.

The uniqueness statement in Donaldson’s result gives us a uniqueness of vertically constant

lifts:

Lemma 8. Let u : D → (B,LB) be a JB-holomorphic disk with a distinguished boundary value

u(x0). Given a point p ∈ π−1(u(x0)) ∩ LF there is a unique vertically constant

JG 0

0 JB

-

holomorphic lift û with û(x0) = p

Proof. For u∗E ∼= D × F the statement is clear. Therefore, it suffices to show that the gauge

transformation in theorem 13 is unique.

Let û : D → D × F be the section û(z) = (z, p) and let G be a trivializing (complex) gauge

transformation from theorem 13, given by first applying the unique complex gauge transforma-

tion GC from 14 that is the identity on the boundary, followed by the real gauge transformation

GpR that trivializes the bundle via parallel transport from the point p. Then Gû is a vertically

constant section of u∗E with Gû(x0) = p. If Gp
′

R is a trivializing gauge transformation corre-

sponding to parallel transport from a point p′, then there is an element g ∈ G so that GR = g ·G′R
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since the connection is flat. Either g fixes p ∈ LF or it does not. Since the gauge transforma-

tions commute with the G action, we have that û is unique up to stabG(p), but any choice of

coset representative will give the same section since û is constant.

Theorem 15. Let u : C → B be a regular JB-holomorphic type with one output u(x0) = q ∈ LB,

no sphere components, and no broken edges. Then for any p ∈ π−1(q)∩LF , there is a unique lift

û : C → E with û(x0) = p that is vertically constant on disk components and JG-holomorphic

Proof. First, we construct a lift by matching a chain of boundary conditions, and then we prove

transversality. Let u0 be the restriction of u to the disk component D0 closest to the output,

let E01 denote the edge between D0 and some adjacent component D1, and let u1 denote the

restriction of u to D1 that meets E01 at x2. By lemma 8, there is a unique vertically constant

lift û0 with û0(x0) = p. Let x1 be the boundary point corresponding to the output on D0. The

projection of the flow of X starting at û(x1) agrees with the flow of Xb, so flowing X for time

`(E01) lands at a point p1 ∈ π−1(u(x2)). Take the unique lift of û1 of u1 with û(x2) = p1, and

continue in this fashion until a lift of u is constructed on every disk component. This gives a

JG-holomorphic Floer trajectory û : C → E with boundary in L.

The linearized operator at this particular û is actually surjective, and this is due to the facts

that we are using a block diagonal almost complex structure and that û is vertically constant.

Indeed, let us focus on a single disk component. The range splits in the expression 4.12 as

Dû(K) : W k,p(D, û∗TF, û∗∂STF ∩ TL)⊕W k,p(D, û∗H, û∗∂SH ∩ TL)

→ Λ0,1
j,JG

(D, û∗TF )k−1,p ⊕ Λ0,1
j,JB

(D,u∗H)k−1,p

so it suffices to show surjectivity onto each summand; We achieve surjectivity onto Λ0,1
j,JG

(S, u∗TF )k−1,p

by the usual doubling trick for constant maps (outlined below), and surjectivity onto the second

summand by the argument for theorem 11 following [CWa].
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To show surjectivity onto the first summand, it is enough to consider the properties of

Dũ(K) : W k,p(D, ũ∗TF, ũ∗∂STF ∩ TL) → Λ0,1
j,JG

(S, ũ∗TF ). Since ũ is constant, it extends to a

map ũ : P1 → F . The map

Λ0,1
j,JG

(P1, TF )∞ → Λ0,1
j,JG

(D,TF )∞

is surjective by a Schwartz reflection principle, so for the smooth case it suffices to show that

the linearized operator is surjective onto Λ0,1
j,JG

(P1, TF )∞. Since JG is integrable, Dũ is pre-

cisely the Dolbeault operator for this vector bundle, and the cokernel is the Dolbeault co-

homology group H0,1(P1, ũ∗TF ). On the other hand, ũ∗TF splits as a direct sum of holo-

morphic line bundles with respect to JG, all of which are trivial, so it suffices to consider

H0,1(P1,C) ∼= H1,0(P1,C∨) ∼= C. But the linearized operator at ũ is not identically 0, so it

must be surjective. Thus Dũ is surjective when we consider smooth η. In the (k − 1, p) case,

we use the usual elliptic bootstrapping argument of the adjoint operator D∨ũ .

Contained in the the proof of this theorem is the fact that we can achieve transversality for

vertically constant JG-holomorphic disks:

Corollary 2. Let u : D → (B,LB) be a JB-holomorphic disk at which the linearized ∂̄JB

operator is surjective. Then the linearized ∂̄JG operator is surjective at any vertically constant

JG-holomorphic lift of u.

Remark 4. By the uniqueness content in Donaldson’s result 14, the vertically constant lift that

we get is unique once we prescribe a constant boundary condition in LF . We will refer to this

unique lift as the Donaldson lift through p ∈ LF .

For completeness, we record the following result: Let JΓ =

JF K

0 JB

 be a regular (domain-

dependent) almost complex structure from theorem 11, and uΓ : S → E a regular configuration

of index 0 without sphere components. We would like to see that π ◦ uΓ is regular and thus lies
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in a moduli of expected dimension.

Lemma 9. Let uΓ : UΓ → E be a regular JΓ-holomorphic configuration for smooth JΓ. Then

π ◦ uΓ is a regular JB-holomorphic configuration.

Proof. The fact that π ◦ u is JB holomorphic is clear. Furthermore, by the choice of pseudo-

gradient perturbation data and the discussion in section 4.2.1, we have that π ◦ u is a Morse

flow on edges. It remains to check transversality.

For uΓ|D =: u restricted to a single disk or sphere component, we need to show that the

linearized operator

Dπ◦u : W k,p(S, π ◦ u∗TB, π ◦ u∗TLB)→ Λ0,1
j,JB

(S, π ◦ u∗TB)k−1,p

is surjective for k > 2/p with p ≥ 2. By the regularity assumption on u we have that

Du : W k,p(S, u∗TF, u∗∂STF ∩ TL)⊕W k,p(S, u∗H,u∗∂SH ∩ TL)

→ Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p

is surjective, where H is the symplectic connection. The projection dπ : u∗TF ⊕H → u∗H is

equivariant with respect to the almost complex structures (JΓ, JB), and so it induces a map

dπ∗ : Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p → Λ0,1
j,JΓ

(S, u∗H)k−1,p

via η 7→ dπ ◦ η. To see that this projection is surjective, we use the isomorphism

ΦJΓ,JG : Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p → Λ0,1
j,JG

(S, u∗TF ⊕H)k−1,p

η 7→ 1

2
(η + JG ◦ η ◦ j)

Wherefore Λ0,1
j,JG

(S, u∗TF ⊕H)k−1,p now splits as

Λ0,1
j,JG

(S, u∗TF )k−1,p ⊕ Λ0,1
j,JG

(S, u∗H)k−1,p

∼= Λ0,1
j,JG

(S, u∗TF )k−1,p ⊕ Λ0,1
j,JG

(S, π ◦ u∗TB)k−1,p
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One checks that the following diagram commutes:

Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p

Λ0,1
j,JG

(S, u∗TF )k−1,p ⊕ Λ0,1
j,JG

(S, π ◦ u∗TB)k−1,p

Λ0,1
j,JB

(S, π ◦ u∗TB)k−1,p

ΦJΓ,J
G

dπ∗

π2

It commutes due to the fact that both are spaces of anti-holomorphic forms with JB in the

lower diagonal block. Thus, we see that dπ is surjective. To see that Dπ◦u is surjective, we just

need to check that the next diagram commutes:

W k,p(S, u∗TE, u∗TL)

Λ0,1
j,JΓ

(S, u∗TF ⊕H)k−1,p

W k,p(S, π ◦ u∗TB, π ◦ u∗TLB) Λ0,1
j,JB

(S, π ◦ u∗TB)k−1,p

πk,p

Du

dπ∗

Dπ◦u

4.5.2 Perturbation of vertically constant lifts

In lieu of the regularity statement of theorem 15 and corollary 2, it may seem that we can just

compute vertically constant J-holomorphic disks with JG. However, a perturbation datum (PΓ)

containing JG may not satisfy the coherence axioms 31, causing compactness to fail. Therefore,

we want to make sure that the JG-holomorphic disks can be related to some JΓ-holomorphic

disks where JΓ is part of a coherent datum. We accomplish this relation by using perturbations

that are contained in a small enough neighborhood of JG.

Definition 39. For a combinatorial type Γ with ι(Γ, x̄) ≤ 1, and two regular almost complex

structures Ji i = 0, 1, define a regular smooth homotopy Jt ∈ J regΓ (J0, J1) ⊂ JΓ(J0, J1) as
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Jt : [0, 1]→ J∞ut,τ

J0 = J0

J1 = J1

such that the linearized operator

Du,Jt +
∂

∂t
Jt ◦ du ◦ j

is surjective at each t ∈ [0, 1] and u ∈MΓ(L, Jt).

We use the following adaption of a theorem by McDuff-Salamon:

Theorem 16. [MS04] For a combinatorial type Γ with ι(Γ, x̄) ≤ 1 and a regular JB, let

Ji, i = 0, 1 be regular upper triangular almost complex structures for type (Γ, x̄) such that

ι(Γ, x̄) ≤ 1, and let JΓ,JB (J0, J1) be the Banach manifold of smooth upper triangular homo-

topies that are constantly equal to JB in the lower diagonal block. Then there is a Baire set of

smooth homotopies J regΓ,JB
(J0, J1) ⊂ JΓ,JB (J0, J1) such that if Jt ∈ J regΓ,JB

(J0, J1), then there is

a parameterized moduli space WΓ,JB (Jt) that is a smooth oriented manifold with boundary

∂WΓ(Jt) =MΓ(L, J0)− tMΓ(L, J1)

so that these two moduli spaces are oriented (compact) cobordant.

Proof. The proof is the same as an argument of theorem 11. The projection Muniv
Γ (L, Jt) →

JΓ,JB (J0, J1) has the same Fredholm index and cokernel dimension as the linearized ∂̄ operator,

and the points where the projection is surjective are precisely the regular homotopies. One then

uses the Sard-Smale theorem to find a Baire set where the projection is submersive.

Let 0 < ε < ε0 < 1. The above theorem tells us that MΓ(L, J0) and MΓ(L, Jε) compact

cobordant, and thus are diffeomorphic for ε << 1. Indeed, any regular homotopy induces a

cobordism W∨Γ (Jt)→ [0, 1] that is a submersion at 0. Since the property of being a submersion
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is an open condition, this must be a submersion in a neighborhood [0, ε).

Since our choice of smooth homotopy can lie in a Baire set, we may assume that there is some

ε ∈ [0, ε0) such that Jε is regular for (Γ, y0). Indeed, let us identify an open neighborhood Bε(J0)

of J0 with an open neighborhood of 0 in TJ0
J∞ut,τ . Then the image of the map J regΓ,JB

(J0, J1)×

[0, ε0)→ TJ0
J∞ut,τ given by

(Jt, s) 7→ Js

forms a Baire set of a neighborhood of J0. The intersection of this Baire set with the set of

regular perturbation data J regΓ (E,L) ∩Bε(J0) must also be Baire.

With this in mind, let us only consider perturbations JΓ in theorem 11 such that JF resp.

K are C∞ close to JG resp. 0.

For a connected combinatorial type Γ for B, let us restrict to the case when ι(Γ, x0) = 0 with

a single output, and such that Γ has no sphere components or breakings at critical points. Let

u ∈MΓ(B,LB , JB , x0) with domain C, and for simplicity let us assume that the evaluation at

the marked point z0 on the boundary of C has evu(z0) = x0 . For any lift y0 of x0, Donaldson’s

heat flow gives us a unique vertically constant lift v of u with evv(z0) = y0. For the purposes

of this section, we repeat the index formula:

0 = ι(Γ, x0) =

m∑
i=1

I(ui)− 2− |Edge0
<∞(Γ)| − |Edge∞,s(Γ)|

−
∑

e∈Edge∞,s

m(e)

where |Edge0
<∞(Γ)| resp. |Edge∞,s(Γ)| is the number of disk nodes resp. number of interior

markings that intersect the divisor. Let (π∗Γ, y0) be the combinatorial type of the Donaldson

lift through y0. This contains the following information:

1. The combinatorial type of the underlying metric tree

T = (Vert(Γ),Edge(Γ))
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2. The labelings D : Vert(Γ)→ π2(E,L) of the relative homotopy classes

3. The enumeration m : Edge∞,s(Γ)→ Z≥0

Let JB be a regular, domain dependent perturbation data for the type Γ in (B,LB) as in

theorem 9, and let

JK,JF =

JF K

0 JB


reference a taming almost complex structure on (E, a + Nπ∗ωB) for which K is also domain

dependent. Then, by theorems 1112, there is a Baire set of these for which the moduli space

Mπ∗Γ(L, JK,JF , y0)

is smooth and compact of dimension 0.

Crucially, we want to see JG is regular for configurations of type π∗Γ, so that we can use

theorem 16 to construct a parameterized moduli space.

Lemma 10. JG is a regular almost complex structure for the moduli space Mπ∗Γ(L, JG, y0).

Proof. By corollary 2, the linearized operator is surjective at any vertically constant lift, so we

show that u ∈Mπ∗Γ(L, JG, y0) is necessarily vertically constant.

Suppose that u is not vertically constant. The combinatorial type π∗Γ has the same geomet-

ric realization as that of the regular configuration Γ, so it has no sphere components. Without

lack of generality, let us assume that C = D is a single disk component. Once we trivialize

π◦u∗E ∼= D×F following theorem 13, we get an induced JG-holomorphic map v : D → (F,LF )

with
∫
C
u∗ωF > 0. By the monotonicity of LF ,

λ

∫
D

u∗ωF = µ(v∗TF, v∗TLF ) > 0

where µ(·, ·) is the boundary Maslov index. It follows from the axioms of the Maslov index

that µ(u∗TE, u∗TL) = µ(v∗TF, v∗TLF ) + µ(π ◦ u∗TB, π ◦ u∗TLB) > µ(π ◦ u∗TB, π ◦ u∗TLB).
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But for a Donaldson lift w of π ◦ u, we have µ(w∗TE,w∗TL) = µ(π ◦ u∗TB, π ◦ u∗TLF ), so u

is not in the same relative homology class as a Donaldson lift. This is a contradiction on the

homology class [π∗Γ].

We will need a corollary of this argument later:

Corollary 3. Let µ(·, ·) be the boundary Maslov index, and u a JG-holomorphic disk with

Lagrangian boundary. Then µ(u∗TF, u∗TLF ) ≥ 0 and µ(u∗TF, u∗TLF ) = 0 if and only if u is

vertically constant.

Proof. Take v as in the previous proof. Since the gauge transformation G is an isomorphism

that preserves LF , we have that µ(u∗TF, u∗TLF ) = µ(v∗TF, v∗TLF ) ≥ 0.

For the second statement, we have that v ≡ 0 iff µ(v∗TF, v∗TLF ) = 0 by monotonicity.

Since the property of vertically constant is independent of gauge, we have that u is vertically

constant iff v ≡ 0.

For a regular upper triangular datum close to JG that is part of coherent system P = (PΓ)Γ

from theorem 9, we apply theorem 16 to pick a homotopy Jt ∈ J regΓ,JB
(JG, JK,JF ) that gives us

a parameterized moduli space of dimension 1:

Wπ∗Γ(Jt)

∂WΓ(Jt) =Mπ∗Γ(E,L, JG)− tMπ∗Γ(E,L, JK,JF )

The map p :Wπ∗Γ → [0, 1], (u, Jt) 7→ t has a surjective derivative at p−1(0) by the definition of

cobordism, so it must be a submersion in a neighborhood p−1([0, ε0)), which shows that p−1(0)

and p−1(ε) are diffeomorphic for ε < ε0. Thus in theorem 9, we choose perturbation coherent

data for type π∗Γ that lies along some regular homotopy and is close enough to JG.

With this, we can finally define a lifting operator :
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Definition 40. Choose a combinatorial type (Γ, x0) for (B,LB) of expected dimension 0, and

let π∗Γ be the unique combinatorial type of a Donaldson lift through y0. For a coherent, regular,

upper triangular perturbation datum (PΓ)Γ that lies in a small enough neighborhood of JG for

any type (π∗Γ, y0), and a choice of regular homotopy Jt ∈ J regΓ,JB
(JG, Jπ∗Γ), the lifting operator

is defined as the map between moduli spaces

LΓ
Jt,y0

:MΓ(B,LB , JB , x0)→Mπ∗Γ(E,L, Jπ∗Γ, y0) (4.22)

as the map that factors through

MΓ(B,LB , JB , x0)→Mπ∗Γ(E,L, JG, y0)→Mπ∗Γ(E,L, Jπ∗Γ, y0)

as first taking the unique JG-holomorphic Donaldson lift û with output y0, and then applying

the isotopy (û, JG) 7→ (ûε, Jε) along Wπ∗Γ(Jt) with Jε = Jπ∗Γ

The lifting operator does depend on our choice of homotopy, but only up to a permutation

of the points in the resulting moduli spaceMπ∗Γ(E,L, Jπ∗Γ, y0). The discussion in this section

shows that the operator is well-defined.

We will also reference the following

Definition 41. The unperturbed lifting operator LΓ
JG,y0

is the map

MΓ(B,LB , JB , x0)→Mπ∗Γ(E,L, JG, y0)

from 4.22

We will use both of these operators to compute the leading order potential in section 5.2.
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Chapter 5

Floer invariants for symplectic fibrations

5.1 Leray-Serre for Floer Cohomology

We derive a spectral sequence that converges to the Floer cohomology of L a la Leray-Serre.

Our coefficient ring is a modification of the universal Novikov ring in two variables:

Λ2 :=

{∑
i,j

cijq
ρirηj |cij ∈ C, ρi ≥ 0, (1− ε)ρi + ηj ≥ 0

#{cij 6= 0, ρi + ηj ≤ N} <∞
}

for a fixed 0 < ε < 1 that we will specify in later lemma 11. Choose a brane structure on

the Lagrangian L (as in the appendix) and let Holρ(u) be the evaluation of u with respect to a

chosen rank one local system ρ : π1(L)→ (Λ2)×.

The symplectic form on E is the weak coupling form ωK = a + Kπ∗ωB for K >> 1. We

define the vertical symplectic area of a J-holomorphic configuration u as

ev(u) =

∫
C

u∗a

This is a topological invariant, although it may not be positive due to horizontal contribu-

tions. To avoid mentioning ”K” too many times, denote e(π ◦ u) =
∫
C
K(π ◦ u)∗ωB .

Label the critical points in L by xij , where j enumerates the critical points yj such that

π(xij) = yj , and define the Floer chain complex of a fibered Lagrangian as:

CF (L,Λ2) :=
⊕

xij∈Crit(f)

Λ2〈xij〉
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For a taming, coherent, stabilizing (as in the appendix) perturbation datum P = (XΓ, JΓ)Γ,

define the A∞ maps as:

µn(x1, . . . , xn) = ∑
xij ,[u]∈MΓ(L,D,x)0

(−1)♦(σ(u)!)−1Holρ(u)rev(u)qe(π◦u)ε(u)xij (5.1)

where ♦ =
∑n
i=1 i|xi| and σ(u) is the number of interior markings on Γu. ε(u) is ±1 depending

on the orientation of the moduli space that contains [u] 11. By the following lemma, this sum

is well defined for appropriate choice of ε

Lemma 11. µn(x1, . . . , xn) ∈ CF (L,Λ2) for ε small enough.

Proof. The transversality 11 and compactness 12 theorems tells us that for a fixed energy E,

there are finitely many J-holomorphic configurations with
∫
C
u∗ωK ≤ e. Thus, the output

satisfies the criterion #{i, j : cij 6= 0, e(π ◦ u) + ev(u) ≤ N} <∞.

For ε << 1, the form ωK(1−ε) is also a non-degenerate symplectic form. If Preg(ωK) is the

Baire set of perturbation data that tames ωK from theorems 1112, we have that

PregΓ (ωK(1−ε)) ⊂ PregΓ (ωK)

as an open subset by the discussion in subsection 4.2.2 (specifically, inequality 4.3). Therefore,

one can either chose perturbation from a slightly smaller set, or take K1 so that K1(1− ε) ≥ K

and consider the A∞ maps for L in the symplectic manifold (E,ωK1).

In the next section, we will prove that these maps actually satisfy the A∞-algebra axioms.

Let us filter the Floer chain complex by q degree: Fkq CF (L) is generated by critical points

with coefficients from Λ2 of minimal degree ≥ kλ in the q variable for some fixed λ that we will

specify later.

For this section, let us assume that we have a solution b to the Maurer-Cartan equation.

In section 5.2, we will provide sufficient conditions on LF and LB for which we can find some
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natural solution to this. Let h2 : π2(E,L) → H2(E,L) be the relative Hurewicz morphism.

From the definition of a rational Lagrangian, the image of the energies [ωB ] ◦ h2(π2(B,LB)) is

discrete. This allows us to use a smaller Novikov ring:

Λ2
d :=

{∑
i,j

cijq
iρrηj |cij ∈ C, i ∈ Z≥0 ≥ 0, (1− ε)iρ+ ηj ≥ 0

#{i, j : cij 6= 0, iρ+ ηj ≤ N} <∞
}

Where ρ ≥ 0 is the energy quantization for (B,KωB). Let us pick a solution b to the

Maurer-Cartan equation for the A∞ algebra CF (L,Λ2). Then µ1
b respects the filtration by q.

Let Λr be the subring of Λ2

Λr :=

{∑
i

cir
ηi |ci ∈ C, ηj ∈ R≥0, #{i : ci 6= 0, ηj ≤ N} <∞

}

and similarly for Λq. Define Λt as the analogous ring

Λt :=

{∑
i

cit
ηi |ci ∈ C, ηj ∈ R≥0, #{i : ci 6= 0, ηj ≤ N} <∞

}

for a formal variable t. Define the Floer cohomology of L with respect to this rank one local

system, Maurer-Cartan solution, brane structure, and coherent perturbation datum to be

HF ∗(L,Λ2) := H∗(µ1
b)

In section 5.3, we will show that this is independent of choices and is an obstruction to dis-

placement by constructing a natural map to HF (L,Λ(t)).

Filtration by q-degree with step size less than ρ leads us to the following result:

Theorem 17. Let F → E → B be a symplectic Mori fibration along which we have a fibration

of Lagrangians LF → L → LB with LB rational, and a divisor D = π−1(DB) for a stabilizing

divisor DB of large enough degree in the base. Choose a regular, coherent, stabilizing, convergent,

M -type perturbation datum (PΓ)Γ and a solution b to the Maurer-Cartan equation. Then there is
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a spectral sequence E∗s that converges to HF ∗(L,Λ2) whose second page is the Floer cohomology

of the family of LF over LB. The latter is computed by a spectral sequence with second page

Ẽ∗2 = H∗(LB ,HF(LF ,Λr))⊗ gr(FqΛq) (5.2)

where the coefficients come from a system that assigns the module HF (LFp ,Λr) to each critical

fiber.

Proof. We pick the filtration step λ > 0 so that 0 < λ < ρ, or arbirarily if ρ = 0. This induces

a the spectral sequence E∗s with the differential δ = µ1
b . We will first show that the criteria

from The Complete Convergence Theorem from [Wei94] section 5.5 are satisfied. These include

showing that the filtration is exhaustive and complete, and showing that the spectral sequence

is regular. We suppress some notation by setting CF (L) := CF (L,Λ2).

The filtration is exhaustive if CF (L,Λ2) = ∪k≥0Fkq CF (L), which is clear in this situation.

The filtration is complete if

lim
←−

CF (L)/Fkq CF (L) = CF (L)

For simplicity, let us first assume that the rank of CF (L) over Λ2 is one, or equivalently we

show that the filtration on Λ2 is complete. Here, the inverse system is given by the projection

πkl : CF (L)/Fkq CF (L)→ CF (L)/F lqCF (L)

∑
ρi≤k

fi(r)q
ρi 7→

∑
ρi≤l

fi(r)q
ρi

by forgetting the terms of q-degree ≥ l, where fi(r) =
∑
j cijr

ηj ∈ Λ(r) with ηj ≥ −(1 − ε)ρi

and limi→∞ ρi =∞. The inverse limit is constructed as

lim
←−

CF (L)/Fkq CF (L) ={(
fi(q, r)

)
∈
∞∏
i=0

CF (L)/Fkq CF (L) : πjk(fk(q, r)) = fj(q, r) ∀j ≤ k
}
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where each fk(q, r) =
∑
ρi≤k fi(r)q

ρi and (1− ε)ρi + ηj ≥ 0. Surely we have an inclusion

CF (L) ⊂ lim
←−

CF (L)/Fkq CF (L)

given by collecting all of the degree ρi terms:

∑
i,j

cijq
ρirηi =

∑
i

fi(r)q
ρi 7→

( ∑
ρi≤k

fi(r)q
ρi
)

The reverse map is given by ∑
ρi≤k

fi(r)q
ρi

 7→ ∞∑
i=0

fi(r)q
ρi

and we want to know that this converges in Λ2. In other words, if fi(r) =
∑∞
j=0 cijr

ηj , we

want to know that # {cij 6= 0 : ρi + ηj ≤ N} < ∞. Given that ηj ≥ −(1 − ε)ρi, we have that

ρi + ηj ≥ ερi, which goes to ∞ as i→∞. It follows that the sum converges.

When rank(CF (L)) ≥ 2 use the fact that the filtration and inverse system projections

commute with the direct sum decomposition, so that the inverse limit is the direct sum of the

inverse limits. I.e.

lim
←−

CF (L)/Fkq CF (L) ∼= lim
←−

n⊕
i=1

Λ2/Fkq Λ2〈xi〉

∼=
n⊕
i=1

lim
←−

Λ2/Fkq Λ2〈xi〉

Thus, the filtration is complete.

Next, we nee to show that the spectral sequence is regular, i.e. that δs = 0 for s >> 1. We

imitate the idea behind theorem 6.3.28 in [FOOO09]. Essentially, the proposition we need is

the following

Proposition 1. There exists a c > 0 such that

δ(CF (L)) ∩ Fkq CF (L) ⊂ δ(Fk−cq CF (L))

that doesn’t depend on k.
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Proof of proposition. We find a standard generating set, which is inspired from the notion of a

standard basis in [Definition 6.3.1, [FOOO09]]. Let {vi}mi=1 be a generating set for for ∆ over

Λ2 (for example, given by δ(xij)). Denote F (vi) = k as the lowest power of q appearing in vi,

and let σ(vi) ∈ CF (L,Λ(r)) the be the coefficient of the lowest power of q. For example, the

element v = qρ
∑
j≥0 c1jr

ηjyj has F (v) = ρ and σ(v) =
∑
j≥0 c1jr

ηjyj .

Let M be a finitely generated Λ2-module and suppose S = {v1, . . . , vk} is a generating set

for M . S is said to be a standard generating set for M if (after reordering) there exists a

sequence (ρj) ∈ (0,∞]k so that

F (vi) ≤ F (vi+1)

rρ
j

σ(vj) /∈ Λr · {σ(vi)}j−1
i=1

Lemma 12. A standard generating set for finitely generated M exists.

Proof. Let {v1, . . . , vk} be a generating set ordered so that F (vi) ≤ F (vi+1). Denote F (vj) = ρj

and denote

Sj = Λr · {σ(v1), . . . , σ(vj)}.

If k = 1, then there is nothing to show. If σ(vj) /∈ Sj−1, then there is also nothing to show.

Assume that rρ
j ∈ Sj−1 for

0 ≤ ρj ≤ (1− ε)min1≤i≤j−1F (vj)− F (vi).

Then there are elements aij ∈ Λr so that

rρ
j

σ(vj) =

j−1∑
i=1

aijσ(vi)

Hence,

v1
j = vj −

j−1∑
i=1

aijr
ρjqρj−ρivi

is such that F (v1
j ) > F (vj) and

Λ2 · {v1, . . . , vj} = Λ2 · {v1, . . . , vj−1, v
1
j }
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We then replace vj with v1
j , reorder {v1

j , vj+1, . . . , vk} by increasing q-valuation, and continue.

If it happens that rρ
j
iσ(vij) ∈ Sli for all i and some non-decreasing sequence li and decreasing ρji ,

then vij ∈ Λ2{v1, . . . , v̂j , . . . , vk} for all i and we can disregard vj from the original generating

set.

By applying a change of coordinates to CF (L), the existence of a standard generating set

for δ(CF (L)) essentially says that the matrix for δ is square upper triangular with columns

that obey the q filtration. Roughly, we can start with the generating set δ(xi) and reorder as

decribed by the algorithm in the proof of Lemma 12. Notably, if (si(j)) is the matrix for δ in

these coordinates, we have that si(j) = 0 for i > j and for each j:

miniF (si(j−1)) ≤ miniF (si(j)).

Moreover, any element in the range is expressible as a linear combination of the columns

v =
∑

aivi,

and the expression is unique provided the relative difference in r-valuation of σ(ai) is not too

large. For such a generating set, we can set

c = max F (si(j)).

Let

Zks =
{
x ∈ FkCF (L) | µ1

b(x) ∈ Fk+s−1CF (L)
}

+ Fk+1CF (L) (5.3)

Bks =
{
µ1
b(Fk−s+2CF (L)) ∩ FkCF (L)

}
+ Fk+1CF (L) (5.4)

Eks = Zks /B
k
s (5.5)

and let r > r0 with r0 − 1 − c ≥ 1 and χ ∈ Zkr . Then µ1
b(χ) ∈ CF (L) ∩ Fk+r−1CF (L),

so by our proposition, µ1
b(χ) ∈ µ1

b(Fk+r−1−cCF (L)) ⊂ µ1
b(Fk+1CF (L)) since k + r − 1 − c >



85

k + r0 − 1− c > k + 1. The differential induces a map

µ1
b : Zkr → Fk+r−1CF (L)→ ek+r−1

r

that we must show is 0. Indeed, Bk+r−1 ⊃ µ1
b(Fk+1), so µ1

b(χ) = 0 ∈ Ek+r−1
r .

Now, we apply the complete convergence theorem from [Wei94]. Since the filtration of this

cohomology spectral sequence is bounded below, it converges to H∗(µ1
b).

Next, we calculate the second page. By definition, we have

E∗1 ∼= CF (L,C)⊗C gr∗(FΛ2)

where

gr∗(FΛ2) =
⊕
n∈Z≥0

Fnq Λ2/Fn+1
q Λ2

is the associated graded ring of Λ2. The differential δ1 on E∗1 is induced from the Floer differ-

ential on CF (L), and counts pearly Morse trajectories whose pearls project to constants.

To compute E∗2 via a spectral sequence, we follow Leray-Serre for Morse cohomology of a

fibration. Let FCF (L,Λ2) be the filtration of (CF (L,Λ2), δ1) by degree of π(xi) as a critical

point of b. This is a well-defined filtration of cell-complexes, since any Morse-Floer configuration

that is horizontally constant on disk component projects to a Morse flow line between critical

points in the base. The latter only exists when the output critical point has index more than

the index of the input.

The base index filtration is bounded, so by the classical convergence theorem from [Wei94],

we get a spectral sequence Ẽr that converges to E2.

It remains to compute the second page of the spectral sequence Ẽr:

1. The 0th page is the associated graded complex with differential d0 that counts pearly

Morse trajectories between critical points of the same base index whose pearls project to
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constants. By the construction of the pseudo-gradient, flow lines project to flow lines.

Since there are no flow lines in LB between critical points of the same index, d0 counts

pearly Morse trajectories contained exclusively in critical fibers. Therefore,

Ẽ1 =
⊕

y∈Crit(b)

HF (LFy ,Λr)

2. d1 counts trajectories u on E2, for which we know that π ◦ u is constant on surface

components. Moreover, u must form a trajectory between critical point classes [xout] and

[xin] such that W+
b (π(xout)) −W+

b (π(xin)) is at most 1 (hence, exactly one when d1 is

induced on ker(d0)/im(d0)). Following our convention, c[xout] is a summand of d1[xin].

To compute Ẽ2 we need to understand exactly what trajectories are in item 2. We show that

these must be zero energy Morse flows in L by virtue that they lie in a 0-dimensional moduli

space and project to Morse flow lines between relative index 1 critical points.

For a contradiction, suppose that [u] ∈ MΓ(L,D, xout, xin) has a non-trivial pearl with

image in π−1(p) which is counted by d1 on Ẽ1. Let u|S denote the restriction of a representative

to the pearl component, with u(yout) ∈ W+
X (xout) and u(yin) ∈ W−X (xin). Since the almost

complex structure is the same in each fiber, u|S is a regular JF -holomorphic configuration. Say

u(yout) ∈ W+
Xg

(zout) and u(yin) ∈ W−Xg (zout) in LF . Let (ΓF , zout, zin) be the combinatorial

type of u|S . Since the total configuration u is isolated, we must have that ι(ΓF , zout, zin) = 0.

Flowing X starting at zout gives an critical point x′out in the same fiber as xout. Since index

of a critical point is an orientable diffeomorphism-invariant, dimW+
Xg

(zout) = dimW+
Xg

(x′out).

Similarly, there is a critical point x′in for Xg (and X) in the same fiber as xin. We have

dimW+
X (xout)− dimW+

X (xin) =

dimW+
Xb

(π(xout)) + dimW+
Xg

(x′out)− dimW+
Xb

(π(xin))− dimW+
Xg

(x′in)

But since we are on Ẽ1, we know that

dimW+
Xb

(π(xout))−W+
Xb

(π(xin)) = 1
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which tells us that ι(Γ, xout, xin) = ι(ΓF , zout, zin)) + 1. This is a contradiction on the the

definition of the Floer differential.

Remark 5. As an alternative to using propostion 1, one can simply use the existance of such

a c′ > 0 for the total energy filtration, given by [Proposition 6.3.9 [FOOO09]]. If such a c′ is

sharpened by a holomorphic configuration u, then by a computation in the next subsection:

εK

∫
C

u∗ωB ≤
∫
C

u∗(a+KωB) ≤ c′

where the left hand side holds for any holomorphic u and K >> ε. Thus, one can take c =
c′

ε
.

5.1.1 The spectral sequence in the setting of the usual Novikov ring

In order to provide a link to the invariants in the literature, we define the A∞ algebra of a

fibered Lagrangian with coefficients in the universal Novikov ring Λt.

Definition 42. For e(u) =
∫
S
u∗ωK , define the one variable A∞-maps as

νn(x1, . . . , xn) = ∑
xij ,[u]∈MΓ(L,D,x)0

(−1)♦(σ(u)!)−1Holρ(u)te(u)ε(u)xij (5.6)

In theorem 19, we will prove that the A∞-maps 5.1 satisfy the axioms of an A∞-algebra

composition, and the proof is the same for 5.6.

Choose a regular, coherent, convergent perturbation datum (PΓ) = (JΓ, FΓ) (which can be

the same choice as in theorem 17). Assume that L is weakly unobstructed, i.e. there is a

solution to the Maurer-Cartan equation b so that

(ν1
b )2 = 0



88

(see appendix 7) we define the Floer cohomology of L with coefficients in Λt to be

HF (L,Λt) := H(CF (L,Λt), ν
1
b )

Following [Oh], we can compute the cohomology via a spectral sequence, whose first page is

the Morse cohomology: By energy quantization, there is a minimal number e0 so that for any

(PΓ)-holomorphic configuration u with boundary in L, we have

e0 ≤ e(u)

Therefore, let us filter the complex CF (L,Λt) =: CF (L) by t-degree:

FtCF (L,Λt) : CF (L) ⊃ tρCF (L) ⊃ t2ρCF (L) ⊃ . . . (5.7)

for ρ = e0. By positivity of energy, the differential ν1
b preservers this filtration. Denote the

induced spectral sequence Gs. The convergence of this spectral sequence is another application

of the Complete Convergence Theorem [Wei94] as in the proof of theorem 17. However, this

case is simpler, as exhaustiveness and completeness follow easily, and regularity follows from

lemma 6.3.2 in [FOOO09]. We have that

G∞ ∼= gr∗(FtHF (L,Λt)) (5.8)

Details can be found in [FOOO09].

Altering the filtration step

The choice of ρ above was arranged so that

G2
∼= gr∗(FtHMorse(L,Λt))

However, we are free to choose ρ so that the second page provides a different type of information:

Theorem 18. Let F → E → B, LF → L→ LB, a divisor D = π−1(DB), and (PΓ)Γ be as in

theorem 17, and b a solution to the Maurer-Cartan equation for νn. Then there is a spectral
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sequence B∗s that converges to HF ∗(L,Λt) whose second page is the Floer cohomology of the

family of LF over LB. The latter is computed by a spectral sequence with second page

B̃∗2 = H∗(LB ,HF(LF ,Λt))⊗ gr(FtΛt) (5.9)

Sketch of proof. For a particular Morse function g on LF , let Σmax,F,g be an upper bound on

the energy of disks appearing in the Floer differential for (F,LF ). This can be finite due to the

fact that (F,LF ) is a monotone pair that is also compact.

For ε << 1 and K large enough, the coupling form a+ (1− ε)Kπ∗ωB is positive definite, so

we get the inequality

a+Kπ∗ωB ≥ εKπ∗ωB

If ΣB is the energy quantization for B, choose K large enough so that

εKΣB > Σmax,F

and choose ρ so that

εKΣB > ρ > Σmax,F

Considering the spectral sequence induced by the filtration 5.7 with step size ρ, the second

page is the cohomology of the complex

(CF (L,Λt), δ0) (5.10)

where δ0 counts pearly Morse trajectories that have 0 energy when projected to B. Filtration of

5.10 by base Morse index induces another spectral sequence that converges to the cohomology

as in theorem 17.

5.2 A∞-algebras and disk potentials

The disk potential, introduced in the physics literature and mathematically in [FOOO09], is a

powerful tool that is used to compute the Lagrangian Floer cohomology in toric manifolds. In
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this section, we prove that we can associate an A∞ algebra to a fibered Lagrangian and derive

a relationship between the potential for the base and that of the total space.

For a symplectic Mori fibration and a fibered Lagrangian L, define its A∞-algebra as the

family

A(L) = (CF (L,Λ2), µn)

with

µn(x1, . . . , xn) = ∑
x0,[u]∈MΓ(L,D,x)0

(−1)♦(σ(u)!)−1HolL(u)rev(u)qe(π◦u)ε(u)x0 (5.11)

This sum is well defined by our transversality and compactness results for fibrations. We

will prove, up to signs/orientations, that these products satisfy the A∞ axioms

0 =
∑
n,m≥0
n+m≤d

(−1)n+
∑n
i=1 |ai|µd−m+1(a1, . . . , an,

µm(an+1, . . . , an+m), an+m+1, . . . , ad)

Theorem 19. For a coherent, regular, stabilizing M -type perturbation system, the products in

5.11 satisfy the axioms of a A∞-algebra.

Proof. For bounded energy, theorems 11 and 12 say that the compactification of the 1-dimensional

component of the moduli space M(L,D, x, e(u) ≤ k)1 is a compact 1-manifold with boundary.

Thus, with proper orientations:

0 =
∑

Γ∈Mm,n

∑
[u]∈∂MΓ(L,D,x,e(u)≤k)1

1

m!
HolL(u)rev(u)qe(π◦u)ε(u) (5.12)

where we divide by m! to signify that there are m! different orderings of interior markings for

a given configuration. More importantly, each boundary combinatorial type is obtained by

gluing two types Γ1, Γ2 along a broken edge that is a root for Γ1 resp. leaf for Γ2. Since our
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perturbation is coherent with respect to cutting an edge, we have that

∂MΓ(L,D, x)1
∼=

⋃
y,Γ1,Γ2

MΓ2(L,D, x0, . . . , xi−1, y, xi+1+k . . . xn)0

×MΓ1
(L,D, y, xi, . . . , xi+k)0

Thus, for each boundary [u] = [u1]× [u2], we have that

ε(u) = ε(u1)ε(u2)

HolL(u) = HolL(u1)HolL(u2)

ev(u) = ev(u1) + ev(u2)

e(π ◦ u) = e(π ◦ u1) + e(π ◦ u2)

Let mi = σ(ui). Then for each [u1]× [u2] of combinatorial type Γ1×Γ2, there are m1!m2! ways

to order the interior markings. These observations give us the formula

0 =
∑

y,Γ1,Γ2

∑
[u1]∈MΓ1 (L,D,y,xi,...,xi+k)0

[u2]∈MΓ2 (L,D,x0,...,xi−1,y,xi+1+k,...xn)0

1

m1!m2!

HolL(u1)HolL(u2)rev(u1)rev(u2)qe(π◦u1)qe(π◦u2)ε(u1)ε(u2) (5.13)

This is the nth A∞ relation up to signs.

5.2.1 The disk potential

The 0th order multiplication map is of particular interest. In the literature this is some-

times referred to as the superpotential or the disk potential. One can often compute the non-

displaceability of a Lagrangian by simply finding critical points of µ0. We prove a formula that

expresses the leading order part of µ0 as a sum of terms coming from the base and fiber.

Definition 43. The second order potential for a symplectic Mori fibration is

WL
0 (ρ) =

∑
u∈Ix

x∈crit(f)

ε(ui)(m!)−1Holρ(u)qe(π◦u)rev(u)x
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where for each x

Ix =

{
u ∈M(E,L, x)0 |e(π ◦ u) = 0

}
∪
{
u |e(u) = min

v∈M(E,L,x)0

{e(v) : e(π ◦ v) 6= 0}
}

This potential captures any isolated holomorphic disks counted by µ0
L that are contained

in a single fiber, along with the holomorphic disks of minimal energy in the total space that

have non-zero base energy. By theorem 12, the minimal energies are obtained for L, since there

are only finitely many isolated holomorphic configurations bounded by a finite energy. In our

framework, it seems unreasonable to expect much information from the leading order potential

as defined in the literature [FOOO]. For instance, we can take K in the weak coupling form to

be so large that the only terms of minimal energy are contained in a single fiber. Using this

same line of reasoning, let xF be the unique maximum of g|LF . Since LF is monotone and has

minimal Maslov number 2, we have that

µ0
LF (θ) =

∑
u∈M(F,LF ,xF )

Holθ(u)rκxF

where the sum is finite and κ is a multiple of 2 corresponding to the energy of Maslov index 2

disks. It follows that the only terms with q = 0 in µ0 appear as coefficients of xM , the unique

maximum of f .

As in the proof of theorem 18, let ε << 1 be such that ωK(1−ε) is also tamed by (JΓ), and

take K large enough so that

εKΣB > κ

where ΣB is the energy quantization constant for (B,LB , ωB). Then the terms in 43 with

e(π ◦ u) 6= 0 are precisely the terms of 2nd lowest degree appearing in µ0
L as a coefficient of the

maximum xM and the terms of lowest degree for any other critical point.

Define the leading order potential for LB to be the minimal energy terms appearing in µ0
LB

:
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Definition 44. For generating critical points x ∈ CF (LB ,Λq), the leading order potential for

a Lagrangian in a rational symplectic manifold as in section 3 is

WLB
0 (θ) =

∑
x, u∈M(B,LB ,x)0

e(u)=min{e(v): v∈M(B,LB ,x)0}

(σ(u)!)−1Holθ(u)ε(u)qe(u)x (5.14)

The main theorem of this section is that we can express the second order potential as the

sum of the leading order potentials for the base and fiber. In order to get a representation

for π1(LB) from one for π1(L), we use the lifting operator 4.22 from section 4.5. Given a

representation ρ ∈ Hom(π1(L), (Λ2)×), define a representation

u 7→ Holρ(LΓ
Jt,y0

u)

for elements in u ∈Mπ∗Γ(B,LB , JB , x).

Enumerate the critical fibers Fi, and let yi be the unique maximum of g|LFi in the fiber

above xi. Using the lifting operator from section 4.5, we perform a transformation on the

leading order base potential:

Definition 45. The lifted leading order potential for LF → L→ LB is

LJt◦W
LB
0 (ρ) = ∑

i, u∈M(B,LB ,xi)0

e(u)=min{e(v): v∈M(B,LB ,xi)0}

(σ(u)!)−1Holρ(LΓ
yiu)ε(LΓ

yiu)qe(u)rev(LΓu)yi

that takes each configuration u ∈M(B,LB , xi) and computes its Donaldson lift through yi.

We remark that there may be cancellations between configurations in 5.14 that may not occur

in the lifted potential. We interpret the lifted potential as a formula in its own right and not

as something dependent on WLB
0 (θ) in an algebraic sense.

By theorem 16 and the discussion thereafter, the choice of regular homotopy Jt induces a

bijection on moduli spaces Mπ∗Γ(E,L, yi, Ji)0 for i = 0, 1. Therefore it does not matter which

regular homotopy we pick, or if we pick one at all so long as we know that there exists one.
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If xM is the unique maximum for b on LB , let ixM∗ : CM(LF ,C)→ CM(L,C) be the map in-

duced from the inclusion ixM : LF → L of LF as the fiber of xM . Let ι∗ : Hom(π1(L), (Λ2)×)→

Hom(π1(LF ), (Λ2)×) be the map on representations induced from ιxM∗.

Theorem 20. Let E be a compact symplectic Kähler fibration. There is an open neighborhood

of UG of JG resp. UK of 0 such that if

JΓ
ut =

JΓ
F KΓ

0 JΓ
B


is choice of regular, coherent, convergent, smooth perturbation datum with KΓ ∈ UK and JΓ

B ∈

UG, then there is a homotopy Jt with J0 = JG and J1 = JΓ
ut that is regular for vertically

constant types Γ such that the second order potential for (E,L) decomposes into a sum of the

lifted leading order potential and the full potential for the fiber:

WL
0 (ρ) = L ◦WLB

0 (ρ) + ixM∗ ◦ µ0
LF ,ι∗ρ (5.15)

First, we state a sequence of lemmas to make the main proof go smoothly. The primary focus

will be on configurations which are horizontally non-constant and of minimal energy. Let Γ be

an unmarked, π-stable combinatorial type of a non-zero energy JΓ-holomorphic configuration

u : CΓ → (E,L) through W+
X (y) appearing in definition 43, and π∗Γ the combinatorial type

obtained by changing the labeling of homology classes to π∗[vi]. Since Γ is unmarked, we have

that π∗[vi] = 0 if and only if [vi] = 0: in the notation of subsection 4.2.3 , Υ(π∗Γ) = π∗Γ.

Proposition 2. ι(π∗Γ, π(y)) ≤ ι(Γ, y).

Proof of proposition. The quantity ι is topological, so this follows from the fact that π is sur-

jective and that all of the input data (divisor, pseudo-gradient, almost complex structure) are

compatible with π. Specifically, flow lines of X project to flow lines of Xb

Lemma 13. For an interior marked point z0 ∈ C for u, the degree of tangency of π ◦ u at z0

is the same as that of u at z0.
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Proof. This essentially follows from the definition of tangency degree as the order of vanishing

along the normal bundle to the divisor. Let u(z) = (uD(z), uND (z)) in coordinates centered

at u(z0) and adapted to D ⊕ ND where ND is the normal bundle to D. Further, choose a

neighborhood of z0 in which u is JD-holomorphic. The degree of tangency of u at z0 is defined

as

mu(z0) = j : min
j≥0

d(j+1)
z0 uND 6= 0

Since π(ND) = NDB and π ◦ u = (π ◦ uD(z), uND (z)) in coordinates adapted to D and π, it is

clear that mπ◦u(z0) = mu(z0)

It follows from this discussion and corollary 3 that ι(π∗Γ, π(x)) ≤ ι(Γ, x).

The one caveat of the above proposition is that ι(π∗Γ, x) could be negative if there any

unstable disk components Di such that π ◦ u|Di is constant. This does not happen if Γ is an

unmarked type.

Proof of theorem. The outline of the proof is as follows: First, we pick a configuration corre-

sponding to a term on the left hand side of 5.15, and show that it is either horizontally constant,

or that it must be a lift of a configuration through x to a configuration through the unique max-

imum in Lx. Then, we show that we can realize a term in 45 as a term on the left hand side of

5.15.

Suppose that we have a JΓ
B-holomorphic configuration u with one output x in the base

of index 0 and minimal non-zero energy e(u) = ex. We first record a few things about the

combinatorial type of u

1. Γ does not have any sphere components once an appropriate divisor and perturbation

datum have been chosen.
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2. The index formula is

ι(Γ, x) = dimW+
Xb

(x) +

m∑
i=1

I(ui)− 2− |Edge0
<∞(Γ)|

− |Edge∞,s(Γ)| −
∑

e∈Edge∞,s

m(e) = 0

where the ui are the individual disk components for u;

We can also assume that Γ is an unbroken trajectory, by the definition of the moduli space

and the nature of the bubbling phenomenon. We apply the lifting operator 4.22 to obtain a

regular, Jπ
∗Γ

ut -holomorphic configuration LJt,yu : C → E through any generator y ∈ CF (Lx, g)

of the Morse chain complex of the fiber Lx with Morse function g. This configuration is verti-

cally constant before perturbation, and since perturbation is a homotopy equivalence of maps,

we have that I(u) = I(LJt,yu). Moreover, the lifting operation preserves divisor intersection

multiplicity by the argument in 13 , and perturbing in the direction of JΓ can be arranged so

that the lower diagonal block of Jt is constantly JΓ
B : Thus π ◦ LJt,yu = u. It follows from

these observations that the lifted and perturbed configuration will be index 0 precisely when

dimW+
X (y) = dimW+

Xb
(x), which occurs only when y is the unique maximum of g|LFx . Hence,

a configuration in the lifted leading order potential is realized as a configuration listed on the

left hand side of 5.15.

Going in the opposite direction, suppose that u is an index 0 configuration into (E,L) with

some output y ∈ CF (L,Λ2) corresponding to a term appearing on the left hand side of 5.15.

By the property that e(u) is minimal, we have that either u has no marked components or is

comprised entirely of marked components. Let us take the latter (easier) case first: u defines

an index 0 JF -holomorphic configuration in the fiber π−1(x) with output i∗y ∈ CF (Lx, g) in

the Morse chain complex of g|Lx . Using u, we can construct an equivalent JF -holomorphic

configuration uw in the critical fiber π−1(w) with output φ(y), where φ is an appropriate sym-

plectomorphism. Any configuration uw must have positive index by regularity, so it must be
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that x is the unique maximum on LB . Hence, the configuration ux = u is realized in the po-

tential for the fiber on the right hand side of 5.15.

Finally, take the case that the combinatorial type Γ of u consists purely of unmarked com-

ponents. Projecting to the base yields a regular configuration by lemma 9 whose combinatorial

type is (Υ(π∗Γ), π(y)) in the notation of subsection 4.2.3 . Since Γ has no marked components,

we have that Υ(π∗Γ) = π∗Γ. By proposition 5.2.1 and the regularity/stability of π ◦u, it follows

that ι(π∗Γ, π(y)) = 0.

Through a sequence of lemmas, we deduce the possibility for y and u, after which the theo-

rem will follow:

Proposition 3. y must be the unique maximum of g|Lx , and u is in the image of the lifting

operator.

Proof. We derive a lower bound on the index of the configuration u, and show that it must be

> 0 unless y is the unique maximum on Lx.

Let LJG,y be the unperturbed lifting operator 41 through y ∈ Lx. We compare the in-

dices of the configurations uG := LJG,y(π ◦ u) and u. The index of uG is 0 precisely when

W+
X (y) = W+

Xb
(π(y)), and the same holds true for the perturbed lifting operator LJt,y (so

precisely when y is the maximum of g|Lx). Let Jt be a regular homotopy (as in section 4.5

) such that J0 = JG and J1 = JΓ
ut, along which the lower diagonal block (Jt)B = JB is

constant. The parameterized moduli space WΓ(E,L, {Jt}0<t≤1, y) for t 6= 0 is cut out trans-

versely for small perturbation data by theorem 16 . Thus, we can pick a sequence of maps in

ui ∈ WΓ(E,L, {Jt}0<t≤1, y) that are Jδi-holomorphic such that π ◦ui = π ◦u and Jδi is regular

for ui. By Gromov compactness, the limit v is a JG-holomorphic configuration, possibly with
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sphere components. Since π ◦ ui = π ◦ u, we must have that π ◦ v = π ◦ u, and any sphere/disk

bubbles are contained in the fibers.

On one hand, uG is vertically constant, so µ(uG∗TF, uG∗TLF ) = 0 by corollary 3. On the

other hand, we have the following: µ(u∗TF, u∗TLF ) = µ(v∗TF, v∗TLF ) since v is homotopic

to u, µ(v∗TF, v∗TLF ) ≥ 0 by corollary 3, and mu(zi) = mLπ◦u(zi) by lemma 13 . Therefore,

0 ≤ ι(uG, y) = ι(u, y) − µ(u∗TF, u∗TLF ) + µ(uG∗TF, uG∗TLF ), so ι(uG, w) ≤ ι(u,w). This

inequality tells us that the only index 0 configuration that is possible is when y is the unique

maximum of g|Lx and v is vertically constant. Therefore, v must be in the image of the

unperturbed lifting operator and u is in the image of the lifting operator.

This concludes the proof of theorem 20.

An important consequence of this formula lies in the role of unique maximum xM ∈

CF (L,Λ2). This element often behaves like a unit in the A∞ algebra for L, (see 7[CWa]),

and generally it can be shown that if µ0
L is a multiple of xM , then (µ1

L)2 = 0 and the Floer

cohomology of L is defined. The following is an immediate corollary of 20:

Corollary 4. If µ0
LB ,θ

is a multiple of the unique maximum of b on LB, then µ0
L,ρ is a multiple

of the unique maximum of an appropriate Morse function g + π∗b on L.

To actually see that xM is a strict unit for A(L), we require more delicate assumptions on

the coherence axioms for perturbation data, and the introduction of weighted edges. This is

done in detail in [CWa].

Aside from units, the main point of potential is to allow us to calculate Floer cohomology

in simple way. The general theorem that one looks to prove is: if we have a critical point

of this potential at a particular representation, then the differential at the higher pages of the

Morse-to-Floer spectral sequence vanishes and the Floer cohomology is isomorphic to the Morse
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cohomology. This is detailed in the next subsection.

5.2.2 The weak divisor equation

Moduli spaces defined via divisorial perturbations satisfy a weak form of the divisor equation

from Gromov-Witten theory. With this principle one can use the cup product to count the

number of holomorphic disks in a certain moduli, which allows us to get a relation between µ1

and the derivative of µ0.

First, we want to know that the exponential function makes sense in Λ2: In order for the

exponential sum to converge, we have to introduce a natural topology as in [Fuk].

Definition 46. Let

xk =
∑
i,j

ckijq
ρirηj ∈ Λ2, x =

∑
i,j

cijq
ρirηj

be in Λ2. We say that xk converges to x if each ckij converges to cij in C

Lemma 14. For p ∈ Λ2, the sequence
∑N
n=0

pn

n! converges in the above topology.

Proof. Define

exp(p) =

∞∑
n=0

pn

n!

If this is well defined in Λ2, then it is clear that this is the limit of the sequence. Let

p =
∑
i,j≥0 cijq

ρirηj ∈ Λ2 with ρ0 and η0 such that ρ0 + η0 = mini,j ρi + ηj . Then exp(p) =

1 +
∑∞
n=0 c

n
00q

nρ0rnη0/n! + higher degree terms. From ρ0 + η0 ≥ 0 and (1 − ε)ρ0 + η0 ≥ 0, we

have that ρ0 +η0 = 0 if and only if ρ0 = 0 and η0 = 0, so we take two cases. First let us assume

that ρ0 + η0 > 0. Then nρ0 + nη0 → ∞, so there are finitely many non-zero coefficient below

any bounded degree.

If p = c00 + higher degree terms with c00 6= 0, then

exp(p) = 1 +

∞∑
n=1

cn00/n! +

∞∑
n=1

cn−1
00 qρ1rη1/n! + · · ·
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It is also clear that exp(p) ∈ Λ2 in this case.

It follows that we can endow the space of representations Hom(π1(L),Λ2×) ∼= H1(L,Λ2×)

with the structure of a smooth manifold using exp. Indeed, the exponential allows us to form

the tensor product

H1(L,Λ2)⊗Λ2 Λ2×

If we assume that H1(L,Λ2) is free, then H1(L,Λ2) ⊗Λ2 Λ2× ∼= H1(L,Λ2×), and we have a

surjective map given by H1(L,Λ2) → H1(L,Λ2) ⊗Λ2 Λ2× that is locally an isomorphism. By

the universal coefficients and Hurewicz homomorphism, H1(L,Λ2×) ∼= Hom(H1(L),Λ2×) ∼=

Hom(π1(L),Λ2×). This gives us a tangent space at each point, and it only remains to check

that the transition maps are smooth.

From the above discussion, both µ0
L and the second order potential define smooth maps

H1(L,Λ2×)→ CF (L,Λ2). Let γ =
∑k
i=1 x

k be a Morse 1-cocycle and let W+(γ) =
⋃
W+
f (xk)

be the homology class of the union of the stable manifolds of the critical points appearing in

the expression of γ (so this is a codimension 1 cycle). We have the following straightforward

computation from [CWa]:

µ1
ρ(γ) =

∑
u∈M(L,D,y)0

Holρ(u)[∂u,W+(γ)]ε(u)qe(π◦u)rev(u)y

= ∂γµ
0
ρ

Where the perturbations for the moduli spaceM(L,D, y)0 are given by pullback under the map

that forgets an incoming edge. Thus if ρ is a critical point for µ0
ρ, then the Floer differential

vanishes on Morse 1-cocycles.

In practice, it is much easier to search for critical points of ν0 5.16. As in the discussion in

section 5.3 of this chapter, we have a ring homomorphism

� : Λ2 → Λt
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given by ∑
i,j≥0

cijq
αirηj 7→

∑
i,j≥0

cijt
αi+ηj

that makes Λt into a Λ2-algebra. We have

HF (L,Λ2)⊗Λ2 Λt ∼= HF (L,Λt)

and the weak divisor equation

ν1
ρ(γ) = ∂γν

0
ρ

holds for Morse 1-cocycles. Let

WL
0,t :=WL

0 ⊗ 1 ∈ CF (L,Λt)

denote the single variable second order potential for L. The following theorem is a powerful

tool introduced in [FOOO09][FOOO]:

Theorem 21. Let 0 be a solution to the Maurer Cartan equation for (CF (L), µn) (and hence

for (CF (L), νn)). Suppose that for a ρ ∈ Hom(π1(L),Λ×t ), DρWL
0,t = 0 and the Hessian D2

ρWL
t,0

is surjective. Suppose further that H∗(L,Λt) is generated by degree one elements via the cup

product. Then there is a representation τ ∈ Hom(π1(L),Λ×t ) so that

HF (L,Λt, τ) ∼= HMorse(L,Λt)

Proof. Let ζx = minv∈M(L,D,x)0
e(v), and define

B2(θ) =
∑

x∈Crit(f)
u∈Jx

(−1)♦(σ(u)!)−1Holθ(u)te(u)ε(u)x

where Jx ⊂M(L,D, x)0 with

Jx :=

{
u : e(u) = ζx

}

if x 6= xM the maximum of f , and

Jx :=

{
u : e(u) = ζx

}
∪

{
u : e(u) = min

v∈M(L,D,x)0

e(v) 6=ζx

e(v)

}



102

if x = xM . These minima are attained due to the compactness result for configurations with

finite energy 12. In order to relate B2 to W0,t, we choose K in the weak coupling form to be

large enough: As in the proof of theorem 18, let K be such that

εKΣB > 2λ

where λ is the monotonicity constant for LF and ΣB is energy quantization for (B,LB). As in

the discussion after definition 43, we have

B2 =W0,t

for this particular K.

B2(θ) is the first and second order terms of ν0
θ . Therefore, we can apply the induction

argument from the proof of the strongly non-degenerate case of Theorem 10.4 [FOOO] to

produce a critical point ξ of ν0. By the weak divisor equation we have that the Floer differential

ν1 vanishes on Morse 1-cocycles.

Finally, we use an induction on cohomological degree and symplectic area, similar to Lemma

13.1 of [FOOO09] and Proposition 2.31 of [CWa], to argue that ν1 vanishes on all Morse cocycles.

Lemma 15. ν1(γ) = 0 for any Morse cocycle on the first page of the Morse-to-Floer spectral

sequence 5.8.

Proof. By the A∞ relations,

ν1(ν2(γ1, γ2)) = ±ν2(ν1(γ1), γ2))± ν2(γ1, ν
1(γ2))

±ν3(γ1, γ2, ν
0)± ν3(γ1, ν

0, γ2)± ν3(ν0, γ1, γ2)

We remark that there are no ν3 terms due to the assumption that ν0 is a strict unit. Let νnβ

be the sum of terms in νnβ containing tβ for β ≥ 0. We have

∑
β1+β2=β

ν1
β1

(ν2
β2

(γ1, γ2)) =
∑

β1+β2=β

±ν2
β1

(ν1
β2

(γ1), γ2)) +
∑

β1+β2=β

±ν2
β1

(γ1, ν
1
β2

(γ2))
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Move any terms involving β2 6= 0 on the right hand side to the other side:

ν1
β(γ1 ∪ γ2) =

∑
β1+β2=β

±ν2
β1

(ν1
β2

(γ1), γ2)) +
∑

β1+β2=β

±ν2
β1

(γ1, ν
1
β2

(γ2))

−
∑

β1+β2=β, β2>0

ν1
β1

(ν2
β2

(γ1, γ2))

Using this expression, we proceed by induction on cohomological degree and energy. For di ∈ N0

and αi ∈ R≥0, say that (α1, d1) ≤ (α2, d2) if α1 < α2 or α1 = α2 and d1 < d2. The base step

(0, d) is given, since the computation takes place on the second page of the Morse-to-Floer

spectral sequence. The above expression immediately implies the induction step, since the

first two terms on the right hand side vanish by the induction hypothesis, since (β2,deg(γi)) ≤

(β,deg(γ1∪γ2)). The last term on the right hand side also vanishes by the induction hypothesis

since β1 < β. This proves the lemma.

It follows from the lemma that the Morse-to-Floer spectral sequence collapses after the first

page, and

HF (L,Λt) ∼= HMorse(L,Λt)

5.3 Invariance

One wants to know that the Floer cohomology defined before theorem 17 is independent of

choices of M -type perturbation datum and Maurer-Cartan solution. While a Hamiltonian iso-

topy of L may destroy the fibration structure, we want to know if our definition of fibered Floer

cohomology coincides with any standard definition.

5.3.1 Choices of M-type perturbation data and pullback divisors

To establish the invariance of the Fukaya algebra (within choices that are compatible with the

fibration), one can follow the proof of invariance in Charest-Woodward [CWa]. We summarize
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their result for rational LB ⊂ B:

For two divisors DB1
and DB2

of the same degree and two stabilizing perturbation datum

P0 P1, one defines a theory of quilted -P01-holomorphic treed disks that are P0 resp. P1 at the

root resp. leaves and are P01
t -holomorphic in between for some some path between P0 and P1.

The full result is:

Theorem 22 ([CWa] Corollary 3.12). For any stabilizing divisors D0 and D1 ⊂ B \ LB,

and any convergent, coherent, regular, stabilized perturbation systems P1 and P2, the Fukaya

algebras CF (L,P1) and CF (L,P2) are convergent homotopy equivalent.

Pick a time parameterization for each quilted type that takes 0 on the root, 1 on the leaves,

and only depends on the edge distance from the single quilted component. We assume that the

two divisors we pick are built from homotopic sections of the same line bundle. Given an energy

e, lemma 2 guarantees the existence of a path (or even an open dense set) of a.c structures JDt

such that Dt contains no JDt-holomorphic spheres. We then take a time dependent perturba-

tion system P01
t that takes values in the open, dense set guaranteed by lemma 2 and is equal

JDt on the thin part of the domain. Then, transversality and compactness follow for quilted

P 01
t treed disks, and we can define a perturbation morphism P 01 from P0 to P1 on products by

taking the isolated P01
t trajectories. This, in turn defines an A∞ morphism between the A∞

algebras CF (L,P0, D0) and CF (L,P1, D1). To show that the composition of the two pertur-

bation morphisms P 10 ◦ P 01 is homotopic to the identity, one develops a similar theory with

twice-quilted treed disks.

When the divisors D0 and D1 are not of the same degree, one follows [[CM07], Theorem

8.1] to find divisors D0′ and D1′ built from homotopic sections of the same line bundle that are

ε-transverse to D0 resp. D1. One uses a theory of holomorphic configurations that are adapted

to both D0 and D0′ to get a perturbation morphism (and similarly for D1 resp. D1′) as in the

proof of [[CWa] Theorem 3.11]. Finally, we apply the previous argument to the data adapted
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to the divisors D0′ and D1′ to get a perturbation morphsim with homotopy inverse between

data adapted to these two divisors.

The fibered situation

The divisor π−1(DB) used in our Floer theory is not stabilizing, but the Floer theory is well

behaved with respect to π−1(DB) as chapter 4 shows. Thus, we follow the same quilted con-

struction as [[CWa] Section 3] to prove invariance of divisor π−1(DB) and M -type perturbation

system. For two divisors D0
B and D1

B built from homotopic sections of a line bundle and two M -

type perturbation datum P0 resp. P1 for π-stable types, we choose a path of coherent M -type

perturbation data P01
t and define a theory of quilted P01-holomorphic π-stable types that are

π-adapted to π−1(D0
B) near the root and to π−1(D1

B) near the leaves. This theory defines an

A∞ ”perturbation” morphism P 01 where one checks that P 01 ◦P 10 is homotopic to the identity.

When the divisors Di
B are of different degrees, the story is the same as in the rational case

[[CWa] Theorem 3.11]. Given a homotopic divisors of high degrees Di′

B that intersects Di
B

ε-transversely, the divisors π−1(Di
B) and π−1(Di′

B) also intersect ε-transversely. Therefore, one

uses a quilted theory of types that are π-adapted to both π−1(D0
B) and π−1(D0′

B ) to get a

perturbation morphism, and similarly for i = 1.

Agreement with rational case

In case the pair (E,L) is rational, we would like to see that our definition of the Fukaya algebra

agrees with that of [CWa]. We begin with the ring homomorphism

� : Λ2 → Λ(t)

∑
i,j

cijq
ρirηi 7→

∑
i,j

cijt
ρitηj
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where Λ(t) is the universal Novikov field. This algebra homomorphism is well defined by the

definition of Λ2: specifically, the requirement that #{cij 6= 0 : ρi + ηj ≤ N} < ∞ tells us that∑
i,j≥0 cijt

ρi+ηj converges in Λ(t). Therefore, Λ(t) is a Λ2 module and we can form the base

change by extending � linearly to a map between Λ2-modules

� : CF (L,Λ2)→ CF (L,Λ(t))

As in the proof of proposition 21, define the single variable A∞-maps on CF (L,Λ(t)) as

νn(x1, . . . , xn) = ∑
x0,[u]∈MΓ(L,D,x)0

(−1)♦(σ(u)!)−1Holρ(u)te(u)ε(u)x0 (5.16)

then f defines an A∞-morphism

νnb (�x1, . . . , �xn) = �µnb (x1, . . . , xn)

In particular, we get a chain map at the n = 1 level that induces an isomorphism

CF (L,Λ2)⊗Λ2 Λ(t) ∼= CF (L,Λ(t))

as chain complexes. Since Λ(t) is a field, we have the identity

HF (L,Λ2)⊗Λ2 Λ(t) ∼= HF (L,Λ(t))

It follows that tensoring the result of 17 with Λ(t) gives something that we expect to be a

Hamiltonian isotopy invariant.

We want to see that this definition coincides with Charest-Woodward’s definition of the

Fukaya algebra [CWa]. We sketch the idea as follows. The divisor π−1(DB) is not stabilizing

for L, but as in [Theorem 8.1 [CM07]], we take a Hermitian line bundle X → E with a unitary

connection of curvature iω, and construct a section sk of X×k whose intersection with the zero

section is ε-transverse to π−1(DB). The set D := s−1
k (0) is a smooth codimension 2 sub-manifold

such that
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1. [D]PD = k[ω] for large k,

2. D is ε-transverse to π−1(DB), and

3. by an extension of lemma 2 and ε-transversality, there is a perturbation datum (P ′Γ) that is

arbitrarily close to (PΓ) and agrees with (PΓ) on π−1(DB) and makes D into a stabilizing

divisor for L.

We then construct a theory of quilted (P ′Γ)-holomorphic configurations that are π-adapted

to DB up to the quilted component and adapted to D from the quilted component and onward.

The compactness and transversality of these types is expected to hold, and it is further expected

that we get a perturbation morphism P 01 : CF (L,PΓ, π
−1(DB)) → CF (L,P ′Γ, D). When we

consider the reverse map P 10 : CF (L,P ′Γ, D) → CF (L,PΓ, π
−1(DB)), it is expected that an

adaption of Charest-Woodward’s [CWa] results will show that these two morphisms provide a

homotopy equivalence of A∞-algebras. The details of this section are to be carried out in the

shortened version of this thesis.
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Chapter 6

Applications

6.1 Flags

The demonstration of a Floer-non-trivial three torus in Flag(C3) inspires a search of non-

displaceable tori in higher dimensional partial or full flag manifolds using our framework. We

give a construction of a fibered Lagrangian in a type of partial flag manifold, and compute the

disk potential in an easy case.

Let F kn be the manifold of partial flags V1 ⊂ · · · ⊂ Vk ⊂ Cn where dimC Vi = i. Identify

this homogeneous U(n) space with the coadjoint orbit G · ξ equipped with the U(n)-equivariant

KKS form ωξ(X,Y ) = 〈ξ, [X,Y ]〉. Technically we need small fibers for the Floer theory to

work, so we won’t try to keep track of the symplectic structure too much. The idea is this:

assume that we have chosen Lk ⊂ F kn with HF (Lk,Λ(t)) 6= 0, and proceed to construct Lk+1.

1. Base step: We illustrate the step from k = 1 to k = 2 to derive a model for the higher

order cases. F 1
n = Pn, so let us take L1 = CliffPn. we that a fibration π2 : F 2

n → Pn

with fiber Pn−1, so by theorem 3, there is a Tn−1-invariant open neighborhood U1 of

CliffPn and a symplectic connection on F 2
n such that the moment map for the action of

Tn−1 ⊂ U(n)/U(1) on π−1
2 (U1) is Φ ◦ π2, where Φ : Pn → tn−1∨ is the moment map for

Pn. At the level set of Φ ◦ π2 which lies above CliffPn, we have a symplectic trivialization

Φ ◦ π−1
2 (0) ∼= CliffPn × Pn−1 by an argument similar to that in example 1.1. Thus, pick

the Lagrangian L2 = CliffPn × CliffPn−1 ⊂ F 2
n . If one chooses, one may deform back to

the original symplectic connection.
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We calculate the second order potential for L2 using theorem 20 and show that it has a

critical point. Since it is a product torus, let yi be the evaluation of the local system ρ on

the first n factors, and zj be the evaluation on the last n− 1 factors. The (leading order)

potential for CliffPn is

WCliffPn
0 (θ) =

n∑
i=1

yiq
e(ui) +

1

y1 · · · yn
qe(un+1) (6.1)

where e(ui) = 1
n+1 [FOOO]. We leave out the unique maximum since it is known that

CliffPn is unobstructed. The lifted potential of CliffPn in F 2
n is

L ◦WCliffPn
0 (ρ) =

n∑
i=1

yiz
νiqe(ui) +

1

y1 · · · ynzν1 · · · zνn
qe(un+1) (6.2)

where νi is the multindex zνi := zνi11 · · · zνinn given by evaluation of Lui on the local system

ρ. By theorem 20 the second order potential of L2 is

WL2
0 (ρ) =

n∑
i=1

yiz
νiqe(ui) +

1

y1 · · · ynzν1 · · · zνn
qe(un+1)

+

n−1∑
i=1

zir
ev(wi) +

1

z1 · · · zn−1
rev(wn)

we have the partial derivative with respect to the y-variables

∂yiW
L2
0 = qe(ui) +

−1

yi · y1 · · · ynzν1 · · · zνn
qe(un+1) (6.3)

and with respect to the z variables

∂zjW
L2
0 =

n∑
i=1

νijyiz
νi−ejqe(ui) +

−
∑n
i=1 νij

y1 · · · ynzν+ej
qe(un+1)

+rev(wj) +
−1

zj · z1 · · · zn−1
rev(wn)

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the jth standard multindex and ν =
∑
i νi. Solutions to

6.3 are given by y1 = · · · = yn = e2πik/(n+1) and z1 = · · · = zn−1 = e2πi`/|ν| with |ν| denot-

ing the sum of the indices. Solutions to ∂zjW
L2
0 = 0 only seem possible if zj ≡ 1 ∀j (unless

we have more information about the lifted representation) and y1 = · · · = yn = e2πik/(n+1).



110

By proposition 21, there is a local system ξ such thatHF (L2,Λ(t), ξ) ∼= HMorse(L2,Λ(t)) 6=

0.

2. Induction step: Assume that we have constructed a Lagrangian Lk ⊂ F kn withHF (Lk,Λ(t)) 6=

0. Viewing π : F kn → Pn as a symplectic fibration we assume that Lk fibers over CliffPn.

Apply theorem 3 to get a symplectic connection on F kn such that the moment map for

the action of Tn−1 on the open set π−1(U1) is Φ ◦ π. Now consider the symplectic fi-

bration πk+1 : F k+1
n → F kn and apply theorem 3 to once again deform the symplectic

form so that the moment map for the Tn−1 action on π−1
k+1(π−1(U1)) is Φ ◦ π ◦ πk+1.

Then, π−1
k+1[π−1(CliffPn)] ∼= Pn−k+1 × π−1(CliffPn) as a symplectic fibration, so choose

Lk+1
∼= CliffPn−k+1 × Lk.

The computation of the disk potential and the critical points involves many different

indices and multindices in this case, but is morally similar to the base case. We omit the

calculation.

6.2 Projective ruled surfaces

There are some low dimension applications that naturally show up in the Gonzalez-Woodward

symplectic minimal model program [WC; GW]. In dimension 4, a typical end stage of run-

ning of the minimal model program is a so called ruled surface, or a holomorphic P1 bundle

over a Riemann surface. These occur in the classification of surfaces due to Enriques-Kodaira

[BHPV04], which we review in this section. Then, we show that one can construct a fibered

Lagrangian torus that is Floer-non-trivial.

In the classification of projective surfaces [BHPV04], there is the case where no exterior

powers of the cannonical line bundle admit holomorphic sections. More precisely, let E be a
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projective surface, and KE = T ∗E ∧ T ∗E be the canonical line bundle. We have the object

H0(E,KE) that is the vector space of holomorphic sections. Form the sequence of integers

Pi(E) = dimH0(E,K⊗iE ). If Pi(E) = 0 for all positive integers i, then the Kodaira dimen-

sion of E is said to be −∞ (This is in contrast to the other possible cases when Pi(E) has

asymptotics like ik for k ≥ 0). Surfaces with Kodaira dimension equal to −∞ are known as

the ruled surfaces, where E fibers as a P1 bundle over a Riemann surface B. For the complete

classification, see [BHPV04].

Basic cohomology theory gives us that any algebraic Pn bundle with structure group PGL(n+

1,C) over a Riemann surface B is actually the projectivization of a vector bundle. This follows

from the long exact sequence of sheaf cohomology groups

→ H1(B,GL(n,C))→ H1(B,PGL(n− 1,C))→ H2(B,OB)

Since B is a curve, H2(B,OB) = 0 by Grothendieck vanishing. Thus, H1(B,GL(n,C)) →

H1(B,PGL(n,C)) is surjective, so that every algebraic projective bundle lifts to an algebraic

vector bundle.

6.2.1 Ruled surfaces with P1 base

We compute the disk potential for a Lagrangian torus in the Hirzebruch surface Fn that may

not be a level set of the moment map.

Let E → P1 be a rank two complex vector bundle. A result of Grothendieck [BHPV04], say

that this splits as a sum of complex line bundles On⊕Om. One can then projectivize P(E)→ P1.

Since tensoring before projectivizing has no effect, we can normalize to get P(O ⊕ On) → P1,

which we define as the nth Hirzebruch surface Fn.
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Take CliffP1 := LB . Appealing to a deformation lemma in [Sei08]16, one can deform the

connection above CliffP1 so that the holonomy is trivial, and pick a section of CliffP1 := LF in

above LB . We then deform back to the original symplectic form to obtain a Lagrangian torus

L ⊂ Fn that fibers as CliffP1 → L→ CliffP1.

For a representation ρ ∈ Hom(π1(L),Λ×) let y1,y2 denote the values on the canonical gen-

erators. We take the weak coupling form ω = a + Kπ∗ωB with ι∗a = ωF , and a regular

perturbation datum that is close to the integrable structure. Let ui i = 1, 2 denote the Maslov

index 2 disks in P1 with a single marked boundary point and boundary contained in LB , and

vi the holomorphic disks of the same type with boundary in LF .

Following section 4.5, we will take the vertically constant JG =

JG 0

0 JB

-holomorphic

lifts and then perturb. The evaluation of the representation on the lift of u1 is y1 if we were

to consider the fibration as trivial over the hemisphere described by u1. This determines the

representation evaluated on a vertically constant lift of u2, which is y−1
1 y−n2 since the transition

map between the two hemispheres of the base P1 is [z1, z2] 7→ [z1, e
2πinθz2]. We then perturb

these lifts to J =

JF K

0 JB

-holomorphic disks, denoted Lui, where this J is part of a coherent

perturbation datum. The perturbation process is a homotopy equivalence, so the evaluation on

the local system does not change after perturbing. In order to avoid cluttered notation, we let

e(u) := e(π ◦ u) =
∫
π ◦ u∗ωB . From the formula 5.15 we have

W0
L(ρ) = y2r

ev(v1) + y−1
2 rev(v2) + y1q

e(u1)rev(Lu1) + y−1
1 y−n2 qe(u2)rev(Lu2)

The partial derivatives are as follows:

∂y1
W0
L(ρ) = qe(u1)rev(Lu1) − y−2

1 y−n2 qe(u2)rev(Lu2) (6.4)

∂y2
W0
L(ρ) = rev(v1) − y−2

2 re(v2) − ny−1
1 y−n−1

2 qe(u2)rev(Lu2) (6.5)

The base Lagrangian is a Clifford torus, so we have that e(u1) = e(u2). If we assume thusly
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that ev(Lu1) = ev(Lu2), then the zero locus of 6.4 contains the locus y2
1 = y−n2 . Substituting

into 6.5 gives the equation

rev(v1) − y−2
2 re(v2) − ny

−n−2
2

2 qe(u2) = 0

Viewing this expression under the transformation y2 7→ y2
2 gives a degree n+ 2 polynomial

rev(v1) − y−4
2 rev(v2) − ny−n−2

2 qe(u2)rev(Lu2) = 0 (6.6)

Since the fiber Lagrangian is a Clifford torus, we can assume that rev(v1) = rev(v2). Dividing

out by this variable gives a simpler equation:

1− y−4
2 − ny−n−2

2 qe(u2)rev(Lu2)−ev(v1) = 0 (6.7)

Assuming n > 2, we can consider 6.7 as a monic equation

yn+2
2 − yn−2

2 − nqρrη = 0 (6.8)

with ρ =
∫
Ku∗2ωB and η = ev(Lu2)− ev(v1). While η may be negative, we can take K >> 1

in the weak coupling form so that qρrη actually lies in our ring Λ2.

By Hensel’s lemma, there are four unital solutions to 6.8 in Λ2 (see discussion in example

1.1). It follows from proposition 21 that there is a representation τ ∈ Hom(π1(L),Λ×t ) so that

HF (L,Λt, τ) ∼= HMorse(L,Λt)

6.2.2 Base genus ≥ 2

We give a description of a Lagrangian in a ruled surface E with base genus ≥ 2, and show that

is has non-trivial Floer cohomology whenever the topology allows.

Let B be a Riemann surface of genus ≥ 2. Considering Lagrangians as simple closed curves,

we say that an embedded Lagrangian is balanced if it is null-homologous and

Area(B+)

χ(B+)
=

Area(B−)

χ(B−)
(6.9)



114

whenever LB divides B into two Riemann surfaces with boundary. The notion of balanced is

really a monotonicity condition of sorts, and allows one to construct the Lagrangian intersec-

tion theory. It has been observed by Seidel, Efimov and others [Efi12; Sei11] that these curves

generate the Fukaya category.

Since LB is not contractible, we have that π2(B,LB) = 1, so there are no non-trivial disks

with boundary in LB . Therefore, the Floer cohomology is isomorphic to the classical Morse co-

homology with Novikov coefficients (which one can see from the spectral sequence in [FOOO09]),

and this balanced Lagrangian is non-displaceable

Now let V be a rank 2 vector bundle over B and P(V )→ E → B be its projectivization. Let

us pick a Lagrangian with LF ⊂ P1 dividing the symplectic area of P1 into two equal parts. As

in [FOOO], one can compute the disk potential for LF , and the requirement that it is balanced

gives us critical points at the representations ±1, hence HF (LF ,Λ[t]) ∼= H∗(LF ,Λ[t]).

Let us denote our ruled surface as Σg,V , with base genus g and ruling V . To find a sub-

bundle LF → L→ LB in Σg,V , we deform the connection and use parallel transport to flow out

a torus. Let LB be balanced, simple and closed as above with a parameterization γB , and let

ω define a connection on Σg,V by TF ⊕H with H = TFω⊥. Then, parallel transport along γB

gives maps

φs : π−1(γ(0))→ π−1(γ(s))

that are Hamiltonian diffeomorphisms since the P1 fiber is simply connected. Following Seidel

[Sei08] section 15, we then deform the symplectic form (and horizontal splitting) by dα where

α is a vanishes on TF to prescribe different parallel transport maps. This is made precise in

the following lemma:

Lemma 16. [Sei08] Let γ be a path in B and let ψs be a Hamiltonian isotopy of Fγ(0) starting

with ψ0 = Id. Then there is a deformation of the fibration along γ that extends to all of E such
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that the parallel transport maps along γ satisfy

φ = φs ◦ ψs

In particular, when γ is a loop as in this case, we can deform the structure so that holonomy

around the loop is the identity. Thus, pick a simple closed curve LF ⊂ F and look at the image

of its transport along γ. This gives us a Lagrangian torus in the deformed manifold.

Proof of lemma. The idea is as follows: Let α be a 1-form that vanishes on TF and in a

neighborhood of π−1(γ). Then ω + dα = ω when restricted to TF , and so is non-degenerate.

Let Y ] = (X,Y ) (in the ω splitting) be a horizontal lift (in the ω + dα splitting) of a vector

field Y . Then, LY ]α = 0 on TF since it is the pullback of a base form, and vertically we have

0 = ιY ](ω + dα)

= ιXω + ιY ]dα

= ιXω − dιY α

which says that parallel transport in the ω+dα splitting is infinitesimally the Hamiltonian flow

of −ιY α. Thus, for a Hamiltonian isotopy ψs with associated time-dependent Hamiltonian Hs

let α be any 1-form that vanishes on TF such that

ιY α|π−1(γ(s)) = Hs

and vanishes outside of a neighborhood of π−1(γ). Parallel transport with respect to the α

splitting will then be prescribed by φs ◦ ψs. The desired deformation is then

ω +Kπ∗ωB 7→ ω + tdα+Kπ∗ωB

for K large enough.

The deformation only changes the symplectic form by an exact form. Thus, an application of

Moser’s theorem gives us a symplectic isotopy back to the original symplectic structure, which
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in turn gives a Lagrangian.

We use the spectral sequence to compute HF (L,Λ2). According 17, the second page is the

cohomology of the Morse chain complex of LB with coefficients in the local system HF(LF ,Λr).

The filtration is with respect to the base energy, but the differential induced on any of the higher

pages does not include any q terms. Therefore, the sequence collapses after the second page,

and we have that the Floer cohomology of L is isomorphic to the homology of the complex

CF (L) with differential δ0 that counts isolated Floer trajectories in each fiber in addition to

zero-energy Morse configurations in the base:

gr∗(HF (L,Λ2)) ∼=E2((CF (L),Λ2), δ0,Fq)

The second page of the Floer fibration spectral sequence can be computed via the usual Leray-

Serre spectral sequence of a fibration with vertical differential given by δFloer
F and horizontal

differential given by δMorse
B

E2(CF (L,Λ2), δ0,Fq) ∼= ELS∞ (C(L), δMorse
B ± δFloer

F ,Fbd)

where the filtration Fbd is given by base degree, i.e. deg π(xi) for xi a critical point on the total

space. The second page of this is given as follows

ELS2
∼= H∗(LB ,HF(LF ,Λr))⊗ gr(FqΛq)

as in theorem 17.

A modification of the proof of theorem 17 will show us that the higher differentials on ELSr

count only Morse flow lines in the total space. Briefly, the point in the base at which a vertical

disk component occurs induces a free parameter in the moduli space, so it is not an isolated

configuration. The proof of the existence of this free parameter is slightly more complicated
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that in the proof of 17, as a trajectory between critical points of a higher base index difference

no longer projects to a reparameterization of a Morse trajectory.

Assuming the above discussion holds, the Floer cohomology of L Lagrangian only depends

on the topology and the action of π1(S1) on the Floer cohomology of the fibers. In particular,

if L is a product Lagrangian and the action is trivial, then we have

ELS∞ ∼= ELS2
∼= H∗(LB)⊗HF (LF ,Λr)⊗ gr(FqΛq)

so that

HF (L,Λ2) ∼= H∗(LB ,Λq)⊗H(LF ,Λr)

which shows that L is non-displaceable.
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Chapter 7

Appendix

For completeness, we include some aspects of the A∞-algebra and Maurer-Cartan equation for

a rational Lagrangian in a rational symplectic manifold. This section is taken from [CWa].

7.1 A∞ algebras and composition maps

We define the necessary algebraic notions to consider Fukaya algebras of Lagrangians. Define

the universal Novikov field of formal power series:

Λ =

{∑
i

ciq
ρi | ci ∈ C, ρi ∈ R, ρi →∞

}
(7.1)

The subalgebra of only non-negative powers will be denoted Λ≥0 (similarly Λ>0).

The axioms for an A∞ algebra are as follows. Let A be a Zg-graded vector space and let

µd : A⊗d → A[2− d]

be multilinear maps. (A,µd) is said to be an A∞ algebra if the composition maps satisfy the

following relations:

0 =
∑

n,m≥0n+m≤d

(−1)n+
∑n
i=1 |ai|µd−m+1(a1, . . . , an,

µm(an+1, . . . , an+m), an+m+1, . . . , ad)

We will also need the notion of an A∞ morphism between two algebras. Let A0 and A1 be two

A∞ algebras.

Definition 47. An A∞ morphism from A0 to A1 is a collection of maps

Fd : A⊗d0 → A1[1− d], d ≥ 0
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such that the following equation holds:

∑
i+j≤d

(−1)i+
∑i
j=1 |aj |Fd−j+1(a1, . . . , ai, µ

j
A0

(ai+1, . . . , ai+j), ai+j+1, . . . , ad) =

∑
i1+...im=d

µmA1
(F i1(a1, . . . , ai1 , . . . ,F im(ai1+···+im−1+1, . . . , ad))

In order to properly define the Fukaya algebra for a Lagrangian, we require that the La-

grangian have additional structure, called a brane structure. Let E be a symplectic manifold

and Lag(E) the fiber bundle bundle whose fiber at p is the Grassmanian of Lagrangian sub-

spaces of TpE. For an even integer g, a Maslov cover is a g-fold cover Lagg(E) → Lag(E)

such that the induced two-fold cover Lagg(E)/Zg/2 → Lag(E) is the oriented double cover. A

Lagrangian submanifold is admissible if it is compact and oriented (we assume connectedness

for now).

A grading on L is a lift of the canonical map

L→ Lag(X), l 7→ TlL

to Lagg(X). A relative spin structure for L is a lift of the transition maps ψαβ for TL to Spin

satisfying the cocycle condition

ψαβψ
−1
αγψβγ = i∗εαβγ

where εαβγ is a 2-cycle on E. Let

Λ× = {c0 + Σi>0ciq
ρi ⊂ Λ≥0|c0 6= 0}

be the subgroup of formal power series with invertible leading coefficient. A rank one local

system (with values in Λ×) is a representation π1(E) → Λ×. A brane structure for a compact

oriented (connected) Lagrangian L consists of the following data:

1. A Maslov cover Lagg(E)→ with a grading,

2. A rank one local system with values in Λ× and

3. A relative spin structure with the given 2-cycles.
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An admissible Lagrangian brane is an admissible Lagrangian submanifold equipped with a brane

structure. For such an object, the space of Floer cochains is defined as

CF (L) =
⊕
d∈Zg

CFd(L), CFd(L) =
⊕

x∈Îd(L)

Λ〈x〉

Given a Lagrangian brane L, we denote by HolL(u) ∈ C× the evaluation of the local system on

the homotopy class of loops defined by going around the boundary of the treed disk once. We

denote by σ([u]) the number of interior markings of [u] ∈MΓ(L,D, x).

Definition 48. For regular stabilizing coherent perturbation data (PΓ) define the composition

maps

µn : CF (L)⊗n → CF (L)

on critical points by the following equation:

µn(x1, . . . , xn) =
∑

x0,[u]∈MΓ(L,D,x)0

(−1)♦(σ([u])!)−1HolL(u)qe([u])ε([u])x0 (7.2)

where ♦ =
∑n
i=1 i|xi|.

So far, we have neglected to mention anything about units. In fact, everything that has

been recorded so far can be done to incorporate a strict unit.

Definition 49. Let A be an A∞ algebra. A strict unit for A is an element eA such that

µ2(eA, a) = a = (−1)|a|µ2(a, ea)

µn(. . . , eA, . . . ) = 0, n 6= 2

An A∞-algebra is called strictly unital if it equipped with a strict unit.

One obtains such a thing by replacing the unique maximum x with 3 copies such that

i(x•M ) = i(x◦M ) = 0, i(x∆
M ) = −1

The notion of a treed holomorphic disk, morphisms of moduli spaces, and a coherent per-

turbation system can be modified to incorporate these three additional copies. See [CWa] for
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the full details.

Let ĈF (L) be the chain complex with this additional structure

We have the following theorem.

Theorem 23 (A∞ relations). [CWa] Let P be a coherent,stabilizing, regular perturbation da-

tum. Then (ĈF (L), {µn}n) is A∞ algebra with strict unit. The subcomplex CF (L) is an

A∞-algebra without unit.

Sketch of proof. For an admissible tuple (x0, . . . , xn), components of the moduli spaceM(L,D, x)1

are compact manifolds with (possibly overlapping) boundary. Thus they obey the following re-

lation:

0 =
∑

Γ∈Mn,m

∑
[u]∈∂MΓ(L,D,x)1

(σ(u))−1ε(u)qe(u)Hol(u) (7.3)

When Γ is a type without weights, then the boundary points of the moduli space are types with

a (one additional) breaking, equivalent to the union of types Γ1 and Γ2 with n1 resp. n−n1−1

leaves. By the (product axiom),

∂M(L,D, x)1 =
⋃

y,Γ1,Γ2

MΓ1(L,D, x0, . . . , xi−1, y, xi+n2 , . . . , xn)×

MΓ2
(L,D, y, xi, . . . , xi+n2−1) (7.4)

Say σ([u]) = m Since there are m choose m1,m2 ways of distributing the interior markings to

the two component graphs,

0 =
∑

i,m1+m2=m
[u1]∈MΓ1 (L,D,x0,...,xi−1,y,xi+n2 ,...,xn)0

[u2]∈MΓ2 (L,D,y,xi,...,xi+n2−1)0

(m!)(−1)

(
m

m1

)
qe(u1)+e(u2)

ε(u1)ε(u2)HolL(u1)Hol(u2) (7.5)

This is the A∞ relation up to signs, and it now remains to show that the signs arising from the

orientations are consistent with those of the A∞ relations. We refer the reader to [CWa].
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Next, we include the necessary statements to find a perturbation system so that the resulting

A∞ algebra is convergent:

Definition 50. A perturbation system P = (PΓ) is convergent if for each energy bound E,

there exists a constant C(E) such that for any Γ and any treed JΓ-holomorphic disk u : C → X

of type Γ, the total Maslov index I(u) :=
∑
I(ui) satisfies

(e(u) < e)⇒ (I(u) < c(E)). (7.6)

Lemma 17. [CWa] Any convergent, coherent, regular, stabilizing perturbation system P = (PΓ)

defines a convergent Fukaya algebra ĈF (L,P ).

Proposition 4. [CWa] There exist convergent, coherent, regular, stabilizing perturbations P =

(PΓ).

See [CWa] for the proof.
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