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ABSTRACT OF THE THESIS 

Landing of a Quadrotor UAV Swarm in a Nonstationary Confined Compartment 

By RICK SCHIENI 

Thesis Director: 

Dr. Shahab Shojaei-Zadeh 
 
 
 
 
Unmanned Aerial Vehicles (UAVs) have emerged as an extraordinarily useful technology 

in both civilian and military applications. Recent efforts have focused on expanding the 

capabilities of individual UAVs to the application of multiple vehicle swarms to efficiently 

accomplish otherwise laborious and dangerous tasks. In this work, a trajectory generation 

method is presented to safely land the individuals of a UAV team on a moving vessel 

following the performance of a team mission. It is assumed that the landing vessel has a 

compartment dedicated to vehicle storage which restricts the final landing maneuver to a 

confined space. Trajectories are generated by solving a constrained optimization problem 

in a computationally efficient manner by exploiting the properties of Pythagorean 

Hodograph Bèzier curves. A case study is presented to demonstrate the efficacy of the 

proposed trajectory generator. The study examines the effectiveness of the method to create 

successful landing trajectories for the individuals of the UAV swarm. It is shown that the 

method creates collision-free trajectories for multiple vehicles as they attempt to land in a 

confined compartment on a moving target. 
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Chapter 1 
 

INTRODUCTION 
 

1. Introduction 

1.1. Background 

1.1.1. History and Application 

 Greek mythology tells of the aerial escape of Icarus and his father Daedalus from 

their entrapment in a high tower through the use of wings fashioned from feathers and wax 

[1]. The utility of conquering the skies and the power of flight would continue to be 

recognized throughout the ages. Later attempts to fly include the efforts of the 9th century 

poet Abbas Ibn Firnas and 11th century monk Eilmer of Malmesbury [2]. Leonardo DiVinci 

attempted to tackle the problem by modelling his flying technology after observations of 

flight in nature [3], a theme that would continue to be replicated throughout time. 

Successful attempts to fly aircraft would come in two forms: lighter-than-air technologies 

and heavier-than-air technologies. Lighter-than-air technologies are composed of 

“balloons” which utilize a gas less dense than air to achieve flight. Heavier-than-air 

technologies depend on mechanics rather than such a gas. Sustained flight using such 

aircraft was famously achieved through the work of the Wright brothers [4–6], whose 

invention would eventually evolve into the airplane of today. Other heavier-than-air 

vehicles such as rotor driven aircraft had been originally conceived in China around 400 

BC and resulted in the first successful helicopter design in 1939 by Igor Sikorsky [7]. 

 Since the inception of reliable fixed-wing and rotor-driven heavier-than-air aircraft, 

innumerable tasks have been achieved through the employment of such vehicles. For 



2 
 

certain tasks, both functionality and necessity fueled the desire to remove humans from 

being on-board the vehicles. Such motivation continues today as the field of unmanned 

aerial vehicles (UAVs) has been evolving rapidly. Perhaps one of the most potent 

motivations to develop UAVs is the removal of human beings from the battlefield. This 

notion was first expressed through the use of unmanned balloons by the Austrians to float 

over enemy territory and drop bombs in 1849 [8]. Today’s military applications include 

Intelligence, Surveillance, and Reconnaissance (IRS) [9] as well as target identification, 

tracking, and prosecution [10]. UAVs have also proven to be useful in many civilian 

industries such as agriculture [11], disaster management [12], and natural resource 

management [13]. High maneuverability and mobility along with compact size allow the 

vehicles and their operators to explore areas that would otherwise be considered 

inaccessible. Installation of sensors onboard the aircraft, video cameras being one of the 

most popular, allow observations and measurements to be made in such hard to reach areas. 

Figure 1.1 presents examples of both fixed-wing and rotor driven UAV designs. 

 

Figure 1.1: Examples of Fixed-Wing and Quadrotor UAVs (a) The Northrop Grumman 

RQ-4 Global Hawk Fixed-Wing UAV [14], (b) The Storm RC Hobby 550 mm RTF 

Quadcopter UAV [15]. 

 With individual UAVs proving to be useful in such a wide array of applications, 

much effort is currently being devoted to the study of what can be achieved with large 



3 
 

numbers of coordinated UAVs working together to achieve a common goal. Large numbers 

of coordinated vehicles may be able to reflect the notion of “strength in numbers,” and 

achieve tasks that would otherwise be impossible. 

 Observations made in nature demonstrate the advantages of coordinating large 

numbers of individuals. Schooling of fish is believed to be a defense against predation [16]. 

Large numbers of individual fish aids defense efforts by increasing vigilance and detection 

of predators [17], assessment of predators [18], predator information transfer [19–21], 

predator inhibition [22], and promoting evasive maneuvering [16]. Such defense 

mechanisms are observed in other animals such as birds and insects as well [23]. Grouping 

has not only served as a tool for prey, but has been utilized by predators as well. 

Cooperative hunting in which multiple predators will work together in order to capture 

prey is exhibited in mammals [24–27], marine vertebrate [28,29], and birds of prey [30]. 

The underlying motivation which produces such cooperative hunting in groups is the 

ability to capture prey that could not be captured by an individual predator. In these cases, 

the prey is overwhelmed by the sheer number of predators rather than the physical 

dominance of a single hunter. 

 Although an important attribute, the ability of groups to overwhelm a competitor is 

not the only useful function of grouping. More individuals corresponds to more tools and 

flexibility at the disposal of the group and thus, tasks of a more functional nature can be 

completed as a result of grouping behavior. Members of the insect world exhibit large 

amounts of self-assembly in order to construct structures in order to achieve certain tasks 

[31–33]. Ants in particular demonstrate such behavior well as they have been observed to 

use their bodies to build bridges [34] and form buoyant waterproof rafts in order to survive 
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floods [35]. Returning to predation, the mechanics of having a large number of cooperative 

predators allows such creatures to scan more area and detect prey quickly and efficiently 

[36]. Other mechanical advantages take the form of energy conservation such as when 

geese fly in formations which reduce the aerodynamic drag experienced by other 

individuals in the group [37].  

 Demonstrated to be beneficial in a variety of diverse ways in nature, such concepts 

and tactics have been adapted to perform tasks using groups of vehicles. Tasks which 

require coverage of large areas such as agriculture may benefit greatly from the utilization 

of UAV swarms [38]. After natural disasters, it is often necessary to perform search and 

rescue (SAR) or infrastructure inspection. Such tasks usually must be performed in 

dangerous environments and require large area coverage from the inspector which has 

motivated the use of UAV swarms in such situations [39–42]. The utility of unmanned 

vehicles as well as their rapidly decreasing cost of production has made UAVs prime 

candidates to be implemented in such systems.  

 A decrease in cost has made such vehicles disposable which is an attractive property 

for military applications. Swarms of vehicles may lose individual members yet still have 

the ability to achieve the overall goal. In addition to disposability, throughout much of 

history combat tactics have exploited the aforementioned idea of overwhelming prey, or in 

the combat sense, adversaries with large numbers of cooperating individuals [43–45].  

Natural evolution and escalation implies that if one side intends on using groups of UAVs 

offensively then their enemy may employ such weaponry as well. Hence, groups of UAVs 

will be implemented not only to attack targets but to defend friendly assets as well. Military 
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applications are not limited to offense/ defense but can also include uses such as 

surveillance, target tracking, and delivery of materials among many others [44,46–50].  

 With the current field applications of UAVs requiring at least one off-board human 

operator per vehicle, the employment of large numbers of UAVs would require large 

numbers of human controllers. The U.S. Navy’s LOCUST UAV swarming system has 

demonstrated the ability of groups of fixed wing UAVs to fly autonomously but are 

launched like a projectile from a tube requiring repackaging and reloading for subsequent 

missions [50]. This has motivated the desire to create swarms of UAVs which can fly 

autonomously while being able to land and redeploy with no human interference. Physical 

constraints on the UAV systems such as generally poor battery life has reinforced the desire 

to stop, recharge, and go as necessary both mid and post-mission.  

 Many military applications may benefit from autonomous landing and 

redeployment of UAV swarms from other vehicles such as ships and other seafaring 

vessels. Such a vessel would have a certain area designated to the housing and recharging 

of the individual UAVs. In this thesis, the landing of quadrotor UAVs into a moving 

landing compartment is considered. Such a compartment is modelled as a storage volume 

whose entrance is found on the top deck of the ship and extends downward into the ship’s 

hull.  

 To ensure collisions do not occur as multiple vehicles attempt to enter the confined 

space dedicated to vehicle housing, observations from nature are made. In [51], a flock of 

approximately 1800 chimney swifts (Chaetura pelagica) are observed entering the 

1.2 × 1.0𝑚 rectangular entrance of a chimney that the birds had selected as their overnight 

roost. A circular flock shape is adopted by the birds as it solidifies a common approach 
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trajectory and allows individuals that fail to land to circle back and attempt to land again. 

The work suggests that entry into the roosting location was dictated by local interaction 

rules among the birds. A common flocking behavior referred to as alignment in which 

individuals match their velocity to that of their neighbors was employed by the birds at 

distances further from the entrance, but upon their approach to the landing site, more 

competitive behavior was observed. Becoming less cooperative and competing for space 

to enter the chimney, the final entrance behavior involves split-second decision making 

between entering the chimney and avoiding collisions. In this work, a safer and more 

conservative approach is adopted to the landing compartment entrance problem for 

application to quadrotor UAVs. 

1.1.2. The Quadrotor UAV 

 As the potential applications of aircraft have grown, so have the desired features 

and requirements of the vehicles. For example, urban military applications require vehicles 

which are fast yet maneuverable enough to navigate confined spaces. With fixed-wing 

aircraft suffering from minimum turning radii and gradual changes in elevation, rotor-

driven aircraft have become the popular choice for such applications. The basic flight 

mechanics of a quadrotor UAV are presented in Figure 1.3 to illustrate why such vehicles 

have been employed in tasks requiring high maneuverability. 

 This thesis will only consider fixed-pitch multirotor driven aircraft where each rotor 

is fixed with respect to the rigid body of the vehicle. The rotors are assumed to be orientated 

so that the thrusts created by each of the four rotors act in the same direction. Figure 1.2 

illustrates a simplified version of such an aircraft. 
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Figure 1.2: Side View of Quadcopter Creating Thrust. 

As follows from its name, a quadrotor UAV, sometimes called a quadrotor helicopter or 

quadcopter, is propelled by four independent rotors which produce a thrust force along and 

a moment about the axis of rotation. Propelled by four rotors yet having three translational 

degrees of freedom (DOF) and three rotational DOF, the quadcopter is an underactuated 

system. General quadcopter motion is illustrated in Figure 1.3. 
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Figure 1.3: Quadcopter Flight Mechanics. 

Of course, the quadcopter is not constrained to the illustrated imbalances in rotor thrusts. 

The thrust of each rotor can be controlled independent of the other rotors and thus, any 

combination of the above motions can be achieved at any time. 
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1.2. Literature Review 

 Upon completion of their mission abroad, the UAVs of the swarm will need to 

return to an appropriate area to prepare for the next mission. Returning to their maintenance 

docks entails the safe landing and recovery of the vehicles from abroad. Vehicle motion is 

the result of interactions between environmental forces acting on the vehicle and those 

forces produced by the vehicle’s own actuators. These actuators are controlled by the 

vehicle control system which attempts to have the vehicle achieve some desired state. 

Often, the desired state is entered into the system by a human operator but the substantial 

number of vehicles and the desire for autonomy motivates the need to have a UAV 

determine its own desired state [52]. It is for this reason that the manner in which a UAV 

may best dictate its own desired state which achieves the overall goal of a safe and efficient 

landing of the entire swarm is investigated. 

 Until 1987, the aggregate motion of natural systems such as schools of fish or flocks 

of birds was difficult to replicate in computer animation. Instead of programming each 

agent’s path individually, Craig Reynolds developed a distributed behavioral model which 

achieved aggregate flocking behavior through simple individual behaviors [53]. Looking 

again to nature for inspiration we see that groups of animals are essentially systems of 

individual autonomous agents whose simple behaviors gives rise to complexity within 

systems such as flocks, schools or herds [54–56]. In his work, Reynolds introduces the 

following three simple behaviors called flocking rules that each individual, or “boid” as he 

referred to them, abides by: collision avoidance, velocity matching and flock centering. 

The rules simply state that an agent will evaluate its neighbors in its flock and attempt to 

match their velocity and remain close to its neighbors but not so close that a collision may 
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occur. Later work went on to show that the emergent behavior of the group may be 

determined by who an agent considers to be its neighbor [57] and how much relative effect 

each force has on the individuals motion [58–62]. Such differences in the emergent 

behavior include the flocks forming into a “march” or becoming stuck in a state of 

perpetual cyclical motion [63]. 

 Upon the inception of the idea of flocking/ swarming UAVs, emergent flocking 

behaviors were naturally proposed to provide the necessary intelligence to achieve flocking 

behavior. Building upon the numerous existing Reynolds inspired flocking algorithms [64], 

simulations of flocking rule driven UAV swarms which include dynamic and aerodynamic 

effects have been developed [65–71]. Simulations have shown that UAVs can successfully 

be guided by the flocking rules in in certain situations. Clark et al. extended such work and 

performed flight tests of aircraft guided by the flocking rules, more formally referred to as 

boid guidance algorithms [72]. The flight tests included only two fixed-wing unmanned 

aircrafts but illustrated the capability to control more than one UAV by employing boid 

guidance algorithms. 

 The lack of verification associated with the emergent flocking behavior makes it 

difficult and unlikely to be implemented in tasks requiring high precision such as 

navigating buildings and landing of the vehicles [73]. Several multi-vehicle UAV testbeds 

and projects such as the UltraSwarm [74], SwarMAV [75], the GRASP testbed [76], MIT’s 

Indoor Multi-Vehicle Flight Testbed [77,78], SUUAVE [79], Airshield [80], and the 

BEAR project [81] have demonstrated the ability of UAV swarms to navigate difficult 

terrains and obstacles without collision. These works employ complex control systems 

which inhibit their ability to be incorporated in real-world systems. For example, in [82] 
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the authors demonstrate their system’s ability to navigate formations of UAVs through and 

around obstacles but relies upon a complex motion capture system to provide the feedback 

necessary to control the group. However, from the impressive guidance systems which 

allow these systems to move with such precision we derive information on how to plan the 

vehicle’s path of travel precisely enough to be applied in a landing situation. 

 The aforementioned control-driven multiple vehicle systems often employ a path 

planner and/or a trajectory planner to provide the vehicle with a reference plan of travel to 

be followed. A differentiation exists between path planning and trajectory planning. UAV 

path planning addresses the problem of finding an optimal collision-free path from one 

point to another in three-dimensional space while trajectory planning does the same while 

considering the time in which the path is traversed [83,84]. 

 Yang et al. have recently provided a survey of 3D robot path planning algorithms 

[85] as an expansion to their earlier paper which reviewed the literature of 3D UAV path 

planning [86]. Although the authors present algorithms for the 3D path planning of a single 

UAV, the multiple vehicle case is most often treated as an expansion of the single vehicle 

case and thus the review work presented is worth exploring. A taxonomy of the path 

planning algorithms was presented and broke the works into five main categories: sampling 

based algorithms, node based optimal algorithms, bio-inspired algorithms, and multi-

fusion based algorithms. Sampling based algorithms generally either sample and map the 

system environment or just randomly search for an optimal path. Examples of sampling 

based algorithms include 3D Voronoi graphs [87], Rapidly-exploring Random Graph [88], 

Rapidly-exploring Random Tree (RRT) [89], artificial potential fields [90] and more. Node 

based optimal algorithms generate paths by navigating a set of nodes and include Dijkstra’s 
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algorithm [91], A-Star (A*) [92], and all of their variations. Mathematical based algorithms 

model the environment as well as the vehicle and minimize a cost function that has bounded 

by the appropriate equalities and inequalities. Linear programming [93–96]  and optimal 

control [97] fall under this category of algorithms. Bio-inspired algorithms mimic naturally 

occurring phenomenon and includes evolutionary algorithms [98–100] and colony 

optimization [101,102]. The final class, multi-fusion based algorithms, are those 

algorithms which involve combining members of any of the aforementioned categories to 

solve a path planning problem. 

 In many cases trajectory planning takes the path of travel generated by the path 

planner and tries to determine how a robot can feasibly traverse the path. This is 

accomplished by connecting a series of waypoints determined from the path planning stage 

and connecting them by a time-parameterized polynomial [85]. Polynomials are a natural 

choice to generate smooth trajectories which can be followed by a quadrotor UAV. In 

[103], Mellinger et al. demonstrated how minimizing the fourth derivative, or snap, of 

polynomial trajectory creates smooth, flyable trajectories. This idea has been expanded 

upon in many works, notably [104] where minimum snap trajectories were generated along 

with the time needed to traverse them being optimized. Minimum snap polynomial 

trajectories were extended to a special class of curves, called Bèzier curves, in [105]. Bèzier 

curves are particularly useful for trajectory generation as they exhibit properties that allow 

system dynamics to be easily incorporated in the trajectory generation procedure. 

 Bèzier curves have been employed by researchers to generate trajectories for 

multiple UAV systems which makes them attractive for the applications of this thesis. In 

[106,107], Bèzier curves were used to generate trajectories while avoiding collisions for 
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teams of cooperating vehicles. [108] specifically examines collision prediction and 

avoidance, making the necessary changes in the flight plan to avoid the collision. The 

algorithm proposed in [108] is extended in [109] to be able to re-plan piecewise trajectories 

resulting in a more dynamic approach. Dynamic re-planning of trajectories is also 

employed in [110] where Bèzier curves modelled the trajectory of one robot attempting to 

intercept another. Such interception is a task reminiscent of the landing on a moving 

platform problem. 

1.3. Scenario Description 

 As discussed earlier, swarms of quadrotor UAVs have the potential to be employed 

in a variety of different applications. One special class of applications that this work will 

focus on are military applications in which the quadcopters are launched from and return 

to a large seafaring military vehicle. In this study, it is assumed the swarm has been 

deployed and has executed its intended mission abroad. The vehicles must return from the 

mission site and be safely recovered. Recovery entails the UAVs autonomously landing in 

a specified landing area on the vehicle from which they were launched. Within the landing 

area are docks which are equipped with the proper tooling to recharge and relaunch the 

vehicles with no human assistance.  

1.4. Contributions of the Thesis 

 As the missions which can be accomplished by teams of multiple quadrotor UAVs 

continue to become more diverse, the methods by which the groups of UAVs are deployed 

and are recovered must become more diverse and robust as well. Motivated by the need to 

deploy and recover UAV swarms from seafaring vehicles which are limited in the amount 

of room available to house the UAVs, this thesis formulates a trajectory generation method 
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specific to the landing of multiple quadcopters in a moving confined compartment. The 

method is capable of guiding the UAVs to their landing position on a moving landing vessel 

without colliding with the walls of the compartment in which they are to be stored. Inter-

vehicle collisions are guaranteed to be avoided as well. Generated trajectories are ensured 

to be flyable by taking the dynamic limitations of the vehicle into account during the 

trajectory generation stage.  

1.5. Organization of the Thesis 

 This chapter has provided some historical perspective and general motivation for 

the study of landing quadrotor UAV swarms on moving watercraft. To present the steps 

taken to address this problem, the thesis is organized as follows. Chapter 2 introduces a 

trajectory generation method for quadrotor UAVS. Chapter 3 explores how the trajectory 

generator may be specifically applied to the landing of a quadcopter swarm in a 

nonstationary confined compartment. Next, Chapter 4 demonstrates the efficacy of the 

trajectory generation method by examining a UAV swarm landing case study. Finally, 

Chapter 5 presents the conclusions made from the investigation and recommends further 

steps to be taken to better understand the nature of landing a swarm of quadcopters on a 

seafaring vessel. 
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Chapter 2 
 

MODEL FORMULATION 
 

2. Model Formulation 

2.1. Quadrotor UAV Model 

2.1.1. Reference Frames 

 A single quadrotor UAV can be described by first defining two frames of reference: 

the inertial global frame, G, and a body frame, B. Three orthonormal axes 𝑥 ⃗, 𝑦 ⃗, and 𝑧 ⃗ 

constitute the global frame where 𝑧 ⃗ is defined to point upwards, opposite the direction of 

gravitational acceleration, as can be seen in Figure 2.1. The origin of the body frame is 

fixed to the center of mass of the quadcopter with 𝑧 ⃗ defined to point in the direction of 

the thrust created by the four constant-pitch rotors. Axes 𝑥 ⃗ and 𝑦 ⃗ are then assigned 

arbitrarily along two perpendicular arms of the quadcopter. As derived and illustrated in-

depth in Appendix A, Z – X – Y Euler angles are employed to map the rotational 

relationship between the two frames. To translate from G to B, a rotation is performed 

about 𝑧 ⃗ by the yaw angle, 𝜑, then around the intermediary x-axis by the roll angle, ϕ, and 

finally about the second intermediary y-axis by the pitch angle, θ. This relationship results 

in the following rotation matrix which transforms vectors expressed in the body frame to 

their equivalent expression in the global frame, 

  𝑹 =  

𝑐𝜑𝑐𝜃 − 𝑠𝜑𝑠𝜃𝑠ϕ −𝑐ϕ𝑠𝜑 𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑𝑠ϕ
𝑐𝜃𝑠𝜑 + 𝑠𝜃𝑠ϕ𝑐𝜑 𝑐ϕ𝑐𝜑 𝑠𝜑𝑠ϕ − 𝑐𝜑𝑐𝜃𝑠ϕ

−𝑐ϕ𝑠𝜃 𝑠ϕ 𝑐𝜃𝑐ϕ
. (2.1) 
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In Equation (2.1), cφ and sφ are abbreviations for the cosine and sine of the yaw angle, 𝜑, 

and similarly for the roll and pitch angles. Including the translational displacement of the 

body frame, the complete transformation matrix [111] can be expressed as: 

 𝑻 =  

⎣
⎢
⎢
⎡
𝑐𝜑𝑐𝜃 − 𝑠𝜑𝑠𝜃𝑠ϕ −𝑐ϕ𝑠𝜑 𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑𝑠ϕ 𝑥 
𝑐𝜃𝑠𝜑 + 𝑠𝜃𝑠ϕ𝑐𝜑 𝑐ϕ𝑐𝜑 𝑠𝜑𝑠ϕ − 𝑐𝜑𝑐𝜃𝑠ϕ 𝑦 

−𝑐ϕ𝑠𝜃 𝑠ϕ 𝑐𝜃𝑐ϕ 𝑧 
0 0 0 1 ⎦

⎥
⎥
⎤
. (2.2) 

Where 𝑥 , 𝑦 , and 𝑧  are the x, y, and z coordinates of the UAV’s center of mass 

in terms of the global frame G respectively. 

 The angular velocity of the vehicle with respect to the global frame is synonymous 

with the angular velocity of frame B in frame G. Denoting the components of the angular 

velocity in the body frame as p, q, and r, the angular velocity as observed in the global 

frame is expressed as: 

 𝜔 = 𝑝 𝑥 ⃗ + 𝑞 𝑦 ⃗ + 𝑟 𝑧 ⃗  (2.3) 

where 𝑥 ⃗ , 𝑦 ⃗ , and 𝑧 ⃗  are the vectors describing the body frame axes in the global 

frame. According to the rotational relationships described previously, the angular velocity 

can be expressed in terms of the time derivatives of the roll, pitch, and yaw angles as 

 
𝑝
𝑞
𝑟

=

𝑐𝜃 0 −𝑐ϕ𝑠𝜃
0 1 𝑠ϕ

𝑠𝜃 0 𝑐ϕ𝑐𝜃

ϕ̇

�̇�
�̇�

. (2.4) 
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2.1.2. Quadcopter Dynamics 

 

Figure 2.1: Quadcopter Forces and the Reference Frames. 

 In this model, the external forces acting on the vehicle are gravity in the negative 

𝑧 ⃗ direction and the thrust from each of the four rotors in the positive 𝑧 ⃗ direction. The 

acceleration of the vehicle’s center of mass can thus be described by Newton’s equations 

in frame G as:  

 𝑚
�̈�
�̈�
�̈�

= 𝑹
0
0
𝑇

+
0
0

−𝑚𝑔
 (2.5) 

where m is the mass of the UAV, g the acceleration of gravity, and T the aggregate thrust 

created by the rotors. 

 External moments are created about 𝑥 ⃗ and 𝑦 ⃗ due to the displacement of the rotors 

from the vehicle’s center of mass while moments about 𝑧 ⃗ stem from the rotors’ ability to 

create a tendency to rotate about their own axis of rotation. Rotor 1 is defined to be the 

counterclockwise spinning actuator on the arm that runs along 𝑥 ⃗, Rotor 2 to be the 

clockwise spinning actuator along 𝑦 ⃗, Rotor 3 to spin counterclockwise on the −𝑥 ⃗ axis, 

and Rotor 4 to be spinning clockwise on the −𝑦 ⃗ arm. Denoting the equal lengths of the 
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quadcopter arms as L, and the quadcopter’s inertial tensor in B as I, application of Euler’s 

equations to the system in the body frame results in the following rotational relationships: 

 𝐈
�̇�
�̇�
�̇�

=

𝐿(𝐹 − 𝐹 )
𝐿(𝐹 − 𝐹 )

𝑀 − 𝑀 + 𝑀 − 𝑀
−

𝑝
𝑞
𝑟

×  𝑰
𝑝
𝑞
𝑟

. (2.6) 

Throughout this thesis, the vehicle is assumed to be axisymmetric thus, the only nonzero 

elements of I are the diagonal entries Ixx, Iyy, and Izz. 

 The state of the quadrotor system is completely defined by twelve state variables 

consisting of both the linear and rotational displacements and their respective velocities, 

�⃗� =  [𝑥 𝑦 𝑧 ϕ 𝜃 𝜑 �̇� �̇� �̇� ϕ̇ �̇� �̇�] . 

2.1.3. System Inputs 

 Capable of six degree of freedom (DOF) travel yet propelled by only four actuators, 

the quadrotor UAV is an underactuated system. Although its underactuated nature leads to 

complicated dynamics, the quadcopter is fortunate in the fact that a simple mapping exists 

between the rotor speeds and the forces/ moments created. For each rotor with an angular 

velocity denoted 𝜔 , a force in the 𝑧 ⃗ direction is created according to 

 𝐹 = 𝑘 𝜔 . (2.7) 

In this equation, kF is an empirically determined constant. Another such constant, kM, exists 

to model the moment produced by each rotor with angular velocity 𝜔  such that 

 𝑀 = 𝑘 𝜔 . (2.8) 

 Although not considered in this dissertation, a vector of control inputs, u⃗, is defined 

for illustrative purposes. Defining the first control input as the total thrust generated and 

the following inputs to be the body moments about 𝑥 ⃗, 𝑦 ⃗, and 𝑧 ⃗ respectively, the control 

inputs are expressed as 
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𝑢
𝑢
𝑢
𝑢

=  

𝑘 𝑘 𝑘
0 𝑘 𝐿 0

−𝑘 𝐿
𝑘

0
−𝑘

𝑘 𝐿
𝑘

    

𝑘
−𝑘 𝐿

0
−𝑘 ⎣

⎢
⎢
⎢
⎡
𝜔

𝜔

𝜔

𝜔 ⎦
⎥
⎥
⎥
⎤

. (2.9) 

2.1.4. Differential Flatness 

 A system’s dynamics is said to be differentially flat if there exists a set of chosen 

parameters, called flat outputs, such that the state, �⃗�, and the control inputs, u⃗, can be 

expressed as algebraic functions of the flat outputs and their derivatives. By definition, a 

dynamic system  �̇⃗� = 𝑓(�⃗�, u⃗), where f is a smooth vector field, is differentially flat if the 

vector of flat outputs, �⃗�, can be expressed as  

 �⃗� = ℎ(�⃗�, u⃗, u̇⃗, ü⃗, ⋯ , u⃗( )) (2.10 a) 

such that 

 �⃗� =  𝛼(�⃗�, �̇⃗�, �̈⃗�, ⋯ ,  �⃗�( ))   (2.10 b) 

 u⃗ =  𝛿(�⃗�, �̇⃗�, �̈⃗�, ⋯ ,  �⃗�( ))   (2.10 c) 

where h, 𝛼, and 𝛿 are smooth functions. For the case of a quadrotor UAV, the flat outputs, 

ρi, are defined to be the components of the vehicle’s position in G and the yaw angle, φ, 

resulting in the vector  

�⃗� = [𝑥 𝑦 𝑧 φ] . 

A detailed account of the relationships between the proposed flat outputs and the vehicle’s 

state and inputs are appended in Appendix B. In Chapter 3, the differentially flat nature 

will allow the dynamic constraints of a quadcopter to be expressed in terms of the vehicle’s 

trajectory and its derivatives.  
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2.2. The Landing Region 

Motivated by the real-world scenario of landing a swarm of quadcopter UAVs on 

a seafaring military vehicle such as an aircraft carrier, a mathematical representation of a 

moving “ship” with a region dedicated to the landing and storage of the UAVs is 

introduced. In this thesis, scenarios of the vehicles landing in cylindrical compartments in 

the ship’s top deck will be addressed. 

2.2.1. The Ship Frame of Reference 

 A new reference frame, S, is added to the system to relate the ship’s motion to the 

global frame. The frame consists of the three orthonormal axes 𝑥⃗, 𝑦⃗, and 𝑧⃗ and is 

restricted in its movements with respect to the global frame. For simplicity, the origin is 

defined to lay at the imaginary center of gravity of the ship which will be assumed to lay 

at the center of the ship’s top deck. The height of the top deck above sea level is denoted 

𝐻  such that in the global frame, the origin of the ship frame exists at a constant altitude of 

𝑧 = 𝐻 . Thus, the constant altitude implies that the origin of frame S is restricted to 

translational motion in the 𝑥 ⃗-𝑦 ⃗ plane. Figure 2.2 illustrates the relationship between the 

Global and Ship frames.  
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  Figure 2.2: The Ship Frame of Reference. 

Axis 𝑥⃗ of S extends in the direction of vessel motion and axis 𝑦⃗ extends through the port 

side of the ship. Axis 𝑧⃗ is defined upwards, opposite gravity, and remains in such an 

orientation since the ship frame is unable to rotate about the global 𝑥⃗ or 𝑦⃗ axes. The 

orientation of the ship in the 𝑥 ⃗-𝑦 ⃗ plane is represented by the angle γ, measured between 

𝑥 ⃗ and 𝑥⃗. Such relationships are enforced mathematically according to the transformation 

matrix: 

 𝑻 =

𝑐𝛾 𝑠𝛾 0 𝑥 
−𝑠𝛾 𝑐𝛾 0 𝑦 

0 0 1 𝐻
0 0 0 1

. (2.11) 
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2.2.2. Landing Docks 

It is assumed that in a real-world scenario, a ship would dedicate a certain area of 

its deck, and the volume below such areas, to the landing and storage of multiple UAVs. 

Capable of caring for NV quadcopters, the landing region contains ND landing docks 

described in the ship frame of reference, where ND = NV such that each quadcopter may 

have a place to land. In this thesis, the landing region will be modelled as a compartment 

within the ship’s hull which contains landing docks whose locations are fixed in the ship 

frame of reference. 

2.3. Trajectory Generation 

 Concerned with the matter of landing multiple quadcopter UAVs on a moving 

platform, there is an inherent desire to understand the vehicle’s motion along its final 

approach and the motion of the landing maneuver itself. Thus, for NV vehicles the goal is 

to generate NV trajectories that satisfy the dynamic constraints of the vehicle as well as the 

constraints imposed by the nature of the mission. For each vehicle “i” the goal is to generate 

 𝑝 : [0, 𝑡 ] → ℝ            𝑖 = 1,2, ⋯ , 𝑁  (2.12) 

wwww`. 

 Following from the work performed in [112,113], trajectories are generated by 

decomposing the problem into finding a purely geometric spatial component and a separate 

temporal component. This method has been shown to increase flexibility in the trajectory 

generation method when multiple vehicles must be separated by a distance at any point in 

time along with satisfying boundary conditions, dynamic constraints, and mission-specific 

constraints [107]. To develop the spatial path, the dimensionless parameter 𝜁 𝜖[0,1] is 
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introduced to replace time as the parameter upon which the vehicle location will depend. 

It then follows that the spatial path is defined by the mapping 

  𝑝 (𝜁 ): → ℝ            𝜁 𝜖[0,1]           𝑖 = 1,2, ⋯ , 𝑁 . (2.13) 

Of course, the nature of the real-world scenario requires that the vehicle position be 

described in terms of world clock time, t, thus a relationship between 𝜁  and t is a necessity. 

To accomplish this, a timing law, denoted 𝜃(∙), is introduced to dictate how 𝜁  evolves with 

time. For this purpose, the timing law for each vehicle is defined as  

  𝜃 (∙) =  (2.14) 

where 𝜃(∙) is a smooth, non-negative function of its arguments. 

2.3.1. Bèzier Curves 

 Following from the desire to generate trajectories in a computationally efficient 

manner, the family of parametric curves known as Bèzier curves is chosen to represent the 

relationships used in this model. A Bèzier curve of degree n is defined by a set of n+1 

control points and is expressed represented by 

 𝐶(𝜁) =  ∑ 𝛽 𝑏 (𝜁) 0 ≤ 𝜁 ≤ 1, (2.15) 

where the coefficients, 𝛽 , are the control points and 𝑏  are the basis Bernstein 

polynomials. The Bernstein polynomials are expressed as 

 𝑏 (𝜁) =  (1 − 𝜁) 𝜁  . (2.16 a) 

In this expression,  is the binomial coefficient and its value is given by  

 =
!

( )! !
. (2.16 b) 

2.3.1.1. de Casteljau Algorithm 

 Bèzier curves are derived from a computational process known as the de Casteljau 

algorithm, a procedure that can be thought of as a generalization of line interpolation. 
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Defining n+1 control points for a Bèzier curve of degree n, consecutive control points are 

connected by lines to form what is called the control polygon. An example of a third degree 

Bèzier curve and its control polygon is illustrated in Figure 2.3. 

 

Figure 2.3: Third Degree Bèzier and Control Polygon. 

 To form the Bèzier curve from its control polygon, the parametric equation of a line 

is used to calculate points along the sides of the control polygon. Denoting the original 

control points as 𝑃 , , then the points along the side of the control polygon can be described 

by 

  𝑃 , = 𝑃 , (1 − 𝑡) + 𝑃 , 𝑡 (2.17) 

where 𝑡 is the parameterizing variable such that 𝑡 ∈ [0,1]. These new points on the sides 

of the control polygon are connected consecutively with similar lines parameterized by 𝑡 

and this process is repeated with each new line being described by 

  𝑃 , = 𝑃 , (1 − 𝑡) + 𝑃 , 𝑡 (2.18) 

  𝑡 ∈ [0,1], 𝑗 ∈ {1, ⋯ , 𝑛}, 𝑖 ∈ {1, ⋯ , 𝑛 − 𝑗} 
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where 𝑗 indicates the “level” of the parametric line and n is the degree of the Bèzier curve. 

This procedure begins with n lines forming the control polygon and continues until only 

one parametric line remains. The evolution of a point along this final line lies on the Bèzier 

curve. Figure 2.4 updates Figure 2.3 to include the new “levels” notation as well as the 

intermediate lines. In Figure 2.4, the Bèzier curve is described as 𝐶(𝑡). 

   

  Figure 2.4: de Casteljau Algorithm. 

 The Bèzier curve begins at the first control point of the control polygon and 

terminates at the last. At both the start and end points, the Bèzier is tangent to the control 

polygon. Never encountering the intermediate control points, the Bèzier curve always lies 

within the convex hull of its control polygon. Along with always laying inside their convex 

hulls, Bèzier curves have the additional favorable characteristics of being closed under 

addition, subtraction, multiplication, differentiation, integration, and composition. With 

Bèzier curves being completely defined by their control points, many computational 
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procedures benefit from the ability to be computed strictly in terms of the constant control 

points. Such operations include the arithmetic operations and as will be seen in the 

following section, differentiation and integration. 

 de Casteljau algorithm also can subdivide an nth degree Bèzier curve into two 

separate segments both of which are themselves nth degree Bèzier curves defined on [0,1]. 

The union of these two segments results in the original curve. This procedure can be 

performed at any point, 𝜏, on the Bèzier curve 𝐶(𝑡) where 𝜏 ∈ (0,1) and the new control 

points are found via Equation (2.18). As an example, if Figure 2.4 is envisioned to be 

illustrated at 𝜏 = 𝑡, the original curve would be subdivided at the point P0,3. The first sub-

segment would originate at P0,0, terminate at P0,3, and contain the intermediate points P0,1 

and P0,2 according to Equation (2.18). Similarly, the second sub-segment would begin at 

P0,3, terminate at P3,0, and include P1,2 and P2,1. 

2.3.1.2. Derivatives of Bèzier Curves 

With the spatial path, timing law, constraints, and cost function that will be used to 

generate trajectories all to be defined as Bèzier curves in future sections, the goal of this 

section is to provide insight into the computational efficiency of calculating the derivative 

of a Bèzier curve. Recalling that an nth degree Bèzier curve is defined by n+1 control points, 

the derivative of a Bèzier curve as expressed in Equation 2.15 is 

 𝐶 (𝜁) = ∑ [𝑛(𝛽 − 𝛽 )]𝑏 (𝜁), 0 ≤ 𝜁 ≤ 1.          (2.19 a) 

To help illustrate the derivation of higher order derivatives, finite difference is employed 

and the control points are defined to be the 0th level differences denoted 𝐷  and such that 

𝐷 = 𝛽 . Equation (2.19 a) can then be written as 

 𝐶 (𝜁) = ∑ [𝑛(𝐷 − 𝐷 )]𝑏 (𝜁), 0 ≤ 𝜁 ≤ 1.           (2.19 b) 
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The difference between two consecutive 0th level differences is then defined as a 1st level 

difference denoted 𝐷 . This trend continues as necessary with each higher level being 

composed of the differences of the elements of the level below it. Such a trend can be 

illustrated using matrices as can be seen in the following. 

⎣
⎢
⎢
⎢
⎢
⎡
𝐷

𝐷

𝐷

𝐷

𝐷 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐷

𝐷

𝐷

𝐷

𝐷

𝐷 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  

Higher levels of finite differences can be found by multiplying the product by a finite 

difference matrix similar to the one illustrated, whose size has been adjusted for the one 

less element found in each higher level. 

With the levels of finite difference defined and represented by 𝐷 , where k 

represents the difference level, a generalized expression for the higher order derivatives of 

Bèzier curves is provided in Equation (2.20). 

 𝐶( )(𝜁) = 𝑛(𝑛 − 1)(𝑛 − 2) ⋯ (𝑛 − 𝑟 + 1) ∑ D 𝑏 (𝜁) (2.20) 

 It follows that the derivative of a Bèzier curve is itself a Bèzier curve and when 

regarded as its own curve, the derivative is referred to as the hodograph of the original 

curve. 
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2.3.1.3. Pythagorean Hodograph (PH) Bèzier Curves 

 Often when evaluating a vehicle’s path of travel, it is useful to calculate the arc 

length of the path to evaluate the distance travelled by the vehicle. For a general path 

denoted 𝑟(𝜁), the arc length, 𝑠(𝜁), is expressed as 

 𝑠(𝜁) = ∫ ‖𝑟 (𝜏)‖𝑑𝜏 = ∫ �⃗� (𝜏) + �⃗� (𝜏) + 𝑧 (𝜏) 𝑑𝜏. (2.21) 

Due to the square root in Equation (2.21), it is often that 𝑠(𝜁) cannot be found in closed-

form. To help solve this issue, the spatial paths will be described as a special type of Bèzier 

curve known as Pythagorean Hodograph (PH) Bèzier curves. 

 A curve is a Pythagorean Hodograph curve should its hodograph, 𝑟 (𝜁), satisfy the 

following Pythagorean condition 

 𝑥 (𝜁) +  𝑦 (𝜁) +  𝑧 (𝜁) =  𝜎 (𝜁) (2.22) 

for some polynomial 𝜎(𝜁). For a PH curve, the arc length equation expressed in (2.21) 

becomes 

 𝑠(𝜁) = ∫ 𝜎(𝜏)𝑑𝜏. (2.23) 

For an in-depth conversation on PH curves, the reader is referred to [114]. Theorem 21.1 

in [114] states that spatial Pythagorean hodograph curve must be expressible in terms of 

other real polynomials such that 

 𝑥 (𝜁) = 𝑢 (𝜁) + 𝑣 (𝜁) − 𝑝 (𝜁) − 𝑞 (𝜁) (2.24 a) 

 𝑦 (𝜁) = 2[𝑢(𝜁)𝑞(𝜁) + 𝑣(𝜁)𝑝(𝜁)] (2.24 b) 

 𝑧 (𝜁) = 2[𝑣(𝜁)𝑞(𝜁) − 𝑢(𝜁)𝑝(𝜁)] (2.24 c) 

with parametric speed 

 𝜎(𝜁) = 𝑢 (𝜁) + 𝑣 (𝜁) + 𝑝 (𝜁) + 𝑞 (𝜁). (2.25) 
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Appendix C demonstrates that the expressions of Equations (2.24) and (2.25) allow spatial 

PH Bèzier curves to be expressed compactly using a quaternion representation.  

2.3.2. Trajectory Generation Through Cost Minimization 

 With the basic mathematical entities employed in this thesis summarized, attention 

is now turned to the problem of finding trajectories for the UAVs to follow. In the simplest 

terms, the trajectory generation problem requires the connection of two points in space by 

a smooth curve that can be followed by a quadcopter with an adequate control system. 

These smooth curves will be designed with the goal of minimizing an appropriate such 

global cost function for the system denoted 𝐽(∙). 

 Though the boundary conditions will take on a non-constant nature later in this 

thesis, for this section it will be assumed that the boundary conditions between which a 

smooth curve will be designed are known. As with many trajectory generation problems, 

we assume that the initial and final vectors for the vehicle’s position and velocity are 

known. Noting that the trajectories will be described by Bèzier curves which only exist on 

the interval [0,1], the following boundary conditions are imposed on the system 

 𝑝 (𝜁 = 0) = 𝑝  𝑝 (𝜁 = 1) = 𝑝  (2.26 a,b) 

 �⃗� (𝑡 = 0) = �⃗�  �⃗� (𝑡 = 𝑡 ) = �⃗� . (2.26 c,d) 

As will be seen in the development of the timing law, the beginning of the trajectory in 

terms of the spatial parameter, 𝜁 , will correspond with 𝑡 = 0 and the end of the trajectory 

at 𝜁 = 1 will correspond to the end of the trajectory traversal time and thus correlate to 

𝑡 = 𝑡 . 
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 As described earlier, that trajectory will come in the form of a spatial path and a 

separate timing law. The following method generates the spatial path as a quintic PH Bèzier 

curve and thus, has the form  

 𝑝 (𝜁 ) = ∑ �̅� , ⃗ 𝑏 (𝜁 ) (2.27) 

for each vehicle, as 𝑖 = 1,2, ⋯ , 𝑁 . The vectors �̅� , ⃗ represent the control points which 

completely define the spatial curve. Quintic PH Bèzier curves have been studied 

extensively in [114–116]; the fifth order PH Bèzier is the most feasible selection as its 

higher-order counterparts can become unpredictable and more computationally intensive 

[112]. 

 To begin to find the control points of the spatial path, 𝑝 (𝜁 ), the implications of the 

boundary conditions of Equation (2.26) are first examined. The initial and final positions, 

evaluated at 𝜁 = 0 and 𝜁 = 1 imply that �̅� ,⃗ = 𝑝  and �̅� ,⃗ = 𝑝 . While prescribed 

velocities may initially appear to be a temporal constraint, it is observed that the initial and 

final first parametric derivatives of 𝑝 (𝜁 ) must be vectors with the same directions as �⃗�  

and �⃗�  respectively. Thus, with �⃗�  and �⃗�  known, their directional cosines are calculated 

and expressed as 𝛼 , 𝛼 , and 𝛼 . It follows that the first parametric derivatives of the spatial 

paths can be expressed as 

 
⃗ ( )

= 𝑝 (0) ∙

𝛼 (0)

𝛼 (0)

𝛼 (0)

, 
⃗ ( )

= 𝑝 (1) ∙

𝛼 (1)

𝛼 (1)

𝛼 (1)

. (2.28 a,b) 

It is important to note that 𝑝 (0)  and 𝑝 (1)  are properties of the spatial curve and 

are not the magnitude of velocity. Should these values be known, a smooth curve satisfying 

these endpoints and derivatives could be found as a first-order Hermite interpolation 

problem.  
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 As alluded to earlier, a benefit of spatial quintic PH Bèzier curves is their ability to 

be written compactly using quadratic quaternion Bèzier curves, Å (𝜁 ). These curves are 

equivalent to the Bèzier curves of Equation (2.15) except that the control points are 

quaternions Å , ∈ ℍ for 𝑘 = 0,1,2. A quaternion can be expressed as a scalar value and a 

vector such that a general quaternion, Å, may be represented as Å = 𝑎 + 𝑏𝚤̂ + 𝑐𝚥̂ + 𝑑𝑘 and 

that quaternion’s conjugate, denoted Å∗, is defined such that Å∗ = 𝑎 − 𝑏𝚤̂ − 𝑐𝚥̂ − 𝑑𝑘. As 

derived in [114] and explained in more detail in Appendix C, the following relationship 

exists between the control points of the spatial quintic PH Bèzier curve and the control 

points of its quaternion counterpart 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗  (2.29 a) 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + Å ,  𝚤̂  Å ,

∗  (2.29 b) 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + 4Å ,  𝚤̂  Å ,

∗ + Å ,  𝚤̂  Å ,
∗  (2.29 c) 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + Å ,  𝚤̂  Å ,

∗  (2.29 d) 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂  Å ,
∗  (2.29 e) 

where 𝚤̂ is the unit quaternion [0 1 0 0], and the control points �̅� ,⃗ and �̅� ,⃗ are defined 

by the boundary conditions. It follows that the four remaining control points can be written 

in terms of the three quaternions, Å , , Å , , and Å , . Referring again to Appendix C for 

further detail, the three quaternions can be found in terms of 𝑝 (0) , 𝑝 (1) , and two 

angular parameters 𝛽  and 𝛽 .These four parameters are the first four decision variables 

that will be solved for in the cost minimization process. Once they have been found 

according to the cost minimization, the spatial path is completely defined. 
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 In addition to the spatial path which is determined by the four aforementioned 

decision variables, a timing law was introduced in Equation (2.14) to account for the 

temporal specifications of the trajectory. Continuing to benefit from the properties of 

Bèzier curves, the timing law is defined as a quadratic Bèzier curve of the form 

  𝜃 (�̂� ) = ∑ �̅� , 𝑏 (�̂� )           𝑖 = 1,2, ⋯ , 𝑁  (2.30) 

where �̂�  represents the dimensionless time variable necessary to satisfy the Bèzier curve’s 

nature of being defined on the interval [0,1]. This dimensionless time variable is defined 

as 

   �̂� =   (2.31) 

and it follows that 

   𝑑�̂� = 𝑑𝑡.  (2.32) 

The introduction of this dimensionless time variable necessitates an update in the definition 

of the timing law such that  

   𝜃 (�̂� ) = . �̂� ∈ [0,1] (2.33) 

Should the occasion arise where the change in the spatial parameter 𝜁  with respect to clock 

time, t, be found, substitution of Equation (2.32) into (2.33) reveals the following 

relationship 

   = = 𝜃 (�̂� ).  (2.34) 

 From the definition of the timing law as expressed in Equation (2.33) an expression 

relating the spatial parameter 𝜁  to the dimensionless time, �̂� , can be found through 

integration as 

   𝜁 (�̂� ) = ∫ 𝜃 (𝜏) 𝑑𝜏.  (2.35) 
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Earlier it was mentioned that the beginning of the spatial path at 𝜁 = 0 would correspond 

to 𝑡 = 0 and the end of the trajectory at 𝜁 = 1 would correspond to 𝑡 = 𝑡 . Since 𝜃 (�̂� ) is 

a second degree Bèzier curve, it follows from the integration of Equation (2.34) that 𝜁 (�̂� ) 

is a third degree Bèzier curve and is thus defined by four control points as 

   𝜁 (�̂� ) = ∑ 𝜁̅
, 𝑏 (�̂� ).  (2.36) 

Enforcing that 𝜁 = 0 when 𝑡 = 0 implies that the 𝜁̅
, = 0 and constraining 𝜁  to have a 

value of one at 𝑡 = 𝑡  implies 𝜁̅
, = 1. The two remaining control points can be found in 

terms of the timing law control points from the definition of the derivative of a Bèzier curve 

as expressed in Equation (2.19 a) to be 

   𝜁̅
, = �̅� , + 𝜁̅

, = �̅� ,   (2.37 a) 

   𝜁̅
, = (�̅� , + �̅� , ).  (2.37 b) 

 It then follows that it is necessary to determine the control points of 𝜃 (�̂� ) to define 

the timing law. Continuing to exploit the integrative relationship used to derive the 

expressions of Equation (2.37), it can be found that the control point �̅� ,  can be written in 

terms of �̅� ,  and �̅� , . Employing Equation (2.19 a) to find an expression for �̅� , , the 

following relationship is presented 

  �̅� , = 3 𝜁̅
, − 𝜁̅

, = 3 1 − (�̅� , + �̅� , ) , (2.38 a) 

rearranging reveals  

   �̅� , = 3 − �̅� , − �̅� , .  (2.38 b) 

To find the remaining control points, the implications of the boundary conditions of 

Equation (2.26) are employed. The directions of the initial and final velocity vectors were 

used to solve for the spatial path but the magnitude of velocity has yet to be enforced upon 
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the system. To prescribe these conditions, the following expression for the speed profile is 

derived 

  ‖�⃗�(�̂� )‖ =
⃗ ( )

=
⃗ ( )

= 𝑝 (𝜁 (�̂� )) 𝜃 (�̂� ), (2.39) 

where 𝜁 (�̂� ) can be brought outside of the norm due to its positive nature. Prescribing the 

initial and final values of Equation (2.39) as implied by the boundary velocity vectors 

results in the following relationships 

  𝑝 (0) �̅� , = �⃗�   (2.40 a) 

  𝑝 (1) �̅� , = �⃗� .  (2.40 b) 

Noting that 𝑝 (0)  and 𝑝 (1)  are the same decision variables needed to determine the 

spatial path, 𝑡  is introduced as the fifth and final decision variable such that the timing 

law control points can be found in terms of boundary conditions and decision variables 

according to 

  �̅� , =
⃗

⃗ ( )
  (2.41 a) 

  �̅� , =
⃗

⃗ ( )
.  (2.41 b) 

 With the inclusion of 𝑡  into the family of decision variables, a complete decision 

variable vector for each vehicle can be expressed as  

  𝜩 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑝 (0)

𝑝 (1)

𝛽

𝛽

𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

.  (2.42) 
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Combining the set of decision variables as expressed in Equation (2.42) with the boundary 

conditions of Equation (2.26) a smooth curve can be found as a first-order Hermite 

interpolation problem.  

 A set of decision variables are found for each vehicle through the minimization of 

a global cost minimization process. Since the boundary conditions are inherently satisfied 

from the way the problem has been setup, the goal becomes to generate trajectories by 

solving the following constrained optimization problem 

  min
𝜩 ×⋯×𝜩

𝐽(∙)  (2.43) 

 s.t. Dynamic Constraints 

  Deconfliction Constraints 

  Mission Specific Constraints. 

The cost function and constraints of Equation (2.43) are explored in detail as part of 

Chapter 3.  

 Chapter 2 has detailed the trajectory generation method to be employed throughout 

the rest of this thesis. Given the boundary conditions of Equation (2.26) and solving for the 

decision variables of Equation (2.42) to minimize some desired cost function 𝐽(∙), a smooth 

curve is found according to the first-order Hermite interpolation problem. In the next 

chapter, the constraints of Equation (2.43) are detailed to investigate the landing of 

quadcopter UAV swarms on a moving vessel.



36 
 

Chapter 3 
 

LANDING SCENARIO CONSTRAINTS 
 

3. Landing Scenario Constraints 

 This chapter aims to summarize the methods employed to explore the UAV swarm 

landing problem using the model proposed in Chapter 2. The trajectory generation method 

proposed in Chapter 2 aims to find trajectories that minimize a global cost function by 

solving a constrained optimization problem. In this chapter, the constraints dictated by the 

nature of the landing problem are defined so that the trajectory generation method may find 

safe trajectories for multiple UAVs to land in the vehicle storage compartment of a moving 

seafaring vessel.  

 In the interest of computational efficiency, the constraints of the following section 

are encouraged to be in Bèzier form wherever possible so that the appropriate global 

maxima and minima of constrained parameters may be determined quickly and efficiently. 

This is achieved through a modification of the work presented in [117]. In this work, Chang 

et al. present a culling-based algorithm for computing the minimum distance between two 

Bèzier curves (or surfaces). Taking advantage of the famous Gilbert-Johnson-Keerthi 

(GJK) algorithm [118,119] to efficiently compute the distance between the convex hulls of 

two Bèzier curves, a MATLAB implementation of Chang et al.’s method was created for 

this thesis which can quickly ensure that constraints in the Bèzier form have not been 

violated. 

 This thesis employs the MATLAB R2017a mathematics software as developed by 

MathWorks, Inc. to model the trajectory generation framework. To solve the constrained 
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optimization problem, the MPBNGC 2.0 proximal bundle method optimization Fortran 

subroutine [120] was integrated into the MATLAB scripts. A bundle method solver is 

employed to address the nonsmooth nature of the proposed constrained optimization 

problem that will be revealed within this chapter. The MPBNGC 2.0 Fortran code was 

kindly by provided by Prof. Marko M. Mäkelä of the University of Turku, Finland. All 

necessary tools and software are installed on an Acer Aspire R5 laptop computer operating 

with a 64-bit Windows 10 operating system. The unit has an Intel Core i7 (7th generation) 

CPU rated to perform at 2.70 GHz. 12 GB of RAM memory are installed on the machine 

and a user-defined portion of the 1 TB HDD can be reassigned to function as RAM memory 

through a virtual memory option. An NVIDIA GeForce 940 MX GPU processes all visual 

simulations and graphics. 

3.1. Vehicle Constraints 

 Motivated to create the most realistic model possible, an existing quadrotor UAV 

is chosen to provide the parameters necessary to accurately reflect the dynamical 

limitations of the individual vehicles. Physical properties are adopted from existing data 

and it is assumed that the vehicle has an adequate control system that is capable of 

following any desired, dynamically feasible, trajectory. 

3.1.1. The Ascending Technologies Hummingbird Quadcopter 

 Existing literature demonstrates an extensive use of the Ascending Technologies 

(AscTec) Hummingbird [121] research quadrotor UAV, pictured in Figure 3.1. In this 

work, the AscTec Hummingbird is adopted as the model upon which the simulated UAVs 

will be based. This choice benefits from the availability of the inertial and motor properties 

of the system being well documented in the literature as well as being an extremely flexible 
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and popular quadrotor for research efforts should this work be extended to real-world 

experimentation. 

 

Figure 3.1: The AscTec Hummingbird Quadcopter [121]. 

The inertial and dimensional properties of the AscTec Hummingbird quadcopter are 

accepted as published in [122]. Values for the force and moment coefficients, kF and kM, 

featured in Equations (2.7) and (2.8), have been determined empirically in [76]. This 

referenced work also presents experimentally determined bounds on rotor speeds. All 

necessary vehicle properties have been tabulated in Table 3.1. 
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Table 3.1: Properties of the AscTec Hummingbird. 

3.1.2. Physical Limitations 

 To ensure that the designed trajectories can be flown by real-world quadcopters, 

the physical limitations of the vehicles are included in the trajectory generation process. 

The first and perhaps most obvious constraint is the maximum velocity at which the vehicle 

can move. Ascending Technologies lists the maximum velocity of the Hummingbird to be 

15  [121]. However, the vehicles in this thesis shall be limited to 8  as Huang et al. [123] 

show that at speeds greater than this, aerodynamic effects contribute largely to the system 

dynamics and the dynamics begin to resemble that of a fixed-wing aircraft. Thus, the limit 

of 8  is enforced to ensure the accuracy at which the trajectory can be followed as well as 

the integrity of any dynamics-based metrics. 

 In Chapter 2, an expression for the speed profile of the trajectory was stated as a 

Bèzier curve in Equation (2.39) to impose the boundary conditions on the system. That 

expression is employed once more to enforce the previously described velocity constraint 

as 

Vehicle Property Value

Mass (m) 0.5 kg

Arm Length (L) 0.17 m

Ixx 0.00365 kg·m2

Iyy 0.00368 kg·m
2

Izz 0.00703 kg·m
2

Force Coefficient (kF)      6.11·10
-8 

Moment Coefficient (kM)      1.50·10
-9 

Maximum Rotor Speed (ωmax) 7800 rpm

Minimum Rotor Speed (ωmin) 1200 rpm

N

rpm

N m

rpm
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  0 ≤ 𝑝 𝜇 (�̂� ) 𝜃 (�̂� ) ≤ 8           ∀�̂� ∈ [0,1]. (3.1) 

The upper bound of Equation (3.1) follows from the discussion above but it may seem 

redundant to constrain a velocity vector’s magnitude to be greater than zero. First, it should 

be stated that a quadcopter can achieve speeds of 0  as they do not suffer from the stalling 

phenomenon common in fixed-wing aircraft. Second, requiring the vehicle’s speed to be 

positive removes the need for an additional constraint forcing the timing law to be a non-

negative function. Thus, enforcing the speed profile to be positive eliminates the need to 

find another expression to constrain 𝜃 (�̂� ).  

 To enforce constraints such as the one stated in Equation (3.1) for all �̂� ∈ [0,1] 

would require an infinite number of constraints corresponding to the infinite number of 

values on [0,1] for which the constraints must hold. This implies that the constrained 

optimization problem belongs to a class of problems known as Semi-Infinite Programming 

(SIP) problems. However, the method described earlier to calculate the global maxima and 

minima of Bèzier polynomials allows the constraint of Equation (3.1), and all future 

constraints, to be expressed as 

  0 ≤ min
 

𝑝 𝜇 (�̂� ) 𝜃 (�̂� ) (3.2 a) 

  max
 

𝑝 𝜇 (�̂� ) 𝜃 (�̂� ) ≤ 8 . (3.2 b) 

This allows the SIP problem to be expressed as a finite-dimensional nonsmooth 

optimization problem. The nonsmoothness is a result of the minimum and maximum 

functions being nondifferentiable and motivates the choice of a bundle method solver.  
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 Section 2.1.2 introduced the dynamic model of the quadcopter which provides the 

equations of motion which govern the movement of the individual vehicles. Recalling the 

linear dynamics of Equation (2.5), 

  𝑚
�̈�
�̈�
�̈�

= 𝑹
0
0
𝑇

+
0
0

−𝑚𝑔
 

it can be seen that with aerodynamic effects neglected, an individual vehicle’s linear 

accelerations are dictated by gravitational forces and the net thrust created by all four 

rotors. Equation (2.7) illustrates that the thrust created by each rotor is proportional to the 

square of the rotor’s speed. Physical limitations on the rotor motors implies a limit on rotor 

speed and thus, a limitation on thrust. Assuming the quadcopter is driven by identical rotors 

and motors, the maximum thrust that can be produced is 

  𝑇 =  4 𝑘  𝜔 . (3.3) 

Employing the parameters of the Hummingbird quadcopter, the vehicles employed in this 

work are capable of creating a maximum thrust of about 14 𝑁. Dividing the linear dynamic 

equations of (2.5) by the Hummingbird’s mass and substituting the maximum value for 

thrust in, the maximum linear accelerations of the vehicle are given by 

  
�̈�
�̈�
�̈�

= 𝑹

0
0

28
−

0
0

9.8
. (3.4) 

As the rotation matrix 𝑹 distributes the acceleration due to thrust among the three 

Euclidean axes depending on the vehicle’s attitude, a conservative approach is taken in this 

work to ensure feasibility and the magnitude of the vehicle’s acceleration is prescribed an 

upper bound of 20 . To impose this bound, the second time derivative of 𝑝 , (𝜇 ) is taken 
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in a manner similar to that which revealed the expression for the speed profile earlier. The 

acceleration profile is then stated as 

 
⃗ ( )

=
( )

𝑝 𝜇 (�̂� ) 𝜃 (�̂� ) + 𝑝 𝜇 (�̂� ) �̇�(�̂� ) = ‖�⃗�(�̂� )‖. (3.5) 

However, due to the square root implied with the norm function, Equation (3.5) is not a 

Bèzier polynomial. Desiring to impose the constraints in Bèzier form for computational 

efficiency, the acceleration constraint is imposed on the square of the acceleration profile 

and thus, has a maximum value of 202  and the constraint becomes 

 ‖�⃗�(�̂� )‖ =
( )

𝑝 , 𝜇 (�̂� ) 𝜃 (�̂� ) + 𝑝 , 𝜇 (�̂� ) �̇�(�̂� ) ≤ 400   (3.6) 

3.2. Mobile Landing Vessel 

 The introduction of a mobile vessel on which the individual UAVs will land 

interferes with the earlier description of the trajectory generator. Chapter 2 formulated 

trajectories based on constant boundary conditions but landing on a moving vessel implies 

a dependence of the final boundary conditions on time and the motion of the vessel. For 

the work presented in this thesis, it is assumed that the trajectory of the landing vessel is 

known. Actual tracking of a moving vehicle by the swarm involves locating both the UAVs 

and the vessel in open water, sampling times to update the positions of the vehicles, and an 

advanced control system to steer the UAVs to the vessel; all of which are difficult research 

problems in themselves and are outside the scope of this thesis. A ship such as an aircraft 

carrier that does not make any erratic, unpredictable movements, is thus considered in this 

work. It is assumed that the seafaring vessel is relatively slow-moving with respect to the 

speed capabilities of the UAV to ensure that the UAV has the means to catch the vessel.  
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 With the assumption that the simple motion of the ship is described by a trajectory 

known to the individual UAVs, the description of the ships motion begins with an initial 

position and a constant velocity such that 

 𝑆(𝑡) =  𝑆 + 𝑉 ∗ 𝑡 (3.7) 

where 𝑆(𝑡) is the ship’s position as a function of clock time, 𝑆  is the ship’s original 

position, and 𝑉  is its constant velocity. Equation (3.7) is simple in nature but lacks the 

Bèzier form that is desirable to keep the computations efficient. For a UAV to successfully 

land on the vessel, it must have no relative motion with respect to the ship at the end of its 

trajectory. Thus, for each vehicle the final boundary conditions are updated such that 

 𝑝 (𝜇 = 1) = 𝑆(𝑡 ) �⃗� (𝑡 = 𝑡 ) = 𝑉 . (3.8 a, b) 

 Though unnecessary to impose the final boundary conditions on the vehicles, the 

dependence of future constraints on the ship’s trajectory motivates the need to express the 

ship’s motion in Bèzier form. As will be seen in future sections, constraints will require a 

comparison between an individual UAV’s position and the position of the ship at some 

given clock time, 𝑡. To compare the values of the UAV’s position with the ship’s position, 

the equations describing the two positions must evolve with clock time identically. With 

the UAV’s position already expressed as a Bèzier curve, the comparison between the two 

positions is made by describing the ship’s position in the following form for that particular 

constraint: 

  𝑆(�̂� ) =  𝑆 + 𝑉 ∙ 𝑡 ∙ = 𝑆 + 𝑉 ∙ 𝑡 ∙ �̂� . (3.9) 

To be expressed as a Bèzier curve, Equation (3.9) is rewritten as 

   𝑆(�̂� ) = ∑ 𝑆̅⃗
, 𝑏 (�̂� )  (3.10) 
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where 

   𝑆̅⃗
, = 𝑆   (3.11 a) 

   𝑆̅⃗
, = 𝑆 + 𝑉 ∙ 𝑡 .  (3.11 b) 

Care should be taken when implementing Equation (3.10) as it is a UAV-specific 

expression for the ship’s trajectory and thus, can only be employed to constrain that specific 

UAV’s trajectory. 

3.3. Compartment Constraints 

 It has been stated that the ship on which the team of UAVs will land features a 

compartment dedicated to housing all the individual vehicles. Within this compartment it 

is assumed there exist fixed docks where the vehicles must land to recharge and prepare 

for the next deployment. Though now the landing vessel is imaginary, the compartments 

are modeled as circular boreholes in the center of the ship’s top deck which extend some 

prescribed depth into the hull. It is then necessary to constrain the trajectory generator such 

that the vehicle’s do not collide with the walls of the compartment. In this section, the 

constraints necessary to avoid such collisions are first illustrated for the case of a 

compartment that has no motion then extended to the moving compartment case. 

3.3.1. Fixed Compartment 

 To illustrate the mechanics of the novel compartment constraints that prevent 

collisions between the vehicles and the walls of the confined UAV storage compartment, 

a static compartment is first considered. For simplicity, it is assumed that the compartment 

is of cylindrical shape with a radius of xR and the axis of the cylindrical compartment being 

coincident with the global Z-axis. The compartment opens at an altitude of 𝑧 = 𝐻 , 

reflecting the notion of the ship’s top deck being above sea level and the vehicle will land 
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in the center of the circular tube. An illustration of a such a compartment is provided in 

Figure 3.2. 

  

 Figure 3.2: A Simplified Stationary UAV Storage Compartment. 

 Figure 3.2 identifies the location of the UAV by the vector 𝑝 and illustrates the 

compartment as a blue corridor. Simple vector mathematics reveals that the vehicle’s 

lateral distance from the cylindrical compartment’s axis can be expressed as  

 ‖𝑝 − (𝑝 ∙ 𝑧 ⃗)𝑧 ⃗‖. (3.12) 

It becomes necessary to ensure that the lateral distance described by Equation (3.12) is less 

than xR when the vehicle has a global altitude less than 𝐻 . 

 While there may be many ways to ensure that ‖𝑝 − (𝑝 ∙ 𝑧 ⃗)𝑧 ⃗‖ < x  for the 

appropriate vehicle attitudes, stress is placed on finding a constraint in Bèzier form to 

exploit the efficient methods available to enforce such constraints. To develop such a 

constraint, it is noted that the vector 𝑝 − (𝑝 ∙ 𝑧 ⃗)𝑧 ⃗ can be expressed in Bèzier form as 
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Bèzier curves are closed under multiplication but the implied square root in the norm 

function of Equation (3.12) threatens the retention of the Bèzier form. Similar to the 

procedure performed on the acceleration constraint, both sides of the inequality are squared 

resulting in the following desired relationship for select altitudes: 

  ‖𝑝 − (𝑝 ∙ 𝑧 ⃗)𝑧 ⃗‖ < x . (3.13) 

 To enforce the altitude condition on when Equation (3.13) should be imposed on 

the system, the left side of Equation (3.13) is multiplied by an altitude-indicating 

coefficient of Bèzier form which also serves to make the constraint more conservative and 

thus, more likely to avoid collision. Introducing the aforementioned altitude-indicating 

coefficient, the final constraint imposed on the system is expressed as 

  1 +   ( ⃗∙ ⃗)
‖𝑝 − (𝑝 ∙ 𝑧 ⃗)𝑧 ⃗‖ < x . (3.14) 

Realizing the quantity (𝑝 ∙ 𝑧 ⃗) is the altitude of the vehicle, it shall be referred to as 𝑝  here 

forth. Figure 3.3 improves upon the illustrations of Figure 3.2 to demonstrate the mechanics 

of the constraint expressed in Equation (3.14). 
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  Figure 3.3: Altitude-Indicating Compartment Constraint Coefficient. 

Examination of Figure 3.3 and the behavior of the altitude-indicating coefficient, reveals 

that for altitudes greater than twice the compartment depth the constraint of Equation (3.14) 

has no effect as a negative coefficient multiplied by a positive quantity will always be 

negative and therefore, always less than the compartment radius squared. Once the vehicle 

has an altitude less than twice the compartment depth, the constraint begins to influence 

the lateral distance of the vehicle from the cylinder axis. The constraint is considered to be 

conservative in the fact that it begins to pull the UAV towards the compartment’s axis 

before the vehicle has entered and also requires the lateral distance to be much less than 

the cylinder radius as the vehicle proceeds further into the compartment. 

3.3.2. Moving Compartment 

 Section 3.3.1 presented a simplified case of a stationary compartment to exhibit the 

mathematical mechanics behind the constraints. This simplified model is now expanded 

upon to ensure that collisions do not occur as the global positions of both the vehicle and 
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the compartment walls change with time. The differentiating factor between the stationary 

and moving case then comes from the motion of the center of the compartment entrance 

which had been fixed previously. It follows from the nature of the ship that the location of 

the entrance can be described by the ship location, Equation (3.10). Figure 3.4 illustrates 

the new vector relations where the compartment entrance is located by the ship’s position, 

denoted 𝑆. 

   

  Figure 3.4: Moving Landing Compartment. 

Figure 3.4 employs the Bèzier form of the ship’s trajectory as expressed in Equation (3.10). 

The figure also introduces a new vector, denoted 𝐷, which represents the UAV’s lateral 

distance from the axis of the cylindrical apartment. According to the figure, this vector 

takes on the value 

  𝐷 = 𝑝 − 𝑆 − 𝑝 − 𝑆 ∙ 𝑧⃗ . (3.15) 

It follows that the final compartment constraint for a moving landing volume may be 

expressed as 



49 
 

  1 +   ( ⃗∙ ⃗)
𝐷 < x  (3.16) 

where 𝐷 is defined according to Equation (3.15). 

3.4. Collision Avoidance (Deconfliction) 

 Deconfliction between two or more vehicles can be achieved through two 

mechanisms: spatial deconfliction which ensures the two trajectories never come within 

some distance of one another and temporal deconfliction which allows the trajectories to 

overlap one another so long as not at the same moment in time. The tight, confined quarters 

of the landing compartment may require the spatial paths of the vehicle trajectories to 

overlap and so temporal deconfliction is employed to avoid collisions amongst the vehicles. 

 To ensure that collisions among vehicles are avoided, a spatial clearance, 𝐶 , is 

defined as the minimum distance between the center of masses of any two UAVs at a 

specific moment in time. Since the constraint restricts that spatial distances between 

vehicles with respect to time, the spatial path 𝑝 (𝜇 ) must be re-parameterized in terms of 

�̂� . Since Bèzier curves are closed under composition, it can be shown that 𝑝 (�̂� ) can be 

expressed as a PH Bèzier curve of degree fifteen. Thus, 𝑝 (�̂� ) is written as 

 𝑝 (�̂� ) = ∑ 𝑝 , 𝑏 (�̂� ). (3.17) 

 Although Equation (3.17) states that each of the trajectories can be expressed in 

terms of the vehicle’s respective dimensionless time variable, temporal deconfliction 

necessitates the spatial separation of vehicles at any instant in global clock time. Thus, the 

issue arises that for vehicles 𝑖 and 𝑗 where 𝑖, 𝑗 = 1, ⋯ , 𝑁  and 𝑖 ≠ 𝑗, at a certain clock time 

t, �̂� ≠ �̂�  since each dimensionless time is dependent on the individual vehicle’s total 
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trajectory traversal time, 𝑡  or 𝑡 . For the following discussion, two trajectories, 𝑝 (�̂� ) and 

𝑝 �̂� , are considered and it is assumed that 𝑡 > 𝑡  without loss of generality. 

 When vehicle 𝑗 completes its mission, the vehicle will be located in one of the 

landing compartment’s landing docks and vehicle 𝑖 will still be traversing its trajectory. 

Thus, for any clock time 𝑡 > 𝑡 , the trajectory 𝑝 (�̂� ) need only avoid the volume dedicated 

to the storage of vehicle 𝑗. To best study the landing behavior of multiple quadrotor UAVs, 

no constraint is imposed on the path 𝑝 (�̂� ) to avoid the location 𝑝 (1). Instead, such 

considerations are taken into account when discussing observations made of swarm landing 

behavior in Chapter 4 as such collisions may be dependent upon the arrangement of landing 

docks within the compartment. 

 Keeping the aforementioned notion in mind, the mission of vehicle 𝑗 is considered 

to be completed when 𝑡 > 𝑡 . The deconfliction constraint can then be stated as 

  𝑝 (�̂� ) − 𝑝 �̂� ≥ 𝐶 ,            ∀𝑡 ∈ 0, 𝑡 . (3.18) 

Since, as discussed earlier, �̂� ≠ �̂�  at a given clock time 𝑡, measures must be taken to ensure 

temporal deconfliction according to clock time. To achieve this, the de Casteljau algorithm 

described in Section 2.3.1.1 is employed to subdivide the trajectory of vehicle with the 

larger trajectory traversal time, vehicle 𝑖 in this case. The trajectory 𝑝 (�̂� ) is subdivided at 

the point  

𝛼 = . Recalling that de Casteljau algorithm separates the original curve into two separate 

Bèzier curves both of which are defined on [0,1], the first segment corresponds to 𝑝 (�̂� ) 

for 𝑡 ∈ 0, 𝑡 . This first new Bèzier curve is denoted 𝑝 (�̂� ) and is defined on �̂� ∈ [0,1]. 

If �̂�  is allowed to evolve at the same rate as 𝑡  then, as it has been shown in [112], 



51 
 

  𝑝 (�̂� ) = 𝑝 �̂� ,            ∀𝑡 ∈ 0, 𝑡 . (3.19) 

The constraint proposed in Equation (3.19) can then be rewritten as 

  𝑝 �̂� − 𝑝 �̂� ≥ 𝐶 ,            ∀𝑡 ∈ [0,1]. (3.20) 

 Expanding this conclusion to the general case of any of the NV vehicles, the 

deconfliction constraint is stated as 

  min
, ,⋯

∑ 𝑝 , 𝑏 �̂� ≥ 𝐶  (3.21 a) 

where 

  �̂� =  (3.21 b) 

  𝑡 = min
 

𝑡 , 𝑡  (3.21 c) 

and 

  𝑝 , =
𝑝 , − 𝑝 ,

 ,   if 𝑡 > 𝑡

𝑝 ,
 − 𝑝 , ,   if 𝑡 > 𝑡

. (3.21 d, e) 
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Chapter 4 
 

CASE STUDY AND DISCUSSION 
 

4. Case Study and Discussion 

 Determined to contribute to the problem of landing multiple quadrotor UAVs in a 

confined compartment on a moving vehicle, the effectiveness of the proposed model of 

Chapters 2 and 3 is presented in this chapter. Some experimental parameters and definitions 

necessary to illustrate the context of the case study are first presented. The investigation 

then verifies the capabilities of the model for different initial UAV-landing vessel 

configurations, ensuring that the constraints specific to the landing problem are not 

violated. Observations from the case study are then analyzed to provide insight into how 

the trajectory generation method may best contribute to the UAV swarm landing problem. 

4.1. Experimental Parameters 

 Before beginning to study the effectiveness of the proposed trajectory generation 

method, a set of experimental parameters is first defined to clarify the physical properties 

of the system.  

   

  Figure 4.1: Generic Experimental Setup Schematic 
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Figure 4.1 presents a basic schematic of a general experimental setup. For the experiments 

described here within, the ship will originate at the origin of the 𝑥 ⃗-𝑦 ⃗ plane and be 

designated a velocity vector, 𝑉⃗, consisting only of a constant, positive 𝑦 ⃗ component. It 

follows that the ship frame of reference, S, has an original position of [0 0 H ]  𝑚. 

UAVs are denoted u  for i ∈ {1, ⋯ , 𝑁 }, where u  is considered the “leading UAV.” The 

initial position of u  is defined by a radius-angle pair, [𝑟, 𝜃] where 𝜃 ∈ [0, 𝜋] is measured 

counterclockwise from 𝑦 ⃗ and has some altitude, A, along +𝑧 ⃗. Unless stated otherwise, 

subsequent vehicles, u  for i ∈ {2, ⋯ , 𝑁 }, are each defined by an identical displacement 

distance, d, from the vehicle i − 1 in front of it along the line [𝑟, 𝜃]. All UAVs initially 

share the same altitude value, A, and initial velocity vector, 𝑉 . 

 Three main initial UAV-ship configurations will be referred to in this document. 

The “head-on” configuration corresponds to 𝜃 = 0 and the velocities of the UAVs are in 

the opposite direction of that of the landing ship. A “side-approaching” scenario indicates 

𝜃 =  and the initial UAV-ship velocities are perpendicular. Finally, when 𝜃 = 𝜋, the 

configuration is referred to a “tail-chasing” approach. Figure 4.2 illustrates the basic setup 

of each initial configuration. 
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(a) “Head-On” Scenario (b) “Side-Approaching” Scenario (c)  “Tail-Chasing” Scenario 

 

Figure 4.2: Common Experiment Initial Configurations 

 During a real-world scenario, the landing procedure would be considered a failure 

should any UAVs collide with another aerial vehicle or with the walls of the compartment. 

Thus, the importance of vehicles not colliding with compartment walls or one another will 

be stressed to avoid catastrophic incidents. For this reason, it is important to describe the 

parameters that will be used to enforce such constraints. As stated in Table 3.1, the AscTec 

Hummingbird has arms that are 0.17𝑚 long. Considering the rotor radius of 0.10𝑚 in 

addition to the arm length, the vehicle has a total diameter of 0.54𝑚. It follows that to 

avoid intervehicle collisions, the center of masses of any two vehicles must be separated 

by a distance of at least 0.54𝑚. Inclusion of a safety factor, chosen to have a value of about 

1.4, promotes the enforcement of a spatial clearance of 0.75𝑚 between the center of 

masses of any two UAVs at any point in time. This value for the required spatial clearance 

between vehicles shall remain constant for the remainder of the investigation. 

 With a total diameter of 0.54𝑚, the dimensions of the quadcopter also dictate the 

allowable dimensions of the vehicle storage volume. A storage volume shall be defined in 

terms of the quadcopter dimensions to reflect a sense of how confined the compartment is. 
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With a height of 0.0855𝑚, it is required that quadcopters landing at the deepest depths of 

the compartment land at an altitude of 𝑧 = 0.04275𝑚. Vehicles landing nearest the top 

deck land at an altitude of 𝑧 = (𝐻 − 0.04275)𝑚 to ensure the quadcopter is 

completely submerged below the ship’s deck. Coupling these notions with the mandatory 

spatial clearance of 0.75𝑚, the height of a compartment designed to house NV vehicles, is 

defined as 

 𝐻 =  0.0855𝑚 + (N − 1) ∙ 0.75𝑚. (4.1) 

A description of the compartment’s radius, 𝑅 , is provided by Equation (4.2) where the 

vehicle’s diameter is scaled by a parameter 𝑘  such that 

 𝑅 = 𝑘 ∙ (0.54𝑚). (4.2) 

4.2. Case Study 

 To demonstrate the ability of the methods proposed in this work to generate 

trajectories which successfully land the individuals of a UAV swarm in a nonstationary 

confined compartment, a case study is presented. As it is unlikely that the UAV swarm will 

ever be approaching its destination vehicle completely “head-on” or completely from 

behind, a “side-approaching” experimental setup is chosen to illustrate the effectiveness of 

the method. 

 By the nature of the “side-approaching” setup, the initial angle is defined as 𝜃 = . 

The radius belonging to the radius-angle pair, [𝑟, 𝜃], is set at 20𝑚, the same value is taken 

for the initial altitude as well. With the system containing three UAVs total, each initially 

with 1𝑚 of separation from one another, the constrained optimization problem is 

formulated such that the amount of time it takes for all three UAVs to land is minimized. 

In accordance with Equations (4.1) and (4.2), the cylindrical compartment is defined such 
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that 𝐻 =  1.5855𝑚 and 𝑅 = 1𝑚. All the parameters necessary to describe the 

experimental setup employed in the case study have been tabulated and are presented in 

Table 4.1. 

 

 Table 4.1: Case Study Experimental Parameters. 

All trajectories were generated by attempting to minimize the amount of time needed for 

the UAV to traverse its trajectory. The resulting trajectories generated for the experimental 

parameters established are plotted separately in Figure 4.3, separate plots are used only for 

visual clarity. 

 

Figure 4.3 (a): Vehicle 1 Trajectory (Traversal Time of 6.39s). 
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Figure 4.3 (b): Vehicle 2 Trajectory (Traversal Time of 7.19s). 

 

Figure 4.3 (c): Vehicle 1 Trajectory (Traversal Time of 10.51s). 
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 All vehicles were shown to successfully intercept the moving vehicle at an altitude 

corresponding to a particular landing dock within the confined compartment. Overall, the 

trajectories took the general form of the expected shape with some minor inconsistencies, 

likely due to the suboptimal nature of the optimization problem solution as a time 

minimizing process would generate a straighter spatial path. The final landing maneuver 

created by the trajectory generator has the UAV following a nearly vertical path to stay 

within the confines of the UAV storage compartment. 

 Although the shape of the trajectories were not always completely smooth and the 

final landing maneuver is observed to be of a very rigid nature, it can be seen that the 

physical limitations of the vehicle are never violated. Figure 4.4 illustrates the velocities 

and the acceleration constraint values of the vehicles throughout their flights. 

 

   

Figure 4.4 (a): UAV Speed Profiles 
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Figure 4.4 (b): UAV Acceleration Squared Profiles. 

 From Figure 4.4 it can be seen that the trajectories generated for the UAVs to follow 

do not require the vehicles to perform any maneuvers outside of the vehicle’s physical 

limitations. Observations regarding the unpredictable trajectory shape leak into the 

observed dynamics as the vehicles are observed to speed up and slow down to 

accommodate these maneuvers. Such behavior results in the peaks and valleys in the speed 

profiles and corresponding acceleration values of zero. 

 The two main sets of constraints that were applied to the system were dynamic 

constraints and landing scenario specific constraints which avoided collisions amongst the 

vehicles and between the vehicles and the compartment walls. Continuing on the success 

of the dynamic constraints, no collisions were observed amongst the vehicles or between 

the vehicles and the compartment walls. 
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4.3. Additional Observations 

 The main difficulty in the trajectory generation process was the determination of 

an initial guess to supply the bundle method optimization solver. Trajectories were 

observed to be extremely volatile and reactive to small changes in the supplied initial 

starting point. The nature of the decision variables set forth by the problem make these 

good initial guesses difficult to determine. A better methodology for formulating the initial 

guess that is entered into the optimization algorithm could not only address the volatility 

of the trajectories generated but the sub-optimality which leads to control issues over the 

trajectories formed. 
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Chapter 5 
 

CONCLUSION 
 

5. Conclusion 

5.1. Concluding Remarks 

 Motivated by the applicability of cooperative unmanned aerial vehicle teams to an 

innumerable amount of tasks and services in both the civilian and military domains, this 

thesis has proposed a method to safely recover such a team following its respective mission. 

Particularly focused on military applications, this thesis devoted its attention to the landing 

of a UAV swarm on a moving, seafaring vessel with a confined compartment dedicated to 

the housing of the individual team members.  

 A computationally efficient trajectory generation method was first proposed which 

planned vehicle motion by considering the vehicle’s spatial path and the temporal 

considerations of the flight separately. Strictly geometric spatial paths were modelled using 

Pythagorean Hodograph Bèzier curves. The timing law which took the temporal 

specifications of the mission into account was modelled using a quadratic Bèzier 

polynomial. Trajectories were generated by solving a constrained optimization problem 

where the constraints ensured that the vehicle dynamics were not violated and that 

collisions did not occur between vehicles or between vehicles and the landing 

compartment. By formulating the constraints in Bèzier form, the global extrema of the 

constraint functions could be efficiently calculated and thus, the constraints could be 

imposed on the system in a computationally friendly manner. 
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 To illustrate the efficacy of the proposed trajectory generation method, Chapter 4 

detailed a case study in which the new method was employed to plan the landing 

trajectories of multiple UAVs attempting to land in a moving compartment. For the landing 

scenario detailed, the trajectory generator was shown to be successful in guiding the 

individual UAVs to their landing location in a moving confined compartment. The method 

successfully generated plans of motion which respected the vehicle’s physical limitations 

and ensured that no collisions occurred.  

 Due to the nonsmooth and nonconvex nature of the optimization problem that had 

to be solved to generate the trajectories, the trajectories that were generated were 

suboptimal. This led to a lack of control over the paths generated even though the 

constraints were guaranteed to be satisfied. As with most nonlinear optimization programs, 

the bundle method employed in this work required a user-defined initial guess of the 

solution. Due to the sensitivity of the problem to the initial guess, resulting trajectories 

were volatile with respect to this input making the trajectory generation process difficult 

for a user, let alone an automated process in the future. 

5.2. Future Work 

 Chapter 3 detailed the use of a simple motion model for the landing ship and cited 

several additional areas of current research efforts whose developments were deemed 

necessary to form a viable solution to the real-world UAV swarm landing problem. Moving 

target interception methods have been researched extensively but the concepts must be 

integrated with UAV control systems and finally with the proposed trajectory generation 

method in order to be effective. 
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 With the trajectories generated by the proposed method being found as a solution 

to a constrained optimization problem, an optimization scheme custom-tailored to this 

specific problem would improve the results. The optimization problem proposed is 

nonsmooth and nonconvex which makes the problem difficult to solve. It would be ideal 

for such an optimization method to be decentralized and distributed over the individuals of 

the swarm. Decentralized approaches provide robustness to the system should an individual 

UAV, or any other centralized computing unit, be compromised or destroyed. A distributed 

method would then have to grapple with the fact that the lightweight quadrotor UAVs have 

generally weak computing power. One additional concern with regards to the optimization 

problem is the necessity of an initial guess in nonlinear solvers.  

 Should a suitable optimization method be available, the method proposed in this 

thesis has the potential to provide great insight into the swarm landing problem. The ability 

to generate trajectories which minimize an objective function opens the door to 

understanding the behaviors of landing swarms as they attempt to minimize different 

criteria. A comparison of different minimization criteria in various landing scenarios could 

provide insight into the preferred landing schemes and approaches for UAV swarms 

landing in a nonstationary confined compartment. 
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Appendix A 
 

EULER ROTATIONS 
 

A. Euler Rotations 

 The model employed to describe the physical systems to be studied in this thesis 

consists of multiple refence frames which are related to one another through rotational and 

translational matrices. In this section, we illustrate the Z-X-Y Euler angles used to map the 

vehicle body frame, B, to the global frame, G. 

 We begin by defining an intermediate frame, I1, which lays directly on top of the 

global frame, G, sharing an origin and each of the axes laying in the same direction as its 

respective counterpoint on the other frame as illustrated in Figure A.1 (a). 

 

Figure A.1: (a) Initial Orientation of Frames G and I1. (b) Yaw Rotation about 𝑧 ⃗. 

Rotating the frame I1 about the Z-axis of frame G by the angle φ, any vector expressed in 

frame I1 can be translated into the global frame, G, by the rotational matrix 

 𝐑 =  
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

0 0 1

. (A.1) 
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Introducing a second intermediate frame, I2, a similar procedure is performed only this time 

frame I2 is rotated about the X-axis of frame I1 by the roll angle ϕ. 

 

Figure A.2: (a) Initial Orientation of Frames I1 and I2. (b) Roll Rotation about 𝑧 ⃗. 

Similar to the previously detailed rotation, the relationship between I1 and I2 can be 

expressed in the form of a rotation matrix: 

 𝐑 =  

1 0 0
0 𝑐𝑜𝑠ϕ −𝑠𝑖𝑛ϕ
0 𝑠𝑖𝑛ϕ 𝑐𝑜𝑠ϕ

. (A.2) 

Finally, the final body frame is defined and rotated about the Y-axis of I2 by the pitch angle, 

θ, as illustrated in Figure A.3. The Corresponding relationships are expressed in Equation 

(A.3). 

 

Figure A.3: (a) Initial Orientation of Frames I2 and B. (b) Pitch Rotation about 𝑦 ⃗. 
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 𝐑 =  
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

. (A.3) 

Each of the previously detailed rotational relationships can be used to find the final 

relationship between the global frame, G, and the body frame, B. Translating the expression 

of the body frame, B, in frame I2 through the first intermediate frame and then on to the 

global frame, we obtain the reference frame relationship as expressed in Equation (2.1) and 

repeated below 

 𝑹 = 𝐑 𝐑 𝐑  (A.4 a) 

 𝑹 =  

1 0 0
0 𝑐𝑜𝑠ϕ −𝑠𝑖𝑛ϕ
0 𝑠𝑖𝑛ϕ 𝑐𝑜𝑠ϕ

1 0 0
0 𝑐𝑜𝑠ϕ −𝑠𝑖𝑛ϕ
0 𝑠𝑖𝑛ϕ 𝑐𝑜𝑠ϕ

𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
 (A.4 

b) 

 𝑹 =  
𝑐𝜑𝑐𝜃 − 𝑠𝜑𝑠𝜃𝑠∅ −𝑐∅𝑠𝜑 𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑𝑠∅
𝑐𝜃𝑠𝜑 + 𝑠𝜃𝑠∅𝑐𝜑 𝑐∅𝑐𝜑 𝑠𝜑𝑠∅ − 𝑐𝜑𝑐𝜃𝑠∅

−𝑐∅𝑠𝜃 𝑠∅ 𝑐𝜃𝑐∅

. (A.4 c) 

As mentioned in Chapter 2, cφ and sφ are abbreviations for the cosine and sine of the yaw 

angle, 𝜑, and the same is true for the roll and pitch angles. It is worth noting that the rotation 

matrix from frame B to frame G can be written as a matrix of the body frame axes [124] in 

the global frame such that 

 𝑹 =  [𝑥 ⃗ 𝑦 ⃗ 𝑧 ⃗]. (A.5) 
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Appendix B 
 

DIFFERENTIAL FLATNESS 
 

B. Differential Flatness 

 Chapter 2 makes the claim that the quadcopter’s dynamics can be expressed as a 

differentially flat system. A set of flat outputs, �⃗� = [𝑥 𝑦 𝑧 φ]  , was defined such that 

the state of the quadrotor UAV and its control inputs, u⃗, could be expressed as algebraic 

functions of the flat outputs and their derivatives. The differentially flat expression of the 

quadcopter dynamics later went on to serve as the basis for what was defined as a 

dynamically feasible trajectory for the quadrotor UAV to follow. This section serves to 

illustrate the relationships between the defined flat outputs and the vehicle’s state and 

control inputs. 

B.1. Translation 

 To illustrate the relationship between the translation of the vehicle and the defined 

flat outputs, we begin by clearly defining the flat outputs in Equation (B.1) 

 

𝜌
𝜌
𝜌
𝜌

=

𝑥
𝑦
𝑧
φ

. (B.1) 

It then follows that the velocities and accelerations of the flat outputs are the same as their 

state-space counterparts. The trivial relationships observed continue for higher order time 

derivatives. 

 

𝜌̇
𝜌 ̇
𝜌 ̇
𝜌 ̇

=

�̇�
�̇�
�̇�
φ̇

 (B.2) 
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𝜌̈
𝜌 ̈
𝜌 ̈
𝜌 ̈

=

�̈�
�̈�
�̈�
φ̈

 (B.3) 

B.2. Attitude 

 As described in Chapter 2 and derived in depth in section A.1, the description of 

the vehicle’s rotational state is defined by the rotational matrix from the body frame, B, to 

the global frame, G, as expressed in Equation (2.1) and identically in Equation (A.4 c). To 

show that 𝑹, and thus the complete rotational state, can be expressed in terms of the flat 

outputs, the translational acceleration is derived from the linear dynamics as 

 
�̈�
�̈�
�̈�

= 𝑹
0
0

𝑎
+

0
0

−𝑔
. (B.4) 

In Equation (B.4), aT represents the acceleration contribution from the thrust generated by 

the vehicle’s rotors. For a given trajectory and its corresponding set of translational 

accelerations (�̈�, �̈�, �̈�), we define the vector 𝑓 describing the mass-normalized forces 

necessary to follow the trajectory such that 

 𝑓 =  
�̈�
�̈�
�̈�

+  
0
0
𝑔

 (B.5 a) 

It then follows from the combination of Equations (B.5 a) and (B.5 b) that 

 𝑓 =  

�̈�
�̈�

�̈� + 𝑔
=  𝑹

0
0

𝑎
. (B.5 b) 

Equation (B.5 b) indicates that the vector 𝑓 describes the acceleration due to rotor thrust in 

terms of the global reference frame, G. Since the fixed rotors can only create thrust in the 

direction of 𝑧 ⃗, it can be found that  



69 
 

 𝑧 ⃗ =  
⃗

⃗
. (B.6) 

With 𝑓 having been described in terms of the translational accelerations, their respective 

flat output relations described in Section B.2, and the gravitational acceleration constant, 

it follows that 𝑧 ⃗ can be completely described in terms of flat outputs. 

To show that the other vectors that combine with 𝑧 ⃗ to form 𝑹 as expressed in 

Equation (A.5), namely 𝑥 ⃗ and 𝑦 ⃗, attention is turned to the intermediate reference frame 

I1 detailed in section A.1. Given the yaw angle, 𝜌 , that frame I1 was rotated about 𝑧 ⃗ by, 

we can see that the X-axis of I1 can be written in terms of the global frame as 

 𝑥 ⃗ =  

𝑐𝑜𝑠𝜌
𝑠𝑖𝑛𝜌

0
. (B.7) 

We now introduce a preceding superscript to indicate a vector being written in terms of 

any other reference frame other than the global frame, G. Thus, we denote the X-axis of 

the intermediate frame I1 in terms of B as 𝑥 ⃗ . It is a property of rotational matrices that 

 𝑹 =  𝑹 =  𝑹   (B.8) 

thus, Equations (A.2) and (A.3) are used to express 𝑥 ⃗  as 

 𝑥 ⃗ =  
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

1 0 0
0 𝑐𝑜𝑠ϕ 𝑠𝑖𝑛ϕ
0 −𝑠𝑖𝑛ϕ 𝑐𝑜𝑠ϕ

1
0
0

 (B.9 a) 

 𝑥 ⃗ =  
𝑐𝑜𝑠𝜃

0
𝑠𝑖𝑛𝜃

. (B.9 b) 
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Figure B.1: 𝑥 ⃗ in the body frame B. 

As expressed in Equation (B.9 b) and illustrated in Figure B.1, 𝑥 ⃗ is always in the 𝑥 ⃗ - 𝑧 ⃗ 

plane, just rotated about 𝑦 ⃗ by the pitch angle θ. It can then be reasoned that 

 𝑦 ⃗ =  
⃗ × ⃗

⃗ × ⃗
 (B.10) 

provided that 𝑧 ⃗  × 𝑥 ⃗  ≠ 0. Following from Equations (B.6) and (B.7), Equation (B.10) 

shows that 𝑦 ⃗ can be expressed in terms of flat outputs. Since the body frame consists of 

three orthonormal axes, 𝑥 ⃗ can also be written in terms of flat outputs according to  

 𝑥 ⃗ =  𝑦 ⃗  × 𝑧 ⃗. (B.11) 

With 𝑥 ⃗, 𝑦 ⃗, and 𝑧 ⃗ all written in terms of flat outputs, Equation (A.5) implies that 

𝑹, and thus the quadcopter’s orientation, can be expressed completely in terms of flat 

outputs. 

B.3. Rotational Velocity 

 Multiplying the vector 𝑓 by mass to describe the forces in totality and rewriting 

Equation (B.5 b) the following relationship is exhibited 
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 𝑚𝑓 =  𝑚

�̈�
�̈�

�̈� + 𝑔
=  𝑇𝑧 ⃗. (B.12) 

Projecting these forces along 𝑧 ⃗ and taking the derivative with respect to time, the jerk of 

the vehicle’s center of mass is governed by 

 𝑚
𝑥
𝑦
𝑧

∙ 𝑧 ⃗ = �̇�. (B.13) 

The time derivative of the linear dynamics of Equation (2.5) is then taken to express the 

jerk of the trajectory as 

 𝑚�̇⃗� =  �̇�𝑧 ⃗ + 𝜔  ×  𝑇𝑧 ⃗. (B.14) 

Reflecting Equation (B.14) onto the axis 𝑧 ⃗ and using the relationship expressed in 

Equation (B.13), it is found that 

 𝑚 �̇⃗� − 𝑧 ⃗  ∙  �̇⃗�  𝑧 ⃗ = 𝑇( 𝜔  × 𝑧 ⃗). (B.15) 

Realizing that Equation (B.15) represents the projection of 𝑚�̇⃗� onto the 𝑥 ⃗ − 𝑦 ⃗ plane, 

both sides are divided by the magnitude of the thrust force and the cross product of the 

right-hand side is evaluated in terms of the body frame, B 

 �̇⃗� − 𝑧 ⃗  ∙  �̇⃗�  𝑧 ⃗ =
𝑞

−𝑝
0 

. (B.16) 

Reflecting the left-hand side of Equation (B.16) onto the 𝑥 ⃗ and 𝑦 ⃗ axes respectively, the 

body frame components of the rotational velocity are found according to 

 𝑞 =  �̇⃗� − 𝑧 ⃗  ∙  �̇⃗�  𝑧 ⃗ ∙ 𝑥 ⃗ (B.17 a) 

 𝑝 =  − �̇⃗� − 𝑧 ⃗  ∙  �̇⃗�  𝑧 ⃗ ∙ 𝑦 ⃗. (B.17 b) 

Each of the components on the right side of the expressions in Equation (B.17) have been 

shown previously to be functions of the flat outputs. 
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To demonstrate how the angular velocity about the axis 𝑧 ⃗ is dependent upon flat 

outputs, it is noted how Figure A.1 illustrates that the yaw rotation is a rotation about the 

stationary axis 𝑧 ⃗ of the inertial frame. The magnitude of the angular velocity of this 

rotation about 𝑧 ⃗ can thus be stated as a projection of the rotation in the global frame onto 

𝑧 ⃗ as 

 𝑟 = 𝜑 ̇ 𝑧 ⃗ ∙ 𝑧 ⃗. (B.18) 

With the vectors in Equation (B.18) being written in the global frame, there is no need to 

demonstrate the dependence of 𝑧 ⃗ on flat outputs. 

B.4. Rotational Acceleration 

Demonstration the dependence of the angular accelerations in terms of flat outputs 

and their derivatives proceeds similarly to that of Section B.3 and commences with taking 

the second derivative of the linear dynamics, the first derivative of Equation (B.14) 

 𝑚�̈⃗� =  �̈�𝑧 ⃗ + 2 𝜔  ×  �̇�𝑧 ⃗ +  𝜔  ×  𝜔  ×  𝑇 𝑧 ⃗ + �⃗�  ×  𝑇 𝑧 ⃗ (B.19) 

where �⃗� represents the angular acceleration in the body frame. Rearranging Equation 

(B.19) and dividing by the magnitude of thrust reveals the following relationship: 

 �⃗�  ×   𝑧 ⃗  =  
⃗̈

−  �̈�𝑧 ⃗ −  𝜔  × �̇�𝑧 ⃗ −  𝜔  ×  𝜔  ×  𝑧 ⃗  (B.20) 

Equation (B.13) provides an expression for the first derivative of thrust. To find an 

expression for the second derivative of thrust, Equation (B.19) is projected along 𝑧 ⃗ with 

the zero terms eliminated and rearranged to find that 

 �̈� =  𝑧 ⃗ ∙ 𝑚�̈⃗� −  𝑧 ⃗ ∙ ( 𝜔  × 𝜔  ×  𝑇 𝑧 ⃗ ). (B.21) 

Minding the fact that Equations (B.13) and (B.19) provide the necessary expressions for 

the derivatives of thrust, Equation (B.20) can be rewritten similar to (B.16) as  
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�̇�

−�̇�
0 

 =  
⃗̈

− �̈�𝑧 ⃗ −  𝜔  ×  �̇�𝑧 ⃗ −  𝜔  × 𝜔  × 𝑧 ⃗ . (B.22) 

It then follows that the scalar values of the two angular accelerations can be found 

according to 

  �̇� = − 𝑚�̈⃗� −  �̈�𝑧 ⃗ −  𝜔  ×  �̇�𝑧 ⃗ −  𝜔  ×  𝜔  × 𝑧 ⃗ ∙ 𝑦 ⃗  (B.23 

a) 

 �̇� = 𝑚�̈⃗� −  �̈�𝑧 ⃗ −  𝜔  ×  �̇�𝑧 ⃗ − 𝜔  × 𝜔  ×  𝑧 ⃗ ∙ 𝑥 ⃗ (B.23 b) 

The dependence of the angular acceleration about 𝑧 ⃗ follows from the same logic 

presented in Section B.3. Following from the same notions which allowed the formulation 

of Equation (B.18), it can be shown that  

 �̇� = 𝜑 ̈ 𝑧 ⃗ ∙ 𝑧 ⃗. (B.24) 

B.5. Control Inputs 

For completeness, Chapter 2 introduced a set of control inputs defined in Equation 

(2.9). The first control input, the total thrust generated by all four rotors, was shown to be 

completely dependent on flat outputs through the relationship express in Equation (B.12). 

It then remains to show that the other three control inputs can be written in terms 

of flat outputs. To achieve this, it is noted that each of the remaining inputs are defined as 

the moments about each of the axes of the body frame, B. Thus, the Euler’s equations of 

Equation (2.6) are rewritten in terms of the control inputs as  

 𝐈
�̇�
�̇�
�̇�

=

𝑢
𝑢
𝑢

−
𝑝
𝑞
𝑟

×  𝑰
𝑝
𝑞
𝑟

 (B.25 a) 



74 
 

where I is the inertia matrix of scalars. Having shown the differentially flat properties of 

the angular velocities and accelerations, it follows that the last three control inputs can be 

written in terms of flat outputs as 

 
𝑢
𝑢
𝑢

= 𝐈
�̇�
�̇�
�̇�

+
𝑝
𝑞
𝑟

×  𝑰
𝑝
𝑞
𝑟

. (B.25 b) 
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Appendix C 
 

SPATIAL PH BÉZIER CURVES IN 
QUATERNION FORM 

 
C. PH Bèzier Curves in Quaternion Form 

Chapter 2 states that the spatial quintic Pythagorean hodograph curves benefit from 

the ability to be represented compactly using quadratic quaternion Bèzier curves, Å (𝜁 ). 

The chapter goes on to show how the spatial path of a UAV’s trajectory can be determined 

by complimenting the boundary conditions with decision variables 𝑝 (0) , 𝑝 (1) , 𝛽  

and 𝛽  to solve for the quaternions Å , , Å , , and Å ,  and thus, completely define the spatial 

path. This appendix serves to summarize the necessary information from [114] to 

supplement Chapter 2 in describing the necessary relationships needed to describe spatial 

PH Bèzier curves in quaternion form. 

Quaternions were briefly described in Section 2.3.2 as four-dimensional numbers 

composed of a scalar part and a vector part such that a general quaternion, Å ∈ ℍ, may be 

of the form 

 Å = (𝑎, �⃗�) = 𝑎 + 𝑏𝚤̂ + 𝑐𝚥̂ + 𝑑𝑘 (C.1 a) 

where 

 �⃗� =  𝑏𝚤̂ + 𝑐𝚥̂ + 𝑑𝑘. (C.1 b) 

The conjugate of a quaternion was also introduced and is defined as 

 Å∗ = (𝑎, −�⃗�) = 𝑎 − 𝑏𝚤̂ − 𝑐𝚥̂ − 𝑑𝑘. (C.2) 

Pure vector quaternions are those whose scalar has no value and thus can be written 

 Ѵ = (0, �⃗�) = 𝑣 𝚤̂ + 𝑣 𝚥̂ + 𝑣 𝑘. (C.3) 
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Much of the quaternion’s renown has stemmed from its application to spatial 

rotations. Given some vector 𝑛, a pure vector quaternion may be rotated about 𝑛 by an 

angle 𝜃 through quaternion multiplication; the resulting pure vector quaternion, 𝑅, is 

expressed as  

 𝑅 = 𝒰Ѵ𝒰∗ (C.4) 

where 𝒰 is the unit quaternion such that |𝒰| = 1 and 

 𝒰 = cos 𝜃 𝑛 sin 𝜃 . (C.5) 

Any quaternion can be expressed in terms of the unit vector as Å = Å 𝒰, where 

 Å = 𝑎 + �⃗� = ÅÅ∗ (C.6) 

is the square of the magnitude of the quaternion Å. 

A polynomial equation with quaternion coefficients, dubbed a quaternion 

polynomial, may take the form 

 Å(𝜁) = 𝑢(𝜁) + 𝑣(𝜁)𝚤̂ + 𝑝(𝜁)𝚥̂ + 𝑞(𝜁)𝑘. (C.7) 

Performing a rotation of Å(𝜁) about the unit vector 𝚤̂ results according to Equation (C.4) 

always results in a pure vector quaternion written as 

 Å(𝜁)𝚤̂Å∗(𝜁) = [𝑢 (𝜁) + 𝑣 (𝜁) − 𝑝 (𝜁) − 𝑞 (𝜁)]𝚤̂ 

  +2[𝑢(𝜁)𝑞(𝜁) + 𝑣(𝜁)𝑝(𝜁)]𝚥̂ + 2[𝑣(𝜁)𝑞(𝜁) − 𝑢(𝜁)𝑝(𝜁)]𝑘. (C.8) 

Comparison of Equation (C.8) to the Equation (2.24) alludes to the notion that was 

identified by Choi et al. [125] that spatial Pythagorean hodographs could be represented as 

rotations of the unit vector 𝚤̂ about the vector 𝑛(𝜁) by an angle 𝜃(𝜁) and scaled by Å(𝜁) . 

The choice to model spatial PH curves as a spatial rotation of 𝚤̂ is purely conventional; any 

unit vector can be used in place of 𝚤̂ because of the rotation invariance of the spatial PH 
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curve quaternion form. It then follows that the hodograph of some spatial PH curve, 𝑟(𝜁) 

may be stated as 

 𝑟 (𝜁) = Å(𝜁)𝚤̂Å∗(𝜁) = [𝑢 (𝜁) + 𝑣 (𝜁) − 𝑝 (𝜁) − 𝑞 (𝜁)]𝚤 ̂

  +2[𝑢(𝜁)𝑞(𝜁) + 𝑣(𝜁)𝑝(𝜁)]𝚥̂ + 2[𝑣(𝜁)𝑞(𝜁) − 𝑢(𝜁)𝑝(𝜁)]𝑘. (C.9) 

 With the desire to obtain a spatial PH curve of 5th degree, the hodograph of the 

spatial path must be of degree four. Following from the nature of spatial rotations expressed 

in Equation (C.4), Å(𝜁) is then described as a quadratic quaternion polynomial. Expressing 

Å(𝜁) in Bèzier form, 

  Å(𝜁) = ∑ Å 𝑏 (𝜁), (C.10) 

where Å  are the quaternion control points, the polynomials 𝑢(𝜁), 𝑣(𝜁), 𝑝(𝜁), and 𝑞(𝜁) 

are expressed in terms of Bernstein coefficients on 𝜁 ∈ [0,1]. The integration of Equation 

(C.9) then leads to the relationships between the control points of the spatial PH Bèzier 

curve and the quaternion polynomial coefficients as described in Equation (2.29) and 

repeated below 

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗  

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + Å ,  𝚤̂  Å ,

∗  

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + 4Å ,  𝚤̂  Å ,

∗ + Å ,  𝚤̂  Å ,
∗  

 �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂ Å ,
∗ + Å ,  𝚤̂  Å ,

∗  

  �̅⃗� , =  �̅⃗� , + Å ,  𝚤̂  Å ,
∗ . 

 From imposition of the boundary conditions described in Section 2.3.2 it is implied 

that �̅� ,⃗ = 𝑝  and �̅� ,⃗ = 𝑝  thus, it remains to find Å ,  , Å , , and Å ,  to completely find 
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the spatial path. Recalling that the magnitudes of the hodograph at the initial and final 

points are to be determined as decision variables in the cost minimization problem, it 

becomes necessary to evaluate the following 

  Å (0)𝚤̂Å∗(0) = Å , 𝚤̂Å ,
∗ = 𝑝 (0) (C.11 a) 

  Å (1)𝚤̂Å∗(1) = Å , 𝚤̂Å ,
∗ = 𝑝 (1). (C.11 b) 

Equation (C.11) represents a mapping of the unit basis vector 𝚤̂ to the vectors 𝑝 (0) and 

𝑝 (1). Posing the problem generally in terms of some vector �⃗� in ℝ  such that  

  Å𝚤̂Å∗ = �⃗�, (C.12) 

the solution can be expressed in terms of the magnitude of �⃗�, its directional cosines 

(𝜆, 𝜇, 𝜈), and an angular parameter 𝛽 as 

 Å = (1 + 𝜆) �⃗� − sin 𝛽 + cos 𝛽 𝚤̂ + 𝚥̂ + 𝑘 . (C.13) 

Application of Equation (C.13) to the expressions of (C.11) allow for Å ,  and Å ,  to be 

solved for from the problem’s boundary conditions and decision variables. 

 With Å ,  and Å ,  accounted for it remains to find Å ,  and thus, completely define 

the spatial path. Interpolation of the endpoint conditions gives 

 ∫ Å (𝜁)𝚤̂Å∗(𝜁) 𝑑𝜁 = 𝑝 − 𝑝  

 = Å , 𝚤̂Å ,
∗ + Å , 𝚤̂Å ,

∗ + Å , 𝚤̂Å ,
∗ + Å , 𝚤̂Å ,

∗ + 4Å , 𝚤̂Å ,
∗ + Å , 𝚤̂Å ,

∗ +

                                         Å , 𝚤̂Å ,
∗ + Å , 𝚤̂Å ,

∗ + Å , 𝚤̂Å ,
∗ . (C.14) 

Substituting Equation (C.11) into (C.14) and rearranging yields the relationship 
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 3Å , + 4Å , + 3Å , 𝚤̂ 3Å , + 4Å , + 3Å ,

∗

 

 = 120(𝑝 − 𝑝 ) − 15 𝑝 (0) + 𝑝 (1) + 5 Å , 𝚤̂Å ,
∗ + Å , 𝚤̂Å ,

∗ = �⃗�. (C.15) 

Noting that Equation (C.15) is of the same form as (C.12), the general solution to (C.15) 

in terms of �⃗� is stated as 

  Å , (𝛽 ) = − Å , + Å , +
( ) ⃗

(− sin 𝛽 + cos 𝛽 𝚤̂ 

  + 𝚥̂ + 𝑘). (C.16) 

In [115] it is shown that the curve shape depends only on the differences of the angles 𝛽 , 

𝛽 , and 𝛽  and thus, Equation (C.16) can be simplified to depend only on Å ,  and Å ,  by 

choosing a value of 𝛽 . 
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