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In this dissertation, we develop new methods for problems for the two fundamental

topics of statistical learning - inference and prediction, using the tool of confidence dis-

tribution (CD). Specifically, we are interested in i) making efficient and valid statistical

inference about an individual subject, by borrowing information from other individual

subjects with similar traits, in a heterogeneous database that contains many individual

subjects, and ii) effectively and accurately quantifying uncertainties associated with the

prediction of future observations from a model estimated based on past observations.

For the first problem, we propose an individualized fusion learning (iFusion) ap-

proach, for drawing efficient individualized inference by fusing information from rele-

vant data sources. iFusion is robust for handling heterogeneity arising from diverse

sources, and is ideally suited for goal-directed applications such as precision medicine.

Specifically, iFusion summarizes individual inferences as CDs, then adaptively forms a

clique of individuals that bears relevance to the target individual, and finally combines

the CDs from those relevant individuals and draws inference for the target individ-

ual based on it. In essence, iFusion “borrows strength” from relevant individuals to
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improve inference efficiency while retaining inference validity. Computationally, it is

parallel in nature and scales up well in comparison with its competitors such as many

of the Bayesian methods. Examples in simulations and a real application in financial

forecasting are further presented to demonstrate the effectiveness of iFusion.

For the second problem, a general prediction framework is proposed in which pre-

diction is presented in the form of a predictive distribution function. This predictive

distribution function is well suited for the notion of confidence subscribed in the fre-

quentist interpretation, and can provide meaningful answers for questions related to

prediction. A general approach under this framework is formulated and illustrated by

using the concept of CD. This CD-based prediction approach inherits many desirable

properties of CD, including its capacity for serving as a common platform for connecting

and unifying the existing procedures of predictive inference in Bayesian, fiducial and

frequentist paradigms. The theory underlying the CD-based predictive distribution is

developed and some related efficiency and optimality issues are addressed. Moreover,

a simple yet broadly applicable Monte-Carlo algorithm is proposed for the implemen-

tation of the proposed approach. This concrete algorithm together with the proposed

definition and associate theoretical development produces a comprehensive statistical

inference framework for prediction. Finally, the approach is applied to simulation stud-

ies, and a real project on predicting the incoming volume of application submissions to

a government agency. The latter shows the applicability of the proposed approach to

dependent data settings.
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Chapter 1

Introduction

Inference and prediction are the two primary goals of statistical learning. The research

in this dissertation is devoted to addressing two important problems in statistical in-

ference and prediction:

• How to make valid, effective, and efficient statistical inference for each individual

subject, by borrowing information from other individual subjects with similar

traits, in a heterogeneous database that contains many individual subjects?

• How to effectively and accurately quantify the uncertainties associated with pre-

diction of future observations from a model estimated based on past observations?

The first problem arises in the field of fusion learning, which refers to a collection

of methods of synthesizing information from multiple data sources for more powerful

finds than those from individual data source alone. Effective fusion learning is of vital

importance, especially in light of the automated data acquisition nowadays in many

domains. Decision-making processes in many domains such as medicine, life science,

and social studies benefit greatly from considering data from different sources. The

key challenges in effective fusion learning often stem from massive complex structures

and heterogeneity among different data sources. Ignoring such complexity and hetero-

geneity when making statistical inference may lead to insufficient and even misleading

conclusions, especially when the inference goal is a particular individual subject rather

than the “average population”.

In the first part of this dissertation, we develop a method called individualized

fusion learning (iFusion), for drawing efficient individualized inference. iFusion is ro-

bust for handling heterogeneity arising from diverse sources, and is ideally suited for
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goal-directed applications such as precision medicine. Specifically, iFusion first makes

inference independently using each individual data source and summarizes them into

confidence distributions (CDs); then, it adaptively forms a clique of individuals that

bears relevance to the target individual; and finally, it combines the CDs from those

relevant individuals. The procedure is simple, yet is effective and efficient. Drawing

inference based on iFusion “borrows strength” from other individual data with similar

traits, thereby improving inference efficiency while preserving inference validity since it

borrows “smartly from only relevant individuals. The approach also enjoys many other

nice features such as scalability to big data, adaptability to various configurations of

the underlying individual parameter values (essentially without any “parametric” as-

sumption on them), and intrinsic bias-variance tradeoff interpretation, among others,

which will be elaborated in the next chapter.

The second problem is in the area of predictive inference. Existing statistical meth-

ods for predictive inference in the literature fall into two main categories - Bayesian

and frequentist. In the Bayesian category, Bayesian predictive distribution, a distribu-

tion function of a future observation integrated over the posterior distribution of the

unknown parameter, serves as the main tool. It enjoys the flexibility of distribution

functions but does depend on the additional assumptions of priors and usually “does

not have clear probability interpretations in finite samples.” (Lawless and Fredette,

2005). In the frequentist category, prediction intervals, analogous to that of confidence

intervals, are widely used, with a precise and well defined frequentist probabilistic in-

terpretation. But those prediction intervals use only two endpoints of the intervals to

describe a future observation, and thus are not as informative or flexible as an entire

predictive distribution produced by the Bayesian methods, among others.

In the second part of this dissertation, we extend the concept of prediction inter-

vals to a more general form of predictive distribution functions. It is well suited for

the notion of confidence subscribed in the frequentist interpretation, as opposed to the

Bayesian predictive distribution. Under this framework, we further propose a general
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approach to construct predictive distribution functions using CDs. The theory un-

derlying the CD-based predictive distribution is developed and some related efficiency

and optimality issues are addressed. Moreover, a simple yet broadly applicable Monte-

Carlo algorithm is proposed for implementing the proposed approach. This concrete

algorithm together with the proposed definition and associate theoretical development

produces a comprehensive statistical inference framework for prediction.

Although the two main parts of this dissertation are self-contained, they are bridged

by the common development tool - confidence distribution (CD). A CD can be viewed

as a sample-dependent distribution that represents confidence intervals of all levels for a

parameter of interest (Cox, 1958; Efron, 1993), and provides “simple and interpretable

summaries of what can reasonably be learned from data (and an assumed model).”

(Cox, 2013) The two topics covered in this dissertation are yet additional illustrations

of how powerful the concept of CD is in many fields of modern statistics.

The rest of this dissertation is organized as follows. Chapter 2 develops the iFusion

approach for drawing individualized inference. Chapter 3 presents the CD-based pre-

dictive distribution for making predictive inference. Each of the two chapters contains

background review and motivation, detailed description of the methodologies along with

computing algorithms, and theoretical developments which are further demonstrated

by simulation studies under various settings and real-world applications. Chapter 4

concludes the dissertation. Technical proofs are relegated to Appendix.
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Chapter 2

iFusion: Individualized Fusion Learning

2.1 Background and Motivation

Fusion learning refers to synthesizing statistical inferences from multiple data sources

to yield more powerful findings than those from individual subjects or sources alone.

This is highly sought after, especially in light of the data explosion phenomena in many

domains nowadays. The key challenges in effective fusion learning often stem from mas-

sive complex structures and heterogeneity among different data sources. Specifically,

if the goal is to make inference for a particular individual subject, analysis by simply

pooling the data in a database can be insufficient or even misleading, as not all the

individuals are relevant. On the other hand, inference based on individual data source

alone may be quite inefficient due to loss of information, as some other individuals may

be helpful. This chapter presents a new fusion learning approach called individualized

fusion learning, abbreviated as iFusion, to effectively merge information from relevant

data sources and draw efficient inference for any target individual subject.

This research is initially motivated by a collaborative project with a global consult-

ing firm that provides risk management services for small business worldwide. One of

the main objectives of the project is to build forecasting models for each of over 100000

companies using monthly time series data of each company, in conjunction with rele-

vant economic and market indices. To reflect the current status of the companies, only

data in past two or three years are used in the analysis. Traditionally, the analysis is

carried out by building a model, e.g., an autoregressive model with exogenous variables,

for each company using its own data. However, such individual models can be quite

unstable due to the small sample size of each company, as reported by their in-house
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data scientists. With the availability of the large databased of over 100000 companies,

there may exist a group of companies that have similar traits to the target company,

and the information within the group can be shared (even if only partially) and used

to improve the analysis of the target company.

One conventional approach is to assign the companies into subgroups by using an

unsupervised clustering method, either directly on the feature space (e.g., company-

specific features), or sometimes on the parameter space (after estimating a supervised

learning model), and then pool the data in the same subgroup for further analysis. The

approach, though leads to increased sample sizes in each subgroup, has some obvious

shortcomings. For example, the formation of subgroups can be quite arbitrary as it

depends on the number of subgroups specified in the approach, a parameter that is

difficult to determine, the type of clustering method used and the metric used for

measuring the similarity between companies. Furthermore, all analytical outcome and

inference (e.g., estimated parameters, testing) are identical to all individuals in the same

subgroup. More importantly, in many situations, there may not be any clear-cut and

well divided subgroup structure in the population. In these situations, the conventional

subgroup analysis imposes an artificial grouping structure to the population and the

analysis often leads to large biases and thus invalid inference in many cases.

Bayesian hierarchical models may also be used to tackle the problem, where each

company’s model is conditioning on company-specific parameters and the parameters

are modeled through a prior distribution. The resulting posterior distributions can then

be used to make inference on the individual company-specific parameters. See, e.g.,

Gelman et al. (2013) and Gustafson et al. (2005), for reviews of Bayesian hierarchical

models and their applications. In order to capture the complexity of between-company

heterogeneity, a simple prior like Gaussian prior may not be sufficient, but with the

help of Monte Carlo Markov Chain (MCMC) techniques, it is possible to consider more

complicated models and priors such as finite mixture models. However, the assumption

would encounter the same problems of determining the number of clusters (mixtures)
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and, in the case when the population has no clear-cut and well-divided subgroup struc-

ture, artificially imposing a mixture structure to the population. A nonparametric

Bayesian approach using, for instance, a Dirichlet process mixture prior in conjugation

with generalized linear models (cf. Grün and Leisch 2007 and Hannah et al. 2011) may

help mitigate these concerns. But as a Bayesian hierarchical model, it often needs to

rely on an iterative MCMC sampling scheme and analyze all companies all together.

Considering the large number of companies, this approach can be computationally very

intensive and even difficulty to be carried out.

In this chapter, based on recent developments on CD (a brief review of CD is pro-

vided in Section 2.2.1), we propose an iFusion approach to draw individualized inference

for each individual. iFusion first analyzes the data from each individual company sep-

arately and summarizes the inference information into a confidence density function

for each company. Then, these individual confidence density functions are fused with

respect to a target company, according to a set of target-individual-specific adaptive

screening weights (see details in Section 2.2.2), and inference of the target company can

be drawn based on it. Like the Bayesian methods, iFusion improves inference efficiency

on the target company by “borrowing strength” from other companies/individual data.

Unlike the Bayesian methods: i) Inference validity in terms of frequentist properties

is guaranteed through the screening weights that ensures only information among rel-

evant individuals is shared. ii) The general framework is suitable and can be adapted

for any configurations of the underlying individual parameter values, so it is essentially

“nonparametric” and no prior model assumption is needed for the underlying true pa-

rameters. iii) iFusion naturally fits into the “divide-and-conquer” scheme and can be

scaled up to big data applications like the motivating example with a large number of

companies. Specifically, the first step of iFusion separately analyzes individual compa-

nies and can be performed without accessing the entire dataset, thus easily allowing

distributed implementation and making iFusion a very attractive alternative to the

Bayesian methods in big data applications.

The iFusion approach is an adaptive local grouping approach designated for each
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target individual, and there is an intrinsic bias-variance tradeoff underlying the devel-

opment. Indeed, as no two individuals (companies) and their performances are exactly

the same, introducing other individual data in the analysis will inevitably create bias.

But, if the biases are can be ignored or is very small, then the increased size of the

data in the iFusion inference can reduce variability (measured by estimation/prediction

variance) and thus improve the overall efficiency (smaller mean squared errors) of in-

ference. On the other hand, to ensure the validity of our inference, we certainly need

exclude individuals that introduce big biases from our analysis, especially when the

reduction in variance by increasing the size of in the iFusion inference cannot overcome

those big biases. A very attractive feature of iFusion is that it conducts local searching

and pooling, and it does not make any assumption about the underlying individual

parameters. To highlight the flexibility of the iFusion over the traditional subgrouping

or mixture model approaches and also its scalability to big data application, we include

a simulation example (in Section 2.6) of 6000 regression models with the total data

size N = 240000, in which 6000 pairs of true regression parameters spread evenly on a

circle (see the left panel of Figure 2.1). Although the data from most individual regres-

sions should be excluded for the analysis of the data from, say the 1500th regression

model (colored in blue in the right panel of Figure 2.1), those data from a few neigh-

boring models (colored in yellow) can help improve the analysis of it. Our theory and

simulation support this iFusion practice that drastically improve the efficiency of the

individual analysis relying on only the n1500 = 40 blue data points. Note that there is

no clustering or mixture structure in this figure. Conventional methods have difficulty

in handling such datasets and providing better results than the individual analysis.

The rest of this chapter is organized as follows. In Section 2.2.1 we provide a brief

review of CDs and confidence densities, and how they facilitate fusion learning. In

Section 2.2.2 we describe a general iFusion approach, and in Section 2.3 we provide

theoretical supports that iFusion can provide asymptotically proper and efficient infer-

ence for each individual target. In Section 2.4 we extend iFusion to accommodate more

complex and heterogeneous model designs. An efficient and scalable tuning algorithm

is described in Section 2.5. To demonstrate the effectiveness of iFusion empirically, we
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Figure 2.1: Parameter values (αk, βk) (left) and simulated samples (xik, yik), i =
1, . . . , 50, (right) for k = 1, . . . , 6000. Here, blue color corresponds to the target
individual-1500, and yellow color corresponds to the individuals incorporated in C1500.

present a set of simulation studies in Section 2.6 and a real-world application in Section

2.7. In Section 2.8 we provide further insights and conclude the chapter.

2.2 Methodology

2.2.1 Review: CD and Fusion Learning

Consider a simple normal example with xi
i.i.d.∼ N(θ, σ2), i = 1, . . . , n for a known

σ, we are interested in making inference of the mean θ. Instead of using a point

(sample mean x̄) or an interval (1−α level confidence interval (x̄+Φ−1(α/2)σ/n1/2, x̄+

Φ−1(1−α/2)σ/n1/2)), we can use a sample-dependent function N(x̄, σ2/n) to estimate

the parameter of interest. Here, Φ(·) is the cumulative distribution function of the

standard normal distribution. Such a distribution estimator, referred to as a confidence

distribution (CD), can provide meaningful answers to almost all questions related to

statistical inference such as point estimation, confidence interval and p-values; cf. Xie

and Singh (2013), Schweder and Hjort (2016) and references therein. Cox (2013) stated

a CD provides “simple and interpretable summaries of what can reasonably be learned

from data (and an assumed model).” A CD can be loosely defined as “a sample-

dependent distribution that represents confidence intervals of all levels for a parameter

of interest (Xie and Singh, 2013). A modern definition of CD is due to Schweder and

Hjort (2002) and Singh et al. (2005), and the multivariate version is discussed in Singh
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et al. (2007) and Schweder and Hjort (2016). If a CD is presented as a density function

when appropriate, it is referred to as a confidence density (Efron, 1993; Singh et al.,

2007).

The rich information contained in the CD makes it an effective tool for synthe-

sizing information from multiple data sources. Singh et al. (2005) proposed a general

framework of combining CDs for a scalar parameter from independent data sources and

showed that the combined CD yields valid statistical inference so long as each individ-

ual CD is valid, regardless how they are obtained. Xie et al. (2011) showed that the

general framework of CD combination can subsume almost all existing meta-analysis ap-

proaches as special cases. The nice and general features of CD endue iFusion with great

versatility and flexibility, as further described in Section 2.8. Singh et al. (2005) also

discussed a framework of combining univariate CDs by multiplying confidence density

functions. Liu et al. (2015) extended the framework for fusion learning on multivariate

common effects and for heterogeneous study designs, which was also adopted by Tang

et al. (2016) and others. A simplified version of their combining formula is

h(c)(θ;S1, . . . ,SK) =
K∏
k=1

hk(θ;Sk), (2.1)

where hk(θ;Sk) is the confidence density function derived from the kth individual sub-

ject using data Sk. Liu et al. (2015) showed that the point estimator obtained from

h(c)(θ;S1, . . . ,SK) enjoys the same estimation efficiency achieved by the maximum like-

lihood estimator from the analysis of full dataset, but suffices to use individual summary

statistics to be implemented.

Most work on combining information in the literature (e.g., Singh et al. (2005)

and Liu et al. (2015) and others) are based on the assumption that all the individual

parameter values are the same (or at least similar to each other), which can be fairly

stringent and hardly hold for many real-world applications. Claggett et al. (2014)

relaxed the assumption by allowing unstructured different individual parameter values

in a fixed-effects meta-analysis setup, but the development is for the quantiles of the

set of individual parameter values and not directly on an individual θk.
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In next section, with the help of adaptive screening weights, we broaden the frame-

work in Liu et al. (2015) into iFusion for making inference for any target individual

parameter. Similar to Claggett et al. (2014), this novel approach is well suited for a

very general setting that essentially requires no parametric assumptions on how the

individual parameter values are like. Such freedom makes iFusion applicable and useful

for tackling many individual-oriented problems like the motivating example in Section

2.1. The framework in Liu et al. (2015), in turn, can be viewed as a special case of

iFusion when θ1 = · · · = θK . We close this section by remarking that the original

combining formula in Liu et al. (2015) is in fact designed for heterogeneous individual

model structures; this motivates our extension of iFusion in Section 2.4.

2.2.2 iFusion by Adaptive Combination of CDs

In this section, we formally define the inference problem in math and present our

method. Consider a collection ofK individual subjects with a dataset S = {S1, . . . ,SK},

where Sk are samples of size nk generated independently for the kth individual, k =

1, . . . ,K. Denote by n =
∑K

k=1 nk the sample size of the entire dataset and we as-

sume that nk/n → rk for some constant rk ∈ (0, 1) as n → ∞. Suppose that the

model for kth individual can be characterized by parameter θk ∈ Rpk , for k = 1, . . . ,K.

Also, assume that the K individual models have a shared model structure/design (so

p1 = · · · = pK ≡ p), but the parameter values, {θ1, . . . ,θK}, can vary across individu-

als. Any of them may or may not be equal/close to one another, which is completely

unknown. Later in Section 2.4, we extend the development to heterogeneous model

designs where pk’s can be different from one to the other.

Without loss of generality, individual-1 and thus θ1 are of our primary interest

unless specified otherwise (for convenience, we will use the term individual-k, model-k,

and θk interchangeably), which we refer to as the target individual. Our main research

question is: how to make valid and efficient inference about θ1?

A simple approach is to analyze S1 directly under the assumed model-1, for which

a number of statistical procedures may be used for the task. For the clarity of our
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presentation and the ease of establishing the asymptotic properties in Section 2.3 and

also following Liu et al. (2015), we assume that the individual model can provide us an

asymptotic normal confidence distribution, say N(θ̂1, Σ̂1), with confidence density

h1(θ1;S1) =
1

(2π)p/2|Σ̂1|1/2
exp

{
− 1

2
(θ1 − θ̂1)tΣ̂−1

1 (θ1 − θ̂1)
}
. (2.2)

In the special case of a likelihood inference setup, θ̂1 is then the maximum likelihood

estimate of θ1, namely, θ̂1 = arg maxθ l1(θ1|S1); and Σ̂1 = Σ1(θ̂1) is an estimate of the

covariance matrix of θ̂1 where Σ1(θ1) = [−∂2l1(θ1|S1)/∂θ1∂θ
t
1]−1. We refer to this use

of only S1 for making inference about θ1 as the individual approach. This individual

approach does not utilize any information from other individuals that may be available

in the much bigger universe S. This practice is undesirable in some situations such as

that described in the motivating example.

We propose an iFusion approach to adaptively fuse information from other individ-

uals to improve the inference efficiency of the individual approach. The first step of

iFusion replicates the individual approach for each k = 1, . . . ,K, independently, and

results in K confidence density functions. Then, it combines these confidence density

functions hk(θk;Sk), k = 1, . . . ,K, according a set of adaptive screening weights,

h
(c)
1 (θ;S1, . . . ,SK) =

K∏
k=1

hk(θ;Sk)w1k (2.3)

Here, hk(θ;Sk) is the confidence density function for θk based on Sk, w1k ∈ [0, 1] is

the screening weight for individual-k with respect to individual-1. By introducing the

screen weight w1k, ideally we would like to include individuals that share the same

trait of individual-1 but exclude others that are far different. Further discussions are

provided later in this section and also in Section 2.3. From now on we suppress the Sk

in hk and S1, . . . ,SK in h
(c)
1 for notation convenience.
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This combined h
(c)
1 (θ) can be used to derive a combined estimator of θ1

θ̂
(c)
1 = arg max

θ
log h

(c)
1 (θ) (2.4)

= arg max
θ

K∑
k=1

w1k log hk(θ)

When the individual confidence density functions take the form of (2.2), simple algebra

shows that

h
(c)
1 (θ) ∝ exp

{
− 1

2
(θ − θ̂(c)

1 )t(

K∑
k=1

w1kΣ̂
−1
k )(θ − θ̂(c)

1 )
}
, (2.5)

where

θ̂
(c)
1 = (

K∑
k=1

w1kΣ̂
−1
k )−1

K∑
k=1

w1kΣ̂
−1
k θ̂k. (2.6)

The key difference between the combining formulas (2.1) and (2.3) is the use of the

screening weights. We visualize this difference in Figure 2.2. When w1k ≡ 1 for ∀k,

(2.3) is the same as (2.1), and iFusion is equivalent to what is shown in the top half.

On the other hand with w11 ≡ 1 and w1k ≡ 0, k = 2, . . . ,K, iFusion is the same as the

individual approach.

One choice of the screening weights is

w1k = K

(
‖θ̂1 − θ̂k‖2

bn

)
/K(0), (2.7)

where ‖ · ‖2 stands for the l2 norm, K(·) is a kernel function, and bn is a bandwidth

parameter that depends on n. Some common kernel functions are: i) uniform kernel

1
21{|u| ≤ 1}; ii) Epanechnikov kernel 3

4(1 − u2)1{|u| ≤ 1}; iii) quartic kernel 15
16(1 −

u2)2
1{|u| ≤ 1}; (iv) Gaussian kernel 1√

2π
e−u

2/2. Different kernels lead to different finite

sample performance. But asymptotically, they are equivalent under suitable regularity

conditions on bn, as discussed in Section 2.3.
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Figure 2.2: Diagrams comparing (top) fusion learning under the assumption that θ1 =
· · · = θK , and (bottom) iFusion that produces individualized inference by including
screening weights and without assuming that θ1 = · · · = θK . For the bottom half,
individual-1 is the inference target.

Provided that the multivariate normal CDs are used, we propose the following for-

mula, slightly modified from (2.7), to further refine its finite sample performance:

w1k = K

(
‖θ̂1 − θ̂k‖(Σ̂1+Σ̂k)−1

bn̄1k
· (n̄1kp)1/2

)
/K(0), (2.8)

where ‖x − y‖S =
√

(x− y)tS(x− y) is the Mahalanobis distance with respect to

matrix S, and n̄1k = 2n1nk/(n1 + nk). (2.8) shares the same asymptotic behavior as

(2.7), but heuristically has better adaptability to a number of types of variabilities, for

example, estimation uncertainty that differs by individual, dimension of θk’s as well as

scales in different dimensions of θk’s.

2.3 Theoretical Properties

In this section we establish the theoretical properties of θ̂
(c)
1 . To facilitate our de-

velopment, we introduce some concepts and notations. First, define a clique set for
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individual-1 as

C1 = {θk : n1/2‖θ1 − θk‖2 = o(1), k = 1, . . . ,K}. (2.9)

The set C1 always contains θ1, so |C1| ≥ 1. For any θk ∈ C1 and k 6= 1, it cannot be

distinguished from θ1 by their
√
n-consistent estimates based on the current sample

size. Two extreme cases are: i) |C1| = 1 indicating that θ1 is distinguishable from all

the other θk’s, or ii) |C1| = K so all individual parameters cannot be told apart from

each other. Between the two extremes is the general situation where 2 ≤ |C1| ≤ K − 1

(K ≥ 3), which implies a possible grouping/clustering effect around θ1. The clique

definition follows the “near tie” concept in Xie et al. (2009), Hall and Miller (2010) and

Claggett et al. (2014), where the parameters are defined relating to the sample sizes. It

can be considered as a “local asymptotic” development (van deer Vaart, 1998) by which

“we study the local behavior around a fixed value of the target parameter through a

sequence of
√
n−rated parameters” and “measure the performance of an estimator in

finer detail and ensure its performance in moderate sample size.” (Claggett et al., 2014).

Similar asymptotic consideration can also be seen in the high-dimensional regression

literatures where it is assumed that the signal level grows at some rate of the sample

size, among others. Besides the clique set C1, we also define a boundary set

B1 = {θk : n1/2‖θk − θ1‖2 → ck, for some constant ck ∈ (0,∞), k = 1, . . . ,K} (2.10)

and the disperse set

D1 = {θk : n1/2‖θk − θ1‖2 →∞, k = 1, . . . ,K}. (2.11)

Clearly, the parameter set {θ1, . . . ,θK} = C1∪B1∪D1 are partitioned into three disjoint

sets. An individual θk lies in one and only one of these sets. Define

d1 = min
k
{‖θ1 − θk‖2 : θk ∈ D1} (2.12)
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as the minimal distance between θ1 and any parameter inside the disperse set. It

immediately follows that n1/2d1 →∞.

We start our development by assuming that B1 is empty, so a θk is either in C1 or

D1. As such, d1 defined by (2.12) is equivalent to

d1 ≡ min
k
{‖θ1 − θk‖2 : θk /∈ C1}. (2.13)

We refer to either B1 = ∅ or the equivalence between (2.12) and (2.13) as the separation

condition.

The total sample size can be increased when we include additional data from other

individuals into our analysis. However, this practice of borrowing information from

other individuals will inevitably produce some bias, sometimes ignorable and other

times significant. In the terminology of clique, boundary and disperse sets, including

individuals in C1 into analysis introduces little (ignorable) bias for the inference of

θ1, but the bias is not ignorable and even very large by including individuals in D1.

Intuitively, it is attempting to fuse all information from individuals in C1 to help improve

the inference of θ1. In particular, we define the oracle estimator of θ1 provided that

the membership of C1 is known in advance

θ̂
(o)
1 = arg max

θ
log h

(o)
1 (θ), (2.14)

where

h
(o)
1 (θ) =

∏
θk∈C1

hk(θ). (2.15)

We also refer to the combination of confidence density functions in (2.15) as the oracle

approach. With normal individual confidence densities, it is easy to show that

θ̂
(o)
1 = (

∑
θk∈C1

Σ̂−1
k )−1

∑
θk∈C1

Σ̂−1
k θ̂k. (2.16)

The following lemma shows that θ̂
(o)
1 is consistent, asymptotically normal, and efficient.

Lemma 2.1. Suppose that the membership of C1 is known. Then, as n→∞,
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i) θ̂
(o)
1

p−→ θ1.

ii) n1/2(θ̂
(o)
1 − θ1)

d−→ N(0,∆
(o)
1 ), where ∆

(o)
1 = E[n(

∑
θk∈C1

Σ̂−1
k )−1].

iii) θ̂
(o)
1 is mean squared error (MSE) optimal among all θ̂F1 given by

θ̂F1 = arg max
θ

log
∏
θk∈F

hk(θk), (2.17)

where F ⊆ {θ1, . . . ,θK}.

The proof of Lemma 2.1 is given in Appendix. Conventional meta-analysis and

fusion learning methods often requires that the individuals to be combined share the

same parameter values to achieve consistency and asymptotic normality. Part i) and

ii) of Lemma 2.1 implies that as long as these individual parameters are close around

the target parameter given the sample size, i.e., inside C1, the above nice properties

are preserved. Part iii) further shows that the choice of F = C1 leads to the smallest

asymptotic MSE, among all the estimators given by the general form of (2.17). Note

that the individual estimator θ̂1 is also a special case of θ̂F1 with F = {θ1}

In reality, the memberships of C1 is typically unknown. Nevertheless, the oracle

approach sets a benchmark for any procedure of making individual inference about θ1.

In fact, we show that the inference about θ1 led by iFusion is asymptotically the same

as the oracle, even without knowing C1 in advance. Parts i) and ii) of the following

theorem provides a set of sufficient conditions (imposed on the screening weights) under

which θ̂
(c)
1 consistently estimates θ1 and is also asymptotically normal. Moreover, part

ii) shows that θ̂
(c)
1 has the same limiting covariance matrix as θ̂

(o)
1 . Hence, inference

using our iFusion approach incurs no loss of efficiency in relative to the oracle approach.

The claim applies to MSE as well, as summarized in part iii). A formal proof of the

theorem is provided in Appendix.

Theorem 2.1. Suppose that w1k satisfies

w1k =

 1 + op(n
−1/2) if θk ∈ C1;

op(n
−1/2) otherwise,

(2.18)
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for k = 1, . . . ,K. Then, θ̂
(c)
1 obtained from (2.4) has the following properties: as

n→∞,

i) θ̂
(c)
1

p−→ θ1.

ii) n1/2(θ̂
(c)
1 − θ1)

d−→ N(0,∆
(o)
1 ), where ∆

(o)
1 can be consistently estimated by

n(
∑K

k=1w1kΣ̂
−1
k )−1(

∑K
k=1w

2
1kΣ̂

−1
k )(

∑K
k=1w1kΣ̂

−1
k )−1.

iii) θ̂
(c)
1 has the same MSE as the oracle estimator θ̂

(o)
1 .

While Theorem 2.1 outlines a sufficient condition for obtaining a proper and efficient

estimator from the iFusion approach, failure to meet this condition risks in invalid

inference. The following lemma shows that condition (2.18) is satisfied when formula

(2.7) or its modified version (2.8) is used with suitably-chosen bandwidth bn. A proof

is provided in Appendix,

Lemma 2.2. w1k given by (2.7) or (2.8) satisfies (2.18), when any of the following

conditions holds:

i) K(·) is the uniform kernel, and bn satisfies that

bn/d1 → 0 and n1/2bn →∞. (2.19)

ii) K(·) is the Epanechnikov or the quartic kernel, and bn satisfies that

bn/d1 → 0 and n1/4bn →∞. (2.20)

iii) K(·) is the Gaussian kernel, and bn satisfies that

(bn/d1)2 log n→ 0 and n1/4bn →∞. (2.21)

In the above development, we have assumed that B1 = ∅, under which our iFusion

method can yield an estimator that is asymptotically equivalent to the best possible

oracle estimator and provide asymptotically the most efficient inference about θ1. We
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now turn to the more complicated case that B1 6= ∅, where the development is not such

clean since the parameters in B1 are not easily separable from those in C1, making the

asymptotic normality infeasible to be used. Note that, for θk ∈ B1, bias caused is of the

same magnitude of standard deviation. Inclusion of these individuals reduces variance

at the price of introducing comparable bias. We have the following theorem to quantify

the performance of our iFusion method under this more complicated setting.

Theorem 2.2. Suppose w1k satisfies

w1k =

 1 + op(n
−1/2) if θk /∈ D1;

op(n
−1/2) otherwise.

(2.22)

for k = 1, . . . ,K. Then, θ̂
(c)
1 obtained from (2.4) has the following properties: as

n→∞,

i) θ̂
(c)
1

p−→ θ1.

ii) n1/2(θ̂
(c)
1 −θ1−B(c)

1 )
d−→ N(0, ∆̄1), where B

(c)
1 = (

∑
θk /∈D1

Σ̂−1
k )−1

∑
θk∈B1

Σ̂−1
k (θk−θ1),

and ∆̄1 = E[n(
∑

θk /∈D1

Σ̂−1
k )−1].

iii) MSE(θ̂
(c)
1 ) ≤ MSE(θ̂F1 ), if either of the following is met: DF 6= ∅, or

∑
θk1 ,θk2∈B1

(θk1 − θ1)tΣ̂−1
k1

(
∑

θk /∈D1

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑

θk /∈D1

Σ̂−1
k )−1}

≤
∑

θk1 ,θk2∈B
F

(θk1 − θ1)tΣ̂−1
k1

(
∑
θk∈F

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑
θk∈F

Σ̂−1
k )−1}.

(2.23)

Here, F is expressed as the union of three disjoint sets CF ∪ BF ∪ DF where

CF ⊆ C1, BF ⊆ B1, and DF ⊆ D1.

We remark that part ii) and iii) of Theorem 2.2 are less feasible than their coun-

terparts in Theorem 2.1, because of the unknown true parameter values. In particular,

the limiting distribution of n1/2(θ̂
(c)
1 − θ1 − B(c)

1 ) will become nonnormal if B
(c)
1 is

substituted with a
√
n-consistent estimate.
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Again, it is important to assure (2.22) before any claim of θ̂
(c)
1 in Theorem 2.2

can be asserted. Fortunately, formulas (2.7) and (2.8) are directly applicable to yield

qualifying w1k’s even B1 6= ∅ (although the equivalence between (2.13) and (2.12) no

longer holds). The result is given by the following lemma, whose proof is essentially

the same as Lemma 2.2 and is therefore omitted.

Lemma 2.3. When B1 6= ∅, w1k given by (2.7) or (2.8) satisfies (2.22), if any of

conditions (2.19), (2.21), or (2.20) holds.

2.4 Extension to Heterogeneous Model Designs

In this section, we show that iFusion can be extended to heterogeneous individual model

designs. Simmonds and Higgins (2007) and Liu et al. (2015) provided excellent reviews

on model design heterogeneity (although they used the term “parameter heterogeneity”

what means varying individual parameter values in our context) encountered in meta-

analysis. We use two examples modified from Liu et al. (2015) to demonstrate why

the iFusion approach developed in Section 2.2 shall not be directly applied under such

heterogeneous model designs. For both examples, we consider K independent linear

models implied by clinical trials conducted on K different populations:

Yik = αk + βkxik + γkzik + εik, i = 1, . . . , nk, k = 1, . . . ,K, (2.24)

where Yik is the response for the ith observation from the kth population, xik is the

treatment status (1/0 for treatment/control), zik is the drug dosage, and εik
i.i.d.∼

N(0, σ2
k). Here, αk’s are individual-specific effects, βk’s and γk’s measure the sensi-

tivities of response to the treatment and drug dosage, respectively.

Example 2.1. The K populations have “distinct gender, race, or disease status.”(Liu

et al., 2015) Their impact on the response is incorporated in αk’s if they affect the

response independently of the treatment and drug dosage. In this case, αk’s are “de-

signed to be heterogeneous.” If formula (2.7) or (2.8) is directly applied, no information

may be gained because of the discrepancy among αk’s (so the estimated α̂k’s), even if
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(β1, γ1) = · · · = (βK , γK), thus incurring loss of efficiency.

Example 2.2. The drug dosage is not part of the research goal and is hold constant

in trial-1, that is, zi1 ≡ z1, for i = 1, . . . , n1. Then, model-1 degenerates to

Yi1 = (α1 + γ1z1) + β1xi1 + εi1, i = 1, . . . , n1.

This is known as the “missing covariate designs” pointed out in Simmonds and Higgins

(2007), where certain individuals “do not have the design covariate that is of current

research interest.” Under such situation, neither α1 nor γ1 is estimable; formulas (2.7)

and (2.8) are not even well-defined.

One of the obstacles to iFusion in the two examples is the unsuitability (Example

2.1) or infeasibility (Example 2.2) of formulating w1k based on full parameter vectors

θ̂1 and θ̂k. To overcome these problems, we propose a new combining formula and

definition of clique set (as well as boundary and disperse sets). Specifically, we partition

θ1 into two disjoint parts, ψ1 and ξ1, where ξ1 corresponds to part of the structure

common to all individual models, whereas ψ1 is treated as “nuisance”. For instance,

in Example 2.1, ξ1 = (β1, γ1)t, ψ1 = α1; and in Example 2.2 ξ1 = β1, ψ1 = α1 + γ1z1.

Partition θ2, . . . ,θK accordingly. We modify the definitions of clique, boundary and

disperse sets as:

C̃1 = {ξk : n1/2‖ξ1 − ξk‖2 = o(1), k = 1, . . . ,K}, (2.25)

B̃1 = {ξk : n1/2‖ξk − ξ1‖2 → ck, for some constant ck ∈ (0,∞), k = 1, . . . ,K},

D̃1 = {ξk : n1/2‖ξk − ξ1‖2 →∞, k = 1, . . . ,K}.

Moreover, modify the screening weight (2.7) by substituting θ̂1 and θ̂k with ξ1 and ξk,

respectively; and (2.8) can be modified with only little extra effort.

To make inference on θ1, one possible solution is to break the problem according

to the partition of θ1 and then: i) use h1(θ) to infer ψ1; ii) obtain the confidence
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density functions for ξ1, . . . , ξK by marginalizing the full confidence density functions

h1(θ), . . . , hK(θ), respectively; iii) apply formula (2.3) as before but on the marginal-

ized confidence density functions to infer ξ1. This marginal approach is theoretically

justified because the CD combining method is “developed strictly under the frequentist

paradigm” and it can “focus directly on the parameter of interest without the addi-

tional burden of modeling other parameters” (Xie et al., 2013). In fact, consistency

and asymptotic normality can be achieved under this approach, but we show that by

considering all parameter components together in one-shot we can achieve more efficient

inference.

Assume, without loss of generality, that w1k 6= 0, for k = 1, . . . ,K (otherwise if

w1k = 0, we simply exclude individual-k from the analysis). Also, assume that ψk

is a scalar so θk = (ψk, ξ
t
k)
t, for k = 1, . . . ,K. Let ηk = (ψ1, . . . , ψK , ξ

t
k)
t and write

η = (ψ1, . . . , ψK , ξ
t)t. Denote by Ak be the matrix that maps η to (ψk, ξ

t)t. The new

proposed combining formula

h
(c)
1 (η) =

K∏
k=1

hk(Akη)w1k .

Let

θ̂
(c)
1 = A1η̂

(c)
1 . (2.26)

where

η̂
(c)
1 = arg max

η
log h

(c)
1 (η).

We provide theoretical development parallel to that in Section 2.3. Under the as-

sumption that B̃1 = ∅, we define the oracle estimator of θ1 given C̃1 is known:

θ̂
(o)
1 = A1η̂

(o)
1 ,
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where

η̂
(o)
1 = arg max

η
log h

(o)
1 (η)

= arg max
η

log
∏

ξk∈C̃1

hk(Akη).

We state, without formal proof, that similar to Lemma 2.1, the oracle estimator θ̂
(o)
1 is

consistent and asymptotically normally distributed, and has the smallest asymptotical

MSE among all estimator of θ1 given by

θ̂F = A1η̂
F , (2.27)

where

η̂F = arg max
η

∏
ξk∈F

hk(Akη),

for F ⊆ {ξ1, . . . , ξK},

The following theorem shows that θ̂
(c)
1 consistently estimates θ1 and is asymptoti-

cally normally distributed for suitable choice of w1k. Moreover, it has the same limiting

covariance matrix as that of θ̂
(o)
1 so no loss efficiency is incurred, and the argument

applies to MSE as well. The theorem can be viewed the counterpart of Theorem 2.1.

Its proof is quite simlar to that of Theorem 2.1 as well with only slight modification for

Ak and thereby is omitted.

Theorem 2.3. Suppose w1k satisfies

w1k =

 1 + op(n
−1/2) if ξk ∈ C̃1;

op(n
−1/2) otherwise,

(2.28)

for k = 1, . . . ,K. Then, θ̂
(c)
1 obtained from (2.26) has the following properties: as

n→∞,

i) θ̂
(c)
1

p−→ θ1.

ii) n1/2(θ̂
(c)
1 −θ1)

d−→ N(0, ∆̃1), where ∆̃1 = E[nA1(
∑

ξk∈C̃1
AtkΣ̂

−1
k Ak)

−1At1] and can be
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consistently estimated by nA1(
∑K

k=1w1kA
t
kΣ̂
−1
k Ak)

−1(
∑K

k=1w
2
1kA

t
kΣ̂
−1
k Ak)(

∑K
k=1

w1kA
t
kΣ̂
−1
k Ak)

−1At1.

iii) θ̂
(c)
1 has the same MSE as the oracle estimator θ̂

(o)
1 .

Let ψ̂
(c)
1 and ψ̂1 be the respecting part of θ̂

(c)
1 and θ̂1 that estimates ψ1. Here, as

usual, θ̂1 = arg max
θ

log h1(θ). An interesting byproduct of Theorem 2.3 is that ψ̂
(c)
1

improves upon ψ̂1.

Corollary 2.1. Asymptotically, Var(ψ̂
(c)
1 ) ≤ Var(ψ̂1) under the assumptions of Theo-

rem 2.3.

It shows that there is efficiency gain in the joint approach over the individual ap-

proach. It implies that other individuals can contribute to the estimation of ψ1. This

may seem counterintuitive at first glance as other individuals do not contain informa-

tion on ψ1. However, since information for ψ1 and ξ1 is related, improvement in the

estimation of ξ1 can in fact improve the estimation of ψ1. As pointed out in Liu et al.

(2015), “this phenomenon of borrowing strength is not yet well appreciated in conven-

tional meta-analysis and the individual-specific parameter are generally reported as the

final estimators.” Despite the more restrictive setting used in Liu et al. (2015) that

ξ1 = · · · = ξK (in our notation), iFusion benefits from the same principle as well even

when ξk’s are not necessarily the same or similar.

2.5 Scalable Algorithm for Tuning Screening Weights

The screening weight w1k involves an unknown scaling parameter bn, which can be fur-

ther decomposed as bn = τnb for some constant b. In practice, we may set τn according

to the conditions stated in Lemma 2.2 so that w1k is well-behaved asymptotically. The

unknown constant b, however, bears a noticeable impact on the performance of iFusion

under finite sample size: a very large b results in “over aggressive” inference led by

incorrectly including some irrelevant individuals; a very small b leads to the individual

approach and no efficiency is gained. In this section, we provide a tuning algorithm

based on cross-validation to search for an appropriate b:
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1. For k = 1, . . . ,K, randomly split each Sk into V equally sized folds {S1
k , . . . ,SVk }.

Denote by S−vk = Sk/Svk , for v = 1, . . . , V .

2. For a fixed b, let θ̂
(c)
1 (b, v) be the combined estimator from applying iFusion to

{S−v1 ,S−v2 , . . . ,S−vK } using bn = bτn in calculating w1k.

3. Compute L(b, v), the loss of θ̂
(c)
1 (b, v) evaluated on Sv1 . The choice of loss function

depends on the specific problem. For example, in Simulation I in Section 2.6, the

quadratic loss is used:

L(b, v) =
1

|Sv1 |
∑

Yi1∈Sv1

(Yi1 − θ̂(c)
1 (b, v))2.

4. Repeat Steps 2 and 3 for v = 1, . . . , V and average the losses over the V folds:

L̄(b) =
1

V

V∑
v=1

L(b, v).

Also, compute the standard deviation of {L(b, 1), . . . ,L(b, V )} denoted by sd(L(b)).

5. Repeat Steps 2 to 4 along a path of b ∈ P. Let

b∗ = arg min
b∈P

L̄(b),

and choose b as

bopt = median{b : L̄(b) ≤ L̄(b∗) + sd(L(b∗))/
√
V , b ∈ P}.

Rather than the global minimizer b∗, we choose the median of the b’s whose corre-

sponding losses are no greater than the minimum loss by one standard error of it.

This accommodates for the randomness inherent in L̄(b∗) and is similar to the one

standard error rule of cross validation in Hastie et al. (2010).

The tuning algorithm introduces extra computational burden, but can be acceler-

ated in a number of ways as remarked below.
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Remark 2.1. In Step 1, when it comes of a large number of individual subjects, a

quick pre-screen can be carried out using the ranks of {‖θ̂k − θ̂1‖2}Kk=1. Computing l2

norms can be vectorized in many programming languages and so can be done for all k

in a shot, in contrast to Mahalanobis distance that requires inverting a matrix and has

to be computed one by one. Denote the ranks of {‖θ̂k − θ̂1‖2}Kk=1 by {uk}Kk=1. We set

w1k = 0 if uk > u∗ for a pre-specified u∗ ∈ {1, . . . ,K}. As such, only a portion of the

individuals are carried over to the next steps. The choice of u∗ should depends on total

number of individual subjects as well as the allocated computing resources.

Remark 2.2. In Step 5, it is often not necessary to search the full path P. Typically,

loss functions like the quadratic loss roughly exhibit a down-and-up pattern as a function

of b, due to the intrinsic bias-variance tradeoff. Hence, we may begin with some small

b, then gradually increase it and stop if there is no further drop of loss. Specifically,

let bm∗ = arg min1,...,m L̄(bm) that corresponds to the running minimum average loss

by the mth value in P. We stop if L̄(b) has exceeded L̄(bm∗) + sd(L(bm∗)/
√
V ) for

consecutively rounds, and then choose

bopt = median{bm′ : L̄(bm′) ≤ L̄(bm∗) + sd(L(bm∗))/
√
V ,m′ ≤ m}.

Remark 2.3. The design of iFusion, together with the tuning algorithm, makes it a

natural fit for distributed implementation and especially suitable when the individual

datasets are stored in different computer clusters. In this case, a central coordinator

i) collects the individual confidence density functions that are independently computed

using S−vk on cluster-k, for k = 1, . . . ,K, ii) computes the combined estimator θ̂
(c)
1 (b, v)

according to some choice of b and sends back to cluster-1 for evaluation. Such design

benefits the most when the target includes every individual and thus in step ii) the

coordinator will communicate with every cluster in addition to cluster-1. As such,

the algorithm scales up to very large aggregated sample sizes that are too big to be

stored/processed in a single computer.
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2.6 Simulation

In this section, we conduct extensive simulation studies to numerically demonstrate the

results established in Sections 2.3 and 2.4. In each study, we compare the performance

of iFusion with the individual approach and the oracle approach, as well as some other

competitive methods, for example, subgroup analysis (Simulation I) and nonparametric

Bayesian method (Simulation II). The approaches are compared thoroughly by the

MSEs of point estimators and empirical coverages and width of confidence intervals.

Simulation I. We generate random data: Yik
i.i.d.∼ N(θk, 1), for i = 1, . . . , nk, k =

1, . . . , 9, with θk taking values as follows: i) θk = 0 for k = 1, 2, 3; this forms a clique

with equal parameter values. ii) θk = d + (k − 5)/nk for k = 4, 5, 6; this also forms

a clique according to (2.9) but with varying parameter values. iii) θk = (k − 5)d for

k = 7, 8, 9. Here, d mimics the minimum distance between the parameters that are

respectively inside and outside a clique, as defined in (2.13). Furthermore, we allow it

to depend on nk by setting d = 3n
−1/6
k .

The density function of N(θ̂k, σ̂
2
k/nk) is an asymptotic confidence density function

for θk, where θ̂k = Ȳ·k =
∑nk

i=1 Yik/nk and σ̂2
k =

∑nk
i=1(Yik − Ȳ·k)2/(nk − 1). To make

inference about θk, we may directly use this normal confidence density function to

draw point estimate (which is simply θ̂k) and confidence intervals of θk; this yields

the individual approach. We can also combine the K confidence density functions

according to a set of screening weights w1k’s, targeting at individual-k. Point estimate

and confidence intervals can be easily read off as well. This gives the iFusion approach.

In its implementation, w1k is calculated using the uniform kernel with τn = n
−1/3
k and b

tuned via a 5-fold cross-validation under quadratic loss (the same configuration applies

to Simulation II and Simulation III).

To measure the long-run performance, we repeat the simulation 500 times for each
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k and for nk = 40, 400 that represents small/moderate and large sample sizes respec-

tively. For both the individual approach and iFusion, the following summary statis-

tics are reported: MSE of the point estimate, empirical coverage probability and me-

dian width of the confidence interval at the 95% nominal level. Since as a simula-

tion study we have already know the membership of each clique, we can obtain the

oracle estimators and confidence intervals by setting the screening weights to match-

ing the memberships of the corresponding clique. For example, when the target is

individual-1, (w11, . . . , w19) = (1, 1, 1, 0, 0, 0, 0, 0, 0), and when the target is individual-

8, (w81, . . . , w89) = (0, 0, 0, 0, 0, 0, 0, 1, 0). As such, we can observe how well our iFusion

approach performs in relative to the best possible inferences.
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Simulation results are shown in Table 3.1. We first note that, given existence of a

clique of size greater than one (individuals- 1-6), iFusion always returns point estimates

with noticeably less MSE than the individual approach. The confidence intervals from

iFusion are also much narrower than those from the individual approach, but preserves

approximately the desired nominal coverage probabilities. In fact, iFusion approximate

the results of the oracle combination for nk = 40, and are exactly the same as the

oracle approach for nk = 400, thus has numerically validated the theoretical results in

particular Theorem 2.1 established in Section 2.3. Finally, for an individual as a clique

by itself (individuals- 7,8,9), all the three approaches yield quite similar or the same

results.

Subgroup analysis is another possible alternative as mentioned in Section 2.1. To

be specific, we first use k-means clustering on the estimated individual parameters to

divide the individuals into a number of subgroups/clusters. Then, within the cluster,

the individual confidence density functions are combined to obtain a point estimate and

confidence intervals. These results are assumed to be identically applicable to all indi-

viduals within that cluster. To reduce the numerical instability of k-means clustering

algorithm, we randomly set five initial assignments and choose the one that ends up

with the smallest sum of squares from points to the assigned cluster centers. Note the

number of clusters used in k-means clustering need to be determined in advance. In

our experiment 4, 5, 6 cluster setups are tested respectively, where 5-cluster setup aligns

with the actual parameter setting.

From in Table 3.1, it is observed that, however, the results on different individuals

behave quite differently to the number of clusters. For individuals -1,2,3, the 4-cluster

setup works best and approaches the oracle results. For individuals -4,5,6, the 5-cluster

setup is in favor of the other two setups, but it is still underperforming the oracle

approach with greater MSEs and lower coverage probabilities. For individuals -7,8,9

each of which should ideally constitute a cluster itself, the subgroup approach blows

up, with much worse MSEs and coverage probabilities in all cases; it turns out that k-

means clustering often incorrectly bind, say individual-8, with other individuals, leading
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to incorrect inference even the cluster number has agreed with the clique configuration.

Simulation II. The second simulation study fully expands the illustrative example in

Section 2.1, which involves a bivariate setting and a much larger number of individual

subjects. Specifically, we simulate 6000 regression datasets according to

Yik = αk + βkxik + εik, εik
i.i.d.∼ N(0, 1), (2.29)

for i = 1, . . . , nk and k = 1, . . . , 6000. The true parameter values of {θk = (αk, βk)
t, k =

1, . . . , 6000} are set to spread along a circle of radius R by i) generating 1200 points

evenly distributed along the circle, ii) replicating each point four times to obtain 6000

points (including the original 1200 points), and iii) adding disturbance to each point.

Mathematically, (αk, βk) = (R cos(
⌊
k−1

5

⌋
2π

1200) + Uk1
n , R sin(

⌊
k−1

5

⌋
2π

1200) + Uk2
n ), where

Ukj
i.i.d.∼ U [−1, 1], for j = 1, 2 and k = 1, . . . , 6000. We set R = 500 so that the original

1200 points are well separated and {θk−4,θk−3, . . . ,θk} form a clique of size five for

k = 5, 10, . . . , 6000. Next, we simulate xik independently from N(0, 1.52) and then

generate Yik according to (2.29).

For the kth regression, the probability density function of N(θ̂k, σ̂
2
k(X

t
kXk)

−1) is an

asymptotic confidence density function for θk. Here, θ̂k is the least square estimate of

θk, Xk is the design matrix of kth regression, and σ̂2
k is a consistent estimate of σ2

k.

We can directly use N(θ̂k, σ̂
2
k(X

t
kXk)

−1) to make inference about θk. This gives the

individual approach. By applying iFusion targeting at individual-k we expect more

efficient combined estimator θ̂
(c)
k and confidence intervals than the individual approach

provides. Since K = 6000 is very large, we apply the pre-screen introduced in Remark

2.1 to filter out 99.5% individual subjects in implementing iFusion.

Table 2.2 shows the summary statistics of the individual, iFusion, and oracle ap-

proaches, based on 500 simulated datasets. The following summary statistics are re-

ported for each approach: MSE of the point estimates, empirical coverage probability

and median width of the confidence intervals at the 95% nominal level, of αk and βk,

for nk = 40 and 400. We choose result for individuals- 1500, 3000, and 4500 as rep-

resentatives of the entire 6000 individuals. We note very similar patterns observed in
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nk = 40 nk = 400

Indiv iFusion Oracle NPB Indiv iFusion Oracle NPB

MSE α1500 0.026 0.007 0.005 0.005 0.002 0.0005 0.0005 -
β1500 0.014 0.003 0.002 0.002 0.001 0.0002 0.0002 -
α3000 0.026 0.007 0.005 0.007 0.003 0.0005 0.0005 -
β3000 0.011 0.003 0.003 0.003 0.001 0.0002 0.0002 -
α4500 0.028 0.007 0.006 0.006 0.002 0.0005 0.0005 -
β4500 0.018 0.004 0.003 0.003 0.001 0.0002 0.0002 -

Coverage α1500 0.940 0.922 0.928 0.964 0.948 0.948 0.948 -
β1500 0.944 0.928 0.930 0.972 0.950 0.966 0.966 -
α3000 0.932 0.922 0.930 0.920 0.944 0.952 0.952 -
β3000 0.950 0.914 0.924 0.938 0.952 0.952 0.952 -
α4500 0.934 0.916 0.932 0.948 0.960 0.948 0.948 -
β4500 0.940 0.930 0.938 0.940 0.942 0.956 0.956 -

Width α1500 0.624 0.278 0.271 0.277 0.196 0.088 0.088 -
β1500 0.468 0.180 0.175 0.180 0.131 0.058 0.058 -
α3000 0.630 0.285 0.277 0.284 0.196 0.087 0.087 -
β3000 0.415 0.183 0.178 0.181 0.125 0.057 0.057 -
α4500 0.617 0.277 0.271 0.276 0.197 0.088 0.088 -
β4500 0.531 0.217 0.212 0.216 0.127 0.059 0.059 -

Table 2.2: Results of Simulation II comparing individual, iFusion, oracle, and non-
parametric Bayes approaches: MSE of point estimates, empirical coverage and median
width of 95% confidence intervals. The nonparametric Bayesian (NPB) approach is
applied on a subset of individual datasets that have survived the pre-screen procedure
of iFusion. Due to the computing cost, the cases when nk = 400 are not run for the
NPB approach.

Tables 3.1. In all cases, iFusion returns point estimates with significantly less MSE

and narrower confidence intervals than the individual approach. For n = 40, iFusion

approximates the performance of the oracle approach, and for n = 400, iFusion and the

oracle combination yield almost the same results. This has again numerically demon-

strated the theoretical results in Section 2.3, i.e., Theorem 2.1, under the setting of

multivariate parameters and a large number of individual subjects.

In addition, in this study we carry out a nonparametric Bayesian approach to make

individualized inference on the target parameters. We use the DPlmm function in the R

package DPpackage by (Jara et al., 2011). The function estimates a linear mixed-effects

model with a Dirichlet process mixture prior for the distribution of the random effects,

and is suitable under our setting where both regression intercept and slope are treated

as random effects. In each random simulation, the MCMC samples for the target

parameter can be extracted, and posterior mean and credible interval can be computed
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based these samples. Their frequentist properties can be then examined against the

true target parameter values based on the 500 random simulations.

However, this nonparametric Bayesian approach is extremely time-consuming even

for a single random simulation, because it simultaneously estimates all the individual

parameters rather than a specific target individual parameter. The computation lasts

forever in a Late 2013 MacBook Pro with a 2.4 GHz Intel Core i5 processor (10000

MCMC iterations for a single random run). As a compromise, we limit on a subset of

data that have survived the pre-screen embeded in iFusion. We emphasize that this

practice disobeys the Bayesian principle because all the data and parameters shall be

processed as one coherent whole in a Bayesian approach, but by all means it works a

practical solution to such big data size.

We perform the analysis for the scenarios when nk = 40, based on reduced data that

contains only 30 individuals filtered by the pre-screen rule of iFusion. (The analysis

for nk = 400 is not run due to the computing limit.) In random simulation, the last

2500 of the total 10000 MCMC samples are used to compute posterior mean and credit

intervals. (Despite a much smaller sample size, it still takes around 6 minutes for a

single run; for comparison iFusion takes less a second for the same single run.) From

Table 2.2, the reported MSEs are very close to or the same as the oracle approach, so

it is with the median width of the credible intervals. In terms of coverage probabilities,

the other three approaches are even slightly undeforming the nonparametric Bayesian

approach (due to the small sample size). The price paid for the nonparametric Bayesian

approach to produce comparable outputs to iFusion, however, is far more computing

time (in order of magnitude).

Simulation III. In the third simulation study, we generate K = 4 regression datasets

from (2.24) with (similar to the simulation settings in Liu et al. (2015)) to verify Theo-

rem 2.3 and Corollary 2.1 in Section 2.4. For the kth regression, xik is 1 or 0 with equal

probability, zik has three levels of 1, 2, and 5, and each level is assigned with roughly

nk/3 observations.

The regression parameters are α1 = −1+U11/nk, α2 = U21/nk, α3 = 1+U31/nk, α4 =
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nk = 40 nk = 400

Indiv iFusion Oracle Indiv iFusion Oracle

MSE α1 0.097 0.059 0.056 0.011 0.005 0.005
β1 0.136 0.046 0.037 0.011 0.004 0.003
γ1 0.008 0.004 0.003 0.001 0.0003 0.0003
α4 0.096 0.096 0.096 0.012 0.012 0.012
β4 0.102 0.102 0.102 0.010 0.010 0.010
γ4 0.009 0.009 0.009 0.001 0.001 0.001

Coverage α1 0.940 0.940 0.946 0.928 0.946 0.946
β1 0.922 0.922 0.938 0.946 0.952 0.954
γ1 0.940 0.930 0.934 0.950 0.950 0.950
α4 0.960 0.960 0.960 0.944 0.944 0.944
β4 0.944 0.944 0.944 0.954 0.954 0.954
γ4 0.930 0.930 0.930 0.942 0.942 0.942

Width α1 1.187 0.902 0.896 0.404 0.282 0.282
β1 1.343 0.738 0.724 0.393 0.226 0.226
γ1 0.339 0.213 0.210 0.116 0.067 0.067
α4 1.313 1.313 1.313 0.413 0.413 0.413
β4 1.256 1.256 1.256 0.392 0.392 0.392
γ4 0.366 0.366 0.366 0.114 0.114 0.114

Table 2.3: Results of Simulation III comparing individual, iFusion, and oracle ap-
proaches: MSE of point estimates, empirical coverage and median width of 95% confi-
dence intervals.

2 +U41/nk, β1 = 1 +U12/nk, β1 = 1 +U22/nk, β3 = 1 +U32/nk, β4 = −1 +U42/nk, γ1 =

−1 + U13/nk, γ2 = −1 + U23/nk, γ3 = −1 + U33/nk, γ1 = −1 + U43/nk, where Ukj
i.i.d.∼

U [−1, 1] for k = 1, . . . , 4 and j = 1, 2, 3. The configuration follows Example 2.1 in

Section 2.4: (βk, γk) is approximately the same (up to a constant of order O(1/nk))

for k = 1, 2, 3; thus individuals- 1,2,3 form a clique according to (2.25) and individual-

4 stand alone as a clique, where the cliques are defined based on (βk, γk) but not

αk. We set both individual-1 and individual-4 to be the target Also, let σk ≡ 1, and

nk ≡ 40 or 400. For the oracle approach, we set (w11, w12, w13, w14) = (1, 1, 1, 0) and

(w41, w42, w43, w44) = (0, 0, 0, 1).

Table 3.2 reports the summary statistics of the individual, iFusion, and oracle ap-

proaches, based on 500 random simulations. For individual-1 with |C1| = 3, iFusion

outperforms the individual approach in two regards. First, inference about β1 and γ1

from iFusion is much more efficient than the individual approach and approximates

the oracle approach, with smaller MSEs and width of confidence intervals. These ob-

servations agree with Theorem 2.3. A second and more appealing result is on α1, for
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which iFusion also yields much smaller MSE than the individual approach does, even

though α1 is quite different from αk, k = 2, 3, 4. This numerically demonstrates the

argument in Corollary 2.1, where improvement in estimating β1 and γ1 is transferred to

the estimation of α1. For individual-4 that forms a clique itself, inference from the three

approaches are the same. Besides, for all the three approaches and both sample sizes,

the empirical coverage probability of the confidence intervals are around the desired

nominal level.

2.7 Real Data Example

In asset pricing and portfolio management the Fama-French three-factor model is widely

used to describe portfolio returns (Fama and French, 1993). It can be expressed in the

form of regression:

rtk = αk + bkr
M
t + skSMBt + hkHMLt + εtk, k = 1, . . . ,K. (2.30)

Here, rtk is the excessive return on the kth portfolio over the risk-free rate at time

t; rMt is the excessive return on the market portfolio; SMBt (“small minus big”) is

the return on a portfolio long small-capitalization stocks and short large-capitalization

stocks; HMLt (“high minus low”) is the return on a portfolio long high book-to-price

stocks and short low book-to-price stocks (i.e., value stocks versus growth stocks);

and εtk
i.i.d.∼ N(0, σ2

k) is the random error. They are calculated with combinations of

portfolios composed by ranked stocks and available historical market data. See Grinold

and Kahn (1999) for an elegant description on how the factors are constructed.

We download historical daily factor marks from Kenneth French’s web page for all

the trading days from 2016/01/01 to 2016/12/31. We also collect daily returns of 49

individual portfolios during the same period and from the same source. The portfolios

are constructed using stocks listed in NYSE, AMEX, and NASDAQ and their four-digit

SIC (Standard Industrial Classification) codes.

The Fama-French model is a powerful explanatory model in explaining the returns

by contemporaneous factors and has been empirically validated across different markets;

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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cf. Fama and French (1993), Fama and French (2012), and Cakici et al. (2013). In this

application, we expand it for prediction, that is, at time t, we use the factor values to

predict the excessive portfolio return at time t+ l:

rt+l,k = αk + bkr
M
t + skSMBt + hkHMLt + εt+l,k, k = 1, . . . ,K. (2.31)

Unlike the simulations in Section 2.6, the true parameter values, if any, are unobserv-

able, hence it is impossible to measure the frequentist properties such as the coverage

probability. Instead, we show the effectiveness of iFusion by examining its impact on

prediction, in the sense that a more efficiently estimated model typically leads to more

accurate prediction. The test framework goes as follows:

1. For the kth portfolio, fit model (2.31) using factors and portfolio returns from time

t = 1 to m. Let θk = (αk, bk, sk, hk)
t and denote by θ̂k its least square estimate.

2. Apply iFusion, similar to the procedure of Simulation II, to obtain an “improved”

estimate of the regression coefficient θ̂
(c)
k .

3. Predict rm+1+l,k given the factors at time t = m+ 1 using either θ̂k or θ̂
(c)
k , respec-

tively. Calculate the prediction error in terms of difference between the predicted

return and the actual return.

4. Repeat Steps 1 to 3 on a rolling basis with a window size m, i.e., on [1,m], [2,m+ 1]

and so forth until the last applicable window. Average the prediction errors to obtain

the rolling mean squared prediction error (RMSPE),

RMSPEk =
1

S

S∑
s=1

(r̂m+s+l,k − rm+s+l,k)
2,

for both the individual approach and iFusion. Here, S is the number of available

rolling windows.

5. Repeat Steps 1 to 4 for each of the 49 portfolios.

We test for different combinations of rolling window size (m = 20, 60) and prediction
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step (l = 1, 2, 3). Note that m = 20 is roughly the number of trading days in a month

and m = 60 in three months. The results are presented in Figure 2.3. Each panel

corresponds to a specific combination of m and l; and each point is the relative PRMSE,

that is, the ratio of RMSPE from iFusion over that from the individual approach, for

a portfolio. From the upper-left panel, it is noted that iFusion improves the prediction

for almost all the individual portfolios with exception of deterioration for only three of

them. For those improved prediction, iFusion reduces RMSPE mostly by more than

five percent. This is the similar observation for different prediction steps from the

rest two upper panels. We attribute such improvement in prediction accuracy to the

improvement in parameter estimation. Notice that there is always an irreducible error

associated with a future observation so the reduction of RMSPE is usually not as much

as the reduction of MSE (on the parameter estimates) in the simulation examples.

Based on the lower panels which use three months’ data, reduction in RMSPE is also

clear except for only a few portfolios. The improvement on average, however, is not

as prominent as in the upper panels. This agrees with our expectation that for fixed

number of parameters, the individual approach tends to perform better and differs less

from iFusion as the individual sample size increases.

Also under consideration is the Fama-French five-factor model (Fama and French,

2014), where two new factors, investment and profitability, from the dividend discount

model, are added. The five-factor model, aimed at capturing the size, value, prof-

itability, and investment patterns in average stock returns, is shown to be superior to

the three-factor model in that it lessens the anomaly average returns left unexplained

(Fama and French, 2014). The five-factor model for prediction can be expressed as

rt+l,k = αk + bkr
M
t + skSMBt +hkHMLt + rkRMWt + ckCMAt + εt+l,k, k = 1, . . . ,K.

(2.32)

Here, RMWt is the excessive return of the most profitable firms minus the least prof-

itable, and CMAt is excessive return spread of firms that invest conservatively minus

aggressively.

In analogy to Figure 2.3, Figure 2.4 presents the relative RMSPE for each portfolio
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Figure 2.3: h-step-ahead PMSPE of iFusion in relative to individual approach, using
three-factor model (2.31) with m samples for each portfolio, for h = 1, 2, 3, m = 20, 60.
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for various window sizes and prediction steps. We observe very alike pattern as in Figure

2.3. Once again, the most important take-away is that improvement in prediction

accuracy is channeled through the improvement in parameter estimation brought by

iFusion.

2.8 Further Comments

The key lesson throughout the chapter is the bias-variance tradeoff. Analysis with the

fully aggregated data reduces variance but could bias the inference because not all the

individuals shares the same/similar underlying truth with respect to the target. On

the other hand, inference using only the individual specific data is unbiased (or yields

low bias) but could suffer from high variability if its sample size is small. Without

additional individual data, the smart way to better infer about the target is to include

information from relevant individuals. Inclusion of similar individuals with small biases

reduces variance at little cost; inclusion of an individual should be avoided if the bias

introduced cannot be overcome by the combined sample size.

iFusion is closely related to meta-analysis and information synthetization using CDs

that commonly assumes that θ1 = · · · = θK . As with these methods, it is important

to determine in advance if the combination is “suitable and needed”, which is often

subject to comprehensive domain knowledge. A variety of quantitative measures have

been developed and applied to assess the between-study inconsistency/heterogeneity,

such as Cochrans Q (Cochran, 1954), I2 statistic (Higgins et al., 2002, 2003). The

“combine or not combine” question is then answered based on subjective judgements

and/or the aforementioned quantitative evidence. The adaptive screening weights in

iFusion functions similarly as an objective rule on “to combine or not combine”, but are

more mathematically rigorous and optimized. It aims at combined inference that is both

efficient and valid, the latter of which is largely taken for granted and lacks investigation

or validation in practice. Beyond that, iFusion provides additional flexibility under

finite sample size in the sense that i) the individuals to be combined do not have to

be equally important if a non-uniform kernel function is used, and that ii) the true
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parameter values within a clique can vary within a specified range as measured in order

of magnitude.

The intuition behind iFusion makes it a natural fit for personalized medicine, among

many other goal-directed applications. Personalized medicine, sometimes termed pre-

cision medicine, is a general terminology that describes a medical procedure/treatment

tailor made to the individual patient rather than an “average patient”. Conventionally

it is accompanied by the subgroup analysis, in which patients are divided into sub-

groups by one or few baseline characteristics and further analysis is conducted within

each subgroup. Essentially it partitions the individuals on its feature space and has

natural interpretation, but has no statistical guarantee on the combined inference of

model parameters within the subgroup. In comparison, iFusion directly operates on

the parameter space and is statistically valid. In practice, with an amount of data, the

two procedures can be even jointly used and merits from both sides are preserved; say,

partition the individuals into different subgroups according to their features, and then

carry out iFusion within the subgroup.

Another attractiveness of iFusion we would like to emphasize is its scalability to big

data problems, especially when compared to a Bayesian approach. Developed under

the frequentist framework, iFusion allows construction of confidence density functions

independently for each individual, without over-worrying about other individuals and

any nuisance or less relevant information. This reflects the so-called “division of labor”

feature described in Efron (1986) and Wasserman (2007). They also pointed out that

in a Bayesian approach, “statistical problems need to be solved as one coherent whole,

including assigning priors and conducting analyses with nuisance parameters,” and

argued that a Bayesian approach is ‘not good at division of labor.” Compared to

the full Bayesian approaches which requires running a large-scale simulation using an

MCMC algorithm, such “divide-and-conquer” feature of iFusion makes it scale much

better to large applications.

iFusion is a general statistical inference framework that can be applied to a wide
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range of problems provided the availability of individual (asymptotic) confidence den-

sity functions. The numerical examples in Sections 2.6 and 2.7 have demonstrated the

effectiveness of iFusion for simple models like linear regression. It is also readily ap-

plicable to the inference of more complex models such as time series models, survival

models, and high dimensional models. For instance, consider a set of high-dimensional

linear regressions corresponding to multiple individual subjects/datasets. Asymptotic

confidence densities for the individual regression coefficients can be obtained by the de-

biased lasso procedure (cf., Javanmard and Montanari 2014, Zhang and Zhang 2014,

and van de Geer et al. 2014), and then for a target individual, combined estimate and

inference about the target individual regression coefficients can be obtained through

iFusion. This extends the divide-and-conquer strategies for inferring high dimensional

regression coefficients with multiple datasets (cf. Chen and Xie 2014; Kleiner et al. 2014;

Battet et al. To appear; Tang et al. 2016) from an overall to individualized perspective.

We close our discussion by remarking that “the idea of individualized inference

is hardly new” (Liu and Meng, 2016) and has been researched under many different

names (cf. Cox 1958; Fisher 1959; Berger and Wolpert 1988; Fraser 2004); it is the

emergence of big data with the growing capability of data collection, computing power

and storage that has renewed vitality of this area and brought many new opportunity

as well as challenges. We hope that iFusion will be the right way for both researchers

and practitioners who are seeking a statistically efficient, reliable, and computationally

scalable inference tool in the era of big (and heterogeneous) data.
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Chapter 3

Prediction with Confidence

3.1 Background and Motivation

Consider the task of predicting the future value of a univariate random variable Y ∗,

based on given samples of size n, Yn ≡ {Y1, Y2, . . . , Yn}. Assume that the vector of the

given sample data are from a distribution Gθ(·) with parameter θ, denoted by Yn ∼ Gθ,

and that the new data point to be predicted is from a distribution Fθ(·) with the same

parameter θ, denoted by Y ∗ ∼ Fθ. Since Gθ and Fθ share the same θ, information

contained in the observed data Yn can be channeled through an estimate of θ to assist

the prediction of Y ∗. To simplify our presentation, we assume that Y ∗ and Yn are

independent, except in Section 3.6 with an example that allows dependence between

Y ∗ and Yn. Throughout the chapter, the realization of Y ∗ and Yn are denoted by y∗

and yn = {y1, . . . , yn}, respectively. Also, when they exist, the corresponding density

functions of Fθ and Gθ are denoted by fθ and gθ, respectively.

There is a rich literature on predictive inference. Lawless and Fredette (2005) pro-

vided an excellent overview on the topic and categorized statistical methods for predic-

tion into two main approaches – frequentist and Bayesian.

I) In frequentist approach, prediction intervals of the specific form (L1(Yn), L2(Yn))

are considered, so that the coverage probability

CP ≡ PJ {L1(Yn) ≤ Y ∗ ≤ L2(Yn)} (3.1)

can be specified, exactly or asymptotically. Here, PJ refers to the joint probability

for both random variables Y ∗ and Yn. Relevant references include Aitchison and
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Dunsmore (1980), Cox (1975), Beran (1990), Barndor-Nielsen and Cox (1996),

and Escobar and Meeker (1999), among others.

II) In Bayesian inference, Bayesian predictive distributions of the form

QB(y∗; yn) =

∫
θ∈Θ

Fθ(y
∗)p(θ|yn)dθ (3.2)

are considered, based on data Yn = yn and a prior distribution for the model

parameter θ. Here, Θ is the parameter space of θ and p(θ|yn) is the posterior den-

sity of θ given Yn = yn. Bayesian prediction intervals (L1(yn), L2(yn)) can then

be obtained from (3.2). Relevant references include Aitchison (1975), Aitchison

and Dunsmore (1980), Geisser (1993), Smith (1998) and others.

The classical frequentist approaches in I) have the advantage of having a precise

and well defined frequentist probabilistic interpretation, analogous to that of “confi-

dence intervals”. But those prediction intervals use only two endpoints of the intervals

to describe Y ∗, and thus are not as informative or flexible as the entire predictive

distribution produced by the Bayesian methods in II) (as well as the approach to be

proposed in this chapter). This comparative observation is similar to that in comparing

inference outcomes from confidence intervals versus confidence distributions (cf. Cox

2013; Xie 2013). Specifically, as stated in Cox (1958, 2013), one often has a sense that

“when 95% confidence limits of a normal mean are found then, even if the parameter

is outside the calculated range, it will not be too far outside.” This sense cannot be

captured by the definition of a 95% confidence interval, but can be clearly displayed

by a confidence distribution. Similar case can be made for using a full-fledged distri-

bution function to describe the prediction outcome, as to convey fuller the prediction

outcome and also sufficiently flexible to admit all forms of prediction outcomes, e.g.,

point estimates, prediction intervals of all levels, etc.

The Bayesian approach in II) does use a distribution function to describe the pre-

diction of Y ∗, and enjoys the aforementioned “flexibility”. But the Bayesian outcomes

depend on the additional assumptions of priors. Lawless and Fredette (2005) pointed
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out that “objective Bayesian methods do not have clear probability interpretations in

finite samples,” and “subjective Bayesian predictions have a clear personal probability

interpretation but it is not generally clear how this should be applied to non-personal

predictions or decisions.” In addition, many statistical models are developed under non-

Bayesian framework and Bayesian predictive distribution methods are not a natural fit

for the developments in such practices.

To overcome the above shortcomings of the Bayesian approach Lawless and Fre-

dette (2005) studied frequentist predictive distribution functions in a special setting

equipped with pivotal quantities, and referred to this as the pivotal method which ac-

tually dates back to Fisher’s general approach of fiducial inference (Fisher, 1935). They

further proved the superiority of the predictive distributions obtained from the pivotal

method, as having a smaller average Kullback-Leibler divergence to the true distri-

bution fθ(y
∗), over those from the simple plug-in approach by using fθ̂(y

∗) to derive

prediction intervals for all θ. Here, θ̂ ≡ θ̂(yn) is the maximum likelihood estimate or any

efficient estimate of θ based on the observed data. A related development is the fiducial

predictive distributions studied by Wang et al. (2012), who provided a set of conditions

under which the fiducial predictive distributions can be used to construct prediction in-

tervals. The fiducial prediction intervals coincide with the exact pivotal-based intervals

when available, and otherwise possess correct frequentist coverage asymptotically.

Following the concept of predictive distribution in Lawless and Fredette (2005), we

propose in this chapter a rigorous definition of a predictive distribution function and

develop a general approach for constructing a predictive distribution of Y ∗ using a

confidence distribution (CD) of the unknown parameter θ. The resulting predictive

distribution can account for both the variability from the future random variable Y ∗

and that from estimating the unknown parameter θ using the sample Yn. It takes the

same form as the Bayesian and fiducial predictive distribution functions and thus also

enjoys the flexibility of being predictive distribution functions. More importantly, it is

anchored on the idea to always provide prediction intervals with clear frequentist proba-

bility interpretations. This approach was also considered in Schweder and Hjort (2016)
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under the name of predictive confidence distribution, which also had a comparison with

the Bayesian predictive distribution. In this chapter, we establish theoretical properties

for the CD-based predictive distribution, including frequentist coverage probabilities of

the prediction intervals and related efficiency and optimality properties. Moreover, we

establish the connection of this approach to other existing prediction approaches. In

particular, we show that under our formulation the frequentist predictive distribution

functions derived from the pivotal method in Lawless and Fredette (2005), the fidu-

cial predictive distributions from Wang et al. (2012), and even the Bayesian predictive

distribution all amount to the same equivalent expression. This clearly shows that the

CD-based approach can provide a unifying platform linking the existing frequentist,

Bayesian and fiducial predictive distribution functions.

The rest of this chapter is organized as follows. Section 3.2 defines predictive distri-

bution functions and formulates a CD-based predictive approach. Section 3.3 examines

the theoretical properties of the CD-based predictive distribution function and shows

its connections to the Bayesian and fiducial predictive functions, and the frequentist

predictive distribution function studied in Lawless and Fredette (2005). This section

also presents several properties concerning the efficiency and optimality. Section 3.4

contains a simple yet broadly applicable Monte-Carlo algorithm for carrying out the

CD-based approach. Section 3.5 demonstrates the effectiveness of the proposed CD-

based approach using a simulation study under the linear and nonlinear regression

models. Section 3.6 presents a real project on predicting the future volume of applica-

tion submissions to a government agency, showing that the proposed approach applies

even to settings with dependent observations. Section 3.7 provides further comments

and discussions.

3.2 Predictive Distribution Function and Its General Formulation

Based on CD

Let Y∗ be the sample space of Y ∗ and Yn the sample space of Yn. Recall that Yn ≡

{Y1, Y2, . . . , Yn} ∼ Gθ ; Y ∗ ∼ Fθ, and θ ∈ Rp is the unknown parameter with parameter



45

space Θ. Denote by θ0 the true parameter value of θ. We define a predictive distribution

function for Y ∗ based on the sample data Yn as follows.

Definition 3.1. A function Q(·; ·) on Y∗ × Yn −→ (0, 1) is called a predictive dis-

tribution function for a new observation Y ∗ if it satisfies the two requirements

below:

R1) For each given Yn = yn ∈ Yn, Qyn(·) = Q(·; yn) is a cumulative distribution

function on Y∗;

R2) Q(Y ∗; Yn), as a function of both random sample Y ∗ and Yn, satisfies the following

equation:

PJ(Q(Y ∗; Yn) 6 α) = α, for any 0 < α < 1, (3.3)

where PJ(·) is the joint probability measure w.r.t. Y ∗ and Yn. Also, the function

Q(·; ·) is called an asymptotic predictive distribution if the statement in (3.3) holds

asymptotically.

Requirement R1) in Definition 3.1 implies that, in principle, any sample-dependent

distribution function on the space of the future random variable Y ∗ can be used to

predict Y ∗ (i.e., to describe the performance of Y ∗). To draw meaningful prediction

inference, the additional requirement R2) is imposed to ensure that the statements of

our prediction have the desired frequentist interpretations. In particular, requirement

R2) ensures that the coverage probability (CP for short) defined in (3.1) equals α,

0 < α < 1, for L1(Yn) = Q−1
Yn

(α/2) and L2(Yn) = Q−1
Yn

(1− α/2).

Note that Definition 3.1 of prediction functions bears striking resemblance to the

definition of confidence distributions (CDs), except that the parameter θ and the cor-

responding parameter space Θ in CDs are now replaced, respectively, by the “future

observation” Y ∗ and its sample space Y∗. More precisely, a sample-dependent function

defined on the parameter space Θ is called a CD for θ if it satisfies the following two

requirements: R1c) For each given sample, it is a distribution function on the parameter

space Θ; R2c) It can provide confidence intervals (regions) of all levels for θ; cf. Xie
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and Singh (2013), Schweder and Hjort (2016) and references therein. See also Schweder

and Hjort (2002) and Singh et al. (2005) for a formal definition of CD. In general, a

CD is a distribution estimate, instead of the usual point or interval estimate, of the

parameter of interest.

The statement of Definition 3.1 is an abstract definition without concrete procedures

for constructing predictive distribution functions. We exploit the similarities between

the concepts of CDs and predictive distributions, in terms of their capability of summa-

rizing information and quantifying uncertainty, to devise a precise formulation based

on CD for constructing predictive distribution functions.

As stated in Cox (2013), a CD provides “a simple and interpretable summary of what

can reasonably be learned from data (and an assumed model).” It quantifies both the

information and uncertainty about the parameter θ from the observed data, and thus

should naturally be first and key ingredient for constructing a predictive distribution

function for Y ∗. This link of CDs to the construction of predictive distributions will

later be seen as desirable in many practices. More specifically, for a given CD for θ

derived from the data yn, denoted by Hn(·) = H(·; yn), we can apply the formula below

to obtain a predictive distribution function:

Q(y∗; yn) =

∫
θ∈Θ

Fθ(y
∗)dH(θ; yn). (3.4)

In Schweder and Hjort (2016) the same formula was also suggested along with some

examples. Strictly speaking, Q(y∗; yn) obtained by using (3.4) may not always satisfy

requirement R2), but our theoretical results in Section 3.3 show that R2) holds exactly

under some additional conditions on Fθ(y
∗) and H(θ; yn) and asymptotically under

mild conditions.

We now use two simple examples to illustrate the construction formula (3.4). The

first example assumes i.i.d. sequence from the same distribution, but the second allows

Y ∗ and Yi’s to have different distribution to show the flexibility and generality of the

proposed approach. These two examples will serve as working examples for illustrating

key steps in our development throughout the chapter.
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Example 3.1. (Normal distribution with known variance) Let Y1, . . . , Yn and Y ∗ be

independent copies from N(θ, σ2) with a known σ2. A CD for θ based on the sample

yn is N(ȳ, σ2/n), where ȳ =
∑n

i=1 yi/n is the sample mean. This yields Fθ(y
∗) =

Φ((y∗−θ)/σ) and H(θ; yn) = Φ((θ−ȳ)/(σ/
√
n)). Thus, by (3.4), it follows immediately

Q(y∗; yn) =

∫ ∞
−∞

Φ

(
y∗ − θ
σ

)
dΦ

(
θ − ȳ
σ/
√
n

)
= Φ

(
y∗ − ȳ

σ
√

1 + 1/n

)
. (3.5)

Since Q(Y ∗; Yn) = Φ((Y ∗ − Ȳ )/(σ/
√

1 + 1/n)) ∼ Uniform(0, 1), the requirements in

Definition 3.1 are satisfied. Note that this Q(y∗; yn) is exactly the well-known predictive

distribution N(ȳ, σ2(1+1/n)) as well as the Bayesian predictive distribution with a flat

prior for θ.

Example 3.2. (Exponential distribution) Let Y1, . . . , Yn be independent copies from

an exponential distribution with scale αθ where α > 0 is a known acceleration pa-

rameter (as in an accelerated life testing). Then, the joint density function of Yn ≡

{Y1, Y2, . . . , Yn} is gθ(yn) = (αθ)−ne−nȳ/(αθ), where ȳ =
∑n

i=1 yi/n is the sample mean.

Let Y ∗ follow an exponential distribution with scale θ, i.e., with the density func-

tion fθ(y
∗) = θ−1e−y

∗/θ. A CD for θ based on the sample yn is Hn(θ) = H(θ; yn) =

1−Γn,1(nȳ/(αθ)), where Γn,1(·) is the cumulative distribution function of Gamma(n, 1)

distribution. With Fθ(y
∗) = 1− e−y∗/θ, for y∗ > 0, it follows from (3.4) with straight-

forward calculation that

Q(y∗; yn) =

∫ ∞
0

Fθ(y
∗)dH(θ; yn) = 1−

{
1 +

αy∗

nȳ

}−n
. (3.6)

Clearly, the two requirements in Definition 3.1 hold, since αY ∗/Ȳ follows an F -distribution

and Q(Y ∗; Yn) = F2,2n(Y ∗/Ȳ ) ∼ Uniform(0, 1). Here, F2,2n(t) = 1− (1 + t/n)−n is the

cumulative distribution function of the F -distribution with degrees of freedom (2, 2n).

Note that this same predictive distribution can also be obtained using the Bayesian

approach with the Jeffreys’ prior π(θ) ∝ 1/θ.

Note that there are many ways to derive a CD, say from, for instance, normalized

likelihood, fiducial distribution, Bayesian posterior distribution, bootstrap distribution,
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p-value function, among others; cf. Xie and Singh (2013) and references therein. The

same paper also stated, “Any approach, regardless of being frequentist, fiducial or

Bayesian, can potentially be unified under the concept of confidence distributions, as

long as it can be used to build confidence intervals of all levels, exactly or asymptot-

ically”. This useful property that CD can provide a unified framework to encompass

inference procedures from different paradigms is readily inherited by the framework of

predictive distribution functions. This makes formula (3.4) broadly applicable in many

general settings, which will be further elaborated in the next sections.

3.3 Theoretical Properties

In this section, we investigate theoretical properties of the predictive distributionQ(y∗; yn)

constructed using formula (3.4). For ease of presentation, we focus on the case of scalar

θ with p = 1 in this section. We will provide comments on extensions to the case of a

multivariate θ with p > 1 at the end of the section.

The mean, the median and the mode of a CD Hn(·) = H(·; yn) have been shown

in Singh et al. (2007) to be consistent estimators of the unknown parameter θ under

Condition (A) below:

(A) For any δ, 0 < δ < 1/2, Ln(δ) = H−1
n (1− δ)−H−1

n (δ)→ 0, in probability, as the

sample size n→∞.

Later, Xie et al. (2011) proved that this is equivalent to Condition (A’) below:

(A’) For any fixed ε > 0, Hn(θ0−ε)→ 0 and Hn(θ0 +ε)→ 1, in probability, as n→∞,

where θ0 is the true value of θ. These two conditions can be interpreted as: as the sample

size n increases, the probability mass of the CD Hn(θ) becomes more concentrated

around θ0.

We establish the following theorem to show that, if Hn(θ) satisfies Condition (A) or

(A’), then Q(y∗; yn) in (3.4) is an asymptotic predictive distribution function for Y ∗.

Thus, Q(y∗; yn) based on Hn(θ) has valid frequentist interpretations asymptotically. A

proof of the theorem is given in Appendix.
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Theorem 3.1. Assume that the CD Hn(·) used for constructing the predictive function

in (3.4) satisfies Condition (A), and also that Fθ(·) is continuous in θ in a neighborhood

of θ0:

sup
t
|Fθ(t)− Fθ0(t)| ≤ C |θ − θ0| , (3.7)

for some constant C > 0. Then,

Q(Y ∗; Yn) = U + op(1), (3.8)

where U ∼ Uniform(0, 1).

Theorem 3.1 ensures an asymptotic coverage in (3.3) for a broad range of settings,

though in some cases such as in Examples 3.1 and 3.2, Q(Y ∗; Yn) follows exactly

Uniform(0, 1) independent of the sample size. Next, we provide a set of sufficient

conditions, under which the predictive distributionQ(Y ∗; Yn) always has exact coverage

probability. Specifically, consider a condition on the distribution function Fθ0(y∗):

(I) Suppose that there exists a monotonic mapping s1 : Y∗×Θ→ Y∗ and a monotonic

mapping s2 : Θ ×Θ → Θ such that Fθ0(y∗) is invariant to the transformations

s1 and s2 in the sense that, for any θ ∈ Θ,

Fθ0(y∗) = Fs2(θ0,θ)(s1(y∗, θ)). (3.9)

Condition (I) is satisfied in both Examples 3.1 and 3.2. For instance, in Example

3.1, with s1(y∗, θ) = y∗ − θ, s2(θ0, θ) = θ0 − θ and Y∗ ≡ Θ ≡ (−∞,∞), we can verify

(3.9), since Fθ0(y∗) = Φ((y∗ − θ0)/σ) = Φ({(y∗ − θ)− (θ0 − θ)}/σ) = Fθ0−θ(y
∗ − θ) for

any θ ∈ (−∞,∞). Similarly, in Example 3.2, with s1(y∗, θ0) = y∗/θ0, s2(θ0, θ) = θ0/θ

and Y∗ ≡ Θ ≡ (0,∞), we immediately have (3.9), since Fθ0(y∗) = 1 − e−y
∗/θ0 =

1− e−(y∗/θ)/(θ0/θ) = Fθ0/θ(y
∗/θ) for any θ ∈ (0,∞).

Without loss of generality and to simplify our presentation, we assume from now on

that s2(θ0, θ) is increasing in θ0 and decreasing in θ. Denote by Sθ0(t) = Pθ0(s1(Y ∗, θ0) ≤
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t) and Rθ0(t) = Pθ0(s2(θ̂(Yn), θ0) ≤ t), where θ̂(Yn) is the maximum likelihood esti-

mate or some other efficient estimate of θ0 derived from the observed data. It follows

immediately that Rθ0(s2(θ̂(Yn), θ0)) ∼ Uniform(0, 1). If s1(Y ∗, θ0) and s2(θ̂(Yn), θ0),

are pivotal quantities, then Sθ0(t) and Rθ0(t) are independent of θ0, and thus can be

written as S(t) and R(t). In this case, a CD for θ0 can be obtained by

HR(θ; θ̂(yn)) = 1−R(s2(θ̂(yn), θ)).

Following (3.4), a corresponding predictive distribution is

QR(y∗; yn) =

∫
θ∈Θ

Fθ(y
∗)dHR(θ; θ̂(yn)). (3.10)

The following theorem states that the function QR(·; ·) expressed in (3.10) is an

exact predictive distribution function. This theorem covers a class of cases including

Examples 3.1 and 3.2. The proof of the theorem is also given in Appendix.

Theorem 3.2. Assume that condition (I) holds, and that s1(Y ∗, θ0) and s2(θ̂(Yn), θ0)

are pivotal quantities. Then, QR(Y ∗; Yn) ∼ Uniform(0, 1).

The proposed CD-based prediction framework has broad implications. In particular,

we present two corollaries which indicate that the CD-based prediction framework can

be applied broadly to encompass several existing Bayesian, fiducial and frequentist

prediction procedures.

First, note that the fiducial and Bayesian posterior distributions are sample-dependent

distribution functions on the parameter space. If their corresponding fiducial or credible

intervals have valid frequentist probability coverages (which is a goal in many devel-

opments on the topics of fiducial and (objective) Bayes), they satisfy the definition

of CDs; cf. Xie and Singh (2013). In this context, Bayesian predictive distributions

defined in (3.2) and the fiducial predictive distributions defined in Wang et al. (2012)

are in fact the same as (or treated as special cases of) the general formulation (3.4).

Thus, an immediate result from Theorems 3.1 and 3.2 is that the predictive intervals

obtained from these fiducial and Bayesian predictive distributions have valid frequentist
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coverage. This observation is summarized as a corollary below.

Corollary 3.1. If a Bayesian posterior or a fiducial distribution of θ can be justified

as a CD, then its corresponding predictive distribution also has the valid frequentist

probability coverage as defined in Definition 3.1.

Note that the predictive distribution by the pivotal method of Lawless and Fredette

(2005) can also be linked to the general formulation (3.4), even though it is quite differ-

ent in appearance. The pivotal method relies on the random variable W = Fθ̂(Yn)(Y
∗),

which is required to be a pivotal quantity so that its cumulative distribution function

K(t) = PJ(W ≤ t) is parameter-free. By defining our predictive distribution function

as

Qpiv(y∗; yn) ≡ K(Fθ̂(yn)(y
∗)), (3.11)

we obtain the predictive distribution function proposed in Lawless and Fredette (2005).

Clearly, Qpiv(y∗; yn) satisfies the requirements in Definition 3.1. The next corollary

states that Qpiv(y∗; yn) can actually be expressed in the general formula (3.4). A proof

of Corollary 3.2 can be found in Appendix.

Corollary 3.2. Under the condition of Theorem 3.2, Qpiv(y
∗; yn) defined in (3.11) can

be expressed as

Qpiv(y
∗; yn) =

∫
θ∈Θ

Fθ(y
∗)dHR(θ; θ̂(yn)),

where HR(θ; θ̂(yn)) is a CD obtained based on θ̂(yn).

Altogether, Corollaries 3.1 and 3.2 suggest that the general formulation of predictive

distributions in (3.4) through CDs provides a common link or a unifying platform for

most, if not all, existing frequentist, fiducial and Bayesian predictive distributions.

We next discuss two optimality results regarding choices of different predictive dis-

tribution functions. Like in the CD development where multiple CDs exist for the same

estimation problem, there may also exist different predictive distribution functions for

the same prediction problem. We start with reviewing some definitions and properties

on the relative efficiency of CD and then make extensions to predictive distributions.
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Following Singh et al. (2001), Schweder and Hjort (2002), Singh et al. (2007) and

Xie and Singh (2013), a CD H1(·) ≡ H1(·; Yn) is considered more efficient than another

CD H2(·) ≡ H2(·; Yn) at θ = θ0, if for all ε > 0,

H1(θ0 − ε)
sto
≤ H2(θ0 − ε) and 1−H1(θ0 + ε)

sto
≤ 1−H2(θ0 + ε). (3.12)

Here, the symbol
sto
≤ stands for stochastically less than or equal to. This definition has

an equivalent form: H1(·) is more efficient than H2(·) at θ = θ0, if for all u ∈ (0, 1),

(H−1
1 (u)− θ0)+

sto
≤ (H−1

2 (u)− θ0)+ and (H−1
1 (u)− θ0)−

sto
≤ (H−1

2 (u)− θ0)−. (3.13)

The inequalities (3.12)) and (3.13) are interpreted in Singh et al. (2007) as that H1(·)

is more “concentrated” around the true parameter θ0 than H2(·). A natural notion of

MSE for a CD H(·) is defined in Xie and Singh (2013):

MSE(H) = EYn

∫
θ∈Θ

(θ − θ0)2dH(θ) = EYn,U (H−1(U)− θ0)2, (3.14)

where U ∼ Uniform(0, 1). It follows by elementary exercise that

MSE(H1) ≤ MSE(H2), (3.15)

if H1(·) is more efficient than H2(·) at θ = θ0. In addition to the MSE of CD, the

discussions on the optimality issues surrounding CDs in Xie and Singh (2013) and

Schweder and Hjort (2016) indicate that a better CD typically leads to a better point

estimator and hypothesis test, and vice versa.

The relative efficiency of predictive distributions can be defined by extending (3.13).

Specifically, we say one predictive distribution Q1(·; Yn) is more efficient than another

predictive distribution Q2(·; Yn), if for all u ∈ (0, 1),

(Q−1
1 (u)− F−1

θ0
(u))+

sto
≤ (Q−1

2 (u)− F−1
θ0

(u))+, (3.16)
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and

(Q−1
1 (u)− F−1

θ0
(u))−

sto
≤ (Q−1

2 (u)− F−1
θ0

(u))−. (3.17)

Now, suppose that Q1(·; Yn) and Q2(·; Yn) are two predictive distribution func-

tions induced through the general form (3.4) using two different CDs, H1(·) and H2(·).

A natural question is whether a better CD leads to a better predictive distribution

function. The following theorem provides an affirmative answer under a set of suitable

conditions.

Theorem 3.3. Suppose that Q−1
i (u) =

∫
θ∈Θ F−1

θ (u)dHi(θ) for i = 1, 2, and that

F−1
θ (u) is nondecreasing in θ, for any given u ∈ (0, 1). If H1(·) is more efficient

than H2(·) at θ = θ0, then Q1(·; Yn) is more efficient than Q2(·; Yn).

We can also define MSE of a predictive distribution Q(·; Yn) analogously:

MSE(Q) = EYn,U (Q−1(U)− F−1
θ0

(U))2, (3.18)

where U ∼ Uniform(0, 1). In essence, MSE(Q) quantifies the expected squared devi-

ation between the quantiles of Q(·; Yn) and Fθ0(·). The counterpart of (3.15) can be

immediately established under the same setting of Theorem 3.3.

Corollary 3.3. Under the setting of Theorem 3.3,

MSE(Q1) ≤ MSE(Q2). (3.19)

Consider the setting of Example 3.1. Singh et al. (2007) showed that H1(θ) =

Φ((θ− Ȳ )/(σ/
√
n)) is the most efficient CD for θ0. We also consider a CD derived from

the sample median M . Since
√
n(M − θ0) → N(0, πσ2/2) in distribution, as n → ∞,

H2(θ) = Φ((θ −M)/(σ/
√

2n/π)) is an asymptotic CD for θ0. Although H2 may be

more robust, it is known to be less efficient than H1. Applying (3.4), the predictive

distribution functions based on H1 and H2 can be obtained. They are Q1(Y ∗; Yn) =

Φ((Y ∗ − Ȳ )/(σ/
√

1 + 1/n)) and Q2(Y ∗; Yn) = Φ((Y ∗ −M)/(σ/
√

1 + π/2n)), respec-

tively. It is easy to verify that the requirement in Theorem 3.3 is satisfied. Thus,
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Corollary 3.3 implies that the MSE(Q1) is smaller than MSE(Q2). Indeed, simple

algebra gives MSE(Q1) = 2
nσ

2 and MSE(Q2) ≈ π
nσ

2 for some large n.

If there is a family of uniformly most powerful unbiased (UMPU) tests for testing

K0 : θ ≤ c versus K1 : θ > c, for every c ∈ Θ, Theorem 2.2 of Singh et al. (2007)

states that the CD corresponding to the p-value function of the UMPU tests is the

most efficient. Combining this observation with Theorem 3.3, we immediately have:

Corollary 3.4. Under the setting of Theorem 3.3 and assume that a CD is derived

from a p-value function of a UMPU test, then the corresponding predictive distribution

function obtained by using (3.4) has the smallest MSE.

Finally, we discuss the plug-in predictive distribution Fθ̂(y
∗) which has often been

used as an approximation to the true distribution Fθ0(y∗). Although the plug-in pre-

dictive distribution has valid asymptotic coverage probability similar to that of (3.8), it

fails to account for the uncertainty in the estimation of θ and typically cannot achieve

exact coverage probability in comparison with the result of Theorem 3.2. In fact, Law-

less and Fredette (2005) showed that when the pivot method applies, the predictive

distribution Qpiv(y∗; yn) in (3.11) is always better than the plug-in predictive distri-

bution Fθ̂(yn)(y
∗), as measured by the average Kullback-Leibler divergence to the true

distribution Fθ0(y∗); cf. Theorem 1 of Lawless and Fredette (2005).

The next theorem reports a slightly more general result. Let HR(θ; θ̂(yn)) be a CD

for θ obtained based on θ̂ = θ̂(yn). To simplify the notations, we let Qθ̂(t) = Q(t; θ̂),

qθ̂(t) = d
dtQθ̂(t) and fθ̂(t) = d

dtFθ̂(t). The theorem below shows that the predictive

distribution function Qθ̂(y
∗) = Q(y∗; θ̂(yn)) obtained using HR(θ; θ̂(yn)) is better than

the naive plug-in predictive distribution function Fθ̂(yn)(y
∗), as measured by the average

Kullback-Leibler divergence to the true distribution Fθ0(y∗). The proof is provided in

Appendix.

Theorem 3.4. Assume that

EJ

{
fθ̂(Y

∗)

qθ̂(Y
∗)

}
≤ 1. (3.20)
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Then,

D̄KL(fθ0 |qθ̂) ≤ D̄KL(fθ0 |fθ̂),

where D̄KL(fθ0 |gθ̂) = EJ

{
log

fθ0 (Y ∗)

gθ̂(Y ∗)

}
is the average Kullback-Leibler divergence be-

tween fθ0 and any density function of the form gθ̂.

In the pivot example in Lawless and Fredette (2005), Qpiv(y∗; yn) = K(Fθ̂(yn)(y
∗)).

So, qθ̂(t) = ∂
∂tQpiv(t; yn) = k(Fθ̂(yn)(t))fθ̂(yn)(t), where k(s) = ∂

∂sK(s) is the density

function corresponding to the cumulative distribution function K(·). It follows from

direct calculation that EJ

{
fθ̂(Y ∗)

qθ̂(Y ∗)

}
= EJ{1/k(Fθ̂(Yn)(Y

∗))} = EU{1/k(U)} = 1, where

the last two equations are obtained by variable transformation and the observation

that U = Fθ̂(Yn)(Y
∗) ∼ k(·). Thus, (3.20) holds and Theorem 3.4 covers the result of

Lawless and Fredette (2005) as a special case.

We close this section by addressing the potential extensions of the above theoretic

developments to a multivariate θ ∈ Rp setting with p > 1. (From now on we use the bold

θ whenever p > 1.) Although, on the outset, we note that Definition 3.1 of the predictive

distribution, the general formulation (3.4) in Section 3.2 and even the algorithm to

be proposed in Section 3.4 can be applied directly in the multivariate setting, there

remains a technical difficulty in defining a general multivariate CD and thus a rigorous

presentation of all theoretical results in Section 3.3 for the general multivariate θ setting

is still being sought. In principle, the concept of a multivariate CD is straightforward

(i.e., a sample-dependent distribution function on the multivariate parameter space

that can produce confidence regions of all levels), however a precise definition with

explicit mathematical formulation to cover general cases thus far remains elusive. But

partial progress can still be made, since under asymptotic settings or wherever the usual

likelihood inference or bootstrap theory applies, multivariate CDs can be applied with

ease. For instance, under the general setup of likelihood inference, the multivariate

normal distribution N(θ̂, Σ̂) serves as a first-order asymptotic CD for θ where θ̂ is

the maximum likelihood estimate of θ and Σ̂ is the inverse of the observed Fisher’s

information using the entire n observations; cf. Yang et al. (2014) and Liu et al. (2015).

In addition, if we limit ourselves to center-outwards confidence regions (instead of all
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Borel sets) in the parameter space, concepts such as the c-CDs considered in Singh et al.

(2007) and the confidence curve considered in Schweder (2007) and Schweder and Hjort

(2016) offer coherent notions of multivariate CDs in the exact sense. In these cases,

we still can generalize most of the theoretical developments to the multivariate setting.

This fact has been used in some of our examples, e.g., in Section 3.6. See also Schweder

and Hjort (2016) for related discussions. Last but not least, extension can be made

to establish predictive distributions for a multivariate observation, that is, multivariate

predictive distribution (MPD). MPD utilizes the concept of data depth (cf. Liu et al.

1999) to characterize its frequentist properties and is currently under development by

our research group.

3.4 Algorithm for Simulating from Predictive Distributions

To implement the approach formulated in (3.4), we propose a Monte-Carlo algorithm

for computing predictive distributions and prediction intervals. This algorithm is simple

yet applicable to a wide range of problems. Specifically, given Yn = yn, a CD Hn(·) =

H(·; yn) is a distribution function on the parameter space Θ. Conditional on Yn = yn,

we can simulate a CD-random variable θCD by θCD

∣∣yn ∼ Hn(·). The concrete algorithm

is as follows.

[Monte-Carlo Algorithm] Obtain a simulated copy of y∗S from Q(·; yn) by: first

simulate a CD-random variable θCD

∣∣yn ∼ Hn(·), and then simulate a y∗S from y∗S
∣∣θCD ∼

fθCD
(·). Repeat this procedure a large number of times, say N times, to obtain N copies

of simulated y∗S . The histogram of these N copies of y∗S are then used to approximate

a predictive distribution of Y ∗ and hence its prediction intervals of all levels.

This algorithm applies to any CD Hn(·) = H(·,yn) for θ ∈ Rp. Note that, any

approach, regardless being frequentist, fiducial or Bayesian, can be used to construct

CDs, as long as the produced CDs can be used to build confidence intervals of all levels,

exact or asymptotically; cf. Xie and Singh (2013) and references therein. Hence this

algorithm is quite general and can be applied broadly.

As a special case, this algorithm can be carried out using a bootstrap method,
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noting that a bootstrap distribution is known to be also a CD (see e.g., Efron 1998;

Xie and Singh 2013). In particular, we can simply simulate a future observation y∗ by

y∗
∣∣θboot ∼ fθboot(·), where θboot is the bootstrap estimate of the parameter θ. Obviously,

this simulation method makes the proposed prediction approach very useful in practice,

as it is simple and general.

Clearly, the prediction intervals and predictive distributions obtained by using the

proposed algorithm above have valid frequentist interpretations, following Theorems

3.1 and 3.2 (and their extensions to multivariate θ as discussed at the end of Section

3.3).

3.5 Simulation

In this section, we use two simulation examples to demonstrate the proposed approach

and computing algorithm for constructing predictive distribution functions, and then

examine their frequentist properties. The first example involves a simple linear re-

gression model with zero-intercept, for which exact predictive distribution function is

well-known and can be obtained explicitly. We report and compare the numerical re-

sults from this explicit predictive distribution function and those from our computing

algorithm. The second example relates to a nonlinear regression, for which an exact

CD for the underlying parameter does not exist, neither does an exact predictive dis-

tribution function. Nonetheless, we can apply our computing algorithm with several

different asymptotic CD functions to perform predictions and study their numerical

performance.

Simulation I. Consider a simple linear regression model with zero-intercept:

yi = θxi + εi, i = 1, . . . , n,

where εi
i.i.d.∼ N(0, σ2). Let θ̂ =

∑n
i=1 yixi/

∑n
i=1 x

2
i be the ordinary least squares

estimate of θ and σ̂2 = 1
n−1

∑n
i=1(yi − θ̂xi)2. For a new independent observation Y ∗
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associated with covariate x∗, there exists the well-known predictive distribution

Qt(y
∗; yn) = Tn−1

(
y∗ − θ̂x∗

σ̂
√

1 + (x∗)2/
∑n

i=1 x
2
i

)
, (3.21)

where Tn−1(·) is the cumulative distribution function of t-distribution with degrees of

freedom n − 1. It is easy to verify that Qt(y
∗; yn) satisfies Definition 3.1. This is the

same as the predictive distribution considered in Schweder and Hjort (2016).

Alternatively, straightforward calculation yields

H(θ) = Φ

 θ − θ̂

σ̂/
√∑n

i=1 x
2
i


as an asymptotic CD for θ. The corresponding predictive distribution for Y ∗ using

formula (3.4) is then

Q(y∗; yn) =

∫ ∞
−∞

Φ

(
y∗ − ξx∗

σ

)
dΦ

 ξ − θ̂

σ
/√∑n

i=1 x
2
i

 = Φ

 y∗ − θ̂x∗

σ
√

1 + (x∗)2/
∑n

i=1 x
2
i

 ,

and hence

Qa(y
∗; yn) = Φ

(
y∗ − θ̂x∗

σ̂
√

1 + (x∗)2/
∑n

i=1 x
2
i

)
(3.22)

is an asymptotic predictive distribution.

We can also construct the predictive distribution using bootstrap distribution of

θ, since bootstrap distribution is an asymptotic CD (as demonstrated earlier) with

which the bootstrap estimator is the corresponding CD-random variable. Specially, we

first bootstrap the residuals ei = yi − θ̂xi, denoted by ei,boot, and then compute the

bootstrap least squares estimate of θ̂boot using the new samples {(yi,boot, xi)}ni=1, where

yi,boot ≡ θ̂xi + ei,boot. Finally, a sample from the predictive distribution of Y ∗boot, say

Qboot(·; yn), can be obtained empirically by first generating ε∗ ∼ N(0, σ̂2) and then

computing y∗boot = θ̂bootx
∗ + ε∗. Repeat these four steps for a large number of times to

get sufficient many copies of y∗boot. These copies of y∗boot are then used to construct a

predictive distribution function as well as prediction intervals.



59

We compare the empirical coverage probabilities of the prediction intervals from

the four different predictive distributions: i) the naive plug-in predictive distribution

Fθ̂(yn)(y
∗) = Φ((y∗ − θ̂x∗)/σ̂), ii) the exact predictive distribution Qt(y

∗; yn) in (3.21),

iii) the asymptotic predictive distributions Qa(y
∗; yn) in (3.22) and iv) Qboot(y

∗; yn)

described above. The prediction intervals are obtained by taking the upper and lower

α/2 quantiles of the corresponding predictive distributions. Comparisons are made

with different choices of α and sample sizes in order to provide a general picture of

their performance. The numerical settings are as follows: θ = 1, σ = 1, xi ∼ U [−2, 2]

are fixed once they have been generated, and x∗ = 2. For Qboot(y
∗; yn), 1, 000 bootstrap

samples are utilized. Three sample sizes are considered: n = 10, 100, 1, 000. For each

sample size, the analysis is repeated 5,000 times with y1, . . . , yn, y
∗ being simulated

anew accordingly.

Table 3.1 shows the empirical coverage probabilities and median widths of the pre-

diction intervals. Note that the widths of the prediction intervals from Fθ̂(yn)(y
∗),

Qt(y
∗; yn) and Qa(y

∗; yn) can be assessed without simulation. They are, respectively,

2zα/2σ̂, 2tn−1,α/2σ̂
√

1 + (x∗)2/
∑n

i=1 x
2
i and 2zα/2σ̂

√
1 + (x∗)2/

∑n
i=1 x

2
i . Here, tn−1,α/2

and zα/2 are the (1−α/2)th percentiles of t-distribution with degrees of freedom n− 1

and the standard normal distribution, respectively. From Table 3.1, at all nominal lev-

els, the prediction intervals from Qt(y
∗; yn) has the correct frequentist coverage prob-

ability as expected. For small sample size (such as n = 10), the empirical coverage of

the prediction intervals from Fθ̂(yn)(y
∗) is far below its nominal level. This is because

those prediction intervals do not take into account the uncertainty stemming from the

estimation of the unknown parameter and such uncertainty is large relative (or at least

comparable) to the noise level (σ2) for small n. The empirical coverages of the predic-

tion intervals from Qa(y
∗; yn) and Qboot(y

∗; yn) improve significantly upon those from

Fθ̂(yn)(y
∗), though are still below the nominal level for small n. This is due to the facts

that in Qa(y
∗; yn) the estimated σ̂ is used to approximate the actual σ and that for

Qboot(y
∗; yn) the bootstrap distribution works well for at least moderate sample size

n. For moderate or large sample size, such as n = 100 or n = 1, 000, the coverage

probabilities of all the four types of prediction intervals approximate well their nominal
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n 1− α
Fθ̂(Yn)(Y

∗) Qt(Y
∗;Yn) Qa(Y

∗;Yn) Qboot(Y
∗;Yn)

Coverage Width Coverage Width Coverage Width Coverage Width

10 0.80 0.695 2.482 0.793 3.096 0.762 2.869 0.746 2.786
10 0.90 0.803 3.185 0.895 4.103 0.860 3.682 0.845 3.579
10 0.95 0.871 3.796 0.950 5.064 0.916 4.387 0.906 4.258
100 0.80 0.795 2.555 0.805 2.619 0.803 2.601 0.798 2.595
100 0.90 0.893 3.279 0.903 3.370 0.899 3.339 0.897 3.326
100 0.95 0.941 3.907 0.947 4.028 0.944 3.978 0.943 3.958
1000 0.80 0.801 2.562 0.802 2.568 0.801 2.566 0.799 2.562
1000 0.90 0.901 3.288 0.902 3.296 0.901 3.293 0.900 3.284
1000 0.95 0.948 3.918 0.948 3.929 0.948 3.924 0.942 3.903

Table 3.1: Comparison of different predictive distributions in Simulation I: 80%, 90% and
95% prediction intervals.

levels.

Simulation II. Consider a nonlinear regression in the form of

yi = h(xi,θ) + εi, i = 1, . . . , n,

where

h(xi,θ) =
θ1xi
θ2 + xi

,

and εi
i.i.d.∼ N(0, σ2). The parameter θ = (θ1, θ2)t can be estimated by nonlinear least

squares (NLS) and solved iteratively using Gauss-Newton algorithm. Denote by θ̂

the NLS estimate of θ and let σ̂2 = 1
n−2

∑n
i=1(yi − h(xi, θ̂))2. Although no explicit

expression of the exact sampling distribution of θ̂ exists, it can be approximated by

N
(
θ, σ2(A(x,θ)tA(x,θ))−1

)
where A(x,θ) is the n × 2 matrix with its ith row being(

∂
∂θ1

h(xi,θ), ∂
∂θ2

h(xi,θ)
)

=
(

xi
θ2+xi

,− θ1xi
(θ2+xi)2

)
. Therefore, the cumulative distribution

function of N
(
θ̂, σ̂2(A(x, θ̂)tA(x, θ̂))−1

)
can be used as an asymptotic CD function for

θ. In this formula, the unknown values are replaced by their corresponding estimates.

For a new independent observation Y ∗ associated with covariate x∗, we can con-

struct asymptotic predictive distribution by using the above asymptotic CD and taking

advantage of the approximation

h(x∗,θ) ≈ h(x∗, θ̂) + a(x∗, θ̂)t(θ − θ̂),
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n 1− α
Fθ̂(Yn)(Y

∗) Qa(Y
∗;Yn) Qboot(Y

∗;Yn)

Coverage Width Coverage Width Coverage Width

10 0.80 0.698 2.438 0.764 2.817 0.751 2.742
10 0.90 0.809 3.129 0.862 3.615 0.854 3.512
10 0.95 0.872 3.728 0.913 4.308 0.903 4.177
100 0.80 0.782 2.552 0.791 2.610 0.791 2.603
100 0.90 0.888 3.275 0.896 3.350 0.894 3.335
100 0.95 0.941 3.902 0.946 3.992 0.943 3.973
1000 0.80 0.794 2.564 0.795 2.569 0.793 2.564
1000 0.90 0.895 3.291 0.896 3.298 0.896 3.285
1000 0.95 0.949 3.922 0.949 3.929 0.947 3.907

Table 3.2: Comparison of different predictive distributions in Simulation II: 80%, 90%
and 95% prediction intervals.

where a(x∗,θ) = ∂h(x∗,θ)
∂θ . Applying formula (3.4) with some simple algebra, one can

obtain the asymptotic predictive distribution

Qa(y
∗; yn) = Φ

(
y∗ − h(x∗, θ̂)

σ̂

√
1 + a(x∗, θ̂)t(A(x, θ̂)tA(x, θ̂))−1a(x∗, θ̂)

)
.

Alternatively, we can construct the bootstrap-based predictive distribution, denoted

by Qboot(y
∗; yn), following almost the same procedure as in Simulation I.

We proceed to compare the empirical coverage probabilities of the prediction in-

tervals from the three different predictive distributions: i) the naive plug-in predictive

distribution Fθ̂(yn)(y
∗) = Φ((y∗ − h(x∗, θ̂))/σ̂), the asymptotic predictive distributions

ii) Qa(y
∗; yn), and iii) Qboot(y

∗; yn). Comparisons are made at α = 0.8, 0.9, 0.95 and

n = 10, 100, 1, 000 with 5,000 repetitions for each sample size. The numerical settings

are: θ1 = 15, θ2 = 5, σ = 1, xi
i.i.d.∼ U [0, 30] are fixed once generated, x∗ = 40. For

the bootstrap-based approach, 1, 000 bootstrap samples are generated. Similar to Ta-

ble 3.1, Table 3.2 lists the empirical coverage probabilities and median widths of the

prediction intervals. In the case of small sample size (n = 10), the empirical coverage

of the prediction intervals from all the three approaches are below the nominal level

since they are all approximate methods. However, both the CD-based predictive dis-

tributions, either Qa(y
∗; yn) derived from the multivariate normal CD or Qboot(y

∗; yn)

derived from the bootstrap CD, have outperformed the plug-in predictive distribution

Fθ̂(yn)(y
∗) in terms of empirical coverage. This is because the CD-based methods have
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incorporated the uncertainty in the parameter estimation. Again, for moderate or large

sample size, such as n = 100 or n = 1, 000, the coverage probabilities of all the three

prediction intervals are close to the corresponding nominal levels.

3.6 Real Data Example

In this section, we provide a real data example, in which the predictive inference is

applied to data from a complex time series. We can envision that the development of

predictive distributions be applied and generalized to other complex situations such as

survival analysis, multiple regressions and any other fields and applications that involve

forecasting and prediction.

Before we start our real data example, we extend the general formula (3.4) discussed

in Section 3.2 to cover the case that Y ∗ and Yn are dependent; for instance, a time

series data in which Yn are sample observations up to data and Y ∗ is a future response

at the time series. Specifically, we propose to consider the conditional distribution of

Y ∗ given Yn and modify the general formula (3.4) to be

Qc(y
∗; yn) =

∫
θ∈Θ

Fθ(y
∗|yn)dH(θ; yn). (3.23)

In fact, formula (3.4) can now be viewed as a special case of (3.23) when Fθ(y
∗|yn) ≡

Fθ(y
∗). Many of the theoretical results developed in Section 3.3 can be extended

straightforwardly. For example, if we modify (3.7) to be supt |Fθ(t|yn)− Fθ0(t|yn)| ≤

C |θ − θ0| for some positive constant C, then the result of Theorem 3.1 applies to

Qc(y
∗; yn) for the dependent case. This means that the predictive distribution function

Qc(y
∗; yn) for the dependent case also has valid frequentist interpretations, under a set

of very mild conditions.

The real data example is from a research project partially sponsored by the US

Department Homeland Security (DHS) through its academic research center DHS Uni-

versity Center of Excellence for Command, Control, and Interoperability (CCICADA)

based at Rutgers University. This data example specifically focuses on the analysis of

the monthly volume of applications for a certain type of government benefit (the name
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Figure 3.1: Time series plot of monthly application volumes for a government benefit
and 95% one-step ahead prediction intervals starting from t = 132 to 167 on a rolling
basis with window width d = 120. The red points show the predicted values and the
blue dotted lines are the upper and lower limits of the corresponding 95% prediction
intervals.

of the governmental program is masked per a confidentiality agreement).

The main objective of the project is to seek more effective statistical methods that

can substantially improve upon the current benchmark model used by the agency in

gaining accuracy of forecast. This gain can allow the agency to optimize the human

resource allocation and minimize the cost of management.

The data set contains 167 months of application volume. The logarithm transforma-

tion of the 167 observed volumes are shown in Figure 3.1. We denote the transformed

series by {yt}167
t=1.

It was noted in Chang (2015) the known outliers at t = 105, 106, 107 due to policy

changes in the application process. Thus, we filter out these outliers with three indicator

variables 1
(105)
t , 1

(106)
t , and 1

(107)
t , where 1

(k)
t = 1{t = k}. Also, the series in seasonal

nature exhibits a cyclical pattern with periodicity of 12 that is modeled with seasonal

terms. In addition, there is a strong linear relationship between yt and another type

of benefit application xt. Taking all this information into account and also building

upon the work by Chang (2015), we propose the following seasonal ARMA model with
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φ1 Φ1 Θ1 β1 β2 β3 β4

Estimate 0.784 0.998 -0.966 0.975 0.633 2.160 -0.696
Std. Error 0.048 0.011 0.111 0.014 0.175 0.200 0.175

Table 3.3: Coefficient estimates and their standard errors of model (3.24).
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Figure 3.2: Sample ACF and PACF plots of the residuals from model (3.24).

exogenous variables,

(1−φ1B)(1−Φ1B
12)(yt−β1xt−β21

(105)
t −β31

(106)
t −β41

(107)
t ) = (1+Θ1B

12)εt. (3.24)

Here, {εt} is a white noise series with variance σ2
ε , B is the backshift operator such

that Bsyt = yt−s for an integer s > 0. Also, denote by θ = (φ1,Φ1,Θ1, β1, β2, β3, β4)

the associated coefficients.

Table 3.3 summarizes the coefficient estimates and their standard errors from model

(3.24). It is easy to see that all the coefficients are significant at the 95% significance

level. Figure 3.2 shows the sample autocorrelation function (ACF) and partial autocor-

relation function (PACF) plots of the residuals from model (3.24). With no significant

autocorrelation and partial autocorrelation, we conclude that model (3.24) is adequate

in capturing the patterns of {yt}167
t=1.

Our ultimate goal is to make prediction on future application volumes given the

past observations and to construct the corresponding prediction intervals and predictive

distributions. More specifically, we need predict a sequence of y167+h for h = 1, 2, . . . ,
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based on past observations up to time t = 167. On the other hand, since we do not know

the values of the future observations after t = 167, we cannot really tell how good these

predictions are. To this end, we demonstrate the effectiveness of our proposed method

by formulating our predictions as of length h > 0 steps away, on a rolling basis with a

rolling window size d (e.g., d = 120 corresponding to the data of the past ten years).

That is, at time t, we predict yt+l based on the most recent d observations, compare the

prediction with the actual value, and then increase t by one and repeat the procedure

until t = 167− h. It is well-known that the coverage of the prediction intervals by the

so-called plug-in method (described in Section 3.3) is typically below the nominal level

because they fail to consider the uncertainty in parameter estimation, among others.

Using our approach, however, it is possible to capture this type of uncertainty, and thus

show substantial improvement.

The process to derive simulated predictive distribution of yt+h, given {yt−d+1, . . . , yt}

for any prediction length h, is outlined in four steps as follows.

1. Estimate model (3.24) using, e.g., maximum likelihood method, and {yt−d+1, . . . , yt}.

Denote by θ̂ = (φ̂1, Φ̂1, Θ̂1, β̂1, β̂2, β̂3, β̂4) the estimated coefficients, Σ̂ the covari-

ance matrix of θ̂, and σ̂2
ε the estimated variance of the error term. Let ŷs be the

fitted values of ys and es = ys − ŷs, for s ≤ t.

2. As demonstrated in Section 3.2, the multivariate normal distribution N(θ̂, Σ̂)

serves as a first-order asymptotic CD for θ = (φ1,Φ1,Θ1, β1, β2, β3, β4) for a

reasonable d. Thus, we can simulate

θ̂CD = (φ1,CD,Φ1,CD,Θ1,CD, β1,CD, β2,CD, β3,CD, β4,CD) ∼ N(θ̂, Σ̂).

We also draw ε∗t+1, . . . , ε
∗
t+h

iid∼ N(0, σ2
ε), with the unknown σ2

ε replaced by σ̂2
ε

under a reasonable d.

3. Recursively solve for y∗t+h through (1−φ1,CDB)(1−Φ1,CDB
12)(y∗t+h−β1,CDxt+h−

β2,CD1
(105)
t+h −β3,CD1

(106)
t+h −β4,CD1

(107)
t+h ) = (1 + Θ1,CDB

12)ε∗t+h, where y∗s = ys and

ε∗s = es for s ≤ t.
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4. Repeat Steps 1 to 3 for, say, N = 5, 000 times and get N copies of prediction

value of y∗t+h. These copies of y∗t+h can be used to form a predictive distribution

and prediction intervals for yt+h.

Following the algorithm above, we can now make one-step ahead prediction, i.e.,

h = 1, for our dataset, rolling from t = 131 to 166 (representing three years) with

rolling window size d = 120. The blue dotted lines in Figure 3.1 show the upper and

lower limits of the 95% prediction intervals.

We also plot in Figure 3.3 the predictive predictions at, for example, t = 141, 142, 143

and 144, respectively, with the black lines indicating the actual values of yt. The

predictive distributions provided in our prediction contain a wealth of information and

can facilitate the quantification of uncertainty in prediction. Take t = 141 for example,

we are able to gain insight into issues such as: i) What is the prediction interval at 90%

confidence level? (The 90% prediction interval is [10.7,11.4].) ii) What confident levels

are associated with the statements that the untransformed application volume will be

greater than 40,000, 50,000 or 60,000? (The confidence is 98.3%, 84.4% and 54.0%

respectively.) iii) What is the lowest predicted application volume of original scale at

90% confidence level? (It is with 90% confidence level that the application volume will

exceed 47,332.) These are all important questions concerning government officials in

their planning of allocating manpower for handling applications.

3.7 Further Comments

This framework developed in this chapter is very general and the proposed CD-based

formulation is broadly applicable, as the CD concept covers a broad range of exam-

ples, including: fiducial distribution, bootstrap distributions, likelihood functions (after

normalization), p-value functions, and Bayesian posterior distributions. Regardless of

different statistical paradigms, these examples can all be used as CDs as long as they

provide valid frequentist probability coverage. This entails that the proposed predic-

tive distribution has the desirable property to be flexible and all encompassing. Case

in point is that the Bayesian posterior distribution is often a CD, either asymptotically
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Figure 3.3: One-step ahead predictive distribution of Yt for t = 141, 142, 143 and 144.

under the Bernstein-von Mises type theorems or exact using probability matching pri-

ors. Noting that Q(y∗; yn) has the same form of the Bayesian predictive distribution in

(3.2), the Bayesian predictive distribution can be simply viewed as a special case of our

CD-based predictive distribution. Similar arguments apply to the fiducial predictive

distributions defined in Wang et al. (2012). All these observations show that the general

formulation of Q(y∗; yn) through CDs provides an ideal platform to unify most of, if

not all, the existing frequentist, fiducial and Bayesian predictive distributions.

There are ample discussions in literature on the great generality and utility of CD

as an inference tool. Given that CD has succeeded in providing solutions to problems

surrounding difficult complex settings such as making inference from combining hetero-

geneous studies (e.g., Liu et al. 2015; Claggett et al. 2014; Yang et al. 2014) or studies

that fail to produce well-defined point or interval estimates (e.g., Liu et al. 2014), it

would seem natural to expect that our proposed CD-based approach can be applied to

make inference in predictions for such complex problem settings as well. This should

be worth studying further.
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Finally, there are also some literatures that treat “predictive distributions” as esti-

mators of Fθ(y
∗|yn), the distribution function of Y ∗ given Yn = yn, see, e.g., Aitchison

(1975), Murray (1977), Ng (1980), Lejeune and Faulkenberry (1982), Harris (1989), and

Vidoni (1998). But, as pointed out by Lawless and Fredette (2005), although an estima-

tor of Fθ(y
∗|yn), say F̃ (y∗|yn), provides probability statements about the future random

variable Y ∗, given Yn = yn, the probability statements for Y ∗ do not have a frequentist

interpretation in terms of repeated sampling. For example, even if a∗ = L(yn) is chosen

so that F̃ (a∗|yn) = 0.95, it is not true in general that PJ(Y
∗ < L(Yn)) = 0.95; see Law-

less and Fredette (2005) for further elaborations. Furthermore, there are developments

of “predictive likelihood function” (see, e.g., Bjornstad 1990 and references therein),

which rely on a so-called likelihood principle for prediction (Berger and Wolpert, 1988).

The general idea here is to eliminate the “nuisance” parameter θ in the joint likeli-

hood function L(θ|y∗,yn) by using different techniques to obtain a new “likelihood”

L(y∗|yn) which is free of θ, and then use it to make predictive inference. Depending on

the techniques use, different versions of predictive likelihood functions can be obtained,

and their performance naturally varies. Some may meet the frequentist probability

coverage criterion discussed in this chapter, but many may not (cf. Bjornstad 1990).

Finally, even though in some special cases the method of the predictive likelihood func-

tion coincides with the predictive distribution function developed in this chapter, this

method does not stress the need of providing a predictive distribution function that has

suitable frequentist probabilistic interpretations.
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Chapter 4

Concluding Remarks

In this dissertation, we use the concept of CD to develop two novel and general

frameworks/approaches for statistical fusion learning and predictive inference, that is,

iFusion, and CD-based predictive distribution function.

iFusion is a statistical fusion learning framework for drawing efficient individualized

inference, through adaptive combination of confidence density functions from individ-

ual subjects. Such effective iFusion “borrows strength” from other individuals, while

preserves inference validity by “smartly” borrowing only from individuals that bears

relevance to the target individual and filtering out unrelated ones. Under suitable def-

inition of cliques and the separation condition, statistical inference derived from the

combined confidence density function is shown to achieve the best allowable asymp-

totic efficiency. Extensions are further made to accommodate a wide range of model

design heterogeneity.

The CD-based predictive distribution framework is used for predictive inference by:

i) providing a formal definition of predictive distribution functions, ii) presenting a gen-

eral approach based on CDs for constructing such predictive distribution functions, and

finally, iii) proposing a Monte-Carlo algorithm to implement the CD-based approach.

We also establish the supporting theories for the proposed approach, and discuss the

optimality issues and the connections to other existing prediction approaches, including

Bayesian, fiducial and the frequentist pivotal-based predictive distribution proposed in

Lawless and Fredette (2005) as well as the CD-based method by Schweder and Hjort

(2016). The proposed approach is shown to have several desirable features. Particu-

larly notable is its ability to afford a valid frequentist interpretation and yield prediction

intervals of all levels with desired frequentist coverage probability.
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Appendix A

Proofs

Proof of Lemma 2.1

Proof.

i) We prove a more concrete result:

P
(
nα‖θ̂(o)

1 − θ1‖2 ≥ ε
)
→ 0

for any α ∈ (0, 1/2) and ε > 0. Define

θ
(o)
1 = (

∑
θk∈C1

Σ̂−1
k )−1

∑
θk∈C1

Σ̂−1
k θk. (A.1)

Then

θ
(o)
1 − θ1 = (

∑
θk∈C1

Σ̂−1
k )−1

∑
θk∈C1

Σ̂−1
k (θk − θ1) = op(n

−1/2). (A.2)

Since each θ̂k is a
√
n-consistent estimator of θk, it follows that

P
(
nα‖θ̂(o)

1 − θ1‖2 ≥ ε
)
≤ P

(
nα‖θ̂(o)

1 − θ
(o)
1 ‖2 ≥ ε/2

)
+ P

(
n1/2‖θ(o)

1 − θ1‖2 ≥ ε/2
)

≤ P
(
Op(n

α−1/2) ≥ ε/2
)

+ P
(
op(1) ≥ ε/2

)
→ 0.

ii) Write

n1/2(θ̂
(o)
1 − θ1) = n1/2(θ̂

(o)
1 − θ

(o)
1 ) + n1/2(θ

(o)
1 − θ1).

For the first term,

n1/2(θ̂
(o)
1 − θ

(o)
1 )

d−→ N(0, n(
∑
θk∈C1

Σ̂−1
k )−1),
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where

lim
n→∞

n(
∑
θk∈C1

Σ̂−1
k )−1 = ∆

(o)
1 .

For the second term,

n1/2(θ
(o)
1 − θ1) = op(1)

based on (A.2). Together these lead to

n1/2(θ̂
(o)
1 − θ1)

d−→ N(0,∆
(o)
1 ).

iii) By some simple calculation, the MSE of θ̂F1 can be decomposed as the sum of its

squared bias and trace of its covariance:

MSE(θ̂F1 ) =
∑

θk1 ,θk2∈F
(θk1−θ1)tΣ̂−1

k1
(
∑
θk∈F

Σ̂−1
k )−2Σ̂−1

k2
(θk2−θ1)+tr

{
(
∑
θk∈F

Σ̂−1
k )−1

}
,

(A.3)

asymptotically (we use the term “asymptotically” since Σ̂k’s are the sample co-

variance matrix rather than its population version). Also, asymptotically,

MSE(θ̂F1 ) = tr
{

(
∑
θk∈F

Σ̂−1
k )−1} = O(n−1)

if F ⊆ C1, because the squared bias in (A.3) is of order o(n−1) and is dominated

by the trace when θk ∈ C1. In contrast, if any θk /∈ C1, i.e., θk ∈ D1 (since

B1 = ∅), is included in F , then asymptotically

MSE(θ̂F1 ) =
∑

θk1 ,θk2∈F
(θk1 − θ1)tΣ̂−1

k1
(
∑
θk∈F

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1)

and nMSE(θ̂F1 ) → ∞. Thus, the MSE-optimal F should be a subset of C1. On

the other hand, because tr
{

(A+B)−1
}
≤ tr

{
A−1

}
for any two positive definite

matrix A and B, we have

tr
{

(
∑
θk∈C1

Σ̂−1
k )−1

}
≤ tr

{
(
∑
θk∈F

Σ̂−1
k )−1

}
,
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for ∀F ⊆ C1. So the choice of F = C1, in other words, θ̂
(o)
1 has the smallest

asymptotical MSE among all estimators in the form of θ̂F1 .

Proof of Theorem 2.1

Proof.

i) Define

θ
(c)
1 = (

K∑
k=1

w1kΣ̂
−1
k )−1

K∑
k=1

w1kΣ̂
−1
k θk. (A.4)

It follows that

θ
(c)
1 − θ1 = (

K∑
k=1

w1kΣ̂
−1
k )−1

K∑
k=1

w1kΣ̂
−1
k (θk − θ1)

= (

K∑
k=1

w1kΣ̂
−1
k )−1

( ∑
θk /∈C1

w1kΣ̂
−1
k (θk − θ1) +

∑
θk∈C1

w1kΣ̂
−1
k (θk − θ1)

)

=
( K∑
k=1

w1k(nΣ̂−1
k )
)−1( ∑

θk /∈C1

op(n
−1/2)(nΣ̂−1

k )(θk − θ1)

+
∑
θk∈C1

(1 + op(n
−1/2))(nΣ̂−1

k )op(n
−1/2)

)
= op(n

−1/2). (A.5)

Since θ̂
(c)
1 is a

√
n-consistent estimator of θ

(c)
1 , it follows that, for any α ∈ (0, 1/2)

and ε > 0,

P
(
nα‖θ̂(c)

1 − θ1‖2 ≥ ε
)
≤ P

(
nα‖θ̂(c)

1 − θ
(c)
1 ‖2 ≥ ε/2

)
+ P

(
n1/2‖θ(c)

1 − θ1‖2 ≥ ε/2
)

≤ P
(
Op(n

α−1/2) ≥ ε/2
)

+ P
(
op(1) ≥ ε/2

)
→ 0.

ii) Similar to the proof for part ii) of Lemma 2.1, this is a direct result of

n1/2(θ̂
(c)
1 − θ

(c)
1 )

d−→ N(0, n(

K∑
k=1

w1kΛk)
−1(

K∑
k=1

w2
1kΛk)(

K∑
k=1

w1kΛk)
−1)
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where the covariance matrix converges to ∆
(o)
1 in probability, and n1/2(θ

(c)
1 −θ1) =

op(1).

iii) Asymptotically, MSE(θ̂
(c)
1 ) = tr

{
Var(θ̂

(c)
1 )
}

and MSE(θ̂
(o)
1 ) = tr

{
Var(θ̂

(o)
1 )
}

.

But from part ii) of Theorem 2.1, we have shown that θ̂
(c)
1 and θ̂

(o)
1 have the

same limiting covariance matrix. Therefore asymptotically we have MSE(θ̂
(c)
1 ) =

MSE(θ̂
(o)
1 ).

Proof of Lemma 2.2

Proof.

i) On one hand, when θk /∈ C1, ‖θ1 − θk‖2 ≥ d1. For any ε > 0 and bn satisfying

(2.19),

P
(
n1/2

1{‖θ̂1 − θ̂k‖2/bn ≤ 1} ≤ ε
)

= P
(
‖θ̂1 − θ̂k‖2/bn > 1

)
= P

((
‖(θ̂1 − θ1) + (θk − θ̂k)− (θk − θ1)‖

)
/bn ≥ 1

)
≥ P

((
‖θk − θ1‖2 − ‖θ̂1 − θ1‖2 − ‖θk − θ̂h‖2

)
/bn ≥ 1

)
≥ P

((
1− O(n−1/2)

d1

)d1

bn
≥ 1
)
→ 1.

On the other hand, when θk ∈ C1, ‖θ1 − θk‖2 = o(n−1/2). For any ∀ε > 0 and bn

satisfying (2.19),

P
(
n1/2|1{‖θ̂1 − θ̂k‖2/bn ≤ 1} − 1| ≤ ε

)
= P

(
‖θ̂1 − θ̂k‖2/bn ≤ 1

)
= P

(
‖(θ̂1 − θ1) + (θk − θ̂k)− (θk − θ1)‖2/bn ≤ 1

)
≥ P

(
(‖θ̂1 − θ1‖2 + ‖θk − θ̂k‖2 + ‖θk − θ1‖2)/bn ≤ 1

)
= P

(O(n−1/2)

bn
≤ 1
)
→ 1,
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as n→∞. This has completed the proof that w1k = 1 + op(n
−1/2) when θk ∈ C1

and that w1k = op(n
−1/2) when θk /∈ C1 under the uniform kernel.

ii) We show for the Epanechnikov kernel only. In fact, the part when θk /∈ C1 is the

same as that under the uniform kernel and is omitted.

When θk ∈ C1, ‖θ1 − θk‖2 = o(n−1/2). For any ∀ε > 0 and bn satisfying (2.19),

P
(
n1/2|(1− |θ̂1 − θ̂k‖22

b2n
)1{‖θ̂1 − θ̂k‖2

bn
≤ 1} − 1| ≤ ε

)
= P

(
n1/2 ‖θ̂1 − θ̂k‖22

b2n
≤ ε
)

= P
(
n1/2‖(θ̂1 − θ1) + (θk − θ̂k)− (θk − θ1)‖22/b2n ≤ ε

)
≥ P

(
n1/2(‖θ̂1 − θ1‖2 + ‖θk − θ̂k‖2 + ‖θk − θ1‖2)2/b2n ≤ ε

)
= P

(O(n−1/2)

b2n
≤ ε
)
→ 1,

as n→∞. This has completed the proof that w1k = 1 + op(n
−1/2) when θk ∈ C1

and that w1k = op(n
−1/2) when θk /∈ C1 under the Epanechnikov kernel.

iii) On one hand, when θk /∈ C1, ‖θ1 − θk‖ ≥ d1. For any ∀ε > 0 and bn satisfying

(2.21),

P
(
n1/2 exp{−‖θ̂1 − θ̂k‖22/(2b2n)} ≤ ε

)
= P

(
‖θ̂1 − θ̂k‖22/(2b2n) ≥ log(

n

ε2
)
)

= P
(
‖(θ̂1 − θ1) + (θk − θ̂k)− (θk − θ1)‖22/(2b2n) ≥ log(

n

ε2
)
)

≥ P
(

(‖θk − θ1‖2 − ‖θ̂1 − θ1‖2 − ‖θk − θ̂h‖2)2/(2b2n) ≥ log(
n

ε2
)
)

≥ P
((

1− O(n−1/2)

d1

)2(d1

bn

)2 ≥ 2 log(
n

ε2
)
)
→ 1.

The last equation is true because
(
d1
bn

)2
/ log n→∞ by (2.21) .

On the other hand, when θk ∈ C1, ‖θ1 − θk‖2 = o(n−1/2). For any ε > 0 and bn
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satisfying (2.21),

P
(
n1/2| exp{−‖θ̂1 − θ̂k‖22/(2b2n)} − 1| ≤ ε

)
≥ P

(
n1/2‖θ̂1 − θ̂k‖22/(2b2n) ≤ ε

)
= P

(
n1/2‖(θ̂1 − θ1) + (θk − θ̂k)− (θk − θ1)‖22/(2b2n) ≤ ε

)
≥ P

(
n1/2(‖θ̂1 − θ1‖2 + ‖θk − θ̂k‖2 + ‖θk − θ1‖2)2/(2b2n) ≤ ε

)
= P

(O(n−1/2)

b2n
≤ 2ε

)
→ 1

as n → ∞. The last equation is true because n1/2b2n → ∞ by (2.21). This has

completed the proof that w1k = 1 + op(n
−1/2) when θk ∈ C1 and that w1k =

op(n
−1/2) when θk /∈ C1 under the Gaussian kernel.

Proof of Theorem 2.2

Proof. We only prove part iii); part i) and ii) can be proved by the same argument in

the proof of Theorem 2.1. Define θ
(c)
1 as (A.4). For large n,

θ̂
(c)
1 = (

∑
θk /∈D1

Σ̂−1
k )−1

∑
θk /∈D1

Σ̂−1
k θ̂k

and

θ
(c)
1 = (

∑
θk /∈D1

Σ̂−1
k )−1

∑
θk /∈D1

Σ̂−1
k θk.

Thus, asymptotically,

MSE(θ̂
(c)
1 ) = (θ

(c)
1 − θ1)t(θ

(c)
1 − θ1) + tr

{
Var(θ̂

(c)
1 )
}

=
∑

θk1 ,θk2 /∈D1

(θk1 − θ1)tΣ̂−1
k1

(
∑

θk /∈D1

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑

θk /∈D1

Σ̂−1
k )−1

}
=

∑
θk1 ,θk2∈B1

(θk1 − θ1)tΣ̂−1
k1

(
∑

θk /∈D1

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑

θk /∈D1

Σ̂−1
k )−1

}
.
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The last equation holds because if either θk1 or θk2 ∈ C1, then the squared bias vanishes

in relative to the trace as n→∞.

Now, for any F ⊆ {θ1, . . . ,θK}, if DF 6= ∅, then from (A.3), nMSE(θ̂F1 )→∞, but

MSE(θ̂
(c)
1 ) = O(n−1). So asymptotically MSE(θ̂

(c)
1 ) < MSE(θ̂F1 ). On the other hand,

if DF = ∅, then from (A.3),

MSE(θ̂F1 ) =
∑

θk1 ,θk2∈C
F∪BF

(θk1 − θ1)tΣ̂−1
k1

(
∑
θk∈F

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑
θk∈F

Σ̂−1
k )−1

}
=

∑
θk1 ,θk2∈B

F

(θk1 − θ1)tΣ̂−1
k1

(
∑
θk∈F

Σ̂−1
k )−2Σ̂−1

k2
(θk2 − θ1) + tr

{
(
∑
θk∈F

Σ̂−1
k )−1

}
.

Thus we have established the asymptotic equivalence between MSE(θ̂
(c)
1 ) ≤ MSE(θ̂F1 )

and (2.23) when DF = ∅.

Proof of Corollary 2.1

Proof. Asymptotically,

Var(η̂
(c)
1 ) = (

∑
ξk∈C̃1

AtkΣ̂
−1
k Ak)

−1.

It sufficies to show that

{(
∑
ξk∈C̃1

AtkΣ̂
−1
k Ak)

−1}(1,1) ≤ {Σ̂1}(1,1).

Without loss of generality we assume that K = 2. If ξ2 /∈ C̃1 then the equality holds.

If ξ2 ∈ C̃1, we need show

{(At1Σ̂−1
1 A1 +At2Σ̂−1

2 A2)−1}(1,1) ≤ {Σ̂1}(1,1).

Partition Σ̂1 and Σ̂2 as

Σ̂1 =

 a1 bt1

b1 C1

 , Σ̂2 =

 a2 bt2

b2 C2

 ,
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where C1 and C2 are (p− 1)× (p− 1) matrices. By definition,

A1 =

 1 0 0t(p−1)×1

0t(p−1)×1 0t(p−1)×1 Ip−1

 , A2 =

 0 1 0tq×1

0t(p−1)×1 0t(p−1)×1 Ip−1

 ,

where Ip−1 is an identity matrix of size p−1. Some linear algebra with blockwise matrix

inversion formula gives

{(At1Σ̂−1
1 A1 +At2Σ̂−1

2 A2)−1}(1,1) = a1 − bt1C−1
1 b1 + bt1C

−1
1 (C−1

1 + C−1
2 )−1C−1

1 b1.

By Lemma A.3 in Liu et al. (2015): for two q× q positive definite matrices W1 and W2

and v ∈ Rq,

vt(W1 +W2)−1v ≤ vW−1
1 v.

Therefore

{(At1Σ̂−1
1 A1 +At2Λ2Σ̂−1

2 )−1}(1,1) ≤ a1 = {Σ̂1}(1,1).

Proof of Theorem 3.1

Proof. By condition (A) and (3.7), we have, for any ε > 0,

∣∣∣∣ ∫
θ∈Θ
{Fθ(Y ∗)− Fθ0(Y ∗)} dH(θ; Yn)

∣∣∣∣
≤

∫
θ∈Θ
|Fθ(Y ∗)− Fθ0(Y ∗)| dH(θ; Yn)

=

∫ θ0+ε

θ0−ε
|Fθ(Y ∗)− Fθ0(Y ∗)| dH(θ; Yn) + 2H(θ0 − ε) + 2(1−H(θ0 + ε))

≤ Cε

∫ θ0+ε

θ0−ε
dH(θ; Yn) + op(1) ≤ Cε+ op(1).

It follows that ∫
θ∈Θ
{Fθ(Y ∗)− Fθ0(Y ∗)} dH(θ; Yn) = op(1).
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Thus, we have

Q(Y ∗; Yn) =

∫
θ∈Θ

Fθ(Y
∗)dH(θ; Yn) = Fθ0(Y ∗) +

∫
θ∈Θ
{Fθ(Y ∗)− Fθ0(Y ∗)} dH(θ; Yn)

= U + op(1).

Proof of Theorem 3.2

Proof. First, we note that

Fθ(y
∗) = Pθ(Y ∗ ≤ y∗) = Pθ(s1(Y ∗, θ) ≤ s1(y∗, θ)) = S(s1(y∗, θ)).

Therefore,

∫
θ∈Θ

Fθ(y
∗)dHR(θ; θ̂(yn)) =

∫
θ∈Θ

S(s1(y∗, θ))dHR(θ; θ̂(yn)). (A.6)

Let (W,V ) be a transformation from (Y ∗, θ̂(Yn)) such that


W = Fs2(θ̂(Yn),θ0)(s1(Y ∗, θ0))

V = s2(θ̂(Yn), θ0),

and let w = Fs2(θ̂(yn),θ0)(s1(y∗, θ0)) be a realization of W . By the invariance condition

w = Fs2(θ̂(yn),θ)(s1(y∗, θ)). (A.7)

Plugging (A.7) into the right hand side of (A.6) yields

∫
θ∈Θ

Fθ(y
∗)dHR(θ; θ̂(yn)) =

∫
θ∈Θ

S(F−1

s2(θ̂(Yn),θ)
(w))dHR(θ; θ̂(yn)). (A.8)
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On the other hand, the cumulative distribution function of W is

P(W ≤ w) =

∫
v
P(W ≤ w|V = v)dR(v)

=

∫
v
P(Fv(s1(Y ∗, θ0)) ≤ w)dR(v) (A.9)

=

∫
v
P(s1(Y ∗, θ0) ≤ F−1

v (w))dR(v)

=

∫
v
S(F−1

v (w))dR(v)

=

∫
θ∈Θ

S(F−1

s2(θ̂(Yn),θ)
(w))dHR(θ; θ̂(yn)). (A.10)

Here, (A.9) is true because given V = v, FV (s1(Y ∗, θ0)) is independent of V ; and (A.10)

is true following the transfer of randomness from v to θ through v = s2(θ̂(yn), θ).

By (A.8) and (A.10), we have that

QR(y∗; yn) =

∫
θ∈Θ

Fθ(y
∗)dHR(θ; θ̂(yn)),

and it is equivalent to FW (w) = P(W ≤ w), where FW (·) is the cumulative distribution

function of W . Therefore, QR(Y ∗; Yn) = FW (W ) and it is uniformly distributed on

(0, 1).

Proof of Corollary 3.2

Proof. By the invariance condition

Fθ̂(y
∗) = Fs2(θ̂(yn),θ0)(s1(y∗, θ0)).

It immediately follows from the proof of Theorem 3.2 that K(Fθ̂(yn)(y
∗)), or equiva-

lently, K(Fs2(θ̂(yn),θ0)(s1(y∗, θ0))), can be expressed as
∫
θ∈Θ Fθ(y

∗)dHR(θ; θ̂(yn)).

Proof of Theorem 3.3

Proof. Since F−1
θ (u) is nondecreasing in θ for any given u ∈ (0, 1), {F−1

θ (u)−F−1
θ0

(u) >

ε} has non-zero probability only if θ > θ0, for any ε ≥ 0. Therefore, from (3.13) we
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have

(F−1
θCD,1

(u)− F−1
θ0

(u))+
sto
≤(F−1

θCD,2
(u)− F−1

θ0
(u))+. (A.11)

Since Q−1
i (u) =

∫
θ∈Θ F−1

θ (u)dHi(θ), for i = 1, 2, taking expectation on the two sides

of (A.11) with respect to θCD,1 ∼ H1(·) and θCD,2 ∼ H2(·) respectively leads to (3.16).

(3.17) can be derived in the same way.

Proof of Corollary 3.3

Proof. (3.16) and (3.17) jointly imply

|Q−1
1 (u)− F−1

θ0
(u)|

sto
≤|Q−1

2 (u)− F−1
θ0

(u)|.

or equivalently,

(Q−1
1 (u)−Q−1

θ0
(u))2

sto
≤(Q−1

2 (u)−Q−1
θ0

(u))2.

This further implies

EYn(Q−1
1 (u)−Q−1

θ0
(u))2

sto
≤EYn(Q−1

2 (u)−Q−1
θ0

(u))2.

Since this holds for any u ∈ (0, 1), it immediately follows the result of (3.19) by substi-

tuting u with U ∼ Uniform(0, 1) and taking expectation on both sides.

Proof of Theorem 3.4

Proof. The average Kullback-Leibler distance of any density function in the form of gθ̂(·)

to fθ0(·) can be expressed as D̄KL(fθ0 |gθ̂) = EJ

{
log

fθ0 (Y ∗)

gθ̂(Y ∗)

}
, where the expectation is

taken jointly over Y∗ × Yn at the true parameter value θ0, and thus (3.20) implies

D̄KL(fθ0 |qθ̂)− D̄KL(fθ0 |fθ̂) = EJ

{
log

fθ̂(Y
∗)

qθ̂(Y
∗)

}
≤ logEJ

{
fθ̂(Y

∗)

qθ̂(Y
∗)

}
≤ 0.
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