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The uncertainty of operations for supply chain involved companies is becoming more complex with 

the growth of globalized business collaboration. A supply chain is a complex system with dynamic 

flows of capital, goods, information and people. The temporal fluctuations of politics, economics, 

nature and technology on a supply chain process may potentially cause disruptions to the whole 

system. The malfunctions of supply chain systems around the world cost companies billions of 

dollars and months of recovery time every year. Prevention and mitigation of supply chain 

disruption risks are crucial for companies to maintain their competitive advantage. However, the 

performance of mitigation plans may be unsatisfactory due to a myriad of interactive impact factors 

in supply chains under uncertainty. This situation requires a direct and concise tool to monitor and 

control supply chain risks concurrently. 

Various qualitative and quantitative risk analysis tools are introduced to unveil the myth of 

uncertainty. A Bayesian Belief Network (BBN) is one of the risk modeling approaches that 

provides a systemic conditional probabilistic view on risk analysis. A Dynamic Bayesian Network 

(DBN) offers a solution that enables temporal factors in a BBN, which is in consonance with the 
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characteristics of time-sensitive risks in supply chains. Inputs and outputs of DBNs are probability 

values. Supply chain practitioners may have difficulty to concretize the values into practical 

operations immediately because supply chain performance is measured with actual units of money 

or inventory. System Dynamics (SD) is a simulation tool for modeling complex socio-technical 

systems in feedbacks, stocks and their flows. However, SD has limitations in simulating conditional 

probabilities within the dynamic flows.  

By utilizing the essence of DBN and SD, this dissertation proposes a Dynamic Flow Bayesian 

Network (DFBN) to offer a comprehensive methodology for supply chain risk analysis. An 

Optimized Dynamic Flow Bayesian Network (ODFBN) method is developed with modifications 

based on the DFBNs by incorporating multi-objective optimization, multi-pricing strategy and 

Value-at-Risk. By applying the concept of Supply Chain Network Equilibrium, an Equilibrated 

Dynamic Flow Bayesian Network (EDFBN) method is developed to balance the needs of each 

stage and maximize the profitability of the entire supply chain. In this dissertation, mathematical 

integration of the models is presented and application to a supply chain case study inspired by the 

real-world is also conducted. Finally, a prototypical executable interface for industrial 

implementation is developed. 
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1. Introduction: Risks and Supply Chains 

Change is a constant through human history. Our world is transformed by accelerating changes in 

population, economic activity and technology (Sterman, 2000). Some changes, for example, such 

as the application of information technology, improve people’s lives, but others such as global 

warming, may deteriorate our living environment. Human activities create most of the changes, but 

not all of the results are consistent with people’s original expectations. The gap between the 

expectations and actual outcomes is uncertainty. Occasionally, surprising positive outcomes may 

be generated by an uncertain operating circumstance. However, business practitioners with a sense 

of crisis prefer a hypothetical negative outcome of their decisions when operating in uncertain 

circumstances.  

Various risk analysis tools are developed to understand and mitigate risks and uncertainty. With 

the probing of risk behaviors, the complex relationship of risk factors in systems is gradually 

realized. Thus, more organized and systemic models are developed to present risks in complex 

systems. A perfect emulated risk model in complex systems may be unrealistic due to the limitation 

of existing tools. For software, a mathematical expression that describes risks in complex 

environments with complete accuracy can hardly be achieved (Keynes, 1936). For hardware, the 

computing technology that can simulate an accomplished virtual reality risk environment is 

inaccessible. However, a number of applications of systemic risk analysis methods are developed 

with continual efforts. 

A supply chain is a typical complex system. All parties that directly or indirectly involve satisfying 

a customer request constitute a supply chain (Chopra & Meindl, 2010). The parties involved may 

include manufacturers, suppliers, retailers, warehouses, transporters and customers. Supply chains 

consist of the dynamic flows of capital, product, information and people. All functions in an 

organization that relate to receiving and filling a customer request are included in the supply chain, 
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such as product research and development, marketing, finance, operations, distribution and 

customer relationship management.  

Organizations and their functions are connected through supply chains. One action taken in one 

division may trigger a chain effect to a significant number of its upstream and downstream parties, 

especially in a globalized business environment. Thus, the smooth operation of supply chains is 

critical to the liquidity of flows between organizations. Failures in the operations are called 

disruptions in supply chain systems. Uncertainties from the external environment (e.g., political, 

natural or social uncertainties) and the internal environment (e.g., supply, demand or manufacturing 

uncertainties) potentially evoke supply chain disruptions (Jüttner, 2005). The disruption may yield 

a hazardous impact to related industries every year. In 2011, severe floods defeated industries in 

Thailand, which is a global supply chain hub located in Southeast Asia. Thousands of businesses 

were affected, including international manufacturing companies such as Apple, Toyota, Honda, 

Ford, Sony and Toshiba. The impact dismantled their global supply chain strategies, especially for 

the world’s largest hard-disk drives supplier Western Digital. The floods suspended about a quarter 

of the hard-disk drive supply, and Western Digital took months to resume normal production. The 

top five supply chain disruptions in 2014 caused more than 17.3 billion U.S. dollars’ loss. In 

average, it takes 31 weeks for the industries to recover from each impact. Three out of five of these 

disruptions occurred in Southeast Asia. The loss is equivalent to approximately 3.3% of the gross 

domestic product (GDP) of Thailand in 2014.  

A supply chain involves a substantial amount of livelihood issues for individuals and organizations. 

The dynamic flows in a supply chain fluctuate arbitrarily. The pattern of operation may be abruptly 

altered by an incident and cost millions of dollars to restore. A reliable supply chain risk analysis 

model, which considers temporality and resource flows, can contribute to a variety of industries to 

minimize the impact of their business uncertainties.  
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By combining the essence of Dynamic Bayesian Networks (DBNs) and System Dynamics (SD), 

this research proposes a Dynamic Flow Bayesian Network (DFBN) to offer a comprehensive 

methodology for supply chain risk analysis. For probabilistic risks, DBNs provide a systemic 

analysis tool to dissect risk factors from an intricate circumstance. Feedback loops in SD models 

utilizes probabilistic risk values from DBNs to generate information flows. Combined with other 

physical and financial flows in SD, systemic risks can be concretized into actual capital or inventory 

outputs for supply chain decision-making. The modifications to the DFBN is also provided in this 

dissertation. 

This chapter provides an overview on the motivation of the study, along with the limitations of 

existing models dealing with complex uncertainty. The potential issues or challenges of the existing 

models as applied to the supply chain problem domain are presented. The research problem is 

defined and objectives are proposed to offer a temporal probabilistic causal modeling solution for 

the identified problems. 

1.1. Systemic Complex Risks 

The globalization of business activities not only offers opportunities for companies to achieve 

greater benefits from international collaboration, but also yields potential threats from decisions in 

other parts of the world. The business environment grows into a more complex pattern. It requires 

business practitioners to expand their cognition of risks into systemic thoughts. 

1.1.1. Risks 

• What Are Risks? 

The business world is replete with uncertainty. However, uncertainty is a notion without a 

straightforward description (Antunes & Gonzalez, 2015). As the first economist to bring 

uncertainty as a distrust factor to economics, Keynes (1936) established the specification of 

uncertainty using statistics to provide guidance for rational actions in an uncertain world. 
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Uncertainty is a potential and uncontrollable outcome, and risk is the consequence of humans’ 

actions taken in such environments (Mun, 2006). In an uncertain environment, risks exist in an 

endeavor in business and industrial projects. In other words, the actions that a decision maker takes 

may affect the outcome or the performance of a business. Although uncertainty and risk are ever 

present, it is possible to mitigate, transfer, or even avoid the impact of risk through the identification, 

assessment, and formulation of operation plans (Crouhy et al., 2006). Efforts have been taken by 

both practitioners and scholars to understand and mitigate the influence of these risks. The actual 

value of capital affected by risk is factored by the odds of the risk occurring and the value of the 

impact, and risk mitigation plans may focus on these two factors. 

• What Are Systemic Risks? 

In the real world, complexity is the natural property of risk and uncertainty. The cause-effect 

relations are embedded in every action that a creature takes in nature. In 1961, a computer weather 

prediction was conducted by Edward Lorenz. When redoing a shortcut simulation from the middle 

of the previous run, he entered 0.506 instead of 0.506127 as one of the initial values. However, the 

result indicates a completely different weather scenario (Lorenz, 1963). The term “butterfly effect” 

that describes this phenomenon was then summarized from a presentation of Lorenz (1972): 

“predictability; does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” The 

butterfly effect shows an extraordinary but possible outcome of these complex relations hidden 

behind the connections behind objects. A systemic relation view on uncertainty and risk may 

provide a comprehensive perspective to business models. Systemic risk is originally a financial 

expression. It refers to “the propagation of an agent’s economic distress to other agents linked to 

that agent through financial transactions” (Rochet, 2003). The expression elaborates the spreading 

of risks between two business parties. If we place the propagation in a larger system, such as a 

supply chain, the risk of one decision in one stage may cause a chain effect of distress to its 

upstream and downstream industries. 
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• Why Is Understanding These Risks Important? 

Understanding systemic risks in different business scenarios helps decision makers become aware 

of the potential consequence of their choices during operation. The profit in business is negatively 

influenced by risk-affected values. A proper understanding of systemic risks ensures that the 

business goal, which is usually maximizing profit with limited resources, is not deviated by the 

decisions under uncertainty. A contingency plan is a primary maneuvering tool against risks 

(Cleden, 2012). It neutralizes the total risk-affected value by both reducing risk occurrence odds 

and impact. In addition, in projects with a high concentration of events, it is paramount to 

computing the pattern of dissemination of the contingencies (Antunes & Gonzalez, 2015).  

1.2. Probabilistic Risk Assessment Models 

Risk assessment models have been established in order to help managerial professionals in different 

business domains to understand, assess, and probably avoid risks veiled in their industry. Risk 

assessment models are mainly categorized into two classes: qualitative methods and quantitative 

methods. 

1.2.1. Qualitative Methods versus Quantitative Methods 

A qualitative risk assessment method can describe the probability of the occurrence of undesired 

events by utilizing subjective risk levels (Wieland et al., 2011). The output through a qualitative 

model is a linguistic expression that presents an approximate image of risk for a reader. The 

accuracy of the modeling result highly depends on the degree of precision of the language used. 

There is also a gap between the linguistic expression and the comprehension of humans for that 

expression, which potentially adds another risk factor to the model. Cox et al. (2005) summarize 

the limitations of a qualitative method in two aspects: reversed rankings and uninformative ratings. 

Reversed rankings represent the misclassification of risks in inappropriate levels. Uninformative 

ratings indicate the errors in risk classification due to the uninformative linguistic level labels. 
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However, qualitative methods are widely applied in data-scarce environments to provide a useful 

tool to mitigate the risk for risk managers (Singer, 2010). Linguistic expressions also show 

strengths in decision communication between practitioners. Qualitative risk assessment methods 

also possess the ability to investigate systemic risks in a complex environment (Zalk, 2009; Bass 

& Robichaux, 2001; Wieland et al., 2011). 

Despite the concise presentation of systemic risks by using qualitative methods, developing and 

applying quantitative methods is recommended by Cox et al. (2005) to conduct more reliable risk 

assessments. According to Kaplan & Garrick (1981), Quantitative Risk Assessment (QRA) 

basically answers three questions: What can go wrong? How likely is it? And what are the 

consequences?  QRA has been found useful at providing insight on systems in scenarios with 

multiple failures. QRA also helps business stakeholder groups identify complex interactions 

between events, systems and operations. Valuable inputs to decisions can be generated by focusing 

on uncertainty quantification of QRA (Apostolakis, 2004). Various QRAs are introduced to 

accomplish specific tasks required in different systems or system levels, such as Event Tree 

Analysis, Fault Tree Analysis, Bayesian Belief Networks, Sensitivity Analysis, Monte Carlo 

Simulation and Cost Benefit Analysis. 

1.2.2. The Application and Limitations of Existing Quantitative Risk Assessment 

• Application of QRA 

QRA is found to be a valuable tool for risk assessment in various disciplines. Chen & Kodell (1989) 

present a “benchmark dose” confidence interval assessment method to obtain risk estimates for 

teratological effects. By combining beta-binomial distribution to litter effects data and a Weibull 

model to teratogenic data, a lower limit on the safe dose toward reproductive and developmental 

toxic risks is established to replace the previous statistically insensitive model. Han & Weng (2010) 

propose a probability risk assessment of natural gas pipelines. Both external risks that are caused 
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by environmental or societal accident and internal risks such as the reliability of the pipeline itself 

are considered. A promising result for practical application is obtained through a sample urban gas 

pipeline network assessment. Kolar & Lodge (2002) develop and use multivariate QRA models to 

assess the risks of alien species invasion to local ecological systems. Alien fish species with high 

nuisance risk to the Great Lakes are identified with an accuracy range from 87% to 94%. 

• Limitations of QRA 

With the facilitation of data, QRA acts as an important role in risk studies. However, limitations 

still exist in QRAs. According to Keynes (1936), a strict mathematical expression on risks in the 

complex world is unreliable. It makes scholars devote themselves for decades to pursue generations 

of quantitative models to describe the uncertainty around people. Apostolakis (2004) summarizes 

several factors that current QRAs are not adequately handled: (1) human omission errors 

(prescribed actions are not taken), commission errors (improper operations that worsen the situation) 

and the innovation after errors are not appropriately modeled; (2) dubious assumptions on digital 

software failures are made; (3) current QRAs can hardly take safety cultures on crew behavior into 

consideration; and (4) existing QRAs also have limited ability to handle design and manufacturing 

errors. 

1.2.3. The Expectation of Improvements on Existing QRAs 

Each QRA tool possesses a certain number of strengths in tackling a range of problems. An 

omnipotent method may not be realistic with the limitations on both modeling software and 

hardware. In a complex realistic scenario, complete risk relationships can hardly be expressed by 

one method alone. Thus, model integration is an approach to include diversified assessment systems 

and metrics to compensate shortcomings of each single model.  

Synergies during modeling and assessing applications can be created by integrating qualitative and 

quantitative methods. According to McNab & Alvas (2003), in Ontario, Canada, the Ontario 
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Ministry of Agriculture and Food (OMAF) suggests that quantitative risk assessments are preferred. 

Nevertheless, quantitative data are often scarce. Thus, OMAF proposes a framework for 

organizations that aligns qualitative assessments model formalization with quantitative risk. 

Through this method, risk assessment can be applied in both data sufficient and insufficient 

scenarios. 

The integration between quantitative methods also provides a novel perspective for QRAs in 

complex system applications. Wang et al. (2008) propose an integrated method that initially uses 

the analytic hierarchy process (AHP) to determine linguistic expressions on each bridge structure 

risk criterion and the weight of each criterion. After quantifying the linguistic expressions by using 

data envelopment analysis (DEA), an aggregate overall risk score for each bridge structure under 

each criterion is obtained by a simple additive weighting (SAW) method. Through a systematic 

risk analysis process, the integrated method provides a value for engineers to detect the hazard of 

each bridge structure from scattered risk data. 

The motivation of model integration may be mainly summarized as widening the risk information 

inputs and outputs availability of each model. In the OMAF case, the qualitative methods enable 

the application of quantitative methods in an input data-scarce circumstance. In the bridge structure 

risk case, DEA quantifies the linguistic data generated from AHP, which permits further 

quantitative data integration.  

The efforts taken in risk model integration reflect the pursuit of obtaining more straightforward 

outputs for decision-making from more precise risk information inputs. For a QRA method, the 

input variables for risks may usually be represented as probability values. However, if the output 

of the risk models is a probability value itself, it may be difficult for the analysts to concretize the 

concept to the real world. In practical applications, especially in dynamic scenarios such as business 
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practices, it is more valuable for decision makers to have straightforward values to assess the impact 

of risks and their mitigations. 

1.3. Supply Chain Risk Analysis 

Supply chain risks may originate from every process in the operation. An effective and efficient 

risk analysis provides a reliable tool for decision makers preventing potential supply chain 

disruptions or minimizing the loss in catastrophes. 

1.3.1. Supply Chain Structures and Processes 

According to Angerhofer & Angelides (2000), a supply chain is defined as a production-

distribution system with dynamic complex flows of information, materials, orders, money, people 

and capital equipment. In order to fulfill a customer request, a supply chain consists of all directly 

or indirectly involved parties (Chopra & Meindl, 2010).  Not only suppliers and manufacturers, but 

also warehouses, transporters, retailers and customers are included in the supply chain. In the 

globalized business and political environment, achieving the balance between supply chain 

responsiveness and efficiency supports the competitive strategies of a company. Before 

understanding the approaches that may best assist the balance, logistical and cross-functional 

drivers that influence the performance of supply chains should be identified, such as facilities, 

inventory, information, transportation, sourcing and pricing. When analyzing the decisions and 

their consequences that relate to the drivers, Chopra & Meindl (2010) suggest that the components 

and metrics of the drivers should be considered, and they are shown in Figure 1.1. 
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Figure 1.1 The Supply Chain Drivers and Their Components and Metrics. 

 (Source: Adapted from Chopra & Meindl, 2010) 

The interaction of these drivers determines the performance of supply chains in terms of 

responsiveness and efficiency. In order to realize the profit of the different parties from the 

separated locations, the dynamic flows of capital, commodity, information and people are formed. 

During the flows in a supply chain, a turbulent business environment creates risks for the business 

processes. These risks, which vary over time, may bring negative effects or even catastrophe to the 

performance of companies in a supply chain. Risk-related operation and mitigation plans are 

important approaches for practitioners to assess the status of the supply chain. Thus, various supply 

chain risk analysis methods, both qualitative and quantitative methods, are established to help 

analysts understand and mitigate those risks and enhance performance. 

1.3.2. Existing Supply Chain Risk Analysis Methods 

According to Jüttner et al. (2003), supply chain risk is defined as any risk involved in the material, 

information and product flows during the processes from original supplier to the end user. Supply 

chain risks can be classified into internal and external risks based on the source of the risks (Wu et 

al., 2006; Trkman & McCormack, 2009; Olson & Wu, 2010). Supply chain risk analysis focuses 
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on the probability of an event occurring and the consequence significance (Ho, 2015). Moreover, 

as a complex system, supply chain risk analysis is suggested to be a cross-company process that 

aims at the identification and mitigation of risks at a macro business environment level (Thun & 

Hoenig, 2011). Risk analysts mainly apply qualitative methods in supply chain risk identification. 

Quantitative methods have been developed to analyze and assess the identified risks (Ho et al., 

2015).  

Both single and integrated quantitative approaches are used in supply chain risk analysis (Ho et al., 

2015). Mathematical programming is one of the most singly used quantitative methods, including 

unconstrained and constrained mathematical programming, linear programming, non-linear 

programming, integer non-linear programming and stochastic linear programming. Fuzzy logic, 

AHP and Data Envelopment Analysis (DEA) are the most integrated methods in hybrid models. 

Compared with the original methods, the integrated techniques can be applied to overcome 

limitations or strengthen performance. For example, in the integrated method offered by Kumar et 

al. (2006), fuzzy logic relaxes the requirements of multi-objective mathematical programming on 

deterministic and exact value identification and generalizes the application of the models on a 

complex system. By considering the advantages of model synergies, Ho et al. (2015) state that 

integrated models will attract more attention in the future. 

1.4. An Integrated Dynamic Uncertainty Approach for Supply Chain Risk Analysis 

In this dissertation, Dynamic Flow Bayesian Network (DFBN) models that integrate a Dynamic 

Bayesian Network (DBN) with System Dynamics (SD) are proposed to create a systemic supply 

chain risk model from a fresh perspective. Supply chain risk analysis can be viewed as a model 

with four factors: systemic probabilistic risks, feedbacks, stocks and their flows. Probability theory 

plays an important role in describing the likelihood of event occurrence. A Bayesian Belief 

Network (BBN) is one of the modeling approaches that provide a systemic conditional probabilistic 

view on risk analysis through a directed acyclic graph. BBN modeling provides a system thinking 
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a probabilistic tool for a complex system with highly correlated risk factors to capture the key 

systemic risks. A Dynamic Bayesian Network (DBN) offers a solution that enables time 

dependencies in a BBN (Dagum et al., 1992). The application of DBNs is in consonance with the 

characteristics of time-sensitive risks in supply chains. However, it is not adequate for a model 

constrained with the separation of risk models and dynamic flows in a supply chain. System 

Dynamics (SD) provides a simulation solution for complex socio-technical systems in modeling 

feedbacks, stocks and their flows. Stocks are accumulated states of the system that enable the 

system with memory and inertia against changes (e.g., flows). A DBN or SD alone can partially 

resolve probabilistic risks, feedbacks, stocks and flows modeling problems in a supply chain, 

respectively. Therefore, a series of integrated models, a Dynamic Flow Bayesian Network (DFBN) 

and its derived models, are developed to provide a novel opportunity to consider all those supply 

chain risk factors comprehensively and concurrently.  

1.4.1. The Fundamentals and Benefits of Temporality and Dynamic Flow Integration. 

The fundamental idea of the integration of DBNs and SD models is the time simultaneity of their 

variables. The variables in DBNs are updated simultaneously with the variables in the causal loops, 

flows and stocks in SD models. Certain selected temporal probability data in the DBN can be 

transferred to the SD model as an input variable. Thus, systemic probabilistic affected feedback 

and forward flows can be generated.  

The DFBN models, including the DFBN, the ODFBN and the EDFBN, provide a complex system 

risk analysis tool that considers systemic risks from dynamic flows in a supply chain. The DFBN 

models enable temporal systemic risk factors analysis in a physical supply chain process framework. 

Concretized results in the supply chain, such as procurement rates, inventory levels, disseminating 

rates, and investment return rates can be obtained for straightforward decision-making. The outputs 

of the DFBN models are quantified by the familiar measurement units for supply chain practitioners 
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to have instant reflections on the supply chain status. Such instant reflections may provide effective 

prevention for the potential supply chain disruptions or the “butterfly effect”. 

1.5. Research Objectives 

In this research, the main objective is constructing an integrated temporal and dynamic systemic 

risk modeling method for supply chains. The realization of the objective is divided into four phases: 

building the theoretical framework for the method, applying the theoretical framework to the supply 

chain domain, developing improvements and modifications of the original model, and developing 

a practical prototype for executives. 

1.5.1. Develop a Quantitative Analytical Method that Integrates Temporal Systemic 

Probabilistic Risks and Dynamic Flows 

The first phase of this research focuses on constructing a theoretical framework for a Dynamic 

Flow Bayesian Network (DFBN). Dynamic Bayesian Networks (DBNs) and System Dynamics 

(SD) are combined to establish the DFBN. A DBN provide a temporal systemic probabilistic risk 

analysis model. SD models merge the probabilistic risk outputs with other dynamic flows in a 

complex system to generate a concretized result for decision-making. The outcome of this phase is 

constructing a bridge between DBNs and SD through mathematical expressions. 

1.5.2. Demonstrate the Quantitative Analytical Method with an Application to the Supply 

Chain Domain 

Once the theoretical framework is established, practical supply chain metrics are applied to infuse 

practical meanings to the method. A supply chain is a complex system with dynamic flows that is 

vulnerable to risks. By dissecting the systemic risk factors and simulating the risk-affected dynamic 

flows with a DFBN, the impact of each risk factor on the flows can be detected to prevent potential 

supply chain disruptions. The outcome of this phase describes the systemic interactions between 

risks and dynamic flows with a supply chain case study by utilizing a DFBN. 
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1.5.3. Improve and Modify the Original Risk Analysis Tool for More Application Scenarios 

After applying the DFBN in a supply chain case study, several modifications of the original DFBN 

model are formulated. The improvements aim to strengthen the theoretical validity of the DFBN 

models to more realistic business environments. The DFBN model is modified systematically to 

present its flexibility and expandability in practical applications. 

1.5.4. Develop Methods to Communicate and Display the Temporal Uncertainty in the 

Modeling to Executives 

Finally, after several improvements and supply chain application of the DFBN models are 

formalized, the research steps forward to generalize the method to industrial implementation. An 

executable interface is established that enables users to enter modular supply chain risk information 

and generate displays for decision-making. The outcome of this phase is establishing an executable 

prototype interface for executives to analyze supply chain risks. 

1.6. Overview of the Thesis 

This thesis introduces the motivation and background information about the research in Chapter 1. 

Relevant quantitative risk analysis methods and the essential knowledge for constituting the model 

are presented in Chapter 2. The taxonomy of supply chain risk analysis processes is demonstrated 

in Chapter 3 to clarify the key issues in the supply chain domain. Chapter 4 states the principles in 

the model establishment and provides preliminary results from a sample DFBN application. The 

first modification to the original DFBN and its application are also presented in this chapter. In 

Chapter 5, the network equilibrium concept is integrated with the DFBN to enrich the model with 

the needs and competitions between the business entities in a supply chain. Finally, the summary, 

contributions, comparison of recent models, current limitations and future directions of the research 

are presented in Chapter 6. 
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2. Literature Survey: Representative Risk Modeling and Uncertainty Methods 

In this chapter, a literature survey on representative risk modeling and uncertainty methods is 

conducted to provide foundations and comparisons to the newly developed risk models in later 

parts of the dissertation. 

2.1. Fault Trees and Event Trees  

Fault tree analysis (FTA) and event tree analysis (ETA) both use Boolean logic to determine the 

risks of event failures contributing to the system failures. However, they have various degrees of 

differences in graphical illustration, analysis objectives and mathematical presentation. 

2.1.1. Fault Tree Analysis 

Fault tree analysis is a deductive risk estimation tool that models the occurrence between events 

(Bedford & Cooke, 2001). FTA is a graphical approach and follows a top-down hierarchical 

structure. By applying Boolean algebra, FTA illustrates the relationships between different events 

that could happen in a system (Lindhe et al., 2009). It is built starting from the top event to the 

bottom until the desired system details are achieved. Basic events, which can be seen as the 

component failures, are defined as the termination of each logic “branch”, and intermediate events 

are between top events and basic events. These events have the probability to contribute to failure 

of the whole system, and the top event represents the system failure. Here we illustrate an example 

to elaborate the mechanism of FTA. Consider a system with three non-repairable components with 

failure probability 𝑝𝑖  (𝑖 = 1,2,3) as arranged as Figure 2.1.  

 

 

1 

2 

3 

Figure 2.1 A Sample System with Three Components. 
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A fault tree is constructed to show the failure relationship of the system (Figure 2.2). The failure of 

the sub-system occurs only if both component 2 and component 3 fail (AND-gate). The probability 

of a sub-system failure is: 

𝑃(𝑆𝑢𝑏⎻𝑠𝑦𝑠𝑡𝑒𝑚 𝐹𝑎𝑖𝑙𝑠) = 𝑃(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 2 𝐹𝑎𝑖𝑙𝑠)𝑃(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 3 𝐹𝑎𝑖𝑙𝑠) = 𝑝2𝑝3 

 

 

 

 

 

 

Furthermore, if either the sub-system or component 2 fails, it causes the system failure (OR-gate) 

with failure rate: 

𝑃(𝑆𝑦𝑠𝑡𝑒𝑚 𝐹𝑎𝑖𝑙𝑠) = 1 − [1 − 𝑃(𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝐹𝑎𝑖𝑙𝑠)][1 − 𝑃(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 1 𝐹𝑎𝑖𝑙𝑠)] 

                                  = 1 − (1 − 𝑝2𝑝3)(1 − 𝑝1) 

FTA was first introduced in 1962 by Bell Telephone Laboratories for the Minuteman system of the 

U.S. Air Force (Fussell, 1976). With the straightforward AND/OR logic, an abundant range of 

System Failure 

Subsystem Failure Component 1 Failure 

Component 2 Failure 

Component 3 Failure 

OR-gate 

AND-gate 

Figure 2.2 FTA Corresponds to the Sample System. 

(2.1) 

(2.2) 



17 

 

 

system engineering fields, such as nuclear systems (Vesely et al., 1981; Cummings, 1975), railway 

traffic systems (Hudoklin & Rozman, 1992) and coal mine escape systems (Goodman, 1988) have 

successful FTA application cases. However, according to Khan & Abbasi (2000), FTA may have 

weaknesses in representing some systems due to the possible complicated relationships between 

events; difficulty to collect failure data; time and monetary costs in large scale computation; and 

unreliable results caused by inaccurate input data. 

As classic FTA requires precise failure rates or probability data of components or events, it may 

not be an appropriate method for industries where such data are inadequate or too large in variation 

for statistical inferences. In order to extend the application of FTA into such situations, fuzzy set 

theory, which is developed by Zadeh (1965), is considered to compensate for the lack of uncertainty 

of FTA. According to the different types of insufficient data obtained in systems, fuzzy set theory 

is applied to different portions of an FTA, such as the component’s failure (Tanaka et al., 1983), 

the relationship between a component and system failure (Gazdik, 1985), importance 

measurements (Furuta & Shiraishi, 1984; Tsujimura & Gen, 1994), logic gates (Pan & Yun, 1997), 

etc. 

Classic FTA is also not an ideal tool to conduct some system risk analysis which is sensitive to 

time, due to its ignorance on this factor. Thus, a dynamic fault tree (DFT) is invented to expand the 

classic FTA with time requirements. Due to its high demand on the capacity of computers to 

perform time dependent calculations, DFT is not widely applied until the 21st century (Čepin & 

Mavko, 2001). 

2.1.2. Event Tree Analysis 

Differing from FTA, event tree analysis starts from the initiating event, building a horizontal 

inductive tree-like structure from left to right (Andrews & Dunnett, 2000). Branch and branch 
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points mostly stand for operating pathways and dichotomous conditions of the initiating event until 

the end event occurs (Ferdous et al., 2011). 

From the sample system in Figure 2.1, we can build an event tree as follows (Figure 2.3): 

 

 

 

 

Assume 𝑆𝑖 (𝑖 = 1,2,3) represents the successful operation probability of component 𝑖  and the 

failure of components are 𝐹𝑖  (𝑖 = 1,2,3). Outcomes 1 to 3 indicate the system working properly; in 

outcomes 4 and 5, the system is down. Therefore, we can easily obtain the probability of system 

up and system down: 

𝑃(𝑆𝑦𝑠𝑡𝑒𝑚 𝑈𝑝) = 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 1) + 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 2) + 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 3) 

= 𝑆1𝑆2𝑆3 + 𝑆1𝑆2𝐹3 + 𝑆1𝐹2𝑆3 

𝑃(𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑜𝑤𝑛) = 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 4) + 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 5) = 𝑆1𝐹2𝐹3 + 𝐹1  

ETA has the advantages in quickly assessing and identifying potential component failures, 

inefficient mitigations, and system vulnerability areas in a failures and faults co-existing system 

(Clemens & Simmons, 1998). Starting from serving the nuclear industry, ETA has gained fame for 

(2.3) 

(2.4) 

Figure 2.3 ETA Corresponds to the Sample System. 
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applications in chemical process, transportation, and offshore oil and gas production (Andrews & 

Dunnett, 2000). Nevertheless, limitations of this method are also recognized in the practicality of 

an initiating event and operating pathways (Clemens & Simmons, 1998). For ETA, only one 

initiating event is allowed, which may be against some situations in a complex system. Moreover, 

this event should be foreseen by the engineer; otherwise, the subsequent analysis can not be 

initiated. The specific structure, logic, and loss of each pathway should be known. It indicates that 

large amounts of data associated with this information should be collected, which is challenging 

for the project. 

2.2. Fuzzy Logic 

The concept of fuzzy logic is introduced by Zadeh (1965) to describe the partial truth, where the 

truth value varies from 0 to 1. By contrast, in Boolean logic, only crisp values, i.e. 0 and 1, are 

allowed. It is another perspective to explain uncertainty rather than probability theory. Probability 

theory is based on crisp data to summarize the randomness of occurrence for events. However, in 

many real-life conditions, it is inappropriate to use crisp data in modeling (Chen et al., 2006), due 

to the vagueness of information related to many problems. A variety of engineering applications 

may not identify events in numerical values but linguistic values. For instance, in Figure 2.1, we 

can define Component 1 as “old”, and the value “old” is a linguistic value. Fuzzy logic enables 

vague and linguistic information to be quantified into mathematical modeling through fuzzy sets 

and fuzzy membership functions (Mendel, 1995). A fuzzy set permits a membership function that 

provides “a measure of the degree of similarity” of an element to the fuzzy sub-sets (Mendel, 1995). 

However, a crisp set only allows a zero-one membership of an element to its sub-sets. By this idea, 

fuzzy logic can be seen as a generalization of the traditional uncertainty theory. 

When faced with uncertainty, set membership is one of the keys to decision-making (Ross, 2009). 

The objects in crisp sets precisely satisfy properties of membership. However, imprecise properties 
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of membership are fulfilled by fuzzy sets. We assume an element 𝑥 in the universe 𝑋 is either a 

member of the crisp set 𝐴 or not. This binary membership can be denoted by an indicator function 

(Ross, 2009):  

𝑋𝐴(𝑥) = {
1,     𝑥 ∈ 𝐴
0,     𝑥 ∉ 𝐴

  , 

where 𝑋𝐴(𝑥) represents an indication for the unambiguous membership of element 𝑥 in set 𝐴. If 

𝑋𝐴(𝑥) = 1, it corresponds that element 𝑥 has full membership in the crisp set 𝐴; if 𝑋𝐴(𝑥) = 0, it 

indicates that 𝑥 has no membership in 𝐴. In fuzzy set theory, the membership of an element is 

extended to a continuous interval [0,1], where 0 and 1 represent no or full membership for the 

element. The degree of membership of the element 𝑥 in a fuzzy set 𝐴 is denoted by: 

𝜇𝐴(𝑥) ∈ [0,1].  

When the universe of discourse 𝑋 is discrete and finite, the fuzzy set 𝐴 can be represented as: 

𝐴 = {
𝜇𝐴(𝑥1)

𝑥1
+

𝜇𝐴(𝑥2)

𝑥2
+ ⋯ } = {∑

𝜇𝐴(𝑥𝑖)

𝑥𝑖
𝑖 }.  

When the universe 𝑋 is continuous and infinite: 

𝐴 = {∫
𝜇𝐴(𝑥)

𝑥
}. 

Fuzzy sets follow the operations of set theory, such as union, intersection and complement. We 

assume fuzzy sets 𝐴 and 𝐵 on the universe 𝑋, then operations for fuzzy sets are: 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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𝑈𝑛𝑖𝑜𝑛                          𝜇𝐴∪𝐵(𝑥) = 𝜇𝐴(𝑥) ∨ 𝜇𝐵(𝑥); 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛             𝜇𝐴∩𝐵(𝑥) = 𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑥);  

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡            𝜇𝐴̅(𝑥) = 1 − 𝜇𝐴(𝑥). 

These operations are illustrated in Venn diagrams in Figure 2.4. The shadowed areas represent the 

actual inclusion of the sets.  

 

 

Fuzzy logic makes outstanding contributions to the control system field. Fuzzy control breaks 

through the bottleneck of conventional methods, which is limited by quantitative data insufficiency 

due to the input-output relations (Lee, 1990). The fuzzy logic controller provides an automatic 

control strategy that is closer to human thinking and linguistic expressions, and can convert them 

into the control system (Mamdani, 1977). Numerous control systems, such as a slip power recovery 

system (Tang & Xu, 1994), a traffic control system (Pappis & Mamdani, 1977), and vehicle 

suspension systems (Rao & Prahlad, 1997), updated their traditional system with a fuzzy logic 

controller and resulted in enhanced performance. According to Mendel (1995), fuzzy logic also has 

applications in scheduling optimization and signal tuning and interpretation. 
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Figure 2.4 Fuzzy Set Operations Illustrated in Venn Diagrams:(a) Union; 

(b) Intersection; (c) Complement. 
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In a supply chain, the theory of fuzzy logic and fuzzy sets are also applied for their advantages in 

handling the circumstances such as imprecision preferences, multiple qualitative criteria and 

incomplete data (Chakraborty et al., 2015). Chen et al. (2006) and Amid et al. (2005) both introduce 

a fuzzy approach for the supplier selection problem by using linguistic values in rating and 

weighting quantitative and qualitative factors. Maiti & Maiti (2006) build a multi-objective 

optimization problem with vagueness in inventory data. Lin et al. (2006) suggest an agility 

evaluation model assessing the responsiveness of a supply chain to the fluctuating market 

environment. 

Another usage of fuzzy logic is acting as the complement to other risk and uncertainty models. We 

have discussed the combination of FTA and fuzzy set in section 2.1.1. For ETA, Ramzali et al. 

(2015) develop a fuzzy method to assist in an offshore drilling system to solve the data shortage 

problem. By combining ETA, FTA and FMEA (failure mode and effect analysis), Abdelgawad et 

al. (2011) present a hybrid model for risk analysts to identify critical risk events linguistically in 

the construction domain. A fuzzy landform classes and datasets of landslides are applied by 

Gorsevski et al. (2003) in a Bayesian probabilistic model as a decision support tool in forest road 

planning. De Moraes & Machado (2004) establish a fuzzy hidden Markov model to evaluate an 

online medical operation simulator. The fuzzy methodology supports the model using continuous 

variables without information loss. Hassan (2009) utilizes fuzzy logic to obtain the forecast value 

of a stock price after recognizing data patterns by using a hidden Markov model. Experiments show 

that this approach has better performance on forecasting accuracy compared to an artificial neural 

network, an autoregressive integrated moving average, and other hidden Markov-based models. 

Although fuzzy logic has expanded our vision on uncertainty to another dimension and it usually 

generates promising results, it may not be treated as an elixir for any situation. In the work presented 

by Eierdanz et al. (2008), the difficulty in result validation of fuzzy logic has been found. Another 
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drawback identified by Eierdanz et al. (2008) is the loss of objectivity when defining membership 

functions and rules of fuzzy logic. Baranyi & Várkonyi-Kóczy (2005) state that when the 

requirement of modeling accuracy increases, the complexity of fuzzy logic rocketed sharply. Even 

if complexity reduction techniques are developed, there also are disadvantages in new information 

adaptation. 

2.3. Bayesian Belief Networks 

Bayesian Belief Networks (BBNs), according to Pearl (1986), are Directed Acyclic Graphs (DAGs) 

represented by nodes and directed arcs in between. Nodes are variables in the joint probability 

distribution factorized by a DAG. The factorization is represented by the directed arcs between the 

nodes. Conditional probability values represent the quantification of the strengths of these 

dependencies. A BBN has several interchangeable names, which are Belief Networks, Bayesian 

Networks and Influence Networks, with distinct focus (Pearl, 1986). The origin of judgments and 

the nature of quantifiers are emphasized in the former two, while the latter one concentrates on the 

network directionality. A BBN is an extension of Bayes Theorem that summarizes the 

mathematical probability propagation that is based on the variables’ conditional dependencies 

(McDonald et al., 2015).  

A complete BBN contains two aspects of information. The qualitative aspect is presented as the 

DAG, and the quantitative aspect is the joint probability distribution that is governed by the DAG 

structure. The construction of a BBN normally consists of two stages. First, for a specific system, 

such as a supply chain, a customer service system, or a production line, an identification of the 

analysis problem for that system should be conducted. With the problem identified, the 

corresponding variables and the causal relations among them are illustrated by a DAG. Second, the 

dependency relations that the DAG forms are compiled with the joint probability distribution. 

These relations are further denoted as a series of conditional probability distributions.  
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2.3.1. Graph (DAG) 

By adapting the theories from Kjaerulff & Madsen (2008), we define 𝒢 = (𝑉, 𝐸) as a DAG, where 

𝑉 is a set of distinct nodes (or vertices), and 𝐸 ⊆ 𝑉×𝑉 is a set of arcs (or edges). A directed arc 

from a parent node 𝑢 to a child node 𝑣 is denoted as an ordered pair (𝑢, 𝑣) ∈ 𝐸. The notation 𝑢 →

𝑣 denotes the relation of (𝑢, 𝑣) ∈ 𝐸. The parent set and children set of a node 𝑣 are denoted as 

𝑝𝑎(𝑣) and 𝑐ℎ(𝑣), respectively. A path 〈𝑣1, 𝑣2, … , 𝑣𝑛〉 is defined as a sequence of distinct nodes. It 

is called a directed path if 𝑣𝑖 → 𝑣𝑖+1 is valid for each 𝑖 = 1,2, … , 𝑛 − 1. For each 𝑖 < 𝑗, 𝑣𝑗 is said 

a descendant of 𝑣𝑖, and 𝑣𝑖 is said an ancestor of 𝑣𝑗. The descendant set and ancestor set of a node 

𝑣 are denoted as 𝑑𝑒(𝑣) and 𝑎𝑛(𝑣), respectively. 

• Variables 

A set of the mutually exclusive states is represented by a random variable. The set itself also reflects 

the domain of the variable. The domain of a variable can be either discrete or continuous. A discrete 

variable has a discrete domain, and a continuous variable has a continuous domain. In this paper, 

we denote variables or sets of variables as capital letters. Lower case letters are used to denote 

values of variables. For example, 𝑋 = 𝑥 correspond that 𝑥 is the value of variable 𝑋. Besides, the 

equation can also present that 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  is a vector of values for variables 𝑋 =

(𝑋1, 𝑋2, … , 𝑋𝑛) . The domain of 𝑋  is denoted by 𝑑𝑜𝑚(𝑋) = (𝑥1, 𝑥2, … , 𝑥‖𝑋‖) , where ‖𝑋‖ =

|𝑑𝑜𝑚(𝑋)| is the number of states of 𝑋. In the case 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛), 𝑑𝑜𝑚(𝑋) indicates the 

Cartesian product of the domains of the variables in vector 𝑋 , i.e. 𝑑𝑜𝑚(𝑋) = 𝑑𝑜𝑚(𝑋1)×

𝑑𝑜𝑚(𝑋2)× …×𝑑𝑜𝑚(𝑋𝑛). Particularly,‖𝑋‖ = ∏ ‖𝑋𝑖‖𝑖 , where 𝑖 = 1,2, … , 𝑛.  

There are two categories of variables. Random variables represent randomly occurring events. 

Decision variables are the variables under certain choices of some parties, which are typically 

people. In order to distinguish between variables and nodes (vertices), especially in models that 
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contain utility functions and decision variables, the nodes are denoted as 𝑢, 𝑣, 𝑤, and the sets of 

nodes are denoted as 𝑈, 𝑉, 𝑊. If a vertex 𝑣 represents a variable, then the variable is denoted as 𝑋𝑣 . 

If the vertex is a utility function, then the set of random or decision variables are denoted as 𝑋𝑝𝑎(𝑣). 

• Evidence 

In a probabilistic network, information flows are mainly represented as posterior probabilities in 

the form 𝑃(𝑥|𝜀). In this expression, 𝜀 is the evidence obtained from an evidence function of a set 

of variables 𝑋 , and the evidence function for 𝑋  is denoted as ℰ𝑋 . Generally, external sources 

provide information about the evidence. There are two categories of evidence: hard evidence and 

soft evidence. Hard evidence has an evidence function with zero probabilities to all states but one; 

otherwise, the evidence is soft evidence. If hard evidence is on a variable 𝑋, then 𝑋 is said to be 

observed. An observed variable is labeled with  in the DAG.  

• Vertex Symbols 

In this dissertation, ovals are used to indicate discrete random variables, rectangles are used to 

indicate discrete decision variables, and hexagons are used to indicate discrete utility functions. 

When the variables and utility functions are continuous, a thick border is used in their symbols. 
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• Summary of Notation and Symbols 

Table 2.1 The Summary of Notations and Symbols in BBNs. 

Category Symbol Notation Description 

Nodes (Vertices)  𝑈, 𝑉, 𝑊, … sets of nodes 

  𝑈Δ the discrete variables sub-set of 𝑈  

 
 𝑈Γ 

the continuous variables sub-set of 

𝑈 

  𝑢, 𝑣, 𝑤, … nodes 

Variables  

Discrete Random Variable 

 

𝑋 variables or sets of variables 

  

Continuous Random Variable 

 

𝑋𝑈 
a sub-set of variables that 

correspond to set of nodes 𝑈 

  

Discrete Decision Variable 

 

𝑌𝑣 
variables that correspond to node 

𝑣 

  

Continuous Decision Variable 

 

𝑥𝑖 states of variables 

 
 𝑥𝑌 

projection of state 𝑥  to 𝑑𝑜𝑚(𝑌) , 

where 𝑋 ∩ 𝑌 ≠ ∅ 

 𝒳 
The set of variables of a network, 

𝒳 = 𝑋𝑈 

 𝒳𝑉 a sub-set of 𝒳, where 𝑉 ⊆ 𝑈 

 𝒳𝑅 
the random variable set of a 

network 

 𝒳𝐷 
the decision variable set of a 

network 

 𝒳∆ the discrete variables sub-set of 𝒳 

 𝒳Γ 
the continuous variables sub-set of 

𝒳 

Utility Functions  
 

Discrete 

 

𝒰 the utility function set of a network 

  

Continuous 

 
𝑉𝒰 

a utility function of the sub-set of 

𝑉 

 
 𝓊(𝑋) 

a utility function with 𝑋  as 

domain, where 𝓊 ∈ 𝒰 

Evidence  

For Example, for Discrete 

Random Variable   

 

𝜀 evidence 

  ℰ𝑋 evidence function of 𝑋 

DAG  𝒢 a directed acyclic graph 

Probability 
 𝒫 

a set of conditional probability 

distributions 
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2.3.2. Probability 

A BBN consists of the DAG and the joint probability distribution. A DAG shows the causal 

relationships of nodes, and joint probability distribution represents the strengths of the linkages. 

𝑃(𝑥) denotes the probability of an event 𝑥. In the context of a BBN, an event 𝑥 is a state of a 

variable 𝑋 , where 𝑥 ∈ 𝑑𝑜𝑚(𝑋) . The basis of treating uncertainty in a BBN is conditional 

probabilities. The conditional probability of event 𝑥, given event 𝑦 be true, is denoted as 𝑃(𝑥|𝑦). 

There are three axioms that support the probability calculus in a BBN. 

Axiom 2.1 0 ≤ 𝑃(𝑥) ≤ 1 for any event 𝑥. If and only if 𝑥 occurs with certainty, 𝑃(𝑥) = 1; if and 

only if 𝑥 will not occur with certainty, 𝑃(𝑥) = 0. 

Axiom 2.2 For pairwise incompatible events 𝑥1, 𝑥2, … , 𝑥𝑛, 

𝑃(⋃ 𝑥𝑖
𝑛
1 ) = 𝑃(𝑥1) + 𝑃(𝑥2) + ⋯ + 𝑃(𝑥𝑛) = ∑ 𝑃(𝑥𝑖)𝑛

1 .  

Axiom 2.3 The probability that both event 𝑥 and event 𝑦 occur is  

𝑃(𝑥 𝑎𝑛𝑑 𝑦) ≡ 𝑃(𝑥, 𝑦) = 𝑃(𝑦|𝑥)𝑃(𝑥) = 𝑃(𝑥|𝑦)𝑃(𝑦),  

where 𝑃(𝑥, 𝑦) is called the joint probability of the events 𝑥 and 𝑦. 

Besides, for a variable 𝑋, if the domain 𝑑𝑜𝑚(𝑋) = {𝑥1, 𝑥2, … , 𝑥‖𝑥‖}, then ∑ 𝑃(𝑥𝑖)‖𝑥‖
1 = 1, and 

𝑃(𝑋) is a probability distribution, where 𝑃(𝑋) = (𝑃(𝑥1), 𝑃(𝑥2), … , 𝑃(𝑥‖𝑥‖)). If a variable 𝑌 is 

given conditional on a variable 𝑋, then the probability distribution is 𝑃(𝑌|𝑋). For any possible state 

𝑥 that is in the domain of variable 𝑋, i.e. 𝑥 ∈ 𝑑𝑜𝑚(𝑋), the conditional probability distribution is 

(2.12) 

(2.13) 
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denoted as 𝑃(𝑌|𝑥). By applying Axiom 2.2, the rule of total probability for the joint probability of 

two variables 𝑋 and 𝑌 is: 

𝑃(𝑋) = (∑ 𝑃(𝑥1, 𝑦𝑗)𝑛
𝑗=1 , ∑ 𝑃(𝑥2, 𝑦𝑗)𝑛

𝑗=1 , … , ∑ 𝑃(𝑥𝑚, 𝑦𝑗)𝑛
𝑗=1 ) = ∑ 𝑃(𝑋, 𝑦𝑗)𝑛

𝑗=1 ,  

where, 𝑑𝑜𝑚(𝑋) = {𝑥1, 𝑥2, … , 𝑥𝑚} , 𝑑𝑜𝑚(𝑌) = {𝑦1, 𝑦2, … , 𝑦𝑛} , and 𝑑𝑜𝑚(𝑋)  and 𝑑𝑜𝑚(𝑌)  are 

exhaustive sets of mutually exclusive states of variable 𝑋 and 𝑌, respectively.  

For a single variable 𝑋 and a set of variables 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛}, we can denote the conditional 

probability distributions of probabilistic networks, i.e., BBNs in this context, as 𝑃(𝑋|𝑌). The DAG 

can be illustrated below in Figure 2.5. 

 

 

Figure 2.5 DAG Illustration of 𝑃(𝑋|𝑌). 

By generalizing Axiom 3.3 to variables 𝑋 and 𝑌, the following equation can be obtained:  

𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = 𝑃(𝑌|𝑋)𝑃(𝑋).  

Then, it can be rewritten as Bayes’ Rule: 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋)𝑃(𝑌)

𝑃(𝑋)
 

               =
𝑃(𝑌|𝑋)𝑃(𝑌)

𝑃(𝑋|𝑦1)𝑃(𝑦1) + 𝑃(𝑋|𝑦2)𝑃(𝑦2) + ⋯ + 𝑃(𝑋|𝑦‖𝑌‖)𝑃(𝑦‖𝑌‖)
. 

(2.14) 

(2.15) 

(2.16) 
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For a joint probability distribution with a set of variables 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} , the following 

decomposed product of conditional probability distributions can be obtained repetitively using 

Axiom 2.3: 

𝑃(𝑋) = 𝑃(𝑋1|𝑋2, … , 𝑋𝑛)𝑃(𝑋2, … , 𝑋𝑛) =

𝑃(𝑋1|𝑋2, … , 𝑋𝑛)𝑃(𝑋2|𝑋3, … , 𝑋𝑛) … 𝑃(𝑋𝑛−1|𝑋𝑛)𝑃(𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑋𝑖+1, 𝑋𝑖+2, … , 𝑋𝑛)𝑛
𝑖=1 . 

A head variable in a conditional probability distribution indicates the variable that is selected to be 

considered under the conditions of other variables. In equation (2.17), the different patterns of 

decomposition are determined by the order of selecting the head variables (i.e.,  𝑋𝑖 ’s) of the 

conditional probability distributions. In other words, different patterns of a DAG can be generated 

by different outcomes of the decomposition. Thus, we can summarize that a specific DAG can only 

have one joint probability decomposition pattern. Assume that the head variables in a DAG, 𝒢, are 

selected with a topological order (𝑋𝑣1
, 𝑋𝑣2

, … , 𝑋𝑣𝑛
) , and the parent of node 𝑣𝑖 : 𝑝𝑎(𝑣𝑖) ⊆

{𝑣1, 𝑣2, … , 𝑣𝑖−1} for all 𝑖 = 1,2, … , 𝑛. Then, the equation above can be simplified as: 

𝑃(𝑋𝑉) = ∏ 𝑃(𝑋𝑣𝑖
|𝑋𝑝𝑎(𝑣𝑖))𝑛

𝑖=1 .  

2.3.3. Discrete Bayesian Belief Networks 

A discrete Bayesian Belief Network is defined as 𝒩 = (𝒳, 𝒢, 𝒫) (Jensen, 2011). The notation 

shows that the network contains: 

• a DAG 𝒢 = (𝑉, 𝐸) with nodes 𝑉 = {𝑣1, 𝑣2, , … , 𝑣𝑛} and a set of arcs 𝐸; and  

• a set of discrete random variables 𝒳 that is represented by the nodes of 𝒢; and 

(2.17) 

(2.18) 
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• a set of conditional probability distributions 𝒫 , and there exists one distribution 

𝑃(𝑋𝑣|𝑋𝑝𝑎(𝑣)) for each random variable 𝑋𝑣 ∈ 𝒳. 

Although a discrete BBN is defined with the joint probability distribution and its chain rule 

decomposed conditional probabilities, the cause-effect relations are often used in the construction 

of a discrete BBN (Kjaerulff & Madsen, 2008). A graph of nodes, combining with arcs in between 

can represent the cause-effect relations between entities of a practical problem.  

2.3.4. Object-Oriented Bayesian Networks 

A complex system is usually composed of collections of similar or identical sub-systems. These 

sub-systems may have repetitive patterns. A BBN with all of the components in sub-systems visible 

may cause a chaos for analysts or engineers to construct, maintain or examine the system. In order 

to enhance the modeling ability of BBNs for systems with such configurations, Object-Oriented 

Bayesian Networks (OOBNs) are invented to support a large probabilistic model. An OOBN 

provides a hierarchical view for humans to focus on different levels of abstractions in a complex 

modeling task. 

In an OOBN, we assign an object to each set of variables and related functions, such as probability 

distributions and utility functions. A set of variables and related functions in a DAG is defined as 

a network class. An instantiation of a network class within another network class is represented by 

the object. The object is denoted as 𝑀. It is the instantiation of a network class 𝐶𝑀 within another 

network class 𝐶𝑁 (Figure 2.6). Assume that three pairwise disjoint sets of nodes 𝐼(𝐶), 𝐻(𝐶), and 

𝑂(𝐶) consists a network class 𝐶, where 𝐼(𝐶) denotes the input nodes, 𝐻(𝐶) denotes the hidden 

nodes and 𝑂(𝐶) denotes the output nodes. An object utilizes interface variables, 𝐼(𝐶) ∪ 𝑂(𝐶), to 

connect to other variables in the same network class. The interface variables indicate the hidden 

information from the input node to the output node of a network class. 
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In the OOBN illustration, objects are represented as rounded rectangles. The input variables and 

output rectangles are represented as dashed or bold ovals, respectively (Figure 2.6). 

  

 

Figure 2.6 An OOBN with Two Network Classes 𝐶𝑀 and 𝐶𝑁. 

2.3.5. Dynamic Bayesian Networks 

BBNs are constrained to be a finite DAG, which does not support time dependent dynamic systems 

or models with feedback loops. A Dynamic Bayesian Network (DBN) can accomplish those tasks. 

A BBN can be obtained by unrolling a DBN for the desired number of steps in a multiple feedback 

loop model. In a time dependent dynamic system, a DBN can be unrolled by a number of time steps 

to generate a static model. For example, in a dynamic model, a BBN can represent the system at 

any point in time (Figure 2.7a). In order to monitor the system for a specific period of time 𝑛, an 

analyst builds a DBN for the monitoring system (Figure 2.7b). The variables 𝑋1 and 𝑋3 at time 

slice 𝑡𝑖  have influence on 𝑋1  and 𝑋2  at 𝑡𝑖+1 , particularly. This category of arcs is defined as 

temporal arcs. In the compact DBN, a temporal arc has a number in the body of its curve. The 

number 𝑘 on the arc indicates that variable at the tail of the arrow at time 𝑡𝑖 has influences on 

another variable at the head of the arrow at time 𝑡𝑖+𝑘. Figure 2.7(c) shows an unrolled DBN. 

 

 

C B C B A A 

M N 
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2.3.6. Application of Bayesian Belief Networks 

Due to the straightforward modeling, a BBN is a proper methodology for systemic risk assessment 

that shows the cause and effect between nodes (Lee et al., 2009). One of the most applied fields for 

BBNs is an ecology system risk analysis that is proven to be effective in various environment 

studies (Dixon & Ellison, 1996; Wolfson et al., 1996; Ticehurst et al., 2007). Marcot et al. (2006) 

display a causal web of predictor and response variables in an ecological environment by using a 

three-level BBN model. Marcot et al. (2001) also build BBN models to evaluate fish population 

viability, and offer suggestions to wildlife conservation. McCann et al. (2006) present that BBNs 
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Figure 2.7 (a) A Static BBN Represents the System at any Point of Time; 

(b) a Compact DBN; (c) an Unrolled DBN. 
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can be used in ecological research in two ways: one way focuses on the functioning of the whole 

ecosystem, another emphasizes on the values of each factor. 

Project management researchers also show their interests on BBN models for risk analysis. Lee et 

al. (2009) apply BBN into a large engineering project risk management of a shipbuilding industry. 

The research identifies the factors in shipbuilding companies that are the most influential. 

Mitigations to these factors are also stated in order to increase the chance of project success. After 

determining that over half of software development projects do not reach their objectives, Hui & 

Liu (2004) construct a BBN model to analyze risks and their impacts in software development 

projects. The model presents an accurate image of the malfunctioning parts in the project. 

Harkleroad et al. (2013) reports on a risk-based method for integrative aviation safety risk modeling 

and analysis developed and refined by Luxhøj et al. (2003) termed the Aviation System Risk Model 

(ASRM). Harkleroad et al. (2013) position the ASRM as an exemplar of a risk-based method that 

is equally influence- and event-based. The ASRM can be used to evaluate the causal factors linked 

to a hypothesized scenario involving an air vehicle and/or the Next Generation (NextGen) systems 

and procedures that led to an unsafe state and the interactions among these factors that contributed 

to the safety risk. The ASRM can also assess the projected impact that new vehicle design changes 

and/or NextGen systems and procedures may have on potentially reducing the likelihood of 

significant causal factors. The ASRM uses the flexible, probabilistic approach of Bayesian Belief 

Networks (BBNs) and influence diagrams to model the complex interactions of aviation system 

risk factors. The ASRM’s systematic approach may be used to guide the construction of an Object-

Oriented Bayesian Network (OOBN) with its linkages of numerous sub-networks. Griffin et al. 

(2015) note that the ASRM is an example of a first generation socio-technical model. The ASRM 

is described in more detail in Luxhøj (2005). Luxhøj & Sarlo (2012) recently adapt the ASRM 

method to safety risk modeling for a small UAS. 
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2.4. System Dynamics 

Accelerating growth in economy, society and technology complexity requires decision makers to 

learn at an increasing rate. In order to ensure the effectiveness in decision-making and learning in 

a dynamic environment, system thinking is a method to expand the boundaries of thoughts on 

understanding the behavior of complex systems. System Dynamics (SD) is a modeling tool that 

provides a system thinking perspective to understand and examine the dynamics of complex 

systems (Sterman, 2000). SD is an information-feedback approach that studies the interactive 

influence of organizational structure, time delays and implications to industries (Forrester, 1997). 

Effective policies and business operations can be designed by using SD through formal computer 

simulations on the complex systems. The following sections introduce the mathematical 

formalization of SD modeling as a foundation of the originalDFBN model. 

2.4.1. Causal Loop Diagrams 

In SD, feedback is one of the core concepts that is represented by a Causal Loop Diagram (CLD). 

CLDs are ideal tools for capturing the hypotheses on the causes of dynamic flows. The two main 

elements in a CLD are variables and arrows. By connecting variables, causal links, which are 

illustrated by arrows, denote the causal relations among the variables. Polarity is assigned to each 

causal link. By adapting the notations and equations from Sterman (2000), we denote a positive 

link between variables 𝑋 and 𝑌 as a positive polarity (+), which means the linked variables have 

the same direction when increased or decreased. The mathematical expression of this relation can 

be 𝜕𝑌 𝜕𝑋⁄ > 0, and in the case of accumulations, 𝑌 = ∫ 𝑋(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝑌𝑡0

, where 𝑡0 is the simulation 

initial time, 𝑡 is the simulation termination time, and 𝑋(𝜏) represents the value of variable 𝑋 at any 

time 𝑠. A negative link is denoted by a negative polarity (-). The affected variable decreases 

(increases) if the cause variable increases (decreases) in a negative link. The negative polarity of 

variables 𝑋  and 𝑌  can be denoted by 𝜕𝑌 𝜕𝑋⁄ < 0 , and in the case of accumulations 𝑌 =
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− ∫ 𝑋(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝑌𝑡0

, where 𝑡0 and 𝑡 correspond the initial time and termination time respectively, 

and 𝑋(𝜏) represents the value of variable 𝑋 at any time 𝑠. A loop identifier can be used to highlight 

the feedbacks in a loop. A positive loop identifier  indicates the positive (reinforcing) feedback 

in the loop; a negative loop identifier  indicates a negative (balancing) feedback in the loop.  

The sign of the open loop gain method in control theory is used to determine loop polarity. As 

signal returned by the loop is represented as “gain”. An “open loop” indicates that the calculation 

of the gain should only be conducted for one feedback cycle. Consider a feedback loop shown in 

Figure 2.8 that includes variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4. By applying the open loop gain method, the 

variable 𝑥1 is split into an input variable 𝑥1
𝐼  and an output variable 𝑥1

𝑂. The partial derivative of 𝑥1
𝑂 

with respect to 𝑥1
𝐼  is the open loop gain. The partial derivative measures the marginal feedback of 

𝑥1 to itself. The sign of the open loop gain, which is the polarity of the loop, is defined as:  

𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝 = 𝑆𝐺𝑁 (
𝜕𝑥1

𝑂

𝜕𝑥1
𝐼 ),  

where  𝑆𝐺𝑁() is the sign function or signum of the partial derivative. 𝑆𝐺𝑁() returns +1 if the 

expression inside is positive, and it returns −1 if the expression is negative. If the open loop gain 

𝜕𝑥1
𝑂 𝜕𝑥1

𝐼⁄  is zero, then 𝑆𝐺𝑁(𝜕𝑥1
𝑂 𝜕𝑥1

𝐼⁄ ) = 0 , which indicates no loops possible for the given 

variables. The open loop gain can be calculated by the product of the gains of the individual links, 

i.e. 𝜕𝑥𝑖 𝜕𝑥𝑖−1⁄ : 

𝑆𝐺𝑁 (
𝜕𝑥1

𝑂

𝜕𝑥1
𝐼 ) = 𝑆𝐺𝑁 [(

𝜕𝑥2

𝜕𝑥1
𝐼 ) (

𝜕𝑥3

𝜕𝑥2
) … (

𝜕𝑥1
𝑂

𝜕𝑥𝑛
)]. 

 

(2.19) 

(2.20) 
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For the CLD in Figure 2.8, the open loop gain can be calculated by: 

𝑆𝐺𝑁 (
𝜕𝑥1

𝑂

𝜕𝑥1
𝐼 ) = 𝑆𝐺𝑁 [(

𝜕𝑥2

𝜕𝑥1
𝐼 ) (

𝜕𝑥3

𝜕𝑥2
) (

𝜕𝑥4

𝜕𝑥3
) (

𝜕𝑥1
𝑂

𝜕𝑥4
)].  

 

 

Figure 2.8 Splitting Variable 𝑥1 to Calculate the Polarity of the Loop. 

Figure 2.9 shows a personal bank account example CLD. In the example, the bank account balance 

is determined by both the interest earned and the consumption rate. If the bank account balance is 

high, then the amount of interest earned increases. The total account balance will be higher if the 

interest earned is high. Thus, the variables in the left loop of Figure 2.9 boost each other and result 

in a mutually reinforcing loop. The left loop is called a positive (reinforcing) feedback. For the 

right loop, bank account balance reinforces the potential rate of consumption. However, the 

consumption may negatively influence the total amount of the account balance. The influences 

between variables are balanced in the right loop. Thus, the right loop is called a negative (balance) 

feedback. 

 

Figure 2.9 Personal Bank Account Example Shows the Notations in a CLD. 

A positive or negative polarity does not necessarily represent an actual increase or decrease of the 

value of a variable. There are two factors that may influence the final result of polarities. First, a 

variable may be affected by more than one cause variable. In the bank account example, the bank 

account balance (𝑌) is influenced by both the interest earned (𝑋1) and the consumption rate (𝑋2). 

𝑥1
𝐼  

𝑥2 

𝑥3 

𝑥4 

𝑥1
𝑂 𝑥1 

𝑥2 

𝑥3 

𝑥4 

(2.21) 
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These two influences possess opposite polarities. The increase or decrease of the bank account 

depends on the strength of the influences, or mathematically, 𝑌(𝜏) = 𝑋1(𝜏) − 𝑋2(𝜏). Second, pure 

CLDs lack the ability to distinguish between stocks and flows. Stocks are the accumulations of 

resources in a system, while flows indicate the rates of change in those resources. In the bank 

account example, the increase in the consumption rate may decrease the total amount in the account 

balance. However, the decrease in consumption rate may not increase, but decrease the rate of the 

total balance reduction. Stocks and Flows Illustration (SFI) are introduced to remedy the limitations 

of a pure CLD. 

2.4.2. Stocks and Flows Illustration (SFI) 

Stocks are accumulated states of the system that provides the basis for decision-makings. 

Information about stocks influences decisions in various industries such as purchasing raw 

materials in manufacturing, changing marketing strategies in retailing, or issuing new debt in 

banking (Mass, 1980). Stocks enable systems with memory and inertia against changes. Only the 

change in inflows and outflows can affect the content of a stock. It is not necessary for stocks to be 

physically tangible. Mental states, such as memories and beliefs, are stocks. Inertia and continuity 

in people’s attitudes and behavior are generated by memories and beliefs. Delays are created by 

stock reaction lags between their inflows and outflows. During the delays, the accumulated stock 

of material in the process is the difference between the input and output. The ability to absorb the 

differences between inputs and outputs reflects practical decision processes. Stocks generate 

disequilibrium dynamics in systems by decoupling the rates of flows.  

Flows are accumulated or integrated by stocks. For a stock and flow system:  

𝑆𝑡𝑜𝑐𝑘(𝑡) = ∫ [𝐼𝑛𝑓𝑙𝑜𝑤(𝑠) − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤(𝑠)]𝑑𝑠
𝑡

𝑡0
+ 𝑆𝑡𝑜𝑐𝑘(𝑡0), (2.22) 
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where, 𝑡0  is the simulation initial time, 𝑡  is the simulation termination time, 𝐼𝑛𝑓𝑙𝑜𝑤(𝑠)  and 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤(𝑠) represent the value of inflow or outflow at any time 𝑠 (Sterman, 2000).  

The rate of change of the stock, i.e. the derivative of the stock with respect to time, equals the net 

flow into the stock: 

𝑑(𝑆𝑡𝑜𝑐𝑘)

𝑑𝑡
= 𝐼𝑛𝑓𝑙𝑜𝑤(𝑡) − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤(𝑡). 

SFI describe the actual material dynamics in a system. The properly defined units of measure 

elaborate the variable identities in a complex environment. Stocks are usually measured as a 

quantity, such as the number of employees, tons of finished products, or dollars spent on 

consumption. For a specific stock, the correlated flow should be measured in the same unit per time 

period. For instance, if we measure a product in metric tons, then the rate of production may be 

denoted by tons per day. The choice of the time period can be unrestrained; however, in order to 

avoid potential confusion, the time period applied in flows should be universalized in a system 

simulation. 

Figure 2.10 shows a sample to illustrate the diagramming notations for SFI in SD. Stocks (Inventory) 

are denoted by rectangles indicating containers holding the contents of the stock. Pipes pointing 

into the stock represent inflows (Purchasing Rate). Pipes pointing out of the stock represent 

outflows (Selling Rate). The hourglass shaped symbols on the inflows or outflows denote valves 

controlling the flows. Clouds can both denote the sources and sinks of the flows. The cloud 

originates an inflow into a stock is a source. The cloud terminates an outflow from a stock 

represents a sink. It is assumed that sources and sinks possess infinite capacity and flow rate. 

 

(2.23) 
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Figure 2.10 A Sample of SFI Model. 

In the Figure 2.10 example, a warehouse holds inventory (stocks) for a company that accumulates 

the inflow of purchasing a specific kind of products and is reduced by the outflow of selling the 

products. Other inflows and outflows of products are assumed to be zero. The source cloud 

indicates that there is an unlimited supply of the product. The sink cloud indicates that the demand 

for the product never grows to a rate that bottlenecks the selling rate. 

Auxiliary variables are another category of variables in stock and flow models. An auxiliary 

variable is a specific stock variable that is the derivative of the variable in a dynamic system that is 

a non-linear function of exogenous variables, constants, and the stock itself. In matrix form, the 

rates of stock change 𝑑𝑺/𝑑𝑡  are represented as a function 𝑓()  of the stock variables 𝑺 , the 

exogenous variables 𝑼 and the constants 𝑪:  

𝑑𝑺

𝑑𝑡
= 𝑓(𝑺, 𝑼, 𝑪).  

For the example in Figure 2.11, the change rate of the auxiliary variable 𝑆𝑡𝑜𝑐𝑘1 can be denoted by 

the following equation: 

𝑑𝑆𝑡𝑜𝑐𝑘1

𝑑𝑡
= 𝑓(𝑆𝑡𝑜𝑐𝑘1, 𝑆𝑡𝑜𝑐𝑘2, 𝐸𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 

(2.24) 

(2.25) 
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Figure 2.11 A Network of SFI with Auxiliary Variables. 

2.4.3. First-Order Linear and Non-Linear Systems 

First-order systems are considered to study the behavior of the integrated system of feedbacks with 

stock and flow structures. In a dynamic system, the number of stocks it contains is defined as orders. 

It only contains one stock in a first-order system. A linear system or a non-linear system is a system 

which the rate equation 𝑑𝑆/𝑑𝑡 is a linear or a non-linear combination of the stock variables and 

exogenous variables. 

2.4.3.1. Linear First-Order Positive Feedback Systems 

In a linear dynamic system, the rate equation  𝑑𝑆/𝑑𝑡 is a weighted sum of the stock variables 𝑆𝑖’s 

and exogenous variables 𝑈𝑗’s:  

𝑑𝑆

𝑑𝑡
= 𝑁𝑒𝑡 𝐼𝑛𝑓𝑙𝑜𝑤 = (𝑎1𝑆1 + 𝑎2𝑆2 + ⋯ + 𝑎𝑛𝑆𝑛) + (𝑏1𝑈1 + 𝑏2𝑈2 + ⋯ + 𝑏𝑛𝑈𝑛),  

where 𝑎𝑖 and 𝑏𝑗 are constants. 

(2.26) 
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For the linear first-order positive feedback dynamic system, the stock variable is denoted by 𝑆. The 

stock variable is the accumulation of its net inflow rate, and the net inflow rate is a linear function 

of the stock variable. This relation can be mathematically expressed as: 

𝑆(𝑡) = ∫ 𝑓(𝑆(𝜏))𝑑𝜏
𝑡

𝑡0
+ 𝑆(𝑡0),  

where 

𝑓(𝑆(𝜏)) = 𝑔𝑆(𝜏),  

and 𝑔 is the fractional growth rate of the stock with units 1/𝜏, 𝑡0 is the simulation initial time, 𝑡 is 

the simulation termination time. Figure 2.12 illustrates the structure as a CLD combined with a 

stock and flow network. 

 

 

 

Figure 2.12 A Sample Linear First-Order Positive Feedback System. 

By solving Equation 2.28, we can obtain an exponential growth function for the linear first-order 

positive feedback dynamic system: 

𝑆(𝑡) = 𝑆(𝑡0)𝑒𝑔𝑡.  

(2.27) 

(2.28) 

(2.29) 
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2.4.3.2. Linear First-Order Negative Feedback Systems 

Compared with the exponential growth of the positive feedback systems, linear first-order negative 

feedback systems generate goal-seeking behavior. A general first-order linear negative feedback 

system contains a stock variable (𝑆), an explicit goal (𝑆∗) and adjustment time (𝐴𝑇). The explicit 

goal is the desired state of the system. The net inflow is a corrective action that compensates the 

discrepancy between the desired and actual state of the system. The adjustment time is the expected 

time to accomplish the corrective action. The net inflow can be denoted by: 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑁𝑒𝑡 𝐼𝑛𝑓𝑙𝑜𝑤 =

𝑓(𝑆(𝑡),𝑆∗)

𝐴𝑇
. 

For example, in the case illustrated in Figure 2.13, the discrepancy between 𝑆 and 𝑆∗ is assumed to 

be linear, i.e. 𝑓(𝑆(𝑡), 𝑆∗) = 𝑆∗ − 𝑆(𝑡). The solution of Equation 2.30 is: 

𝑆(𝑡) = 𝑆∗ − (𝑆∗ − 𝑆(0))𝑒−𝑡 𝐴𝑇⁄ , 

where 𝑡0 is the initial time, 𝑡 is the current time, and 𝑆∗ − 𝑆(𝑡0) represents the initial difference 

between the desired state and the actual state. The current difference between the desired and actual 

state is denoted by (𝑆∗ − 𝑆(0))𝑒−𝑡 𝐴𝑇⁄ . As the system time proceeds, the term (𝑆∗ − 𝑆(0))𝑒−𝑡 𝐴𝑇⁄  

will eventually decay to zero. At that time, the system goal will be reached. 

 

 

 

 

Figure 2.13 A Sample Linear First-Order Negative Feedback System. 

(2.30) 

(2.31) 
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In the linear first-order negative feedback system, the stable equilibrium point at 𝑆(𝑡) = 𝑆∗ usually 

guides the direction of the flow (Figure 2.14). For the system with a lower initial state than the goal, 

the state of the system increases with a positive net inflow until achieving 𝑆∗. For the system with 

a greater initial state than the desired state, a negative net inflow is formed until 𝑆∗ is attained. In 

the example of Figure 2.14, the system goal is determined as 10 units with adjustment time 4 days. 

The upper curve initiates with 𝑆(0) = 20, and the lower curve initiates with 𝑆(0) = 0. 

 

 

 

Figure 2.14 The Goal-Seeking Behavior of a Linear First-Order Negative Feedback System. 

2.4.3.3. Non-linear First-Order Systems  

Systems initially experiencing exponential growth will probably reach the capacity of the 

environment after a period of time. A non-linear transition from positive feedback domination to 

negative feedback domination occurs when the limits to growth are approached by the system. The 

smooth transition from exponential grow to equilibrium state is defined as S-shaped growth. 

• Logistic Growth 

Logistic growth is a special case of S-shaped growth. The original model is published in 1838 by 

Pierre François Verhulst describing the limits of population growth (Richardson, 1991). In logistic 

growth, the net fractional population growth rate is a downward sloping linear function of the 

population: 
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𝑁𝑒𝑡 𝐵𝑖𝑟𝑡ℎ 𝑅𝑎𝑡𝑒 = 𝑔(𝑃(𝑡), 𝐶)𝑃(𝑡) = 𝑔∗ (1 −
𝑃(𝑡)

𝐶
) 𝑃(𝑡), 

where the fractional growth rate 𝑔(𝑃, 𝐶) is a function of 𝑃(𝑡), which is the population at time 𝑡, 

and the capacity 𝐶. When the population is close to zero, the fractional growth rate approaches to 

its maximum 𝑔∗. From Equation 2.32, the S-shaped growth can be confirmed: when 𝑃 > 𝐶, the net 

fractional growth rate is negative; when 𝑃 = 𝐶, the rate is zero; when 𝑃 < 𝐶, the net fractional 

growth rate is positive. By solving Equation 2.32, an equation about 𝑃(𝑡) can be obtained: 

𝑃(𝑡) =
𝐶

1+[
𝐶

𝑃(𝑡0)
−1]𝑒−𝑔∗𝑡

=
𝐶

1+𝑒−𝑔∗(𝑡−ℎ), 

where 𝑃(ℎ) = 0.5𝐶. ℎ corresponds the time when the population reaches the half capacity, and it 

can be solved as: 

ℎ =
ln [

𝐶

𝑃(𝑡0)
−1]

𝑔∗ . 

• Other Growth Models 

The logistic model is the most commonly used S-shaped growth due to its simplicity and tractability 

(Sterman, 2000). By relaxing the restriction on the linearity of the fractional growth rate, a number 

of other S-shaped growth models can be achieved. The Richards curve is a widely-used model 

(Richards, 1959). The fractional growth rate of the population in Richards curve is non-linear: 

𝑁𝑒𝑡 𝐵𝑖𝑟𝑡ℎ 𝑅𝑎𝑡𝑒 =
𝑑𝑃(𝑡)

𝑑𝑡
=

𝑔∗𝑃(𝑡)

(𝑚−1)
[1 −

𝑃(𝑡)

𝐶
]

𝑚−1
. 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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The Richards curve converts to the logistic growth model when 𝑚 = 2. The solution of Equation 

2.35 is: 

𝑃(𝑡) = 𝐶(1 − 𝑘𝑒−𝑔∗𝑡)
1

1−𝑚,  

where parameter 𝑘 is a value that relates to the initial population and capacity. 

The Weibull model is another commonly used model in S-shaped growth: 

𝑃(𝑡) = 𝐶 [1 − 𝑒
−(

𝑡

𝑏
)

𝑎

], 

where 𝑎 and 𝑏 are the shape and scale parameters of Weibull distribution, respectively, and 𝑎, 𝑏 >

0. When 𝑎 = 2, it is known as the Rayleigh distribution. 

2.4.4. System Dynamics Applications in Supply Chains 

Organizations face impediments to learn the behavior of complex systems (Sterman, 2000). System 

dynamics (SD) has been applied to problems for decades from business practices to medical 

applications, from military operations to welfare development. SD can be used for a myriad of 

time-sensitive complex systems with stocks and flows. As a production-distribution system with 

dynamic complex flows of information, materials, orders, money, people and capital equipment, a 

supply chain is an ideal problem domain for SD application (Angerhofer & Angelides, 2000).  

In the supply chain field, SD is also widely used to understand the complex relationships and flows 

in the network arrangement, inventory policies, supplier selection, outsourcing, procurement and 

distribution strategies. Georgiadis et al. (2005) propose an application of SD for food supply chains. 

(2.36) 

(2.37) 
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The study uses a CLD to present guidelines for the development of a multi-echelon supply chain. 

The long-term capacity planning policies of a fast food supply chain with market constraints and 

transient flows is focused. Demand amplification research is another typical application of SD in 

supply chains. Anderson et al. (2000) use the machine tool industry to explore the significance of 

demand amplification on supply chain lead-time, workforce, productivity and inventory. In this 

study, the large variances in the demand for capital equipment are discovered through the systemic 

insights on the influences of the slight fluctuations in end-product demand. SD can not only support 

industrial or academic studies on investigating existing supply chains, but is able to facilitate system 

establishment in the early stage as well. Vos & Akkermans (1996) apply SD to develop “ex ante” 

models to support supply chain construction. The models use SD to generate dynamic features to 

Vos’ (1997) original static model. A supply chain geographical expansion problem is discussed in 

the study. It generates sensitivity analysis to examine the importance of the processes in the 

proposed system. The approaches provide valuable insights for supply chain practitioners to 

migrate their existing systems to new markets with a novel dynamic perspective. For a more 

globalized and turbulent business environment, Cakravastia & Diawati (1996) presents a supply 

chain re-design approach by using SD to tackle the challenges. The study investigates the 

shipbuilding industry in Indonesia. The temporal physical flow, information flow and financial 

flows are identified with key performance indicators. The model analyzes the behavior of the flows 

and provides predictive results for each re-design attempt. 

In this chapter, five representative risk modeling and uncertainty methods are introduced: Fault 

Tree Analysis (FTA), Event Tree Analysis (ETA), Fuzzy Logic, Bayesian Belief Networks (BBNs) 

and System Dynamics (SD). A summarized comparison is presented in Table 2.2. FTA, ETA and 

Fuzzy Logic are provided as a comparison to the newly developed risk model (DFBN). Principles 

of BBNs and SD are presented as the mathematical foundation of establishing the DFBN models 

in Chapter 4. 
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Table 2.2 Summary of Representative Methods 

Existing Supply Chain 

Risk Analysis Methods 
Benefits Limitations 

Qualitative Methods  Use straightforward risk identification, 

classification and qualitative result 

generation 

 Convenient for decision 

communication between practitioners 

 Needs few data as inputs 

 Reversed rankings: linguistic outputs 

present vague image of the outcome of 

the business (Cox et al., 2005) 

 Uninformative ratings: depending on 

different person, the comprehension of 

linguistic results may differ (Cox et 

al., 2005) 

Quantitative Methods   

• Fault Trees and 

Event Trees 

 Use straightforward AND/OR logic 

 Can assess and identify component 

failures, inefficient mitigations, and 

system vulnerability areas quickly 

(Clemens & Simmons, 1998) 

 Model becomes clumsy when 

presenting complicated relationships 

between events 

 Hard to collect failure data 

 Hard to handle large scale 

computation 

 May generate unreliable results with 

inaccurate input data (Khan & Abbasi, 

2000) 

 Only one initiating event is allowed 

 The events should be foreseen by the 

engineer, or the subsequent analysis 

can not be commenced 

• Fuzzy Logic  Quantifies the linguistic information 

into mathematical modeling (Mendel, 

1995) 

 Overcomes the data insufficiency 

problem in quantitative modeling 

(Lee, 1990) 

 Capable of handling imprecision 

preferences, multiple qualitative 

criteria and incomplete data 

(Chakraborty et al., 2015) 

 Difficult to validate results (Eierdanz 

et al., 2008) 

 Easy to lose objectivity in membership 

function definitions (Eierdanz et al., 

2008) 

 Complexity of model rockets sharply 

when the requirement of modeling 

accuracy increases (Baranyi & 

Várkonyi-Kóczy, 2005) 

 Even if complexity reduction 

techniques are developed, new 

information is still hard to adapt 

(Baranyi & Várkonyi-Kóczy, 2005) 

• Bayesian Belief 

Networks 

 Straightforward arc and node 

modeling for complex and large scale 

systemic risk assessment (Lee et al., 

2009) 

 Contain both qualitative and 

quantitative assessment of events 

 Flexible probabilistic approach, easy 

to adapt to various application 

scenarios (Harkleroad et al., 2013) 

 Hard to collect conditional probability 

data (Uusitalo, 2007) 

 Lack the ability to deal with 

continuous data (Uusitalo, 2007) 

 Acyclic networks, information 

feedbacks are not supported (Nielsen 

& Jensen, 2009) 

• System Dynamics  Enables the dynamic feedback flows 

in analyzing the interactive influence 

of organizational structure, time 

delays and implications to industries 

(Forrester, 1958) 

 Convenient for understanding 

complex relationships and flows in 

network arrangement, inventory 

policies, supplier selection, 

outsourcing, procurement and 

distribution strategies in a supply 

chain (Angerhofer & Angelides, 2000) 

 Easy to be misapplied (Featherston & 

Doolan, 2012) 

 The objectives and expected outcomes 

of the model may be often 

misinformed (Featherston & Doolan, 

2012) 
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In the following chapter, the taxonomy of supply chain risk analysis is introduced to provide a 

modeling framework and an industrial data reference for the DFBN models. 
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3. Taxonomy of Supply Chain Risk Analysis 

This chapter provides insights on a taxonomy of supply chain risk analysis to elaborate the features 

and capabilities of existing fields of study in supply chain management. The previous chapter 

focuses on quantitative risk analysis tools. This chapter introduces essential ideas from the 

perspective of supply chain studies to analyze the foundations of this complex system. The chapter 

follows a descending taxonomy order, starting from supply chain management to supply chain risk 

management and quantitative supply chain risk analysis. 

3.1 Supply Chain Management 

According to Angerhofer & Angelides (2000), a supply chain is a system with dynamic complex 

flows of information, materials, orders, money, people and capital equipment through the processes 

of production and distribution. Supply chain profitability is defined as the difference between 

gaining from the customer and the overall cost across the supply chain. Maximizing profitability is 

one of the objectives of a supply chain (Beamon, 1998). The decisions in successful supply chain 

management should be made to ensure profitability.  

3.1.1. An Analytical Framework for Supply Chains 

With the goal of gaining profit by fulfilling a customer’s request, all the business parties that 

involve manufacturing, supplying, distributing, warehousing and retailing are categorized as the 

elements of a supply chain (Chopra & Meindl, 2010). A typical supply chain contains five stages: 

customers, retailers, wholesalers/distributors, manufacturers and raw material suppliers. The flow 

of goods, information and capital builds the connections between stages. The processes of flows in 

a supply chain can be thought in two perspectives: a cycle view and a push/pull view. With the 

cycle view, the processes are discerned as a series of cycles between two successive stages in a 

supply chain, such as customer order cycle, replenishment cycle, manufacturing cycle and 

procurement cycle. The push/pull view focuses on the interaction of supply chain activities with 

customers. Push processes represent the initial activities that anticipate customers’ orders. Pull 
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processes, on the contrary, are exercised passively by customers’ orders (Ahn & Kaminsky, 2005). 

In a macro perspective, supply chain processes can be classified into three high-level procedures: 

customer relationship management (CRM), internal supply chain management (ISCM) and 

supplier relationship management (SRM). 

• Supply Chain Drivers 

Drivers determine performance by influencing the flows of supply chains in terms of 

responsiveness and efficiency (Chopra & Meindl, 2010) (Figure 1.1). There are three logistical 

drivers: facilities, inventory and transportation; and three cross-functional drivers: information, 

sourcing and pricing.  

o Facility is one of the logistical drivers that represent the actual physical location 

where products are stored or manufactured. Significant impact on the performance 

of the supply chain is determined by the decisions on role, location and capacity 

of facilities. 

o Inventory is another supply chain logistical driver that considers all raw, work-in-

process or finished goods. Inventory policies, including cycle inventory, safety 

inventory, seasonal inventory and the level of product availability affects the 

efficiency and responsiveness dramatically.  

o Transportation is the source of the physical flows of goods in a supply chain. The 

design and operation of transportation networks significantly contribute to the 

liquidity of the system. 

o Information consists of data and analysis regarding other supply chain drivers. 

Information directly affects other drivers and can potentially develop into the most 

effective drivers among others. 
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o Sourcing is the decision-making process that aims to choose particular parties to 

accomplish specific supply chain activities. The main decision is focusing on the 

in-housing or outsourcing designated supply chain tasks. 

o Pricing determines the charges for goods and services available in the supply chain. 

Although the rise in price influences the return of goods or services for each 

transaction, the total revenue or profit may not increase simultaneously. This 

phenomenon attributes to the behavioral change of the customer due to different 

pricing strategies. 

After identifying the drivers affecting supply chain performance, various plans can be applied to 

different processes in supply chains. 

3.1.2. Demand Management 

• Demand Forecasting 

Estimation of future demand constitutes one of the most important tasks for supply chain decision-

making (Chopra & Meindl, 2010). From the push/pull view of the supply chain, both the push and 

pull processes either anticipates or responds to customers’ demand. Thus, supply chain planning 

requires reliable demand forecast results. In order to generate accurate demand forecast, a company 

should be well-informed with the related factors to the forecast, such as past demand, lead time, 

economy status, pricing and marketing strategies and competition information (Chen et al., 2000). 

Four types of forecasting models are classified: qualitative methods, time-series methods, causal 

methods and simulation (Chopra & Meindl, 2010).  

o Qualitative methods are based on subjective judgments on activities. The methods 

are effective when historical data is scarce. 
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o Causal methods assume that certain factors in the environment are correlated with 

the demand while correlations are not causations, the causal relationships between 

demand and environmental factors may be used to forecast future demand. 

o Simulation imitates the customer behaviors in supply chain processes. Simulation 

combines the time-series and causal methods to analyze the impact of decisions 

and proposals of various parties in the supply chain. 

o Time-series methods generate predictive results from historical demand data. It is 

assumed that the past data act as a proper indicator for demand forecasts. In time-

series methods, the historical, or observed demand consists of a systematic 

component and a random component: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑂)

= 𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝑆) + 𝑅𝑎𝑛𝑑𝑜𝑚 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 (𝑅). 

The systematic component is the predictable part of the demand, and the random 

component provides the variation of the forecast. The value of the systematic 

component is denoted by: 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = (𝐿𝑒𝑣𝑒𝑙 + 𝑇𝑟𝑒𝑛𝑑)×𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟, 

where 𝐿𝑒𝑣𝑒𝑙 is the expected value of demand, 𝑇𝑟𝑒𝑛𝑑 is the rate of demand growth or decline for 

the next period, and 𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 is the predictable seasonal demand fluctuations. 

• Aggregate Planning 

Aggregate planning can be performed based on the demand forecast to make decisions on 

production, inventory, backlogs and outsourcing in a supply chain with limited production capacity 

and lead times. Aggregate planning uses a macro view on problem-solving rather than a stock-

keeping unit (SKU) level method. After identifying operational parameters over a specific time 

horizon, such as production rate, workforce, overtime, machine capacity, subcontracting, backlog 

and inventory on hand, aggregate planning can be performed to satisfy the forecast demand with 
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maximized profit (Singhvi & Shenoy, 2002). Linear programming can be applied to solve an 

aggregate planning problem with a maximizing total profit objective function and constraints on 

production. 

3.1.3. Inventory Management 

The studies of inventory management mainly concentrate on cycle inventory, safety inventory and 

product availability. 

• Cycle Inventory 

The average amount of inventory that satisfies demand is cycle inventory (Chopra & Meindl, 2010). 

As a result of the production, procurement and transportation in large lots, cycle inventory are used 

to exploit economies of scale in supply chains. If we assume a steady demand, the cycle inventory 

is can be denoted by: 

𝐶𝑦𝑐𝑙𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =
𝑄

2
,  

where Q is the lot size. In practice, estimation of the ordering and holding cost supports the decision 

on cycle inventory level. The holding cost can be obtained from the sum of the cost of capital, 

obsolescence costs, handling costs, occupancy costs and miscellaneous costs. According to Marcus 

(2013), the weighted-average cost of capital (WACC) is a common method that used to measure 

the amount of cost of capital, and it can be denoted as: 

𝑊𝐴𝐶𝐶 =
𝐸

𝐷+𝐸
(𝑅𝑓 + 𝛽×𝑀𝑅𝑃) +

𝐷

𝐷+𝐸
𝑅𝑏(1 − 𝑡), 

where E is the amount of equity, D is the amount of debt, Rf is the risk-free rate of return, β is the 

beta of the company, MRP is the market risk premium, Rb is the rate of borrowing money and t is 

the tax rate. In addition, 𝑅𝑓 + 𝛽×𝑀𝑅𝑃  can be seen as the cost of equity of the company. For 

ordering cost, it consists of buyer time costs, transportation costs and receiving costs. 

(3.1) 

(3.2) 



54 

 

 

In order to achieve optimal lot size of a product, the economic order quantity (EOQ) technique is 

applied: 

𝐸𝑂𝑄 = √
2𝐷𝑆

ℎ𝐶
, 

where 𝐷 is the annual demand of the product, 𝑆 is the fixed cost per order, 𝐶 is the unit cost of the 

product and ℎ is the holding cost per year per unit of product. From Equation 3.3, the optimal 

ordering frequency 𝑛∗ can be obtained: 

𝑛∗ =
𝐷

𝐸𝑂𝑄
= √

𝐷ℎ𝐶

2𝑆
. 

• Safety Inventory 

In a supply chain, safety inventory is carried to prevent product shortage from the possible demand 

exceeding situation that was not accurately forecasted (Chopra & Meindl, 2010). The necessity of 

safety inventory attributes to the uncertainty of demand. If we assume that the demand is normally 

distributed with mean 𝐷𝑖 and variance 𝜎𝑖
2 for a period 1,2, … , 𝐿, then the total demand during lead 

time 𝐿  is also a normal distribution with mean 𝑃 = 𝐷𝐿 = ∑ 𝐷𝑖
𝐿
1  and variance Ω2 = ∑ 𝜎𝑖

2𝑘
1 +

2 ∑ 𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑖>𝑗 , where 𝜌𝑖𝑗 is the correlation coefficient of demand between periods 𝑖 and 𝑗. 

The expected shortage per replenishment cycle (ESC) measures the average unfulfilled amount of 

demand per replenishment cycle. Assume that the demand distribution during the lead time is 

denoted by 𝑓(𝑥), and 𝑅𝑂𝑃 corresponds to the reorder point, then the ESC is given by: 

𝐸𝑆𝐶 = ∫ (𝑥 − 𝑅𝑂𝑃)𝑓(𝑥)𝑑𝑥
∞

𝑅𝑂𝑃
.  

If the demand is normally distributed with mean 𝐷𝐿 and variance 𝜎𝐿
2 during the lead time 𝐿, given 

a safety stock level 𝑠𝑠, then ESC can be denoted by: 

(3.3) 

(3.4) 

(3.5) 
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𝐸𝑆𝐶 = −𝑠𝑠 [1 − 𝐹𝑠 (
𝑠𝑠

𝜎𝐿
)] + 𝜎𝐿𝑓𝑠 (

𝑠𝑠

𝜎𝐿
), 

where 𝐹𝑠 and 𝑓𝑠 are the standard normal cumulative and density function, respectively. 

• Optimal Product Availability 

The level of product availability is critical for the responsiveness of a supply chain (Chopra & 

Meindl, 2010). A high level of availability yields a high customer demand satisfaction and 

increased revenue. However, the trade-off of a high level of availability is the requirement of a high 

inventory level, which may probably increase the holding cost and the risk of overstocking. The 

cycle service level is utilized to measure the level of product availability. The optimal cycle service 

level 𝐶𝑆𝐿∗ can be achieved by the following equation: 

𝐶𝑆𝐿∗ =
𝐶𝑢

𝐶𝑢+𝐶𝑜
, 

where 𝐶𝑢 is the cost of understocking by one unit, and 𝐶𝑜is the cost of overstocking by one unit. If 

the demand during a season follows a normal distribution with mean 𝜇 and variance 𝜎2, then the 

optimal order quantity 𝑂∗ can be denoted by: 

𝑂∗ = 𝐹−1(𝐶𝑆𝐿∗, 𝜇, 𝜎). 

3.1.4. Transportation Networks 

The performance of a supply chain is affected by the design of a transformation network. The 

influence on the performance is reflected in operational transportation decisions about 

infrastructure establishment, scheduling and routing (Chopra & Meindl, 2010). The decisions on 

transportation also include the choice between different transportation modes, such as air, package 

carriers, truck, rail, water, pipelines etc. The design of a transportation network can be mainly 

categorized into two methods: direct shipping and shipping via distribution centers. 

(3.6) 

(3.7) 

(3.8) 
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3.1.4.1 Direct Shipping 

Buyers directly receive all shipments from suppliers in direct shipping (Figure 3.1a). Shipment 

routing is specified in a direct shipment network. The decisions on this shipping option focus on 

shipment volume, transportation mode and shipment schedule. Direct shipping can eliminate the 

process in the intermediate warehouse. Other proportions in the shipping network are not affected 

by the decisions made for direct shipping. This method shortens the delivery time and simplifies 

the operation and coordination. 

3.1.4.2 Shipping via Distribution Centers (DCs) 

A DC is built for each geographic region and suppliers firstly send shipments to DCs instead of 

buyers under this option. Then, shipments are divided by DCs and forwarded to buyers’ location 

(Figure 3.1b). DCs play two roles in a transportation network: inventory storages and transfer hubs. 

The advantage of the DC contains reducing supply chain costs by achieving economies of scale for 

inbound transportation. DCs allow suppliers, which are located far from the buyers, to send large 

shipments, and then DCs can deliver the divided small shipments to nearby buyers at a low cost. 

 

 

 

 

 

 

 

 

…
 

…
 

Suppliers Buyers 

…
 

…
 

Suppliers Buyers 

DC 

(a) (b) 

Figure 3.1 The Design of Transportation Networks: (a) Direct Shipping; and 

(b) Shipping via DCs. (Source: Adapted from Chopra & Meindl, 2010) 
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3.1.4.3 Trade-offs in Transportation Design 

In a supply chain network, shippers should consider the trade-offs of all transportation decisions 

on facility costs, processing costs, inventory costs and the customer responsiveness (Chopra & 

Meindl, 2010). 

• Transportation and Inventory Cost 

According to Chopra & Meindl (2010), transportation and inventory cost trade-offs are affected by 

the decisions on the transportation mode and inventory aggregation. For transportation mode 

decisions, transportation and inventory costs should be balanced. For example, in a supply chain, a 

lower-cost transportation mode does not necessarily result in a lower total cost due to possible 

higher holding costs or delay penalties. In aggregate planning, companies can reduce the safety 

inventory. This technique is widely applied by on-line shopping sites to lower their holding cost. 

However, the trade-off is the increase in transportation cost. 

• Transportation Cost and Customer Responsiveness 

High responsiveness transportation enables customers receiving their orders in a short time with a 

high transportation cost. Economies of scale with a lower transportation cost occur when the 

customer responsiveness decreases because larger shipment volume can be achieved in each 

shipment. 

In summary, the total cost and service quality can be affected by all of the decisions made. Thus, it 

is important for a company to consider a most suitable transportation design to fulfill both the 

customer’s and company’s need in a specific business environment. 

3.1.5. Cross-Functional Drivers  

Two cross-functional drivers, pricing and information technology, are introduced to present the 

interactions of traditional drivers (facilities, inventory and transportation) from a novel perspective.  
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3.1.5.1 Pricing and Revenue Management in a Supply Chain 

In order to match supply and demand in a market better, pricing is an important tool to enhance 

supply chain profits. Revenue management utilizes pricing to maximize profits from limited supply 

chain assets, which includes capacity and inventory (Chopra & Meindl, 2010). Revenue 

management makes remarkable contributions to supply chain profitability when a product’s value 

differs from distinct market segments. For example, according to the supply and demand theory in 

microeconomics, we assume that the demand curve for a normal good is shown in Figure 3.2. The 

whole triangle area bounded by the demand curve is the maximum revenue that a company can 

obtain from selling this good. However, if a single price $6 is set, only a partial of revenue 

(shadowed area) can be obtained. By applying revenue management techniques, multiple prices for 

different customer segments can be formulated and the total revenue is increased. 

In the practical situation, distinct customer segments may have different demand curves. According 

to (Chopra & Meindl, 2010), we assume that the linear demand curve 𝑑𝑖 for customer segment 𝑖 is 

denoted as:  

𝑑𝑖 = 𝐴𝑖 − 𝐵𝑖𝑝𝑖 , 

where 𝑝𝑖  is the price decided for segment 𝑖, 𝐴𝑖 is the quantity demand when the price drops to 0 for 

segment 𝑖, and 𝐵𝑖 is the slope of the curve for segment 𝑖. 

 

 

 

 

 Figure 3.2 The Revenue Obtained from: (a) Single Pricing; and (b) Multiple Pricing. 

(3.9) 
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For a total 𝑘 distinct customer segments, the profit can be maximized by: 

𝑀𝑎𝑥 ∑ (𝑝𝑖 − 𝑐)(𝐴𝑖 − 𝐵𝑖𝑝𝑖)𝑘
𝑖=1 ,  

where 𝑐 is the cost of production per unit for the product.  

For segment 𝑖, if the capacity is unlimited, the problem is maximizing: 

(𝑝𝑖 − 𝑐)(𝐴𝑖 − 𝐵𝑖𝑝𝑖).  

Thus, the optimal price for segment 𝑖 can be denoted as: 

𝑝𝑖 =
𝐴𝑖

2𝐵𝑖
+

𝑐

2
. 

If the capacity of the supply chain for the product is 𝑄, then: 

∑ (𝐴𝑖 − 𝐵𝑖𝑝𝑖)𝑘
𝑖=1 ≤ 𝑄,  

𝐴𝑖 − 𝐵𝑖𝑝𝑖 ≥ 0   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘. 

 

3.1.6. Value-Based Supply Chain Management 

After obtaining the supply chain drivers, such as demand forecast, inventory level, transportation 

and pricing strategies, Brandenburg (2013) suggests the value-based supply chain management 

model to measure shareholder value of a company and economic value. The quantitative value-

based model is based on discounted cash flow. By using published data, the value-based model 

allows practitioners estimating the impacts of shareholder value from supply chain drivers. 

In the value-based model, supply chain cost consists of the cost of goods sold (COGS) and logistics 

cost: 

𝑆𝑢𝑝𝑝𝑙𝑦 𝐶ℎ𝑎𝑖𝑛 𝐶𝑜𝑠𝑡 = 𝐶𝑂𝐺𝑆 + 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 𝐶𝑜𝑠𝑡. 

(3.14) 

(3.15) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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COGS reflects the physical production costs and sale costs of products (Poston & Grabinski, 2001). 

Transportation cost, distribution cost, inventory carrying and administration cost are the 

components of logistics cost (Shoshanah & Roussel, 2005). Lee (2008), Winkler et al. (2006) and 

Ritchie & Brindley (2007) also state that supply chain cost may be highly relevant to supply chain 

cost. 

Working capital is one of the metrics measuring the economic value and the liquidity position of a 

company (Schilling, 1996). Working capital equals the sum of inventory and trade receivables with 

trade payables deducted (Brealey et al., 2008): 

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 = 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 + 𝑇𝑟𝑎𝑑𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒𝑠 − 𝑇𝑟𝑎𝑑𝑒 𝑃𝑎𝑦𝑎𝑏𝑙𝑒𝑠. 

3.2. Supply Chain Risk Management 

A supply chain is vulnerable to various risks, especially for the globalized supply chains nowadays. 

Any single inharmonious occurrence in a global supply chain network may cause disruptions in 

another part of the world. The risks, according to Chopra & Meindl (2010), include supply delays, 

supply disruption, price fluctuation, demand fluctuation and exchange-rate fluctuations etc. The 

detailed risk drivers are listed in Table 3.1.  

The design of a supply chain network should possess a high capacity and flexibility in 

implementing mitigation plans. However, a mitigation plan on a risk driver may be a trade-off to 

another driver. For instance, in order to mitigate the risk of stock out, a larger amount of inventory 

can be purchased. As a trade-off, the risk of holding cost will increase. Thus, the rational use of 

mitigation plans should also be considered by supply chain managers. Table 3.2 provides a list of 

available mitigation plans and tailored strategies. 

 

 

(3.16) 
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Category Risk Drivers 

Disruptions Natural disaster, political variation, strike or supplier bankruptcy. 

Delays Supplier high capacity utilization or inflexibility. 

Systems Risk Information interruption, system updating. 

Forecast Risk Forecast inaccuracy due to seasonality, product variety, long lead times, 

short life cycles, small customer base or information distortion. 

Intellectual Property Risk Vertical industry integration, outsourcing. 

Procurement Risk Exchange rate change, raw-material price, industrial capacity overload, 

procurement from single source. 

Receivables Risk Number of customers, financial strength of customers. 

Inventory Risk Product obsolescence, inventory holding cost, depreciation, demand and 

supply uncertainty. 

Capacity Risk Capacity inflexibility, capacity cost. 

 

 

 

 

Risk Mitigation Plans Tailored Strategies 

Increase Capacity For predictable demand: decentralize capacity. 

For unpredictable demand: centralize capacity. 

Increase decentralization when the cost of capacity drops. 

Get Redundant Suppliers For high-volume products: get more redundancy 

For low-volume products: less and centralized redundancy. 

Increase Responsiveness For commodity products: prefer cost to responsiveness. 

For short-life-cycle products: prefer responsiveness to cost. 

Increase Inventory For predictable or low-value products: decentralize inventory. 

For unpredictable or high-value products: centralize inventory. 

Increase Flexibility For predictable or high-volume products: prefer cost to flexibility. 

For unpredictable or low-volume products: prefer flexibility to cost. 

For high-cost products: centralize flexibility. 

Pool or Aggregate Demand As unpredictability grows: increase aggregation. 

Increase Source Capability For high-value or high-risk products: prefer capability to cost. 

For low-value or commodity products: prefer cost to capability. 

Centralize high capability in flexible sources. 

 

Table 3.2 Available Risk Mitigation Plans and Tailored Strategies. 

(Source: Adapted from Chopra & Meindl, 2010) 

 

Table 3.1 Supply Chain Risks and Drivers. 

(Source: Adapted from Chopra & Meindl, 2010) 
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3.3. Supply Chain Risk Taxonomy 

A supply chain is a complex system with systemic dynamic flows between the six supply chain 

drivers (logistical drivers: facilities, inventory and transportation; and cross-functional drivers: 

information, sourcing and pricing). During supply chain operations, risks conceal in the drivers and 

are ready to disrupt the system with any related trigger. In order to facilitate supply chain 

practitioners identifying and mitigating supply chain risks, the Supply Chain Risk Identification 

and Prevention Taxonomy (SCRIPT) is introduced in this study. By using the six drivers as the 

framework of this taxonomy, SCRIPT is established and shown in Figure 3.3. 

SCRIPT is a convenient reference for supply chain researchers and practitioners establishing risk 

analysis tools. For both qualitative and quantitative models, SCRIPT can be used as a guidance of 

extracting risk factors from events. For instance, in a supply chain, the user can firstly identify the 

risk is either internal or external to the company. Then, a category of risk factors can be determined, 

and the cause of the event can be selected from the SCRIPT for further modeling. If the prospective 

model includes a BBN, then the chosen risk factor can be one of the nodes in the BBN. 

Chopra & Sodhi (2004) present fundamentals of the supply chain risks and their drivers of SCRIPT. 

However, SCRIPT categories supply chain risks from each company’s business environment. 

According to Ravindran & Warsing (2012), the risks in a supply chain are from the external and 

internal environment of a company. SCRIPT follows this taxonomy and further divides external 

risk factors into natural-related and human-society-related environments. Due to the complexity of 

each supply chain system, complete and exhaustive risk taxonomy seems difficult to demonstrate 

in a single model. For example, Trucco et al. (2008) state over 70 metrics to measure the systemic 

risks of a hybrid maritime transportation system of a supply chain. Barkan et al. (2003) analyze 47 

hazardous events that affect the normal operation of a railway transportation system. Sumner (2000) 

and Benaroch et al. (2006) elaborate the information technology risks that companies may 

encounter. SCRIPT consolidates the risk factors in a general form and makes referable 
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comprehensive risk taxonomy for most of the companies in the supply chain, including supplier, 

manufacturer, wholesaler/warehouse and retailer. 

  

In this chapter, the taxonomy of supply chain risk management analysis is presented. The elements 

in a supply chain analysis are introduced through supply chain framework design, demand 

management, inventory management, transportation networks and cross-functional supply chain 

drivers. Supply chain risks, drivers, and mitigations are also provided. In the following chapter, by 

Figure 3.3 Supply Chain Risk Identification and Prevention Taxonomy (SCRIPT). 
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utilizing the concepts presented in Chapter 2 and Chapter 3, a mathematical inference of the DFBN, 

the modified ODFBN, and an application in the supply chain domain for each of the models are 

demonstrated. 
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4. Methodology for Complex Temporal Uncertainty Modeling 

This chapter introduces the development of the Dynamic Flow Bayesian Network (DFBN) and the 

modified Optimized Dynamic Flow Bayesian Network (ODFBN). First, the top tier System 

Dynamics (SD) model, which illustrates the stock and feedback flows between different business 

units and parties, can be constructed by referring to the business framework of companies. Then, 

by utilizing SCRIPT, the DFBN models possess the ability to construct the risk factors and their 

causal relationships in key business units or parties. Second, this chapter also provides uncertainty 

analysis techniques to evaluate the systemic risks and their influences on the business performance 

of the company. Third, a small application of the DFBN is conducted by using a specific supply 

chain scenario. Finally, the ODFBN is introduced with an application in the same scenario as the 

DFBN case study. 

4.1. Development of Hybrid Temporal Belief Network Method 

Existing risk models provide firm analysis results for various industry domains. However, the usage 

of these results may be limited by the form of outputs (i.e., degree of similarity of fuzzy logic and 

probability values from most of the probabilistic models). The DFBN provides a hybrid approach 

that uses the same type of data with the existing risk models and generates more user-friendly 

outputs for business practitioners. The following sections start from the establishment of a top-level 

SD model, then move to the identification risk factors and DBNs, and finally to the integration of 

the DFBN. 

4.1.1. Dynamic Flow System (System Dynamics) 

A DFBN describes the fluctuations of stocks and flows that are affected by systemic risks. The top-

level dynamics of a DFBN is modeled by applying an SD approach. According to Chapter 2, an 

SD model usually contains Causal Loop Diagrams (CLDs) and the illustration of stocks and flows. 

Variables in a CLD represent the flow rates of people, money, inventory, information etc. (Sterman, 

2000). For a system, a variable  
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𝑌𝑡 = 𝑋1
𝑡 − 𝑋2

𝑡 , 

where 𝑋1
𝑡 and 𝑋2

𝑡 are positive and negative feedback variables for Y at time 𝑡, respectively. A pure 

CLD presents the instantaneous flow rates without the memory of their states in the previous time. 

Thus, the cumulated number of stocks in a system cannot be recorded. The stock and flow diagram 

is originated by Forrester (1997) to describe the dynamics of inventory. The essence of the diagram 

is the accumulated states of the system, i.e., stocks, can be introduced in the SD model. Stocks 

enable systems with inertia against changes, such as inflows and outflows. Thus, if we assume the 

system is considered in continuous time, by adapting Equation 2.22 (Sterman, 2000), the stock 

level S at time 𝑡 can be denoted as: 

𝑆𝑡 = ∫ 𝑓(𝐼1(𝜏), 𝐼2(𝜏), … 𝐼𝑖(𝜏), … , 𝐼𝑛(𝜏), 𝑂1(𝜏), 𝑂2(𝜏), … 𝑂𝑗(𝜏), … , 𝑂𝑚(𝜏))𝑑𝜏
𝑡

𝜏=𝑡0
+ 𝑆𝑡0; or 

in discrete time: 

𝑆𝑡 = ∑ 𝑓(𝐼1(𝜏), 𝐼2(𝜏), … 𝐼𝑖(𝜏), … , 𝐼𝑛(𝜏), 𝑂1(𝜏), 𝑂2(𝜏), … 𝑂𝑗(𝜏), … , 𝑂𝑚(𝜏)) + 𝑆𝑡0𝑡
𝜏=1 , 

where 𝐼𝑖(𝜏)  and 𝑂𝑗(𝜏)  are the inflow and outflow rates respectively, 𝑖 ∈ {1,2, … , 𝑛} , 𝑗 ∈

{1,2, … , 𝑚}, 𝑛  and 𝑚 are the number of inflow and outflow variables, respectively. 𝑡0 is the start 

time, and 𝑇  is the end time. The number of inflows and outflows are n and m, respectively. 

Equation 4.1 and 4.2 are the basis of the top-level SD model. When applying in the supply chain 

domain, various stock analysis techniques can be combined with the SD model to generate 

optimized inventory management plans. In the top-level SD model, stock and flow rate data can be 

directly obtained from industrial operations. 

For example, we assume a dynamic flow system with four variables: Purchasing Rate (𝐹1), 

Inventory Level (𝑆), Selling Rate (𝐹2) and a Feedback Variable (𝐹𝑉) (Figure 4.1). 𝐹𝑉 is an original 

term that describes a variable with influence on other variables.  

(4.2) 

(4.1) 

(4.3) 
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The Purchasing Rate at time 𝑡 in the system can be denoted as: 

𝐹1
𝑡 = 𝑓(𝐹𝑉𝑡),  

where  𝑓(𝐹𝑉𝑡)  is a function of 𝐹𝑉𝑡 , the formulation can be modified according to practical 

situations. The FV at time 𝑡 is a function of Selling Rate at time 𝑡: 

𝐹𝑉𝑡 = 𝑓(𝐹2
𝑡). 

The Inventory Level (𝑆𝑡) at time 𝑡 is affected by the inventory inflow and outflow, and it can be 

denoted as: 

𝑆𝑡 = ∫ (𝐹1
𝜏 − 𝐹2

𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝑆𝑡0 , or 

𝑆𝑡 = 𝐹1
𝑡 − 𝐹2

𝑡 + 𝑆𝑡−1 = ∑ (𝐹1
𝜏 − 𝐹2

𝜏)𝑡
𝜏=1 + 𝑆𝑡0, 

where 𝑡0 is the simulation start time. 

This example presents the mathematical feasibility of the SD application to a typical dynamic flow 

system. By generalizing this idea, a wide range of applications can be modeled by this approach. 

4.1.2. Temporal and Systemic Risks (Dynamic Bayesian Networks) 

Dynamic Bayesian Networks (DBNs) are responsible for the temporal and systemic risks modeling 

and analysis in a DFBN. The top-level SD model uses the probability values for certain variables 

in the DBNs to initiate further dynamic feedback flow calculations. Modified from the pioneering 

(4.4) 

(4.5) 

(4.6) (Continuous Time Model) 

Figure 4.1 A Sample Dynamic Flow System. 

𝐹2 𝐹1 

Feedback Variable (FV) 

𝑆 

(4.7) (Discrete Time Model) 
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model by Pearl (1986), Kjaerulff & Madsen (2008) state that, for a traditional Bayesian Belief 

Network (BBN), the joint probability distribution with a set of variables 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛}, 

𝑃(𝑋) = ∏ 𝑃(𝑋𝑖|𝑋𝑝𝑎(𝑖))𝑛
𝑖=1 , 

where 𝑝𝑎(𝑖) ⊆ {1,2, … , 𝑖 − 1} for all 𝑖 = 1,2, … , 𝑛.  

A DBN is a BBN that enables systemic risk modeling in a temporal situation (Dagum et al., 1992). 

For example, the DBN in Figure 4.2(a) is a DBN with two variables A and B. There are two states 

for each variable. The probabilities of the states in B are affected by the states in A within the same 

time slice. The states in A receive feedbacks from states in B from the previous time slice. The 

number in the squared text box on the arrow from B to A indicates that the feedback from B is sent 

to A in the next 1 time slice. When expanding the compact DBN for n time slices, an unrolled DBN 

can be obtained in Figure 4.2(b). 

 

 

 

 

 

 

 

 

 

𝑡1 𝑡2 𝑡3  𝑡𝑛 

𝐴 

𝐵 

1 
(a) 

For 𝑡 = 𝑖, 𝑖 = 1,2, … , 𝑛: 

Variable 𝐴𝑖 𝐵𝑖 

States 
𝑎1

𝑖  𝑏1
𝑖  

𝑎2
𝑖  𝑏2

𝑖  

 

(4.8) 

Figure 4.2 (a) A Sample DBN; and (b) the Unrolled Form of the DBN. 

(b) 

𝐴1 

𝐵1 

𝐴2 

𝐵2 

𝐴3 

𝐵3 

𝐴𝑛 

𝐵𝑛 

… 

 

… 

1 1 1 1 

CPT for A at 𝑡 = 1: 

CPT for B at 𝑡 = 𝑖, 
𝑖 = 1,2, … , 𝑛: 

𝐵𝑖|𝐴𝑖 

𝑃(𝑏1
𝑖 |𝑎1

𝑖 ) 𝑃(𝑏1
𝑖 |𝑎2)

𝑖 ) 

𝑃(𝑏2
𝑖 |𝑎1

𝑖 ) 𝑃(𝑏2
𝑖 |𝑎2

𝑖 ) 

𝐴1 

𝑃(𝑎1
1) 

𝑃(𝑎2
1) 

 

CPT for A at 𝑡 = 𝑖, 𝑖 = 2, … , 𝑛: 

𝐴𝑖|𝐵𝑖−1 

𝑃(𝑎1
𝑖 |𝑏1

𝑖−1) 𝑃(𝑎1
𝑖 |𝑏2

𝑖−1) 

𝑃(𝑎2
𝑖 |𝑏1

𝑖−1) 𝑃(𝑎2
𝑖 |𝑏2

𝑖−1) 
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The joint probability distribution of the DBN in Figure 4.2 can be denoted as: 

𝑃(𝑋𝐴, 𝑋𝐵) = 𝑃(𝐴1)𝑃(𝐵1|𝐴1)𝑃(𝐴2|𝐵1)𝑃(𝐵2|𝐴2) 

                        … 𝑃(𝐴𝑖|𝐵𝑖−1)𝑃(𝐵𝑖|𝐴𝑖) … 𝑃(𝐴𝑛|𝐵𝑛−1)𝑃(𝐵𝑛|𝐴𝑛). 

where 𝑖 = 1,2, … , 𝑛, 𝑋𝐴, 𝑋𝐵 are the sets of nodes, 𝑋𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑛}, 𝑋𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑛}. 

The probability values for the states of the variables at time 𝑡 can be calculated as: 

𝑃(𝑎𝑗
𝑡) = ∑ 𝑃(𝑎𝑗

𝑡|𝑏𝑘
𝑡−1)𝑃(𝑏𝑘

𝑡−1)2
𝑘=1 𝑓𝑜𝑟 𝑡 = 2,3, … , 𝑛; 𝑗 = 1,2; 

𝑃(𝑏𝑗
𝑡) = ∑ 𝑃(𝑏𝑗

𝑡|𝑎𝑘
𝑡 )𝑃(𝑎𝑘

𝑡 )2
𝑘=1 , 𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛; 𝑗 = 1,2. 

In order to establish Directed Acyclic Graphs (DAGs) and ultimately Dynamic Bayesian Networks 

(DBNs), causal relationships between the risk factors in the DAGs and DBNs can be determined 

by a manager’s previous empirical works. Probability data in the Conditional Probability Tables 

(CPTs) in the DBNs can be generated from the database of industrial operations. However, it is 

usually difficult to gain data in the form of CPTs. Thus, a verbal-numerical mapping method, which 

is introduced by Vick (2002), is applied to acquire the conditional probability data. Verbal-

numerical mapping is an alternative method that can generate numerical probability values from 

structured verbal descriptors. For example, Table 4.1 is one of the verbal-numerical mapping tables 

by Vick (2002). If the occurrence of an event is identified by a supply chain manager, and it is 

linguistically expressed as “Very Probable”, then, from Table 4.1, the corresponding probability 

equivalent value can be found as 80%. By using this method, all probability values in the CPTs can 

be defined as linguistic expressions, and then be translated to quantitative values. 

 

 

 

(4.9) 

(4.10) 

(4.11) 
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Table 4.1 A Sample Numerical Responses Table. (Source: Vick, 2002) 

Linguistic Expression Probability Equivalent (%) 

Almost Certain 90 

Very High Chance 90 

Very Likely 85 

High Chance 80 

Very Probable 80 

Very Possible 80 

Likely 70 

Probable 70 

Even Chance 50 

Medium Chance 50 

Possible 40 

Low Chance 20 

Unlikely 15 

Improbable 15 

Very Low Chance 10 

Very Unlikely 10 

Very Improbable 5 

Almost Impossible 2 

 

4.1.3. Dynamic Flow Bayesian Network (DFBN) 

A Dynamic Flow Bayesian Network (DFBN) is introduced to associate the temporal and systemic 

risk analysis with the dynamic flow system. The previous two sections provide the mathematical 

expressions for the foundation of the DFBN, which are SD and DBNs. The connection between SD 

and DBNs can be defined as Risk Affected Variables (RAVs). The term RAV is created to present 

the variables that are affected by the risks, i.e. the outputs from the DBNs. The impact of the risk 

and the probability of risk occurrence are two key elements in the presentation of RAVs. The impact 

of the risk is concluded from the operations of a system. The probability of risk occurrence is 

obtained from the selected variables in the DBNs, and we call these variables as Output Variables 

(OVs). The general form of an RAV can be denoted by the following equation: 

RAV = 𝑓(𝑖𝑚𝑝𝑎𝑐𝑡, 𝑃(𝑂𝑉)),  (4.12) 
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where 𝑃(𝑂𝑉) is the probability of the OV in the DBN. The formulation of an RAV can be different 

when considering different problem domains. A simple demonstration of Equation 4.12 is the 

expected value formula: 

RAV𝑡 = 𝑋𝑂𝑉𝑗

𝑡 𝑃(𝑂𝑉𝑗
𝑡), 

where 𝑋𝑂𝑉𝑗

𝑡  is the impact of state 𝑗 of OV occurring at time 𝑡, 𝑃(𝑂𝑉𝑗
𝑡) is the probability value of 

state 𝑗 of OV at time 𝑡 in the DBN. For a sample DFBN illustrated in Figure 4.3, node B is selected 

as the OV of the DBN. The 𝐹𝑉 is affected by the probability of the risk occurring 𝑃(𝑏𝑗
𝑡), the impact 

of the risk (𝑋𝑂𝑉) and Selling Rate (𝐹2). We assume that:  

a) time is discrete; and 

b) 𝐹2 is a positive constant 𝐶2 at any time, respectively; and 

c) variables in the SD affect each other linearly. 

The 𝐹𝑉 in this system is affected by the output from a DBN, so it can be treated as an RAV. 

According to Equation 4.12, we can define 𝐹𝑉𝑡 as: 

𝐹𝑉𝑡 = 𝑓(𝑓(𝐵, 𝑋𝐵), 𝑓(𝐹2)) = 𝑓(𝐸[𝑋𝐵
𝑡 ], 𝑓(𝐹2))  

        = 𝐸[𝑋𝐵𝜏
] + 𝑓(𝐹2) = 𝑋𝐵𝑗

𝑡 𝑃(𝑏𝑗
𝑡) + 𝐶2. 

Assume that the Purchasing Rate (𝐹1) is 𝐶1 times of 𝐹𝑉, and 𝐶1 is a constant. Then, the Purchasing 

Rate at time 𝑡 is: 

𝐹1
𝑡 = 𝑓(𝐹𝑉𝑡) = 𝐶1𝐹𝑉𝑡 = 𝐶1𝑓(𝑓(𝐵, 𝑋𝐵), 𝑓(𝐹2)) = 𝐶1𝑓(𝐸[𝑋𝐵

𝑡 ], 𝑓(𝐹2))  

     = 𝐶1 (𝐸[𝑋𝐵𝜏
] + 𝑓(𝐹2)) = 𝐶1𝑋𝐵𝑗

𝑡 𝑃(𝑏𝑗
𝑡) + 𝐶1𝐶2. 

 

(4.13) 

(4.15) 

(4.14) 
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Finally, from Equation 4.7, the Inventory Level at time 𝑡 (𝑆𝑡) can be denoted as the sum of the 

difference between its inflow rate (𝐹1) and outflow rate (𝐹2) at each time slice 𝜏: 

𝑆𝑡 = ∑ (𝐹1
𝜏 − 𝐹2

𝜏)𝑡
𝜏=1 + 𝑆𝑡0 = ∑ (𝐶1𝑋𝐵𝑗

𝜏 𝑃(𝑏𝑗
𝜏) + 𝐶1𝐶2 − 𝐶2)𝑡

𝜏=1 + 𝑆𝑡0. 

In summary, in the DFBN with a single RAV, as shown in Figure 4.3, the flow rates (𝐹𝑉𝑡 and 𝐹1
𝑡) 

and inventory level (𝑆𝑡) at any simulation time 𝑡 can be obtained by using Equations 4.14 - 4.16. 

4.2. Development of Temporal Uncertainty Analysis Techniques 

A system in the real business world may encounter more complicated situations, such as evidence 

of risks at a specific time, mitigations against risks, inventory replenishment plans and system 

disruption risk analysis. This section provides a view of how a DFBN can be modified to adapt to 

different system scenarios. 

Feedback Variable (FV) 

DBN 

SD 

 (𝐹2)  (𝐹1) 

Impact of the 

Risk (𝑋𝐵) 

𝐴 

𝐵 

1 

Figure 4.3 A Sample DFBN with One RAV. 

(4.16) 
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4.2.1. Evidence  

In a DFBN, some observation of events can be found inside the DBNs. These observations are 

called evidence of the network. Based on the d-separation theory that describes the information 

propagation in BBNs by Pearl (1988), several scholars develop the idea of evidence (Nielsen & 

Jensen, 2009; Kjaerulff & Madsen, 2008; Fung & Chang, 2013). For instance, in the DBN in Figure 

4.2, the second state of variable 𝐴  at time 𝑡 = 2  is observed to be true, then 𝑃(𝑎1
2) = 0  and 

𝑃(𝑎2
2) = 1 should replace the original conditional probability generated by the causal relationship 

in the DBN. The evidence in the DBNs can be seen as the new conditions for the original probability 

values. As a DBN needs to export probability values for some states of the variables to the SD 

model (i.e. 𝑃(𝑏𝑗
𝑡) in Equation 4.11), the evidence observed in the network may alter the output 

values. By applying the evidence models indicated by Kjaerulff & Madsen (2008) into the model 

in Figure 4.2, we assume that the evidence 𝜀𝑣𝑧
𝜏  is observed at time 𝜏 for state 𝑧 of the variable 𝑣. 

The updated output probability value for 𝑏𝑗
𝑡 can be denoted as: 

(1) if the observed variable 𝑣 = 𝑎, then 

𝑃(𝑏𝑗
𝑡|𝜀𝑣𝑧

𝜏 ) = ∑ 𝑃(𝑏𝑗
𝑡|𝑎𝑘

𝑡 ) ∑ 𝑃(𝑎𝑘
𝑡 |𝑏𝑙

𝑡−1) ∑ 𝑃(𝑏𝑙
𝑡−1|𝑎𝑚

𝑡−2) … ∑ 𝑃(𝑏𝑦
𝜏|𝜀𝑣𝑧=𝑒

𝜏 )𝑃(𝜀𝑣𝑧
𝜏 )2

𝑧=1
2
𝑚=1

2
𝑙=1

2
𝑘=1 ,  

𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛; 𝜏 ≤ 𝑡; 𝑘, 𝑙, 𝑚, … , 𝑧 ∈ {1,2};  

(2) if the observed variable 𝑣 = 𝑏, then 

𝑃(𝑏𝑗
𝑡|𝜀𝑣𝑧

𝜏 ) = ∑ 𝑃(𝑏𝑗
𝑡|𝑎𝑘

𝑡 ) ∑ 𝑃(𝑎𝑘
𝑡 |𝑏𝑙

𝑡−1) ∑ 𝑃(𝑏𝑙
𝑡−1|𝑎𝑚

𝑡−2) … ∑ 𝑃(𝑎𝑦
𝜏+1|𝜀𝑣𝑧=𝑒

𝜏 )𝑃(𝜀𝑣𝑧
𝜏 )2

𝑧=1
2
𝑚=1

2
𝑙=1

2
𝑘=1 ,  

𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛; 𝜏 ≤ 𝑡; 𝑘, 𝑙, 𝑚, … , 𝑧 ∈ {1,2}. 

If the probability of evidence occurrence 𝑃(𝜀𝑣𝑧
𝜏 ) = 1 for any state, then it is called hard evidence; 

if 𝑃(𝜀𝑣𝑧
𝜏 ) ∈ [0,1), then it is said the soft or virtual evidence is provided. 

(4.17) 

(4.18) 
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In another case, if the conditional probability 𝑃(𝜀𝑣𝑧
𝜏 |𝑏𝑗

𝑡) is known, then the output probability value 

under evidence 𝜀𝑣𝑧
𝜏  can be directly obtained by using Bayes’ Rule: 

𝑃(𝑏𝑗
𝑡|𝜀𝑣𝑧

𝜏 ) =
𝑃(𝜀𝑣𝑧

𝜏 |𝑏𝑗
𝑡)𝑃(𝑏𝑗

𝑡)

𝑃(𝜀𝑣𝑧
𝜏 )

, 

because 𝑃(𝑏𝑗
𝑡) and 𝑃(𝜀𝑣𝑧

𝜏 ) are already known. As a dynamic model, a DFBN can insert multiple 

evidence in a single DBN in different time slices and variables. For example, if 𝑁 evidences ℇ𝑁 =

{ 𝜀𝑣𝑧
𝜏1 , 𝜀𝑣𝑧

𝜏2 , … , 𝜀𝑣𝑧
𝜏𝑁 } can be provided for the DFBN in Figure 4.3, and if those evidences are 

independent, then, the probability of state 𝑏𝑗 at time 𝑡 can be denoted as: 

𝑃(𝑏𝑗
𝑡|ℇ𝑁) =

𝑃(ℇ𝑁|𝑏𝑗
𝑡)𝑃(𝑏𝑗

𝑡)

𝑃(ℇ𝑁)
=

𝑃(𝑏𝑗
𝑡) ∏ 𝑃( 𝜀𝑣𝑧

𝜏𝑛 |𝑏𝑗
𝑡)𝑁

𝑛=1

∏ 𝑃( 𝜀𝑣𝑧
𝜏𝑛 )𝑁

𝑛=1
. 

In the application of the DFBN, evidence data are mainly collected from business operators’ 

empirical knowledge about the fluctuating environment. The verbal-numerical mapping method by 

Vick (2002) can be utilized to transfer linguistic understanding of events to probability values of 

the evidence 𝜀𝑣𝑧
𝜏 . 

4.2.2. Mitigations 

When risks are identified in some processes, mitigations can be deployed to minimize the impact 

or disruptions to the functionality of the system. Chopra & Meindl (2010) provide a list of 

mitigation plans that neutralize the influence of supply chain risks (Table 3.2). When a mitigation 

plan is deployed to a process, the probability of the occurrence of the risk should normally be 

reduced. A mitigation plan can also be seen as an observation of event inside a system, i.e., evidence 

that is introduced in Section 4.2.1. Similar to Equations 4.17 – 4.20, the following mitigation 

equations are based on the evidence models indicated by Kjaerulff & Madsen (2008). Thus, the 

probability of the output variable can be denoted as the original value under the condition of the 

mitigation. For the DFBN illustrated in Figure 4.3, if there is a mitigation plan for state 𝑧 of the 

(4.19) 

(4.20) 
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variable 𝑣 at time 𝜏, the probability for state 𝑗 of the output variable 𝐵 at time 𝑡 can be presented 

as: 

(1) if the mitigation is for variable 𝑣 = 𝑎, then 

𝑃(𝑏𝑗
𝑡|𝜇𝑣𝑧

𝜏 ) = ∑ 𝑃(𝑏𝑗
𝑡|𝑎𝑘

𝑡 ) ∑ 𝑃(𝑎𝑘
𝑡 |𝑏𝑙

𝑡−1) ∑ 𝑃(𝑏𝑙
𝑡−1|𝑎𝑚

𝑡−2) … ∑ 𝑃(𝑏𝑦
𝜏|𝜇𝑣𝑧=𝑖

𝜏 )𝑃(𝜇𝑣𝑧
𝜏 )2

𝑧=1
2
𝑚=1

2
𝑙=1

2
𝑘=1 ,  

𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛; 𝜏 ≤ 𝑡; 𝑘, 𝑙, 𝑚, … , 𝑧 ∈ {1,2};  

(2) if the mitigation is for variable 𝑣 = 𝑏, then 

𝑃(𝑏𝑗
𝑡|𝜇𝑣𝑧

𝜏 ) = ∑ 𝑃(𝑏𝑗
𝑡|𝑎𝑘

𝑡 ) ∑ 𝑃(𝑎𝑘
𝑡 |𝑏𝑙

𝑡−1) ∑ 𝑃(𝑏𝑙
𝑡−1|𝑎𝑚

𝑡−2) … ∑ 𝑃(𝑎𝑦
𝜏+1|𝜇𝑣𝑧

𝜏 )𝑃(𝜇𝑣𝑧
𝜏 )2

𝑧=1
2
𝑚=1

2
𝑙=1

2
𝑘=1 ,  

𝑓𝑜𝑟 𝑡 = 1,2, … , 𝑛; 𝜏 ≤ 𝑡; 𝑘, 𝑙, 𝑚, … , 𝑧 ∈ {1,2}. 

If the probability value 𝑃(𝜇𝑣𝑧
𝜏 |𝑏𝑗

𝑡) can be collected, then 𝑃(𝑏𝑗
𝑡|𝜇𝑣𝑧

𝜏 ) can be calculated by using 

Bayes’ Rule: 

𝑃(𝑏𝑗
𝑡|𝜇𝑣𝑧

𝜏 ) =
𝑃(𝜇𝑣𝑧

𝜏 |𝑏𝑗
𝑡)𝑃(𝑏𝑗

𝑡)

𝑃(𝜇𝑣𝑧
𝜏 )

. 

If 𝑁 mitigation plans Μ𝑁 = { 𝜇𝑣𝑧
𝜏1 , 𝜇𝑣𝑧

𝜏2 , … , 𝜇𝑣𝑧
𝜏𝑁 } are deployed, then, the probability of state 𝑏𝑗 at 

time 𝑡 can be denoted as: 

𝑃(𝑏𝑗
𝑡|Μ𝑁) =

𝑃(Μ𝑁|𝑏𝑗
𝑡)𝑃(𝑏𝑗

𝑡)

𝑃(Μ𝑁)
=

𝑃(𝑏𝑗
𝑡) ∏ 𝑃( 𝜇𝑣𝑧

𝜏𝑛 |𝑏𝑗
𝑡)𝑁

𝑛=1

∏ 𝑃( 𝜇𝑣𝑧
𝜏𝑛 )𝑁

𝑛=1
. 

For the probability values of mitigation plans, the verbal-numerical mapping method by Vick (2002) 

can also be applied if insufficient industry data are provided. 

4.2.3. Value-at-Risk 

The link between DBNs and SD in a DFBN model can be called as the risk quantification method. 

RAV is the key variable to show the risk quantifying process. Equation 4.12 describes the 

(4.21) 

(4.23) 

(4.24) 

(4.22) 
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establishment of an RAV. It is a function of the probability of the OV and the impact of the OV. 

The expected value method in Equation 4.13 is one of the most straightforward methods to obtain 

the value of an RAV. However, in complex systems, such as supply chains, rare but severe events, 

i.e. disruptions, may cause particular effects than more frequent and mild events. Supply chain 

disruptions, such as strikes, hurricanes, terrorist attacks and fires are identified as Value-at-Risk 

(VaR) type risks. Extreme value theory (EVT) is a method to describe and analyze VaR type risks 

(Yang, 2007). EVT has been widely applied in the financial industry as a risk assessment tool (Gilli 

& Kellezi, 2006; Marimoutou et al., 2009; Gencay & Selcuk, 2004; McNeil & Frey, 2000). Other 

popular research domains, such as genetics (Joyce et al., 2008), sonar reverberation (La Cour, 2004) 

and environmental monitoring (Towler et al., 2010) also use EVT as their statistical model for 

quantitative risk analysis. 

The impact of disruptive events is assumed to be the financial loss caused by those events in EVT 

(Gilli & Kellezi, 2006; Yang, 2007). Generalized extreme value distributions (GEVD) are a series 

of generalized distributions that can be used in EVT (Castillo et al., 2005). The probability density 

function (PDF) and cumulative distribution function (CDF) for the maximum GEVD are denoted 

as: 

𝑓(𝑥; 𝜆, 𝛿, 𝜉) =
1

𝛿
exp (− [1 − 𝜉 (

𝑥−𝜆

𝛿
)]

1

𝜉
) [1 − 𝜉 (

𝑥−𝜆

𝛿
)]

1

𝜉
−1

, 

𝐹(𝑥; 𝜆, 𝛿, 𝜉) = exp (− [1 − 𝜉 (
𝑥−𝜆

𝛿
)]

1

𝜉
). 

When 𝜉 → 0, the PDF and CDF can be denoted as: 

𝑓(𝑥; 𝜆, 𝛿, 0) =
1

𝛿
exp [−exp (

𝑥−𝜆

𝛿
)] exp (

𝑥−𝜆

𝛿
), 

𝐹(𝑥; 𝜆, 𝛿, 0) = exp[− exp (
𝑥−𝜆

𝛿
)]. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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For the Equations 4.25 - 4.28, 𝑥 is the impact of disruptions, 𝜉 is the shape parameter, 𝛿 is the scale 

parameter and 𝜆 is the location parameter. Maximum likelihood estimation (MLE) and the method 

of moments can be utilized to estimate the parameters of GEVD (Ravindran & Warsing, 2012). 

Another GEVD parameter estimation method is suggested by Hosking et al. (1985). 

Acting as the linkage between DBNs and SD, the probability values of VaR, which is the left-hand-

side of Equation 4.26 and 4.28, are obtained from the upstream DBNs (Equation 4.10 and 4.11). 

Then, the variable 𝑥 in Equation 4.26 and 4.28 can be generated through the functions. DBNs can 

generate a series of probability values regarding different time slices. Thus, the output of VaR is 

𝑥𝑖’s, where 𝑖 is the notation of time. Finally, 𝑥𝑖’s send the risk-considered information as input 

flows for the following SD simulation process. 

4.2.4. Mathematical Optimization 

Mathematical optimization is the technique of acquiring the best solution to mathematical problems 

(Snyman, 2005). Normally, there are two processes of the mathematical optimization: (a) 

optimization problem formulation and (b) solution of the constrained optimization problem. The 

general mathematical form of a mathematical optimization problem can be denoted as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝐱), 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ ℝ𝑛,  

subject to the constraints: 

𝑔𝑗(𝐱) ≤ 0,   𝑗 = 1,2, … , 𝑚, 

ℎ𝑗(𝐱) = 0,   𝑗 = 1,2, … , 𝑟, 

where ℝ𝑛 is the 𝑛-dimensional Euclidean space, 𝑥𝑖 in the column vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇are 

the decision variables, 𝑓(𝐱) denotes the objective function, 𝑔𝑗(𝐱) is called the inequality constraint 

functions and ℎ𝑗(𝐱) represents equality constraint functions. The optimum vector 𝐱 that solves the 

(4.30) 

(4.31) 

(4.29) 
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mathematical optimization problem in Equations 4.29 – 4.31 can be denoted as 𝐱∗ . The 

corresponded optimal objective value is 𝑓(𝐱∗) . For the maximization problems, the objective 

function (Equation 4.29) can be reformulated by minimizing the original function multiplying by  

-1. 

In real applications, mathematical optimization problems may involve multiple objectives to be 

satisfied simultaneously. For instance, an investment portfolio manager needs to consider several 

objectives, such as risk, payback period, and opportunity cost other than sole profitability for a 

financial product. The objectives for a particular case usually conflict each other (Rangaiah, 2009). 

Compromise on some objectives may be required when the optimum for one objective is achieved. 

The Pareto optimal solution is one of the approaches that can solve a multi-objective optimization 

problem. For a multi-objective optimization problem, the objective function can be formulated as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑘(𝐱)), 𝑘 ≥ 2. 

The vector 𝐱𝑷 is said to be a Pareto-optimal solution for the multi-objective optimization problem 

if and only if, for all 𝑖 ∈ 𝑘, there is no 𝐱 such that 𝑓𝑖(𝐱) ≤ 𝑓𝑖(𝐱𝑷). The optimal value is 𝑓(𝐱𝑷). It is 

hard to satisfy all optimal values for each objective in a multi-objective optimization problem. Thus, 

regarding with 𝑘  objectives, the problem can be transformed into a series of single objective 

problems with 𝑘 different solutions. The set of solutions obtained by the single objective problems 

is called a Pareto front, if 𝑘 = 2, or a Pareto surface, if 𝑘 > 2 (Kim & De Weck, 2005). 

Another approach to solving the multi-objective optimization problem is the weighted sum method. 

The weighted sum method is continuously used to provide multiple solutions by varying the 

weights for different objectives with distinct preferences (Marler & Arora, 2010). Using the 

weighted sum method to solve the multi-objective optimization problem in Equation 4.32 requires 

assigning scalar weight 𝑤𝑖 for each of the original objective functions 𝑓𝑖(𝐱). Then, by summing the 

weighted objective functions up, the new objective function is: 

(4.32) 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑖𝑓𝑖(𝐱)𝑘
𝑖=1 , 𝑘 ≥ 2.  

In addition, if all of 𝑤𝑖’s are positive, Equation 4.33 is always Pareto optimal (Zadeh, 1963). 

The weighted sum method has been applied in solving the multi-objective optimization problem in 

various domains. Zhang et al. (2009) and Christensen et al. (2008) use this approach studying the 

Multiple Input Multiple Output (MIMO) broadcasting problems. Murata et al. (1996) apply the 

weighted sum method in the flowshop scheduling optimization problem. Other areas also show 

vast applications of the weighted sum method, such as load frequency control in electrical 

engineering (Naidu et al., 2014), carbon dioxide capture in chemical engineering 

(Kangwanpongpan et al., 2012), power consumption optimization in energy system engineering 

(Khan, 2009) and cellular system allocation optimization in telecommunication engineering (Wang 

& Vandendorpe, 2011). In our DFBN model, the weighted sum method is deployed to solve the 

multi-objective problem. The following section demonstrates a preliminary application of the 

DFBN for a three-stage supply chain. 

4.3. An Application of Modeling System on Supply Chain Analysis 

A supply chain connects a series of production and distribution of merchandise processes. With the 

pursuit of optimizing allocation of production materials and target markets, supply chain 

components are usually separated. A typical five-stage supply chain consists of raw material 

suppliers, manufacturers, wholesalers, retailers and customers. Dynamic flows of capital, 

commodity, information and people are formed to realize the profit of business entities inside a 

supply chain. This section introduces an initial application scenario for the proposed DFBN method. 

4.3.1. Background and Problem Identification 

To enhance the performance of a local delicatessen, a manager investigates the supply chain of a 

popular food of their store. A three-stage supply chain is presented to study the effect of dynamic 

risks on inventory levels of the delicatessen (the retailer). From the market investigation, the 

(4.33) 
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manager found that the profitability, the risk of stock out of the food, product freshness and holding 

cost can be balanced if the inventory level of the store can be held to 150 for the next 12 months. 

The manager builds the causal relationships of systemic probabilistic risks in a DBN model and 

forward flows and feedbacks in an SD structure (Figure 4.4). The SD proportion of the illustration 

is built with Vensim PLE (http://vensim.com/), and the DBN part is constructed with GeNIe 

(http://www.bayesfusion.com/). Two DBNs are involved in this case study: the left-hand-side 

wholesaler related risks and the right-hand-side retailer related risks. The risk-related variables in 

the DBNs refer to the risk metrics from the SCRIPT (Figure 3.3). Both DBNs propagate the supply 

chain risk information into the feedback flows in the SD. Table 4.2 summarizes the different types 

of variables in Figure 4.4. 

 

 

Model of 

Variable 

Variable 

Type 

Variable Name Variable Attribute 

System 

Dynamics (SD) 

Stock Wholesaler Inventory (WI) 

𝑊𝐼𝑖 = 𝑊𝐼0 + ∑(𝑊𝑃𝑅𝑗 − 𝑅𝑃𝑅𝑗)

𝑖

𝑗=1

, 

𝑊𝐼0 = 2000 𝑈𝑛𝑖𝑡𝑠 

Retailer Inventory (RI) 

𝑅𝐼𝑖 = 𝑅𝐼0 + ∑(𝑅𝑃𝑅𝑗 − 𝐶𝑃𝑅𝑗)

𝑖

𝑗=1

, 

𝑅𝐼0 = 200 𝑈𝑛𝑖𝑡𝑠 

Rate Wholesaler Procurement 

Rate (WPR) 
𝑊𝑃𝑅𝑖 = {

𝑊𝑆𝑅𝑖 + 100,     𝑅𝐼𝑖 ≤ 1950

𝑊𝑆𝑅𝑖 ,                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Retailer Procurement Rate 

(RPR) 
𝑅𝑃𝑅𝑖 = {

𝑅𝑆𝑅𝑖 + 50,     𝑅𝐼𝑖 ≤ 150

𝑅𝑆𝑅𝑖 ,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Customer Purchasing Rate 

(CPR) 
𝐶𝑃𝑅𝑖 = 𝑃(𝐶𝑂𝐿𝐻𝑖𝑔ℎ

𝑖 ) ∗ 100

+ (1 − 𝑃(𝐶𝑂𝐿𝐻𝑖𝑔ℎ
𝑖 )) ∗ 50 

 

 

 

 

Table 4.2 Variables and Their Attributes for the Sample Supply Chain. 

http://vensim.com/
http://www.bayesfusion.com/
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Table 4.2 Variables and Their Attributes for the Sample Supply Chain (Continued). 

Model of 

Variable 

Variable 

Type 

Variable Name Variable Attribute 

System 

Dynamics (SD) 

Feedback Wholesaler Sales Rate 

(WSR) 
𝑊𝑆𝑅𝑖 = 𝑅𝑃𝑅𝑖 − 𝑅𝐸𝑈𝑂𝑅𝑖 

Retailer Sales Rate (RSR) 𝑅𝑆𝑅𝑖 = 𝐶𝑃𝑅𝑖 − 𝐶𝐸𝑈𝑂𝑅𝑖 

Retailer’s Expected Unfilled 

Order Rate (REUOR) 
𝑅𝐸𝑈𝑂𝑅𝑖 = 𝑃(𝑅𝑈𝑂𝑌𝑒𝑠

𝑖 ) ∗ 𝑅𝑈𝑂𝐴𝑖 

Retailer’s Unfilled Order 

Amount (RUOA) 
Empirical Data 

Probability of Retailer’s 

Unfilled Order (RUO) 
States: High/Low 

Customer’s Expected 

Unfilled Order Rate 

(CEUOR) 

𝐶𝐸𝑈𝑂𝑅𝑖 = 𝑃(𝐶𝑈𝑂𝑌𝑒𝑠
𝑖 ) ∗ 𝐶𝑈𝑂𝐴𝑖 

Customer’s Unfilled Order 

Amount (CUOA) 
Empirical Data 

Probability of Customer’s 

Unfilled Order (CUO) 
States: High/Low 

Probability of Customer 

Order Level (COL) 
States: High/Low 

Dynamic 

Bayesian 

Network (DBN) 

Wholesaler 

Related 

Risks 

Manufacturer Supplying 

Difficulties (MSD) 
States: High/Low 

Retailer Capital Amount 

(RCA) 
States: High/Low 

Wholesaler Expected 

Procurement (WEP) 
States: High/Low 

Retailer Order Level (ROL) States: High/Low 

Wholesaler Inventory Level 

(WIL) 
States: High/Low 

Retailer Unfilled Orders 

(RUO) 
States: Yes/No 

Wholesaler Long Term 

Competitiveness (WLTC) 
States: Strong/Weak 

Retailer 

Related 

Risks 

Wholesaler Supplying 

Difficulties (WSD) 
States: High/Low 

Customer Capital Amount 

(CCA) 
States: High/Low 

Retailer Expected 

Procurement (REP) 
States: High/Low 

Customer Order Level 

(COL) 
States: High/Low 

Retailer Inventory Level 

(RIL) 
States: High/Low 

Customer Unfilled Orders 

(CUO) 
States: Yes/No 

Retailer Long Term 

Competitiveness (RLTC) 
States: Strong/Weak 

 

4.3.2. Dynamic Flow Bayesian Network (DFBN) Modeling 

A DFBN utilizes the temporal probability risk information from the DBNs, and propagates the 

information into SD. The arrows between variables from SD and DBN connect the input values of 
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the SD variables and the result obtained from the DBNs. The arrows with a plus or minus sign in 

the SD part indicate that variables have positive or negative feedbacks (Georgiadis et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2.1. Dynamic Bayesian Networks (DBNs) 

In Figure 4.4, nodes in the DBNs’ initial (Init) conditions only affect their descendants at the first 

time slice. For the nodes in the termination (Term) conditions, their probabilities only depend on 

the last time slice of their parent nodes. In the temporal plate, nodes interact with their parent and 

decedent nodes in every time slice. If the arrow between the parent nodes and their descendant 

nodes in the temporal plate has no numbers on it, the nodes interact with each other from the same 

time slice. For the arrows with a number 𝑛 on it, the parent node affects the descendant node at the 

next 𝑛 time slice. In order to determine the inventory strategy for the store in the next 12 months, 

Figure 4.4 DFBN Diagram for a Local Delicatessen Supply Chain. 

System 

Dynamics 

Dynamic 

Bayesian 

Networks 

Retailer 
Related 

Risks 

Wholesaler 
Related 

Risks 
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the simulation is setup for 𝑇 = 12 time slices with each of them representing one month. The states 

of the variables in DBNs are presented in Table 4.2, and the probability of state occurrence are 

stored in the CPTs (Figure 4.5 and Figure 4.6). The values in CPTs in the DBNs are obtained 

through verbal-numerical mappings due to the limitation of accessing the historical conditional 

probability values. Verbal-numerical mapping is a method that can explain likelihood judgment by 

using verbal descriptors. Then, numerical probability values can be translated from the determined 

verbal descriptors (Vick, 2002). For example, if the manager decides 𝑃(𝐶𝐶𝐴1
2) is “relatively high”, 

the probability value “0.8” corresponds to this verbal descriptor can be found in the verbal-

numerical mappings tables. The verbal descriptors are from manager’s experience and the 

corresponded probability values are listed in the CPTs in Figure 4.5 and 4.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 DBN for Retailer Related Risks with CPTs. 

MSD (t=0) 

Risk High 0.15 

Risk Low 0.85 

 

MSD (t≠0) 

MSD (t-1) Risk High Risk Low 

Risk High 0.66 0.78 

Risk Low 0.34 0.22 

 
RCA 

Low 0.1 

High 0.9 

 

WEP 

MSD Risk High Risk Low 

ROL Low High Low High 

Low 0.95 0.3 0.6 0.05 

High 0.05 0.7 0.4 0.95 

 ROL (t=0) 

RCA Low High 

Low 0.8 0.3 

High 0.2 0.7 

High 0.2 0.7 

 

WIL 

WEP Low High 

Low 0.7 0.1 

High 0.3 0.9 

 

RUO 

WIL Low High 

COL Low High Low High 

Yes 0.2 0.6 0.05 0.3 

No 0.8 0.4 0.95 0.7 

 

WLTC 

RUO Yes No 

Low 0.7 0.1 

High 0.3 0.9 

 

ROL (t≠0) 

RCA Low High 

RUO (t-1) Yes No Yes No 

Low 0.11 0.33 0.11 0.33 

High 0.89 0.67 0.89 0.67 
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The output variable for retailer related risks is 𝐶𝑈𝑂𝑖 and 𝐶𝑂𝐿𝑖; for the wholesaler related risks, the 

output variable is 𝑅𝑈𝑂𝑖, where 𝑖 represents the time slice. For instance, 𝐶𝑈𝑂𝑖 is the descendant of 

𝑊𝐼𝐿𝑖 and 𝑅𝑂𝐿𝑖, the joint probability distribution can be denoted as:  

𝑃(𝐶𝑈𝑂𝑗
𝑖) = ∑ 𝑃(𝐶𝑈𝑂𝑗

𝑖|𝑅𝐼𝐿𝑘
𝑖 , 𝐶𝑂𝐿𝑘

𝑖 )𝑃(𝑅𝐼𝐿𝑘
𝑖 , 𝐶𝑂𝐿𝑘

𝑖 )2
𝑘=1   

= ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )𝑃(𝑅𝐼𝐿𝑘

𝑖 )𝑃(𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1   

= ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )[∑ 𝑃(𝑅𝐼𝐿𝑘

𝑖 |𝑅𝐸𝑃𝑙
𝑖)2

𝑙=1 𝑃(𝑅𝐸𝑃𝑙
𝑖)]2

𝑘=1 ∙  

    [∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖 )𝑃(𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖 )2

𝑚=1 ]  

= ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1 ∙  

    {∑ 𝑃(𝑅𝐼𝐿𝑘
𝑖 |𝑅𝐸𝑃𝑙

𝑖)2
𝑙=1 [∑ 𝑃(𝑅𝐸𝑃𝑙

𝑖|𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )𝑃(𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )2
𝑛=1 ]} ∙  

    ∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1   

WSD (t=0) 

Risk High 0.3 

Risk Low 0.7 

 

WSD (t≠0) 

WSD (t-1) Risk High Risk Low 

Risk High 0.66 0.78 

Risk Low 0.34 0.22 

 
CCA 

Low 0.5 

High 0.5 

 

REP 

WSD Risk High Risk Low 

COL Low High Low High 

Low 0.9 0.7 0.1 0.2 

High 0.1 0.3 0.9 0.8 

 

RIL 

REP Low High 

Low 0.8 0.2 

High 0.2 0.8 

 

CUO 

RIL Low High 

COL Low High Low High 

Yes 0.2 0.9 0.05 0.4 

No 0.8 0.1 0.95 0.6 

 

RLTC 

CUO Yes No 

Low 0.15 0.3 

High 0.85 0.7 

 

COL (t=0) 

CCA Low High 

Low 0.95 0.01 

High 0.05 0.9 

 

COL (t≠0) 

CCA Low High 

CUO (t-1) Yes No Yes No 

Low 0.11 0.33 0.11 0.33 

High 0.89 0.67 0.89 0.67 

 

Figure 4.6 DBN for Wholesaler Related Risks with CPTs. 
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= ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1 ∙  

    {∑ 𝑃(𝑅𝐼𝐿𝑘
𝑖 |𝑅𝐸𝑃𝑙

𝑖)2
𝑙=1 [∑ 𝑃(𝑅𝐸𝑃𝑙

𝑖|𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )𝑃(𝑊𝑆𝐷𝑛
𝑖 )𝑃(𝐶𝑂𝐿𝑛

𝑖 )2
𝑛=1 ]} ∙  

    ∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1   

= ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1 ∙  

    {∑ 𝑃(𝑅𝐼𝐿𝑘
𝑖 |𝑅𝐸𝑃𝑙

𝑖)2
𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙

𝑖|𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )2
𝑛=1 [∑ 𝑃(𝑊𝑆𝐷𝑛

𝑖 |𝑊𝑆𝐷𝑝
𝑖−1)𝑃(𝑊𝑆𝐷𝑝

𝑖−1)2
𝑝=1 ] ∙

    [∑ 𝑃(𝐶𝑂𝐿𝑛
𝑖 |𝐶𝐶𝐴𝑞

𝑖 , 𝐶𝑈𝑂𝑞
𝑖−1)𝑃(𝐶𝐶𝐴𝑞

𝑖 )2
𝑞=1 𝑃(𝐶𝑈𝑂𝑞

𝑖−1)]} ∙  

    ∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1 , 𝑓𝑜𝑟 𝑖 = 2, … , 𝑇; 𝑗 = 1,2.  

In Equation 4.34, we can notice that 𝑃(𝐶𝑈𝑂𝑗
𝑖) at time 𝑖 is calculated by using the variables from 

the previous time slice, i.e. 𝑊𝑆𝐷𝑛
𝑖−1, 𝐶𝑈𝑂𝑞

𝑖−1 and 𝐶𝑈𝑂𝑚
𝑖−1. It indicates that the risk information 

propagates through the time slices from these variables. This is the essential idea of temporal risk 

modeling by applying DBNs.  

4.3.2.2. System Dynamics (SD) 

According to Sterman (2000), FVs in an SD can be denoted by other FVs. RAVs in the SD utilizes 

the probability values from OVs for each time slice. Thus, for the retailer feedback flows, the 

customer expected unfilled order rate (CEUOR) is the multiplication of the customer unfilled order 

amount (CUOA) and the probability of customer unfilled orders 𝑃(𝐶𝑈𝑂) at each time slice 𝑖. For 

the wholesaler feedback flows, the retailer expected unfilled order rate (REUOR) equals the retailer 

unfilled order amount (RUOA) times the probability of retailer unfilled orders 𝑃(𝑅𝑈𝑂) at each 

time slice 𝑖. For the sales rates (𝑊𝑆𝑅𝑖 and 𝑅𝑆𝑅𝑖), they are the difference between the purchasing 

rates and the expected unfilled order rates: 

𝑊𝑆𝑅𝑖 = 𝑅𝑃𝑅𝑖 − 𝑅𝐸𝑈𝑂𝑅𝑖  

𝑅𝑆𝑅𝑖 = 𝐶𝑃𝑅𝑖 − 𝐶𝐸𝑈𝑂𝑅𝑖  

(4.35) 

(4.34) 

(4.36) 
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We assume that the delicatessen and the wholesaler use the following replenishment plan: 

𝑊𝑃𝑅𝑖 = {
𝑊𝑆𝑅𝑖 + 100,     𝑅𝐼𝑖 ≤ 1950

𝑊𝑆𝑅𝑖,                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑅𝑃𝑅𝑖 = {
𝑅𝑆𝑅𝑖 + 50,     𝑅𝐼𝑖 ≤ 150

𝑅𝑆𝑅𝑖,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

By adapting from Equation 4.7, the inventory levels for the retailer and wholesaler are the 

difference between their procurement rate and the purchasing rate of their downstream entities in 

the supply chain: 

𝑊𝐼𝑖 = 𝑊𝐼0 + ∑ (𝑊𝑃𝑅𝑗 − 𝑅𝑃𝑅𝑗)𝑖
𝑗=1   

𝑅𝐼𝑖 = 𝑅𝐼0 + ∑ (𝑅𝑃𝑅𝑗 − 𝐶𝑃𝑅𝑗)𝑖
𝑗=1   

Equation 4.35 – 4.40 form the SD model for this case study as shown in Figure 4.4. After identifying 

the temporal causal relationships between risk factors in DBNs and the dynamics flows in SD, the 

following section introduces the method that integrates DBNs and SD. 

4.3.2.3. The Integrated Model 

The basic idea of combining DBNs and SD to a DFBN in this case study is obtaining RAVs by 

using expected values. The early stage of expected value application in decision-making is 

presented by Simon (1959) and Edwards (1954). More recent researches still show an abundant 

application of the expected value theory in biology (Puigbò et al., 2008), inventory models (Xu & 

Zhao, 2008), reinsurance strategy (Zheng et al., 2015) and child psychiatry (White et al., 2016). 

Equation 4.13 denotes the calculation of an RAV, which is the product of 𝑃(𝑂𝑉𝑗
𝑡), the probability 

value of state 𝑗 of OV at time 𝑡 in the DBN, and 𝑋𝑂𝑉𝑗

𝑡 , the impact of state 𝑗 of OV occurring at time 

𝑡. There are three RAVs in this DFBN, they are CPR, REUOR and CEUOR. 

(4.38) 

(4.39) 

(4.40) 

(4.37) 
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For 𝐶𝑃𝑅𝑖, the OV is 𝐶𝑂𝐿𝑖, which is obtained from retailer related DBN. If 𝐶𝑂𝐿𝑖 is in the high state 

(i.e. 𝐶𝑂𝐿𝐻𝑖𝑔ℎ
𝑖 ), the customers are willing to buy 100 units of food at 𝑖th month; if 𝐶𝑂𝐿𝑖 is in the 

low state (i.e. 𝐶𝑂𝐿𝐿𝑜𝑤
𝑖  or 1 − 𝐶𝑂𝐿𝐻𝑖𝑔ℎ

𝑖 ), only 50 units per month are consumed. 𝐶𝑃𝑅𝑖  is the 

expected value of customer desired purchasing rate in each state times the probability of that state 

happening at a specific time slice 𝑖: 

𝐶𝑃𝑅𝑖 = 𝑃(𝐶𝑂𝐿𝐻𝑖𝑔ℎ
𝑖 ) ∗ 100 + (1 − 𝑃(𝐶𝑂𝐿𝐻𝑖𝑔ℎ

𝑖 )) ∗ 50.  

𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖 are the expected value of their OVs and impact of the risk (Equation 4.13). 

For 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖, the OVs are 𝑅𝑈𝑂𝑖 and 𝐶𝑈𝑂𝑖 respectively. 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖 are 

the product of the probability of the OVs at 𝑌𝑒𝑠 state (𝑃(𝑅𝑈𝑂𝑌𝑒𝑠
𝑖 ) and 𝑃(𝐶𝑈𝑂𝑌𝑒𝑠

𝑖 )) and the impact 

of the 𝑌𝑒𝑠 state of OVs occurring at time 𝑖 (𝑅𝑈𝑂𝐴𝑖 and 𝐶𝑈𝑂𝐴𝑖): 

𝑅𝐸𝑈𝑂𝑅𝑖 = 𝑃(𝑅𝑈𝑂𝑌𝑒𝑠
𝑖 )  ∗ 𝑅𝑈𝑂𝐴𝑖  

𝐶𝐸𝑈𝑂𝑅𝑖 =  𝑃(𝐶𝑈𝑂𝑌𝑒𝑠
𝑖 ) ∗ 𝐶𝑈𝑂𝐴𝑖  

By using Equation 4.41 – 4.43, the dynamic linkages between DBNs and SD are connected. The 

FVs in SD are under the influence of temporal risks generated in DBNs. For instance, Equation 

4.34 is the expanded form of 𝑃(𝐶𝑈𝑂𝑗
𝑖). Thus, by substituting 𝑃(𝐶𝑈𝑂𝑌𝑒𝑠

𝑖 ) in Equation 4.43 with 

Equation 4.34, it becomes:  

𝐶𝐸𝑈𝑂𝑅𝑖 = 𝐶𝑈𝑂𝐴𝑖 ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1 ∙  

{∑ 𝑃(𝑅𝐼𝐿𝑘
𝑖 |𝑅𝐸𝑃𝑙

𝑖)2
𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙

𝑖|𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )2
𝑛=1 [∑ 𝑃(𝑊𝑆𝐷𝑛

𝑖 |𝑊𝑆𝐷𝑝
𝑖−1)𝑃(𝑊𝑆𝐷𝑝

𝑖−1)2
𝑝=1 ] ∙

[∑ 𝑃(𝐶𝑂𝐿𝑛
𝑖 |𝐶𝐶𝐴𝑞

𝑖 , 𝐶𝑈𝑂𝑞
𝑖−1)𝑃(𝐶𝐶𝐴𝑞

𝑖 )2
𝑞=1 𝑃(𝐶𝑈𝑂𝑞

𝑖−1)]} ∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1 ,

𝑓𝑜𝑟 𝑖 = 2, … , 𝑇.  

By using the result from Equation 4.44, the risk factors can be propagated to other dynamic flow 

equations (Equation 4.35 – 4.40), and the DFBN model is established. 

(4.41) 

(4.44) 

(4.42) 

(4.43) 
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4.3.2.4. Evidence and Mitigations 

In a DFBN, some observation of probabilistic events can be found in DBNs. These observations 

are called evidence in the network. The evidence in the DBNs is the new condition for the original 

probability value. The values of OVs of DBNs can be altered if some variables are observed. 

Equation 4.17 – 4.20 describe the effects of evidence on the probability values of the variables. In 

this case study, the manager can confirm some of the events by month in either high or low state 

by his experience from past years (Table 4.3).  

 

 

In Equation 4.34, we assume that the evidence 𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

3  is observed at time 𝑖 = 3 for state 𝐻𝑖𝑔ℎ of 

the variable 𝐶𝐶𝐴. The updated value for 𝐶𝑈𝑂𝑖 can be denoted as: 

𝑃 (𝐶𝑈𝑂𝑗
𝑖|𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 ) =

∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 ){∑ 𝑃(𝑅𝐼𝐿𝑘

𝑖 |𝑅𝐸𝑃𝑙
𝑖)2

𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙
𝑖|𝐶𝑂𝐿𝑛

𝑖 , 𝑊𝑆𝐷𝑛
𝑖 )2

𝑛=1 ∙2
𝑘=1

[∑ 𝑃(𝑊𝑆𝐷𝑛
𝑖 |𝑊𝑆𝐷𝑝

𝑖−1)𝑃(𝑊𝑆𝐷𝑝
𝑖−1)2

𝑝=1 ]} ∙  

[∑ 𝑃 (𝐶𝑂𝐿𝑛
𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 , 𝐶𝑈𝑂𝑞
𝑖−1) 𝑃 (𝐶𝐶𝐴𝑞

𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 ) 𝑃 (𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 )2
𝑞=1 𝑃(𝐶𝑈𝑂𝑞

𝑖−1)] ∙

∑ 𝑃 (𝐶𝑂𝐿𝑘
𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1) 𝑃 (𝐶𝐶𝐴𝑚

𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 ) 𝑃 (𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 ) 𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1 ,  

𝑓𝑜𝑟 𝑖 = 3; 𝑗 = 𝑌𝑒𝑠.  

Due to 𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

3  is a hard evidence, i.e. 𝑃 (𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

3 ) = 1 and 𝑃(𝜀𝐶𝐶𝐴𝐿𝑜𝑤

3 ) = 0, Equation 4.45 can 

be shortened as: 

 

Time Slices (Month) 1 2 3 4 5 6 7 8 9 10 11 12 

Evidence             

Wholesaler Supplying Difficulties High High    Low Low      

Customer’s Capital Amount   High   Low     High Low 

Manufacturer’s Supplying Difficulties High High   Low    Low Low   

Retailer’s Capital Amount High       Low High  Low High 

Table 4.3 Temporal Evidence in the DBNs. 

(4.45) 
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𝑃 (𝐶𝑈𝑂𝑗
𝑖|𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 ) = ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 )2

𝑘=1   

{∑ 𝑃(𝑅𝐼𝐿𝑘
𝑖 |𝑅𝐸𝑃𝑙

𝑖)2
𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙

𝑖|𝐶𝑂𝐿𝑛
𝑖 , 𝑊𝑆𝐷𝑛

𝑖 )2
𝑛=1 [∑ 𝑃(𝑊𝑆𝐷𝑛

𝑖 |𝑊𝑆𝐷𝑝
𝑖−1)𝑃(𝑊𝑆𝐷𝑝

𝑖−1)2
𝑝=1 ] ∙

[∑ 𝑃 (𝐶𝑂𝐿𝑛
𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 , 𝐶𝑈𝑂𝑞
𝑖−1)2

𝑞=1 𝑃(𝐶𝑈𝑂𝑞
𝑖−1)]}  

∑ 𝑃 (𝐶𝑂𝐿𝑘
𝑖 |𝜀𝐶𝐶𝐴𝐻𝑖𝑔ℎ

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1) 𝑃(𝐶𝑈𝑂𝑚

𝑖−1)2
𝑚=1 , 𝑓𝑜𝑟 𝑖 = 3; 𝑗 = 𝑌𝑒𝑠.  

In Equation 4.46, the evidence is in the variable (𝐶𝐶𝐴3) that directly affects another variable (𝐶𝑂𝐿3) 

in the same time slice. However, the evidence is finally transferred to a variable (𝐶𝑈𝑂3)  that can 

deliver this information to a variable in the next time slice. It indicates that any evidence of a 

variable in the DBNs at any time slice influences all its descendant variables, including the ones in 

the following time slices. 

Mitigations are the actions taken by the supply chain managers for minimizing the impact of risks. 

When a mitigation is deployed, the probability of the occurrence of the risk in a process is normally 

expected to be reduced. In the DFBN model, a mitigation is the observation of an event in the DBN. 

A mitigation has the similar mechanism as an evidence when applies on an event. The probability 

of an OV can be denoted as its original value under the condition of the mitigation (Equation 4.21). 

In order to mitigate the effect of WSD to the inventory stability of the delicatessen, the manager of 

the delicatessen is planning to find another backup supplier at the sixth month. The manager 

believes that this action can mitigate the risk of 𝑊𝑆𝐷2 from high to low state, i.e. 𝜀𝑊𝑆𝐷𝐻𝑖𝑔ℎ

6 →

𝜇𝑊𝑆𝐷𝐿𝑜𝑤

6 . Thus, 𝐶𝑈𝑂𝑖 at time slice 6 can be denoted as: 

𝑃(𝐶𝑈𝑂𝑗
𝑖|𝜇𝑊𝑆𝐷𝐿𝑜𝑤

𝑖 ) = ∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 ){∑ 𝑃(𝑅𝐼𝐿𝑘

𝑖 |𝑅𝐸𝑃𝑙
𝑖)2

𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙
𝑖|𝐶𝑂𝐿𝑛

𝑖 , 𝑊𝑆𝐷𝑛
𝑖 )2

𝑛=1 ∙2
𝑘=1

[∑ 𝑃(𝑊𝑆𝐷𝑛
𝑖 |𝑊𝑆𝐷𝑝

𝑖−1, 𝜇𝑊𝑆𝐷𝐿𝑜𝑤
2 )𝑃(𝑊𝑆𝐷𝑝

𝑖−1)2
𝑝=1 ][∑ 𝑃(𝐶𝑂𝐿𝑛

𝑖 |𝐶𝐶𝐴𝑞
𝑖 , 𝐶𝑈𝑂𝑞

𝑖−1)𝑃(𝐶𝐶𝐴𝑞
𝑖 )2

𝑞=1 𝑃(𝐶𝑈𝑂𝑞
𝑖−1)]} ∙

∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1 ,   𝑓𝑜𝑟 𝑖 = 6; 𝑗 = 𝑌𝑒𝑠. (4.47) 

(4.46) 
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As the manager can confirm that the mitigation plan ensures the risk of WSD as low, i.e. 

𝑃(𝜇𝑊𝑆𝐷𝐿𝑜𝑤

2 ) = 1 and 𝑃 (𝜇𝑊𝑆𝐷𝐻𝑖𝑔ℎ

2 ) = 0, Equation 4.45 can be shortened as: 

𝑃(𝐶𝑈𝑂𝑗
𝑖|𝜇𝑊𝑆𝐷𝐿𝑜𝑤

𝑖 ) =

∑ 𝑃(𝐶𝑈𝑂𝑗
𝑖|𝑊𝐼𝐿𝑘

𝑖 , 𝐶𝑂𝐿𝑘
𝑖 ){∑ 𝑃(𝑅𝐼𝐿𝑘

𝑖 |𝑅𝐸𝑃𝑙
𝑖)2

𝑙=1 ∑ 𝑃(𝑅𝐸𝑃𝑙
𝑖|𝐶𝑂𝐿𝑛

𝑖 , 𝑊𝑆𝐷𝑛
𝑖 )2

𝑛=1 [∑ 𝑃(𝑊𝑆𝐷𝑛
𝑖−1)2

𝑝=1 ] ∙2
𝑘=1

[∑ 𝑃(𝐶𝑂𝐿𝑛
𝑖 |𝐶𝐶𝐴𝑞

𝑖 , 𝐶𝑈𝑂𝑞
𝑖−1)𝑃(𝐶𝐶𝐴𝑞

𝑖 )2
𝑞=1 𝑃(𝐶𝑈𝑂𝑞

𝑖−1)]}  

∑ 𝑃(𝐶𝑂𝐿𝑘
𝑖 |𝐶𝐶𝐴𝑚

𝑖 , 𝐶𝑈𝑂𝑚
𝑖−1)𝑃(𝐶𝐶𝐴𝑚

𝑖 )𝑃(𝐶𝑈𝑂𝑚
𝑖−1)2

𝑚=1 , 𝑓𝑜𝑟 𝑖 = 6; 𝑗 = 𝑌𝑒𝑠. 

From Equation 4.48, it can be observed that a mitigation possesses the similar attribute with an 

evidence. Any mitigation of a variable in the DBNs at any time slice influences all of its descendant 

variables, including the ones in the following time slices. 

By applying the variables and their attributes from Table 4.2, and the CPTs from Figure 4.6, a 

preliminary result of the OVs in the DBNs can be obtained (Table 4.4). 

 

 

4.3.2.5. Modeling Results 

The manager assumes that the initial inventory level for the delicatessen is 200 units of food. Three 

simulations with different replenishment plans corresponding to Equation 4.38 are listed in Table 

4.5 aiming to retain the required 150 units inventory level. For example, in Sim 2, if the 𝑅𝐼𝑖 is less 

than or equal to 150 units, 𝑅𝑃𝑅𝑖 should be 𝑅𝑆𝑅𝑖 plus an additional 50 units; if 𝑅𝐼𝑖 is more than 

150 units, 𝑅𝑃𝑅𝑖 should be exactly the amount of 𝑅𝑆𝑅𝑖. 

 

 

Time Slices (Month) 1 2 3 4 5 6 7 8 9 10 11 12 

Time Dependent Probabilities             

Customer’s Unfilled Orders (Yes) 0.43 0.49 0.55 0.54 0.54 0.53 0.65 0.66 0.54 0.54 0.54 0.54 

Retailer’s Unfilled Orders (Yes) 0.42 0.49 0.55 0.53 0.65 0.54 0.55 0.53 0.65 0.66 0.54 0.54 

Customer’s Order Level High 0.49 0.76 0.78 0.79 0.79 0.79 0.79 0.81 0.82 0.79 0.79 0.79 

Table 4.4 The Time Dependent Probabilities Obtained in the DBNs of OVs. 

. 

(4.48) 
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 Sim 1 Sim 2 Sim 3 

Replenishment 

Plan 

𝑅𝑃𝑅𝑖

= {
𝑅𝑆𝑅𝑖 + 50, 𝑅𝐼𝑖 ≤ 100

𝑅𝑆𝑅𝑖 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅𝑃𝑅𝑖

= {
𝑅𝑆𝑅𝑖 + 50, 𝑅𝐼𝑖 ≤ 150

𝑅𝑆𝑅𝑖 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑅𝑃𝑅𝑖

= {
𝑅𝑆𝑅𝑖 + 50, 𝑅𝐼𝑖 ≤ 150

𝑅𝑆𝑅𝑖 + 15, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Figure 4.7 displays the delicatessen’s inventory level for the next 12 months with three different 

replenishment plans. Assume that the time value of money is ignored and the holding cost is $10 

per unit per month for the selected food, the total holding cost for 𝑅𝐼𝑖 from the three simulations 

are $15,810, $20,310 and $22,260 respectively for the next 12 months. If the objective is 

minimizing holding cost, the result of Sim 1 is preferable. However, from Figure 4.7, Sim 1 may 

not be the ideal choice for the delicatessen if maintaining the 150 units inventory level is the priority 

for the manager. Sim 2 and Sim 3 seem more desirable to achieve the objective of maintaining a 

more stable inventory. Compared with Sim 3, the holding cost for Sim 2 is relatively low, but the 

inventory shortage for Sim 2 is 5 months. Sim 3 only has one month of shortage. Thus, both Sim 2 

and Sim 3 can be plausible solutions for this case study. 
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Figure 4.7 Simulation Results for the Food Market with Three Different Replenishment Plans. 

Table 4.5 The Replenishment Plans for Each Simulation in the SD. 

 

. 
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A DFBN is a novel methodology that can be used to conduct risk analysis with risk enabled actual 

flows in a complex system. A supply chain is a complex system with flows, stocks, risks and 

mitigations. Thus, a supply chain system is an ideal demonstration of the application of a DFBN. 

The preliminary modeling result for the delicatessen case study supports the manager with 

developing a replenishment plan to maintain a designated inventory level. The results of the DFBN 

are dynamic flows of materials counted as actual units of items. This form of result provides the 

supply chain practitioner with a more figurative impression of the systemic influence of risks rather 

than the abstract probability values of event occurrence. 

Although the preliminary modeling result of the DFBN is obtained in this case study, several 

challenges for generalizing and completing of this method remains. First, the linkage between the 

systemic risk model (DBN) and feedback flow simulation (SD) can be improved. A more 

specialized methodology can be applied to substitute the expected value method. Second, in the 

original DFBN, manual adjustment of replenishment parameters is required to achieve a specific 

supply chain objective. A more objective oriented method may increase the effectiveness and 

efficiency of the model. The following two sections bring two more approaches to enhance the 

usability of the DFBN in the business world. 

4.3.3. Value-at-Risk in the DFBN 

In a complex system, such as a supply chain, events that cause disruptions may be rarer but severe 

(Whitney, 2014). The VaR model is more suitable for the supply chain disruptions, such as strikes, 

hurricanes, floods, terrorist attacks, fires etc. EVT is a common method in VaR. In this model, 

heavy-tailed distributions, such as Gumbel, Weibull and Frechet distributions, can be used to model 

the impact of the disruptions (Ravindran & Warsing, 2012). According to Castillo et al. (2005), a 

more generalized GEVD extends the boundaries of the traditional heavy-tailed distributions. The 

PDF and CDF are listed in Equations 4.25 - 4.28. 
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The fundamental idea of applying GEVD in the DFBN can follow the procedures listed below: 

i. Collect the loss data from each disruption by time. 

In the delicatessen case, 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖 in the past 12 months need to be collected. The 

time span 𝑖 should be in months. However, due to the limitation of required data provided, the 

manager decides to generate random data by using MATLAB normrnd() function with mean and 

variance from past experience for both 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖. Non-positive numbers are avoided 

after the random data generation.  

ii. Use the disruption data estimating the parameters in the PDF of GEVD by performing 

MLE. 

By entering the PDFs of GEVD (Equation 4.25) for 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖 respectively into the 

MATLAB function mle(), the parameters in the PDFs can be estimated. 

iii. Apply the estimated parameters in the CDF of GEVD. 

After filling in the parameters, the CDFs of 𝑅𝐸𝑈𝑂𝑅𝑖 and 𝐶𝐸𝑈𝑂𝑅𝑖 can be denoted as: 

𝑃(𝐶𝑈𝑂𝑖; 𝜆𝑐, 𝛿𝑐, 𝜉
𝑐
) = exp {− [1 − (−0.0370) (

𝐶𝐸𝑈𝑂𝑅𝑖−12.9552

13.8577
)]

1

−0.0370
}; 

𝑃(𝑅𝑈𝑂𝑖; 𝜆𝑟, 𝛿𝑟, 𝜉
𝑟
) = exp {− [1 − 0.3361 (

𝑅𝐸𝑈𝑂𝑅𝑖−74.1108

69.6784
)]

1

0.3361
}. 

iv. Solve 𝑅𝐸𝑈𝑂𝑅𝑖  and 𝐶𝐸𝑈𝑂𝑅𝑖  in the CDFs by entering the OV values 

(𝑃(𝐶𝑈𝑂𝑖; 𝜆𝑐, 𝛿𝑐, 𝜉
𝑐
) and 𝑃(𝑅𝑈𝑂𝑖; 𝜆𝑟, 𝛿𝑟, 𝜉

𝑟
)) generated from the DBNs (Figure 4.8). 

(4.49) 

(4.50) 
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The advantage of applying EVT instead of the original expected value method is that EVT needs 

fewer assumptions than the expected value method. In the expected value method, precise 

prediction of the impact of the risk in the future (𝑋𝑂𝑉𝑗

𝑡  in Equation 4.13) determines the accuracy 

of the RAV. However, people can hardly conduct forecasting without a mature approach. EVT is 

a probability-distribution-based that uses GEVD to fit past data into a distribution function. It is a 

reliable tool to summarize the past data for forecasting. The application of EVT remedies the 

inadequacy of the DBN and SD integration. In the following section, the mathematical optimization 

is introduced to further improve the DFBN model with a more objective-oriented method. 

4.3.4. Optimization-Enabled DFBN 

Mathematical optimization enables the DFBN model with a more objective-oriented method. By 

establishing the constraints of variables and goals of the business, the dynamic flows can be 

simulated within the required conditions, and finally, converged into an optimal solution under the 

temporal risks. Section 4.2.4. states the mathematical optimization problem formulization and the 

validity of applying weighted sum method in solving a multi-objective optimization problem. In 

this part, the weighted sum method is applied in the original delicatessen DFBN with VaR model 

between the DBNs and SD. The new DFBN that enables VaR and optimization is called the 

Optimized Dynamic Flow Bayesian Network (ODFBN). In order to present the delicatessen supply 

(a) (b) 

Figure 4.8 EVT Results for (a) Retailer’s Expected Unfilled Order Rate (REUOR); and 

(b) Customer’s Expected Unfilled Order Rate (CEUOR). 
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chain problem, several new variables are brought into the model for the ODFBN (Table 4.6). 

Applications of those variables are explained in the following problem formulization sections. 

 

Model of 

Variable 

Variable 

Type 

Variable Name Variable Attribute 

System 

Dynamics 

(SD) 

Economics Retailer’s Selling 

Price for the Food 

(SP) 
𝑆𝑃𝑖 =  𝑡ℎ𝑒 𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

Retailer’s Supply 

Chain Cost (SCC) 
𝑆𝐶𝐶𝑖 =  𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟′𝑠 𝑠𝑢𝑝𝑝𝑙𝑦 𝑐ℎ𝑎𝑖𝑛 𝑐𝑜𝑠𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

Retailer’s 

Purchasing Price 

for the Food (RPP) 

𝑅𝑃𝑃𝑖

= 𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟′𝑠 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

Retailer’s 

Inventory Capacity 

(RIC) 
𝑅𝐼𝐶𝑖 = 𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟′𝑠 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

Customer’s 

Maximum 

Purchasing Rate 

(Demand) with 

Zero Selling Price 

(C) 

𝐶𝑃𝑅𝑖 = 𝐶 − 𝑆 ∙ 𝑆𝑃𝑖 , 𝑤ℎ𝑒𝑛 𝑆𝑃𝑖 → 0, 𝐶 = 𝐶𝑃𝑅𝑖 

Slope of Price-

demand Curve (S) 𝑆 =
𝐶 − 𝐶𝑃𝑅𝑖

𝑆𝑃𝑖
 

 

i) Decision Variables and Objectives.  

The decision variables for the optimization problem are 𝑆𝑃𝑖, 𝐶𝑃𝑅𝑖 and 𝑅𝑃𝑅𝑖. Smith (1973) states 

the multi-objective engineering economics optimization problem with the maximization the 

weighted sum of profitability and liquidity. Although, in some definitions, cash, accrued expenses, 

prepaid expenses and other factors affect the liquidity of a company, the requirement of working 

capital in supply chain strategy has a strong influence on the liquidity (Brandenburg, 2013). Guillén 

et al. (2005) apply working capital and profit as multi-objective optimization elements in supply 

chain risk analysis. Steuer & Na (2003) and Alfaro-Cid et al. (2008) also discuss the working capital 

application in multi-objective decision-making. Thus, working capital can be used to represent the 

liquidity position of the company with the neglection of other components in our case study. 

Table 4.6 New Variables and Their Attributes for the Sample Supply Chain. 
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Working capital of the delicatessen is the sum of inventory and trade receivables deducted by trade 

payables (Brealey et al., 2008). It can be denoted as: 

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 = [𝑅𝐼0 + ∑ (𝑅𝑃𝑅𝑗 − 𝐶𝑃𝑅𝑗)𝑖
𝑗=1 ]𝑅𝑃𝑃 + 𝑅𝑆𝑅𝑖𝑆𝑃𝑖 − 𝑅𝑃𝑅𝑖𝑆𝐶𝐶𝑖. 

The profitability of the store is the product of net profit for each product sold and the sales rate 

(𝑅𝑆𝑅𝑖). This relationship can be denoted as:  

𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 = (𝑆𝑃𝑖 − 𝑆𝐶𝐶𝑖)𝑅𝑆𝑅𝑖. 

Thus, by putting 𝑤1 and 𝑤2 as the weight of each factor, the objective function is: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑤1(𝑆𝑃𝑖 − 𝑆𝐶𝐶𝑖)𝑅𝑆𝑅𝑖 + 𝑤2{[𝑅𝐼0 + ∑ (𝑅𝑃𝑅𝑗 − 𝐶𝑃𝑅𝑗)𝑖
𝑗=1 ]𝑅𝑃𝑃 + 𝑅𝑆𝑅𝑖𝑆𝑃𝑖 −

𝑅𝑃𝑅𝑖𝑆𝐶𝐶𝑖}. 

ii) Price-demand Curve Constraint. 

In the ODFBN, the variable 𝐶𝑃𝑅𝑖 can be improved. In the original DFBN, 𝐶𝑃𝑅𝑖 is determined by 

Equation 4.41. It means that if the Customer Order Level (𝐶𝑂𝐿𝑖) is high at time 𝑖, 𝐶𝑂𝐿𝑖 = 100; on 

the other hand, if the 𝐶𝑂𝐿𝑖 is low at time 𝑖, 𝐶𝑂𝐿𝑖 = 50. However, it is imprecise to conclude the 

impact value of risk. Comprising with 𝑆𝑃𝑖 , 𝐶𝑃𝑅𝑖  can be calculated in the price-demand curve 

(Chopra & Meindl, 2010). The price-demand curve can be obtained through the parameter 

estimation of a down-sloping formula by using the past data. The estimated formula can be 

simplified as a linear equation as shown in Equation 3.9. This formula assumes that for a group of 

customers, the quantity demand for a specific merchandise (i.e. 𝐶𝑃𝑅𝑖 ) changes linearly with 

different prices (i.e. 𝑆𝑃𝑖) (Equation 4.54).  

𝐶𝑃𝑅𝑖 = 𝐶 − 𝑆 ∙ 𝑆𝑃𝑖. 

(4.52) 

(4.53) 

(4.54) 

(4.51) 
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From a mathematical optimization problem point of view, the available range for 𝐶𝑃𝑅𝑖 should be 

less than or equal to the right-hand-side of Equation 4.54. Thus, transformed from the price-demand 

curve equation, the price-demand curve constraint can be denoted as: 

𝑆 ∙ 𝑆𝑃𝑖 + 𝐶𝑃𝑅𝑖 ≤ 𝐶.  

Similar to other linear equations, constant 𝐶 and the slope 𝑆 can be gained by parameter estimation 

techniques, such as MLE, the method of moments, or simply two pairs of past 𝐶𝑃𝑅𝑖 and 𝑆𝑃𝑖 values. 

iii) Selling Price Constraint. 

The selling price at any time slice 𝑖 should larger than the supply chain cost. Otherwise, it is not 

possible for the store to be profitable: 

𝑆𝑃𝑖 ≥ 𝑆𝐶𝐶𝑖. 

iv) Retailer’s Inventory Level Constraint. 

The retailer’s inventory level (𝑅𝐼𝑖 ) at any time slice 𝑖  should not exceed the capacity of the 

inventory of the store (𝑅𝐼𝐶𝑖): 

𝑅𝐼𝑖 ≤ 𝑅𝐼𝐶𝑖. 

The retailer’s inventory level (𝑅𝐼𝑖) is the accumulated retailer’s net purchasing rate (∑ 𝑅𝑃𝑅𝑗𝑖
𝑗=1 −

∑ 𝐶𝑃𝑅𝑗𝑖
𝑗=1 ) with the initial inventory level (𝑅𝐼0):  

𝑅𝐼𝑖 = 𝑅𝐼0 + ∑ 𝑅𝑃𝑅𝑗𝑖
𝑗=1 − ∑ 𝐶𝑃𝑅𝑗𝑖

𝑗=1 . 

Thus, by substituting 𝑅𝐼𝑖 in Equation 4.57 with the equalities in Equation 4.58, and transferring all 

decision variables to the LHS, Equation 4.57 can be reformulated as: 

∑ 𝑅𝑃𝑅𝑗𝑖
𝑗=1 − ∑ 𝐶𝑃𝑅𝑗𝑖

𝑗=1 ≤ 𝑅𝐼𝐶𝑖 − 𝑅𝐼0. (4.59) 

(4.57) 

(4.58) 

(4.55) 

(4.56) 
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v) Purchasing Rate Constraint. 

The customer’s purchasing rate (𝐶𝑃𝑅𝑖) should be greater than or equal to the customer’s expected 

unfilled order rate (𝐶𝐸𝑈𝑂𝑅𝑖): 

𝐶𝑃𝑅𝑖 ≥ 𝐶𝐸𝑈𝑂𝑅𝑖  

vi) Retailer’s Procurement Constraint. 

In order to keep the freshness of the food and the enough inventory for customer satisfaction, the 

manager of the store decides that once the inventory level of the store (𝑅𝐼𝑖) is below 150 units, the 

store procures one batch of this kind of food. Thus, the retailer’s procurement rate should be:  

𝑅𝑃𝑅𝑖 = {
𝑅𝑆𝑅𝑖 + 50,     𝑅𝐼𝑖 ≤ 150

𝑅𝑆𝑅𝑖,              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.  

vii) All Decision Variables Should Be Real Numbers. 

𝑆𝑃𝑖 ≥ 0, 𝐶𝑃𝑅𝑖 ≥ 0, 𝑅𝑃𝑅𝑖 ≥ 0. 

By assuming the weight requirement for the profitability and liquidity as 𝑤1 and 𝑤2, the simulation 

result by MATLAB computation is shown in Figure 4.9. In Figure 4.9, several key operation 

statistics of the store can be investigated. First, the retailer’s inventory level 𝑅𝐼𝑖 is retained around 

the required 150 units from the third month to the twelfth month (Figure 4.9a). Second, the 

recommended selling price 𝑆𝑃𝑖  for the food is generated for each month with the floating of 

customer’s demand (Figure 4.9b). Third, the predicted retailer’s profit by month with 𝑤1 weight in 

the objective function (Figure 4.9c). Fourth, the retailer’s liquidity denoted by the working capital 

by month with 𝑤2  weight in our objective (Figure 4.9d). At last, Figure 4.9e illustrates the 

customer’s and retailer’s procurement rate in the next twelve months. From the figure, we can 

observe that variance of 𝑅𝑃𝑅𝑖 is higher than 𝐶𝑃𝑅𝑖. The two lines in the figure indicate a Bullwhip 

(4.60) 

(4.61) 

(4.62) 
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Effect, which is an amplification phenomenon of demand variability from a downstream entity (i.e. 

customer) to an upstream entity (i.e. retailer) (Torres & Morán, 2006).  

 

 

 

 

(b) 

(c) 

(a) 

(d) 

Figure 4.9 The Result of the ODFBN for the Delicatessen Case Study by time 𝑖: (a) 𝑅𝐼𝑖; 

(b) 𝑆𝑃𝑖; (c) Retailer’s Profit; (d) Retailer’s Working Capital; and (e) 𝐶𝑃𝑅𝑖 and 𝑅𝑃𝑅𝑖. 

(e) 
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Compared with the original DFBN, the revised ODFBN model has various improvements toward 

its functionality and the mathematical foundations. The following section disintegrates the hybrid 

model and analyzes the two models side by side. 

4.3.5. Comparison of the DFBN with the ODFBN 

The original DFBN model and the preliminary delicatessen case study result were published in the 

Proceedings of the 2016 Industrial and Systems Engineering Research Conference with the title 

“An Integrated Dynamic Flow Model for Supply Chain Risk Analysis” (Sun & Luxhøj, 2016). 

These three perspectives: problem identification, model formulation and result generation are 

presented in the conference paper. In this section, a comparison between the DFBN and the ODFBN 

is conducted from these three perspectives (Table 4.7). 

 

 DFBN ODFBN 

Problem 

Identification 
• Identify the intended output variable 

• Identify the optimization 

objectives through empirical 

derivation 

• Identify the optimization 

objectives through 

quantitative models 

Model Formulation • Formulate supply chain structure (SD) 

• Identify risk factors and formulate causal relationships (DBN) 

• Establish replenishment plans 

• Obtain probability values in the DBN verbal-numerical mappings 

• Predict evidence of risks and deploy mitigations 

• Link DBN and SD through 

expected value method and 

decide the impact value from 

empirical derivation 

• Link DBN and SD through 

VaR and generate risk 

distribution through 

parametric estimation from 

the past disruption data 

• Estimate the price-demand 

curve and generate customer 

demand from the curve 

Result Generation • Yield various results by 

adjusting different 

replenishment plans 

• Manually select preferred 

solution 

• Automatically yield optimal 

solutions for formulated 

model 

 

Table 4.7 The Comparison between the DFBN and the ODFBN. 
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For both the DFBN and the ODFBN, the first is identifying the intended output variable and 

optimization objectives. However, the objectives of DFBN can only be concluded by people’s 

experience. For the ODFBN, we can use various financial, economics, statistics or other 

quantitative models construct objective function. In the model formulation, the basic structure of 

both the DFBN and the ODFBN requires a supply chain structure, risk factors and causal 

relationships, replenishment plans, probability values by using verbal-numerical mappings and 

evidence and mitigations. The main difference between the DFBN and the ODFBN is the linkage 

model between DBN and SD. The DFBN uses the straightforward expected value method, which 

is the product of probability and its impact value (Equation 4.13). For the ODFBN, the VaR model 

is applied to connect DBN and SD. Parametric estimation methods can be used to determine the 

probability distribution by using the past supply chain risk or disruption data. Both problem 

identification and model formulation of the ODFBN are based on past data, which makes the model 

more referable and reliable for professional analysis. For a DFBN, the result of a single 

replenishment plan may not satisfy the requirement of the supply chain practitioner. Thus, various 

trials of different plans are needed to generate an approximately optimal solution. However, for the 

ODFBN, the optimal solution for a specific objective will be automatically obtained after the 

simulation. In the fast pace business environment, the ODFBN seems to be more suitable for 

industrial implementation. 

In some industrial practices, a model that expresses the rivaly nature between different business 

entities may be better for application. However, there are not adequate arguments in the ODFBN 

model that show the competitive interaction between different stages of a system. Thus, in the next 

chapter, an EDFBN model is presented to satisfy the modeling needs in such scenario. 

  



102 

 

 

5. DFBN with Network Equilibrium 

In international collaboration, information sharing in the business world makes commercial 

activities more evident. Not only the cooperation, but also the competition is more transparent and 

unconcealed. At this stage, the DFBN and the ODFBN show limited capability on reflecting the 

intercorporate interactions in a system. Thus, the concept of Supply Chain Network Equilibrium is 

introduced in this chapter to analyze the behaviors and optimal conditions among organizations. 

5.1. Supply Chain Network Equilibrium 

Supply Chain Network Equilibrium is originally introduced by Nagurney et al. (2002) based on the 

Nash (1950) equilibrium model. In the original presentation, a three-stage supply chain 

(manufacturers, retailers and demand markets) is analyzed with multiple business entities in each 

stage. The equilibrium is established on maximizing the profit for a company at a stage in a non-

linear optimization problem. The optimality conditions, which are the constraints of the problem, 

are formed by each stage of the supply chain. The equilibrium for a manufacturer is achieved if the 

price that a retailer is willing to pay for a product is equal to the manufacturer’s marginal transaction 

and production costs associated with the retailer. For a retailer, the equilibrium condition is: if 

consumers purchase products from a retailer, then the price charged by the retailer is the total cost 

of the product paid by the retailer. The equilibrium of the consumers’ level considers both the price 

charged for the product and the transaction cost to obtain the product. The Supply Chain Network 

Equilibrium is the state that all of the product flows between different stages of the supply chain 

coincide and the prices and product flows satisfy the equilibrium conditions in each stage. The 

equilibrium condition for all stages of the supply chain is summarized by the variational inequality 

formulation. Nagurney et al. (2002) suggest a modified projection method of Korpelevich (1977) 

solve the variational inequality. 

Based on the original Supply Chain Network Equilibrium by Nagurney et al. (2002), researchers 

develop distinct applications in the supply chain domain. Nagurney & Toyasaki (2005) and 
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Hammond & Beullens (2007) apply the model to the electric and electronic waste recycling 

problem in the European Union and Japan. Teng et al. (2007) expand the model to a multi-

commodity flow model with random demand. Hamdouch (2011) develop a multi-period Supply 

Chain Network Equilibrium with purchasing strategies and traffic equilibrium. In the remaining 

research, we believe that the Supply Chain Network Equilibrium can be synchronized with a 

dynamic supply chain risk model such as the DFBN. 

Inspired by the concept of Supply Chain Network Equilibrium, an Equilibrated Dynamic Flow 

Bayesian Network (EDFBN) is developed by modifying the ODFBN. The concentration of the 

EDFBN modeling is based on the multi-objective optimization with system profit maximization. 

The constraints of the optimization form the equilibrium conditions of the dynamic flows. The 

supply and demand at each stage of the system should reach its equilibrium state. The effects of the 

risks and mitigations can be propagated to the stocks and flows of the system. Insights and 

performance metrics based on the network equilibrium can be utilized for making strategic 

decisions. At the current stage, in an EDFBN, several assumptions should be defined: 

1) time is discrete; 

2) pricing, selling and demand information are shared in the modeled system concurrently 

within each time slice; 

3) every business entity in the system is rational, strives for its own good and remains 

competitive to each other; 

4) the production rate of the first stage of the system equals the quantity demanded of the 

market; 

5) the ideal amount of the dynamic flow is obstructed by the delays or unfulfillment of 

orders that are caused by the potential disruptions. 
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Figure 5.1 demonstrates a sample EDFBN with a three-stage supply chain that includes 𝑚 

manufacturers, 𝑟 retailers and 𝑛 demand markets. The solid-line arrows show the dynamic flows 

between the business entities and the dash-line arrow illustrate the demand information flows. 

Figure 5.1 A Sample EDFBN for a Three-Stage Supply Chain. 

Decision variables for this optimization are the flow variables: 𝑄𝑡 = {𝑞𝑖𝑗
𝑡 , 𝑞𝑗𝑘

𝑡 } and price variables 

𝑃𝑡 = {𝜌𝑖
𝑡 , 𝜌𝑗

𝑡, 𝜌𝑘
𝑡 } for 𝑖 ∈ {1, … , 𝑚}, 𝑗 ∈ {1, … , 𝑟}, and 𝑘 ∈ {1, … , 𝑛}, and for each time slice 𝑡 in the 

total time 𝑇. Dynamic flow 𝑞𝑖𝑗
𝑡  or 𝑞𝑗𝑘

𝑡  may be affected by the elements in the set of flow variables 

𝑄𝑖𝑗
𝑡  and 𝑄𝑗𝑘

𝑡  at time slice 𝑡. The RAVs in this EDFBN (𝛿𝑖𝑗
𝑡  and 𝛿𝑗𝑘

𝑡 ) propagate the temporal and 

systemic risk into the dynamic flows.  

The objective functions, which aim to achieve the maximum profit for every single stage of the 

supply chain at each time slice 𝑡, are denoted in Table 5.1. Table 5.1 also includes the constraints 

of the optimization. 
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Table 5.1 The Objective Functions and The Constraints of the EDFBN. 

Categories Descriptions Mathematical Expressions 

Objective 

Functions 

Maximizing manufacturers’ profit 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜌𝑖𝑗
𝑡 (𝑞𝑖𝑗

𝑡 − 𝛿𝑖𝑗
𝑡 )𝑟

𝑗=1
𝑚
𝑖=1 −

∑ ∑ 𝑐𝑖𝑗
𝑡 (𝑄𝑖𝑗

𝑡 , 𝛿𝑖𝑗
𝑡 )𝑟

𝑗=1
𝑚
𝑖=1   

 Maximizing retailers’ profit 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜌𝑗𝑘
𝑡 (𝑞𝑗𝑘

𝑡 − 𝛿𝑗𝑘
𝑡 )𝑛

𝑘=1
𝑟
𝑗=1 −

∑ ∑ 𝑐𝑗𝑘
𝑡 (𝑄𝑗𝑘

𝑡 , 𝛿𝑗𝑘
𝑡 )𝑛

𝑘=1
𝑟
𝑗=1   

 Minimizing demand markets’ cost 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜌𝑘
𝑡 (𝑞𝑗𝑘

𝑡 −𝑛
𝑘=1

𝑟
𝑗=1  𝛿𝑗𝑘

𝑡 )  

Flow Constraints The sum of the manufacturer’s productivity is less than or equal 

to the total market demand at the manufacturer’s unit price 

willing to sell at 

∑ (𝑞𝑑𝑖
𝑡 − 𝛿𝑑𝑖

𝑡 )𝑚
𝑖=1 ≤ 𝐷(𝜌𝑚

𝑡 )  

 

 The amount of product outflow of each retailer to all demand 

markets should be less than or equal to the amount of inflow 

from all manufacturers 

∑ (𝑞𝑗𝑘
𝑡 − 𝛿𝑗𝑘

𝑡 )𝑛
𝑘=1 ≤ ∑ (𝑞𝑖𝑗

𝑡 − 𝛿𝑖𝑗
𝑡 )𝑚

𝑖=1 , ∀𝑗 ∈

{1,2, … , 𝑟}  

 

 The sum of the amount of the retailer’s product willing to sell 

should be greater than or equal to the total market demand at 

the manufacturer’s unit price willing to sell at 

𝐷(𝜌𝑚
𝑡 ) ≤ ∑ ∑ (𝑞𝑗𝑘

𝑡 − 𝛿𝑗𝑘
𝑡 )𝑟

𝑗=1
𝑛
𝑘=1   

 

Cost and Price 

Equilibrium 

Constraints 

Each manufacturer’s unit price willing to sell at is greater than 

or equal to the unit cost of goods sold 

𝑐𝑖𝑗
𝑡 (𝑄𝑖𝑗

𝑡 , 𝛿𝑖𝑗
𝑡 ) ≤ 𝜌𝑖

𝑡  

 Each retailer’s unit price willing to sell at is greater than or 

equal to the unit cost of goods sold 

𝑐𝑗𝑘
𝑡 (𝑄𝑗𝑘

𝑡 , 𝛿𝑗𝑘
𝑡 ) ≤ 𝜌𝑗

𝑡  

 

 The unit price that each demand market is willing to pay is less 

than or equal to the retailer’s unit price willing to sell 

𝜌𝑘
𝑡 ≤ 𝜌𝑗

𝑡  

Non-Negativity of 

the Actual Flows 

Dynamic flows from manufacturers to retailers 𝑞𝑖𝑗
𝑡 − 𝛿𝑖𝑗

𝑡 ≥ 0  

 

 Dynamic flows from retailers to demand markets 𝑞𝑗𝑘
𝑡 − 𝛿𝑗𝑘

𝑡 ≥ 0  

Non-Negativity of 

the Decision 

Variables 

 𝑞𝑖𝑗
𝑡 , 𝑞𝑗𝑘

𝑡 , 𝜌𝑖
𝑡, 𝜌𝑗

𝑡, 𝜌𝑘
𝑡 ≥ 0  

 

With the influence of the temporal risk at every time slice 𝑡, the optimization formulated shown in 

Table 5.1 is executed once. By performing the optimization 𝑇 times, the fluctuation of the dynamic 

flows, inventory levels and the optimal value for the objective functions can be obtained. After 

introducing the basic features of the EDFBN, the problem of the modeling shifts to increase the 

effectiveness of the application. A Micro Supply Chain concept is proposed to change the 

conventional perspective of the model application. 
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5.2. Micro Supply Chains 

Traditional supply chain research focuses on the inter-corporate flows of information, capital and 

physical materials. The globalized business cooperation nowadays leads to companies in one 

supply chain not only geographically, but also economically, demographically and politically 

separated. Nondisclosure agreements from each corporation also isolate the critical quality control 

information flowing between them. It is difficult for engineers and consultants to collect adequate 

data for systemic supply chain risk analysis in such a scenario. After consulting with industry 

practitioners, an operational level, Micro Supply Chain (MSC) concept is inspired. 

An MSC describes the processes of transferring inputs to outputs in a single production site. In an 

MSC, similar with a traditional supply chain, dynamic flows of manufacturing materials, 

information, capital and people can be still discovered. Systemic risks can still be observed in the 

procedures of production, such as the failures of machines, workers, or coordination. Compared 

with an inter-corporate supply chain, the production data are easier to gather for an MSC. A single 

company’s permission is needed to access the required data. In sum, in order to generate more 

realistic results for decision-making, we find the MSC is an ideal direction to expand the EDFBN 

model. 

In addition, in the ODFBN, the weighted sum method is applied to obtain the optimal solutions of 

the multi-objective optimization. The weights assigned to the objectives may not ensure the most 

optimized value for the multi-objective problem. In the EDFBN, Genetic Algorithms (GA) are 

applied to solve the optimization problems. 

5.3. Genetic Algorithms 

Holland (1975) introduces a Genetic Algorithm (GA) by imitating the theory of evolution in nature. 

In nature, the natural selection process threats the weak and unfit species with the risk of extinction. 

On the contrary, a greater possibility of reproduction is given to the strong ones. As this effect 
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accumulates, the species carrying the most suitable combinations of genes survive the environment. 

During the long process of evolution, there are some very improbable chances of mutation may 

occur in genes. The changes that provide an additional probability of survival help the evolution 

process of the species. On the other hand, natural selection eliminates the species with the inferior 

genes caused by the mutations (Konak et al., 2006). In GA, a chromosome is a solution vector. As 

the unit of evolution, genes form the chromosomes. A unique solution in the solution space is 

denoted by a chromosome. The projection of the chromosomes to the solution space is called 

encoding, which this the objective of GA. A collection of chromosomes is defined as a population. 

When the GA is operated, the population is normally randomly initialized. As the GA processes 

advance, the chromosomes converge into fitter ones, and eventually, the population is dominated 

by a single chromosome. 

There are two operators in a GA to generate new solutions: crossover and mutation. Crossover 

combines two parent chromosomes together to produce new offspring chromosomes. The offspring 

prefers good genes from its parents, which makes the parents with fitter genes more preferred from 

their population. After applying the crossover iteratively, more chromosomes with preferred genes 

are expected in the population. Gradually, an optimal solution is converged from this process. 

Mutation is the process of randomly changing the characteristics of the chromosomes at the gene 

level. Mutation rarely occurs in the iterations of the GA computation. Even though the mutation 

occurs in low probability and affects the entire chromosome negligibly, the GA is not effective 

without the mutation. In a GA, crossover trends to uniform the characteristics of chromosomes. On 

the contrary, mutation occasionally counters the convergent effect of crossover and helps the GA 

avoid local optima. 

Selection is the next step in GA after crossover and mutation. The criterion for selection is based 

on the fitness of the chromosomes to the environment. According to Konak et al. (2006), various 

selection procedures are developed for GA depending on how the fitness values are applied, such 
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as proportional selection, tournament selection and ranking selection. If the fitness of the 

chromosomes satisfies the criterion, then the GA is stopped; otherwise, the next iteration of 

crossover and mutation continue to perform until the stopping threshold is passed. 

Numerous researchers have adapted the GA to solve multi-objective optimization problems (Deb 

et al., 2000; Konak et al., 2006; Horn et al., 1994; Asadi et al., 2014). GAs possess the attribute of 

maintaining and searching for non-inferior solutions in a constant population. This characteristic 

makes a GA appropriate for solving multi-objective optimization problems (Fonseca & Fleming, 

1993). After elaborating the basic ideas of the GA, the following section presents an MSC case 

study to thoroughly introduce the application of the EDFBNs in supply chains. 

5.4. An EDFBN Case Study 

A system of feedbacks, stocks and dynamic flows that are exposed to temporal and systemic risks 

construct a supply chain. The EDFBN is applied in the supply chains for accomplishing the 

supply/demand equilibrium and maximizing the profitability of different stages under the potential 

disruptions. In this section, an EDFBN is established to model and analyze an MSC case study that 

can provide insights at an operational-level system.  

5.4.1. Problem Identification 

In order to enhance the performance of a window assembly line of a mid-sized window 

manufacturer, the supply chain manager investigates the production system and illustrates it in 

Figure 5.2. The manager observes that some random risk events may cause production delays or 

disruptions to the production line. After summarizing his supply chain managerial experience, the 

manager identifies the key risk factors and their causal relationships in this MSC by referring to the 

SCRIPT. By modeling the systemic risks with the dynamic flows of the window assembly line, an 

EDFBN is established in Figure 5.3. 
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Figure 5.2 A Window Assembly Line of a Window Manufacturer. 

5.4.2. EDFBN Modeling 

In Figure 5.3, the DBNs are built with GeNIe (http://www.bayesfusion.com/), and the SD is 

modeled with Vensim PLE (http://vensim.com/). With all production processes reaching their 

equilibrium state, the optimization aims to maximize the total profit of the assembly line. We use 

MATLAB (https://www.mathworks.com/) as the data processing and mathematical modeling and 

execution tool. The time span for the EDFBN is 𝑇 = 12 months with each time slice 𝑡 representing 

1 month. 

5.4.2.1. Systemic Risks with Evidence and Mitigation 

For each RAV (dynamic flow variables in blue characters in Figure 5.3), there is an OV that 

provides the risk information. For each OV, there is a DBN that propagates the original risk 

information to it. The arrows with a numbered text box between the OVs implies that the variables 

influence their descendant nodes in the next one time slice. For instance, the variable Glass Cutting 

Delay (GCD) is the OV of the RAV Window Glass Cutting Delay (WGCD). The GCD is affected 

by the Window Raw Glass Supplying Delay (WRGSD) from the previous time slice. The values in 

the CPTs of the DBNs are translated from the linguistic expressions of the risk occurrences to 

probability values by applying verbal-numerical mappings. 

Similar to the DFBNs and the ODFBNs, some evidence of risk events can be identified in the DBNs 

of the EDFBNs. Mitigations can be deployed to counter the negative impact of the disruptions to 

the system when the risk events are observed. The mathematical mechanisms of the evidence and 

mitigation are introduced in Equations 4.17, 4.18, 4.21 and 4.22. 

http://www.bayesfusion.com/
https://www.mathworks.com/
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Figure 5.3 The EDFBN for the Window Assembly Line. 
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In this window assembly line case study, the observed evidence of the risk occurring is summarized 

in Table 5.2. In order to restrain the impact of the disruptions to the system, mitigations plans are 

also implemented and recorded in Table 5.2. 

Table 5.2 Evidence and Mitigations for the Window Assembly Line. 

 

 

5.4.2.2. Inventory and Dynamic Flows Under Risks 

The inventories in this case study are calculated as the difference between the accumulated inflow 

and outflow of the material. The rules of computation between the inventory level and dynamic 

flows of the MSC are denoted in Table 5.3. 

Table 5.3 The Inventory Levels Calculated by the Dynamic Flows. 

Inventory levels in 

the MSC 

Dynamic flows that affect the inventory level Mathematical Expressions 

Window Frame 

Materials 

Inventory (WFMI) 

Window Frame Materials Inflow Rate (WFMIR), Window 

Frame Assembly Rate (WFAR) 
𝑊𝐹𝑀𝐼𝑡 = 𝑊𝐹𝑀𝐼0 + ∑ (𝑊𝐹𝑀𝐼𝑅𝜏 − 4 ∗ 𝑊𝐹𝐴𝑅𝜏)

𝑡

𝜏=1
 

Assembled 

Window Frame 

Inventory (AWFI) 

Window Frame Assembly Rate (WFAR), Assembled Frame 

Consuming Rate (AFCR) 
𝐴𝑊𝐹𝐼𝑡 = 𝐴𝑊𝐹𝐼0 + ∑ (𝑊𝐹𝐴𝑅𝜏 − 𝐴𝐹𝐶𝑅𝜏)

𝑡

𝜏=1
 

Raw Glass 

Inventory (RGI) 

Raw Glass Inflow Rate (RGIR), Window Glass Cutting Rate 

(WGCR) 
𝑅𝐺𝐼𝑡 = 𝑅𝐺𝐼0 + ∑ (𝑅𝐺𝐼𝑅𝜏 −

1

3
∗ 𝑊𝐺𝐶𝑅𝜏)

𝑡

𝜏=1
 

Cut Window Glass 

Inventory (CWGI) 

Window Glass Cutting Rate (WGCR), Cut Glass Consuming 

Rate (CGCR) 
𝐶𝑊𝐺𝐼𝑡 = 𝐶𝑊𝐺𝐼0 + ∑ (𝑊𝐺𝐶𝑅𝜏 − 𝐶𝐺𝐶𝑅𝜏)

𝑡

𝜏=1
 

Finished Window 

Inventory (FWI) 

Assembled Frame Consuming Rate (AFCR), Cut Glass 

Consuming Rate (CGCR), Finished Window Packaging Rate 

(FWPR) 

𝐹𝑊𝐼𝑡 = 𝐹𝑊𝐼0 + ∑ (min (𝐴𝐹𝐶𝑅𝜏 , 𝐶𝐺𝐶𝑅) − 10
𝑡

𝜏=1

∗ 𝐹𝑊𝑃𝑅𝜏) 

Packaged Window 

Inventory (PWI) 

Finished Window Packaging Rate (FWPR), Packaged 

Window Shipping Rate (PWSR) 
𝑃𝑊𝐼𝑡 = 𝑃𝑊𝐼0 + ∑ (𝐹𝑊𝑃𝑅𝜏 − 10 ∗ 𝑃𝑊𝑆𝑅𝜏)

𝑡

𝜏=1
 

 

In this case study, we assume that every dynamic flow is exposed to the temporal systemic risks 

modeled by the DBNs. The influence of the risks to the dynamic flows is reflected by the RAVs in 

the system. It is assumed that the RAVs affect the flows linearly. For example, the Window Frame 

Time (Month) 1 2 3 4 5 6 7 8 9 10 11 12

Frame Material Supplier Production Accident Yes No Yes No

Supplying Fleet Shortage Yes Yes

Frame Assembly Machine Maintenance Delay Yes No Yes No Yes No Yes No

Frame Assembly Machine Failure Yes Yes

Raw Glass Materials Shortage Yes

Raw Glass Transportation Accidents Yes Yes

Poor Window Assembly Operations Yes Yes Yes No

Packaging Worker Shortage Yes Yes Yes No

Docking Worker Shortage Yes Yes Yes No

Glass Cutting Machine Misoperation Yes Yes

Poor Glass Quality Yes
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Assembly Rate (WFAR) and the Assembled Frame Consuming Rate (AFCR) at time 𝑡 can be 

denoted by: 

𝑊𝐹𝐴𝑅𝑡 = 𝑊𝐹𝐴𝑅𝑡∗
− 𝑊𝐹𝐴𝐷𝑡  

𝐴𝐹𝐶𝐹𝑡 = 𝐴𝐹𝐶𝑅𝑡∗
− 𝑊𝐴𝐷𝑡  

where 𝑊𝐹𝐴𝐷𝑡 and 𝑊𝐴𝐷𝑡 are the Window Frame Assembly Delay and the Window Assembly 

Delay at time 𝑡; 𝑊𝐹𝐴𝑅𝑡∗
 and 𝐴𝐹𝐶𝑅𝑡∗

 are the ideal dynamic flow amounts without any delay at 

time 𝑡. With the inflow of WFAR and outflow of AFCR, the inventory level AWFI at time 𝑡 can 

be expressed by: 

𝐴𝑊𝐹𝐼𝑡 = 𝐴𝑊𝐹𝐼0 + ∑ [(𝑊𝐹𝐴𝑅𝑡∗
− 𝑊𝐹𝐴𝐷𝑡) − (𝐴𝐹𝐶𝑅𝑡∗

− 𝑊𝐴𝐷𝑡)]𝑡
𝜏=1   

After constructing the SD of the window assembly line, the VaR that connects the SD and DBNs 

can be performed as introduced in Section 4.3.3.  

5.4.2.3. Supply Chain Network Equilibrium Based Optimization 

Multi-objective optimization in the EDFBN aims to predict the optimized material flows in 

supply/demand equilibrium state under the influence of risk factors of a complex system. After 

establishing the causal relationship of risks in DBNs, dynamic flows in SD and the linkage between 

those two models, the Supply Chain Network Equilibrium inspired multi-objective optimization is 

executed to generate both the integrated and independent behaviors of the different stages’ 

decision-makers. The following part presents the formalization of the optimization. 

At an arbitrary time slice 𝑡, we assume that the frame material supplier and the raw glass supplier 

are denoted by 𝑖 ∈ {1,2}; the frame assembly process and the raw glass cutting process are denoted 

by 𝑗 ∈ {𝑎, 𝑏}; the windows assembly, packaging, shipping and demand market are represented by 

k, l, m and d, respectively; the decision variables for the optimization are price variables 𝑃𝑡 =

{𝜌1𝑎
𝑡 , 𝜌2𝑏

𝑡 , 𝜌𝑚
𝑡 , 𝜌𝑑

𝑡 }  and quantity variables 𝑄𝑡 = {𝑞𝑑1
𝑡 , 𝑞𝑑2

𝑡 , 𝑞1𝑎
𝑡 , 𝑞2𝑏

𝑡 , 𝑞𝑎𝑘
𝑡 , 𝑞𝑏𝑘

𝑡 𝑞𝑘𝑙
𝑡 , 𝑞𝑙𝑚

𝑡 } . Table 5.4 

(5.1) 

(5.2) 

(5.3) 
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presents the objective functions for the optimization. These functions focus on optimizing the profit 

or the cost of that stage of the supply chain. 

Table 5.4 Objectives and Their Corresponded Objective Functions for the EDFBN. 

Objectives RAVs that influence the 

objectives 

Objective functions 

Maximize the 

suppliers’ profit Window Frame Materials 

Supplying Delay (WFMSD), 

Window Raw Glass Supplying 

Delay (WRGSD) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜌1𝑎
𝑡 (𝑞𝑑1

𝑡∗
− 𝑊𝐹𝑀𝑆𝐷𝑡) + 𝜌2𝑏

𝑡 (𝑞𝑑2
𝑡∗

− 𝑊𝑅𝐺𝑆𝐷𝑡) − {[𝑐11(𝑞𝑑1
𝑡∗

−

𝑊𝐹𝑀𝑆𝐷𝑡)
2

+ 𝑐12(𝑞𝑑1
𝑡∗

− 𝑊𝐹𝑀𝑆𝐷𝑡)(𝑞𝑑2
𝑡∗

− 𝑊𝑅𝐺𝑆𝐷𝑡) + 𝑐13(𝑞𝑑1
𝑡∗

− 𝑊𝐹𝑀𝑆𝐷𝑡)] +

[𝑐21(𝑞𝑑2
𝑡∗

− 𝑊𝑅𝐺𝑆𝐷𝑡)
2

+ 𝑐22(𝑞𝑑2
𝑡∗

− 𝑊𝑅𝐺𝑆𝐷𝑡)(𝑞𝑑1
𝑡∗

− 𝑊𝐹𝑀𝑆𝐷𝑡) + 𝑐23(𝑞𝑑2
𝑡∗

−

𝑊𝑅𝐺𝑆𝐷𝑡)]}  

Minimize the cost of 

raw material 

processing 

Frame Assembly Delay (FAD), 

Glass Cutting Delay (GCD) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑐31(𝑞11
𝑡∗

− 𝐹𝐴𝐷𝑡)
2

+ 𝑐32(𝑞11
𝑡∗

− 𝐹𝐴𝐷𝑡) + 𝑐33] (𝑞11
𝑡∗

− 𝐹𝐴𝐷𝑡) +

[𝑐41(𝑞22
𝑡∗

− 𝐺𝐶𝐷𝑡)
2

+ 𝑐42(𝑞22
𝑡∗

− 𝐺𝐶𝐷𝑡) + 𝑐43] (𝑞22
𝑡∗

− 𝐺𝐶𝐷𝑡)   

Minimize the cost of 

window assembly 

process 
Window Assembly Delay 

(WAD) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑐51𝑚𝑖𝑛(𝑞1𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡, 𝑞2𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡)
2

+ 𝑐52𝑚𝑖𝑛(𝑞1𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡, 𝑞2𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡) + 𝑐53]

∙ 𝑚𝑖𝑛(𝑞1𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡, 𝑞2𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡)  
Minimize the cost of 

window packaging 

process 

Product Packaging Delay (PPD) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑐61(𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡)
2

+ 𝑐62(𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡) + 𝑐63] (𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡)  

Minimize the cost of 

window shipping 

process 

Product Shipping Delay (PSD) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝑐71(𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡)
2

+ 𝑐72(𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡) + 𝑐73] (𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡)  

Maximize the profit of 

the window assembly 

line 

Product Shipping Delay (PSD) 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜌𝑚
𝑡 (𝑞𝑙𝑚

𝑡∗
− 𝑃𝑆𝐷𝑡)  

Minimize the cost of 

the demand market 
Product Shipping Delay (PSD) 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜌𝑑

𝑡 (𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡)  

 

It is assumed that the quantity demanded for the windows from this window production line is 

linearly related to the window’s unit price: 

𝐷(𝜌) = 𝑑0 − 𝑠 ∙ 𝜌  

where 𝑑0 is the quantity demanded when the unit price drops to 0, and 𝑠 is the slope of the demand 

curve. The parameters of Equation 5.4 can be obtained through MLE by using past selling data. 

The constraints of the EDFBN optimization are listed in Table 5.5. The supply/demand equilibrium, 

direction and non-negativity of the dynamic flows are ensured by the constraints. 

 

 

 

(5.4) 
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Table 5.5 Constraints of the EDFBN Optimization. 

Constraint descriptions RAVs that influence the 

constraints 

Constraint Expressions 

Finished product shipping flow should be 

larger than or equals to the quantity 
demanded at the manufacturer’s preferred 

selling price  

Product Shipping Delay (PSD) 𝐷(𝜌𝑚
𝑡 ) ≤ 100(𝑞𝑙𝑚

𝑡∗
− 𝑃𝑆𝐷𝑡)  

The window frame material quantity 
demanded at the manufacturer’s preferred 

selling price should be larger than or equal 

to the ordering rate 

Window Frame Materials 
Supplying Delay (WFMSD) 

𝑞𝑑1
𝑡∗

− 𝑊𝐹𝑀𝑆𝐷𝑡 ≤ 4𝐷(𝜌𝑚
𝑡 )  

The window raw glass quantity demanded at 

the manufacturer’s preferred selling price 

should be larger than or equal to the 
ordering rate 

Window Raw Glass Supplying 

Delay (WRGSD) 
𝑞𝑑2

𝑡∗
− 𝑊𝑅𝐺𝑆𝐷𝑡 ≤

1

3
𝐷(𝜌𝑚

𝑡 )  

The window frame material inflow should be 

larger than or equal to the frame material 
consumption rate 

Frame Assembly Delay (FAD), 

Window Assembly Delay 
(WAD) 

𝑞1𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡 ≤
1

4
(𝑞1𝑎

𝑡∗
− 𝐹𝐴𝐷𝑡)  

The window raw glass inflow should be 

larger than or equal to the raw glass 
consumption rate 

Glass Cutting Delay (GCD), 

Window Assembly Delay 
(WAD) 

𝑞2𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡 ≤ 3(𝑞2𝑏
𝑡∗

− 𝐺𝐶𝐷𝑡)  

The assembled frame consumption rate 

should be larger or equal to the window 
assembly rate 

Window Assembly Delay 

(WAD), Product Packaging 
Delay (PPD) 

𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡 ≤ 10(𝑞𝑎𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡)  

The cut glass consumption rate should be 

larger or equal to the window assembly rate  

Window Assembly Delay 

(WAD), Product Packaging 
Delay (PPD) 

𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡 ≤ 10(𝑞𝑏𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡)  

The product packaging rate should be larger 

or equal to the product shipping rate 

Product Packaging Delay 

(PPD), Product Shipping Delay 
(PSD) 

𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡 ≤ 10(𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡)  

The manufacturer’s preferred selling price 

should be larger or equal to the sum of all 
involved during production  

 𝜌1𝑎
𝑡 + 𝜌2𝑏

𝑡 + ∑ ∑ 𝑐𝑥𝑦
3
𝑦=1

7
𝑥=3 ≤ 𝜌𝑚

𝑡   

The demand market’s preferred purchasing 

price should be less than or equal to the 
manufacturer’s preferred selling price 

 𝜌𝑑
𝑡 ≤ 𝜌𝑚

𝑡   

Non-negativity of actual material flows Window Frame Materials 

Supplying Delay (WFMSD), 
Window Raw Glass Supplying 

Delay (WRGSD), Frame 
Assembly Delay (FAD), Glass 

Cutting Delay (GCD), Window 

Assembly Delay (WAD), 
Product Packaging Delay 

(PPD), Product Shipping Delay 

(PSD) 

(𝑞𝑑1
𝑡∗

− 𝑊𝐹𝑀𝑆𝐷𝑡), ( 𝑞𝑑2
𝑡∗

− 𝑊𝑅𝐺𝑆𝐷𝑡),  

( 𝑞1𝑎
𝑡∗

− 𝐹𝐴𝐷𝑡), (𝑞2𝑏
𝑡∗

− 𝐺𝐶𝐷𝑡),  

(𝑞1𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡), (𝑞2𝑘
𝑡∗

− 𝑊𝐴𝐷𝑡),  

(𝑞𝑘𝑙
𝑡∗

− 𝑃𝑃𝐷𝑡), (𝑞𝑙𝑚
𝑡∗

− 𝑃𝑆𝐷𝑡) ≥ 0  

Non-negativity of all variables  𝑄𝑡 = {𝑞𝑑1
𝑡 , 𝑞𝑑2

𝑡 , 𝑞1𝑎
𝑡 , 𝑞2𝑏

𝑡 , 𝑞𝑎𝑘
𝑡 , 𝑞𝑏𝑘

𝑡 𝑞𝑘𝑙
𝑡 , 𝑞𝑙𝑚

𝑡 } ≥ 0  

𝑃𝑡 = {𝜌1𝑎
𝑡 , 𝜌2𝑏

𝑡 , 𝜌𝑚
𝑡 , 𝜌𝑑

𝑡 } ≥ 0  

 

For every time slice, GA is conducted to obtain the multi-objective optimization solutions 

(gamultiobj() MATLAB function), and 200 points on the Pareto front are generated. Figure 5.4 and 

Figure 5.5 illustrates the results of the optimization corresponding to the dynamic flows and 

inventory levels, respectively. 200 points on the Pareto front, i.e. the optimal solutions, are 

presented as 200 lines of the flow rates and inventory levels by each time slice. The abruptly rising 

or declining flow rates demonstrate the fluctuation of the dynamic flows in the MSC. The upheaval 

of the dynamic flows propagates to the inventory levels. This effect is displayed in Figure 5.5. 
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Figure 5.4 Optimization Results for the Material Flows. 

 

 

 

 

 

 

 

Figure 5.5 Optimization Results for the Inventory Levels. 

5.4.3. EDFBN Case Modeling Results and Analysis 

Figures 5.4 - 5.5 illustrates the influence of the temporal and systemic risks to the dynamic flows 

and inventory levels of the window assembly line. The supply chain manager can use the optimized 

window assembly line results for the next 12 months for decision-making, such as mitigation plans 

evaluation, pricing adjustment, production line optimization, etc. Additional supply chain 

performance metrics can also be provided to enhance the realistic implications of the results. This 

section also provides the validation of applying the network equilibrium concept to the EDFBN 

model. 
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• Monthly Fill Rate 

In this case study, the delay of material delivery is defined as the phenomenon of the MSC’s risks 

and disruptions. These effects are shown in the fluctuation of the dynamic flows in Figure 5.4. The 

fluctuations accumulate and amplify into the inventory levels in Figure 5.5. The sudden grow or 

drop of inventory levels may cause overstock or backorder of the MSC. The rocketing of inventory 

sharply increases the holding costs, while the shrinking of the stock rises the unfilled order rate. 

Disruptions like these have a deleterious the profitability and satisfactory of the supply chain. Thus, 

various supply chain metrics should be utilized to assess the performance of the supply chain under 

such influence. 

Fill rate is one of the key metrics that can be obtained from the optimization results. It evaluates 

the on-time delivery rate of the ordered products. The window assembly line’s monthly fill rate can 

be obtained from Equation 5.5. 

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐹𝑖𝑙𝑙 𝑅𝑎𝑡𝑒 = (1 −
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑑𝑒𝑟 𝐴𝑚𝑜𝑢𝑛𝑡−𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐴𝑚𝑜𝑢𝑛𝑡

𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑇𝑜𝑡𝑎𝑙 𝑂𝑟𝑑𝑒𝑟 𝐴𝑚𝑜𝑢𝑛𝑡
) ∗ 100%  

The average monthly fill rates for both with and without the mitigations listed in Table 5.2 for the 

200 points on the Pareto front are generated to investigate the functionality of the mitigation plans. 

The average fill rates are shown in Figure 5.6 with 95% confidence intervals (CIs) for both 

scenarios. 

 

(5.5) 

Average Fill Rates with Mitigations 

95% CI Fill Rates with Mitigations 

Average Fill Rates without Mitigations 

95% CI Fill Rates without Mitigations 

Figure 5.6 Comparison between the Average Fill Rates with and without Mitigations for the 

Window Assembly Line with 95% CI. 
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From the alterations of the fill rates, we can observe that except for the second, fifth and eighth 

month, the window assembly line with mitigations has higher fill rates than the production without 

the mitigations. It indicates that the manager can examine other mitigation plans by repeatedly 

applying the established EDFBN until the most effective and efficient mitigation plans are 

generated. 

• Validity of Network Equilibrium 

A major modification of the EDFBN is applying the network equilibrium concept, which 

maximizes the profitability for all stages of a system. Compared with the other two DFBN models 

without the network equilibrium, the EDFBN provides a more optimized system from the aspect 

of the microeconomics with preferable results. 

For instance, in the window assembly line case study, the EDFBN is applied to generate the optimal 

dynamic flows with hidden risks in the MSC. At the same time, the optimal value, which is the 

profit of all parties in the MSC, is obtained in Figure 5.7 with a dash line. If the EDFBN is only 

modeled without the constraints corresponding to the Supply Chain Network Equilibrium concept, 

the optimal value of the optimization is obtained and illustrated in Figure 5.7 with a solid line. 

 

Figure 5.7 Comparison between the Optimal Value with and without the Application of 

Network Equilibrium. 
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As we can observe from Figure 5.7, the MSC yields better results, especially in the fifth month. 

The MSC only has an obvious disadvantaged profitability in the fourth and the eighth month. For 

the entire twelve months of simulation, the MSC with the network equilibrium has a loss of $16,721. 

However, a loss of $29,568 is projected for the system without the network equilibrium.  

To summarize, with the major modification of the EDFBN, the network equilibrium aims at 

optimizing the profit objective for each stage of the supply chain that leads to the optimal total 

supply chain profit. The application of the EDFBN provides supply chain practitioners and other 

domains a valid tool that deeply optimizes their systems, which may obtain more desirable results 

for decision-making.  

In the last chapter, a summary of the dissertation is presented with an evolutionary view of the 

DFBN models. A comparison between the DFBN models with other recent hybrid supply chain 

risk analysis model is also provided. Contributions of the research, current limitations and future 

directions of the research are also presented. 
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6. Conclusions and Future Research 

This dissertation focuses on developing a series of novel risk modeling and analysis tools that are 

based on the theories of Bayesian Belief Networks, System Dynamics, Value-at-Risk, Genetic 

Algorithms, Mathematical Optimization and Supply Chain Network Equilibrium. This series of 

tools, termed by the DFBN models, provides a new perspective for supply chain analysis in a 

temporal and systemic risks environment where the functionality of dynamic flows in the system 

can be disrupted. 

6.1. Methodology Summary 

Supply chain potential disruptions in the dynamic business flows can be caused by various risk 

factors. By integrating SD and DBN, the DFBN model simulates the stocks and flows fluctuation 

with systemic risks. The simulated results can be used to investigate the performance of a supply 

chain. Mitigations and alternative replenishment plans can be discovered to satisfy the business 

objective of the manager. Based on the original DFBN, the ODFBN is introduced to improve the 

effectiveness of the model. VaR substitutes the expected value method as the new linkage between 

the probabilistic risk output of the DBN. Besides, the customer demand prediction extricates from 

the empirical inference with the application of the price-demand curve. Both the distribution 

function in VaR and the price-demand curve are obtained from parametric estimation. It helps the 

model to conform with the past business environment. Moreover, the ODFBN integrates multi-

objective optimization in the whole simulation process. The profitability and liquidity of the 

business can be maximized with weights assigned to the sub-objectives. By applying the concept 

of network equilibrium and GA, the EDFBN is developed to discuss total supply chain profit 

maximization from every stage of the supply chain. Once the EDFBN is executed, the objectives 

of the problem are optimized to the optimal value with the supply/demand of every stage of the 

system equilibrated.  
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6.2. DFBN, ODFBN and EDFBN 

The DFBN establishes the foundation of modeling and analyzing the dynamic flows under threats 

from probabilistic risks and disruptions. The ODFBN and EDFBN are the modified methods that 

widen the application range of the original model.  

Table 6.1 summarizes the modifications and improvements of the ODFBN and the EDFBN that 

differ from the original DFBN. 

Table 6.1 Comparison Among the DFBN, the ODFBN and the EDFBN. 

 DFBN ODFBN EDFBN 

Problem 

Identification 

Identify and formulate 

optimization objectives 

through empirical derivation 

Identify and formulate 

optimization objectives 

through quantitative models 

Identify and formulate 

optimization objectives 

through quantitative models 

Model Formulation Link DBN and SD through 

expected value method and 

decide the impact value from 

empirical derivation 

Link DBN and SD through 

VaR and generate risk 

distribution through 

parametric estimation from the 

past disruption data 

Link DBN and SD through 

VaR and generate risk 

distribution through 

parametric estimation from the 

past disruption data 

 Generate customer demand 

from expected value method 

Estimate the price-demand 

curve and generate customer 

demand from the curve 

Estimate the price-demand 

curve and generate customer 

demand from the curve 

Result Generation Manually select preferred 

solutions  

Automatically yield optimal 

solutions for the weighted sum 

objectives and constraints 

Automatically yield optimal 

solutions with equilibriums in 

all stages of a system 

 No optimal values Manually adjust the weights 

for different objectives 

Calculate the most optimized 

value through GA 

 Reach the optimal state with 

manual manipulation of 

dynamic flow rules 

Reach the optimal state with 

the constraints of industrial 

capacities 

Reach the optimal state with 

the constraints of dynamic 

flows and network equilibrium 

 

To summarize, the SD and DBN are integrated by the DFBN that considers temporal and systemic 

risks into dynamic flow simulation (Sun & Luxhøj, 2016). The preferred system outcome can be 

manually selected from different solutions by adjusting distinct dynamic flow rules. The ODFBN 

is developed from the DFBN with the modifications on multi-objective optimization, Value-at-Risk 

and pricing segment strategy (Sun & Luxhøj, 2017). By applying the weighted sum method, the 

ODFBN focuses on obtaining the optimal solution for a multi-objective system. Variables are 

constrained with dynamic rules or limited capacity of the system. Based on the DFBN and the 

ODFBN, the modeling of EDFBN integrates the concept of network equilibrium. In an EDFBN 
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modeled system, not only the intended objectives, but also the supply/demand equilibrium of every 

stage of a system can be satisfied. The network equilibrium ensures that the optimal state of the 

system fulfills the benefits and interests of all elements in the model. In addition, GA is applied in 

EDFBN to achieve the optimal solutions of an optimization problem. Compared with the weighted 

sum method, GA guarantees the optimal value reaching the most optimized answer for a number 

of objectives. 

6.3. Comparison of Hybrid Temporal Belief Network Method with Other Approaches 

In recent years, the globalization of supply chain businesses stimulates numerous novel discussions 

and analysis models on maximizing supply chain profit under risks and disruptions. The DFBN and 

the improved ODFBN and EDFBN are introduced to facilitate supply chain decision-making under 

temporal and systemic risks. Other researchers also show interest in this area and fabricate 

remarkable thought on supply chain models. This section presents and compares two latest models 

on quantitative supply chain risk analysis with our model to show the strengths and weaknesses for 

possible future improvement. 

6.3.1. Sahay’s Iterative Simulation-Optimization Model 

Sahay (2016) introduces an iterative simulation-optimization hybrid model for chemical production 

supply chain analysis in his Ph.D. dissertation. The objective of the hybrid model aims to minimize 

the total cost with the material and information flows considered in a supply chain. The simulation 

model transfers inventory targets to the optimization model. In reverse, after the optimization, 

emission and shipment targets are delivered to the simulation (Figure 6.1). The iteration advances 

until the difference between the cost obtained from the simulation and the optimization is less than 

𝜀 (Figure 6.2). After the goal is achieved through the simulation-optimization iteration, several 

other variables in the model can be extracted to provide insights for the supply chain. The variables 

include: transportation cost, inventory cost, backorder cost, production cost, etc.  
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Sahay (2016) proposes the hybrid model with various supply chain application scenarios. First, 

centralized and decentralized supply chains are discussed in the dissertation. A four-stage supply 

chain is modeled with a centralized and a decentralized case. The cost comparison from each case 

is illustrated to assist the decision-making on selecting different supply chain strategy. Second, 

asynchronous and synchronous supply chain decision-making scenarios are implemented. In the 

Figure 6.1 Iteration between Simulation and Optimization. (Source: Sahay, 2016) 

Figure 6.2 Looping Process of Simulation and Optimization. (Source: Sahay, 2016) 
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synchronous scenario, information flows between supply chain entities simultaneously. The 

operation of an entity is synchronized with other sites. For the asynchronous scenario, the 

information from different entities is not instantly updated with each other. The operations of 

different entities are independent. The product shipping rates are generated from each scenario for 

decision-making. Third, a demand-uncertain case is introduced. A rolling horizon approach in a 

three-stage stochastic linear programming is conducted in the optimization model. Fourth, a 

derivative free optimization method is applied to the case that the analytic derivatives of the 

objective function are unavailable. A surrogate model is one of the derivative free optimization 

methods that employ surrogate approximations to overcome the high computational cost issue. At 

last, the simulation-optimization model is applied in a multi-enterprise supply chain that the buying 

and selling activities between retailers and warehouses are following auction mechanisms. The 

trend of bidding price is investigated with the altering in target inventory and learning rate. 

In sum, the simulation-optimization model that Sahay (2016) introduces provides an iterative 

methodology that considers the dynamic flows of a supply chain. The dissertation shows the 

flexibility of the model in various supply chain application scenarios. The results decompose the 

costs, prices, profits and other indices that supply chain practitioners can obtain insights of a supply 

chain for assisting their decision-making.  

6.3.2. Hahn & Kuhn’s Robust Optimization Model 

Hahn & Kuhn (2011) publish a value-based supply chain risk management tool with utilizing a 

robust optimization approach. The motivations of introducing this model can be mainly 

summarized in the following two points. (a) Past value driver tree models lack the ability to provide 

decision support; (b) only indirectly omitted scenario-based information can be obtained from risk 

implications for robust supply chain plans. Based on these motivations, the model focuses on 

generating direct results that reflect supply chain performance for decision-making by using robust 

optimization with various dynamic flows considered. Economic value added (EVA) is assigned as 
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the metric of value-based supply chain performance. The optimization objective assumes that the 

decision-makers are risk-averse. The objective function is based on the upside potential (UP), 

downside risk (DR) and expected value (EV). According to Hahn & Kuhn (2011), the objective 

function can be denoted as: 

Φ(𝛾) = 𝛾𝑈𝑃 − 𝐷𝑅 = 𝛾(𝑈𝑃 − 𝐷𝑅) − (1 − 𝛾)𝐷𝑅 = 𝛾𝐸𝑉 − (1 − 𝛾)𝐷𝑅,  

where 𝛾 ∈ (0,1]. The EV in Equation 4.63 is represented by the sum of EVA from various scenarios. 

The DR in Equation 6.1 is defined as the sum of the negative fraction of EVA under the scenarios. 

Constraints in the optimization problem are subject to the physical material and capital flows. Time 

value of money is considered in the capital flows.  

A case study is presented with a four-stage supply chain. Physical materials flow from two suppliers 

to two plants. Then, two warehouses store finished products and deliver the products to five retailers. 

The supply chain involves three raw materials and three products. The customer demand is defined 

to be fluctuating seasonally with a probabilistic scenario model. The stochastic process is assumed 

to follow a triangular distribution. After the optimization is executed, a sensitivity analysis on four 

parameters (maximum overtime, the bank line of credit, the amplitude of demand seasonality and 

the hurdle rate) is conducted. The expected value of perfect information is utilized to illustrate the 

trade-off between the solution and objective robustness. The variable 𝛾 is adjusted to indicate the 

risk preference of a decision-maker (Figure 6.3). In addition, the ex ante and ex post information 

robustness regarding with the size of the scenario set is analyzed. It applies the discretization 

method in scenario sets of uneven size (Klugman et al., 2004). 

 

(6.1) 
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In Hahn & Kuhn’s (2011) research, a decision-oriented value-based performance supply chain risk 

analysis model is proposed. The variables that leverage the performance and the source of supply 

chain operational risk are investigated. Various criteria of robustness are embedded in the model 

for achieving a comprehensive robust optimization. Abundant inventory and financial constraints 

ensure the rigorous application of the model. 

In the following section, a side by side comparison is presented among three models: ODFBN, a 

simulation-optimization model of Sahay (2016) and a value-based robust optimization by Hahn & 

Kuhn (2011). 

6.3.3. A Comparison Among the Models 

A comparison among Sahay (2016), Hahn & Kuhn (2011) and the DFBN models is summarized in 

Table 6.2. The DFBN models include the original DFBN and the modified ODFBN and EDFBN. 

In the comparison, the strengths and weaknesses of our proposed DFBN models can be evaluated. 

From the comparison in Table 6.2, it can be observed that the DFBN models have advantages in 

the risk measurement method. The DFBN models utilize DBNs to create a temporal and systemic 

causal relationship of risks. It allows practitioners to disintegrate complex risk factors in a supply 

chain. For the other two models, downside risk model is applied. This method can only measure 

the overall risk that affects the economic value added. It lacks the ability to analyze supply chain 

risks from various sources. The DFBN models have several directions of development that can be 

discovered from the comparison. First, more prevalent economics and financial theories can be 

Figure 6.3 Overtime and Inventories for Risk-averse and Risk-neutral Decision-making 

Strategies. (Source: Hahn & Kuhn, 2011) 
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appended to the DFBN models. It can enhance the effectiveness of the model when more practical 

financial models are applied. Second, the application scenario of the DFBN models is limited to a 

three-stage supply chain and a six-stage supply chain at the current study phase. A more 

comprehensive supply chain model can be presented to show the compatibility, expandability and 

flexibility of the ODFBN in practical use.  

 

Criteria The DFBN Models Sahay (2016) Hahn & Kuhn (2011) 

Modeling Objective Multi-objective Optimization Optimizing Cost Value-based Performance 

Core Quantitative Methods System Dynamics and 
Dynamic Bayesian Network 

Mixed Integer Linear 
Programming and Agent-

based Simulation 

Robust Optimization 

Complementary 
Quantitative Methods 

Nonlinear Programming, 
Value-at-Risk, Price-demand 

Curve, Maximum Likelihood 

Estimation, Genetic 
Algorithms, Network 

Equilibrium 

Sensitivity Analysis, Design 
of Experiment, Mean Squared 

Error, Goal Seeking 

Approach, Rolling Horizon 
Approach, Expected 

Improvement, G-means 

Sensitivity Analysis, 
Distribution Discretization 

Risk Measurement Method Dynamic Bayesian Networks Downside Risk Model Downside Risk Model 
Inventory Theories Applied Periodic Review Systems Inventory Costs Inventory Capacity, 

Production Capacity 

Financial Theories Applied Price-demand Curve, 
Working Capital, 

Supply/Demand Equilibrium 

Multi-attribute Double 
Auction 

Economic Value Added, Net 
Operating Profit After Tax, 

Net Operating Assets, Total 

Contribution Margin, Cash 
Flows, Account Receivable, 

Account Payable, Long-term 

Debts 
Applied Scenarios A Three-Stage Supply Chain, 

A Six-Stage, Two-Material, 

One-Product Micro Supply 
Chain 

Centralized and Decentralized 

Supply Chain, Synchronous 

and Asynchronous Decision-
making Supply Chain, Supply 

Chain Flexibility Assessment, 

Multi-enterprise Supply 
Chain Operation 

A Four-Stage, Three-

Material, Three-Product 

Supply Chain 

 

6.4. Contributions of the Research 

In sum, the main contributions of the research can be concluded in the following four aspects: 

• The Hybrid Approach of Integrating the DBN with the SD (A Major Contribution) 

The hybrid approach proposed, i.e. the DFBN models, integrates the risk analysis tool, the DBN, 

with the simulation method, the SD. The DFBN models provide a novel methodology for 

researchers and practitioners for analyzing the dynamic flows with temporal and systemic risks 

Table 6.2 The Comparison Among the DFBN 

Models, Sahay (2016) and Hahn & Kuhn (2011). 
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concurrently for a complex system. Executable MATLAB programs are also provided (Appendices 

I – III). 

• The Application of the Hybrid Approach to the Supply Chain Domain for Optimizing 

the Business Performance (A Major Contribution) 

The proposed DFBN models are applied to the supply chain with various domain-related 

methodologies, such as replenishment planning, price-demand curves, mathematical optimization, 

MSC, GA, multi-material, multi-stage supply chain and Supply Chain Network Equilibrium. 

• Connecting the Hybrid Approach with VaR Model (A Minor Contribution) 

The DFBN integrates the VaR as a complementary risk analysis model to connect the DBN and the 

SD. It provides a more satisfactory and controllable tool to support the linkage (RAVs) of the two 

crucial parts of the DFBN, i.e. the risk assessment (DBNs) and the flow simulation (SD). 

• Modeling the Hybrid Approach with the Concept of Network Equilibrium (A Minor 

Contribution) 

The EDFBN introduces the original dynamic flow risk analysis method with the concept of network 

equilibrium. By integrating with the network equilibrium concept, the EDFBN reflects a more 

realistic business circumstance that business entities remain collaborative and competitive at the 

same time. It ensures the optimization results satisfy the supply/demand equilibrium of every stage 

of a system.  

6.5. Current Limitations and Future Research 

The DFBN models are developed to unveil the influence of temporal and systemic risks to business 

systems with dynamic flows. Preliminary applications of the models are presented with two case 

studies. The expandability and flexibility have been proved with the elaboration of the modeling 
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and results analysis. However, limitations of this research exist and there are opportunities for 

future improvement. 

First, the linkage between the main methodologies SD and DBN of the DFBN models shows an 

interesting topic for future research. It is initially developed by using the expected value method in 

the DFBN. Then, VaR is applied as the linkage in the ODFBN and EDFBN. The GEVD applied in 

the VaR requires adequate data for parameter estimation. It may restrict the accuracy of model 

implementation in a data scarce environment. The research for a new reliable linkage method that 

has less dependency on the amount of data may be an appropriate direction in the future. 

Second, the DBN modeling tends to be subjective by determining the causal relationships of risk 

events with an empirical designation. In the DFBN models, the DBNs are used for establishing the 

temporal and systemic risks. However, the causal relationships of risk events are usually vague for 

human’s cognition. Thus, identifying those relationships by practitioner’s empirical judgment may 

not generate the genuine image of the real situation. According to Kjaerulff & Madsen (2008), data-

driven BBNs can be applied to effectively reduce the influence of the subjectiveness of the model. 

The trade-off of a data-driven model is the high dependency on the quality, quantity and reliability 

of the data. The investigation of the data-driven DBNs is also a promising track of strengthening 

the DFBN models. 

Third, a more user-friendly model execution interface may be developed for practitioner’s 

application. At the current stage, an executable MATLAB program is available for each of the case 

studies, respectively. By modifying the MATLAB code, application cases with similar scenarios 

and input data structure can be realized. However, the expandability of the DFBN models by 

applying the existing programs is limited. In the Appendices I – III, the source MATLAB code for 

those three case studies mentioned in the previous section is provided. In the future, a more user-

friendly program package can be developed in the future to make the model more efficient for 
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researchers and practitioners. Ideally, a program with a Graphical User Interface (GUI) can be 

developed to expand the functionality of the DFBN models to the next level. In such case, the 

DFBN models can be easily built by entering minimum parameters by the users. 
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Appendix I –MATLAB Code for the DFBN Case Study 

File Name: Data_CPT_AMT.m 

T = 12; % Simulation Running Time 

  

% Wholesaler DBN CPT Data 

  

MSD = [0.15 0.85]; 

RCA = [0.1 0.9]; 

WEP = [0.95 0.6 0.3 0.05 0.05 0.4 0.7 0.95]; 

ROL = [0.8 0.3 0.2 0.7]; 

WIL = [0.7 0.1 0.3 0.9]; 

RUO = [0.2 0.6 0.05 0.3 0.8 0.4 0.95 0.7]; 

MSDF = [0.66 0.78 0.34 0.22]; 

RUOF = [0.11 0.33 0.11 0.33 0.89 0.67 0.89 0.67]; 

  

% Retailer DBN CPT Data 

  

WSD = [0.3 0.7]; 

CCA = [0.5 0.5]; 

REP = [0.9 0.1 0.7 0.2 0.1 0.9 0.3 0.8]; 

COL = [0.95 0.1 0.05 0.9]; 

RIL = [0.8 0.2 0.2 0.8]; 

CUO = [0.2 0.9 0.05 0.4 0.8 0.1 0.95 0.6]; 

WSDF = [0.66 0.78 0.34 0.22]; 

CUOF = [0.11 0.33 0.11 0.33 0.89 0.67 0.89 0.67]; 

  

% Amount Data 

RUOA = [10 30 50 30 20 60 20 20 10 40 30 10]; 

CUOA = [40 50 30 10 30 70 80 30 50 40 30 20]; 

  

% Optimization Data 

w1 = 0.2; 

w2 = 0.8; 

RPP = 3; 

  

S = [10 10 10 10 10 10 10 10 10 10 10 10]; 

C = [500 500 500 500 500 500 500 500 500 500 500 500]; 

SCC = [1 1 1 1 1 1 1 1 1 1 1 1]; 

RIC = [210 210 210 210 210 210 210 210 210 210 210 210]; 

  

% VaR Data Generator 

n_C = 1000; mu_C = 20; sigma_C = 20;  

lambdaStart_C = 14; deltaStart_C = 14; xiStart_C = 0.05; 

  

n_R = 1000; mu_R = 90; sigma_R = 80;  

lambdaStart_R = 62; deltaStart_R = 60; xiStart_R = 0.03; 

  

% % CEUOR Inputs 

% y0_C = 20; 
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%  

% % REUOR Inputs 

% y0_R = 10; 

 

File Name: Retailer_Unfilled_Amt_data.m 

WAD = [10 30 50 30 20 60 20 20 10 40 30 10]; 

  

RPR = [62 73 84 68 47 99 123 62 119 73 78 128]; 

 

File Name: RetailerDBN_CustUnfOrd.m 

function    ProbCustUnfOrd = RetailerDBN_CustUnfOrd(WSD, WSDF, 

CCA, REP, COL, RIL, CUO, CUOF) 

             

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 

intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 

  

inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbCustUnfOrd.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 

  

bnet1.CPD{1} = tabular_CPD(bnet1, 1, WSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, CCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, REP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, COL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, RIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, CUO); 
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evidence1 = cell(1,ss); 

  

evidence1{1} = 1; 

  

for i = 2:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 6); 

% marg.T    % Inference Answer 

ProbCustUnfOrd.VRiskHi(1) = marg.T(1); 

  

  

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, WSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, CCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, REP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, COL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, RIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, CUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, WSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, CUOF); 

  

for T = 2:TS; 

    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss, T); 

    evidence2(onodes,:) = ev(onodes,:); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet)); 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 6, T); 

    m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 
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    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = 6:7 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes2 = 2; 

  

for T = [3 11] 

    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [6 12] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbCustUnfOrd = ProbCustUnfOrd.VRiskHi; 
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File Name: RetailerDBN_CustOrdLvl.m 

function    ProbCustOrdLvl = RetailerDBN_CustOrdLvl(WSD, WSDF, 

CCA, REP, COL, RIL, CUO, CUOF) 

  

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 

intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 

  

inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbCustOrdLvl.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 

  

bnet1.CPD{1} = tabular_CPD(bnet1, 1, WSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, CCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, REP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, COL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, RIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, CUO); 

  

evidence1 = cell(1,ss); 

  

evidence1{1} = 1; 

  

for i = 2:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 4); 

% marg.T    % Inference Answer 

ProbCustOrdLvl.VRiskHi(1) = marg.T(2); 
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% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, WSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, CCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, REP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, COL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, RIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, CUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, WSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, CUOF); 

  

for T = 2:TS; 

    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss, T); 

    evidence2(onodes,:) = ev(onodes,:); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet)); 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 4, T); 

    m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

for T = 6:7 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 4, T); 
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%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

onodes2 = 2; 

  

for T = [3 11] 

    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

for T = [6 12] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbCustOrdLvl = ProbCustOrdLvl.VRiskHi; 

 

 

File Name: WholesalerDBN.m 

function  ProbRetUnfOrd = WholesalerDBN(MSD, MSDF, RCA, WEP, ROL, 

WIL, RUO, RUOF) 

  

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 

intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 
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inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbRetUnfOrd.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 

  

bnet1.CPD{1} = tabular_CPD(bnet1, 1, MSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, RCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, WEP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, ROL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, WIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, RUO); 

  

evidence1 = cell(1,ss); 

  

for i = 1 

    evidence1{i} = 1; 

end 

  

for i = 2 

    evidence1{i} = 2; 

end 

  

for i = 3:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 6); 

  

ProbRetUnfOrd.VRiskHi(1) = marg.T(1); 

  

  

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 
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bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, MSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, RCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, WEP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, ROL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, WIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, RUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, MSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, RUOF); 

  

for T = 2:TS 

    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss,T); 

    evidence2(onodes,:) = ev(onodes, :); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 6, T); 

    m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [5 9 10] 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes2 = 2; 

  

for T = [9 12] 
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    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [8 11] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbRetUnfOrd = ProbRetUnfOrd.VRiskHi; 

 

 

File Name: Retailer_Exp_Unf_Rate2.m 

% Wholesaler Part (Output: Retailer Unfilled Orders Risk High) 

WRiskHi = WholesalerDBN(MSD, MSDF, RCA, WEP, ROL, WIL, RUO, 

RUOF); 

  

% Retailer Part (Output: Customer Unfilled Orders Risk High,  

                       % Customer Order Level Probability High) 

RCOLRiskHi = RetailerDBN_CustOrdLvl(WSD, WSDF, CCA, REP, COL, 

RIL, CUO, CUOF); 

RCUORiskHi = RetailerDBN_CustUnfOrd(WSD, WSDF, CCA, REP, COL, 

RIL, CUO, CUOF); 

  

% Retailer's Expected Unfilled Order Rate =  

% Probability of Retailer's Unfilled Order * Retailer's Unfilled 

Order Amount 

REUOR = WRiskHi.*RUOA; 

  

WI = zeros(1,12);               % Wholesaler's Inventory Level 
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WPR = zeros(1,12);              % Wholesaler's Procurement Rate 

  

% Customer's Expected Unfilled Order Rate = 

% Probability of Customer's Unfilled Order * Customer's Unfilled 

Order Amount 

CEUOR = RCUORiskHi.*CUOA; 

  

RI = zeros(1,12);               % Retailer's Inventory Level 

CPR = zeros(1,12);              % Customer's Purchase Rate 

RPR = zeros(1,12);              % Retailer's Procurement Rate 

WSR = zeros(1,12); 

RSR = zeros(1,12); 

  

WI(1) = 2000;                   % Initial Value = 2000 Units 

RI(1) = 200;                    % Initial Value = 200 Units 

  

% Initial Values for Other Variables 

CPR(1) = RCOLRiskHi(1)*100 + (1 - RCOLRiskHi(1))*50; 

RSR(1) = CPR(1) - CEUOR(1); 

RPR(1) = RSR(1) + 15; 

WSR(1) = RPR(1) - REUOR(1); 

WPR(1) = WSR(1); 

  

for i = 2:12 

     

% Wholesaler's Inventory = Wholesaler Procurement Rate - Retailer 

Procurement Rate 

WI(i) = WI(i-1) + WPR(i-1) - RPR(i-1); 

  

% Retailer's Inventory = Retailer Procurement Rate - Customer 

Purchase Rate 

RI(i) = RI(i-1) + RPR(i-1) - CPR(i-1); 

  

% Customer's Purchase Rate = 

% Probability of Customer Order Level High*100+(1-Probability of 

Customer Order Level High)*50 

CPR(i) = RCOLRiskHi(i)*100 + (1 - RCOLRiskHi(i))*50; 

  

% Retailer Sales Rate = Customer Purchase Rate - Customer's 

Expected Unfilled Order Rate 

RSR(i) = CPR(i) - CEUOR(i); 

  

% Retailer Procurement Rate Plan 

if RI(i) <= 150; 

    RPR(i) = RSR(i) + 50; 

else RPR(i) = RSR(i);% + 15; 

end 

  

% Wholesaler Sales Rate = Retailer Procurement Rate -  

% Retailer's Expected Unfilled Order Rate 

WSR(i) = RPR(i) - REUOR(i); 
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% Wholesaler Procument Rate Plan 

if WI(i) <= 1950; 

    WPR(i) = WSR(i) + 100; 

else WPR(i) = WSR(i); 

end 

  

end 

  

WI 

  

RI 

  

  

% Figures 

x = 1:12; 

figure 

plot(x, WI, '--or') 

axis([0 12 0 2500]) 

  

figure 

plot(x, RI, '-*k') 

axis([0 12 0 250]) 
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Appendix II –MATLAB Code for the ODFBN Case Study 

File Name: Data_CPT_AMT.m 

T = 12; % Simulation Running Time 

  

% Wholesaler DBN CPT Data 

  

MSD = [0.15 0.85]; 

RCA = [0.1 0.9]; 

WEP = [0.95 0.6 0.3 0.05 0.05 0.4 0.7 0.95]; 

ROL = [0.8 0.3 0.2 0.7]; 

WIL = [0.7 0.1 0.3 0.9]; 

RUO = [0.2 0.6 0.05 0.3 0.8 0.4 0.95 0.7]; 

MSDF = [0.66 0.78 0.34 0.22]; 

RUOF = [0.11 0.33 0.11 0.33 0.89 0.67 0.89 0.67]; 

  

% Retailer DBN CPT Data 

  

WSD = [0.3 0.7]; 

CCA = [0.5 0.5]; 

REP = [0.9 0.1 0.7 0.2 0.1 0.9 0.3 0.8]; 

COL = [0.95 0.1 0.05 0.9]; 

RIL = [0.8 0.2 0.2 0.8]; 

CUO = [0.2 0.9 0.05 0.4 0.8 0.1 0.95 0.6]; 

WSDF = [0.66 0.78 0.34 0.22]; 

CUOF = [0.11 0.33 0.11 0.33 0.89 0.67 0.89 0.67]; 

  

% Amount Data 

RUOA = [10 30 50 30 20 60 20 20 10 40 30 10]; 

CUOA = [40 50 30 10 30 70 80 30 50 40 30 20]; 

  

% Optimization Data 

w1 = 0.2; 

w2 = 0.8; 

RPP = 3; 

  

S = [10 10 10 10 10 10 10 10 10 10 10 10]; 

C = [500 500 500 500 500 500 500 500 500 500 500 500]; 

SCC = [1 1 1 1 1 1 1 1 1 1 1 1]; 

RIC = [210 210 210 210 210 210 210 210 210 210 210 210]; 

  

% VaR Data Generator 

n_C = 1000; mu_C = 20; sigma_C = 20;  

lambdaStart_C = 14; deltaStart_C = 14; xiStart_C = 0.05; 

  

n_R = 1000; mu_R = 90; sigma_R = 80;  

lambdaStart_R = 62; deltaStart_R = 60; xiStart_R = 0.03; 

  

% % CEUOR Inputs 

% y0_C = 20; 

%  
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% % REUOR Inputs 

% y0_R = 10; 

 

 

File Name: VaR_REUOR.m 

function pdf_gevd_new = VaR_REUOR(y_R,y0_R) 

  

WRiskHi = WholesalerDBN(MSD, MSDF, RCA, WEP, ROL, WIL, RUO, 

RUOF); 

  

pdf_gevd_new = exp(-(1-xiHat*((y_R-

lambdaHat)/deltaHat)).^(1/xiHat)) - WRiskHi; 

  

fun = @Var_REUOR; 

  

REUOR = fzero(fun,y0_R); 

  

pdf_gevd_new = REUOR; 

 

 

File Name: VaR_CEUOR.m 

function pdf_gevd_new = VaR_CEUOR(y_C,y0_C) 

  

RCUORiskHi = RetailerDBN_CustUnfOrd(WSD, WSDF, CCA, REP, COL, 

RIL, CUO, CUOF); 

  

pdf_gevd_new = exp(-(1-xiHat*((y_C-

lambdaHat)/deltaHat)).^(1/xiHat)) - RCUORiskHi; 

  

fun = @Var_REUOR; 

  

CEUOR = fzero(fun,y0_C); 

  

pdf_gevd_new = CEUOR; 

 

 

File Name: RetailerDBN_CustOrdLvl.m 

function    ProbCustOrdLvl = RetailerDBN_CustOrdLvl(WSD, WSDF, 

CCA, REP, COL, RIL, CUO, CUOF) 

  

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 
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intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 

  

inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbCustOrdLvl.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 

  

bnet1.CPD{1} = tabular_CPD(bnet1, 1, WSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, CCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, REP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, COL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, RIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, CUO); 

  

evidence1 = cell(1,ss); 

  

evidence1{1} = 1; 

  

for i = 2:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 4); 

% marg.T    % Inference Answer 

ProbCustOrdLvl.VRiskHi(1) = marg.T(2); 

  

  

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 
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bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, WSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, CCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, REP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, COL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, RIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, CUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, WSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, CUOF); 

  

for T = 2:TS; 

    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss, T); 

    evidence2(onodes,:) = ev(onodes,:); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet)); 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 4, T); 

    m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

for T = 6:7 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

onodes2 = 2; 

  

for T = [3 11] 



146 

 

 

    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

  

for T = [6 12] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 4, T); 

%   m.T;    % Inference Answer 

    ProbCustOrdLvl.VRiskHi(T) = m.T(2); 

end 

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbCustOrdLvl = ProbCustOrdLvl.VRiskHi; 

 

 

File Name: RetailerDBN_CustUnfOrd.m 

function    ProbCustUnfOrd = RetailerDBN_CustUnfOrd(WSD, WSDF, 

CCA, REP, COL, RIL, CUO, CUOF) 

             

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 

intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 

  

inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 
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ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbCustUnfOrd.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 

  

bnet1.CPD{1} = tabular_CPD(bnet1, 1, WSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, CCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, REP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, COL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, RIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, CUO); 

  

evidence1 = cell(1,ss); 

  

evidence1{1} = 1; 

  

for i = 2:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 6); 

% marg.T    % Inference Answer 

ProbCustUnfOrd.VRiskHi(1) = marg.T(1); 

  

  

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, WSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, CCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, REP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, COL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, RIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, CUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, WSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, CUOF); 

  

for T = 2:TS; 
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    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss, T); 

    evidence2(onodes,:) = ev(onodes,:); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet)); 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 6, T); 

    m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = 6:7 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes2 = 2; 

  

for T = [3 11] 

    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [6 12] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 
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%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbCustUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbCustUnfOrd = ProbCustUnfOrd.VRiskHi; 

 

 

File Name: WholesalerDBN.m 

function  ProbRetUnfOrd = WholesalerDBN(MSD, MSDF, RCA, WEP, ROL, 

WIL, RUO, RUOF) 

  

%#codegen 

ss = 6; % slice size 

intra = zeros(ss); 

intra(1,3) = 1; 

intra(2,4) = 1; 

intra(3,5) = 1; 

intra(4, [3 6]) = 1; 

intra(5,6) = 1; 

  

inter = zeros(ss); 

inter(1,1) = 1;  

inter(6,4) = 1; 

  

onodes = []; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

% Temporal Customer Order Level Probability 

ProbRetUnfOrd.VRiskHi = zeros(1,TS); 

  

  

  

% BBN (In order to get the probability value at t = 1) 

bnet1 = mk_bnet(intra, ns, 'discrete', dnodes, 'observed', 

onodes); 
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bnet1.CPD{1} = tabular_CPD(bnet1, 1, MSD); 

bnet1.CPD{2} = tabular_CPD(bnet1, 2, RCA); 

bnet1.CPD{3} = tabular_CPD(bnet1, 3, WEP); 

bnet1.CPD{4} = tabular_CPD(bnet1, 4, ROL); 

bnet1.CPD{5} = tabular_CPD(bnet1, 5, WIL); 

bnet1.CPD{6} = tabular_CPD(bnet1, 6, RUO); 

  

evidence1 = cell(1,ss); 

  

for i = 1 

    evidence1{i} = 1; 

end 

  

for i = 2 

    evidence1{i} = 2; 

end 

  

for i = 3:6 

    evidence1{i} = []; 

end 

engine1 = jtree_inf_engine(bnet1); 

[engine1, loglik] = enter_evidence(engine1, evidence1); 

marg = marginal_nodes(engine1, 6); 

  

ProbRetUnfOrd.VRiskHi(1) = marg.T(1); 

  

  

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6]; 

eclass2 = [7 2 3 8 5 6]; 

% eclass = [eclass1 eclass2]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', 

eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, MSD); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, RCA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, WEP); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, ROL); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, WIL); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, RUO); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, MSDF); 

bnet2.CPD{8} = tabular_CPD(bnet2, 10, RUOF); 

  

for T = 2:TS 

    ev = sample_dbn(bnet2, T); 

    evidence2 = cell(ss,T); 

    evidence2(onodes,:) = ev(onodes, :); % all cells besides 

onodes are empty 

    engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    % engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 



151 

 

 

    engine2 = enter_evidence(engine2, evidence2); 

    m = marginal_nodes(engine2, 6, T); 

    m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes1 = 1; 

  

for T = 2 

    evidence3 = cell(ss,T); 

    evidence3{onodes1,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence3); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [5 9 10] 

    evidence4 = cell(ss,T); 

    evidence4{onodes1,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence4); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

onodes2 = 2; 

  

for T = [9 12] 

    evidence5 = cell(ss,T); 

    evidence5{onodes2,T} = [2]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence5); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 

end 

  

for T = [8 11] 

    evidence6 = cell(ss,T); 

    evidence6{onodes2,T} = [1]; 

%   engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

    engine2 = smoother_engine(hmm_2TBN_inf_engine(bnet2)); 

    engine2 = enter_evidence(engine2, evidence6); 

    m = marginal_nodes(engine2, 6, T); 

%   m.T;    % Inference Answer 

    ProbRetUnfOrd.VRiskHi(T) = m.T(1); 
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end 

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

ProbRetUnfOrd = ProbRetUnfOrd.VRiskHi; 

 

 

File Name: mle_gevd_REUOR.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% REUOR 

function REUOR = 

mle_gevd_REUOR(T,n_R,mu_R,sigma_R,lambdaStart_R,deltaStart_R,xiSt

art_R,... 

    MSD, MSDF, RCA, WEP, ROL, WIL, RUO, RUOF) 

  

x_gen_R = normrnd(mu_R,sigma_R,n_R,1); 

  

x_gen_R2 = zeros(n_R,1); 

  

for i = 1:n_R 

     

if x_gen_R(i) >= 0; 

    x_gen_R2(i) = x_gen_R(i); 

else x_gen_R2(i) = 0; 

end 

  

end 

  

pdf_gevd_R = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_R deltaStart_R xiStart_R]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_R = mle(x_gen_R2, 'pdf',pdf_gevd_R, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_R = gevd_paramEsts_R(1); 

deltaHat_R = gevd_paramEsts_R(2); 

xiHat_R = gevd_paramEsts_R(3); 
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% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

WRiskHi = WholesalerDBN(MSD, MSDF, RCA, WEP, ROL, WIL, RUO, 

RUOF); 

  

REUOR = zeros(1,T); 

  

syms x 

  

cdf_gevd_R(x) = exp(-(1-xiHat_R.*((x-

lambdaHat_R)./deltaHat_R)).^(1./xiHat_R)); 

  

% inv_gevd_C = matlabFunction(finverse(cdf_gevd)); 

  

for i = 1:T 

  

REUOR(i) = solve(cdf_gevd_R == WRiskHi(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: mle_gevd_CEUOR.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% CEUOR 

function CEUOR = 

mle_gevd_CEUOR(T,n_C,mu_C,sigma_C,lambdaStart_C,deltaStart_C,xiSt

art_C,... 

    WSD, WSDF, CCA, REP, COL, RIL, CUO, CUOF) 

  

x_gen_C = normrnd(mu_C,sigma_C,n_C,1); 

  

x_gen_C2 = zeros(n_C,1); 

  

for i = 1:n_C 
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if x_gen_C(i) >= 0; 

    x_gen_C2(i) = x_gen_C(i); 

else x_gen_C2(i) = 0; 

end 

  

end 

  

pdf_gevd_C = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_C deltaStart_C xiStart_C]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_C = mle(x_gen_C2, 'pdf',pdf_gevd_C, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_C = gevd_paramEsts_C(1); 

deltaHat_C = gevd_paramEsts_C(2); 

xiHat_C = gevd_paramEsts_C(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

RCUORiskHi = RetailerDBN_CustUnfOrd(WSD, WSDF, CCA, REP, COL, 

RIL, CUO, CUOF); 

  

CEUOR = zeros(1,T); 

  

syms x 

  

cdf_gevd_C(x) = exp(-(1-xiHat_C.*((x-

lambdaHat_C)./deltaHat_C)).^(1./xiHat_C)); 

  

% inv_gevd_C = matlabFunction(finverse(cdf_gevd)); 

  

for i = 1:T 

  

CEUOR(i) = solve(cdf_gevd_C == RCUORiskHi(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 
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%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: Retailer_Exp_Unf_Rate2_v3_with_optimization_steps.m 

% Retailer's Expected Unfilled Order Rate =  

% Probability of Retailer's Unfilled Order * Retailer's Unfilled 

Order Amount 

REUOR = 

mle_gevd_REUOR(T,n_R,mu_R,sigma_R,lambdaStart_R,deltaStart_R,xiSt

art_R,... 

    MSD, MSDF, RCA, WEP, ROL, WIL, RUO, RUOF); 

  

WI = zeros(1,T);               % Wholesaler's Inventory Level 

WPR = zeros(1,T);              % Wholesaler's Procurement Rate 

  

% Customer's Expected Unfilled Order Rate = 

% Probability of Customer's Unfilled Order * Customer's Unfilled 

Order Amount 

CEUOR = 

mle_gevd_CEUOR(T,n_C,mu_C,sigma_C,lambdaStart_C,deltaStart_C,xiSt

art_C,... 

    WSD, WSDF, CCA, REP, COL, RIL, CUO, CUOF); 

  

RI = zeros(1,T);               % Retailer's Inventory Level 

SP = zeros(1,T);               % Retailer's Selling Price 

CPR = zeros(1,T);              % Customer's Purchase Rate 

RSR = zeros(1,T);              % Retailer's Sales Rate 

RPR = zeros(1,T);              % Retailer's Procurement Rate 

WSR = zeros(1,T);              % Wholesaler's Sales Rate 

Retail_Prof = zeros(1,T);      % Retailer's Profit 

Retail_Liquid = zeros(1,T);    % Retailer's Working Capital 

  

WI_0 = 2000;                   % Initial Value = 2000 Units 

RI_0 = 200;                    % Initial Value = 200 Units 

  

% Linear Programming by optimizing a function of Profit and 

Satisfaction 

% Constraints 

A = zeros(4,3); 

b = zeros(4,1); 

Aeq = zeros(1,3); 

beq = zeros(1,1); 

  

% Decision Variables 

v = zeros(1,3); 

z = zeros(1,3*T); 



156 

 

 

v0 = zeros(1,3); 

obj_val = zeros(1,T); 

  

% v(1) = z(i) = SP; 

% v(2) = z(i+T) = CPR; 

% v(3) = z(i+2*T) = RPR; 

  

% z(3*i-2) = SP(i); 

% z(3*i-1) = CPR(i); 

% z(3*i) = RPR(i); 

  

  

for i = 1:T 

     

%%%%%%%%%%%%%%%%     

% Optimization % 

%%%%%%%%%%%%%%%% 

  

v0(1) = 5; 

v0(2) = 50; 

v0(3) = 50; 

  

if i == 1; 

    % Objective Function 

    fun = @(v)(w1*((v(1)-SCC(i))*RSR(i)) + w2*((RI_0+v(3)-

v(2))*RPP+RSR(i)*v(1)-v(3)*SCC(i)))*(-1); 

else 

    fun = @(v)(w1*((v(1)-SCC(i))*RSR(i)) + w2*((RI_0+v(3)-

v(2)+(sum(RPR-CPR)))*RPP+RSR(i)*v(1)-v(3)*SCC(i)))*(-1); 

end 

  

% Inequalities Matrices 

A(1,1) = S(i); 

A(1,2) = 1; 

A(2,1) = -1; 

A(3,3) = 1; 

A(3,2) = -1; 

A(4,2) = -1; 

  

b(1) = C(i); 

b(2) = -SCC(i); 

b(3) = RIC(i) - RI_0; 

b(4) = -CEUOR(i); 

  

% Equation Matrices 

Aeq(1) = 0; 

Aeq(2) = 0; 

Aeq(3) = 1; 

  

if i == 1; 

    beq(1) = 0; 

else 
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    if (RI_0 + sum(RPR-CPR)) <= 150;    % if RI(i-1) <= 150 

        beq(1) = RSR(i-1) + 50; 

    else 

        beq(1) = RSR(i-1); 

    end 

end 

  

% Variables non-negative 

lb = [0 0 0]; 

  

% Execute Optimization 

[z(3*i-2:3*i),fval] = fmincon(fun,v0,A,b,Aeq,beq,lb); 

  

SP(i) = z(3*i-2); 

CPR(i) = z(3*i-1); 

RPR(i) = z(3*i); 

obj_val(i) = -fval; 

  

if i == 1; 

    RI(i) = RI_0 + RPR(i) - CPR(i); 

else 

    RI(i) = RI(i-1) + RPR(i) - CPR(i); 

end 

  

%%%%%%%%%%%%%%%%% 

% SD Simulation % 

%%%%%%%%%%%%%%%%% 

  

% Retailer Sales Rate = Customer Purchase Rate - Customer's 

Expected Unfilled Order Rate 

RSR(i) = CPR(i) - CEUOR(i); 

  

% Wholesaler Sales Rate = Retailer Procurement Rate -  

% Retailer's Expected Unfilled Order Rate 

WSR(i) = RPR(i) - REUOR(i); 

  

% Wholesaler Procument Rate Plan 

if i == 1; 

    WPR(i) = WSR(i); 

else 

    if (WI_0 + sum(WPR-RPR)) <= 1950; 

        WPR(i) = WSR(i-1) + 100; 

    else WPR(i) = WSR(i-1); 

    end 

end 

  

% Wholesaler's Inventory = Wholesaler Procurement Rate - Retailer 

Procurement Rate 

if i == 1; 

    WI(i) = WI_0 + WPR(i) - RPR(i); 

else 

    WI(i) = WI(i-1) + WPR(i) - RPR(i); 
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end 

  

Retail_Prof(i) = (SP(i) - SCC(i)) * RSR(i); 

Retail_Liquid(i) = RI(i) * RPP + RSR(i) * SP(i) - RPR(i) * 

SCC(i); 

end 

  

% Results 

WI 

  

RI 

  

Retail_Prof 

  

Retail_Liquid 

  

% Figures 

x = 1:T; 

figure 

plot(x, WI, '--or') 

axis([0 T 0 2500]) 

  

figure 

plot(x, RI, '-*k') 

axis([0 T 0 250]) 

  

figure 

plot(x, obj_val, '-xb') 

axis([0 T 0 500]) 
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Appendix III –MATLAB Code for the EDFBN Case Study 

File Name: Window_Assembly_Data.m 

% Data of the Assembly Delays DBN and SD 

  

TS = 12; % Simulation running time 

  

FMSPLR  = [0.2 0.8]; 

FMSPA   = [0.1 0.9]; 

RFMS    = [0.2 0.8]; 

FMOSD   = [0.6 0.4]; 

FMPD    = [0.7 0.5 0.9 0.1 0.85 0.2 0.5 0.05 ... 

           0.3 0.5 0.1 0.9 0.15 0.8 0.5 0.95]; 

FMSD    = [0.8 0.85 0.6 0.8 0.7 0.2 0.4 0.1 ... 

           0.2 0.15 0.4 0.2 0.3 0.8 0.6 0.9]; 

FSFS     = [0.9 0.1];  

FSTA     = [0.05 0.95]; 

WFMSD   = [0.9 0.8 0.15 0.5 0.4 0.8 0.1 0.9 ... 

           0.1 0.2 0.85 0.5 0.6 0.2 0.9 0.1]; 

FAMMD   = [0.1 0.9]; 

MDDT    = [0.15 0.85]; 

PFMQ    = [0.2 0.8]; 

FMQI    = [0.1 0.4 0.4 0.8 ... 

           0.9 0.6 0.6 0.2]; 

FAMF    = [0.5 0.5]; 

FAMM    = [0.01 0.99]; 

TFAWS   = [0.3 0.7]; 

PFAO    = [0.1 0.9]; 

FAWD    = [0.1 0.3 0.5 0.7 ... 

           0.9 0.7 0.5 0.3]; 

FAMD    = [0.7 0.9 0.75 0.4 0.6 0.2 0.1 0.3 ... 

           0.3 0.1 0.25 0.6 0.4 0.8 0.9 0.7]; 

FAD     = [0.95 0.9 0.6 0.5 0.9 0.1 0.9 0.4 ... 

           0.05 0.1 0.4 0.5 0.1 0.9 0.1 0.6]; 

RGSPLR  = [0.3 0.7]; 

RGSPA   = [0.05 0.95]; 

RGMS    = [0.2 0.8]; 

RGSFRTL = [0.3 0.7]; 

RGTA    = [0.2 0.8]; 

RGSD    = [0.95 0.9 0.85 0.8 0.7 0.6 0.4 0.1 ... 

           0.05 0.1 0.15 0.2 0.3 0.4 0.6 0.9]; 

RGPD    = [0.9 0.7 0.7 0.5 0.5 0.4 0.15 0.05 ... 

           0.1 0.3 0.3 0.5 0.5 0.6 0.85 0.95]; 

RGOSD   = [0.3 0.7]; 

WRGSD   = [0.9 0.9 0.8 0.6 0.4 0.3 0.2 0.05 ... 

           0.1 0.1 0.2 0.4 0.6 0.7 0.8 0.95]; 

PWAO    = [0.2 0.8]; 

TWAWS   = [0.05 0.95]; 

AWI     = [0.9 0.8 0.3 0.1 ... 

           0.1 0.2 0.7 0.9]; 
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WAD     = [0.9 0.7 0.2 0.05 ... 

           0.1 0.3 0.8 0.95]; 

AMI     = [0.95 0.9 0.8 0.8 0.5 0.4 0.3 0.3 ... 

           0.05 0.1 0.2 0.2 0.5 0.6 0.7 0.7]; 

WAMF    = [0.2 0.8]; 

WAMMD   = [0.3 0.7]; 

WAMM    = [0.2 0.8]; 

PWS     = [0.3 0.7]; 

PWM     = [0.1 0.9]; 

POD     = [0.9 0.7 0.3 0.1 ... 

           0.1 0.3 0.7 0.9]; 

PMD     = [0.05 0.95]; 

PPD     = [0.8 0.6 0.4 0.1 ... 

           0.2 0.4 0.6 0.9]; 

DWM     = [0.2 0.8]; 

DWS     = [0.05 0.95]; 

SFS     = [0.4 0.6]; 

PDD     = [0.8 0.6 0.5 0.2 ... 

           0.2 0.4 0.5 0.8]; 

PSD     = [0.7 0.6 0.6 0.3 ... 

           0.3 0.4 0.4 0.7]; 

GDDT    = [0.1 0.9]; 

GCMF    = [0.1 0.9]; 

GCMMD   = [0.2 0.8]; 

GCMM    = [0.2 0.8]; 

GCWS    = [0.1 0.9]; 

PGCO    = [0.2 0.8]; 

GCWD    = [0.8 0.5 0.5 0.3 ... 

           0.2 0.5 0.5 0.7]; 

GCMD    = [0.95 0.9 0.7 0.5 0.5 0.2 0.1 0.05 ... 

           0.05 0.1 0.3 0.5 0.5 0.8 0.9 0.95]; 

CGQI    = [0.9 0.7 0.3 0.1 ... 

           0.1 0.3 0.7 0.9]; 

PGQ     = [0.1 0.9]; 

GCD     = [0.95 0.9 0.5 0.5 0.3 0.2 0.1 0.05 ... 

           0.05 0.1 0.5 0.5 0.7 0.8 0.9 0.95]; 

FAD_F   = [0.99 0.95 0.95 0.9 0.9 0.8 0.85 0.8 0.7 0.6 0.5 0.5 

0.45 0.3 0.1 0.05 ... 

           0.01 0.05 0.05 0.1 0.1 0.2 0.15 0.2 0.3 0.4 0.5 0.5 

0.55 0.7 0.9 0.95]; 

WAD_F   = [0.99 0.95 0.9 0.8 0.9 0.8 0.7 0.7 0.5 0.6 0.5 0.5 0.45 

0.2 0.15 0.05 ... 

           0.01 0.05 0.1 0.2 0.1 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.55 

0.8 0.85 0.95]; 

PPD_F   = [0.95 0.9 0.7 0.6 0.5 0.4 0.2 0.1 ... 

           0.05 0.1 0.3 0.4 0.5 0.6 0.8 0.9]; 

PSD_F   = [0.9 0.8 0.6 0.4 0.4 0.3 0.2 0.05 ... 

           0.1 0.2 0.4 0.6 0.6 0.7 0.8 0.95]; 

GCD_F   = [0.99 0.95 0.9 0.8 0.9 0.8 0.7 0.7 0.5 0.6 0.5 0.5 0.45 

0.2 0.15 0.05 ... 

           0.01 0.05 0.1 0.2 0.1 0.2 0.3 0.3 0.5 0.4 0.5 0.5 0.55 

0.8 0.85 0.95]; 
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% VaR Data Generator 

n_WFMSD = 1000; mu_WFMSD = 20; sigma_WFMSD = 80;  

lambdaStart_WFMSD = -10; deltaStart_WFMSD = 78; xiStart_WFMSD = 

0.26; 

  

n_WRGSD = 1000; mu_WRGSD = 10; sigma_WRGSD = 40;  

lambdaStart_WRGSD = -5; deltaStart_WRGSD = 40; xiStart_WRGSD = 

0.27; 

  

n_WAD = 1000; mu_WAD = 2; sigma_WAD = 6;  

lambdaStart_WAD = 0; deltaStart_WAD = 6; xiStart_WAD = 0.26; 

  

n_PSD = 1000; mu_PSD = 10; sigma_PSD = 30;  

lambdaStart_PSD = -1; deltaStart_PSD = 30; xiStart_PSD = 0.25; 

  

n_PPD = 1000; mu_PPD = 3; sigma_PPD = 12;  

lambdaStart_PPD = -2; deltaStart_PPD = 12; xiStart_PPD = 0.26; 

  

n_GCD = 1000; mu_GCD = 1; sigma_GCD = 2;  

lambdaStart_GCD = 0; deltaStart_GCD = 2; xiStart_GCD = 0.35; 

  

n_FAD = 1000; mu_FAD = 5; sigma_FAD = 15;  

lambdaStart_FAD = -2; deltaStart_FAD = 15; xiStart_FAD = 0.26; 

  

% Initial Inventory 

WFMI_0 = 30; 

AWFI_0 = 20; 

RGI_0 = 50; 

CWGI_0 = 30; 

FWI_0 = 150; 

PWI_0 = 250; 

  

% Price Curve 

demand_0 = 3000; price_slope = 20; 

  

% Marginal Costs 

MRMPC = [1.5 10 1; 

         2.5 20 1]; % Marginal Raw Material Production Cost 

MWAPC = [0.3 0 30; 

         0.1 0 20; 

         0.5 0 25; 

         8.5 0 5; 

         4 0 5]; % Mariginal Window Assembly Processing Cost 
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File name: Assembly_Delays.m 

% Window Assembly Delays Core DBN File 

  

function    [ProbWFMSD, ProbFAD, ProbWRGSD, ProbWAD, ProbPPD, 

ProbPSD, ProbGCD] ... 

      = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F) 

  

% #codegen 

ss = 58; % slice size 

  

% Nodes inside one time slice 

intra = zeros(ss); 

intra(1,5) = 1; 

intra(2,5) = 1; 

intra(3,5) = 1; 

intra(4, 9) = 1; 

intra(5, [6 9]) = 1; 

intra(6, 9) = 1; 

intra(7, 6) = 1; 

intra(8, 6) = 1; 

  

intra(10, 19) = 1; 

intra(11, 13) = 1; 

intra(12, 13) = 1; 

intra(13, 20) = 1; 

intra(14, 19) = 1; 

intra(15, 19) = 1; 

intra(16, 18) = 1; 

intra(17, 18) = 1; 

intra(18, 20) = 1; 

intra(19, 20) = 1; 

  

intra(21, 27) = 1; 

intra(22, 27) = 1; 

intra(23, 27) = 1; 

intra(24, 26) = 1; 
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intra(25, 26) = 1; 

intra(26, 29) = 1; 

intra(27, [26 29]) = 1; 

intra(28, 29) = 1; 

  

intra(30, 32) = 1; 

intra(31, 32) = 1; 

intra(32, 33) = 1; 

  

intra(34, 33) = 1; 

intra(35, 34) = 1; 

intra(36, 34) = 1; 

intra(37, 34) = 1; 

intra(38, 40) = 1; 

intra(39, 40) = 1; 

intra(40, 42) = 1; 

intra(41, 42) = 1; 

  

intra(43, 46) = 1; 

intra(44, 46) = 1; 

intra(45, 47) = 1; 

intra(46, 47) = 1; 

  

intra(48, 56) = 1; 

intra(49, 55) = 1; 

intra(50, 55) = 1; 

intra(51, 55) = 1; 

intra(52, 54) = 1; 

intra(53, 54) = 1; 

intra(54, 58) = 1; 

intra(55, 58) = 1; 

intra(56, 58) = 1; 

intra(57, 56) = 1; 

  

% Nodes with inter-time-slice interaction 

inter = zeros(ss); 

inter(9, 20) = 1; 

inter(20, 33) = 1; 

inter(29, 58) = 1; 

inter(33, 42) = 1; 

inter(42, 47) = 1; 

inter(58, 33) = 1; 

  

% onodes = [2 10 30]; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

  

% Define Temporal Probability Values for Output Variables 

Occuring 

ProbWFMSD = zeros(1,TS); 
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ProbFAD = zeros(1,TS); 

ProbWRGSD = zeros(1,TS); 

ProbWAD = zeros(1,TS); 

ProbPPD = zeros(1,TS); 

ProbPSD = zeros(1,TS); 

ProbGCD = zeros(1,TS); 

  

 

  

% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

22 23 24 25 26 27 28 ... 

    29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 58]; 

eclass2 = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 59 21 

22 23 24 25 26 27 28 ... 

    29 30 31 32 60 34 35 36 37 38 39 40 41 61 43 44 45 46 62 48 

49 50 51 52 53 54 55 56 57 63]; 

% eclass = [eclass1 eclass2]; 

  

onodes = [2 7 10 14 23 25 30 38 44 51 57]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', 

onodes, 'eclass1', eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, FMSPLR); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, FMSPA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, RFMS); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, FMOSD); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, FMPD); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, FMSD); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, FSFS); 

bnet2.CPD{8} = tabular_CPD(bnet2, 8, FSTA); 

bnet2.CPD{9} = tabular_CPD(bnet2, 9, WFMSD); 

bnet2.CPD{10} = tabular_CPD(bnet2, 10, FAMMD); 

bnet2.CPD{11} = tabular_CPD(bnet2, 11, MDDT); 

bnet2.CPD{12} = tabular_CPD(bnet2, 12, PFMQ); 

bnet2.CPD{13} = tabular_CPD(bnet2, 13, FMQI); 

bnet2.CPD{14} = tabular_CPD(bnet2, 14, FAMF); 

bnet2.CPD{15} = tabular_CPD(bnet2, 15, FAMM); 

bnet2.CPD{16} = tabular_CPD(bnet2, 16, TFAWS); 

bnet2.CPD{17} = tabular_CPD(bnet2, 17, PFAO); 

bnet2.CPD{18} = tabular_CPD(bnet2, 18, FAWD); 

bnet2.CPD{19} = tabular_CPD(bnet2, 19, FAMD); 

bnet2.CPD{20} = tabular_CPD(bnet2, 20, FAD); 

bnet2.CPD{21} = tabular_CPD(bnet2, 21, RGSPLR); 

bnet2.CPD{22} = tabular_CPD(bnet2, 22, RGSPA); 

bnet2.CPD{23} = tabular_CPD(bnet2, 23, RGMS); 

bnet2.CPD{24} = tabular_CPD(bnet2, 24, RGSFRTL); 

bnet2.CPD{25} = tabular_CPD(bnet2, 25, RGTA); 

bnet2.CPD{26} = tabular_CPD(bnet2, 26, RGSD); 

bnet2.CPD{27} = tabular_CPD(bnet2, 27, RGPD); 
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bnet2.CPD{28} = tabular_CPD(bnet2, 28, RGOSD); 

bnet2.CPD{29} = tabular_CPD(bnet2, 29, WRGSD); 

bnet2.CPD{30} = tabular_CPD(bnet2, 30, PWAO); 

bnet2.CPD{31} = tabular_CPD(bnet2, 31, TWAWS); 

bnet2.CPD{32} = tabular_CPD(bnet2, 32, AWI); 

bnet2.CPD{33} = tabular_CPD(bnet2, 33, WAD); 

bnet2.CPD{34} = tabular_CPD(bnet2, 34, AMI); 

bnet2.CPD{35} = tabular_CPD(bnet2, 35, WAMF); 

bnet2.CPD{36} = tabular_CPD(bnet2, 36, WAMMD); 

bnet2.CPD{37} = tabular_CPD(bnet2, 37, WAMM); 

bnet2.CPD{38} = tabular_CPD(bnet2, 38, PWS); 

bnet2.CPD{39} = tabular_CPD(bnet2, 39, PWM); 

bnet2.CPD{40} = tabular_CPD(bnet2, 40, POD); 

bnet2.CPD{41} = tabular_CPD(bnet2, 41, PMD); 

bnet2.CPD{42} = tabular_CPD(bnet2, 42, PPD); 

bnet2.CPD{43} = tabular_CPD(bnet2, 43, DWM); 

bnet2.CPD{44} = tabular_CPD(bnet2, 44, DWS); 

bnet2.CPD{45} = tabular_CPD(bnet2, 45, SFS); 

bnet2.CPD{46} = tabular_CPD(bnet2, 46, PDD); 

bnet2.CPD{47} = tabular_CPD(bnet2, 47, PSD); 

bnet2.CPD{48} = tabular_CPD(bnet2, 48, GDDT); 

bnet2.CPD{49} = tabular_CPD(bnet2, 49, GCMF); 

bnet2.CPD{50} = tabular_CPD(bnet2, 50, GCMMD); 

bnet2.CPD{51} = tabular_CPD(bnet2, 51, GCMM); 

bnet2.CPD{52} = tabular_CPD(bnet2, 52, GCWS); 

bnet2.CPD{53} = tabular_CPD(bnet2, 53, PGCO); 

bnet2.CPD{54} = tabular_CPD(bnet2, 54, GCWD); 

bnet2.CPD{55} = tabular_CPD(bnet2, 55, GCMD); 

bnet2.CPD{56} = tabular_CPD(bnet2, 56, CGQI); 

bnet2.CPD{57} = tabular_CPD(bnet2, 57, PGQ); 

bnet2.CPD{58} = tabular_CPD(bnet2, 58, GCD); 

bnet2.CPD{59} = tabular_CPD(bnet2, 78, FAD_F); 

bnet2.CPD{60} = tabular_CPD(bnet2, 91, WAD_F); 

bnet2.CPD{61} = tabular_CPD(bnet2, 100, PPD_F); 

bnet2.CPD{62} = tabular_CPD(bnet2, 105, PSD_F); 

bnet2.CPD{63} = tabular_CPD(bnet2, 116, GCD_F); 

  

  

ev = sample_dbn(bnet2, TS); 

evidence2 = cell(ss,TS); 

  

evidence2(onodes,:) = ev(onodes,:); % all cells besides onodes 

are empty 

  

for T = [1 10] 

    evidence2{onodes(1),T} = 1; 

end 

  

for T = [2 11] 

    evidence2{onodes(1),T} = 2; 

end  
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for T = [3 7] 

    evidence2{onodes(2),T} = 1; 

end 

  

for T = [1 4 7 10] 

    evidence2{onodes(3),T} = 1; 

end 

  

for T = [2 5 8 11] 

    evidence2{onodes(3),T} = 2; 

end 

  

for T = [2 9] 

    evidence2{onodes(4),T} = 1; 

end 

  

for T = 5 

    evidence2{onodes(5),T} = 1; 

end 

  

for T = [3 6] 

    evidence2{onodes(6),T} = 1; 

end 

  

for T = [1 3 5] 

    evidence2{onodes(7),T} = 1; 

end 

  

for T = 6 

    evidence2{onodes(7),T} = 2; 

end 

  

for T = [7 8 9] 

    evidence2{onodes(8),T} = 1; 

end 

  

for T = 10 

    evidence2{onodes(8),T} = 2; 

end 

  

for T = [7 8 9] 

    evidence2{onodes(9),T} = 1; 

end 

  

for T = 10 

    evidence2{onodes(9),T} = 2; 

end 

  

for T = [3 9] 

    evidence2{onodes(10),T} = 1; 

end 
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for T = 5 

    evidence2{onodes(11),T} = 1; 

end 

  

engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

engine2 = enter_evidence(engine2, evidence2); 

  

  

for T = 1:TS 

  

m9 = marginal_nodes(engine2, 9, T); 

m20 = marginal_nodes(engine2, 20, T); 

m29 = marginal_nodes(engine2, 29, T); 

m33 = marginal_nodes(engine2, 33, T); 

m42 = marginal_nodes(engine2, 42, T); 

m47 = marginal_nodes(engine2, 47, T); 

m58 = marginal_nodes(engine2, 58, T); 

  

% marg.T    % Inference Answer 

ProbWFMSD(T)    = m9.T(1); 

ProbFAD(T)      = m20.T(1); 

ProbWRGSD(T)    = m29.T(1); 

ProbWAD(T)      = m33.T(1); 

ProbPPD(T)      = m42.T(1); 

ProbPSD(T)      = m47.T(1); 

ProbGCD(T)      = m58.T(1); 

  

end 

  

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

% ProbCustOrdLvl = ProbCustOrdLvl.VRiskHi; 

 

 

File Name: Assembly_Delays_no_miti.m 

% Window Assembly Delays Core DBN File 

  

function    [ProbWFMSD, ProbFAD, ProbWRGSD, ProbWAD, ProbPPD, 

ProbPSD, ProbGCD] ... 
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      = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F) 

  

% #codegen 

ss = 58; % slice size 

  

% Nodes inside one time slice 

intra = zeros(ss); 

intra(1,5) = 1; 

intra(2,5) = 1; 

intra(3,5) = 1; 

intra(4, 9) = 1; 

intra(5, [6 9]) = 1; 

intra(6, 9) = 1; 

intra(7, 6) = 1; 

intra(8, 6) = 1; 

  

intra(10, 19) = 1; 

intra(11, 13) = 1; 

intra(12, 13) = 1; 

intra(13, 20) = 1; 

intra(14, 19) = 1; 

intra(15, 19) = 1; 

intra(16, 18) = 1; 

intra(17, 18) = 1; 

intra(18, 20) = 1; 

intra(19, 20) = 1; 

  

intra(21, 27) = 1; 

intra(22, 27) = 1; 

intra(23, 27) = 1; 

intra(24, 26) = 1; 

intra(25, 26) = 1; 

intra(26, 29) = 1; 

intra(27, [26 29]) = 1; 

intra(28, 29) = 1; 

  

intra(30, 32) = 1; 

intra(31, 32) = 1; 
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intra(32, 33) = 1; 

  

intra(34, 33) = 1; 

intra(35, 34) = 1; 

intra(36, 34) = 1; 

intra(37, 34) = 1; 

intra(38, 40) = 1; 

intra(39, 40) = 1; 

intra(40, 42) = 1; 

intra(41, 42) = 1; 

  

intra(43, 46) = 1; 

intra(44, 46) = 1; 

intra(45, 47) = 1; 

intra(46, 47) = 1; 

  

intra(48, 56) = 1; 

intra(49, 55) = 1; 

intra(50, 55) = 1; 

intra(51, 55) = 1; 

intra(52, 54) = 1; 

intra(53, 54) = 1; 

intra(54, 58) = 1; 

intra(55, 58) = 1; 

intra(56, 58) = 1; 

intra(57, 56) = 1; 

  

% Nodes with inter-time-slice interaction 

inter = zeros(ss); 

inter(9, 20) = 1; 

inter(20, 33) = 1; 

inter(29, 58) = 1; 

inter(33, 42) = 1; 

inter(42, 47) = 1; 

inter(58, 33) = 1; 

  

% onodes = [2 10 30]; % observed 

dnodes = 1:ss; % discrete 

ns = 2*ones(1,ss); % binary nodes 

  

TS = 12; % Number of Time Slice 

  

% Define Temporal Probability Values for Output Variables 

Occuring 

ProbWFMSD = zeros(1,TS); 

ProbFAD = zeros(1,TS); 

ProbWRGSD = zeros(1,TS); 

ProbWAD = zeros(1,TS); 

ProbPPD = zeros(1,TS); 

ProbPSD = zeros(1,TS); 

ProbGCD = zeros(1,TS); 
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% DBN (In order to get the probability value at t = 2:TS) 

eclass1 = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

22 23 24 25 26 27 28 ... 

    29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

49 50 51 52 53 54 55 56 57 58]; 

eclass2 = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 59 21 

22 23 24 25 26 27 28 ... 

    29 30 31 32 60 34 35 36 37 38 39 40 41 61 43 44 45 46 62 48 

49 50 51 52 53 54 55 56 57 63]; 

% eclass = [eclass1 eclass2]; 

  

onodes = [2 7 10 14 23 25 30 38 44 51 57]; 

  

bnet2 = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', 

onodes, 'eclass1', eclass1, 'eclass2', eclass2); 

  

bnet2.CPD{1} = tabular_CPD(bnet2, 1, FMSPLR); 

bnet2.CPD{2} = tabular_CPD(bnet2, 2, FMSPA); 

bnet2.CPD{3} = tabular_CPD(bnet2, 3, RFMS); 

bnet2.CPD{4} = tabular_CPD(bnet2, 4, FMOSD); 

bnet2.CPD{5} = tabular_CPD(bnet2, 5, FMPD); 

bnet2.CPD{6} = tabular_CPD(bnet2, 6, FMSD); 

bnet2.CPD{7} = tabular_CPD(bnet2, 7, FSFS); 

bnet2.CPD{8} = tabular_CPD(bnet2, 8, FSTA); 

bnet2.CPD{9} = tabular_CPD(bnet2, 9, WFMSD); 

bnet2.CPD{10} = tabular_CPD(bnet2, 10, FAMMD); 

bnet2.CPD{11} = tabular_CPD(bnet2, 11, MDDT); 

bnet2.CPD{12} = tabular_CPD(bnet2, 12, PFMQ); 

bnet2.CPD{13} = tabular_CPD(bnet2, 13, FMQI); 

bnet2.CPD{14} = tabular_CPD(bnet2, 14, FAMF); 

bnet2.CPD{15} = tabular_CPD(bnet2, 15, FAMM); 

bnet2.CPD{16} = tabular_CPD(bnet2, 16, TFAWS); 

bnet2.CPD{17} = tabular_CPD(bnet2, 17, PFAO); 

bnet2.CPD{18} = tabular_CPD(bnet2, 18, FAWD); 

bnet2.CPD{19} = tabular_CPD(bnet2, 19, FAMD); 

bnet2.CPD{20} = tabular_CPD(bnet2, 20, FAD); 

bnet2.CPD{21} = tabular_CPD(bnet2, 21, RGSPLR); 

bnet2.CPD{22} = tabular_CPD(bnet2, 22, RGSPA); 

bnet2.CPD{23} = tabular_CPD(bnet2, 23, RGMS); 

bnet2.CPD{24} = tabular_CPD(bnet2, 24, RGSFRTL); 

bnet2.CPD{25} = tabular_CPD(bnet2, 25, RGTA); 

bnet2.CPD{26} = tabular_CPD(bnet2, 26, RGSD); 

bnet2.CPD{27} = tabular_CPD(bnet2, 27, RGPD); 

bnet2.CPD{28} = tabular_CPD(bnet2, 28, RGOSD); 

bnet2.CPD{29} = tabular_CPD(bnet2, 29, WRGSD); 

bnet2.CPD{30} = tabular_CPD(bnet2, 30, PWAO); 

bnet2.CPD{31} = tabular_CPD(bnet2, 31, TWAWS); 

bnet2.CPD{32} = tabular_CPD(bnet2, 32, AWI); 

bnet2.CPD{33} = tabular_CPD(bnet2, 33, WAD); 

bnet2.CPD{34} = tabular_CPD(bnet2, 34, AMI); 
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bnet2.CPD{35} = tabular_CPD(bnet2, 35, WAMF); 

bnet2.CPD{36} = tabular_CPD(bnet2, 36, WAMMD); 

bnet2.CPD{37} = tabular_CPD(bnet2, 37, WAMM); 

bnet2.CPD{38} = tabular_CPD(bnet2, 38, PWS); 

bnet2.CPD{39} = tabular_CPD(bnet2, 39, PWM); 

bnet2.CPD{40} = tabular_CPD(bnet2, 40, POD); 

bnet2.CPD{41} = tabular_CPD(bnet2, 41, PMD); 

bnet2.CPD{42} = tabular_CPD(bnet2, 42, PPD); 

bnet2.CPD{43} = tabular_CPD(bnet2, 43, DWM); 

bnet2.CPD{44} = tabular_CPD(bnet2, 44, DWS); 

bnet2.CPD{45} = tabular_CPD(bnet2, 45, SFS); 

bnet2.CPD{46} = tabular_CPD(bnet2, 46, PDD); 

bnet2.CPD{47} = tabular_CPD(bnet2, 47, PSD); 

bnet2.CPD{48} = tabular_CPD(bnet2, 48, GDDT); 

bnet2.CPD{49} = tabular_CPD(bnet2, 49, GCMF); 

bnet2.CPD{50} = tabular_CPD(bnet2, 50, GCMMD); 

bnet2.CPD{51} = tabular_CPD(bnet2, 51, GCMM); 

bnet2.CPD{52} = tabular_CPD(bnet2, 52, GCWS); 

bnet2.CPD{53} = tabular_CPD(bnet2, 53, PGCO); 

bnet2.CPD{54} = tabular_CPD(bnet2, 54, GCWD); 

bnet2.CPD{55} = tabular_CPD(bnet2, 55, GCMD); 

bnet2.CPD{56} = tabular_CPD(bnet2, 56, CGQI); 

bnet2.CPD{57} = tabular_CPD(bnet2, 57, PGQ); 

bnet2.CPD{58} = tabular_CPD(bnet2, 58, GCD); 

bnet2.CPD{59} = tabular_CPD(bnet2, 78, FAD_F); 

bnet2.CPD{60} = tabular_CPD(bnet2, 91, WAD_F); 

bnet2.CPD{61} = tabular_CPD(bnet2, 100, PPD_F); 

bnet2.CPD{62} = tabular_CPD(bnet2, 105, PSD_F); 

bnet2.CPD{63} = tabular_CPD(bnet2, 116, GCD_F); 

  

  

ev = sample_dbn(bnet2, TS); 

evidence2 = cell(ss,TS); 

  

evidence2(onodes,:) = ev(onodes,:); % all cells besides onodes 

are empty 

  

for T = [1 10] 

    evidence2{onodes(1),T} = 1; 

end 

  

% for T = [2 11] 

%     evidence2{onodes(1),T} = 2; 

% end  

  

for T = [3 7] 

    evidence2{onodes(2),T} = 1; 

end 

  

for T = [1 4 7 10] 

    evidence2{onodes(3),T} = 1; 

end 
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% for T = [2 5 8 11] 

%     evidence2{onodes(3),T} = 2; 

% end 

  

for T = [2 9] 

    evidence2{onodes(4),T} = 1; 

end 

  

for T = 5 

    evidence2{onodes(5),T} = 1; 

end 

  

for T = [3 6] 

    evidence2{onodes(6),T} = 1; 

end 

  

for T = [1 3 5] 

    evidence2{onodes(7),T} = 1; 

end 

  

% for T = 6 

%     evidence2{onodes(7),T} = 2; 

% end 

  

for T = [7 8 9] 

    evidence2{onodes(8),T} = 1; 

end 

  

% for T = 10 

%     evidence2{onodes(8),T} = 2; 

% end 

  

for T = [7 8 9] 

    evidence2{onodes(9),T} = 1; 

end 

  

% for T = 10 

%     evidence2{onodes(9),T} = 2; 

% end 

  

for T = [3 9] 

    evidence2{onodes(10),T} = 1; 

end 

  

for T = 5 

    evidence2{onodes(11),T} = 1; 

end 

  

engine2 = smoother_engine(jtree_2TBN_inf_engine(bnet2)); 

engine2 = enter_evidence(engine2, evidence2); 
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for T = 1:TS 

  

m9 = marginal_nodes(engine2, 9, T); 

m20 = marginal_nodes(engine2, 20, T); 

m29 = marginal_nodes(engine2, 29, T); 

m33 = marginal_nodes(engine2, 33, T); 

m42 = marginal_nodes(engine2, 42, T); 

m47 = marginal_nodes(engine2, 47, T); 

m58 = marginal_nodes(engine2, 58, T); 

  

% marg.T    % Inference Answer 

ProbWFMSD(T)    = m9.T(1); 

ProbFAD(T)      = m20.T(1); 

ProbWRGSD(T)    = m29.T(1); 

ProbWAD(T)      = m33.T(1); 

ProbPPD(T)      = m42.T(1); 

ProbPSD(T)      = m47.T(1); 

ProbGCD(T)      = m58.T(1); 

  

end 

  

  

% Illustration 

  

% isbox = zeros(ss,1); isbox(dnodes) = 1; 

% unfold = 4; 

% draw_dbn(intra, inter, 0, unfold, {'a', 'b', 'c', 'd', 'e', 

'f'}, isbox); % Draw DBN Diagram 

  

% ProbCustOrdLvl = ProbCustOrdLvl.VRiskHi; 

 

 

File Name: mle_gevd_frame_material.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Frame Materials Supplying Delay 

  

x_gen_WFMSD = normrnd(mu_WFMSD, sigma_WFMSD, n_WFMSD, 1); 

  

x_gen_WFMSD2 = zeros(n_WFMSD,1); 

  

for i = 1:n_WFMSD 

     

    if x_gen_WFMSD(i) >= 0; 

        x_gen_WFMSD2(i) = x_gen_WFMSD(i); 
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    else x_gen_WFMSD2(i) = 0; 

    end 

     

end 

  

pdf_gevd_WFMSD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_WFMSD deltaStart_WFMSD xiStart_WFMSD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_WFMSD = mle(x_gen_WFMSD, 'pdf',pdf_gevd_WFMSD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_WFMSD = gevd_paramEsts_WFMSD(1); 

deltaHat_WFMSD = gevd_paramEsts_WFMSD(2); 

xiHat_WFMSD = gevd_paramEsts_WFMSD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbWFMSD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, 

FMSD, FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

WFMSD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_WFMSD(x) = exp(-(1-xiHat_WFMSD.*((x-

lambdaHat_WFMSD)./deltaHat_WFMSD)).^(1./xiHat_WFMSD)); 

  

  

for i = 1:TS 

  

WFMSD_Amount(i) = solve(cdf_gevd_WFMSD == ProbWFMSD(i),x); 
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end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: mle_gevd_raw_glass.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Raw Glass Supplying Delay 

  

  

x_gen_WRGSD = normrnd(mu_WRGSD, sigma_WRGSD, n_WRGSD, 1); 

  

x_gen_WRGSD2 = zeros(n_WRGSD,1); 

  

for i = 1:n_WRGSD 

     

    if x_gen_WRGSD(i) >= 0; 

        x_gen_WRGSD2(i) = x_gen_WRGSD(i); 

    else x_gen_WRGSD2(i) = 0; 

    end 

     

end 

  

pdf_gevd_WRGSD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_WRGSD deltaStart_WRGSD xiStart_WRGSD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_WRGSD = mle(x_gen_WRGSD, 'pdf',pdf_gevd_WRGSD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 
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lambdaHat_WRGSD = gevd_paramEsts_WRGSD(1); 

deltaHat_WRGSD = gevd_paramEsts_WRGSD(2); 

xiHat_WRGSD = gevd_paramEsts_WRGSD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbWRGSD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, 

FMSD, FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

WRGSD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_WRGSD(x) = exp(-(1-xiHat_WRGSD.*((x-

lambdaHat_WRGSD)./deltaHat_WRGSD)).^(1./xiHat_WRGSD)); 

  

  

for i = 1:TS 

  

WRGSD_Amount(i) = solve(cdf_gevd_WRGSD == ProbWRGSD(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

 



177 

 

 

File Name: mle_gevd_glass_cutting.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Glass Cutting Delay 

  

  

x_gen_GCD = normrnd(mu_GCD, sigma_GCD, n_GCD, 1); 

  

x_gen_GCD2 = zeros(n_GCD,1); 

  

for i = 1:n_GCD 

     

    if x_gen_GCD(i) >= 0; 

        x_gen_GCD2(i) = x_gen_GCD(i); 

    else x_gen_GCD2(i) = 0; 

    end 

     

end 

  

pdf_gevd_GCD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_GCD deltaStart_GCD xiStart_GCD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_GCD = mle(x_gen_GCD, 'pdf',pdf_gevd_GCD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_GCD = gevd_paramEsts_GCD(1); 

deltaHat_GCD = gevd_paramEsts_GCD(2); 

xiHat_GCD = gevd_paramEsts_GCD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbGCD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 
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                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

GCD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_GCD(x) = exp(-(1-xiHat_GCD.*((x-

lambdaHat_GCD)./deltaHat_GCD)).^(1./xiHat_GCD)); 

  

  

for i = 1:TS 

  

GCD_Amount(i) = solve(cdf_gevd_GCD == ProbGCD(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: mle_gevd_frame_assembly.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Frame Assembly Delay 

  

x_gen_FAD = normrnd(mu_FAD, sigma_FAD, n_FAD, 1); 

  

x_gen_FAD2 = zeros(n_FAD,1); 

  

for i = 1:n_FAD 

     

    if x_gen_FAD(i) >= 0; 

        x_gen_FAD2(i) = x_gen_FAD(i); 

    else x_gen_FAD2(i) = 0; 
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    end 

     

end 

  

pdf_gevd_FAD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_FAD deltaStart_FAD xiStart_FAD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_FAD = mle(x_gen_FAD, 'pdf',pdf_gevd_FAD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_FAD = gevd_paramEsts_FAD(1); 

deltaHat_FAD = gevd_paramEsts_FAD(2); 

xiHat_FAD = gevd_paramEsts_FAD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbFAD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

FAD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_FAD(x) = exp(-(1-xiHat_FAD.*((x-

lambdaHat_FAD)./deltaHat_FAD)).^(1./xiHat_FAD)); 

  

  

for i = 1:TS 

  

FAD_Amount(i) = solve(cdf_gevd_FAD == ProbFAD(i),x); 
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end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: mle_gevd_window_assembly.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Assembly Delay 

  

x_gen_WAD = normrnd(mu_WAD, sigma_WAD, n_WAD, 1); 

  

x_gen_WAD2 = zeros(n_WAD,1); 

  

for i = 1:n_WAD 

     

    if x_gen_WAD(i) >= 0; 

        x_gen_WAD2(i) = x_gen_WAD(i); 

    else x_gen_WAD2(i) = 0; 

    end 

     

end 

  

pdf_gevd_WAD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_WAD deltaStart_WAD xiStart_WAD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_WAD = mle(x_gen_WAD, 'pdf',pdf_gevd_WAD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_WAD = gevd_paramEsts_WAD(1); 

deltaHat_WAD = gevd_paramEsts_WAD(2); 
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xiHat_WAD = gevd_paramEsts_WAD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbWAD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

WAD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_WAD(x) = exp(-(1-xiHat_WAD.*((x-

lambdaHat_WAD)./deltaHat_WAD)).^(1./xiHat_WAD)); 

  

  

for i = 1:TS 

  

WAD_Amount(i) = solve(cdf_gevd_WAD == ProbWAD(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 
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File Name: mle_gevd_product_packaging.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Product Packaging Delay 

  

x_gen_PPD = normrnd(mu_PPD, sigma_PPD, n_PPD, 1); 

  

x_gen_PPD2 = zeros(n_PPD,1); 

  

for i = 1:n_PPD 

     

    if x_gen_PPD(i) >= 0; 

        x_gen_PPD2(i) = x_gen_PPD(i); 

    else x_gen_PPD2(i) = 0; 

    end 

     

end 

  

pdf_gevd_PPD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_PPD deltaStart_PPD xiStart_PPD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_PPD = mle(x_gen_PPD, 'pdf',pdf_gevd_PPD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_PPD = gevd_paramEsts_PPD(1); 

deltaHat_PPD = gevd_paramEsts_PPD(2); 

xiHat_PPD = gevd_paramEsts_PPD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbPPD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 
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                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

PPD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_PPD(x) = exp(-(1-xiHat_PPD.*((x-

lambdaHat_PPD)./deltaHat_PPD)).^(1./xiHat_PPD)); 

  

  

for i = 1:TS 

  

PPD_Amount(i) = solve(cdf_gevd_PPD == ProbPPD(i),x); 

  

end 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

File Name: mle_gevd_product_shipping_test.m 

% Generalized extreme value distributions (GEVD) Parameter 

Estimate for 

% Window Product Shipping Delay 

  

  

x_gen_PSD = normrnd(mu_PSD, sigma_PSD, n_PSD, 1); 

  

x_gen_PSD2 = zeros(n_PSD,1); 

  

for i = 1:n_PSD 

     

    if x_gen_PSD(i) >= 0; 

        x_gen_PSD2(i) = x_gen_PSD(i); 

    else x_gen_PSD2(i) = 0; 

    end 
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end 

  

pdf_gevd_PSD = @(x,lambda,delta,xi) ... 

    (1./delta).*(exp(-(1-xi.*((x-lambda)./delta)).^(1./xi))).*(1-

xi.*((x-lambda)./delta)).^((1./xi)-1); 

  

start = [lambdaStart_PSD deltaStart_PSD xiStart_PSD]; 

  

lb = []; 

ub = []; 

gevd_paramEsts_PSD = mle(x_gen_PSD, 'pdf',pdf_gevd_PSD, 

'start',start, ... 

    'lower',lb, 'upper',ub); 

  

lambdaHat_PSD = gevd_paramEsts_PSD(1); 

deltaHat_PSD = gevd_paramEsts_PSD(2); 

xiHat_PSD = gevd_paramEsts_PSD(3); 

  

% lambdaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% deltaHat_C = round((gevd_paramEsts(1)*10000))/10000; 

% xiHat_C = round((gevd_paramEsts(1)*10000))/10000; 

  

ProbPSD = Assembly_Delays(FMSPLR, FMSPA, RFMS, FMOSD, FMPD, FMSD, 

FSFS, FSTA, ... 

                        WFMSD, FAMMD, MDDT, PFMQ, FMQI, FAMF, 

FAMM, TFAWS, ... 

                        PFAO, FAWD, FAMD, FAD, RGSPLR, RGSPA, 

RGMS, RGSFRTL, ... 

                        RGTA, RGSD, RGPD, RGOSD, WRGSD, PWAO, 

TWAWS, AWI, ... 

                        WAD, AMI, WAMF, WAMMD, WAMM, PWS, PWM, 

POD, PMD, ... 

                        PPD, DWM, DWS, SFS, PDD, PSD, GDDT, GCMF, 

GCMMD, ... 

                        GCMM, GCWS, PGCO, GCWD, GCMD, CGQI, PGQ, 

GCD, ... 

                        FAD_F, WAD_F, PPD_F, PSD_F, GCD_F); 

                     

PSD_Amount = zeros(1,TS); 

  

syms x 

  

cdf_gevd_PSD(x) = exp(-(1-xiHat_PSD.*((x-

lambdaHat_PSD)./deltaHat_PSD)).^(1./xiHat_PSD)); 

  

  

for i = 1:TS 

  

PSD_Amount(i) = solve(cdf_gevd_PSD == ProbPSD(i),x); 

  

end 



185 

 

 

  

  

% fzero method 

% for i = 1:T 

%      

% fun = @(y_C)(exp(-((1-xiHat_C*((y_C-

lambdaHat_C)/deltaHat_C)).^(1/xiHat_C))) - RCUORiskHi(i)); 

%  

% CEUOR(i) = fzero(fun,y0_C) 

%  

% end 

 

 

 

File Name: Assembly_Equilibrium.m 

 

WFMIR = zeros(200,TS); % Window Frame Materials Inflow Rate 

WFAR = zeros(200,TS); % Window Frame Assembly Rate 

AFCR = zeros(200,TS); % Assembled Frame Consuming Rate 

RGIR = zeros(200,TS); % Raw Glass Inflow Rate 

WGCR = zeros(200,TS); % Window Glass Cutting Rate 

CGCR = zeros(200,TS); % Cutted Glass Consuming Rate 

FWPR = zeros(200,TS); % Finished Window Packaging Rate 

PWSR = zeros(200,TS); % Packaged Window Shipping Rate 

WFMOR = zeros(200,TS); % Window Frame Materials Ordering Rate 

RGOR = zeros(200,TS); % Raw Glass Ordering Rate 

  

WFMI = zeros(200,TS); % Window Frame Materials Inventory 

RGI = zeros(200,TS); % Raw Glass Inventory 

AWFI = zeros(200,TS); % Assembled Window Frame Inventory 

CWGI = zeros(200,TS); % Cutted Window Glass Inventory 

FWI = zeros(200,TS); % Finished Window Inventory 

PWI = zeros(200,TS); % Packaged Window Inventory 

  

q = zeros(1,12); % Optimization Variables 

A = zeros(10,12); 

b = zeros(10,1); 

fval = zeros(200,7,TS); 

Opt_Obj_Val = zeros(1,TS); 

q_result = zeros(200,12,TS); 

% q_hampel = zeros(200,12,TS); 

demand = zeros(200,TS); 

  

for i = 1:TS 
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    %%%%%%%%%%%%%%%% 

    % Optimization % 

    %%%%%%%%%%%%%%%% 

    % 

    %% Cost & Demand Equations 

    % 

    % f1(q_11) = MRMPC(1)*q_11 + 10 

    % f2(q_22) = MRMPC(2)*q_22 + 20 

    % c11(q_11) = 0.5*q_11 + 3.5 (don't need anymore) 

    % c22(q_22) = 0.5*q_22 + 3.5 (don't need anymore) 

    % g1(q_11) = 0.3*q_11 + 1.5 

    % g2(q_22) = 0.1*q_22 + 0.5 

    % h(q_1k) = 0.5*min(q_1k,q_2k) + 8.5 

    % p(q_kl) = 8.5*q_kl + 0.5 

    % s(q_lm) = 4*q_lm + 6 

    % 

        % Market Demand 

%         d(i) = demand_0 - price_slope*q(12); 

     

        f1 = MRMPC(1,1)*(q(1)-WFMSD_Amount(i))^2 ... 

            + MRMPC(1,2)*(q(1)-WFMSD_Amount(i))*(q(2)-

WRGSD_Amount(i)) ... 

            + MRMPC(1,3)*(q(1)-WFMSD_Amount(i)); 

        f2 = MRMPC(2,1)*(q(2)-WRGSD_Amount(i))^2 ... 

            + MRMPC(2,2)*(q(2)-WRGSD_Amount(i))*(q(1)-

WFMSD_Amount(i)) ... 

            + MRMPC(2,3)*(q(2)-WRGSD_Amount(i)); 

        g1 = MWAPC(1,1)*(q(3)-FAD_Amount(i))^2 ... 

            + MWAPC(1,2)*(q(3)-FAD_Amount(i)) + MWAPC(1,3); 

        g2 = MWAPC(2,1)*(q(4)-GCD_Amount(i))^2 ... 

            + MWAPC(2,2)*(q(4)-GCD_Amount(i)) + MWAPC(2,3); 

        h = MWAPC(3,1)*min((q(5)-WAD_Amount(i))^2,(q(6)-

WAD_Amount(i))^2) ... 

            + MWAPC(3,2)*min((q(5)-WAD_Amount(i)),(q(6)-

WAD_Amount(i))) ... 

            + MWAPC(3,3); 

        p = MWAPC(4,1)*(q(7)-PPD_Amount(i))^2 ... 

            + MWAPC(4,2)*(q(7)-PPD_Amount(i)) + MWAPC(4,3); 

        s = MWAPC(5,1)*(q(8)-PSD_Amount(i))^2 ... 

            + MWAPC(5,2)*(q(8)-PSD_Amount(i)) + MWAPC(5,3); 

         

    %% Variables: 

    % 

    % Q = {q_d1,q_d2,q_11,q_22,q_1k,q_2k,q_kl,q_lm} 

    % ROU = {rou_11,rou_22,rou_d,rou_m} 

    % 

    % <=> q = zeros(1,12) 

    % q(1) = q_d1 = WFMOR; q(2) = q_d2 = WRGOR; q(3) = q_11; q(4) 

= q_22; q(5) = q_1k; 

    % q(6) = q_2k; q(7) = q_kl; q(8) = q_lm; q(9) = rou_11; q(10) 

= rou_22; 
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    % q(11) = rou_d; q(12) = rou_m; 

    %% Constraints: 

    %   Flow Constraints: 

    % 

    %   d(rou_m) = demand_0 - price_slope*rou_m <= 100*q_lm 

    %   q_d1 <= 4*d(rou_m) = 4*(demand_0 - price_slope*rou_m) 

    %   q_d2 <= (1/3)*d(rou_m) = (1/3)*(demand_0 - 

price_slope*rou_m) 

    %   4*q_11 <= q_1k 

    %   q_22 <= 3*q_2k 

    %   q_kl <= 10*q_1k 

    %   q_kl <= 10*q_2k 

    %   q_lm <= 10*q_kl 

    %   -q(:,1) <= -WFMSD_Amount(i); 

    %   -q(:,2) <= -WRGSD_Amount(i); 

    %   -q(:,3) <= -FAD_Amount(i); 

    %   -q(:,4) <= -GCD_Amount(i); 

    %   -q(:,5) <= -WAD_Amount(i); 

    %   -q(:,6) <= -WAD_Amount(i); 

    %   -q(:,7) <= -PPD_Amount(i); 

    %   -q(:,8) <= -PSD_Amount(i); 

    % 

    %   Manufacturer's Selling Price 

    % 

    %   sum(Unit Processing Costs) + sum(Raw Material Costs) <= 

rou_m   <=> 

    %   sum(MWAPC) + rou_11 + rou_22 <= rou_m 

    % 

    % 

    %   Consumer's Willing to Pay <= Manufacturer's Selling Price 

    % 

    %   rou_d <= rou_m 

    % 

        A = [0 0 0 0 0 0 0 100 0 0 0 price_slope; 

            1 0 0 0 0 0 0 0 0 0 0 4*price_slope; 

            0 1 0 0 0 0 0 0 0 0 0 (1/3)*price_slope; 

            0 0 -1 0 4 0 0 0 0 0 0 0; 

            0 0 0 -3 0 1 0 0 0 0 0 0; 

            0 0 0 0 -10 0 1 0 0 0 0 0; 

            0 0 0 0 0 -10 1 0 0 0 0 0; 

            0 0 0 0 0 0 -10 1 0 0 0 0; 

            0 0 0 0 0 0 0 0 1 1 0 -1; 

            0 0 0 0 0 0 0 0 0 0 1 -1; 

            -1 0 0 0 0 0 0 0 0 0 0 0; 

            0 -1 0 0 0 0 0 0 0 0 0 0; 

            0 0 -1 0 0 0 0 0 0 0 0 0; 

            0 0 0 -1 0 0 0 0 0 0 0 0; 

            0 0 0 0 -1 0 0 0 0 0 0 0; 

            0 0 0 0 0 -1 0 0 0 0 0 0; 

            0 0 0 0 0 0 -1 0 0 0 0 0; 

            0 0 0 0 0 0 0 -1 0 0 0 0;]; 
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        b = [demand_0 + 100*PSD_Amount(i); 

             4*demand_0 + WFMSD_Amount(i); 

             (1/3)*demand_0 + WRGSD_Amount(i); 

             4*WAD_Amount(i) - FAD_Amount(i); 

             WAD_Amount(i) - 3*GCD_Amount(i); 

             PPD_Amount(i) - 10*WAD_Amount(i); 

             PPD_Amount(i) - 10*WAD_Amount(i); 

             PSD_Amount(i) - 10*PPD_Amount(i); 

             -sum(MWAPC(:,1)); 

             0; 

             -WFMSD_Amount(i); 

             -WRGSD_Amount(i); 

             -FAD_Amount(i); 

             -GCD_Amount(i); 

             -WAD_Amount(i); 

             -WAD_Amount(i); 

             -PPD_Amount(i); 

             -PSD_Amount(i)]; 

     

        Aeq = []; 

        beq = []; 

        lb = zeros(1,12); 

        ub = []; 

         

    %% Objective Functions: 

    % 

    %   Supplier Stage (-Min): 

    %     Max (rou_11*q_d1 + rou_22*q_d2) - (f1 + f2) 

    %   Raw Material Assembly Stage: Min g1*q_11 + g2*q_22 

    %   Windows Assembly Stage: Min h*q_1k 

    %   Windows Packaging Stage: Min p*q_kl 

    %   Windows Shipping Stage: Min s*q_lm 

    %   Manufacturer as a Whole (-Min): Max q_lm*rou_m 

    %   Market Stage: Min q_lm*rou_d 

    % 

        y(1) = -(((q(9)*(q(1)-WFMSD_Amount(i))) + q(10)*(q(2)-

WRGSD_Amount(i))) ... 

            - (f1 + f2)); 

        y(2) = g1*(q(3)-FAD_Amount(i)) + g2*(q(4)-GCD_Amount(i)); 

        y(3) = h*min((q(5)-WAD_Amount(i)),(q(6)-WAD_Amount(i))); 

        y(4) = p*(q(7)-PPD_Amount(i)); 

        y(5) = s*(q(8)-PSD_Amount(i)); 

        y(6) = -(q(8)-PSD_Amount(i))*q(12); 

        y(7) = (q(8)-PSD_Amount(i))*q(11); 

         

    %% Genetic Algorithm Generating Pareto Front 

    FitnessFunction = @(q)[y(1),y(2),y(3),y(4),y(5),y(6),y(7)]; 

    numberOfVariables = 12; 

  

     

    % options = 

optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto}); 
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    [q,fval(:,:,i)] = 

gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub); 

     

%     % Obtain optimization solutions with hampel filter to 

remove outliers 

%     q_hampel(:,:,i) = hampel(q); 

     

    %%%%%%%%%%%%%%%%%%% 

    % System Dynamics % 

    %%%%%%%%%%%%%%%%%%% 

    %% Flows 

    WFMOR(:,i) = q(:,1); 

    RGOR(:,i) = q(:,2); 

    WFMIR(:,i) = WFMOR(:,i) - WFMSD_Amount(i); 

    RGIR(:,i) = RGOR(:,i) - WRGSD_Amount(i); 

    WFAR(:,i) = q(:,3) - FAD_Amount(i); 

    WGCR(:,i) = q(:,4) - GCD_Amount(i); 

    AFCR(:,i) = q(:,5) - WAD_Amount(i); 

    CGCR(:,i) = q(:,6) - WAD_Amount(i); 

    FWPR(:,i) = q(:,7) - PPD_Amount(i); 

    PWSR(:,i) = q(:,8) - PSD_Amount(i); 

     

    %% Inventory Levels 

    if i == 1; 

        WFMI(:,i) = WFMI_0 + WFMIR(:,i) - 4*WFAR(:,i); % 1 

Assembled Frame Consumes 4 Frame Materials 

        AWFI(:,i) = AWFI_0 + WFAR(:,i) - AFCR(:,i); 

        RGI(:,i) = RGI_0 + RGIR(:,i) - (1/3)*WGCR(:,i); % 1 Raw 

Glass Cut into 3 Glass Pieces 

        CWGI(:,i) = CWGI_0 + WGCR(:,i) - CGCR(:,i); 

        FWI(:,i) = FWI_0 + AFCR(:,i) - 10*FWPR(:,i); % 10 

Finished Windows Packaged into 1 Batch 

        PWI(:,i) = PWI_0 + FWPR(:,i) - 10*PWSR(:,i); % 10 Batches 

of Windows Shipped in 1 Truck 

    else 

        WFMI(:,i) = WFMI(:,i-1) + WFMIR(:,i) - 4*WFAR(:,i); % 1 

Assembled Frame Consumes 4 Frame Materials 

        AWFI(:,i) = AWFI(:,i-1) + WFAR(:,i) - AFCR(:,i); 

        RGI(:,i) = RGI(:,i-1) + RGIR(:,i) - (1/3)*WGCR(:,i); % 1 

Raw Glass Cut into 3 Glass Pieces 

        CWGI(:,i) = CWGI(:,i-1) + WGCR(:,i) - CGCR(:,i); 

        FWI(:,i) = FWI(:,i-1) + AFCR(:,i) - 10*FWPR(:,i); % 10 

Finished Windows Packaged into 1 Batch 

        PWI(:,i) = PWI(:,i-1) + FWPR(:,i) - 10*PWSR(:,i); % 10 

Batches of Windows Shipped in 1 Truck 

    end 

     

    q_result(:,:,i) = q(:,:); 

     

    demand(:,i) = demand_0 - price_slope*q(:,12);  
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    Opt_Obj_Val(i) = (-1)*fval(1,1,i)+(-

1)*fval(1,6,i)+fval(1,7,i) ... 

        - (fval(1,2,i)+fval(1,3,i)+fval(1,4,i)+fval(1,5,i)); 

  

end 

  

% Flows 

trans_WFMOR = WFMOR'; 

trans_RGOR = RGOR'; 

trans_WFMIR = WFMIR'; 

trans_RGIR = RGIR'; 

trans_WFAR = WFAR'; 

trans_WGCR = WGCR'; 

trans_AFCR = AFCR'; 

trans_CGCR = CGCR'; 

trans_FWPR = FWPR'; 

trans_PWSR = PWSR'; 

  

% Inventory Levels 

trans_WFMI = WFMI'; 

trans_AWFI = AWFI'; 

trans_RGI = RGI'; 

trans_CWGI = CWGI'; 

trans_FWI = FWI'; 

trans_PWI = PWI'; 

  

Inv_Lvls = zeros(12,200,6); 

Inv_Lvls(:,:,1) = trans_WFMI; 

Inv_Lvls(:,:,2) = trans_AWFI; 

Inv_Lvls(:,:,3) = trans_RGI; 

Inv_Lvls(:,:,4) = trans_CWGI; 

Inv_Lvls(:,:,5) = trans_FWI; 

Inv_Lvls(:,:,6) = trans_PWI; 

  

  

 

 

File Name: Assembly_Equilibrium_no_equil.m 

 

WFMIR = zeros(200,TS); % Window Frame Materials Inflow Rate 

WFAR = zeros(200,TS); % Window Frame Assembly Rate 

AFCR = zeros(200,TS); % Assembled Frame Consuming Rate 

RGIR = zeros(200,TS); % Raw Glass Inflow Rate 

WGCR = zeros(200,TS); % Window Glass Cutting Rate 

CGCR = zeros(200,TS); % Cutted Glass Consuming Rate 

FWPR = zeros(200,TS); % Finished Window Packaging Rate 
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PWSR = zeros(200,TS); % Packaged Window Shipping Rate 

WFMOR = zeros(200,TS); % Window Frame Materials Ordering Rate 

RGOR = zeros(200,TS); % Raw Glass Ordering Rate 

  

WFMI = zeros(200,TS); % Window Frame Materials Inventory 

RGI = zeros(200,TS); % Raw Glass Inventory 

AWFI = zeros(200,TS); % Assembled Window Frame Inventory 

CWGI = zeros(200,TS); % Cutted Window Glass Inventory 

FWI = zeros(200,TS); % Finished Window Inventory 

PWI = zeros(200,TS); % Packaged Window Inventory 

  

q = zeros(1,12); % Optimization Variables 

% A = zeros(10,12); 

% b = zeros(10,1); 

fval = zeros(200,7,TS); 

Opt_Obj_Val_no_equil = zeros(1,TS); 

q_result = zeros(200,12,TS); 

% q_hampel = zeros(200,12,TS); 

demand = zeros(200,TS); 

  

for i = 1:TS 

     

    %%%%%%%%%%%%%%%% 

    % Optimization % 

    %%%%%%%%%%%%%%%% 

    % 

    %% Cost & Demand Equations 

    % 

    % f1(q_11) = MRMPC(1)*q_11 + 10 

    % f2(q_22) = MRMPC(2)*q_22 + 20 

    % c11(q_11) = 0.5*q_11 + 3.5 (don't need anymore) 

    % c22(q_22) = 0.5*q_22 + 3.5 (don't need anymore) 

    % g1(q_11) = 0.3*q_11 + 1.5 

    % g2(q_22) = 0.1*q_22 + 0.5 

    % h(q_1k) = 0.5*min(q_1k,q_2k) + 8.5 

    % p(q_kl) = 8.5*q_kl + 0.5 

    % s(q_lm) = 4*q_lm + 6 

    % 

        % Market Demand 

%         d(i) = demand_0 - price_slope*q(12); 

     

        f1 = MRMPC(1,1)*(q(1)-WFMSD_Amount(i))^2 ... 

            + MRMPC(1,2)*(q(1)-WFMSD_Amount(i))*(q(2)-

WRGSD_Amount(i)) ... 

            + MRMPC(1,3)*(q(1)-WFMSD_Amount(i)); 

        f2 = MRMPC(2,1)*(q(2)-WRGSD_Amount(i))^2 ... 

            + MRMPC(2,2)*(q(2)-WRGSD_Amount(i))*(q(1)-

WFMSD_Amount(i)) ... 

            + MRMPC(2,3)*(q(2)-WRGSD_Amount(i)); 

        g1 = MWAPC(1,1)*(q(3)-FAD_Amount(i))^2 ... 

            + MWAPC(1,2)*(q(3)-FAD_Amount(i)) + MWAPC(1,3); 

        g2 = MWAPC(2,1)*(q(4)-GCD_Amount(i))^2 ... 
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            + MWAPC(2,2)*(q(4)-GCD_Amount(i)) + MWAPC(2,3); 

        h = MWAPC(3,1)*min((q(5)-WAD_Amount(i))^2,(q(6)-

WAD_Amount(i))^2) ... 

            + MWAPC(3,2)*min((q(5)-WAD_Amount(i)),(q(6)-

WAD_Amount(i))) ... 

            + MWAPC(3,3); 

        p = MWAPC(4,1)*(q(7)-PPD_Amount(i))^2 ... 

            + MWAPC(4,2)*(q(7)-PPD_Amount(i)) + MWAPC(4,3); 

        s = MWAPC(5,1)*(q(8)-PSD_Amount(i))^2 ... 

            + MWAPC(5,2)*(q(8)-PSD_Amount(i)) + MWAPC(5,3); 

         

    %% Variables: 

    % 

    % Q = {q_d1,q_d2,q_11,q_22,q_1k,q_2k,q_kl,q_lm} 

    % ROU = {rou_11,rou_22,rou_d,rou_m} 

    % 

    % <=> q = zeros(1,12) 

    % q(1) = q_d1 = WFMOR; q(2) = q_d2 = WRGOR; q(3) = q_11; q(4) 

= q_22; q(5) = q_1k; 

    % q(6) = q_2k; q(7) = q_kl; q(8) = q_lm; q(9) = rou_11; q(10) 

= rou_22; 

    % q(11) = rou_d; q(12) = rou_m; 

    %% Constraints: 

    %   Flow Constraints: 

    % 

    %   d(rou_m) = demand_0 - price_slope*rou_m <= 100*q_lm 

    %   q_d1 <= 4*d(rou_m) = 4*(demand_0 - price_slope*rou_m) 

    %   q_d2 <= (1/3)*d(rou_m) = (1/3)*(demand_0 - 

price_slope*rou_m) 

    %   4*q_11 <= q_1k 

    %   q_22 <= 3*q_2k 

    %   q_kl <= 10*q_1k 

    %   q_kl <= 10*q_2k 

    %   q_lm <= 10*q_kl 

    %   -q(:,1) <= -WFMSD_Amount(i); 

    %   -q(:,2) <= -WRGSD_Amount(i); 

    %   -q(:,3) <= -FAD_Amount(i); 

    %   -q(:,4) <= -GCD_Amount(i); 

    %   -q(:,5) <= -WAD_Amount(i); 

    %   -q(:,6) <= -WAD_Amount(i); 

    %   -q(:,7) <= -PPD_Amount(i); 

    %   -q(:,8) <= -PSD_Amount(i); 

    % 

    %   Manufacturer's Selling Price 

    % 

    %   sum(Unit Processing Costs) + sum(Raw Material Costs) <= 

rou_m   <=> 

    %   sum(MWAPC) + rou_11 + rou_22 <= rou_m 

    % 

    % 

    %   Consumer's Willing to Pay <= Manufacturer's Selling Price 

    % 
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    %   rou_d <= rou_m 

    % 

        A = [0 0 0 0 0 0 0 100 0 0 0 price_slope; 

            1 0 0 0 0 0 0 0 0 0 0 4*price_slope; 

            0 1 0 0 0 0 0 0 0 0 0 (1/3)*price_slope; 

            0 0 -1 0 4 0 0 0 0 0 0 0; 

            0 0 0 -3 0 1 0 0 0 0 0 0; 

            0 0 0 0 -10 0 1 0 0 0 0 0; 

            0 0 0 0 0 -10 1 0 0 0 0 0; 

            0 0 0 0 0 0 -10 1 0 0 0 0; 

            -1 0 0 0 0 0 0 0 0 0 0 0; 

            0 -1 0 0 0 0 0 0 0 0 0 0; 

            0 0 -1 0 0 0 0 0 0 0 0 0; 

            0 0 0 -1 0 0 0 0 0 0 0 0; 

            0 0 0 0 -1 0 0 0 0 0 0 0; 

            0 0 0 0 0 -1 0 0 0 0 0 0; 

            0 0 0 0 0 0 -1 0 0 0 0 0; 

            0 0 0 0 0 0 0 -1 0 0 0 0;]; 

         

        b = [demand_0 + 100*PSD_Amount(i); 

             4*demand_0 + WFMSD_Amount(i); 

             (1/3)*demand_0 + WRGSD_Amount(i); 

             4*WAD_Amount(i) - FAD_Amount(i); 

             WAD_Amount(i) - 3*GCD_Amount(i); 

             PPD_Amount(i) - 10*WAD_Amount(i); 

             PPD_Amount(i) - 10*WAD_Amount(i); 

             PSD_Amount(i) - 10*PPD_Amount(i); 

             -WFMSD_Amount(i); 

             -WRGSD_Amount(i); 

             -FAD_Amount(i); 

             -GCD_Amount(i); 

             -WAD_Amount(i); 

             -WAD_Amount(i); 

             -PPD_Amount(i); 

             -PSD_Amount(i)]; 

     

        Aeq = []; 

        beq = []; 

        lb = zeros(1,12); 

        ub = []; 

         

    %% Objective Functions: 

    % 

    %   Supplier Stage (-Min): 

    %     Max (rou_11*q_d1 + rou_22*q_d2) - (f1 + f2) 

    %   Raw Material Assembly Stage: Min g1*q_11 + g2*q_22 

    %   Windows Assembly Stage: Min h*q_1k 

    %   Windows Packaging Stage: Min p*q_kl 

    %   Windows Shipping Stage: Min s*q_lm 

    %   Manufacturer as a Whole (-Min): Max q_lm*rou_m 

    %   Market Stage: Min q_lm*rou_d 

    % 
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        y(1) = -(((q(9)*(q(1)-WFMSD_Amount(i))) + q(10)*(q(2)-

WRGSD_Amount(i))) ... 

            - (f1 + f2)); 

        y(2) = g1*(q(3)-FAD_Amount(i)) + g2*(q(4)-GCD_Amount(i)); 

        y(3) = h*min((q(5)-WAD_Amount(i)),(q(6)-WAD_Amount(i))); 

        y(4) = p*(q(7)-PPD_Amount(i)); 

        y(5) = s*(q(8)-PSD_Amount(i)); 

        y(6) = -(q(8)-PSD_Amount(i))*q(12); 

        y(7) = (q(8)-PSD_Amount(i))*q(11); 

         

    %% Genetic Algorithm Generating Pareto Front 

    FitnessFunction = @(q)[y(1),y(2),y(3),y(4),y(5),y(6),y(7)]; 

    numberOfVariables = 12; 

  

     

    % options = 

optimoptions(@gamultiobj,'PlotFcn',{@gaplotpareto}); 

    [q,fval(:,:,i)] = 

gamultiobj(FitnessFunction,numberOfVariables,A,b,Aeq,beq,lb,ub); 

     

%     % Obtain optimization solutions with hampel filter to 

remove outliers 

%     q_hampel(:,:,i) = hampel(q); 

     

    %%%%%%%%%%%%%%%%%%% 

    % System Dynamics % 

    %%%%%%%%%%%%%%%%%%% 

    %% Flows 

    WFMOR(:,i) = q(:,1); 

    RGOR(:,i) = q(:,2); 

    WFMIR(:,i) = WFMOR(:,i) - WFMSD_Amount(i); 

    RGIR(:,i) = RGOR(:,i) - WRGSD_Amount(i); 

    WFAR(:,i) = q(:,3) - FAD_Amount(i); 

    WGCR(:,i) = q(:,4) - GCD_Amount(i); 

    AFCR(:,i) = q(:,5) - WAD_Amount(i); 

    CGCR(:,i) = q(:,6) - WAD_Amount(i); 

    FWPR(:,i) = q(:,7) - PPD_Amount(i); 

    PWSR(:,i) = q(:,8) - PSD_Amount(i); 

     

    %% Inventory Levels 

    if i == 1; 

        WFMI(:,i) = WFMI_0 + WFMIR(:,i) - 4*WFAR(:,i); % 1 

Assembled Frame Consumes 4 Frame Materials 

        AWFI(:,i) = AWFI_0 + WFAR(:,i) - AFCR(:,i); 

        RGI(:,i) = RGI_0 + RGIR(:,i) - (1/3)*WGCR(:,i); % 1 Raw 

Glass Cut into 3 Glass Pieces 

        CWGI(:,i) = CWGI_0 + WGCR(:,i) - CGCR(:,i); 

        FWI(:,i) = FWI_0 + AFCR(:,i) - 10*FWPR(:,i); % 10 

Finished Windows Packaged into 1 Batch 

        PWI(:,i) = PWI_0 + FWPR(:,i) - 10*PWSR(:,i); % 10 Batches 

of Windows Shipped in 1 Truck 

    else 
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        WFMI(:,i) = WFMI(:,i-1) + WFMIR(:,i) - 4*WFAR(:,i); % 1 

Assembled Frame Consumes 4 Frame Materials 

        AWFI(:,i) = AWFI(:,i-1) + WFAR(:,i) - AFCR(:,i); 

        RGI(:,i) = RGI(:,i-1) + RGIR(:,i) - (1/3)*WGCR(:,i); % 1 

Raw Glass Cut into 3 Glass Pieces 

        CWGI(:,i) = CWGI(:,i-1) + WGCR(:,i) - CGCR(:,i); 

        FWI(:,i) = FWI(:,i-1) + AFCR(:,i) - 10*FWPR(:,i); % 10 

Finished Windows Packaged into 1 Batch 

        PWI(:,i) = PWI(:,i-1) + FWPR(:,i) - 10*PWSR(:,i); % 10 

Batches of Windows Shipped in 1 Truck 

    end 

     

    q_result(:,:,i) = q(:,:); 

     

    demand(:,i) = demand_0 - price_slope*q(:,12);  

     

    Opt_Obj_Val_no_equil(i) = (-1)*fval(1,1,i)+(-

1)*fval(1,6,i)+fval(1,7,i) ... 

        - (fval(1,2,i)+fval(1,3,i)+fval(1,4,i)+fval(1,5,i)); 

  

end 

  

% Flows 

trans_WFMOR = WFMOR'; 

trans_RGOR = RGOR'; 

trans_WFMIR = WFMIR'; 

trans_RGIR = RGIR'; 

trans_WFAR = WFAR'; 

trans_WGCR = WGCR'; 

trans_AFCR = AFCR'; 

trans_CGCR = CGCR'; 

trans_FWPR = FWPR'; 

trans_PWSR = PWSR'; 

  

% Inventory Levels 

trans_WFMI = WFMI'; 

trans_AWFI = AWFI'; 

trans_RGI = RGI'; 

trans_CWGI = CWGI'; 

trans_FWI = FWI'; 

trans_PWI = PWI'; 

  

Inv_Lvls = zeros(12,200,6); 

Inv_Lvls(:,:,1) = trans_WFMI; 

Inv_Lvls(:,:,2) = trans_AWFI; 

Inv_Lvls(:,:,3) = trans_RGI; 

Inv_Lvls(:,:,4) = trans_CWGI; 

Inv_Lvls(:,:,5) = trans_FWI; 

Inv_Lvls(:,:,6) = trans_PWI; 
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