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ABSTRACT OF THE DISSERTATION

Various Minimization Problems Involving the Total

Variation in One Dimension

by Thomas Sznigir

Dissertation Director: Dr. Haim Brezis

We consider certain minimization problems in one dimension. The first one is the ROF

filter, which was originally introduced in the context of image processing. For the

one-dimensional case, we show that the problem can be reformulated as a variational

inequality, and use this to extend existing regularity results. In addition, we look at the

jump set of solutions and investigate its behavior as certain parameters are changed.

The second functional to be considered arises in the context of regularized interpolation.

The second problem is in the context of regularized interpolation, and the functional

to be minimized uses the total variation as a penalty term. This problem is shown

to be ill-posed with multiple solutions, and the set of solutions is described. Next, we

introduce further regularization methods that lead to unique solutions, and use these

regularized solutions to determine special solutions of the original problem. Finally,

we consider the functional in the space L2. To investigate it, the lower semicontinuous

envelope is constructed. We then characterize the minimizers of the LSC envelope.
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Chapter 1

ROF Filter in One Dimension

1.1 Introduction and Basic Results

1.1.1 Background

Given a function f and a parameter A > 0, the problem of minimizing

J [u] =

∫
Ω
|Du|+A

∫
Ω

(f − u)2 (1.1)

was posed by Rudin, Osher, and Fatemi in [21] in the context of image processing,

where it was formulated as a constrained minimization problem. The two-dimensional

case was the focus originally, but the methods used obtained existence and regularity

results in other dimensions as well.

Briefly, the method used was to show that the level sets {u > t} of the minimizer

satisfied the following minimization problem:

min
E⊂Ω

{
Per(E,Ω) +

∫
E

(t− f(x)) dx

}
Next, one could use properties of the level sets to deduce results about regularity. We

will not go into the details here. See [14] for an overview.

Here, we will concentrate on the one dimensional case. In higher dimensions, the

behavior of the singular part of the derivative of a BV function can be very complicated.

In 1-D, the picture is much simpler. In fact, we can always find nice representatives of

BV functions which will let us consider pointwise behavior. This enables us to obtain

some stronger results in one dimension.

The plan is as follows. For the remainder of Section 1.1, we will show that unique
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minimizers of the ROF filter exist, provide a basic regularity result, and give a solution

in the special case where f is a step function, with the viewpoint of later using step

functions to approximate more general functions. In Section 1.2, we will show that

the problem is equivalent to a certain variational inequality, and use this to deduce

some further regularity results. In Section 1.3, we will consider the effect of varying

the parameter A, in particular showing that the sizes of the jumps of the minimizer are

nondecreasing in A.

For convenience, the relevant background information on functions of bounded variation

can be found in Appendix A.

1.1.2 The Problem

Here, we will define the ROF filter in one dimension. We prove existence of a unique

solution and provide a basic regularity result. Consider the following problem:

Problem 1.1.1. Let f ∈ L2 and A > 0. Minimize the functional

J [u] =

∫ 1

0
|Du|+A

∫ 1

0
(f − u)2 (1.2)

over the space BV ([0, 1]).

Proposition 1.1.2. There exists a unique solution to Problem 1.1.1.

Proof : The functional J in (1.2) is nonnegative. Let {un} be a minimizing sequence.

Then quantities J [un] are bounded. Hence, there is some M > 0 such that

∫ 1

0
(f − un)2 < M∫ 1

0
|Dun| < M

for n = 1, 2, .... This implies that {un} is bounded in BV . Hence, there is a subsequence

{unk} converging strongly in L2 to some u0 ∈ BV . In Corollary A.10 it is shown that
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the total variation is lower semicontinuous in L2, and so J is also lower semicontinuous

in L2. Hence,

J [u0] ≤ lim inf
n→∞

J [un]

Since J is strictly convex we conclude that u0 is the unique minimizer of J in BV .

�

Since the minimizer is of bounded variation, it may contain jumps. In higher dimensions

it has been shown that if f ∈ BV then the jump set of the minimizer u is contained

in the jump set of f , except possibly for a set whose (n − 1)-dimensional Hausdorff

measure is zero (see [12]). In one dimension, we have a stronger result:

Proposition 1.1.3. Let f ∈ L2 and u be the corresponding solution of Problem 1.1.1.

If x0 ∈ (0, 1) such that f(x0 − 0) and f(x0 + 0) exist and are finite, then

|u(x0 + 0)− u(x0 − 0)| ≤ |f(x0 + 0)− f(x0 − 0)| (1.3)

Moreover,

sgn(u(x0 + 0)− u(x0 − 0)) · sgn(f(x0 + 0)− f(x0 − 0)) ≥ 0

Proof : Without loss of generality we may suppose f(x0 − 0) ≤ f(x0 + 0).

If u(x0 − 0) = u(x0 + 0), then u does not have a jump at x0 and we’re done. Suppose

that u(x0 − 0) 6= u(x0 + 0).

Step 1: We will show u(x0 − 0) < u(x0 + 0). We do this by contradiction.

Suppose u(x0 − 0) > u(x0 + 0). Since f(x0 − 0) ≤ f(x0 + 0), this means that either

u(x0−0) > f(x0−0) or u(x0 +0) < f(x0 +0). The cases are similar, so we will consider

the case u(x0 − 0) > f(x0 − 0).

Let λ = max{f(x0 − 0), u(x0 + 0)} and h = u(x0 − 0)− λ. By our assumptions, h > 0.

We will construct a function ũ such that J [ũ] < J [u].
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Choose η > 0 such that

u(x)− u(x0 + 0) >
h

3
,

|u(x)− f(x)| > 2h

3
,

|f(x)− f(x0 − 0)| < h

3

(1.4)

whenever x ∈ (x0 − η, x0). Note that

u(x0 + 0) ≤ max{f(x0 − 0), u(x0 + 0)} < u(x0 − 0)

Let

ũ(x) =

 λ if x0 − η ≤ x ≤ x0

u(x) otherwise
(1.5)

The conditions (1.4) imply that on (x0 − η, x0),

λ− f(x) ≥ −h
3
,

f(x) ≤ λ+
h

3
< u(x)− h

3

Hence,

∫ 1

0
(ũ− f)2 <

∫ 1

0
(u− f)2

Since u(x0 + 0) ≤ λ ≤ u(x0 − 0) on a closed interval containing x0, we may apply

Proposition A.16, and so it holds that

∫ 1

0
|Dũ| ≤

∫ 1

0
|Du|

It follows that J [ũ] < J [u] and so u could not have been the minimizer. The case where

u(x0 + 0) < f(x0 + 0) is similar. Thus, we may conclude that u(x0 − 0) < u(x0 + 0).

Step 2: We will show that if u is a solution to Problem 1.1.1, then u(x0−0) < u(x0 +0)

implies f(x0 − 0) ≤ ũ(x0 − 0) < ũ(x0 + 0) ≤ f(x0 + 0).
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We distinguish three (not necessarily exclusive) possible arrangements of the left- and

right-hand limits of u with those of f , namely:

(i) f(x0 − 0) ≤ u(x0 − 0) < u(x0 + 0) ≤ f(x0 + 0)

(ii) u(x0 − 0) < f(x0 − 0)

(iii) u(x0 + 0) > f(x0 + 0)

Since u(x0 − 0) < u(x0 + 0) and f(x0 − 0) ≤ f(x0 + 0), at least one of (i)-(iii) must

be true. If (i) holds, then there is nothing to prove. We will show that neither (ii) nor

(iii) can hold under the hypothesis u(x0 − 0) < u(x0 + 0). Since (ii) and (iii) are very

similar, we will prove our result for (ii).

Suppose then that u(x0−0) < f(x0−0). We will show that this leads to a contradiction.

The method of proof will depend on whether u(x0 + 0) < f(x0 − 0) or u(x0 + 0) ≥

f(x0 − 0). We therefore distinguish two cases:

Case 1: u(x0 + 0) < f(x0 − 0)

Since u(x0 − 0) < u(x0 + 0) < f(x0 − 0), there exists η > 0 such that

f(x) > u(x0 + 0) > u(x) (1.6)

whenever x ∈ [x0 − η, x0]. Let

ũ(x) =

 u(x0 + 0) if x0 − η ≤ x ≤ x0

u(x) otherwise

From (1.6) it follows that |ũ(x)−f(x)| < |u(x)−f(x)| whenever x ∈ [x0−η, x0]. Hence,

∫ 1

0
(ũ− f)2 <

∫ 1

0
(u− f)2

By Proposition A.16,

∫ 1

0
|Dũ| ≤

∫ 1

0
|Du|

This implies J [ũ] < J [u], which is a contradiction.
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Case 2: u(x0 + 0) ≥ f(x0 + 0).

Let α = f(x0 − 0)− u(x0 − 0). Then the assumption (ii) implies α > 0. Choose η > 0

such that

f(x) > f(x0 − 0)− α

2
> u(x) (1.7)

whenever x ∈ [x0 − η, x0]. Let

ũ(x) =

 f(x0 − 0)− α

2
if x0 − η ≤ x ≤ x0

u(x) otherwise

By (1.7), |ũ(x)− f(x)| < |u(x)− f(x)| whenever x ∈ [x0 − η, x0]. Hence,

∫ 1

0
(ũ− f)2 <

∫ 1

0
(u− f)2

Moreover, since u(x0− 0) ≤ f(x0− 0)− α
2 ≤ u(x0 + 0), we may apply Proposition A.16

and deduce that

∫ 1

0
|Dũ| ≤

∫ 1

0
|Du|

This implies J [ũ] < J [u], which is a contradiction.

We have obtained a contradiction both cases, so statement (ii) is not consistent with

the assumption u(x0 − 0) < u(x0 + 0). We may similarly prove that statement (iii) is

not consistent with this either. Hence, statement (i) must hold, i.e.

f(x0 − 0) ≤ u(x0 − 0) < u(x0 + 0) ≤ f(x0 + 0)

Note that the statement f(x0 − 0) < f(x0 + 0) is a consequence of our assumptions.

This implies (1.3).

We have also shown that if f(x0 − 0) < f(x0 + 0), then either u is continuous or

f(x0 − 0) ≤ u(x0 − 0) < u(x0 + 0) ≤ f(x0 + 0)
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This implies that either sgn(u(x0 + 0)− u(x0− 0)) = sgn(f(x0 + 0)− f(x0− 0)) or else

sgn(u(x0 + 0)− u(x0 − 0)) = 0. Hence,

sgn(u(x0 + 0)− u(x0 − 0)) · sgn(f(x0 + 0)− f(x0 − 0)) ≥ 0

�

Remark: It was shown that if the minimizer satisfies u(x0 − 0) < u(x0 + 0), then

f(x0 − 0) ≤ u(x0 − 0) < u(x0 + 0) ≤ f(x0 + 0). In particular, if one of the one-sided

limits of u does not fall into the interval between f(x0− 0) and f(x0 + 0), then u must

be continuous at x0.

1.1.3 Special Case: Step Functions

Here, we analyze solutions to Problem 1.1.1 in the case where f is a step function. In

this case, the minimizer has a simple form. We provide a method for computing this

minimizer.

Proposition 1.1.4. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and Ei = [xi, xi+1).

Denote by χEi the indicator function of Ei. If there exist constants c0, c1, ..., cn such

that

f(x) =
n∑
i=0

ciχEi(x) (1.8)

then there exist numbers λ0, λ1, ..., λn such that the function

u(x) =

n∑
i=0

λiχEi(x) (1.9)

is the solution of Problem 1.1.1.

Proof : Fix v ∈ BV and 0 ≤ i ≤ n. Choose a left-continuous representative of v and let

ρi = inf
Ei
|v(x)− ci| (1.10)

There exists a sequence {xk} of points in Ei such that
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lim
k→∞

|v(x)− ci| = ρi

This sequence has a limit point y0 in the closure of Ei. Since v ∈ BV , left- and

right-hand limits exist at every point. This implies that either |v(y0 + 0)− ci| = ρi or

|v(y0 − 0)− ci| = ρi.

If |v(y0+0)−ci| = ρi, let λi = v(y0+0). Otherwise, let λi = v(y0−0). Then λi = ci±ρi.

Now consider the function

ṽi(x) =

 λi if x ∈ Ei

v(x) otherwise

By construction,

∫ 1

0
(ṽi − f)2 =

∫ xi

0
(ṽi − f)2 +

∫
Ei

(ṽi − f)2 +

∫ 1

xi+1

(ṽi − f)2

=

∫ xi

0
(v − f)2 +

∫
Ei

(λi − f)2 +

∫ 1

xi+1

(v − f)2

≤
∫ xi

0
(v − f)2 +

∫
Ei

(v − f)2 +

∫ 1

xi+1

(v − f)2

=

∫ 1

0
(v − f)2

(1.11)

with the inequality being strict if v is nonconstant on Ei.

Since y0 is in the closure of Ei and λi equals one of the one-sided limits of v at y0, we

may apply Proposition A.16. Thus,

∫ 1

0
|Dṽi| ≤

∫ 1

0
|Dv|

Hence,

J [ṽi] ≤ J [v]

with strict inequality if v is nonconstant on Ei.
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Thus, we cannot do better than a constant on Ei. This holds for i = 1, 2, ..., n. Hence,

(1.2) is minimized by a piecewise constant function if f is piecewise constant, and this

is the unique minimizer.

�

This effectively reduces the problem to a finite-dimensional one:

Problem 1.1.5. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and let ∆xi = xi+1 − xi.

Given numbers c0, c1, ..., cn, minimize the function

J(λ0, λ1, ..., λn) =

n∑
i=0

|λi+1 − λi|+A

n∑
i=0

(λi − ci)2∆xi (1.12)

Next, let us compute an explicit solution. First, we have a very basic result:

Lemma 1.1.6. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and let numbers c0, c1, ..., cn

be given. Let λ0, λ1, ..., λn be the corresponding solution of Problem 1.1.5. If ci ≤ ci+1,

then

λi ≤ λi+1

Similarly, if If ci ≥ ci+1, then

λi ≥ λi+1

Proof : The numbers c0, c1, ..., cn define a function f be as in (1.8). Then, by Proposition

1.1.4, the corresponding solution to Problem 1.1.1 is a function u as in (1.9), with

coefficients λ0, λ1, ..., λn which are the solutions to Problem 1.1.5.

Hence, we may apply Proposition 1.1.3. Since f ∈ BV , this implies that

sgn(u(x+ 0)− u(x− 0)) · sgn(f(x+ 0)− f(x− 0)) ≥ 0

for any x ∈ (0, 1). In particular, we may fix i and let x = xi. In this case, u(xi−0) = λi,

u(xi + 0) = λi+1, f(xi − 0) = ci, and f(xi + 0) = ci+1. Hence,
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sgn(λi+1 − λi) · sgn(ci+1 − ci) ≥ 0

Thus, if ci ≤ ci+1, then sgn(λi+1 − λi) ≥ 0, so λi ≤ λi+1. Likewise, if ci ≥ ci+1, then

λi ≥ λi+1.

�

Next, we try to compute the values of the λi. Differentiation of J gives:

∂J

∂λi
= sgn(λi − λi+1) + sgn(λi − λi−1) + 2A(λi − ci)∆xi

with the obvious modification if i = 0 or i = n. If the values of sgn(λi − λi+1) and

sgn(λi − λi−1) are known, then we can solve for λi. If λi 6= λi−1 and λi 6= λi+1, then

λi = ci −
sgn(λi − λi+1) + sgn(λi − λi−1)

2A∆xi
(1.13)

It is also possible that λi = λi−1 or λi = λi+1. Suppose there is a number τjk with the

property that λi = τjk whenever j ≤ i ≤ k, and λj−1 6= τjk and λk+1 6= τjk. We want

to minimize

j−1∑
i=0

|λi+1 − λi|+A

j−1∑
i=0

(λi − ci)2∆xi +

n∑
i=k+1

|λi+1 − λi|+A

n∑
i=k+1

(λi − ci)2∆xi

+ |λj−1 − τjk|+ |τjk − λk+1|+A

k∑
i=j

(τjk − ci)2∆xi (1.14)

We can differentiate with respect to τjk and find that it vanishes when

τjk =

∑k
i=j ci∆xi

xk+1 − xj
−

sgn(τjk − λk+1) + sgn(τjk − λj−1)

2A(xk+1 − xj)
(1.15)

Remark: Observe that if f is the step function taking the value ci on Ei, then the

first term in the expression for τjk is the average of f from xj to xk+1.

Let us recall the combinatorial notion of a composition. A composition of positive

integer N is a finite sequence a1, a2, ..., ak of positive integers such that
∑k

i=1 ai = N .

A solution of Problem 1.1.5 determines a composition n+1. If we let m be the greatest
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index such that λ0 = λ1 = ... = λm−1, then a1 = m. In the same way we can determine

a2, a3, ..., ak. Let

sj =

j∑
i=1

aj

Let the sets A1, A2, ..., Ak be defined by

Aj =

sj⋃
i=sj−1

Ei (1.16)

We will say that these sets form a partition of [0, 1] into contiguous blocks, and refer

to Aj as a block.

We summarize the above in the following:

Proposition 1.1.7. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and let numbers

c0, c1, ..., cn be given. Let λ0, λ1, ..., λn be the corresponding solution of Problem 1.1.5.

Let a1, a2, ..., ak be the induced composition of n+1 and A1, A2, ..., Ak the corresponding

partition of [0, 1] into contiguous blocks. If Ei ⊂ Aj, then

λi = τ(sj−1sj)

where τ(sj−1sj) is given as in (1.15).

In fact, we may apply Lemma 1.1.6 and write

τjk =

∑k
i=j ci∆xi

xk+1 − xj
− sgn(fk − fk+1) + sgn(fj − fj−1)

2A(xk+1 − xj)
(1.17)

This gives a way to compute the solution to Problem 1.1.1 if we know the appropriate

composition of n + 1 in advance. We have not provided a way to determine this from

the initial conditions. However, it is possible to brute force the solution by trying every

possible composition and using Lemma 1.1.6 to determine the values of sgn(λi+1− λi).

There are 2n compositions of n+ 1, so this method takes exponential time.
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1.1.4 Stability Under Convergence of f

The space of step functions is dense in L2 (see Proposition C.2). We would like to

approximate the function f in Problem 1.1.1 with step functions, with the aim of using

the simple form of the solutions to deduce properties of the general case. This question

will be taken up in Section 3. To facilitate our discussion there, we will present some

results on the behavior of J and the minimizers when the function f is varied. In

particular, we will show that if there is a sequence fn converging to f in L2, then the

corresponding sequence of minimizers converges strictly in BV .

To this end, we introduce some notation. Given f ∈ L2, let

Jf [u] =

∫ 1

0
|Du|+A

∫ 1

0
(u− f)2

and let uf denote the corresponding minimizer. If we have a sequence {fn}, we may

use Jn and un in lieu of Jfn and ufn .

We have chosen to use superscripts here to denote dependence on f . In Section 3, we

will also investigate dependence on A, and for that application we will use subscripts.

Lemma 1.1.8. If {fn} ⊂ L2 and fn → f0 in L2, then Jn[un]→ J0[u0].

Proof : For any u ∈ BV ,

|J0[u]− Jn[u]| = A

∣∣∣∣∫ 1

0

[
(f0 − u)2 − (fn − u)2

]∣∣∣∣
= A

∣∣∣∣∫ 1

0

[
(f2

0 − f2
n) + 2u(fn − f0)

]∣∣∣∣
= A

∣∣∣∣∫ 1

0
(f0 + fn + 2u)(fn − f0)

∣∣∣∣
≤ A||f0 + fn + 2u||2||fn − f0||2

(1.18)

Since f0, u ∈ L2, and {fn} is a bounded subset of L2, there exists M such that ||f0 +

fn + 2u||2 < M for n = 1, 2, .... Hence, (1.18) implies

lim
n→∞

|J0[u]− Jn[u]| = 0
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Let ε > 0. Then, for sufficiently large n,

|J0[u0]− Jn[u0]| < ε

Since Jn[un] ≤ Jn[u0] for all n, this implies Jn[un] ≤ J0[u0] + ε. Hence,

lim sup
n→∞

Jn[un] ≤ J0[u0] (1.19)

Denote the average value of f by f̄ . The minimizer uf satisfies

∫ 1

0
(f − uf )2 ≤ Jf [uf ]

≤ Jf [f̄ ]

=

∫ 1

0
(f − f̄)2

It follows that

||uf ||L2 ≤ ||f ||L2 + ||uf − f ||L2

≤ ||f ||L2 + ||f − f̄ ||L2

≤ 2||f ||L2

(1.20)

By (1.18), this implies

|J0[un]− Jn[un]| ≤ A||f0 + fn + 2u||2 ||fn − f0||2

≤ (||f0||2 + 5||fn||2)||fn − f0||2

≤ (6||f0||2 + 5ε)ε

for sufficiently large n. Thus, for some constant C and ε small, J0[un] ≤ Jn[un]+Cε for

sufficiently large n. Since u0 is a minimizer of J0, for any n, J0[u0] ≤ J0[un]. Hence,

J0[u0] ≤ lim inf
n→∞

Jn[un]

It follows from (1.19) that

lim
n→∞

Jn[un] = J0[u0]
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�

Proposition 1.1.9. Under the same hypothesis as in Lemma 1.1.8, un → u0 in L2.

Proof : First, we find that

|J0[un]− J0[u0]| ≤ |J0[un]− Jn[un]|+ |Jn[un]− J0[u0]|

Both quantities on the right hand side to go 0 as n→∞, so we conclude that

lim
n→∞

|J0[un]− J0[u0]| = 0 (1.21)

Next, we compute

J0[u0] ≤ J0

[
un + u0

2

]
=

∫ 1

0

∣∣∣∣D(u0 + un

2

)∣∣∣∣+A

∫ 1

0

(
f0 −

un + u0

2

)2

=
1

2

∫ 1

0
|D(un + u0)|+ A

2

∫ 1

0

(
(f0 − u0)2 + (f0 − un)2

)
−A

∫ 1

0

(
un

2
− u0

2

)2

≤ 1

2
(J0[un] + J0[u0])−A

∫ (
un

2
− u0

2

)2

(1.22)

Hence

J0[u0] ≤ J0[un]− 2A

∫ (
un

2
− u0

2

)2

Taking the limit on both sides, it follows from (1.21) and the fact that A > 0 that

lim
n→∞

∫ (
un

2
− u0

2

)2

≤ 0

Since this quanity is nonnegative, the limit must be 0.

�

Proposition 1.1.10. The sequence {un} converges strictly to u0 in BV .
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Proof : Lemma 1.1.8 and Proposition 1.1.9 imply that

lim
n→∞

∫ 1

0
|Dun| =

∫ 1

0
|Du0|

Moreover,

∫ 1

0
|un − u| ≤

(∫ 1

0
(un − u)2

) 1
2

whence it follows that un → u in L1. Therefore, {un} converges strictly to u0 in BV .

�

Next, let us recall the notion of Γ-convergence (see [1], Definition 6.12):

Definition 1.1.11. Let (X, d) be a metric space and let F, F1, F2, ... : X → [0,∞]

be functions. We say that the sequence {Fn} Γ-converges to F if the following two

conditions are satisfied:

(i) for any sequence {xn} in X converging to x, the following holds:

lim inf
n→∞

Fn(xn) ≥ F (x)

(ii) for any x ∈ X there exists a sequence {xn} converging to x such that

lim sup
n→∞

Fn(xn) ≤ F (x)

Given a sequence of functions {fn} converging in L2 to some function f , we would

like to determine whether the functionals Jfn Γ-converge to the functional Jf . The

definition requires us to define the functionals Jfn on a metric space. The norm on BV

is not convenient for this purpose. Instead, we can use strict convergence to define a

metric on the space BV ([0, 1]), namely

ρ(u, v) =

∫ 1

0
|u− v|+

∣∣∣∣∫ 1

0
|Du| −

∫ 1

0
|Dv|

∣∣∣∣ (1.23)

In this context, we have the following result:
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Proposition 1.1.12. Let {fn} be a sequence of functions in L2 converging to some

function f . Then the functionals Jfn, as defined on the metric space (BV ([0, 1]), ρ),

Γ-converge to Jf .

Proof : Let {fn} be a sequence of functions in L2 converging to some function f , and

consider the corresponding functionals Jf , Jf1 , Jf2 , .... We will check that conditions

(i) and (ii) of Definition 1.1.11 are satisfied.

Begin with condition (i). Let {vn} be a sequence strictly converging in BV to a limit

function v. This implies that there exists some M > 0 such that

∫ 1

0
|Dvn| ≤M

for n = 1, 2, .... Moreover, these functions are all bounded. Since the sequence {vn}

converges in L1 to v, for sufficiently large n it must be the case that

||v||L∞ ≥ ||vn||L∞ − 2M

Hence, the quantities ||vn||L∞ are uniformly bounded. From the inequality

∫ 1

0
|vn − v|2 ≤ ||v − vn||L∞

∫ 1

0
|vn − v|

it follows that vn → v in L2. Since fn → f in L2 as well, it must be the case that

lim
n→∞

∫ 1

0
(fn − vn)2 =

∫ 1

0
(f − v)2

Since the total variation is lower semicontinuous in L2, it is true that

lim inf
n→∞

∫ 1

0
|Dvn| ≥

∫ 1

0
|Dv|

Hence,

lim inf
n→∞

Jfn [vn] = Jf [v]

This concludes the proof of condition (i).
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Next, we consider condition (ii). Let v ∈ BV be given. Since fn → f in L2,

lim
n→∞

∫ 1

0
(fn − v)2 =

∫ 1

0
(f − v)2

Hence,

lim
n→∞

Jfn [v] = Jf [v]

Condition (ii) is then satisfied by taking the constant sequence defined by vk ≡ v for

k = 1, 2, ....

Therefore, the sequence {Jfn} Γ-converges to Jf .

�

1.2 The Dual Problem and Regularity

We will reformulate our problem in terms of a variational inequality. Specifically, we

relate Problem 1.1.1 to the following:

Problem 1.2.1. Given f ∈ L2, find v ∈ H1
0 ([0, 1]) that minimizes

L[v] =
1

2

∫ 1

0
(v′)2 + 2A

∫ 1

0
fv′ (1.24)

under the constraint |v| ≤ 1.

See Appendix B for analysis of Problem 1.2.1.

1.2.1 Dual Problem

The following result connects Problem 1.1.1 and Problem 1.2.1:

Theorem 1.2.2. Let u be the solution of Problem 1.1.1 and v the solution of Problem

1.2.1. Then

v′ = 2A(u− f) (1.25)

Before presenting the proof, we will give some motivation.
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Motivation

The connection between Problem 1.1.1 and Problem 1.2.1 was suggested by H. Brezis in

[7]. Here we will present a formal calculation, without concern over whether each step

can be rigorously justified. The actual proof relies on a somewhat different argument

and will be presented afterward.

We begin by approximating the absolute value function x 7→ |x|. We take a C2 ap-

proximation by interpolating a polynomial on a small interval [−ε, ε]. This is given

by

jε(x) =


−x if x < −ε

− x
4

8ε3
+

3x2

4ε
+

3ε

8
if −ε ≤ x ≤ ε

x if x > ε

Consider the modified functional

Jε[u] =

∫ 1

0
jε(u

′) + 2A

∫ 1

0
(u− f)2

This has the Euler-Lagrange equation

−(j′ε(u
′))′ + 2A(u− f) = 0 (1.26)

with the natural boundary condition u′(0) = u′(1) = 0. Define βε = j′ε, and introduce

the new unknown v = βε(u
′). Note that the range of βε is [−1, 1], so we always have

|v| ≤ 1. Moreover, since u′ vanishes at 0 and 1 and βε(0) = 0, we must also have

v(0) = v(1) = 0. Substituting, this satisfies

−v′ + 2A(u− f) = 0

Differentiate this expression to obtain

−v′′ + 2Au′ − 2Af ′ = 0
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Observe that βε(u
′) has range [−1, 1], and is in fact one to one on β−1

ε ((−1, 1)). So we

can define γε = β−1
ε on (−1, 1) and extend by continuity to [−1, 1]. Then γε(v) = u′, so

−v′′ + 2Aγε(v)− 2Af ′ = 0

Now we let ε→ 0. Then γε → 0 on (−1, 1), so

−v′′ − 2Af ′ = 0

This is the Euler-Lagrange equation corresponding to the functional

L[v] =
1

2

∫ 1

0
(v′)2 − 2A

∫ 1

0
f ′v

We need v ∈ H1 for this to be defined. We have observed above that v(0) = v(1) = 0,

so we want to minimize over the space H1
0 , and we also have the constraint |v| ≤ 1. In

other words, we recover Problem 1.2.1.

Next, we provide the actual proof.

Main Result

Let f ∈ L2 be given and let v be the corresponding solution to Problem 1.2.1. Then

f has a distributional derivative f ′ ∈ H−1. By Theorem B.3, there exists a Radon

measure µ concentrated on the set where |v| = 1 such that

−v′′ = 2Af ′ + µ (1.27)

in the sense of distributions. Moreover, µ {x : v(x) = 1} is nonpositive and µ {x :

v(x) = −1} is nonnegative. There exists û ∈ BV such that

Dû = −2Aµ (1.28)

and

v′ = 2A(û− f) (1.29)
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We will show that this û is the minimizer of (1.2). Recall first the notion of a subdif-

ferential:

Definition 1.2.3. Let I be a functional on L2([0, 1]). The subdifferential of I at u,

denoted ∂I(u), is the set of h ∈ L2 such that

I[w]− I[u] ≥
∫ 1

0
h(w − u) (1.30)

for all w ∈ L2.

Extend (1.2) to L2 as follows:

J [u] =


∫ 1

0
|Du|+A

∫ 1

0
(f − u)2 if u ∈ BV

+∞ otherwise

(1.31)

Thus extended, J is convex and lower semicontinuous over L2, so we may show that û

is a minimizer by demonstrating that 0 ∈ ∂J(û).

Let V (u) = V (u, [0, 1]), the total variation of u over [0, 1]. The full subdifferential of

the total variation has been computed in [3]. We shall only need the following special

case:

Lemma 1.2.4. Let v and û be as above. Then −v′ ∈ ∂V (û).

Proof : We need to show that

∫ 1

0
|Dw| −

∫ 1

0
|Dû| ≥ −

∫ 1

0
v(w − û)

for all w ∈ L2. If w /∈ BV , then the left hand side is infinite and so the inequality

holds. Suppose then that w ∈ BV .

Let Dû+ and Dû− be the positive and negative components of Dû, respectively. As

noted above, Dû+ is concentrated on the set {x : v(x) = 1} and Dû− is concentrated

on the set {x : v(x) = −1}. Hence,

∫ 1

0
vDû =

∫ 1

0
|Dû|
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Integrating by parts, it follows that

∫ 1

0
|Dû| = −

∫ 1

0
ûv′

Since v ∈ H1
0 and |v| ≤ 1, there exists a sequence {φn} ⊂ C∞0 ([0, 1]) such that ||φn||L∞ ≤

1 for every n and φn → v in the H1 norm. Thus, for any w ∈ BV ,

lim
n→∞

∫ 1

0
wφ′ =

∫ 1

0
wv′

Hence,

−
∫ 1

0
wv′ ≤ sup

{∫ 1

0
ψ′w

}
where the supremum is taken over all ψ ∈ C∞0 such that |ψ(x)| ≤ 1 for all x ∈ [0, 1].

This implies

∫ 1

0
|Dw| ≥ −

∫ 1

0
wv′

Therefore,

∫ 1

0
|Dw| −

∫ 1

0
|Dû| ≥

∫ 1

0
−v′(w − û)

�

Proof of Theorem 1.2.2 : Let

I[u] = A

∫ 1

0
(u− f)2 (1.32)

This has a Gâteaux derivative

I ′(u;h) = 2A

∫ 1

0
h(u− f)

Since J = V + I, this means (see [16], Chapter I, Proposition 5.3)

∂J(û) = ∂V (û) + {2A(û− f)} (1.33)
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By Lemma 1.2.4, −v′ ∈ ∂V (û). Hence, 0 ∈ ∂J(û). Therefore, û is a minimizer of J ,

which is unique by Proposition 1.1.2.

�

Corollary 1.2.5. Let Λ = {x : |v(x)| = 1}. Then u = f on Λ and u is constant on

any connected component of [0, 1] \ Λ.

Corollary 1.2.6. There exists η > 0 such that u is constant on [0, η] and [1− η, 1].

Proof : Since v ∈ H1
0 , v(0) = v(1) = 0, and by continuity it follows that there exists η

such that |v| < 1 on [0, η] and [1− η, 1]. The result follows from Corollary 1.2.5.

�

Corollary 1.2.7. There exist finitely many intervals E1, E2, ..., En such that ∪Ei =

[0, 1] and u|Ei is monotone for i = 1, 2, ..., n.

Proof : If Λ = ∅, then u is constant and we’re done. Suppose, then, that Λ is nonempty.

Let x1 = min{x : |v(x)| = 1}. Without loss of generality we may assume v(x1) = 1.

Let E1 be the maximal subinterval of [0, 1] containing x1 and satisfying v(x) > −1 for

all x ∈ E1. Then Du E1 is a nonnegative measure, so u is nondecreasing on E1. If

E1 = [0, 1], we’re done.

If not, let x2 = sup{x : x ∈ E1}. Then v(x2) = −1. Let E2 be the maximal subinterval

of [0, 1] containing x2 and satisfying v(x) < 1 for all x ∈ E2. Then Du E2 is a

nonpositive measure, so u is nonincreasing on E2. Note that while E1 and E2 are not

disjoint, E1 ∩E2 is a connected subset of [0, 1] \ Λ, so u is constant there by Corollary

2.5.

By repeating this process, we get a sequence of intervals E1, E2, ... such that u is nonde-

creasing on sets of the form E2k+1 and nonincreasing on sets of the form E2k. Moreover,

for every i, there exists x ∈ Ei such that v(x) = (−1)i+1. Since v ∈ H1
0 , it must be the

case that v ∈ BV , which then implies that this process terminates after finitely many

steps.

�
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1.2.2 Regularity

Theorem 1.2.2 enables us to apply results from the theory of variational inequalities

directly to Problem 1.1.1. For the remainder of this subsection, we shall use u to denote

the solution to Problem 1.1.1.

The following regularity result was shown in [13]. It was originally proven for open,

convex domains of finite perimeter in dimension N ≤ 7.

Theorem 1.2.8. If f ∈ C0,β locally in (0, 1) for some β ∈ (0, 1], then u ∈ C0,β locally

in (0, 1).

In one dimension, we have the following:

Proposition 1.2.9. If f ∈W 1,p for some 1 ≤ p ≤ ∞, then u ∈W 1,p.

Proof : We have f ′ ∈ Lp. In our case, the results of [10] imply v′′ ∈ Lp. From (1.27) it

then follows that u′ ∈ Lp. Hence, u ∈W 1,p.

�

If we impose some extra regularity on f , we can push this a little bit further.

Proposition 1.2.10. If f ∈ C0,1 and f ′ ∈ BV , then u ∈ C0,1 and u′ ∈ BV .

Proof : By a result in [9], since f ′ ∈ BV , the solution v of Problem 1.2.1 has the

property that v′′ ∈ BV . From (1.27) it then follows that u′ ∈ BV .

�

If f is nonconstant, then u need not have continuous derivatives, as shown in the

following example:

Example: Let f(x) = x. We compute the solution of Problem 1.2.1. On [0, 1] \ Λ, v

must satisfy

−v′′ = 2A

This means that v is a quadratic polynomial on any subinterval of [0, 1] \ Λ. We have

shown that v ∈ C1((0, 1)). This can only be satisfied if Λ has at most one connected

component.
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If A < 4, then v(x) = Ax(1 − x) satisfies the Euler-Lagrange equation and lies in the

constraint set, so that is the solution and we have u ≡ 0. Suppose A > 4. We want to

find a point ξ1 and constants B1, C1 such that

v(x) = −Ax2 +B1x+ C1

on [0, ξ1], v(0) = 0, v(ξ1) = 1, and v′(ξ1) = 0. This is satisfied by ξ1 = A−
1
2 , C1 = 0,

and B1 = 2
√
A. We have a similar problem of finding an interval [ξ2, 1] over which v is

a quadratic polynomial. In this case, it is found that ξ2 = 1− ξ1.

From this, we can compute the solution to Problem 1.2.1. It is found to be

u(x) =



1√
A

if 0 ≤ x ≤ ξ1

x if ξ1 ≤ x ≤ ξ2

1− 1√
A

if ξ2 ≤ x ≤ 1

This is not differentiable at ξ1 or ξ2, and so u /∈ C1.

1.3 Dependence on the Fidelity Parameter

We investigate the dependence of Problem 1.1.1 on the parameter A. When we wish

to emphasize the dependence on A, we will use the notation

JA[u] =

∫ 1

0
|Du|+A

∫ 1

0
(u− f)2 (1.34)

and the corresponding minimizer will be denoted uA. We will be making use of se-

quences of the form {An} , and to keep notation simple we may write un and Jn in lieu

of uAn and JAn , respectively.

Let us consider the effect of changes in A on the solution of Problem 1.1.1.

Lemma 1.3.1. If A1 ≤ A2, then JA1 [uA1 ] ≤ JA2 [uA2 ].

Proof : We have
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JA1 [uA1 ] ≤ JA1 [uA2 ]

=

∫ 1

0
|DuA2 |+A1

∫ 1

0
(uA2 − f)2

≤
∫ 1

0
|DuA2 |+A1

∫ 1

0
(uA2 − f)2 + (A2 −A1)

∫ 1

0
(uA2 − f)2

= JA2 [uA2 ]

�

Proposition 1.3.2. Let f be given. Then the mapping A 7→ JA[uA] is continuous for

A > 0.

Proof : If f is constant, then we’re done. So suppose f is nonconstant. Fix A0. Let

ε > 0, let f̄ be the mean value of f , and let

b =

∫ 1

0
(f − f̄)2

Note that for any A > 0,

JA[f̄ ] = A

∫ 1

0
(f − f̄)2

and so the minimizer uA must satisfy

∫ 1

0
(f − uA)2 ≤

∫ 1

0
(f − f̄)2 (1.35)

Choose A such that A0 < A < A0 +
ε

b
. Then:

0 ≤ JA[uA]− JA0 [u0]

by Lemma 1.3.1. Since uA minimizes JA,

JA[uA]− JA0 [uA0 ] ≤ JA[uA0 ]− JA0 [uA0 ]

= (A−A0)

∫ 1

0
(f − uA0)2

≤ (A−A0)b

< ε
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Hence, the mapping is continuous from the right.

Now choose A such that A0 > A > A0 −
ε

b
. Then

0 ≤ JA0 [uA0 ]− JA[uA]

≤ JA0 [uA]− JA[uA]

≤ (A0 −A)

∫ 1

0
(f − uA)2

≤ (A0 −A)b

< ε

This implies continuity from the left. Therefore, A 7→ JA[uA] is continuous.

�

Proposition 1.3.3. If the sequence {An} converges to A0, then

lim
n→∞

∫ 1

0
(uAn − uA0)2 = 0

Proof : By Lemma 1.3.1, there exists M > 0 such that

JAn [uAn ] ≤M

for n = 1, 2, .... Recalling the expression for JAn , (1.1.1), this means that sequence of

minimizers {uAn} is bounded in BV , so there is a subsequence converging strongly in

L2 to some u∞ ∈ L2 ∩ BV . Relabel the subsequence as {uAn}. Lower semicontinuity

of JA0 in L2 implies

JA0 [u∞] ≤ lim inf
n→∞

JA0 [uAn ]

We may write

JA0 [uAn ] =

∫ 1

0
|DuAn |+An

∫ 1

0
(f − uAn)2

=

∫ 1

0
|DuAn |+A0

∫ 1

0
(f − uAn)2 + (An −A0)

∫ 1

0
(f − uAn)2

= JAn [uAn ] + (An −A0)

∫ 1

0
(f − uAn)2

(1.36)
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Since An → A and {uAn} is bounded in L2, taking the limit inferior on both sides

implies

lim inf
n→∞

JA0 [uAn ] = lim inf
n→∞

JAn [uAn ]

By Proposition 1.3.2, lim infn→∞ JAn [uAn ] = JA0 [uA0 ]. Hence,

JA0 [u∞] ≤ JA0 [uA0 ]

Since u0 is the unique minimizer of JA0 , this implies u∞ = u0. Hence, for any sequence

{An} converging to A0, the sequence {uAn} has a subsequence converging in L2 to u0.

�

Corollary 1.3.4. Let {An} be a sequence of positive numbers converging to some A0 >

0. Then

lim
n→∞

∫ 1

0
(f − uAn)2 =

∫ 1

0
(f − uA0)2

Corollary 1.3.5. Under the hypotheses of Corollary 1.3.4,

lim
n→∞

∫ 1

0
|DuAn | =

∫ 1

0
|DuA0 |

Proof : Follows from Corollary 1.3.4 and Proposition 1.3.3.

Corollary 1.3.6. Both

∫ 1

0
(f − uA)2 and

∫ 1

0
|DuA| are continuous functions of A for

A > 0.

Remark: The above continuity can be used to extend JA[uA] to the case A = 0, where

the minimizer is a constant. In fact, the minimizer of
∫ 1

0 (f − c)2 over all constants c is

the average of f over [0, 1].

Proposition 1.3.7.

∫ 1

0
(f − uA)2 is a nonincreasing in A.

Proof : Suppose, on the contrary, that there exist A1 and A2 such that A1 < A2 and
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∫ 1

0
(f − u1)2 <

∫ 1

0
(f − u2)2

Extending (1.2) by continuity to the case A = 0, where uA is the constant f̄ , it follows

from (1.35) that

∫ 1

0
(f − uA)2 ≥

∫ 1

0
(f − u1)2

∫ 1

0
(f − uA)2 ≥

∫ 1

0
(f − u2)2

(1.37)

Hence, by continuity, there exists 0 < A0 < A2 such that

∫ 1

0
(f − u0)2 =

∫ 1

0
(f − u2)2

Since u0 minimizes JA0 and u2 minimizes JA2 , we must also have

∫ 1

0
|Du0| =

∫ 1

0
|Du2|

This implies that u0 minimizes JA2 and u2 minimizes JA0 . Since minimizers are unique,

we must have u0 = u2. Let:

αi =

∫ 1

0
(f − ui)2, βi =

∫ 1

0
|Dui|, i = 0, 1

Then

α0 +A0β0 < α1 +A0β1

and

α0 +A2β0 < α1 +A2β1

Since αi +Aβi is affine in A and A0 < A1 < A2, it must also be true that

α0 +A1β0 < α1 +A1β1

Hence, JA1 [u0] < JA1 [u1], contradicting our assumption that u1 is a minimizer.
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�

Corollary 1.3.8. The total variation V (uA) is a nondecreasing function of A.

As the following example shows, Proposition 1.3.7 need not hold locally.

Example: Let

f(x) =


−1 if 0 ≤ x < 1 or

5

2
≤ x ≤ 7

2

0 if
3

2
≤ x < 2

1 if 1 ≤ x < 3

2
or 2 ≤ x < 5

2

For reference, here is a plot:

Since f is a step function, we may compute an exact solution, as in Section 1.1.3. For

this example, we need only worry about λ3.

When A = 2,

λ3 = 0

However, when A = 4, we find that

λ3 =
1

2
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Thus, letting u2 denote the minimizer corresponding to A = 2 and u4 denote the

minimizer corresponding to A = 4,

∫ 2

3
2

(u2 − f)2 <

∫ 2

3
2

(u4 − f)2

1.3.1 The Jump Set

In contrast to the counterexample at the end of the previous section, we will show that

the sizes of the jumps of the minimizers are nondecreasing in A. First we will prove it

for step functions, and then we will use that to prove the general case.

Lemma 1.3.9. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and Ei = [xi, xi+1). Let

c0, c1, ..., cn be real numbers and let

f(x) =

n∑
i=0

ciχEi(x)

Let uA be the corresponding solution of Problem 1.1.1. Then

uA(x) =
n∑
i=0

λi(A)χEi(x)

and the mapping A 7→ λi(A) is continuous for i = 0, 1, 2, ..., n.

Proof : This follows from Proposition 1.1.7.

For convenience, when the value of A is fixed, we may write λi in lieu of λi(A).

Proposition 1.3.10. Let 0 = x0 < x1 < .... < xn < xn+1 = 1 and Ei = [xi, xi+1). Let

c0, c1, ..., cn be real numbers and let

f(x) =

n∑
i=0

ciχEi(x)

Write the minimizer uA in the form

uA(x) =
n∑
i=0

λi(A)χEi(x)
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If A1 < A2, then

|λi(A1)− λi+1(A1)| ≤ |λi(A2)− λi+1(A2)|

Proof : If λi(A1) = λi+1(A1), there is nothing to prove. So suppose without loss of

generality that λi(A1) > λi+1(A1).

We show that this implies

ci ≥ λi > λi+1 ≥ ci+1

Suppose not. If λi > ci, let

λ̃i = max{ci, λi+1}

Then

(λ̃i − ci)2 < (λi − ci)2

and

|λi−1 − λ̃i|+ |λ̃i − λi+1| < |λi−1 − λi|+ |λi − λi+1|

which contradicts our hypothesis that u was a minimizer. Hence, ci ≥ λi. We may

similarly show that λi+1 ≥ ci+1

Next, we show that λi+1(A) is a nonincreasing function of A. We consider the various

cases:

Case 1: λi+1 6= λi+2.

This means that λi+1 is not part of any larger contiguous block. By continuity this will

be true for all A in some interval (A0 − δ, A0 + δ). If i+ 1 = n, then

λn = cn +
1

2A∆xn)
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The plus sign comes from the hypothesis λi > λi+1. This is a nonincreasing function of

A. If i+ 1 6= n, then either

λi+1 = ci+1 +
1

A∆xi+1

or

λi+1 = ci+1

Either way, λi+1(A) ≥ λi+1(A+ η) for 0 ≤ η ≤ δ.

Case 2: There exists δ > 0 such that λi+1 is part of a block that remains both maximal

and contiguous for A ∈ [A0, A0 + δ).

There exists k such that λi+1 = λi+2 = ... = λk. Let τ(i+1)k denote their common value.

As shown in Proposition 2.7,

τ(i+1)k =

∑k
j=i+1 cj∆xj

xk+1 − xi+1
−

sgn(τ(i+1)k − λk+1) + sgn(τ(i+1)k − λi)
2A(xk+1 − xi+1)

By hypothesis, sgn(τ(i+1)k − λi) = −1. Hence,

ci ≥ λi > τ(i+1)k ≥
∑k

j=i+1 cj∆xj

xk+1 − xi+1

If the last two terms are equal, then λk+1 < τ(i+1)k, and by continuity there is some η

such that

λi(A) > τ(i+1)k(A) > λk+1(A)

for all A ∈ [A0, A0 + η). Hence, equality continues to hold and λi+1 is nonincreasing in

some neighborhood of A0.

On the other hand, if

τ(i+1)k >

∑k
j=i+1 cj∆xj

xk+1 − xi+1
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then sgn(τ(i+1)k − λk+1) is constant on some half-open interval containing A0 and our

expression for τ(i+1)k shows it is nonincreasing there.

Case 3: The maximal contiguous block containing λi+1 splits at A0. More precisely,

suppose λi+1 = λi+2 = ... = λk and λk 6= λk+1. Then there is a decreasing se-

quence An → A0 and a sequence {an} where i + 1 < aj ≤ k for j = 1, 2, ... such that

λan(An)λi+1(An).

Lemma 1.3.9 and the formulas from Proposition 1.1.7 imply that blocks cannot recom-

bine. Every A determines a corresponding solution uA of Problem 1.1.1, which in turn

determines a partition of [0, 1] into contiguous blocks as in Proposition 1.1.7. There

are only finitely many such partitions, so there are only finitely many values of A for

which blocks split.

Hence, there exists δ > 0 such that no splits occur on (A0−δ, A0) or (A0, A0 +δ). Then

Cases 1 and 2 apply, so λi+1 is nonincreasing on (A0−δ, A0) or (A0, A0 +δ). The result

follows by continuity.

Similarly, we may show λi is nondecreasing. Therefore, |λi − λi+1| is nondecreasing.

�

We will prove the general case by an approximation argument. As we will be varying

both the function f and the fidelity constant A, we will introduce some notation to

simplify our expressions. Our functional will be denoted

JfA[u] =

∫ 1

0
|Du|+A

∫ 1

0
(u− f)2 (1.38)

and the corresponding minimizer will be denoted ufA. As before, if we have indices as

in fm or An, we will use Jmn and umn to simplify things.

Theorem 1.3.11. If f ∈ BV ([0, 1]) and A1 < A2, then

|uA1(x+ 0)− uA1(x− 0)| ≤ |uA2(x+ 0)− uA2(x− 0)| (1.39)

for all x ∈ (0, 1).
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Proof : Fix x0 ∈ (0, 1) and let 0 < A1 < A2. Let u1 = uA1 and u2 = uA2 . If f is

continuous at x0, then so are u1 and u2 and we’re done. Suppose then that f has a

jump at x0.

Define a sequence {fk} of step functions such that

lim
k→∞

∫ 1

0
(f − fk)2 = 0

The fk in turn determine sequences {uk1} and {uk2} corresponding to solutions of Prob-

lem 1.1.1 for A1 and A2. These are step functions, so Duki is a purely atomic measure

for i = 1, 2 and k = 1, 2, .... Proposition 3.10 implies that |Duk1|({x}) ≤ |Duk2|({x}) for

any x ∈ (0, 1).

Hence, for any nonnegative ψ ∈ C∞0 ,

∫ 1

0
ψ d(|Duk1|) ≤

∫ 1

0
ψ d(|Duk2|)| (1.40)

By Proposition 1.1.10, the sequences {uk1} and {uk2} converge strictly in BV, so they

also converge weak* in BV. Hence,

lim
k→∞

∫ 1

0
ψ d(|Duki |) =

∫ 1

0
ψ d(|Dui|)

for i = 1, 2. By (1.40), this implies

∫ 1

0
ψ d(|Du1|) ≤

∫ 1

0
ψ d(|Du2|)| (1.41)

for all ψ ∈ C∞0 ([0, 1]).

Now suppose, on the contrary, that |u1(x0 +0)−u1(x0−0)| > |u2(x0 +0)−u2(x0−0)|.

Let

ε = |u1(x0 + 0)− u1(x0 − 0)| − |u2(x0 + 0)− u2(x0 − 0)|

We can decompose u1 into the sum of a continuous function g1 and a pure jump function

j1. We may enumerate the jumps of j1. Excluding a possible jump at x0, let y1, y2, ...

denote the other jump points. There exists δ1 > 0 such that
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∑
yi∈(x0−δ1,x0+δ1)

|u(yi + 0)− u(yi − 0)| < ε

6

and, since Dg1 is a diffuse measure, we may further require that

∫ x0+δ1

x0−δ1
|Dg1| <

ε

6

Thus,

∣∣∣∣|u1(x0 + 0)− u1(x0 − 0)|
∫ x0+δ1

x0−δ1
|Du1|

∣∣∣∣ < ε

3
(1.42)

We may similarly decompose u2 into g2 + j2 and likewise choose δ2 such that

∣∣∣∣|u2(x0 + 0)− u2(x0 − 0)| −
∫ x0+δ2

x0−δ2
|Du2|

∣∣∣∣ < ε

3
(1.43)

Let δ = min{δ1, δ2}. Let φ be a continuous function supported on the interval (x0 −

δ, x0 + δ) such that φ(x0) = 1 and 0 ≤ φ(x) ≤ 1 for all x ∈ [0, 1]. Then

∫ 1

0
φd(|Du1|) =

∫ x0+δ

x0−δ
φd(|Du1|)

= |u1(x0 + 0)− u1(x0 − 0)|+
∫

(x0−δ,0+δ)\{x0}
φd(|Du1|)

(1.44)

Since 0 ≤ φ ≤ 1, it follows from (1.42) that

0 ≤
∫

(x0−δ,x0+δ)\{x0}
φd(|Du1|) <

ε

3

Likewise,

∫ 1

0
φd(|Du2|) = |u2(x0 + 0)− u2(x0 − 0)|+

∫
(x0−δ,x0+δ)\{x0}

φd(|Du2|) (1.45)

and

0 ≤
∫

(x0−δ,x0+δ)\{x0}
φd(|Du2|) <

ε

3
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Hence,

∫ 1

0
φd(|Du1|)−

∫ 1

0
φd(|Du2|)

≥ |u1(x0 + 0)− u1(x0 − 0)| − |u2(x0 + 0)− u2(x0 − 0)| − 2ε

3
(1.46)

This is strictly positive, which is a contradiction. Therefore,

|u1(x0 + 0)− u1(x0 − 0)| ≤ |u2(x0 + 0)− u2(x0 − 0)| (1.47)

The choice of x0 was arbitrary, so this holds for all x ∈ (0, 1).

�
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Chapter 2

Regularized Interpolation

2.1 The Problem

2.1.1 Introduction

The classical interpolation problem is as follows: given a finite sequence of abscissas

x1 < x2 < ... < xn and a set of numbers f1, f2, ..., fn, find a function u such that

u(xi) = fi ∀i = 1, 2..., n (2.1)

We relax this requirement. Instead of mandating equality, we trade goodness of fit off

against a penalty term that imposes regularity. Specifically, we consider the following

functional:

F [u] = A
n∑
i=1

|fi − u(xi)|2 +

∫ 1

0
|Du| (2.2)

This was posed by H. Berestycki in [5]. To investigate its minimizers, we must choose

an appropriate function space. A minimizer would have to be of bounded variation. In

addition, it would have to be continuous at x1, x2, ..., xn in order to make sense of the

first term in (2.2). We begin by investigating minimizers in the space W 1,1. Consider

the following problem:

Problem 2.1.1. Let 0 < x1 < x2 < ... < xn < 1 be given, and to every xi associate a

number fi. Find a function u ∈W 1,1 that minimizes (2.2).

It will be shown that this has many solutions in W 1,1. In the remainder of Section 2.1,

we will prove that these minimizers have certain characteristics in common, namely

that they are monotone on the intervals (xi, xi+1) for i = 1, 2, ..., (n− 1) and moreover
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share a common value at the xi. Afterward, we consider some variants of the problem

and see how things change.

In Section 2.2, we will introduce regularization terms to force a unique solution. Our

first method will replace the total variation term in (2.2) by the Lp norm of the deriva-

tive, for p > 1, which will be shown to have a unique solution in W 1,p. Our other

approach will consider the modifications

F [u] + ε

∫ 1

0
|u′|2

F [u] + ε

∫ 1

0
|u′′|2

(2.3)

which will force a unique solution to the problem in H1 and H2, respectively. Then we

will consider the behavior as ε→ 0.

In Section 2.3, instead of restricting the space, we expand our scope to L2. As (2.2) is

badly behaved there, we will construct its lower-semicontinuous envelope and investigate

that. We will end by partially combining this problem with the ROF filter from Chapter

1 (we take f = 0). While in Section 2.1 we show that

u 7→ F [u] +

∫ 1

0
u2

does not have a minimizer in W 1,1, in Section 2.3 we show that by replacing F with its

lower semicontinuous envelope, the new problem has a minimizer in L2 ∩BV .

Finally, a word on notation. We will associate x1, x2, ..., xn and f1, f2, ..., fn as ordered

pairs (xi, fi). These will be called control points. For simplicity, we will take A = 1 in

(2.2) except where otherwise noted.

2.1.2 Minimizing in W 1,1

We consider Problem 2.1.1. The space W 1,1 is not reflexive. Thus, a bounded se-

quence need not have a subsequence weakly converging to a limit in W 1,1. In general,

minimizing sequences of (2.2) can at best be expected to have a weak limit in BV .
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As a result, we will not use general principles to prove existence. Instead, we will

explicitly construct solutions in W 1,1. To this end, we begin by considering a finite-

dimensional problem in terms of the numbers u(xi) appearing in the first term on the

right-hand side in (2.2).

We introduce the auxiliary problem:

Problem 2.1.2. Given control points (x1, f1), ..., (xn, fn), find u1, u2, ..., un that mini-

mize the function

F(u1, u2, ..., un) =

n∑
i=1

|ui − fi|2 +

n−1∑
i=1

|ui+1 − ui| (2.4)

This is a finite, strictly convex and coercive function on Rn, so a unique minimizer

exists. We shall henceforth use the symbols U1, U2, ..., Un to denote the points that

solve Problem 2.1.2. When convenient, we may represent them as an n-dimensional

vector

U = (U1, U2, ..., Un) (2.5)

Proposition 2.1.3. A function u ∈ W 1,1 is a solution to Problem 2.1.1 if and only if

the numbers u(x1), u(x2), ..., u(xn) are solutions to Problem 2.1.2, and u is monotone

on the intervals (xi, xi+1) and constant on the intervals (0, x1) and (xn, 1).

Proof : Let u ∈ W 1,1. Since u is continuous, the total variation is equivalent to the

classical pointwise variation. In particular,

∫ 1

0
|Du| ≥

n−1∑
i=1

|u(xi+1)− u(xi)|

Hence,

F(u(x1), u(x2), ..., u(xn)) ≤ F [u]

This implies that the minimum of F is bounded from below by the minimum of F, i.e.

that for any u
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F [u] ≥ F(U1, U2, ..., Un) (2.6)

If u is monotone on the intervals (xi, xi+1), then

∫ 1

0
|Du| =

n−1∑
i=1

|u(xi+1)− u(xi)|

and so

F [u] = F(u(x1), u(x2), ..., u(xn))

Therefore, if u(xi) = Ui for every i, and the monotonicity condition holds, then equality

is attained in (2.6). Hence, F attains its lower bound at u and so u is a minimizer.

Conversely, if u is not monotone on some interval [xi, xi+1], then

∫ 1

0
|Du| >

n−1∑
i=1

|u(xi+1)− u(xi)|

and F [u] > F(u(x1), u(x2), ..., u(xn)), so u cannot be a minimizer.

Likewise, if u(xi) 6= Ui for some i, then

F [u] ≥ F(u(x1), u(x2), ..., u(xn)) > F(U1, U2, ..., Un)

Since it is possible to attain equality, as noted above, this implies that u cannot be a

minimizer.

�

Thus, Problem 2.1.1 can be solved by first solving Problem 2.1.2, then interpolating

the values with any monotone functions. Hence, there are many possible solutions to

Problem 2.1.1.

On the Solution of Problem 2.1.2

Here we provide an explicit method to find the exact solution of Problem 2.1.2. We

have shown that a unique solution exists.
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Let control points (x1, f1), (x2, f2), ..., (xn, fn) be given and let U1, U2, ..., Un denote the

solution to Problem 1.2.

There are similarities to the methods used in Section 1.1.3 to find minimizers of (1.1.1)

for step functions. We may recall the notions of a composition and a partition into

contiguous blocks. The difference here is that instead of intervals, we focus on the

discrete set of points x1, x2, ..., xn.

A maximal contiguous block will be a set of indices for which

Ui = Ui+1 = ... = Ui+k

and either i = 1 or Ui−1 6= Ui, and either i+ k = n or Ui+k 6= Ui+k+1. As a convention,

all future contiguous blocks will be assumed maximal unless otherwise noted. If a

contiguous block does not contain 1 or n, we shall call it an interior block.

A solution of Problem 1.1.2 therefore partitions the set {1, 2, ..., n} into contiguous

blocks C1, C2, ..., Cm.

We introduce some more notation. For a maximal contiguous block Cl, the average of

the ordinates of the corresponding control points will be denoted by

f̄l =
1

|Cl|
∑
i∈Cl

fi (2.7)

where |Cl| is the cardinality of Cl. For simplicity, we may drop the subscript l if no

confusion will result.

We will begin by computing the value of the solution on points corresponding to a given

block. To do this, we will have need of the following results:

Lemma 2.1.4. For any i = 1, 2, ..., n− 1, if fi = fi+1, then Ui = Ui+1.

Proof : Suppose i is chosen so that fi = fi+1. Without loss of generality, assume

|Ui − fi| ≤ |Ui+1 − fi+1|
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Let Ũi+1 = Ui. Then

|Ũi+1 − fi+1|2 ≤ |Ui+1 − fi|2

and

|Ũi+1 − Ui|+ |Ui+2 − Ũi+1| = |Ui+2 − Ui|

≤ |Ui+1 − Ui|+ |Ui+2 − Ui+1|

Hence,

F(U1, U2, ..., Ui, Ũi+1, ..., Un) ≤ F(U1, U2, ..., Ui, Ui+1, ..., Un)

By hypothesis, U minimizes F. Since the minimizer is unique, it must follow that

Ũi+1 = Ui+1

and therefore

Ui+1 = Ui

�

Lemma 2.1.5. For any i = 1, 2, ..., n− 1, if Ui 6= Ui+1 then

sgn(Ui − Ui+1) = sgn(fi − fi+1) (2.8)

Proof : Lemma 2.1.4 implies that under these hypotheses, fi 6= fi+1. Without loss of

generality we may assume fi < fi+1.

Compare (2.4) with the (1.12) from Part I. We may apply Lemma 1.1.6 in Part I to

show that fi < fi+1 implies Ui ≤ Ui+1. Since we have assumed Ui 6= Ui+1, this implies

Ui < Ui+1, as desired.

�
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Proposition 2.1.6. Let C = {j, j + 1, ..., j + k} be an interior maximal contiguous

block. Then Uj , Uj+1, ...Uj+k have the common value

c = f̄ +
sgn(fj+k+1 − fj+k)− sgn(fj − fj−1)

2(k + 1)
(2.9)

Proof : By hypothesis, the following hold:

Uj = Uj+1 = ... = Uj+k

Uj 6= Uj−1

Uj+k 6= Uj+k+1

Let c = Uj . Then

F(U1, U2, ..., Un) = F(U1, ..., Uj , Uj+1, ..., Uj+k, ..., Un)

= F(U1, ..., Uj−1, c, ..., c, Uj+k+1, ..., Un)

=
∑
i/∈C

|ui − fi|2 +

j+k∑
i=j

|c− fi|2 +

j−2∑
i=1

|ui+1 − ui|

By hypothesis, this is the minimum. This is differentiable in a neighborhood of c, so it

must satisfy

∂F

∂c
= 0

Now,

∂F

∂c
= 2

j+k∑
i=j

(c− fi) + sgn(c− Uj−1)− sgn(Uj+k+1 − c)

Setting this equal to zero, and rearranging,

2(k + 1)c = 2

j+k∑
i=j

fi − sgn(c− Uj−1) + sgn(Uj+k+1 − c)

Hence
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c =
1

k

j+k∑
i=j

fi +
sgn(Uj+k+1 − c)− sgn(c− Uj−1)

2k

= f̄ +
sgn(Uj+k+1 − c)− sgn(c− Uj−1)

2(k + 1)

(2.10)

Now, Uj+k = c and Uj = c, so Lemma 1.5 implies

c = f̄ +
sgn(fj+k+1 − fj+k)− sgn(fj − fj−1)

2(k + 1)

�

The following corollaries give the value of c when one of the endpoints of the contiguous

block is 1 or n.

Corollary 2.1.7. If k < n and C = {1, 2, ..., k} is a maximal contiguous block, then

U1, U2, ...Uk have the common value

c = f̄ +
sgn(fk+1 − fk)

2(k + 1)
(2.11)

Corollary 2.1.8. If j > 1 and C = {j, j+ 1, ..., n} is a maximal contiguous block, then

Uj , Uj+1, ...Un have the common value

c = f̄ − sgn(fj − fj−1)

2(k + 1)
(2.12)

Corollary 2.1.9. If C = {1, 2, ..., n} is a maximal contiguous block, then U1, U2, ..., Un

have the common value

c = f̄ (2.13)

The formulas given here assume that we already know the decomposition of {1, 2, ..., n}

into contiguous blocks. However, there are only finitely many such partitions, so in

principle the correct one can be found with brute force. That is, one may try every

possible partition into contiguous blocks and use the above formulas to obtain a corre-

sponding trial solution. One of these must be the minimizer, and this can be determined

by direct substitution.
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2.1.3 Change of Parameters

We may generalize Problem 2.1.1 by adjusting some parameters. The first will be to

consider terms of the form

|u(xi)− fi|q

in lieu of

|u(xi)− fi|2

We will also consider what happens when A 6= 1 in (2.2).

2.1.4 On the Term |u(xi)− fi|q

The first generalization we shall consider is to replace the terms |u(xi) − fi|2 with

|u(xi)− fi|q, giving us the modified functional

Fq[u] =
n∑
i=1

|fi − u(xi)|q +

∫ 1

0
|Du| (2.14)

To ensure convexity, we require q ≥ 1. The case q = 1 is undesirable, as can be seen

from the following example:

Example: Let q = 1 and suppose we have two control points (x1, f1) and (x2, f2).

Suppose f1 < f2. We wish to minimize

F1[u] = |f1 − u(x1)|+ |f2 − u(x2)|+
∫ 1

0
|Du|

For any u ∈W 1,1,

∫ 1

0
|Du| ≥ |u(x2)− u(x1)|

Hence,

F1[u] ≥ |f1 − u(x1)|+ |f2 − u(x2)|+ |u(x2)− u(x1)|
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for any u. If we choose points such that

f1 ≤ u1 ≤ u2 ≤ f2

and interpolate a function u that is monotone in the interval (x1, x2) and constant

otherwise, then we will have

F1[u] = f2 − f1

So any choice of u1 and u2 satisfying the above inequality leads to a minimizer.

To avoid this situation, we will take q > 1.

To find a minimizer, we use the same device as we used for q = 2 case. We introduce

the auxiliary function

Fq(u1, u2, ..., un) =
n∑
i=1

|ui − fi|q +
n−1∑
i=1

|ui+1 − ui|

and find its minimizers. Since q > 1, the problem is strictly convex and so a unique

solution exists. Differentiating,

∂F

∂ui
= q|ui − fi|q−1 sgn(ui − fi) + sgn(ui − ui−1)− sgn(ui+1 − ui)

Finding a complete solution is similar to the case q = 2, so we will not pursue it.

Instead, we will assume that ui 6= ui−1 and ui+1 6= ui in the solution. Setting the

derivative equal to 0 and solving for ui, we obtain

ui = fi − sgn(ui − fi)
(

sgn(ui − ui−1)− sgn(ui+1 − ui)
q

) 1
q−1

We may elimiate the appearance ui in the right-hand side by considering the configu-

ration of fi−1, fi, and fi+1 as we did earlier.

As we can see, adjusting q will change the distance between the control points and the

minimizer. The following plot shows the distance as a function of q:
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As q increases, the function levels off. For smaller values of q, the distance seems to

grow, but in practice this just means the minimizer tends toward a horizontal line.

If one wants to control the closeness of fit to the control points, q is not a useful

parameter to adjust.

The Fidelity Parameter

Here, we will consider what happens when the parameter A is varied. Let

FA[u] = A

n∑
i=1

|fi − u(xi)|2 +

∫ 1

0
|Du| (2.15)

As before, we introduce an auxiliary function

FA(u1, u2, ..., un) = A
n∑
i=1

|ui − fi|2 +
n−1∑
i=1

|ui+1 − ui| (2.16)

Minimizing this is essentially the same as the A = 1 case. We therefore just give the

modified result. For any contiguous block of length m,

c = f̄ +
sgn(fj+m+1 − f̄)− sgn(f̄ − fj−1)

2Am
(2.17)
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where f̄ is as in (2.9). In particular, when m = 1, we see that the gap between a control

point and the minimizer is either 0 or
1

A
.

As A goes to 0, the quantity A−1 grows without bound. Hence, eventually the solution

will consist of a single contiguous block. In that situation, we will have

u ≡ 1

n

n∑
i=1

fi

which is just the arithmetic mean of the fi.

As A → ∞, the quantity A−1 goes to 0, so in the limit we expect to get a function

that interpolates the control points. The following proposition shows that any such

interpolant, monotone on the intervals (xi, xi+1), can be so obtained.

Proposition 2.1.10. Let control points (x1, f1), ..., (xn, fn) be given. Let v be contin-

uous at xi and attain the value v(xi) = Ui for i = 1, 2, ..., n. If v monotone on the

intervals (xi, xi+1) and constant on the intervals (0, x1) and (xn, 1), then there exists a

sequence {uk} such that

lim
k→∞

∫ 1

0
|uk − v| = 0

and a sequence Ak →∞ such that uk is a minimizer of FAk for every k.

Before commencing the proof, we will have need of the following lemma:

Lemma 2.1.11. Let g be a bounded, monotone function on [0, 1]. Then there exists a

sequence {vk} ⊂W 1,1 of monotone functions such that

lim
k→∞

∫ 1

0
|vk − g| = 0

and vk(0) = g(0 + 0) and vk(1) = g(1− 0) for every k.

Proof : There is a representative of g that satisfies g(0) = g(0 + 0) and g(1) = g(1− 0).

Pick one such representative, which will also be called g. Since g is monotone, it can

be decomposed as
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g = ga + gj + gc

where ga is absolutely continuous, gj is a jump function, and gc is a Cantor function.

Moreover, all three will be monotone as well. We will approximate each component

separately.

For the absolutely continuous component ga, it is already in W 1,1 so we let αk = ga.

Next we consider the jump function gj . Since g is bounded, for every k there can be at

most finitely many jumps larger than 1
k . Let M = |gj(1)− gj(0)|. This is finite since g

is bounded.

Since g ∈ BV , the sum of the sizes of the jumps of g converges absolutely. Define a

finite sequence 0 = s0 < s1 < ... < sm = 1 satisfying the following conditions:

i): g is continuous at si for every i

ii): Intervals (si, si+1) containing jumps of size at least
1

k
have total length at most

1

kM

iii): If the interval (si, si+1) does not contain a jump of size at least
1

k
, then

|gj(si+1)− gj(si)| ≤
1

k

Let βk be the piecewise-linear interpolant of gj with nodes at the si. Condition (iii)

implies that

|βk(x)− gj(x)| < 1

k

except on a set of total length at most 1
kM . Hence,

∫ 1

0
|βk − gj | ≤

(
1− 1

kM

)
1

k
+

1

kM
M

≤ 2

k

The function βk ∈ W 1,1 since it is continuous and piecewise linear with finitely many

components.
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Finally, we approximate the Cantor component gc. Let N = |gc(1)− gc(0)|. Let

hk =
1

Nk2

and let si = ihk for i = 0, 1, ..., Nk2. Let γk be the piecewise-linear interpolant of gc

with nodes at the si. This is possible because gc is continuous. There are at most Nk

subintervals where

|gc(si+1)− gc(si)| ≥
1

k

and these have total length at most
1

k
. As before, we obtain

∫ 1

0
|gc − γk| ≤

(
1− 1

k

)
1

k
+

1

k

≤ 2

k

Let vk = αk + βk + γk. Then

∫ 1

0
|vk − g| ≤

∫ 1

0
|αk − ga|+

∫ 1

0
|βk − gj |+

∫ 1

0
|γk − gc|

≤ 4

k

Hence,

lim
k→∞

∫ 1

0
|vk − g| = 0

By construction, we have vk(1) = g(1) and vk(0) = g(0), so the result is proven.

�

Clearly, this remains true if the interval [0, 1] is replaced by any other interval [t1, t2].

We proceed to the proof of the proposition.

Proof of Proposition 2.1.10 : Let v be given. For every k, choose Ak such that

|fi − Ui(Ak)| <
1

k
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For every interval (xi, xi+i), let {vik} be defined as in Lemma 2.1.11, i.e. let vik ∈W 1,1 be

monotone on (xi, xi+1) and satisfy vik(xi) = v(xi) and vik(xi+1) = v(xi+1), and suppose

that

lim
k→∞

∫ xi+1

xi

|vik − v| = 0

Suppose without loss of generality that fi ≤ fi+1. Then the interval (Ui(Ak), Ui+1(Ak))

is a subset of the interval (fi, fi+1). Hence, there is a point pi(Ak) ∈ (Ui(Ak), Ui+1(Ak))

and a number ηi(Ak) ≥ 0 such that the mapping

φik(y) = ηi(Ak)(y − pi(Ak)) (2.18)

satisfies

φik(fi) = Ui(Ak)

φik(fi+1) = Ui+1(Ak)

(2.19)

Then, since |fi−Ui(Ak)| <
1

k
and vik is a monotone interpolant of (xi, fi) and (xi+1, fi+1),

we have

|φik(vik(x))− vik(x)| < 1

k

whenever x ∈ (xi, xi+1).

Define a sequence {uk} as follows:

uk(x) =


U1(Ak) if 0 ≤ x ≤ x1

φik(v
i
k(x)) if x ∈ [xi, xi+1]

Un(Ak) if xn ≤ x ≤ 1

By construction, uk ∈W 1,1, uk(xi) = Ui(Ak) for every i, and uk is monotone on inter-

vals of the form (xi, xi+1) and constant on the intervals (0, x1) and (xn, 1). Therefore,

uk is a minimizer of FAk for every k. Moreover,
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∫ 1

0
|uk − v| ≤ (U1(Ak)− f1)(x1) + (Un(Ak)− fn)(1− xn)

+
n−1∑
i=1

[∫ xi+1

xi

|φik(vik(x))− vik(x)|+
∫ xi+1

xi

|vik(x)− v(x)|
]

≤ x1

k
+

1− xn
k

+ (n− 1)

(
1

k
+

4

k

)
≤ 1 + 5(n− 1)

k

Hence, for any ε > 0,

∫ 1

0
|uk − v| < ε

whenever

k >
1 + 5(n− 1)

ε

Therefore,

lim
k→∞

∫ 1

0
|uk − v| = 0

�

Proposition 2.1.12. Let v satisfy the hypotheses of Proposition 2.1.10, and let {uk}

satisfy the conclusion of Proposition 2.1.10. Then {uk} converges to v strictly in BV .

We have already shown convergence in L1, so we need to show that

lim
k→∞

∫ 1

0
|Duk| =

∫ 1

0
|Dv|

The values of uk(xi) are given by (2.17). When the maximal block contining i has

length 1, (2.17) implies

|uk(xi)− fi| ≤
1

Ak
(2.20)

For sufficiently large values of A, the maximal contiguous blocks all have length 1.

Hence, there exists some N such that for k > N , (2.20) holds for i = 1, 2, ..., n. Suppose

then that k > N . Since
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|uk(xi+1)− uk(xi)| ≤ |uk(xi+1)− fi+1|+ |fi+1 − fi|+ |fi − uk(xi)|

it follows that

||uk(xi+1)− uk(xi)| − |fi+1 − fi|| ≤ |uk(xi+1)− fi+1|+ |fi − uk(xi)|

≤ 2

Ak

(2.21)

Since uk is the solution of Problem 2.1.1 with A = Ak, it is monotone on the intervals

(xi, xi+1). This means

∫ 1

0
|Duk| =

n−1∑
i=1

|uk(xi+1)− uk(xi)|

From (2.21) it follows that

∣∣∣∣∣
∫ 1

0
|Duk| −

n−1∑
i=1

|fi+1 − fi|

∣∣∣∣∣ ≤ 2(n− 1)

Ak
(2.22)

Moreover, since v interpolates the points (xi, fi) and is monotone in intervals (xi, xi+1),

we have

∫ 1

0
|Dv| =

n−1∑
i=1

|fi+1 − fi|

Hence,

∣∣∣∣∫ 1

0
|Duk| −

∫ 1

0
|Dv|

∣∣∣∣ ≤ 2(n− 1)

Ak
(2.23)

As k →∞, Ak →∞, whence it follows that

lim
k→∞

∫ 1

0
|Duk| =

∫ 1

0
|Dv|

�
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2.1.5 Adding an Extra Term

We consider a modification of Problem 2.1.1, something of a combination between this

and the ROF filter. Namely, suppose we wanted to minimize

H[u] = F [u] +

∫ 1

0
u2 (2.24)

The functional H is strictly convex, so if a minimizer exists it will be unique. Here we

are confronted with the problem that a minimizing sequence in W 1,1 need not converge

in W 1,1. That a minimizer need not exist in W 1,1 can be seen from the following

counterexample:

Example: Consider the case with two control points

(x1, f1) =

(
1

4
, 0

)
(x2, f2) =

(
3

4
, 5

)
First, we will show that the minimizer is not a constant. To compute the minimum

among constant functions, we minimize

h(c) = (c− 0)2 + (c− 5)2 + c2

Differentiating,

h′(c) = 6c− 10

Hence, the minimum occurs at

c =
5

3

and so the best we can do with a constant function u ≡ c is

h[u] =
5

3

2

+

(
5

3
− 5

)2

+
5

3

2

=
50

3
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Now let

v(x) =



1

3
if 0 ≤ x < 2

5
40

3

(
x− 2

5

)
+

1

3
if

2

5
≤ x < 3

5

3 if
3

5
≤ x ≤ 1

Then

H[v] =
1

3

2

+ (3− 5)2 +
8

3
+

2

5

(
1

3

2

+ 32

)
+

∫ 3
5

2
5

(
40

3

(
x− 2

5

)
+

1

3

)2

=
1

9
+ 4 +

8

3

164

45
+

91

135

=
1498

135

which is better than we got with the optimal constant. Therefore, no constant function

can be the minimizer.

Next, we show that there is no minimizer in W 1,1. Suppose, on the contrary, that

there exists u ∈ W 1,1 that minimizes H. As we have shown above, it is nonconstant.

It is clear from the choice of control points that any minimizer must be nonnegative.

Continuity assures us that on at least one of the intervals (0, x1), (x1, x2), or (x2, 1),

there exist two points a1 and a2 such that u(a1) < u(a2). Either a1 < a2 or a1 > a2.

If a1 < a2, then by continuity there exists a point γ such that a1 < γ < a2 and

u(γ) > u(a1). Let y be the equation of the line connecting the points (γ, u(a1)) and

(a2, u(a2)) Define a function ũ as follows:

ũ =


u(x) if x < a1 or x > a2

u(a1) if a1 ≤ x ≤ γ

min {u(x), y(x)} if γ < x ≤ a2

This function still in W 1,1. The interval where u 6= ũ does not contain any of the control

points, so

|ũ(xi)− fi|2 = |u(xi)− fi|2
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for i = 1, 2. Moreover, ũ is monotone on the interval (a1, a2) and equals u outside the

interval and on the endpoints, so

∫ 1

0
|Dũ| ≤

∫ 1

0
|Du|

On the interval (a1, a2), 0 ≤ ũ ≤ u and ũ(γ) < u(γ), so continuity implies

∫ 1

0
ũ2 <

∫ 1

0
u2

Therefore, H[ũ] < H[u] and so u cannot be the minimizer. The case where a1 > a2 is

handled similarly. Thus, we conclude that there is no minimizer in W 1,1.

In the above example, it appears that we may obtain a sequence of functions converging

to a step function. However, H is not defined for a function that has jumps at the control

points, so the problem of minimizing H has no solution. We will revisit this in Section

3.

2.2 Regularization

2.2.1 Introduction

As seen in Section 1, Problem 2.1.1 admits many solutions in the space W 1,1. In this

chapter, we consider ways to regularize the problem that lead to a unique solution.

We will consider the following modifications on (2.2). First, we will replace the total

variation by an Lp norm of the derivative, obtaining

Fp[u] =

n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|u′|p

The minimizer will be shown to be piecewise-linear, and to converge uniformly to a

limit as p→ 1.

Next, consider a slightly different approach where the approximations are all in W 1,2,

namely
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Fε[u] =

n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|Du|+ ε

∫ 1

0
|u′|2

The behavior will be shown to be similar to the previous regularization method.

The final method will look for approximations in H2. We will seek to minimize

Fε[u] =
n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|Du|+ ε

∫ 1

0
|u′′|2

It will be shown that as ε → 0 the minimizers converge in H2 to a minimizer of (2.2).

In fact, the limit will be the solution of a certain variational inequality.

2.2.2 The term

∫ 1

0

|u′|p

Modify Problem 2.1.1 to a functional defined on W 1,p.

Problem 2.2.1. Let p > 1. Minimize

Fp[u] =
n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|u′|p (2.25)

over the space W 1,p.

Proposition 2.2.2. Problem 2.2.1 admits a unique solution in W 1,p.

Proof : Since the space W 1,p is reflexive, it is sufficient to show that Fp is continuous,

strictly convex, and coercive.

The mapping

u 7→
∫ 1

0
|u′|p

is continuous and strictly convex.

Next, the Dirac delta, δxi(u) = u(xi), is a continuous linear functional on W 1,p, so

u 7→
n∑
i=1

|δxi(u)− fi|2
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is continuous and convex. Hence, Fp is continuous and convex.

To prove coercivity, we may write

u(x) = u(x1) +

∫ x

x1

u′(t) dt

By Holder’s inequality,

∫ 1

0
|u′(t)| dt ≤

(∫ 1

0
|u′|p

) 1
p

Hence,

sup
[0,1]
|u| − u(x1) ≤

(∫ 1

0
|u′|p

) 1
p

This proves coercivity.

Thus, Fp is continuous, coercive, and convex, whence it follows that a unique minimizer

exists.

�

Proposition 2.2.3. The solution of Problem 2.2.1 is a piecewise-linear function with

nodes at x1, x2, ..., xn. It is constant on the intervals (0, x1) and (xn, 1).

Proof : By Proposition 2.2.2, there exists a unique solution to Problem 2.2.1. Call it u.

Then it takes values u1, u2, ..., un at x1, x2, ..., xn, respectively. If we restrict our focus

to the interval (xi, xi+1), 1 ≤ i ≤ n− 1, u must minimize

I[u] =

∫ xi+1

xi

|u′|p

with boundary values u(xi) = ui and u(xi+1) = ui+1.

Under these boundary conditions,

|ui+1 − ui| ≤
∫ xi+1

xi

|Du|

and, since u is absolutely continuous, the right-hand side is just the integral of |u′|.

Making this substitution and applying Holder’s inequality, we find that
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|ui+1 − ui| ≤
∫ xi+1

xi

|u′| ≤ |xi+1 − xi|(1−
1
p

)
(∫ xi+1

xi

|u′|p
) 1
p

Raising each side to the power of p,

|ui+1 − ui|p ≤ |xi+1 − xi|p−1

∫ xi+1

xi

|u′|p

Hence,

∫ xi+1

xi

|u′|p ≥ |ui+1 − ui|p

|xi+1 − xi|p−1
(2.26)

This holds for any u ∈ W 1,p satisfying the boundary conditions. Equality holds if and

only if, on the interval (xi, xi+1), u is the straight line connecting the points (xi, ui)

and (xi+1, ui+1). We can repeat this for i = 1, 2, ..., n− 1.

On the interval (0, x1), u must minimize

∫ x1

0
|u′|p

under the boundary constraint u(x1) = u1. A constant is the best we can do. Similarly

for the interval (xn, 1).

Thus, a piecewise-linear function is a solution to Problem 2.2.1.

�

A continuous piecewise linear function is entirely determined by its value at the nodes.

Proposition 2.2.3 therefore provides a way to reduce Problem 2.2.1 to a finite-dimensional

problem.

Proposition 2.2.4. Fix p and let control points (x1, f1), ..., (xn, fn) be given. Let up be

the corresponding solution of Problem 2.1. For i = 1, 2, ..., n, let Ui(p) = up(xi). Then

the numbers U1(p), U2(p), ..., Un(p) are the unique minimizers of the following function:

Fp(u1, u2, ..., un) =
n∑
i=1

|ui − fi|2 +
n−1∑
i=1

|ui+1 − ui|p

(xi+1 − xi)p−1
(2.27)
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Proof : By Proposition 2.2.3, up is piecewise linear. For i = 1, 2, ..., n,

up|[xi,xi+1] =
Ui+1(p)− Ui(p)

xi+1 − xi
(x− xi) + Ui(p)

and therefore

u′p|[xi,xi+1] =
Ui+1(p)− Ui(p)

xi+1 − xi

and u′p vanishes on (0, x1) and (xn, 1). Thus,

∫ 1

0
|u′p|p =

n−1∑
i=1

∫ xi+1

xi

∣∣∣∣Ui+1(p)− Ui(p)
xi+1 − xi

∣∣∣∣p
=

n−1∑
i=1

(xi+1 − xi)
∣∣∣∣Ui+1(p)− Ui(p)

xi+1 − xi

∣∣∣∣p
=

n−1∑
i=1

|Ui+1(p)− Ui(p)|p

|xi+1 − xi|p−1

Hence

Fp[up] =
n∑
i=1

|Ui(p)− fi|2 +
n−1∑
i=1

|Ui+1(p)− Ui(p)|p

(xi+1 − xi)p−1
(2.28)

and so

Fp[up] = Fp(U1(p), U2(p), ..., Un(p))

Next we show that the numbers U1(p), ..., Un(p) uniquely minimize Fp. Suppose v1, v2, ..., vn

are real numbers that satisfy

Fp(v1, v2, ..., vn) ≤ Fp(U1(p), U2(p), ..., Un(p))

Let v be a continuous, piecewise linear function with nodes at the xi such that v(xi) = vi

and v constant on the intervals (0, x1) and (xn, 1). By same argument we used for up,

we have

Fp[v] = Fp(v(x1), v(x2), ..., v(xn))
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Therefore,

Fp[v] ≤ Fp[up]

However, we have shown that Fp has a unique minimizer up. Hence, v = up and so

vi = Ui(p) for i = 1, 2, ..., n.

�

Remark: When p = 2,

F2(u1, u2, ..., un) =
n∑
i=1

|ui − fi|2 +
n−1∑
i=1

|ui+1 − ui|2

(xi+1 − xi)

and

∂F2

∂ui
= 2(ui − fi) +

2

xi − xi−1
(ui − ui−1)− 2

xi+1 − xi
(ui+1 − ui)

Hence, setting

∇F2 = 0

leads to a system of linear equations, so the problem is easy to solve explicitly.

So far, we have shown that that the regularized problem has a unique solution. We

now wish to investigate what happens as p → 1 and see how the regularized problem

relates to Problem 2.1.1.

Proposition 2.2.5. For p > 1, let up be the solution to Problem 2.2.1. The limit as

p → 1 of up is the piecewise-linear function passing through the points U1, U2, ..., Un

which minimize the function

F(u1, u2, ..., un) =

n∑
i=1

|ui − fi|2 +

n−1∑
i=1

|ui+1 − ui|

Proof : Introduce the auxiliary function

g(u1, u2, ..., un, p) =

n∑
i=1

|ui − fi|2 +

n−1∑
i=1

|ui+1 − ui|p

(xi+1 − xi)p−1
(2.29)
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This is continuous in Rn × (0,∞). Let {pj} be a sequence such that p1 > p2 > ...

and pj → 1. Let {Uj} denote the corresponding minimizer of Fpj . Clearly, ||Uj || is

uniformly bounded, so the sequence {Uj} has a point of accumulation. Let U∞ denote

one such point of accumulation, and let U0 denote the minimizer of F.

Suppose U∞ 6= U0. Let D = g(U∞, 1) − g(U0, 1). By hypothesis, D > 0. Let

η = ||U∞ −U||.

By continuity of g, there exists δ such that 0 < δ <
η

2
and

|g(U, p)− g(U0, 1)| < D

2

whenever

max{||U−U0||, |p− 1|} < δ

This implies that a sufficiently small neighborhood of U∞ can contain at most finitely

many of the Uj . Therefore, the only possible point of accumulation for the sequence

{Uj} is U0, which must then be the limit as the sequence is bounded. This holds for

any sequence of minimizers corresponding to a sequence {pj} such that pj → 1. Hence,

up(xi)→ Ui

as p → 1 for any i = 1, 2, ..., n. Since up is piecewise linear for every p > 1, this

implies that up converges uniformly to a limit function u, which is the piecewise linear

interpolant of U0.

�

2.2.3 Adding the term ε

∫ 1

0

|u′|2

Consider now a new regularization method. Instead of adjusting the exponent as in the

previous section, we take (2.2) and add an extra term to ensure a unique minimizer in

W 1,2.
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Problem 2.2.6. Let ε > 0. Minimize

Fε[u] =
n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|Du|+ ε

∫ 1

0
|u′|2 (2.30)

over the space W 1,2.

Proposition 2.2.7. Problem 2.2.6 admits a unique solution in W 1,2.

Proof : It is sufficient to prove that Fε is strictly convex, coercive, and lower semicon-

tinuous. The proof of Proposition 2.1.2 shows that the functional

Gε[u] =
n∑
i=1

|u(xi)− fi|2 + ε

∫ 1

0
|u′|2 (2.31)

is already stricly convex, coercive, and continuous in W 1,2. The total variation is

nonnegative, convex, lower semicontinuous in W 1,2. Hence, the sum of (2.31) and the

total variation is strictly convex, coercive, and continuous in W 1,2.

�

Proposition 2.2.8. The solution of Problem 2.2.6 is a piecewise-linear function with

nodes at x1, x2, ..., xn. It is constant on the intervals (0, x1) and (xn, 1).

Proof : Let ûε be the solution of Problem 2.2.6. For i = 1, 2, ..., n, let Ui(ε) = ûε(xi+1)

and let w be the piecewise-linear interpolant of these points. Let

K(ε) =
{
u ∈W 1,2 : u(xi) = Ui(ε) for i = 1, 2, ..., n

}
(2.32)

Given i, the minimizer of

u 7→ ε

∫ xi+1

xi

|u′|2

under the boundary conditions u(xj) = Uj(ε) for j = i, i + 1 is a straight line, and so

its minimizer over K(ε) is just w. Moreover, w is a minimizer of the total variation

functional over the set K(ε).

Given u ∈ K,
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Fε[u] =

n∑
i=1

|Ui(ε)− fi|2 +

∫ 1

0
|Du|+ ε

∫ 1

0
|u′|2

The summation term on the right-hand side is constant on K. Then

inf
u∈K

Fε[u] ≥
n∑
i=1

|Ui(ε)− fi|2 + inf
u∈K

∫ 1

0
|Du|+ ε inf

u∈K

∫ 1

0
|u′|2

As noted above, w minimizes the right-hand side. Hence,

Fε[û] ≥
n∑
i=1

|Ui(ε)− fi|2 +

∫ 1

0
|Dw|+ ε

∫ 1

0
|w′|2

so Fε[w] ≤ Fε[û]. Since û is the unique minimizer, it follows that w = û. Hence û is

piecewise-linear.

�

Proposition 2.2.9. Fix p and let control points (x1, f1), ..., (xn, fn) be given. Let uε be

the corresponding solution of Problem 2.2.6. For i = 1, 2, ..., n, let Ui(ε) = uε(xi). Then

the numbers U1(ε), U2(ε), ..., Un(ε) are the unique minimizers of the following function:

Fε(u1, u2, ..., un) =

n∑
i=1

|ui − fi|2 +

n−1∑
i=1

|ui+1 − ui|+ ε

n−1∑
i=1

|ui+1 − ui|2

xi+1 − xi
(2.33)

Proof : This uses the same method as the proof of Proposition 2.2.4.

Next, we examine what happens as ε→ 0. Let F be as in (2.4)

Lemma 2.2.10. Let uε be the minimizer of Fε. Let Ui(ε) = uε(xi) for i = 0, ..., n+ 1.

Finally, let U denote the corresponding minimizer of (2.4). Then

lim
ε→0

Ui(ε) = Ui

Proof : Given ε > 0, we may consider the collection of points {ui(ε)} as components of

a vector U(ε). Being points on the minimizer of the regularized problem, they must be

bounded. Consider now a sequence {εj} tending to 0 as j → ∞. For convenience, we

will write Uj instead of U(εj).
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The sequence {Uj} is bounded in Rn, so it has at a point of accumulation as j → ∞.

Let U∞ denote one such point of accumulation, and u∞ denote its piecewise linear

interpolant.

Suppose that U∞ does not minimize F. Let U0 be the minimizer of the function F and

interpolate a piecewise linear function u0. Let

M =

∫ 1

0
|u′0|2

Then

Fε[u0] = F(u0) + εM

Since U0 is the minimizer of F and U0 6= U∞, F[U∞] > F[U0]. Thus, whenever

ε <
F(U∞)− F(U0)

M

it will also be the case that

Fε[u∞]− Fε[u0] ≥ F(U∞)− F(U0)− εM

As ε → 0, the right-hand side is bounded away from zero. Hence, U∞ cannot be a

point of accumulation of the sequence {Uj}. For any such sequence, the only possible

point of accumulation is therefore U0, and so this must be the limit.

�

Once we know that the solution passes through the points ui, we can show that it is

piecewise linear.

Proposition 2.2.11. Let uε be the minimizer of Fε. Then limε→0 uε exists and is a

piecewise linear function passing through the points U1, U2, ..., Un that minimize F

Proof : By Lemma 2.2.10, the points Ui(ε) converge to Ui. Since the functions are

piecewise linear whose nodes have abscissas xi, the interpolants also converge.

�
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2.2.4 Adding the term ε

∫ 1

0

||u′′||2

Our third and final regularization method is similar to the previous one. We now add

a term that controls the second derivative, and so the regularized problem will have a

solution in H2. Specifically, we investigate the following problem:

Problem 2.2.12. : Let ε > 0. Minimize

Fε[u] =
n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|Du|+ ε

∫ 1

0
|u′′|2 (2.34)

over the space H2([0, 1]).

We will prove existence of a unique solution, then investigate the behavior of the so-

lutions as ε → 0. There are minimizers of (2.2) besides the piecewise-linear ones we

encountered earlier in this chapter.

Consider, for example, a piece-wise cubic interpolant w such that w(xi) = Ui and

w′(xi) = 0 for i = 1, 2, .., n. This is monotone on the intervals (xi, xi+1), and so is also

a minimizer of (2.2). Moreover, w ∈ C1 and, in fact, w′′ ∈ L∞, so w ∈ H2. Thus,

we expect that the solutions of Problem 2.2.12 will be uniformly bounded in H2 as

ε→ 0. We therefore expect there to be a weak limit v ∈ C1. We will show, in fact, that

the solutions of Problem 2.2.12 converge strongly to v in the H2 norm, and we give a

characterization of v.

Proposition 2.2.13. There exists a unique solution to Problem 2.2.12.

Proof : If n = 1, then the minimizer is just u ≡ f1.

Suppose n > 1. Since the space H2 is reflexive, it is sufficient to show that Fε is lower

semicontinuous, strictly convex, and coercive in H2.

Each term in (2.34) is continuous in H2, so Fε is continuous.

Next, we consider convexity. We know (2.34) is convex. We show it is strictly convex.

Let u1, u2 ∈ H2([0, 1]). If u′′1 ≡ u′′2, then
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u1(x) = u2(x) +Ax+B

for some constants A and B. If u1(xi) = u2(xi) for i = 1, 2, then u1 ≡ u2. If not, then

for any t ∈ (0, 1),

|tu1(x1) + (1− t)u2(x1)− f1|2 + |tu1(x2) + (1− t)u2(x2)− f2|2

< t
(
|u1(x1)− f1|2 + |u1(x2)− f2|2

)
+ (1− t)

(
|u2(x1)− f1|2 + |u2(x2)− f2|2

)
(2.35)

and therefore

Fε[tu1 + (1− t)u2] < tFε[u1] + (1− t)Fε[u2]

If u′′1 and u′′2 are not identically equal, then, for t ∈ (0, 1),

∫ 1

0
|tu′′1 + (1− t)u′′2|2 < t

∫ 1

0
|u′′1|2 + (1− t)

∫ 1

0
|u′′2|2

Thus, (2.34) is strictly convex.

Finally, we must show coercivity. Let M > 0 and suppose Fε[u] < M . Then

∫ 1

0
|u′′|2 < M,∫ 1

0
|Du| < M,

and

|u(x1)− f1|2 < M

Hence,

sup
[0,1]
|u| ≤ |u(x1)|+

∫ 1

0
|Du|

≤ |u(x1)− f1|+ |f1|+
∫ 1

0
|Du|

≤
√
M + |f1|+M

(2.36)
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This implies

∫ 1

0
u2 ≤

(
|f1|+M +

√
M
)2

Next, we have the interpolation inequality

∫ 1

0
|u′|2 ≤ C

(∫ 1

0
u2 +

∫ 1

0
|u′′|2

)
(2.37)

We have shown that the right-hand side is bounded by a constant depending only on

the control points and the bound on Fε[u]. Consolidating the constants into a number

D, we conclude that

||u||H2 < D

This is true of any u such that Fε[u] < M . Hence, Fε is coercive.

Thus, we have shown Fε is lower semicontinuous, strictly convex, and coercive. There-

fore, Problem 2.2.12 has a unique solution.

�

Next, we will investigate the behavior as ε → 0. To this end, it will be convenient to

introduce the auxiliary problem:

Problem 2.2.14. Let control points (x1, f1), ..., (xn, fn) be given. Let U1, U2, ..., Un

minimize (2.4). Find a function v ∈ H2 that minimizes

L[v] =

∫ 1

0
|v′′|2

under the constraints

v(xi) = Ui, i = 1, 2, ..., n

and such that v is monotone over intervals of the form [xi, xi+1] and constant on the

intervals (0, x1) and (xn, 1).
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Lemma 2.2.15. Problem 2.2.14 has a unique solution.

Proof : If there is only one control point, then the solution is clearly the constant u ≡ f1.

Suppose then that n > 1. Let K be the subset of H2 satisfying the constraints of

Problem 2.2.14. To prove a unique solution of Problem 2.2.14 exists, it is sufficient to

show that K is closed and convex, and that the functional L is strictly convex, coercive,

and continuous on K. Continuity of L on H2 is known.

Next, we show that K is convex. Let u1, u2 ∈ K. Then, for i = 1, 2, ..., n and t ∈ [0, 1],

tu1(xi) + (1− t)u2(xi) = tUi + (1− t)Ui

= Ui

The constraints imply that on any interval (xi, xi+1), u1 and u2 are both either mono-

tone increasing or monotone decreasing. Fix i and suppose without loss of generality

that u1 and u2 are increasing. Then if x1 < z1 < z2 < xi+1, we will have u1(z2) ≥ u1(z1)

and u2(z2) ≥ u2(z1). Hence, for t ∈ [0, 1],

tu1(z2) + (1− t)u2(z2) ≥ tu1(z1) + (1− t)u2(z1)

and so monotonicity is preserved. Thus, if u1 and u2 satisfy the constraints, then so

too does tu1 + (1− t)u2, and we therefore conclude that K is convex.

In the proof of Proposition 2.2.13, we noted that if u1, u2 ∈ H2, u1(xi) = u2(xi) for

i = 1, 2, and u′′1 ≡ u′′2, then u1 ≡ u2. This implies that L is strictly convex on K when

n ≥ 2.

Finally, we consider coercivity. If u ∈ K, then the monotonicity constraints imply that

min{fi} ≤ u(x) ≤ max{fi} ∀x ∈ [0, 1]

Hence, the quantity

∫ 1

0
u2
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is uniformly bounded for all u ∈ K. From (2.37) it then follows that if u ∈ K and L[u]

is bounded, then so to is ||u||H2 . This proves coercivity.

We have shown that K is convex, and that on K the functional L is continuous, stricly

convex, and coercive. Therefore, Problem 2.2.14 has a unique solution.

�

The following result shows that in the limit as ε → 0, the solution of Problem 2.2.12

converges to the solution of Problem 2.2.14.

Theorem 2.2.16. Fix control points (x1, f1), (x2, f2), ..., (xn, fn). Let uε minimize Fε

and let v be the solution to Problem 2.2.14. Then

lim
ε→0+

||uε − v||H2 = 0 (2.38)

To prove this, we will first need some intermediate results.

Lemma 2.2.17. For ε > 0, let uε be the solution of Problem 2.2.12. Let Ui(ε) = uε(xi)

for i = 0, ..., n+ 1. Finally, let Ui denote the corresponding points of the minimizer of

F(u1, u2, ..., un) =
n∑
i=1

|ui − fi|2 +
n−1∑
i=1

|ui+1 − ui|

Then

lim
ε→0+

Ui(ε) = Ui

Proof : For a given ε, we may consider the collection of points {Ui(ε} as components of

a vector U(ε). For sufficiently small values of ε, ||U(ε)|| is uniformly bounded. To see

this, let u0 be the piecewise cubic interpolant of the points (x1, U1), (x2, U2), ..., (xn, Un)

such that

u′0(xi) = 0

for i = 1, 2, ..., n and which is constant on the intervals (0, x1) and (xn, 1). Then



71

Fε[u0] =

n∑
i=1

|Ui − fi|2 +

n−1∑
i=1

|Ui+1 − Ui|+ ε

∫ 1

0
|u′′0|2

Let

M =

∫ 1

0
|u′′0|2

Then, for any 0 < ε ≤ 1,

Fε(uε) ≤ Fε(u0)

≤
n∑
i=1

|Ui − fi|2 +
n−1∑
i=1

|Ui+1 − Ui|+M

The boundedness of ||U(ε)|| follows.

Consider now a sequence {εj} tending to 0 as j →∞. For convenience, we will write Uj

instead of U(εj). Since the vectors Uj are a bounded subset of Rn, {Uj} has at least

one point of accumulation. Let U∞ denote one such point of accumulation. Let F be

as in Problem 2.2.14. Suppose that U∞ does not minimize F. Let u∞ be an arbitrary

function whose values at the xi are the corresponding points of U∞.

For any ε,

Fε[u0] = F(U0) + εM

Since U0 is the unique minimizer of F, F(U∞) > F(U0). Whenever

ε <
F(U∞)− F(U0)

M

it will also be the case that

Fε[u∞]− Fε[u0] ≥ F(U∞)− F(U0)− εM

As ε→ 0, the right-hand side is bounded away from zero, so U∞ cannot be a point of

accumulation of the sequence {Uj}. For any such sequence, the only possible point of

accumulation is therefore U0, and so this must be the limit.

�
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Lemma 2.2.18. Let uε be the solution to Problem 2.2.12. Let U minimize F. Then

lim
ε→0+

∫ 1

0
|Duε| =

n−1∑
i=1

|Ui+1 − Ui|

Proof : Let {εj} be a nonincreasing sequence of positive numbers converging to zero.

For any j,

∫ 1

0
|Duεj | ≥

n−1∑
i=1

|Ui+1(εj)− Ui(εj)|

where, as before, we have Ui(εj) = uεj (xi). We may take the limit inferior on both sides

and apply Lemma 2.17 to obtain

lim inf
j→∞

∫ 1

0
|Duεj | ≥

n−1∑
i=1

|Ui+1 − Ui| (2.39)

We want to show equality holds in the limit. We proceed by contradiction.

Suppose, on the contrary, that

lim sup
j→∞

∫ 1

0
|Duεj | >

n−1∑
i=1

|Ui+1 − Ui|

and let

η = lim sup
j→∞

(∫ 1

0
|Duεj |

)
−
n−1∑
i=1

|Ui+1 − Ui| (2.40)

Passing to a subsequence if necessary we may assume that

∫ 1

0
|Duεj | ≥

n−1∑
i=1

|Ui+1(εj)− Ui(εj)|

for all j.

Let u0 be as in the proof of Lemma 2.2.17 and let

M =

∫ 1

0
|u′′0|2

Then
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Fε[u0] = F(u0(x1), u0(x2), ..., u0(xn)) + εM

By Lemma 2.2.17, for any δ > 0, we may find some N such that whenever j > N ,

∣∣∣∣∣
n∑
i=1

|Ui(εj)− fi|2 −
n∑
i=1

|Ui − fi|2
∣∣∣∣∣ < δ

Let δ =
η

3
and choose α such that

α <
η

3M

For sufficiently large j, εj < α. When this holds,

Fεj [uεj ]− Fεj [u0] >
η

3

which is a contradiction since uεj minimizes Fεj . Therefore,

lim sup
j→∞

∫ 1

0
|Duεj | ≤

n−1∑
i=1

|Ui+1 − Ui|

It then follows from (2.39) that

lim
j→∞

∫ 1

0
|Duεj | =

n−1∑
i=1

|ui+1 − ui|

�

Lemma 2.2.19. Let v be the solution of Problem 2.2.14. For every ε > 0, let uε be a

solution to Problem 2.2.12. Then

∫ 1

0
|u′′ε |2 ≤

∫ 1

0
|v′′|2 (2.41)

Proof : The constraints of Problem 2.2.14 imply that v is a solution of Problem 2.1.1.

Hence,

n∑
i=1

|v(xi)− fi|2 +

∫ 1

0
|Dv| ≤

n∑
i=1

|uε(xi)− fi|2 +

∫ 1

0
|Duε|
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for any ε > 0. Since uε minimizes (2.34) it must be true that

∫ 1

0
|u′′ε |2 ≤

∫ 1

0
|v′′|2

�

Lemma 2.2.20. For every sequence {εk} such that εk ↓ 0, the corresponding sequence

{uεk} of solutions of Problem 2.2.12 has a weakly convergent subsequence.

Proof : The space H2 is a Hilbert space, so the result will follow if we prove that the

sequence {uεk} is bounded. Lemmas 2.2.17 and 2.2.18 show that ||uεk ||L2 is bounded

as k →∞. Lemma 2.2.19 shows that

∫ 1

0
|u′′ε |2

is bounded. This implies that the H2 norms are also bounded, as desired.

�

Proposition 2.2.21. Let u∞ be a weak limit of some sequence {uεk} for which εk ↓ 0.

Then

u∞(xi) = Ui, i = 1, 2, ..., n

and

∫ 1

0
|Du∞| =

n−1∑
i=1

|Ui+1 − Ui|

Proof : Let

δx[f ] = f(x)

where x ∈ [0, 1]. This is a continuous linear functional on H2([0, 1]), so by weak

convergence and Lemma 2.2.17



75

u∞(xi) = δxi [u∞]

= lim
k→∞

δxi [uεk ]

= Ui

(2.42)

Next, since the total variation is convex and lower semicontinuous on H2, it is weakly

lower semicontinuous. This means that

∫ 1

0
|Du∞| ≤ lim inf

k→∞

∫ 1

0
|Duεk |

By Lemma 2.2.18, this means

∫ 1

0
|Du∞| ≤

n−1∑
i=1

|Ui+1 − Ui|

Since u∞(xi) = Ui for i = 1, 2, ..., n, it must also be true that

∫ 1

0
|Du∞| ≥

n−1∑
i=1

|Ui+1 − Ui|

Therefore, equality holds.

�

Proposition 2.2.22. For any sequence εk ↓ 0, the corresponding sequence of minimiz-

ers {uεk} converges weakly to a function v, which is the solution to Problem 2.2.14.

Proof : Let u∞ be a limit point of the sequence {uεk}. The mapping

u 7→
∫ 1

0
|u′′|2

is continuous in H2, so

∫ 1

0
|u′′∞|2 ≤ lim inf

k→∞

∫ 1

0
|u′′εk |

2

By Lemma 2.2.20, this implies



76

∫ 1

0
|u′′∞|2 ≤

∫ 1

0
|v′′|2

Proposition 2.2.21 says that u∞ satisfies the constraints on Problem 2.2.14. As v is the

unique minimizer under those constraints, the above inequality implies u∞ = v.

Thus, any subsequence of {uεk} will have a sub-subsequence converging weakly to v.

Therefore v must be the weak limit of the full sequence.

�

We now complete the proof of Theorem 2.2.16.

Proof of Theorem 2.2.16 : Compact imbedding of H2 into C1 and Proposition 2.2.22

imply that the sequence {uεk} converges in C1 to v. Hence,

lim
k→∞

∫ 1

0
|uεk − v|

2 = 0

lim
k→∞

∫ 1

0
|u′εk − v

′|2 = 0

By Lemma 2.2.21,

∫ 1

0
|u′′εk |

2 ≤
∫ 1

0
|v′′|2

Hence,

||v||H2 ≥ lim sup
k→∞

||uεk ||H2

Since H2 is uniformly convex and uεk converges weakly to v, by Proposition 3.32 of [6]

this implies that the convergence is strong. These results hold for any sequence {uεk}

for which εk ↓ 0. Therefore,

lim
ε→0+

||uε − v||H2 = 0

�
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The Solution of Problem 2.2.14

Suppose û is a solution to Problem 2.2.14. For j = 1, 2, ..., n, let pj = û′(xj). On any

interval (xi, xi+1), û minimizes

∫ xi+1

xi

|u′′|2

subject to the boundary conditions

u(xi) = Ui, u′(xi) = pi

u(xi+1) = Ui+1, u′(xi+1) = pi+1

and the constraint that u be monotone on (xi, xi+1).

We may therefore focus on a fixed interval between two control points. If we can find the

minimizer with arbitrary pi and pi+1, then we can treat the full problem as a question

of finding appropriate values of p1, p2, ..., pn. To simplify our analysis, we translate and

rescale the interval [xi, xi+1] to be the unit interval. We will treat the case where the

function is monotone decreasing and take Ui = 1 and Ui+1 = 0. Thus we consider:

Problem 2.2.23. Let numbers p0, p1 ≤ 0 be given. Find a function v̂ ∈ H2 that

minimizes

L[v] =

∫ 1

0
|v′′|2 (2.43)

under the boundary conditions

v(0) = 1, v′(0) = p0

v(1) = 0, v′(1) = p1

(2.44)

and the constraint v′ ≤ 0.

Proposition 2.2.24. There exists a unique solution to Problem 2.2.23.
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Proof : Let K be the subset of H2 satisfying the boundary conditions (2.2.4 and the

constraint. Then K is closed and convex. Since p0 and p1 are nonpositive, it is possible

to find a nonincreasing smooth function taking on the prescribed boundary conditions.

Hence, K is nonempty.

We want to show that L is continuous, strictly convex, and coercive over K in the H2

topology. Given two functions v1 and v2 that satisfy the (2.2.4), if v′′1 ≡ v′′2 , then

v′1(x) = p0 +

∫ x

0
v′′1(t) dt

v′2(x) = p0 +

∫ x

0
v′′2(t) dt

Hence, v′1 ≡ v′2. Likewise, v1 ≡ v2. Hence, the functional L is strictly convex over K.

To show coercivity, we observe that, given v ∈ K,

v′(x) = p0 +

∫ x

0
v′′(t) dt

v(x) = 1 +

∫ x

0

(
p0 +

∫ t

0
v′′2(s) ds

)
dt

Hence, boundedness of L[v] implies boundedness of v, so L is coercive.

Thus, a unique solution exists.

�

As Problem 2.2.23 is an obstacle problem, there will be a coincidence set Λ such that

v̂′ vanishes on Λ and

∂4

∂x4
v̂ = 0

on (0, 1) \ Λ.

Proposition 2.2.25. Let v̂ be the solution of Problem 2.2.23. If p0 = p1 = 0, then v̂

is a cubic polynomial. Otherwise, Λ is closed and connected and the restriction of v̂ to

any connected component of [0, 1] \ Λ is a cubic polynomial.
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Proof : We consider three cases:

Case 1: p0 = p1 = 0.

Consider the Hermite interpolating polynomial

P (x) = 2x2(x− 1)− x2 + 1

This minimizes an unconstrained version of Problem 2.2.23. Its derivative is a quadratic

that vanishes at 0 and 1, so it cannot change sign on (0, 1). Hence, P ′ ≤ 0 and so satisfies

the constraints of Problem 2.2.23. Therefore, it must be the minimizer.

Case 2: p0 < 0 and p1 = 0.

Let us consider a modified version of Problem 2.2.23 where the constraint v′ ≤ 0 is

replaced by v ≥ 0 on [0, 1]. The set of functions satisfying this constraint is convex, so

we still get existence of a unique solution. Let û be this solution.

Any monotone function satisfying the boundary conditions is certainly nonnegative on

[0, 1]. Thus, if the û is monotone, it must also solve Problem 2.2.23.

Let ξ = min {x ∈ [0, 1] : û(x) = 0}. The boundary conditions (2.2.4) imply 0 < ξ ≤ 1.

On the interval [ξ, 1], û minimizes L with homogeneous boundary data, so it must

vanish identically. On [0, ξ), û > 0 and so must satisfy

∂4

∂x4
û = 0

Hence, it is a cubic polynomial. On the boundary of Λ in (0, 1), we require that the

second derivative be continuous. Hence, to find ξ we solve:

û(ξ) = û′(ξ) = û′′(ξ) = 0

whence it follows that

û =

 C(x− ξ)3 if 0 ≤ x < ξ

0 if ξ ≤ x ≤ 1
(2.45)



80

This is a monotone function, so it also solves Problem 2.2.23.

Case 3: p0 < 0 and p1 < 0.

If v̂′ is strictly positive, then

∂4

∂x4
v̂ = 0

on [0, 1] and so v̂ is a cubic polynomial. If not, then v̂′(ξ) = 0 for some ξ ∈ (0, 1). Let

η = v̂(ξ). In that case, we can split the problem into two components, minimizing L

on [0, ξ] and [ξ, 1] with respective boundary conditions

v(0) = 1, v′(0) = p0

v(ξ) = η, v′(ξ) = 0

and

v(ξ) = η, v′(ξ) = 0

v(1) = 0, v′(1) = p1

These can be separately solved using covered by Case 2. Hence, there exist ξ1 ∈ (0, ξ]

and ξ2 ∈ [ξ, 1) such that v̂′ vanishes on [ξ1, ξ2], and v̂ when restricted to [0, ξ1] or [ξ2, 1]

is a cubic polynomial.

�

2.3 The Lower Semicontinuous Envelope

2.3.1 Introduction

Let us return to Problem 2.1.1. We may extend (2.2) to L2 as follows:

F [u] =


n∑
i=1

|u(xi)− fi|2 +

∫ 1

0
|Du| if u ∈W 1,1

∞ otherwise

(2.46)
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This functional is not lower-semicontinuous in the L2 topology, as can be seen from the

following example:

Example: Let x1 =
1

2
and f1 = 2. Let v ≡ 0 and define the sequence {vk} by

vk(x) =


0 if x <

1

2
− 1

k
or x >

1

2
+

1

k

k

(
x− 1

2
+

1

k

)
if

1

2
− 1

k
≤ x ≤ 1

2

−k
(
x− 1

2
− 1

k

)
if

1

2
≤ x ≤ 1

2
+

1

k

Then vk → v in the L2 norm and F [vk] = 3 for every k, but F [v] = 4.

To analyze the problem in the L2 topology, we construct the lower semicontinuous

envelope of (2.46).

2.3.2 On LSC envelopes

Definition 2.3.1. The lower semi-continuous envelope in L2 of a functional F on

W 1,1 is the map G : L2 → R ∪ {−∞,∞} defined by

G[u] = inf

{
lim inf
k→∞

F [uk]

}
(2.47)

where the infimum is taken over all sequences {uk} ⊂W 1,1 such that

lim
k→∞

||uk − u||L2 = 0

The density of W 1,1 in L2 ensures that G is well-defined. Before constructing the LSC

envelope of F , we will first prove some statements directly from the definition.

Lemma 2.3.2. The lower semicontinuous envelope of a functional is lower semicon-

tinuous.

Proof : Let v ∈ L2 and consider a sequence {vj} ⊂ L2 such that vj → v. We want to

show

G[v] ≤ lim inf
j→∞

G[vj ]
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Let ε > 0. There exists some a subsequence {vjk} such that

∫ 1

0
(vjk − v)2 <

ε

2k

For every k, there exists uk ∈W 1,1 such that

∫ 1

0
(vjk − uk)

2 <
ε

2k

and

G[vjk ] ≥ F [uk]− ε (2.48)

Then

∫ 1

0
(v − uk)2 ≤

∫ 1

0
(vjk − v)2 +

∫ 1

0
(vjk − uk)

2

<
ε

k

(2.49)

Hence, the sequence {uk} converges to v in L2. By (2.47) and (2.48),

G[v] ≤ lim inf
k→∞

F [uk]

≤ lim inf
k→∞

G[vjk ] + ε

(2.50)

This holds for all ε > 0, so

G[v] ≤ lim inf
k→∞

G[vjk ]

Hence, G is lower semicontinuous in L2.

�

Proposition 2.3.3. Let F be as in (2.46) and let G be its lower semicontinuous enve-

lope. Then

G[u] <∞

if and only if u ∈ BV .
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Proof : If u ∈ BV , then there exists a sequence {uk} ⊂ W 1,1 that strictly converges to

u, i.e. that satisfies

lim
k→∞

∫ 1

0
|u− uk| = 0

and

∫ 1

0
|Du| = lim

k→∞

∫ 1

0
|Duk|

Compact embedding of BV into L2 (Theorem A.14) then ensures {uk} converges to u

in the L2 topology.

Moreover, since {uk} is bounded in BV and uk is continuous for every k, there exists

M > 0 such that

n∑
i=1

|fi − uk(xi)|2 < M

for every k. Hence, the numbers F [uk] are bounded, and (2.47) implies that G[u] is

finite.

For any u ∈ L2, if G[u] is finite then there exists a sequence {uk} converging to a u in

L2 and a number K such that

∫ 1

0
|Duk| < K

for every k. The total variation of a function is lower semicontinuous in the L2 topology,

whence it follows

∫ 1

0
|Du| < K

and therefore u ∈ BV .

�

Proposition 2.3.4. Let u ∈ L2. If there exists a sequence {uk} ⊂ W 1,1 such that

uk → u in L2 and uk is a minimizer of (2.46) for k = 1, 2, ..., then u is a minimizer of

(2.47).
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Proof : By hypothesis, F [ui] = F [uj ] for all i, j = 1, 2, .... Let C denote their common

value. Then G[u] = C. Hence,

inf
v∈L2

G[v] ≤ C

Now let w ∈ L2 and {wm} ⊂ W 1,1 be some sequence converging to w in L2. Then

F [wm] ≥ C for m = 1, 2, .... Hence,

lim inf
m→∞

F [wm] ≥ C

This holds for every such sequence. By (2.47), this implies G[w] ≥ C. The choice of w

was arbitrary, so

inf
v∈L2

G[v] ≥ C

Therefore,

inf
v∈L2

G[v] = C

Since G[u] = C, this means u is a minimizer of G.

�

2.3.3 Constructing the LSC Envelope

The construction of the LSC envelope draws on the idea used in the example in Section

2.3.1. There, we had fi − v(xi) > 1 and chose an approximating sequence {vk} that

converged to v in L2 and satisfied fi − vk(xi) = 1. The increase in variation was offset

by the decrease in the distance squared to fi. This is the approach we will use to

construct minimizing sequences of (2.47). Proposition 2.3.3 shows that we expect G to

be finite for any u ∈ BV , so in particular it may have jumps at the xi. In general, the

value G[u] will depend on the configuration of fi and the left- and right-hand limits of

u at xi. This will require us to consider the various cases.
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A convenient formula for the lower semicontinuous envelope has been suggested by H.

Brezis ([8]). To this end, we introduce some notation.

Define a function

Φ(t) =

 t2 if t ≤ 1

2t− 1 if t > 1
(2.51)

Given u ∈ BV ([0, 1]), for any x ∈ (0, 1) let

j(u)(x) = [min{u(x− 0), u(x+ 0)},max{u(x− 0), u(x+ 0)}] (2.52)

This takes a function u and associates it with the interval between its left- and right-

hand limits at x. These always exist for a function of bounded variation, so j(u) is

well-defined.

Let d : R× P(R)→ [0,∞) be the distance function between a point and a set.

Theorem 2.3.5. Let F be as in (3.1). Then its lower semicontinuous envelope is given

by

G[u] =

n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du| (2.53)

Our method of proof has two stages. First, we will show that the proposed formula is a

lower bound for G. Then, we show that for any u ∈ BV , we can construct a sequence

{uk} converging to u in L2 such that

lim
k→∞

F [uk] =

n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

To establish the lower bound, we introduce an auxiliary problem:

Problem 2.3.6. For a fixed control point (xi, fi) and a given function u ∈ BV , mini-

mize the function

gi(c) = |c− fi|2 + |c− u(xi − 0)|+ |c− u(xi + 0)| (2.54)
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This is quadratic in c, so there’s a unique minimizer.

Proposition 2.3.7. The minimum attained in Problem 2.3.6 is given by

inf
c∈R
{gi(c)} = Φ (d(fi, j(u)(xi))) + |u(xi − 0)− u(xi + 0)|

Proof : We consider separately the cases fi ∈ j(u)(xi) and fi /∈ j(u)(xi).

Case 1: fi ∈ j(u)(xi)

For any real number c,

|c− u(xi − 0)|+ |c− u(xi + 0)| ≥ |u(xi + 0)− u(xi − 0)|

From (2.54) it follows that

gi(c) ≥ |u(xi + 0)− u(xi − 0)| (2.55)

for any c. When c = fi,

Φ (d(fi, j(u)(xi))) = 0

Hence,

gi(fi) = |u(xi + 0)− u(xi − 0)|

and by (2.55) this must be the minimum.

Case 2: fi /∈ j(u)(xi)

If c ∈ j(u)(xi), then

|c− u(xi − 0)|+ |c− u(xi + 0)| = |u(xi + 0)− u(xi − 0)|

and the minimum of the term

|c− fi|2
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under the constraint c ∈ j(u)(xi) occurs at one of the endpoints, i.e. at c = u(xi + 0)

or c = u(xi − 0). Then

gi(c) = d(fi, j(u)(xi))
2 + |u(xi + 0)− u(xi − 0)|

On the other hand, if c /∈ j(u)(xi), then we compute

g′i(c) = 2(c− fi) + sgn(c− u(xi − 0)) + sgn(c− u(xi + 0))

and it moreover holds that

sgn(c− u(xi − 0)) = sgn(c− u(xi + 0))

setting the derivative of gi equal to 0 and solving for c, it follows that

c = fi ∓ 1

depending on whether sgn(c − u(xi − 0)) = ±1. If this is the minimizer, that implies

d(fi, j(u)(xi)) ≥ 1.

We combine these cases. Let c∗ denote the minimizer of gi. Then

|c∗ − fi| =

 d(fi, j(u)(xi)) if d(fi, j(u)(xi)) < 1

1 otherwise

Moreover,

|c∗−u(xi−0)|+|c∗−u(xi+0)| =

 |u(xi + 0)− u(xi − 0)| if c∗ ∈ j(u)(xi)

2d(c∗, j(u)(xi)) + |u(xi + 0)− u(xi − 0)| if c∗ /∈ j(u)(xi)

Now, if c∗ /∈ j(u)(xi), then |c∗ − fi| = 1 and

d(c∗, j(u)(xi)) = d(fi, j(u)(xi))− 1

Hence
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gi(c
∗) =

 d(fi, j(u)(xi))
2 + |u(xi + 0)− u(xi − 0)| if d(fi, j(u)(xi)) < 1

1 + 2(d(fi, j(u)(xi))− 1) + |u(xi + 0)− u(xi − 0)| if d(fi, j(u)(xi)) ≥ 1

Comparing this with (2.51), we conclude

gi(c
∗) = Φ (d(fi, j(u)(xi))) + |u(xi − 0)− u(xi + 0)|

�

Lemma 2.3.8. For any u ∈ BV ,

G[u] ≥
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

Proof : Let u ∈ BV be given and let {uk} ⊂W 1,1 be such that uk → u in the L2 norm.

Passing to a subsequence if necessary, this implies that {uk} converges pointwise a.e.

Let ε > 0. Since u ∈ BV , there exists δ > 0 such that, for i = 0, 1, ..., n,

|u(xi + 0)− u(x)| < ε

2

whenever 0 < x− xi < δ, and for i = 1, 2, ..., n+ 1

|u(xi − 0)− u(x)| < ε

2

whenever 0 < xi − x < δ.

For i = 0, 1, ..., n, let ai be chosen such that

xi < ai < xi + δ,

u is continuous at ai, and

lim
k→∞

uk(ai) = u(ai)

Since u has at most countably many discontinuities, we may always find such an ai.
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Similarly, for i = 1, 2, ..., n+ 1, we may choose bi be chosen such that

xi − δ < bi < xi,

u is continuous at bi, and

lim
k→∞

uk(bi) = u(bi)

Hence, for sufficiently large k and i = 1, 2, ..., n,

|uk(xi)−uk(ai)|+ |uk(xi)−uk(bi)| ≥ |uk(xi)−u(xi−0)|+ |uk(xi)−u(xi+0)|−ε (2.56)

Recalling (2.54), it follows from Proposition 2.3.7 that

|uk(xi)− fi|2 + |uk(xi)− uk(ai)|+ |uk(xi)− uk(bi)|

≥ Φ (d(fi, j(u)(xi))) + |u(xi − 0)− u(xi + 0)| − 2ε (2.57)

Since uk is continuous, we have

∫ 1

0
|Duk| ≥

n∑
i=0

∫ bi+1

ai

|u′k|+
n∑
i=1

|uk(xi)− uk(ai)|+ |uk(xi)− uk(bi)|

Lower semicontinuity of the total variation in L2 ensures that for sufficiently large k,

n∑
i=0

∫ bi+1

ai

|Duk| ≥
n∑
i=0

∫ bi+1

ai

|Du| − ε

Hence, for sufficiently large k,

F [uk] ≥
n∑
i=1

Φ (d(fi, j(u)(xi)))+
n∑
i=1

|u(xi−0)−u(xi+0)|+
n∑
i=0

(∫ bi+1

ai

|Du|
)
−(2n−1)ε

Now, as ε→ 0, (bi − ai)→ 0, so

lim
ε→0

(
n∑
i=0

∫ bi+1

ai

|Du|+
n∑
i=1

|u(xi − 0)− u(xi + 0)|

)
=

∫ 1

0
|Du| (2.58)
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Hence,

F [uk] ≥
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

This is true for sufficiently large k, so in particular

lim inf
k→∞

F [uk] ≥
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

This is true for any sequence {uk} satisfying the requirements of Definition 2.3.1. There-

fore,

G[u] ≥
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

�

Having established the lower bound, we show that minimizing sequences can always be

constructed. First, we will handle the special case where u ∈W 1,1.

Lemma 2.3.9. Let u ∈W 1,1. Then

G[u] =
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

Proof : We construct a minimizing sequence for (2.47).

For i = 1, 2, ..., n, let Ci be the minimizer of Problem 2.3.6. Let

d = max
1≤i≤n

|xi+1 − xi|

If Ci 6= u(xi), let ψki be a piecewise linear function with nodes at

(
xi −

1

2dk
, u

(
xi −

1

2dk

))
, (xi, Ci), and

(
xi +

1

2dk
, u

(
xi +

1

2dk

))
Otherwise, if Ci = u(xi) let ψki = u.

Define a sequence {uk} by
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uk(x) =

 ψki (x) if |xi − x| <
1

2dk

u(x) otherwise
(2.59)

Then |uk(xi)− fi| ≤ 1 for i = 1, 2, ..., n. By (2.51), this implies

F [uk] =
n∑
i=1

Φ (d(fi, j(uk)(xi))) +

∫ 1

0
|Duk|

By Lemma 2.3.8, this implies

G[uk] =
n∑
i=1

Φ (d(fi, j(uk)(xi))) +

∫ 1

0
|Duk|

If Ci = u(xi) for every i, then uk = u so there’s nothing to prove.

Suppose that Cj 6= u(xj) for at least one index j. Let {m1,m2, ...,ml} be the collection

of indices such that Cmi 6= u(xmi). Let Ak = {x|uk(x) 6= u(x)}. By (2.59), this is a

finite union of intervals, so we may write

G[uk] =
n∑
i=1

|Ci − fi|2 +

∫
[0,1]\Ak

|u′|

+
l∑

i=1

[∣∣∣∣Cmi − u(xmi − 1

2dk

)∣∣∣∣+

∣∣∣∣Cmi − u(xmi +
1

2dk

)∣∣∣∣] (2.60)

Now we compute the limit inferior. Since u is absolutely continuous and the measure

of Ak goes to zero as k →∞,

lim
k→∞

∫
[0,1]−Ak

|Du| =
∫ 1

0
|Du|

Moreover, continuity of u ensures that

lim
k→∞

l∑
i=1

[∣∣∣∣Cmi − u(xmi − 1

2dk

)∣∣∣∣+

∣∣∣∣Cmi − u(xmi +
1

2dk

)∣∣∣∣] = 2

l∑
i=1

|Cmi − u(xmi)|

Hence,

lim
k→∞

G[uk] =
n∑
i=1

|Ci − fi|2 +

∫ 1

0
|Du|+ 2

l∑
i=1

|Cmi − u(xmi)|
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For i = m1,m2, ...,ml,

Φ (d(fi, j(u)(xi))) = |Ci − fi|2 + 2|Ci − u(xi)|

Otherwise, Ci = u(xi) and so

Φ (d(fi, j(u)(xi))) = |Ci − fi|2

Hence,

lim
k→∞

G[uk] =

n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du| (2.61)

By Lemma 2.3.2, we have

lim inf
k→∞

G[uk] ≥ G[u]

Applying Lemma 2.3.8 then shows that

G[u] =
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

�

Proof of Theorem 2.3.3 : Let u ∈ BV and suppose there exists δ > 0 such that u is

continuous on (xi − δ, xi + δ) for i = 1, 2, ..., n. We will approximate u by absolutely

continuous functions.

Let ai = xi − δ
2 and let bi = xi + δ

2 . For l = 1, 2, ..., n − 1, define functions vkl ∈

W 1,1([bl, al+1]) satisfying

vkl (bl) = u(bl)

vkl (al+1) = u(al+1)∫ al+1

bl

|u− vkl |2 ≤
1

(n+ 1)k∫ al+1

bl

|Dvkl | ≤
∫ al+1

bl

|Du|+ 1

(n+ 1)k

(2.62)
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It was shown in Propositions 2.1.10 and 2.1.12 that the above conditions can be satisfied

for monotone functions on [bl, al+1]. Since u ∈ BV , it is the difference of two monotone

functions, and so we may find functions vkl satisfying the above conditions.

Let vk0 ∈W 1,1([0, a1]) satisfy

vk0 (a1) = u(a1)∫ a1

0
|u− vk0 |2 ≤

1

(n+ 1)k∫ a1

0
|Dvk0 | ≤

∫ a1

0
|Du|+ 1

(n+ 1)k

(2.63)

Let vkn ∈W 1,1([bn, 1]) satisfy

vkl (bn) = u(bn)∫ 1

bn

|u− vkn|2 ≤
1

(n+ 1)k∫ 1

bn

|Dvkn| ≤
∫ 1

bn

|Du|+ 1

(n+ 1)k

(2.64)

Define a sequence {uk} by

uk(x) =



vk0 (x) if x < a1

vkl (x) if 1 ≤ l < n and bl < x < al+1

vkn(x) if x > bn

u(x) otherwise

Then uk → u in the L2 norm, Φ (d(fi, j(uk)(xi))) = Φ (d(fi, j(u)(xi))) for i = 1, 2, ..., n,

and, since u is continuous at the points ai and bi, we also have

∫ 1

0
|Duk| ≤

∫ 1

0
|Du|+ 1

k

for i = 1, 2, ..., n.

By Lemma 2.3.9,

G[uk] =
n∑
i=1

Φ (d(fi, j(uk)(xi))) +

∫ 1

0
|Duk|
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Hence,

G[uk] ≤
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|+ 1

k

Lower semicontinuity of G in L2 therefore ensures

G[u] ≤
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

and by Lemma 2.3.8 equality holds.

Finally, we consider the general case of u ∈ BV . Let C1, C2, ..., Cn be the corresponding

solutions of Problem 2.3.6. Let D = max{|xi − xi−1|}. Define a sequence {uk} by

uk(x) =

 Ci(x) if |x− xi| <
1

2Dk

u(x) otherwise

The functions uk are continuous in a neighborhood of xi for i = 1, 2, .., n and for every

k = 1, 2, .... As we have shown, this implies

G[uk] =
n∑
i=1

Φ (d(fi, j(uk)(xi))) +

∫ 1

0
|Duk|

Since uk(xi) = Ci, we have

G[uk] =
n∑
i=1

|fi − Ci|2 +

∫ 1

0
|Duk|

Now,

lim
k→∞

∫ 1

0
|Duk| =

∫ 1

0
|Du|+ 2d(Ci, j(uk)(xi))

Hence,

lim
k→∞

G[uk] =
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

By construction, uk → u in L2. Lower semicontinuity of G in L2 implies
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G[u] ≤
n∑
i=1

Φ (d(fi, j(u)(xi))) +

∫ 1

0
|Du|

Lemma 2.3.8 then implies that equality holds.

�

2.3.4 The Minimizers of G

Now we characterize the functions which minimize G. Recall that in Section 2.1, it was

shown that for Problem 2.1.1, there were numbers U1, U2, ..., Un such that any solution

u satisfied u(xi) = Ui and that u was moreover monotone in the intervals (xi, xi+1).

We will show that an even larger class of functions minimizes G. Minimizers will still

have to be monotone in intervals (xi, xi+1), but the endpoints will, loosely speaking,

only have to lie between Ui and Ui+1.

Our first result connects the numbers Ci which minimize Problem 2.3.6 and the numbers

Ui corresponding to a minimizer of F .

Proposition 2.3.10. Let control points (x1, f1), (x2, f2), ..., (xn, fn) be given. Let u be a

minimizer of G, and let the numbers C1, C2, ..., Cn denote the corresponding minimizers

of Problem 2.3.6. If U1, U2, ..., Un are the minimizers of Problem 1.2, then

Ci = Ui

for i = 1, 2, ..., n.

Proof : Let v be a continuous piecewise linear function interpolating the points (xi, Ci),

which is constant on the intervals (0, x1) and (xn, 1). Then v is also a minimizer of G

and G[v] = F [v].

Suppose, for the sake of contradiction, that Ci 6= Ui for some i. In this circumstance,

v is not a minimizer of F .

Let w be a minimizer of F . Then F [w] < F [v]. Hence,
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G[w] ≤ F [w] < F [v] = G[v]

so v could not be a minimizer of G, which is a contradiction.

�

Theorem 2.3.11. Let control points (x1, f1), (x2, f2), ..., (xn, fn) be given. Let U1, U2, ..., Un

be the numbers that minimize Problem 2.1.1, and let

Bi = [min{Ui, Ui+1},max{Ui, Ui+1}]

A function u ∈ BV is a minimizer of G if and only if it satisfies the following conditions:

1. u(xi + 0) ∈ Bi and u(xi+1 − 0) ∈ Bi for i = 1, 2, ..., n− 1

2. u is monotone on (xi, xi+1) for i = 1, 2, .., .n− 1.

3. sgn(Ui+1 − Ui) · sgn(u(xi+1 − 0)− u(xi + 0)) ≥ 0.

4. u ≡ U1 on (0, x1).

5. u ≡ Un on (xn, 1).

Remark: Conditions 1 and 2 imply that instead of having to pass through the points

Ui, a minimizer of G need only have its range in the interval between Ui and Ui+1.

Condition 3 ensures that u is decreasing if Ui+1 < Ui and increasing if Ui < Ui+1.

Proof : First we prove that each condition is necessary. Suppose u ∈ BV is a minimizer.

It has a left-continuous representative, which we also denote u.

Begin with Condition 2. To see that Condition 2 holds, first observe that

∫ 1

0
|Du| ≥

n−1∑
i=1

|u(xi+1 − 0)− u(xi + 0)|+
n∑
i=1

|u(xi − 0)− u(xi + 0)|

and equality holds iff u is monotone on the intervals (xi, xi+1). Since the numbers

Φ (d(fi, j(ũ)(xi)))) depend only on the values of the left- and right-hand limits of u at

the xi, it is clear that only a function monotone on (xi, xi+1) can minimize G.

Now consider Condition 1. For i = 1, 2, ..., n, choose λi ∈ j(u)(xi) such that
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|fi − λi| = d(fi, j(u)(xi)) (2.65)

Let w be a piecewise-linear function with nodes at the points (xi, λi). ThenG[w] ≤ G[u].

Let v be a minimizer of (2.2). Then G[v] = F [v]. Moreover, G[w] = G[v] since both

are minimizers. Explicitly,

G[v] =
n∑
i=1

|fi − Ui|2 +
n−1∑
i=1

|Ui+1 − Ui|

G[w] =

n∑
i=1

Φ (|fi − λi|) +

n−1∑
i=1

|λi+1 − λi|

If |fi − λi| ≤ 1 for i = 12, ..., n, then

Φ (|fi − λi|) = |fi − λi|2

This would imply that λ1, λ2, ..., λn are solutions to Problem 2.1.2, so by uniqueness we

must perforce have λi = Ui.

Suppose, on the other hand, that for some index k, |fk − λk| > 1. Then

Φ (|fk − λk|) = 2 (|fk − λk| − 1) + 1

Then there exists αk such that |fk − αk| = 1 and

|λk − λk−1|+ |λk+1 − λk|+ 2 (|fk − λk| − 1)

≥ |αk − λk−1|+ |λk+1 − αk| (2.66)

We may do this for any such index k. Now let

λ̃i =

 αi if |fi − λi| > 1

λi if |fk − λk| ≤ 1

Then
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G[w] ≥
n∑
i=1

Φ
(
|fi − λ̃i|

)
+

n−1∑
i=1

|λ̃i+1 − λ̃i|

=

n∑
i=1

|fi − λ̃i|2 +

n−1∑
i=1

|λ̃i+1 − λ̃i|

(2.67)

Since G[w] = G[v], this implies

n∑
i=1

|fi − Ui|2 +
n−1∑
i=1

|Ui+1 − Ui| ≥
n∑
i=1

|fi − λ̃i|2 +
n−1∑
i=1

|λ̃i+1 − λ̃i|

However, the numbers Ui minimize this quantity and the minimizer is unique, so this

implies equality holds λ̃i = Ui.

Hence, equality must hold in (2.66). This implies Condition 1.

Next, consider Condition 3. Fix i and assume without loss of generality that Ui ≤ Ui+1.

Suppose, on the contrary, that u(xi + 0) > u(xi+1 − 0). Conditions 1 and 2 assure us

that there exists some γ ∈ [Ui, Ui+1] and some x0 ∈ (xi, xi+1) such that u(xi) = γ, and

that u(xi + 0) ≥ γ ≥ u(xi+1 − 0). Let

ũ(x) =

 γ if x ∈ (xi, xi+1)

u(x) otherwise

Then

Φ (d(fi, j(ũ)(xi))) ≤ Φ (d(fi, j(u)(xi))) ,

Φ (d(fi, j(ũ)(xi+1))) ≤ Φ (d(fi, j(u)(xi+1))) ,∫ 1

0
|Dũ| <

∫ 1

0
|Du|

whence it follows that G[ũ] < G[u], a contradiction. Therefore, Condition 3 holds.

On to Condition 4. Let λ = u(x1 − 0). If u is nonconstant on (0, x1), then let

ũ(x) =

 λ if x < x1

u(x) otherwise
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Then d(fi, j(u)(xi)) = d(fi, j(ũ)(xi)) for i = 1, 2, ...n, but, by Proposition A.16,

∫ 1

0
|Du| >

∫ 1

0
|Dũ|

so G[ũ] < G[u]. Now that we know u must be constant, we find the optimal constant.

We claim this is C1. If |C1 − f1| ≤ 1, then C1 ∈ j(u)(xi). If u(x1 + 0) = C1, then it’s

clear that taking λ = C1 will minimize the total variation. If u(x1 + 0) 6= C1, then

λ must be chosen so that C1 ∈ j(u)(xi), and setting λ = C1 will minimize the total

variation.

If |C1 − f1| > 1, then C1 /∈ j(u)(xi). Hence,

Φ (d(fi, j(u)(xi))) = 2d(Ci, j(u)(xi)) + 1

Meanwhile, the total variation of u, isolating terms depending on λ, is

∫ 1

0
|Du| = |u(x1 + 0)− λ|+

∫ 1

x1

|Du|

Thus, we seek to minimize the quantity

2d(Ci, j(u)(xi)) + |u(x1 + 0)− λ|

which can be rewritten as

2 min {|u(x1 + 0)− Ci|, |λ− Ci|}+ |u(x1 + 0)− λ|

and it is clear that the minimum occurs when λ = Ci.

Finally, Condition 5 is entirely analgous to Condition 4. Thus, we have shown that

Conditions 1-5 are necessary for a minimizer. We proceed to prove that they are

sufficient.

Let u ∈ BV satisfy Conditions 1-5. Let D = max{|xi − xi+1|}. In Lemma 2.1.11, we

gave a method for constructing a sequence {vk} ⊂ W 1,1 of monotone functions that

converge in L1 to a given bounded, monotone function v on an interval (a, b), such that
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vk(a) = v(a + 0) and vk(b) = v(b − 0). Since we are on a bounded interval, these will

also converge in L2.

For i = 1, 2, ..., n− 1, let αki be chosen such that

xi < αki < xi +
1

2Dk

and where u is continuous at αki .

Likewise, let βki be chosen such that

xi+1 −
1

2Dk
< βki < xi+1

and where u is continuous at βki .

On every interval (αki , β
k
i ), let vki ∈W 1,1 be monotone and satisfy vki (αki ) = u(αki + 0),

vki (βki ) = u(βki − 0), and

∫ βki

αki

|vki − u|2 <
1

(n− 1)k

For i = 1, 2, ..., n − 2, let ψki be the piecewise linear function connecting the points

(βki , u(βki ), (xi+1, Ui+1), and (αki+1, u(αki+1). Let ψk0 be the line connecting the points

(x1, U1) and (αk1 , u(αk1) and ψkn−1 the line connecting the points (βkn−1, u(βkn−1) and

(xn, Un). Define a sequence {uk} by

uk(x) =



U1 if x < x1

ψk0 if x1 ≤ x ≤ αk1

vki if αki ≤ x ≤ βki
ψki if βki ≤ x ≤ αki+1

ψkn−1 if βkn−1 ≤ x ≤ xn

Un if x > xn

(2.68)

For every k, uk is continuous, monotone on the intervals (xi, xi+1), and u(xi) = Ui. It

also takes the constant value U1 on (0, x1) and the constant Un on (xn, 1). Hence, it is

a minimizer of the functional F .
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Moreover, we have

n−1∑
i=1

∫ βki

αki

|uk − u|2 <
1

k

Since u satisfies Conditions 4 and 5, we have u = uk on the intervals (0, x1) and (xn, 1).

Hence,

∫ 1

0
|uk − u|2 <

1

k
+

n−1∑
i=1

∫ αki+1

βki

|uk − u|2 (2.69)

The functions uk are uniformly bounded and αki+1 − βki < 1
Dk , so the term

n−1∑
i=1

∫ αki+1

βki

|uk − u|2

vanishes as k → ∞. Hence, uk → u in the L2 norm. This means u is the L2 limit of

minimizers of F , and by Proposition 2.3.4 this implies u is a minimizer of G.

�

Notice that we proved the sufficiency of Conditions 1-5 by constructing an approximat-

ing sequence of minimizers of F . This implies the following corollary:

Corollary 2.3.12. If u ∈ BV is a minimizer of G, then there exists a sequence {uk}

converging to u in L2 such that uk is a minimizer of F for every k.

2.3.5 Minimizing G[u] +

∫ 1

0

u2

In Section 2.1.5, we considered the functional (2.24), and showed that it did not have

a minimizer in W 1,1. Here, we will reconsider it in terms of the functional G instead of

F . Thus, we have the following problem:

Problem 2.3.13. Let control points (x1, f1), ..., (xn, fn) be given. Find u ∈ L2 that

minimizes the functional

H[u] = G[u] +

∫ 1

0
u2 (2.70)
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Proposition 2.3.14. There exists a unique solution to Problem 2.3.13.

Proof : Since L2 is reflexive, it is sufficient to show that H is lower semicontinuous,

strictly convex, and coercive.

The functional

u 7→
∫ 1

0
u2

is coercive and strictly convex and continuous. The functional G is convex, nonnegative,

lower semicontinuous in the L2 norm. Therefore, H is coercive, strictly convex, and

lower semicontinuous in L2.

�

Proposition 2.3.15. If {vk} ⊂ W 1,1 is a minimizing sequence of (2.24), and if û is

the unique minimizer of H, then

lim
k→∞

∫ 1

0
|vk − û|2 = 0

Proof : Since G is the lower semicontinuous envelope of F , there exists a sequence

{uk} ⊂W 1,1 such that limk→∞
∫ 1

0 |uk − û|
2 = 0 and limk→∞ F [uk] = G[û]. Hence,

lim
k→∞

F [uk] +

∫ 1

0
u2
k = G[û] +

∫ 1

0
û2 (2.71)

and so {uk} is a minimizing sequence.

Let {vk} ⊂ W 1,1 be an arbitrary minimizing sequence. By coercivity, {vk} is bounded

in W 1,1, and compact embedding of W 1,1([0, 1]) into L2([0, 1]) ensures that there is

a subsequence converging strongly to some v ∈ L2. Relabeling if necessary, we may

denote this subsequence by {vk}. Since G is the lower semicontinuous envelope of F ,

we have

G[v] ≤ lim inf F [vk]

Since {vk} converges strongly in L2, limk→∞ ||vk||L2 = ||v||L2 ; therefore,
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G[v] +

∫ 1

0
v2 ≤ lim inf

{
F [vk] +

∫ 1

0
v2
k

}
We have taken {vk} to be a minimizing sequence, so

lim inf

{
F [vk] +

∫ 1

0
v2
k

}
= lim inf

{
F [uk] +

∫ 1

0
u2
k

}
Hence,

G[v] +

∫ 1

0
v2 ≤ G[û] +

∫ 1

0
û2

The function û is the unique minimizer, whence it follows that û = v.

�

The minimizers can be characterized as follows:

Proposition 2.3.16. Let u be the solution to Problem 2.3.13. Then u is constant on

(xi, xi+1) for i = 1, 2, ..., n− 1 as well as the intervals (0, x1) and (xn, 1).

Proof : Suppose, on the contrary, that u minimizes H and there exists k such that no

representative of u is constant on (xk, xk+1). There exist α, β ∈ (xk, xk+1) such that u

is continuous at α and β and

|u(α)| < |u(β)| (2.72)

Without loss of generality, we may suppose α < β. There exists y0 ∈ [α, β] and a

sequence {yk} ⊂ [α, β] converging to y0 such that

lim
k→∞

|u(yk)| = inf
y∈[α,β]

|u(y)|

Let λ denote this value. Then either λ = u(y0 + 0) or λ = u(y0 − 0). Let

ũ(x) =

 λ if α ≤ x ≤ β

u(x) otherwise
(2.73)
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The only change happens in a closed subinterval of (xk, xk+1), so in particular we have,

for i = 1, 2, ..., n,

u(xi + 0) = ũ(xi + 0)

u(xi − 0) = ũ(xi − 0)

and therefore

Φ (d(fi, j(u)(xi))) = Φ (d(fi, j(ũ)(xi)))

The function ũ satisfes the hypotheses of Proposition A.16. Hence,

∫ 1

0
|Dũ| ≤

∫ 1

0
|Du|

Moreover, on the interval [α, β], |ũ| ≤ |u|. Hence,

∫ 1

0
|ũ|2 ≤

∫ 1

0
|u|2

Using (2.72) and the continuity of u at β, this inequality must be strict. This implies

G[ũ] +

∫ 1

0
|ũ|2 < G[u] +

∫ 1

0
|u|2

which is a contradiction.

�

We conclude this section by considering explicit solutions to Problem 2.3.13.

Finding an explicit solution

Since the minimizers are piecewise-constant, we may treat the functional as being de-

fined on Rn+1. Specifically, a point (a0, a1, ..., an) shall be identified with the function

u(x) =

n∑
i=0

aiχEi(x)
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where Ei = (xi, xi+1) for i = 1, 2, .., n and χEi is the corresponding indicator function.

As we will be considering functions depending on finitely many parameters, it makes

sense to define an analogue of (2.52) in terms of these parameters. To that end, define

a function

j(a, b) = (min{a, b},max{a, b}) (2.74)

Let

∆xi = xi+1 − xi

Let a = (a0, a1, ..., an) and f = (f1, f2, ..., fn). We can write

H(f,a) =
n∑
i=1

Φ (d(fi, j(ai−1, ai))) +
n∑
i=0

|ai+1 − ai|+
n∑
i=0

a2
i∆xi (2.75)

where for future convenience we have made explicit the dependence on the fi. When

the fi are understood to be fixed, we shall use the notation

H(a0, a2, ..., an) =
n∑
i=1

Φ (d(fi, j(ai−1, ai))) +
n∑
i=0

|ai+1 − ai|+
n∑
i=0

a2
i∆xi

Problem 2.3.17. Given control points (x1, f1), ..., (xn, fn), find numbers A1, A2, ..., An

such that H attains a minimum.

Since (2.75) is nonnegative and goes to infinity as ||a|| → ∞, it attains a minimum. In

fact, it is strictly convex in a so the minimum is unique.

Our solution to Problem 2.3.17 will be developed in the following way: we will show that

if f1, f2, ..., fn are sufficiently large, then the minimizer takes a specific form depending

only on x1, x2, ..., xn. Next, we will show that if we have two sets of control points which

differ only in the ordinate of the kth point, then the minimizers are equal except possibly

on the intervals (xk−1, xk) and (xk, xk+1). We may thus transform the minimizer of a

special case to a minimizer for arbitrary f1, f2, ..., fn.
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Proposition 2.3.18. Let D = max
i

{
1

∆xi

}
. If f1, f2, ..., fn > D + 1, and if

Ai =
1

∆xi

for i = 1, 2, ..., n− 1, and

A0 =
1

2∆x0
,

An =
1

2∆xn
,

then u =
∑n

i=0AiχEi is the minimizer of H.

Proof : Suppose first that the numbers ∆xi are all distinct. Let A0 = 1
2∆x0

, An = 1
2∆xn

,

and Ai = 1
∆xi

for i = 1, 2, ..., n− 1. For any i between 1 and n− 1, we have

∂H

∂ai
|(A0,A1,...,An) =

∂Φ

∂ai
(d(fi, j(Ai−1, Ai)) +

∂Φ

∂ai
(d(fi+1, j(Ai, Ai+1))

+ sgn(Ai −Ai−1)− sgn(Ai+1 −Ai) + 2

If Ai > Ai+1, then ∂Φ
∂ai

(d(fi+1, j(Ai, Ai+1)) = −2 and sgn(Ai+1 −Ai) = −1. Otherwise,

∂Φ
∂ai

(d(fi+1, j(Ai, Ai+1)) = 0 and sgn(Ai+1 −Ai) = 1. In either case,

∂Φ

∂ai
(d(fi+1, j(Ai, Ai+1))− sgn(Ai+1 −Ai) = −1

and similarly

∂Φ

∂ai
(d(fi, j(Ai−1, Ai)) + sgn(Ai −Ai−1) = −1

Hence,

∂H

∂ai
(A0, A1, ..., An) = 0

If i = 0, then

∂H

∂a0
|(A0,A1,...,An) =

∂Φ

∂ai
(d(fi+1, j(A0, A1))− sgn(A1 − 0) + 1
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which also vanishes by the above argument, and similarly for i = n. Thus,

∇H(A0, A1, ..., An) = 0

Since H is convex, this must be the minimizer.

We proceed to the general case, where the numbers ∆xi need not be distinct. Given fi

for i = 1, 2, ..., n, let

h(x1, x2, ..., xn; a0, a1, ..., an) =
n∑
i=1

Φ (d(fi, j(ai−1, ai)))

+
n∑
i=0

|ai+1 − ai|+
n−1∑
i=1

a2
i (xi+1 − xi) + a2

0x1 + a2
n(1− xn)

This is continuous in both the xi and the ai. Let x1, x2, ..., xn be given. If ∆xi are not

all distinct, suppose there exist numbers α0, ..., αn such that

h(x1, x2, ..., xn;α0, α1, ..., αn) < h(x1, x2, ..., xn;A0, A1, ..., An) (2.76)

and let η denote the difference between the right hand side and the left hand side. If we

take 0 < ε < η
2 , then by continuity there exists δ > 0 such that if max{|xi − x̃i|} < δ,

and max{|ai − ãi|} < δ, then

|h(x1, x2, ..., xn; a0, a1, ..., an)− h(x̃1, x̃2, ..., x̃n; ã0, ã1, ..., ãn)| < ε

There exist x̂1, x̂2, ..., x̂n such that the numbers ∆x̂i are all distinct, max{|xi− x̂i|} < δ,

and max{|Ai − Âi|} < δ, where Âi = (∆x̂i)
−1 for i = 1, 2, ..., n − 1, Â0 = (2∆x̂0)−1,

and Ân = (2∆x̂n)−1. Then

|h(x1, x2, ..., xn; a0, a1, ..., an)− h(x̂1, x̂2, ..., x̂n; Â0, Â1, ..., Ân)| < ε

|h(x1, x2, ..., xn; a0, α1, ..., αn)− h(x̂1, x̂2, ..., x̂n;α0, α1, ..., αn)| < ε

This then implies
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h(x̂1, x̂2, ..., x̂n; Â0, Â1, ..., Ân) > h(x̂1, x̂2, ..., x̂n;α0, α1, ..., αn)

However, since the ∆x̂i are distinct it must be the case that

h(x̂1, x̂2, ..., x̂n; Â0, Â1, ..., Ân) < h(x̂1, x̂2, ..., x̂n;α0, α1, ..., αn)

which is a contradiction. Hence, the numbers αi cannot exist.

�

Lemma 2.3.19. Let x1, x2, ..., xn be fixed. Define a mapping T : [0,∞)n → Rn+1 as

follows: given a vector f = (f1, f2, ..., fn), let T (f) satisfy

H(f, T (f)) = inf
A

H(f,A) (2.77)

Then T is continuous.

Proof : Let f0 be given and consider a sequence {fk} converging to f0. Let Ai = T (fi).

From Proposition 2.3.18 it follows that the range of T is bounded, and therefore the

sequence {Ai} has a limit point A0. There is a subsequence {Akj} converging to A0.

Let

ε = H(f0,A0))− H(f0, T (f0))

By hypothesis, ε ≥ 0.

Suppose, on the contrary, that ε > 0. Continuity of H implies that there exists some

δ > 0 such that

|H(f0, T (f0))− H(f,A)| < ε

3

whenever ||f0 − f||+ ||T (f0)−A|| < δ, and

|H(f0,A0))− H(f,A))| < ε

3
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whenever ||f0 − f||+ ||A0 −A|| < δ.

Hence, for sufficiently large j

H(fkj ,Akj ))− H(fkj , T (fkj )) >
ε

3

which is a contradiction. Hence, we must have A0 = T (f0).

Thus, any sequence {fk} converging to f0 has a subsequence for which T (fk) → T (f0).

This implies that if

lim
k→∞

fk = f0

then

lim
k→∞

T (fk) = T (f0)

whence it follows that T is continuous at f0. The choice of f0 was arbitrary, so T is

continuous on its domain, as desired.

�

The following proposition shows that if a minimizer is found with a given set of control

points, then changing the ordinate of a control point only has a local effect on the new

minimizer.

Proposition 2.3.20. Let control points (x1, f1), ..., (xn, fn) be given and let u =
∑n

i=0AiχEi

be the minimizer of (2.70). Let k ∈ [0, n] be an integer and κ ≥ 0. Define a new set of

control points (x1, f1), ..., (xk, fk), (xk+1, κ), (xk+2, fk+2)..., (xn, fn) Let ũ =
∑n

i=0 ÃiχEi

the corresponding minimizer of (2.70). If i 6= k and i 6= k + 1, then

Ãi = Ai

Proof : We proceed by cases:

Case 1: Ak > Ak−1 and Ãk ≥ Ak−1
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Suppose first that the second inequality is strict. Let D = Ak − Ak−1. By continuity,

there exists δ > 0 such that if |fk+1−κ| < δ, then |Ak− Ãk| < 1
2D and |Ak−1− Ãk−1| <

1
2D. Let

Sk =
∑
i=1

k − 1Φ (d(fi, j(Ai−1, Ai))) +
k−2∑
i=0

|Ai+1 −Ai|+
k−1∑
i=0

A2
i∆xi

S̃k =
∑
i=1

k − 1Φ
(
d(fi, j(Ãi−1, Ãi))

)
+

k−2∑
i=0

|Ãi+1 − Ãi|+
k−1∑
i=0

Ã2
i∆xi

We claim that Sk = S̃k. Without loss of generality, suppose Ak ≥ Ãk. Consider three

subcases:

Subcase A: fk > Ak

In this case, we have Φ (d(fk, j(Ak−1, Ak))) = Φ
(
d(fi, j(Ãk−1, Ak))

)
and

Φ
(
d(fk, j(Ãk−1, Ãk))

)
= Φ

(
d(fi, j(Ak−1, Ãk))

)
. If Sk 6= S̃k, then uniqueness of the

minimizer implies

Sk + Φ (d(fk, j(Ak−1, Ak))) +Ak −Ak−1 < S̃k + Φ
(
d(fi, j(Ãk−1, Ak))

)
+Ak − Ãk−1

S̃k + Φ
(
d(fk, j(Ãk−1, Ãk))

)
+ Ãk − Ãk−1 < Sk + Φ

(
d(fi, j(Ak−1, Ãk))

)
+ Ãk −Ak−1

This simplifies to

Sk +Ak−1 < S̃k + Ãk−1

S̃k + Ãk−1 < Sk +Ak−1

which is a contradiction.

Subcase B: fk < Ãk

In this case, we have Φ (d(fk, j(Ak−1, Ak))) = Φ
(
d(fi, j(Ak−1, Ãk))

)
and

Φ
(
d(fk, j(Ãk−1, Ãk))

)
= Φ

(
d(fi, j(Ãk−1, Ak))

)
. If Sk 6= S̃k, then uniqueness of the

minimizer implies

Sk + Φ (d(fk, j(Ak−1, Ak))) +Ak −Ak−1 < S̃k + Φ
(
d(fi, j(Ãk−1, Ak))

)
+Ak − Ãk−1
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S̃k + Φ
(
d(fk, j(Ãk−1, Ãk))

)
+ Ãk − Ãk−1 < Sk + Φ

(
d(fi, j(Ak−1, Ãk))

)
+ Ãk −Ak−1

Subracting the right hand side of the second inequality from the left hand side of the

first inequality, and subtracting the left hand side of the second inequality from the

right hand side of the first inequality reduces to

Ak − Ãk < Ak − Ãk

which is a contradiction.

Subcase C: Ãk ≤ fk ≤ Ak

In this case, Φ (d(fk, j(Ak−1, Ak))) = Φ
(
d(fi, j(Ãk−1, Ak))

)
= 0 and

Φ
(
d(fk, j(Ãk−1, Ãk))

)
= Φ

(
d(fi, j(Ak−1, Ãk))

)
. If Sk 6= S̃k, then uniqueness of the

minimizer implies

Sk + Φ (d(fk, j(Ak−1, Ak))) +Ak −Ak−1 < S̃k + Φ
(
d(fi, j(Ãk−1, Ak))

)
+Ak − Ãk−1

S̃k + Φ
(
d(fk, j(Ãk−1, Ãk))

)
+ Ãk − Ãk−1 < Sk + Φ

(
d(fi, j(Ak−1, Ãk))

)
+ Ãk −Ak−1

This simplifies to

Sk +Ak−1 < S̃k + Ãk−1

S̃k + Ãk−1 < Sk +Ak−1

which is a contradiction.

In any case, we have Sk = S̃k. Since minimizers are unique, and we did not modify any

of the fi except fk+1, we must have Ãi = Ai for i = 0, 1, ..., k − 1.

This is valid for any κ ∈ (fk+1 − δ, fk+1 + δ). By Lemma 1, the conclusion will still be

true if κ is in the closed interval [fk+1− δ, fk+1 + δ]. Next, we extend this result outside

the interval. For if κ = fk+1 − δ or κ = fk+1 + δ] and Ãk > Ak−1, we may repeat the

above argument and find a larger closed interval I where Ãi = Ai for i = 0, 1, ..., k − 1

provided κ ∈ I.
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Consider now the maximal interval K with the property that Ãk > Ak−1 and Ãi = Ai

for i = 0, 1, ..., k − 1 whenever κ ∈ K. We claim that the infimum m of K has the

property that Ãk = Ak−1 and Ãi = Ai for i = 0, 1, ..., k − 1. Lemma 1 already assures

us that Ãk ≥ Ak−1 and Ãi = Ai for i = 0, 1, ..., k−1. Suppose Ãk > Ak−1. Then we may

repeat the above argument to find some δ such that the result holds in K∪(m−δ,m+δ),

contradicting the maximality of K.

This concludes Case 1.

Case 2: Ak < Ak−1 and Ãk ≤ Ak−1

This is similar to Case 1.

Case 3: Ak = Ak−1 and Ãk 6= Ak−1

This follows from Cases 1 and 2 by interchanging fk+1 and κ.

Case 4: Ak > Ak−1 and Ãk < Ak−1

We may split this into two sub-problems. By continuity, there exists κ̂ where the

corresponding minimizer satisfies Âk = Ak−1, and by Case 1 we have Âi = Ai for

i = 0, 1, ..., k− 1. Then we may apply Case 3 with κ̂ in place of fk+1 and Âk and Âk−1

in place of Ak and Ak−1, respectively.

Case 5: Ak < Ak−1 and Ãk > Ak−1

This is similar to Case 4.

Case 6: Ak = Ak−1 and Ãk = Ak−1

We have Ãk = Ak and the rest follows by uniqueness of minimizers.

So far, we have shown that in all cases, Ãi = Ai for i = 0, 1, ..., k−1. Similar arguments

hold for i = k + 2, k + 3, ..., n. Hence, we have Ãi = Ai provided i 6= k and i 6= k + 1,

as desired.

�

In light of Proposition 2.3.22, we pose the following problem:
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Problem 2.3.21. Given control points (x1, f1), ..., (xn, fn), andA0, A1, ..., Ak−2, Ak+1, ..., An,

find Ak and Ak+1 that minimize

hk(a, b) = Φ (d(fi, j(Ak−2, a)) + Φ (d(fi, j(a, b)) + Φ (d(fi, b, Ak+1))

+ |a−Ak−2|+ |b− a|+ |Ak+1 − b|+ a2∆xk + b2∆xk+1

We have

∂hk
∂a

=
∂Φ

∂a
(d(fi, j(Ak−1, a))) +

∂Φ

∂a
(d(fi, j(a, b)) + sgn(a−Ak−2))− sgn(b− a) + 2a∆xk

∂hk
∂b

=
∂Φ

∂b
(d(fi, j(a, b))) +

∂Φ

∂b
(d(fi, b, Ak+1))) + sgn(b− a)− sgn(Ak+2 − b) + 2b∆xk

In general, the derivative of Φ (d(fi, j(α, β))) depends on the configuration of fi, α, and

β. If α ≤ fi ≤ β, then the partial derivatives with respect to α and β vanish. If

α < β < fi, then ∂Φ
∂α = 0 and

∂Φ

∂β
=

 2(f − β) if f − β < 1

−2 otherwise

We may impose a definite configuration of a and b with respect to the given numbers

Ak−2, Ak+1, fk−1, fk, and fk+1. We assign definite values to the terms involving the

signum function as well as Φ. This makes the minimization problem straightforward

and gives us a candidate solution. Since a unique minimizer exists, it defines some

configuration, and by iterating over all possible configurations we are sure to find it.
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Appendix A

Functions of Bounded Variation

Begin with the classical definition:

Definition A.1. The variation of a function u over an interval [a, b] is

V b
a (u) = sup

{
n−1∑
i=1

|u(xi+1)− u(xi)|

}
(A.1)

where the supremum is taken over all finite sequences a ≤ x1 < x2 < ... < xn ≤ b.

A function is said to be of bounded variation if V b
a (u) is finite. The space of functions

of bounded variation is denoted BV ([a, b]).

If a ≤ c ≤ b, then V c
a + V b

c = V b
a .

We have the following result due to Jordan:

Proposition A.2. If u ∈ BV ([a, b]), then u can be written as the difference of mono-

tone increasing functions.

Proof : Let T (x) = V x
a (u). Then T and T − u are nondecreasing and u = T − (T − u).

�

Corollary A.3. If u ∈ BV ([a, b]), then for all x ∈ (a, b) the left- and right-hand limits

u(x− 0) and u(x+ 0) exist and are finite.

Proof : The left- and right-hand limits exist for any monotone function. Since the

taking of limits is finitely additive, the result follows from Proposition A.2.

�
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We will want to compute the variation of functions in some Lp space. Definition A.1

is very sensitive to changes in the function value at individual points, and in fact we

may modify any function on a set of measure zero to ensure that the supremum in

(A.1) is infinite. On the other hand, if we take some equivalence class [u] ∈ Lp, and

there is a representative u ∈ BV , then by Corollary A.3 we may find a left-continuous

representative, which we may take to be right-continuous at a. This choice in fact

minimizes the pointwise variation over the equivalence class [u]. Thus, when we refer

to the variation of some u ∈ Lp, we will refer to the variation of this representative.

Let u ∈ BV and let ψ be continuous and compactly supported in (a, b). Let δ > 0. To

any finite sequence a ≤ x1 < x2 < ... < xn+1 ≤ b satisfying max{xi+1− xi} < δ, and to

any corresponding finite sequence t1, t2, ..., tn satisfying ti ∈ [xi, xi+1], we associate the

quantity

n∑
i=1

ψ(ti)(u(xi+1)− u(xi)) (A.2)

Now, the difference between any two such sums is bounded above by

2 sup {|ψ(t)− ψ(s)| : |t− s| < δ}V b
a (u)

This implies that the sums converge to a limit δ → 0. The limit is the Riemann-Stieltjes

integral

Lu[ψ] =

∫ b

a
ψ du

This is a linear functional on C0([a, b]). Since

|Lu(ψ)| ≤ ||ψ||L∞V b
a (u),

it follows that Lu is bounded. Recall the Riesz Representation Theorem:

Theorem A.4. Let X be a locally compact, separable metric space. Let F : C0(X)→

R be bounded and linear. There exists a unique Radon measure µ on X such that
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F (g) =

∫
X
g dµ

for all g ∈ C0(X).

Thus, there exists a Radon measure Du such that

Lu(ψ) =

∫ b

a
ψ d(Du) (A.3)

for all ψ ∈ C0.

Proposition A.5. Let φ ∈ C1
0 ([a, b]) and u ∈ BV . Then

∫ b

a
φd(Du) = −

∫ b

a
uφ′ dx

Proof : Consider a finite sequence a = x1 < x2 < ... < xn+1 = b. By the Mean

Value Theorem, for every i there exists ti ∈ (xi, xi+1) such that φ(xi+1) − φ(xi) =

φ′(ti)(xi+1 − xi). Hence,

n∑
i=1

u(xi)φ
′(ti)(xi+1 − xi) =

n∑
i=1

u(xi)(φ(xi+1)− φ(xi))

=
n−1∑
i=1

φ(xi+1)(u(xi)− u(xi+1)) + u(xn)φ(b)− u(a)φ(a)

=
n∑
i=1

φ(xi+1)(u(xi)− u(xi+1))

where the last equality follows from the fact that φ(a) = φ(b) = 0 Now, uφ′ is continuous

outside of a countable set and hence Riemann integrable. If given δ > 0 we require that

our finite sequence satisfy xi+1 − xi < δ, then as δ → 0,

n∑
i=1

u(xi)φ
′(ti)(xi+1 − xi)→

∫ b

a
uφ′ dx

Also, since φ is continuous and u is of bounded variation,

n∑
i=1

φ(xi+1)(u(xi)− u(xi+1))→ −
∫ b

a
φdu
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where the term on the right is a Riemann-Stieltjes integral. The result follows from

(A.3).

�

Corollary A.6. Du is the distributional derivative of u.

Given Radon measure µ, we can consider the total variation measure |µ|. For any Borel

measurable set E,

|µ|(E) = sup

{ ∞∑
i=1

|µ|(Ei)

}
where the supremum is taken over all countable partitions of E into measurable sets.

If φ ∈ C1
0 and ||φ||L∞ ≤ 1, then

∫ b

a
d(|Du|) ≥

∫ b

a
φd(Du)

From Proposition 2 it follows that

∫ b

a
d(|Du|) ≥

∫ b

a
uφ′

Define a functional

V (u, [a, b]) = sup

{∫ b

a
uφ′ dx : φ ∈ C1

0 ([a, b]) and ||φ||L∞ ≤ 1

}
(A.4)

Proposition A.7. Let u ∈ BV ([a, b]). Then

V (u, [a, b]) = |Du|((a, b))

Proof : There exist disjoint Borel-measurable sets A ⊂ (a, b) and B ⊂ (a, b) and pos-

itive Radon measures Du+ and Du− such that Du+ is concentrated on A, Du− is

concentrated on B, Du = Du+ −Du−, and |Du| = Du+ +Du−.

Let ε > 0. By inner regularity of Radon measures, there exist compact sets Aε ⊂ A

and Bε ⊂ B such that



118

Du+(A \Aε) <
ε

2

Du−(B \Bε) <
ε

2

There exists a function φ ∈ C1
0 such that φ |Aε= 1, φ |Bε= −1, and ||φ||L∞ ≤ 1. Then

∫ b

a
φd(Du) ≥

∫ b

a
d|Du| − ε

�

We also have a converse:

Proposition A.8. Let u ∈ L1([a, b]). If V (u, [a, b]) < ∞, then there exists a Radon

measure Du which is the distributional derivative of u and satisfies V (u, [a, b]) =

|Du|((a, b)).

Proof : Define a functional

J [φ] =

∫ b

a
uφ′ dx

Since V (u, [a, b]) < ∞, J is bounded. In fact, it is bounded on a dense subset of unit

ball in C0, so we may extend it to a bounded linear functional on all of C0. Hence,

we may apply the Riesz Representation Theorem to deduce the existence of a Radon

measure Du satisfying

∫ b

a
φd(Du) = −

∫ b

a
uφ′ dx

This implies that Du is the distributional derivative of u.

The proof of Proposition 3 shows that V (u, [a, b]) = |Du|((a, b)).

�

The connection between V (u, [a, b]) and V b
a (u) is provided by the following:



119

Proposition A.9. Let u ∈ L1([a, b]). There exists a representative of u, also denoted

u, such that

V (u, [a, b]) = V b
a (u) (A.5)

Proof : See [1], Theorem 3.27

Corollary A.10. The total variation functional is convex and lower semicontinuous in

Lp for 1 ≤ p ≤ ∞.

Proof : By (A.4) and Proposition A.9, the total variation is the pointwise supremum of

a family of linear functionals that are continuous on Lp for 1 ≤ p ≤ ∞. Hence, it is

convex and lower semicontinuous in Lp.

�

We now have an expression for the total variation that does not depend on the choice

of representative of u. Henceforth, we will refer to (A.4) as the total variation, and to

Definition A.1 as the pointwise variation. Moreover, we will use the notation

V (u, [a, b]) =

∫ b

a
|Du| (A.6)

to denote the total variation of u.

We have the following integration by parts formula

Proposition A.11. If u ∈ BV ([a, b]) and v ∈W 1,1([a, b]), then

∫ b

a
uv′ dx+

∫ 1

0
v u(Df) = u(b− 0)v(b)− u(a+ 0)v(a)

Proof : See [17], 2.9.24.

A.1 Properties of BV Functions

We may endow BV ([a, b]) with the norm



120

||u||BV =

∫ b

a
|u|+

∫ b

a
|Du|

It can be shown thatBV is a Banach space under this norm. However, it is too strong for

our purposes, as it greatly limits the ways in which BV functions can be approximated.

For example, there is no smooth approximation to the Heaviside function in the BV

norm.

Instead, we will use a weaker form of convergence.

Definition A.12. Let u ∈ BV ([a, b]). A sequence {un} ⊂ BV ([a, b]) weakly* con-

verges in BV to u if

lim
n→∞

∫ b

a
|un − u| = 0 (A.7)

and, for all φ ∈ C0([a, b]),

lim
n→∞

∫ b

a
φd(Dun) =

∫ b

a
φd(Du)

If moreover

lim
n→∞

∫ b

a
|Dun| =

∫ b

a
|Du| (A.8)

we say {un} strictly converges to u.

Using this sense of convergence, we have smooth approximations to BV functions.

Proposition A.13. Let u ∈ BV ([a, b]). There exists a sequence {φn} ⊂ C∞([a, b])

that strictly converges to u in BV .

Proof : See [1].

Next, we have the following result on compact embedding of BV into Lp spaces:

Theorem A.14. Let {uk} ⊂ BV ([a, b]) and suppose there exists M such that

∫ b

a
|uk|+

∫ b

a
|Duk| < M
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for k = 1, 2, .... Then there exists u ∈ BV and a subsequence ukj such that

lim
j→∞

∫ b

a
|ukj − u|

p = 0

whenever 1 ≤ p <∞.

Proof : See [1] for a proof in the case p = 1. The general case follows from Holder’s

inequality and the inclusion BV ([a, b]) ⊂ L∞([a, b]).

�

Another useful property is the decomposition of BV functions. Let u ∈ BV . By

the Radon-Nikodym-Lebesgue Theorem, there exists a measurable function u′ and a

measure Dus concentrated on a set of Lebesgue measure zero, such that

Du = u′dx+Dus

The singular part Dus can be further decomposed into a purely atomic measure Duj

and a diffuse measure Duc. We may write Dua = u′dx as well.

These measures may be interpreted as follows:

Dua is the absolutely continuous component, and there is an absolutely continuous

function ua such that u′ is its almost-everywhere derivative and satisfies

Dua(E) =

∫
E
u′(x) dx

for any measurable set E.

Next, Duj is known as the jump component. It corresponds to a jump function uj .

Finally Duc is known as the Cantor component, and corresponds to a Cantor function

uc. This terminology is taken from the classical example of the Cantor-Vitali function.

This leads to a decomposition of u, namely

u = ua + uj + uc

We conclude this section with a result about modifying BV functions on intervals.
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Lemma A.15. Let u ∈ BV ([a, b]) and let c ∈ (a, b). Let x0 ∈ [c, b]. For any

λ ∈ [min{u(x0 − 0), u(x0 + 0)},max{u(x0 − 0), u(x0 + 0)}]

define the function

uλ(x) =

 λ if c ≤ x ≤ d

u(x) otherwise

If x0 = b, take λ = u(b− 0). Then uλ ∈ BV ([a, b]) and

∫ b

a
|Duλ| ≤

∫ b

a
|Du|

Proof : First, note that

∫ b

a
|Du| =

∫ c

a
|Du|+

∫ b

c
|Du|+ |u(c+ 0)− u(c− 0)| (A.9)

If x0 = b, then

uλ(x) =

 u(b− 0) if c ≤ x ≤ b

u(x) otherwise

and

∫ b

a
|Duλ| =

∫ c

a
|Du|+ |u(b− 0)− u(c− 0)|

Now,

∫ b

c
|Du| ≥ |u(c+ 0)− u(b− 0)|

and by the triangle inequality

|u(c+ 0)− u(c− 0)|+ |u(c+ 0)− u(b− 0)| ≥ |u(b− 0)− u(c− 0)|

Hence,
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∫ b

a
|Duλ| ≤

∫ b

a
|Du|

Next, suppose x0 < b. Then

∫ b

c
|Du| ≥ |u(c+ 0)− u(x0 − 0)|+ |u(x0 + 0)− u(x0 − 0)|+ |u(x0 + 0)− u(b− 0)|

Our hypotheses imply

|u(x0 + 0)− u(x0 − 0)| = |λ− u(x0 − 0)|+ |u(x0 + 0)− λ|

Applying the triangle inequality, it follows that

∫ b

c
|Du|+ |u(c+ 0)− u(c− 0)| ≥ |u(c− 0)− λ|+ |λ− u(b− 0)|

Hence,

∫ b

a
|Duλ| ≤

∫ b

a
|Du|

�

Similarly, we may prove the following:

Proposition A.16. Let u ∈ BV ([a, b]). Let x0 ∈ [a, b] and let [c, d] be an interval

containing x0. For

λ ∈ [min{u(x0 − 0), u(x0 + 0)},max{u(x0 − 0), u(x0 + 0)}]

define the function

uλ(x) =

 λ if c ≤ x ≤ d

u(x) otherwise

Then uλ ∈ BV ([a, b]) and

∫ b

a
|Duλ| ≤

∫ b

a
|Du|
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Appendix B

Variational Inequalities

Problem B.1. Given g ∈ H−1, find v ∈ H1
0 ([0, 1]) that minimizes

L[v] =

∫ 1

0
(v′)2 − 〈g, v〉 (B.1)

under the constraint |v| ≤ 1.

Define the constraint set

K =
{
v ∈ H1

0 ([0, 1]) : ||v||L∞ ≤ 1
}

(B.2)

If a solution v of B.1 were to exist, then, given ε ∈ (0, 1] and u ∈ K, then since K is

convex v + ε(u− v) ∈ K and hence

L[v] ≤ L[v + ε(u− v)]

That is,

∫ 1

0
(v′)2 − 〈g, v〉 ≤

∫ 1

0

(
v′ + ε(u′ − v′)

)2 − 〈g, v + ε(u− v)〉

Take the difference

L[v + ε(u− v)]− L[v] =
ε2

2

∫ 1

0
(u′ − v′)2 + ε

∫ 1

0
v′(u′ − v′)− ε〈g, u− v〉

This is nonnegative for all ε ∈ (0, 1], whence it follows that

∫ 1

0
v′(u′ − v′) ≥ 〈g, u− v〉 (B.3)
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for all u ∈ K. An expression of this form is known as a variational inequality. In

general, we have the following result:

Theorem B.2. Let H be a Hilbert space and K ⊂ H closed and convex. Let a(u, v)

be a coercive bilinear form on H and F a continuous linear functional on H. Then there

exists a unique v ∈ K such that

a(v, u− v) ≥ F (u− v) (B.4)

for all u ∈ K.

For a proof, see [20], Chapter II, Theorem 2.1.

In the context of Problem B.1,

a(u, v) =

∫ 1

0
v′u′

Coercivity follows from Poincare’s inequality. Since K is closed and convex, this implies

that there is a unique v ∈ K that satisfies B.3. Then v is a unique solution of Problem

B.1.

Let Λ = {x : |v(x)| = 1}. This is known as the coincidence set. Since v ∈ H1
0 ([0, 1]),

it follows that Λ is a closed subset of (0, 1). Let x0 ∈ (0, 1) \ Λ. Let 0 < δ < d(x0,Λ)

and let Bδ(x0) denote the ball of radius δ centered at x0.

Let φ ∈ C∞([0, 1]) such that supp(φ) ⊂ Bδ(x0). For sufficiently small ε, v ± εφ ∈ K.

Letting u = v + εφ and substituting into B.3, it follows that

∫ 1

0
v′φ′ ≥ 〈g, φ〉

If instead we set u = v − εφ, then it would follow that

∫ 1

0
v′φ′ ≤ 〈g, φ〉

Hence,



126

∫ 1

0
v′φ′ = 〈g, φ〉

This holds for all φ ∈ C∞([0, 1]) such that supp(φ) ⊂ Bδ(x0). Repeating this for all

x0 ∈ (0, 1) \ Λ we conclude that

−v′′ = g (B.5)

on (0, 1) \ Λ, where the equality is in the sense of distributions.

This is not yet the full picture. We want to see what happens to v′′ on Λ, especially on

its boundary. We have the following (cf. [20], Chapter II, Theorem 6.9):

Theorem B.3. Let v be the solution to Problem B.1. Then there exists a Radon

measure µ concentrated on Λ such that

−v′′ = µ+ g

in the sense of distributions. Moreover, µ {x : v(x) = −1} is nonnegative and

µ {x : v(x) = 1} is nonpositive.

We shall make use of the following:

Theorem B.4. Let X be an open subset of R. If F is a continuous linear functional

on C∞0 (X) with F (φ) ≥ 0 for all nonnegative φ ∈ C∞0 (X), then there exists a positive

measure µ such that

F (φ) =

∫
X
φdµ (B.6)

For a proof, see [19], Theorem 2.1.7.

Proof of Theorem B.3: Let X = {x : v(x) < 2
3 . The mapping

φ 7→
∫
X
v′φ′ − 〈g, φ〉

is continuous and linear for all φ ∈ C∞0 (X). If φ is nonnegative on X, then v+ εφ ∈ K

for sufficiently small ε. As above, we use the variational inequality to deduce that
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∫
X
v′φ′ − 〈g, φ〉 ≥ 0

Hence, there exists a nonnegative Radon measure µ+ such that

∫
X
v′φ′ − 〈g, φ〉 =

∫
X
φdµ+

From B.5 it follows that µ+ is concentrated on X ∩ Λ.

Similarly, if we let Y = {x : v(x) > −2
3 , we deduce the existence of a nonpositive Radon

measure −µ− concentrated on X ∩ Λ that satisfies

∫
Y
v′φ′ − 〈g, φ〉 = −

∫
Y
φdµ−

for all φ ∈ C∞0 (Y ).

Letting µ = µ+ − µ−, we can combine the above and deduce that

∫ 1

0
v′φ′ − 〈g, φ〉 =

∫ 1

0
φdµ

for all φ ∈ C∞0 ([0, 1]). Hence,

−v′′ = µ+ g

in the sense of distributions.

�
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Appendix C

Approximation of L2 Functions by Step Functions

We will show that step functions are dense in L2. We show that smooth functions can

be approximated by step functions in the L2 norm, and then use the density of C∞ in

L2.

Lemma C.1. : Let φ ∈ C∞([0, 1]). For all ε > 0, there exist disjoint intervals

E1, E2, ..., Ek, whose union is the interval [0, 1], and numbers λ1, λ2, ..., λk such that

the step function

gε(x) =
k∑
i=1

λiχEi(x) (C.1)

satisfies

∫ 1

0
|φ− gε|2 < ε (C.2)

Proof : Suppose φ ∈ C∞([0, 1]) and let

M = sup
x∈[0,1]

{|φ′(x)|}

Let ε > 0. Choose a natural number N such that

N2 >
M2

ε

Define a sequence {x0, x1, ..., xN} where

xi =
i

N

Define a function gε by
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gε(x) =

N∑
i=1

φ(xi−1)χ[xi−1,xi)(x) (C.3)

Then, on the interval [xi−1, xi),

||gε − φ||L∞ ≤
M

N

Hence,

∫ xi

xi−1

(gε − φ)2 ≤ 1

N

(
M

N

)2

(C.4)

We may write

∫ 1

0
(gε − φ)2 =

N∑
i=1

∫ xi

xi−1

(gε − φ)2

By (C.4), this implies

∫ 1

0
(gε − φ)2 ≤

N∑
i=1

1

N

(
M

N

)2

=

(
M

N

)2

< ε

(C.5)

�

Proposition C.2. Let f ∈ L2([0, 1]). For all ε > 0, there exists a step function gε such

that

∫ 1

0
|f − g2

ε | < ε (C.6)

Proof : Suppose f ∈ L2([0, 1]) and let ε > 0. The density of C∞([0, 1]) in L2 ensures

that there exists a smooth function φ such that

∫ 1

0
(φ− f)2 <

ε

2
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By Lemma C.1, there exists gε such that

∫ 1

0
(φ− gε)2 <

ε

2

Therefore,

∫ 1

0
|f − g2

ε | < ε

�
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