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The primary purpose of cognitively diagnostic assessment (CDA) is to provide useful

information about students’ learning needs. The attributes (i.e., latent skills) possessed

by examinees can be uncovered based on examinee responses to test items primarily

in conjunction with cognitive diagnosis models (CDMs). Most, if not all, CDMs re-

quire a Q-matrix to specify the attributes measured by each item. When attributes are

correctly specified, CDMs have been shown useful in identifying examinees’ mastery

or nonmastery of attributes in a domain of interest. However, conventional Q-matrix

development process involves some degree of subjectivity, which can result in validity

concerns due to inaccurate attribute specifications. Although some statistical proce-

dures exist in the literature, additional work is still needed to address some concerns

about validating attribute specifications in the Q-matrix.

Each of the three studies of this dissertation introduces new Q-matrix validation

procedures. The first study presents an EM-based δ -method, namely, the iterative

modified sequential search algorithm (IMSSA), to empirically validate the correct-

ness of attribute specifications for the deterministic inputs, noisy “and” gate (DINA)
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model. In this study, the performance of the IMSSA is compared to that of some exist-

ing parametric and nonparametric methods through simulated and real data analyses.

The second study proposes new indices under the generalized DINA (G-DINA) model,

namely, the iterative Jensen-Shannon Divergence (iJSD) index and iterative G-DINA

model discrimination index (iGDI), to determine the correctness of attribute specifi-

cations in the Q-matrix. The iJSD is more general than the iGDI that can be applied

under both dichotomous and nondichotomous models, whereas, the iGDI can only be

used under dichotomous models. As with the iJSD, the main advantage of the iGDI is

the inclusion of an iterative algorithm in the original GDI so that better results can be

obtained. The feasibility of the iJSD and iGDI is investigated using simulated and real

data. In the final study, the Wald-Q, an adaptation of the Wald statistical test to the Q-

matrix validation context, is presented. The Wald-Q is applied under situations where

the true underlying process is known or unknown. Using simulated and real data, the

Wald-Q was compared to the IMSSA proposed in the first study and to iGDI proposed

in the second study in conjunction with the DINA and G-DINA models, respectively.

Across the three simulation studies, different factors (i.e., sample sizes, test lengths,

complexity of q-vectors, degrees of q-vector misspecifications, attribute structures, and

item qualities) are varied to examine the performance of the new procedures. The new

procedures are further applied to fraction-subtraction data. Practical applications of the

proposed procedures can lead to the advancement of the use of CDAs in educational

settings. Results leading to improvements in Q-matrix validation can also help other

components of cognitive diagnosis modeling, such as the estimation of model param-

eters, model-data fit analyses, the accuracy of attribute classifications, and ultimately,

validity of CDA inferences.
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Chapter 1

Introduction and Objectives

1.1 Introduction

Traditional summative assessments describe examinees’ proficiency as a unidimen-

sional latent construct using single scores. The scores reported from summative assess-

ments are based on traditional test theories, such as classical test theory (CTT) and item

response theory (IRT). A main criticism of a single overall ability score is its inabil-

ity to provide diagnostic information about specific skills in a target domain in which

examinees should have proficiency (e.g., Leighton & Gierl, 2007). Because of this lim-

itation, there has been increasing interest in cognitively diagnostic assessment (CDA),

which partitions the latent construct into finer-grained and interrelated, but separable

latent skills. Therefore, CDA is employed to uncover examinees’ current knowledge,

skill sets, and capabilities within a domain of interest. In this way, areas that may need

specific academic support while learning is occurring can be identified (de la Torre,

2009). By providing specific feedback to teachers and students based on examinees’

strengths and weaknesses, teaching and learning activities can be arranged accordingly

(DiBello & Stout, 2007).

To date, a variety of CDAs have been introduced. For example, a subset of at-

tributes used in Tatsuoka’s (1984) widely-used fraction-subtraction data contain the

following four attributes: (a) performing a basic fraction subtraction operation, (b)

simplifying/reducing, (c) separating a whole number from fraction, and (d) borrowing

one from whole numbers to fraction. Recently, another CDA has been designed for
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middle school proportional reasoning content (Tjoe & de la Torre, 2014). A subset of

the attributes defined in this domain are: (1) prerequisite skills and concepts required;

(2a) comparing and (2b) ordering fractions; and (3) identifying a multiplicative. As in-

dicated by the examples, the application of CDA can enrich the learning environment

such that examinees can be classified based on their mastery or nonmastery of more

specific skills.

For optimal results, CDAs need to be analyzed using certain cognitive diagno-

sis models (CDMs; de la Torre & Minchen, 2014). CDMs are psychometric models

developed primarily for the purpose of identifying multiple finer-grained skills in a

particular content area. Because of specific assumptions required for the relationship

between task performance and attribute vectors (Junker & Sijtsma, 2001), a number of

models have been developed. These CDMs can be classified into two types of models:

reduced models that require fewer parameters (e.g., only slip and guessing parameters

for the DINA model) and saturated models with more flexible parameterizations.

Regardless of the various assumptions underlying a particular model, CDMs have

a common component called Q-matrix. The Q-matrix relates a subset of K attributes

to each one of the J items. The row j and column k binary entry of the Q-matrix, q jk,

is 1 only if the kth attribute is required to correctly answer item j, or is 0 if the kth

attribute is not. Each attribute vector can be considered a unique latent class among

2K possible latent classes for K binary attributes. For example, a sample of three items

from fraction-subtraction data can be seen in Table 1.1 (Tatsuoka, 1984). An examinee

i who is classified into the latent class αi = (1,0,1,0) has mastered the first and third

attributes. That is, the student can perform “basic fraction subtraction operation” and

“separate a whole number from fraction.” A further outcome of this assessment could

suggest teachers to focus on the other two attributes (i.e., simplifying/reducing and

borrowing one from whole numbers to fraction) for the student in order to successfully

become proficient in the fraction-subtraction domain.
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Table 1.1: A Q-Matrix Sample for Fraction-Subtraction Test
Attributes

Item α1 α2 α3 α4

1. 3
4 −

3
8 1 0 0 0

2. 37
8 −2 1 0 1 0

3. 11
8 −

1
8 1 1 0 0

Note. α1 – performing a basic fraction subtraction operation; α2 – simplifying/reducing;
α3 – separating whole number from fraction; and α4 – borrowing one from whole numbers
to fraction.

Nevertheless, the process of constructing the Q-matrix requires enormous effort

especially from domain experts (Akbay, Terzi, Kaplan, & Karaaslan, 2017; Tatsuoka,

1984; Tjoe & de la Torre, 2014). Identifying required attributes via an extensive lit-

erature review, writing test items based on the identified attributes, and validating the

attribute specifications by domain experts and statistical analyses are main challenges

in the Q-matrix establishment. Conventional Q-matrix construction, which primarily

relies on expert judgments, can be considered as an inherently subjective process. As

such, this process can ultimately lead to attribute misclassifications as a result of the

inaccurate estimation of model parameters (de la Torre & Chiu, 2016). The valid-

ity of inferences from CDAs due to attribute misclassifications has raised discussions

among researchers (e.g., Chiu, 2013; de la Torre, 2008; Liu, Xu, & Ying, 2012; Rupp

& Templin, 2008). Hence, any model-fit analysis without validating the attribute spec-

ifications may not be reliable. Unfortunately, it is usually assumed that the Q-matrix

is correct once it has been specified by domain experts. This assumption is generally

made due to the lack of well-established methods for Q-matrix validation (Chiu, 2013;

DeCarlo, 2011; de la Torre, 2008; de la Torre & Chiu, 2016; Henson, Templin, &

Willse, 2009; Liu et al., 2012).



4

1.2 Objectives

It was only recently that validity concerns about CDAs due to the involvement

of human judgments in constructing the Q-matrix have received considerable attention

from a number of researchers (e.g., Chiu, 2013; DeCarlo, 2011; de la Torre, 2008; de la

Torre & Chiu, 2016; Henson et al., 2009; Liu et al., 2012). Even though existing meth-

ods have proposed Q-matrix validation procedures from various perspectives, there are

still some remaining issues that need to be addressed. This dissertation has the fol-

lowing primary objectives: (1) to introduce an iterative modified sequential EM-based

δ -method for the DINA model, (2) to present the iterative Jensen-Shannon Diverge

(iJSD) index and the iterative G-DINA model discrimination index (iGDI) for the G-

DINA model, and (3) to propose a Wald-based procedure for Q-matrix validation under

the DINA and G-DINA models.

The first study proposed a new search algorithm based on the sequential EM-

based δ -method (de la Torre, 2008), the iterative modified sequential search algorithm

(IMSSA), to empirically validate attribute specifications. The IMSSA is an extension

of the sequential search algorithm (SSA; de la Torre, 2008) that some of the limitations

were addressed. First, the IMSSA can offer a more efficient procedure in that only the

first K single-attribute q-vectors are examined so as to lessen complications associated

with multiple search steps. Second, in the SSA, it was not clear what ε to use in prac-

tice because it could change under many conditions, such as changes in sample size,

test length, item quality, and degree of misspecifications, all of which were fixed in de

la Torre’s (2008) study. In the IMSSA, the ε values were determined as a function of

observable variables based on each level of estimated item qualities (i.e., high, medium,

and low). Therefore, these values are more applicable across specific set of conditions.

Third, the SSA was not implemented iteratively in that the validation procedure stops

after one full iteration even if changes occur in the provisional Q-matrix. The algorithm
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in the IMSSA was implemented iteratively, such that, if the attribute specifications in

a q-vector are changed in the previous iteration, the algorithm is repeated using the

updated Q-matrix as the provisional Q-matrix. In doing so, the iterative algorithm can

alleviate negative effects of any misspecified attribute specifications given in the pre-

ceding iteration. In this study, the effectiveness of the IMSSA was compared to other

iterative and noniterative Q-matrix validation methods.

The second study introduced two new indices for empirically-based Q-matrix val-

idation purposes to verify the correctness of attribute specifications in the Q-matrix.

In particular, the iJSD and iGDI were proposed under a wider class of CDMs so that

assuming an underlying process would not be required. The main advantage of the

iJSD is its applicability for dichotomous, as well as nondichotomous models, such as

the continuous G-DINA model (Minchen & de la Torre, 2016) and MC-DINA model

(de la Torre, 2009; Yigit, Sorrel, & de la Torre, 2016). Because the iGDI can be ap-

plied for dichotomous models only, the iJSD is more general than the iGDI. As with

the iJSD, the main advantage of the iGDI is the inclusion of an iterative algorithm that

could provide better results.

The third study presented a new Q-matrix validation procedure, namely the Wald-

Q, for identifying attribute specifications for each q-entry by adapting the Wald test

(Morrison, 1967) for multivariate hypothesis testing. The Wald-Q should eliminate

some of the limitations of the existing methods. For example, although the method

was an empirically-based procedure similar to that used by de la Torre (2008), Terzi and

de la Torre (2015), and de la Torre and Chiu (2016), the calculation of a single optimal

ε value was not required. Moreover, an iterative process was included in the Wald-Q

so that any possible impact of misspecified entries can be eliminated at the succeeding

steps. Furthermore, the Wald-Q can be designed for reduced and general CDMs based

on the restriction matrix. Using simulated and real data, the performance of the Wald-

Q was compared to the IMSSA proposed in the first study and to iGDI proposed in the



6

second study in conjunction with the DINA and G-DINA models, respectively.
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Chapter 2

Study I: An Iterative Method for Empirically-Based
Q-Matrix Validation

2.1 Abstract

The primary aim of cognitive diagnosis modeling is to identify finer-grained skill

mastery or nonmastery of examinees. The framework for specifying required attributes

for each item in a test is called Q-matrix. The traditional way of constructing a Q-

matrix based on expert opinion is inherently subjective, consequently resulting in seri-

ous validity concerns. Misspecifications in the Q-matrix can negatively affect param-

eter estimation, and ultimately, attribute classifications. The current study proposes a

new validation method under the deterministic inputs, noisy “and” gate (DINA) model

to empirically validate attribute specifications in the Q-matrix. Simulation studies are

conducted, and results based on the proposed method are compared to those of other

parametric and nonparametric methods. Results show that the new method outper-

forms the other methods across the board. Finally, the method is applied to a real data

example using fraction-subtraction data.
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2.2 Introduction

The purpose of cognitive diagnosis modeling is to discover latent skills possessed

by examinees based on their responses to test items. Cognitive diagnosis models

(CDMs) require a Q-matrix (Tatsuoka, 1983) to identify the specific subset of attributes

measured by each item. The entry q jk in row j and column k of the Q-matrix is 1 if the

kth attribute is required to correctly answer for item j, and 0 otherwise.

Due to its nature, constructing a Q-matrix is usually subjective, which has raised

serious validity concerns among researchers. For instance, the estimation of model

parameters, and ultimately the accuracy of attribute classifications may be negatively

affected by including or omitting multiple q-entries in the Q-matrix (Rupp & Tem-

plin, 2008). However, the Q-matrix is usually assumed to be correct once specified by

domain experts. This assumption is generally made because until recently, few well-

established methods have become available to detect misspecifications in the Q-matrix

(Chiu, 2013; DeCarlo, 2011; de la Torre, 2008), particularly when general CDMs are

involved (de la Torre & Chiu, 2016; Liu, Xu, & Ying, 2012). Any analysis, such as

model-fit evaluation, that does not check the correctness of the Q-matrix, becomes

questionable.

These concerns have led to developments of some statistical methods for validating

the appropriateness of Q-matrix specifications. For instance, Chiu (2013) proposed a

Q-matrix refinement method (QRM) based on a nonparametric classification procedure

(Chiu & Douglas, 2013). This method aims to minimize the residual sum of squares

(RRS) between the observed and ideal responses among all the possible q-vectors given

a Q-matrix. The RSS of item j across all examinees is defined as:

RRS j =
N

∑
i=1

(Xi j−ηi j)
2 =

2K

∑
m=1

∑
i∈Cm

(Xi j−η jm), (2.1)

where Xi j and ηi j are the observed and ideal item responses of examinee i to item j,
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respectively, Cm is the latent proficiency class m, and N is the number of examinees.

Note that the index j of ηi j in Equation 2.1 was replaced by m because item responses

are class-specific, meaning that every examinee in the same latent class is assumed to

have the same ideal response to an item (Chiu, 2013). The RSS is used to identify any

misspecified q-entries for an item. In the algorithm, the item vector with the highest

RSS (i.e., possibly the worst item vector) gets replaced by the one having the lowest

RSS (i.e., possibly the best item vector). The process is repeated iteratively until con-

vergence is met. Due to its nature as a nonparametric method, it neither relies on the

estimation of model parameters nor makes any assumptions other than those made by

the CDM itself (Chiu, 2013). However, if the underlying model is known, parametric

methods should provide more powerful results particularly when N is large. Addition-

ally, the method cannot identify skills that have not been included in the provisional

Q-matrix (Chiu, 2013), which is actually a similar problem of model misfit caused by

an incomplete set of the skills in the Q-matrix (de la Torre & Chiu, 2016).

Another method is the empirically based δ -method proposed by de la Torre (2008),

where a sequential search algorithm was implemented for the deterministic inputs,

noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) model. To define the

correct q-vector among the other possibilities, the discrimination index of item j, δ j,

is computed. The index δ j is the difference in the probabilities of correct responses

between examinees who have the required attributes (i.e., η j = 1) and those who do

not (i.e., η j = 0). The following two algorithms for the δ -method were explained in

detail in de la Torre (2008).

Exhaustive Search Algorithm. The exhaustive search algorithm (ESA) for Q-

matrix validation computes δ jl for all l = 2K − 1 possible q-vectors for each j item

(de la Torre, 2008). The q-vector that gives the largest difference in the probabilities of

correct response between η jl = 1 and η jl = 0 among all the possible attribute patterns
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is chosen as the correct q-vector for the item. However, the algorithm becomes imprac-

tical when K is reasonably large. Additionally, unlike the sequential search algorithm

(SSA; discussed below), the ESA has the tendency to choose over-specified q-vectors

(de la Torre, 2008).

Sequential Search Algorithm. The SSA, in comparison to the ESA, is considered

more efficient because it does not require the comparisons of δ jl for all the possible

attribute patterns. More specifically, δ jl is computed for (K j + 1)K− (K2
j +K j)/2 q-

vectors for item j, where K j is the number of attributes required for item j (de la Torre,

2008).

The SSA starts by comparing δ
(1)
jl of single-attribute q-vectors with the superscript

(1) referring to single-attribute q-vectors. Let δ
(1)
j be the largest of δ

(1)
jl from single-

attribute q-vectors, and assume that this is due to α1. The process continues by exam-

ining δ jl of two-attribute q-vectors, δ
(2)
j , where α1 is one of the required attributes. If

δ
(2)
jl > δ

(1)
jl , the single-attribute q-vector is replaced by a two-attribute q-vector. How-

ever, if δ
(1)
jl > δ

(2)
jl , the process is terminated choosing α1 as the correct attribute speci-

fication for the q-vector. Otherwise, the process continues with such comparisons until

a K-attribute q-vector is chosen as long as the difference of succeeding δ jl values (i.e.,

δ̂
(K j+1)
j − δ̂

(K j)
j ) is larger than a predetermined cut-off value.

As stated earlier, estimation that involves some misspecified q-vectors can affect

the quality of parameter estimations (Rupp & Templin, 2008), and this in turn affects

the accuracy of the validation method. Similarly, the noise due to the stochastic nature

of the response process makes it possible to obtain a q-vector with more attributes

than necessary. Especially using real data can cause δ̂
(K j+1)
j > δ̂

(K j)
j or the reverse,

resulting in over- or under-specifications. A suggested solution is to assign ε , which

is a minimum increment in the discrimination index of the item before an additional

attribute can be included, as shown in δ̂
(K j+1)
j − δ̂

(K j)
j > ε (de la Torre, 2008).
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The SSA has some limitations. As noted by de la Torre (2008), an incorrect Q-

matrix because of over- and under-specifications of attributes can cause bias in pa-

rameter estimations. This issue cannot be completely addressed by the ESA and SSA

because they usually choose q-vectors that have more than single-attribute specifica-

tions. It is also not clear what ε to use in practice because it could vary depending

on many conditions, such as changes in sample sizes, test lengths, item qualities, and

amount of misspecifications, all of which were fixed in de la Torre’s (2008) paper. It

should also be noted that the algorithm was not implemented iteratively, meaning that

the validation method stops after one full iteration even if changes are made in the

provisional Q-matrix.

2.3 Background

2.3.1 The DINA Model

The DINA model has been commonly used in many studies (e.g., de la Torre &

Douglas, 2004, 2008; de la Torre, 2009a; DeCarlo, 2011; Kuo, Pai, & de la Torre,

2016; Liu, Ying, & Zhang, 2015; Park & Lee, 2014; Rupp & Templin, 2008; Terzi &

de la Torre, 2015). This study focuses on the DINA model because of its more straight-

forward interpretations, a smaller sample size requirements for accurate parameter es-

timation, (Rojas, de la Torre, & Olea, 2012), and its flexibility for extension to more

general CDMs. The DINA model is an example of a conjunctive model for dichoto-

mously scored test items, where all required attributes of an item should be mastered

by examinees before she can be expected to correctly answer the item. Nonmastery of

one or more required attributes for an item is equivalent to nonmastery of all required

attributes. Let examinee i’s binary attribute vector be denoted by αi = {αik}. The item

response function of the model is defined as:
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P(Xi j = 1|αi) = (1− s j)
ηi jg(1−ηi j)

j , (2.2)

which is the probability of answering an item j correctly by examinees with the at-

tribute pattern αi, Xi j is the response of examinee i to item j, and ηi j is the ideal

response computed as:

ηi j =
K

∏
k=1

α
q jk
ik ,

indicates whether or not all of the required attributes associated with item j are mas-

tered by examinee i.

2.3.2 An Iterative Method for Empirically-Based Q-Matrix Vali-

dation

This study introduces an iterative procedure in conjunction with a modified version

of the SSA, and is called iterative modified SSA (IMSSA). The IMSSA differs from

the SSA in two respects. First, the IMSSA determines required attribute specifications

based on only the single-attribute q-vectors. Similar to the empirically based δ -method

(de la Torre, 2008), the IMSSA starts by estimating the item parameters via an em-

pirical Bayesian implementation of the expected-maximization (EM) algorithm (de la

Torre, 2009b) using a provisional Q-matrix. The K δ s corresponding to the single-

attribute q-vectors (i.e., δ
(1)
j ) are then computed and ordered from the highest to the

lowest. The correct attribute specification is determined based on the size of δ
(1)
jl∗ rela-

tive to the next smaller δ
(1)
jl∗+1 (i.e., δ

(1)
jl∗ /δ

(1)
jl∗+1, for l∗ = 1,2, . . . ,K−1) for item j. The

noise due to the use of the estimated posterior distribution should be controlled so as to

not cause any over- or under-specifications. That can be done by using a cut-off point

denoted by ε(1), which represent the minimum ratio between ordered single-attribute

q-vectors. Specifically, if δ
(1)
j1 is considerably larger than δ

(1)
j2 (i.e., δ

(1)
j1 /δ

(1)
j2 > ε(1)),
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the required attribute would be an attribute specified in the single-attribute q-vector

corresponding to δ
(1)
j1 ; if not, the attribute specifications in the first two q-vectors are

chosen. It continues by checking the ratio δ
(1)
j2 /δ

(1)
j3 . If the ratio is smaller than ε(1),

the attribute specification in the third q-vector is also chosen on the top of the previous

two specifications, and it continues; otherwise, the process is terminated. The ratio be-

tween δ
(1)
jl∗ and δ

(1)
jl∗+1 was determined based on some preliminary findings. The values

of ε(1), the cut-off point, were determined using simulation.

At this point, an example can be helpful to lay out the rationale as to how the study

determines the correctness of attribute specifications on the relative size of ordered δ s.

For illustration purposes, we considered two items, each with a misspecified attribute

specification. In practice, the provisional Q-matrix may not have entirely correct spec-

ifications. However, data based on parameter estimates using the provisional Q-matrix

can be generated. The δ -computation for the simulated data can be monitored, which

can allow us to define extreme changes in the relative size of δ .

Table 2.1: Examples for Over- and Under-Specifications
(1,0,0,0,0)′→ (1,0,1,0,0)′ (1,1,0,0,0)′→ (1,0,0,0,0)′

l∗ α1 α2 α3 α4 α5 δ
(1)
jl∗ δ

(1)
jl∗ /δ

(1)
l∗+1 α1 α2 α3 α4 α5 δ

(1)
jl∗ δ

(1)
jl∗ /δ

(1)
l∗+1

1 1 0 0 0 0 .41 6.86 X 1 0 0 0 0 .40 1.38 X

2 0 0 1 0 0 .06 1.37 0 1 0 0 0 .29 6.43 X

3 0 0 0 0 1 .04 1.02 0 0 0 0 1 .05 -3.39

4 0 1 0 0 0 .04 -10.9 0 0 1 0 0 -.01 0.41

5 0 0 0 1 0 -.00 – 0 0 0 0 1 -.03 –

Note. The symbol Xdisplays the chosen attributes based on the associated δ -
ratio. (1,0,0,0,0)′ → (1,0,1,0,0)′: (1,0,0,0,0)′ is over-specified as in (1,0,1,0,0)′.
(1,1,0,0,0)′ → (1,0,0,0,0)′: (1,1,0,0,0)′ is under-specified as in (1,0,0,0,0)′. Nega-
tive values in the ratio come from the negative δ . For example, .52 and .49 for the slip and
guessing parameters, respectively, δ

(1)
jl∗=4 = 1− s jl∗=4−g jl∗=4 = 1− .52− .49 =−.01.
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Examples of δ
(1)
jl∗ computations for the simulated data can help determine whether

or not the algorithm could identify correct specifications. Assume that K = 5. Table

2.1 displays examples of items that have over- and under-specifications. In the first

misspecification, the q-vector (1,0,0,0,0)′ is over-specified as in (1,0,1,0,0)′. The

EM estimation is carried out with the latter q-vector, and δ s of single-attribute q-vectors

are computed and sorted from the highest to the lowest. The result suggests that the

correct attribute specification is only α1 (δ
(1)
j1 = .41) due to a large drop in δ

(1)
j2 (i.e.,

δ
(1)
j1 /δ

(1)
j2 = 6.86 > ε(1)). A similar result is also observed for an item that has been

under-specified. The misspecification appears as (1,0,0,0,0)′ from the correct vector

of (1,1,0,0,0)′ in the right-hand side of Table 2.1. The ratio of that highest δ
(1)
j1 to

the second highest δ
(1)
j2 shows a small drop (i.e., δ

(1)
j1 /δ

(1)
j2 = 1.38); however, the next

ratio is rather large (i.e., δ
(1)
j2 /δ

(1)
j3 = 6.43). Therefore, the attributes in the first two

single-attribute q-vectors are accurately specified (i.e., α1 and α2).

Second, the IMSSA becomes more efficient than the original SSA because δ is

not computed beyond single-attribute vectors. As such, the maximum number of com-

parisons for the new algorithm is K, which is considerably smaller than SSA (i.e.,

(K j + 1)K− (K2
j +K j)/2) and ESA (i.e., 2K − 1), where K is the total number of at-

tributes and K j is the number of attributes being measured by item j. For example, let

K = 10 and K j = 3. The maximum number of comparisons is 10 for the IMSSA, 34

for the SSA, and 1023 for the ESA. Thus, using the IMSSA can lessen complications

associated with multiple search steps.

In summary, examining the relative size of δ using a provisional q-vector could

suggest which attributes should be required – δ of required attributes are considerably

larger compared to δ of other attributes. The new method aims to make two crucial

contributions to the Q-matrix validation literature. First, using simulation, an approx-

imation was made to generally define optimal ε(1) values applicable across specific
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set of conditions. These values were determined based on the estimated item qual-

ity, which were divided into three levels (i.e., high, medium, and low) to define three

ε values for the each level. Second, the algorithm was implemented iteratively, such

that, if any q-vectors are changed in the previous iteration, a new calibration is carried

out using the updated Q-matrix as the provisional Q-matrix. The iterative algorithm

aims to alleviate negative effects of any misspecified attribute specification given in the

preceding iteration. In this present study, iterative and non-iterative algorithms were

compared to examine if an iterative algorithm can further identify and correct misspec-

ifications in succeeding iterations.

2.4 Design and Analysis

To evaluate the viability of the proposed method, two simulation studies were con-

ducted with the following goals: (1) to determine ε(1) values as a function of the

estimated item quality, which could be generalized to various conditions; and (2) to

compare the effectiveness of different validation methods with iterative and nonitera-

tive algorithms. The attribute profiles were generated with equal probabilities from a

multinomial distribution. For each condition, 100 datasets were replicated using the

DINA model with the following factors: sample sizes (N = 1,000 and 2,000), test

lengths (J = 15 and 30), item qualities (s j = g j = 0.1, 0.2, and 0.3), and amount of

misspecifications (5% and 10%). In this study, the three sets of item qualities were

considered similar to Hou, de la Torre, and Nandakumar (2014). In each condition, 100

misspecified Q-matrices were generated, which contain 5% or 10% randomly misspec-

ified q-entries. For example, if a Q-matrix has 10% misspecifications for J = 30 and

K = 5, 15 of 150 entries were randomly altered by producing over- or under-specified

q-vectors. In doing so, the study was able to focus on the impact of the amount of

misspecifications rather than the type of misspecifications. Two constraints were im-

posed on altering the q-vectors such that misspecified q-vectors cannot have more than
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two-attribute misspecified, and at least one attribute should be specified as 1. It should

be noted that the true Q-matrices in Table 2.2 for J = 15 and 30 are related in two

ways. Each attribute is measured six and 12 times when J = 15 and 30, respectively,

and there are equal numbers of 1-, 2-, and 3-attribute q-vectors in the each Q-matrix.

Table 2.2: True Q-matrix for the Simulated Data
Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1∗ 1 0 0 0 0 11∗ 1 1 0 0 0 21∗ 1 1 1 0 0

2∗ 0 1 0 0 0 12∗ 1 0 1 0 0 22∗ 1 1 0 1 0

3∗ 0 0 1 0 0 13 1 0 0 1 0 23 1 1 0 0 1

4∗ 0 0 0 1 0 14 1 0 0 0 1 24 1 0 1 1 0

5∗ 0 0 0 0 1 15 0 1 1 0 0 25∗ 1 0 1 0 1

6 1 0 0 0 0 16 0 1 0 1 0 26 1 0 0 1 1

7 0 1 0 0 0 17∗ 0 1 0 0 1 27 0 1 1 1 0

8 0 0 1 0 0 18∗ 0 0 1 1 0 28 0 1 1 0 1

9 0 0 0 1 0 19 0 0 1 0 1 29∗ 0 1 0 1 1

10 0 0 0 0 1 20∗ 0 0 0 1 1 30∗ 0 0 1 1 1

Note. Items with * are used for J = 15.

To define approximate ε
(1)
j values for the IMSSA, the estimated item quality was

employed (i.e., δ̂ j = 1− ŝ j− ĝ j). Three levels of ε values were chosen to define each

item quality in accordance with Hou et al. (2014). If δ̂ j ≥ 0.70, it was considered a

high quality item, 0.50≤ δ̂ j < 0.70 a medium quality item, and δ̂ j < 0.50 a low qual-

ity item. Based on the results of a pilot study, the performance of the proposed method

deteriorates when ε(1) is outside 1.5 and 2.5. Hence, for this study, determining the

optimal ε(1) focused in the range 1.5 to 2.5, with an increment of 0.1. After defining

optimal ε values corresponding to different item qualities, the second simulation study

was conducted to compare the four validation procedures: IMSSA, MSSA, ESA, SSA,

and QRM. These methods were compared based on the proportions of identifying at-

tribute specifications at the vector level. The code to implement the IMSSA, MSSA,

ESA, and SSA was written in Ox (Doornik, 2009), whereas, the NPCD R package

(Zheng & Chiu, 2015) was used (R Core Team, 2014) for the QRM analyses.
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2.4.1 Results

In the first simulation study, the performance of the IMSSA was observed under

different conditions to define ε(1) values for each level of the item qualities. Focusing

in the range 1.5 to 2.5, the ε(1) values were derived based on the highest proportions of

recovery on average across all the conditions for each item quality. Table 2.3 displays

the highest recovery.

For example, when ε(1) = 1.9 for 0.50 ≤ δ̂ j < 0.70, 96% of the q-vectors were

correctly identified on average, where response data were generated from the medium

quality item (i.e., s = g = 2). The highest proportions of recovery were observed for

δ̂ j ≥ 0.70 and δ̂ j < 0.50 when the ε(1) = 2.2 and 1.7, respectively. It shows that item

qualities had a slightly different impact on the recovery rates. In short, ε(1) values 2.2,

1.9, and 1.7 were used for high, medium, and low quality items, respectively.

Given the cut-off values for the IMSSA and MSSA methods, the non-iterative

(ESA, SSA, and MSSA) and iterative methods (QRM and IMSSA) were compared

in the second simulation study. Table 2.4 shows results based on response data gener-

ated from the medium quality item. Findings are reported at the vector level, and, on

average, six and 12 q-vectors were altered for J = 15 and 30, respectively.

Table 2.4 shows that among the non-iterative methods, the MSSA outperformed

the others for each simulation condition considered in this study. In addition, the SSA

provided better recovery than the ESA for Q-matrix validation. In general across the

conditions, the average recovery of the MSSA was 92% of the q-vectors; whereas,

the average recoveries of the SSA and ESA were 83% and 74%, respectively. The

results showed that the modified version of the SSA (MSSA) improved the recovery in

comparison to the SSA.
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Table 2.3: Proportions of Recovery Comparisons
ε

Quality N J % 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

H

1,000

15
5 .989 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .997

10 .993 .961 .964 .968 .972 .969 .969 .969 .965 .954 .940

30
5 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .997

2,000

15
5 .997 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 .928 .952 .963 .963 .969 .971 .977 .979 .968 .970 .975

30
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .996 .996 .996

Average .979 .987 .989 .990 .992 .991 .992 .993 .990 .988 .986

M

1,000

15
5 .926 .943 .947 .953 .960 .959 .957 .958 .946 .941 .936

10 .816 .843 .861 .852 .853 .847 .833 .810 .787 .767 .749

30
5 .957 .979 .988 .994 .994 .993 .992 .991 .989 .988 .986

10 .949 .972 .985 .990 .992 .992 .990 .991 .990 .988 .983

2,000

15
5 .949 .958 .963 .965 .969 .969 .971 .971 .973 .969 .963

10 .836 .868 .874 .881 .874 .867 .858 .853 .839 .831 .806

30
5 .992 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 .981 .995 .999 1.00 1.00 1.00 .999 .999 .999 .997 .997

Average .926 .944 .952 .954 .955 .953 .950 .947 .940 .935 .927

L

1,000

15
5 .740 .773 .803 .797 .795 .792 .777 .775 .775 .761 .760

10 .597 .619 .628 .613 .619 .613 .601 .583 .595 .578 .565

30
5 .825 .856 .869 .879 .877 .874 .868 .860 .850 .843 .832

10 .764 .789 .799 .792 .790 .767 .753 .742 .722 .705 .685

2,000

15
5 .841 .853 .850 .839 .845 .834 .820 .817 .817 .799 .801

10 .681 .671 .679 .673 .647 .651 .630 .625 .611 .612 .595

30
5 .912 .922 .930 .927 .926 .924 .914 .909 .899 .889 .873

10 .855 .871 .869 .861 .840 .821 .805 .769 .748 .720 .705

Average .777 .794 .803 .798 .792 .785 .771 .760 .752 .739 .727
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Table 2.4: Proportions of Recovery Comparisons between Methods with and without
Iterative Algorithm (s = g = 0.2)

Non-Iterative Iterative

N J % ESA SSA MSSA QRM IMSSA

1,000

15
5 0.79 0.86 0.94 0.91 0.96

10 0.61 0.74 0.76 0.73 0.83

30
5 0.80 0.89 0.99 1.00 1.00

10 0.67 0.89 0.97 0.99 0.99

2,000

15
5 0.83 0.79 0.95 0.87 0.97

10 0.63 0.68 0.78 0.68 0.85

30
5 0.85 0.89 1.00 1.00 1.00

10 0.71 0.88 0.98 1.00 1.00

Average 0.74 0.83 0.92 0.90 0.95

Note. ESA: exhaustive search algorithm, SSA: sequential search algorithm with ε = .01,
MSSA: non-iterative modified sequential search algorithm, QRM: Q-matrix refinement
method with an iterative algorithm, IMSSA: iterative modified sequential search algorithm.

In general, the proposed MSSA and IMSSA worked much better than the other

methods. Specifically, after averaging the proportions of recovery across the conditions

(i.e., N, J, and amount of misspecifications), recovery based on the IMSSA (95%)

and MSSA (92%) was 5% and 2% higher than that of the QRM (90%), respectively.

Additionally, recovery based on the MSSA (92%) was 18% and 9% higher than that of

the ESA (74%) and SSA (83%), respectively.

In comparing the iterative methods (i.e., IMSSA and QRM) under the item quality

given, the IMSSA worked usually equally well as or better than the QRM. In continuing

the comparison of iterative methods under other item qualities, both iterative methods

had perfect performance under data generated from the high quality item (i.e., s = g =

1). Only one exception occurred for both methods where the recovery was above 97%

when J = 15 with 10% misspecifications. When data were generated from the low

quality item (i.e., s = g = 3), the IMSSA (80%) had 7% more recovery than the QRM
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(73%).

It is interesting to report that the performance of the SSA and QRM was equally

well or worse when the sample size was doubled. For example, under a condition

where N = 1,000, J = 15 with 10% misspecifications, doubling the sample size to

N = 2,000 resulted in the recovery dropping from 74% to 68% for the SSA and from

73% to 68% for the QRM. In contrast, considering the same conditions, the recovery

improved from 61% to 63% for the ESA, from 76% to 78% for MSSA, and from

83% to 85% for the IMSSA. After doubling the test items from 15 to 30, the recovery

increased from 74% to 89% for the SSA and from 73% to 99% for the QRM. The

improvement was also substantial for the ESA, MSSA and IMSSA. Specifically, the

recovery improved from 61% to 67% for the ESA, from 76% to 97% for SSA, and

from 83% to 99% for the IMSSA. This finding indicates that doubling the test length

can lead to better improvement in recovery more than doubling the sample size for the

ESA, MSSA and IMSSA.

Similarly, with regards to the difference in recovery rates due to the amount of

misspecifications within the same conditions (i.e., N and J), a larger test length pro-

vided a smaller gap than a larger sample size. That is, recovery differences between

5% and 10% misspecifications were higher with a small sample size and short length

test. For example, among the non-iterative methods when N = 1,000 and J = 15, re-

covery differences between 5% and 10% misspecifications were 12%, 18%, and 18%

for the SSA, ESA, and MSSA, respectively; it dropped to 0%, 13%, and 2% when

J = 30 holding the sample size constant. Doubling the sample size with a fixed test

length did not change the recovery differences, which was only 11%, 20%, and 17%

for the SSA, ESA, and MSSA, respectively. In taking the amount of misspecifications

into account for the non-iterative methods, doubling the test length had a considerably

positive impact on the recovery for the SSA and MSSA, but it had a negative impact

on the recovery for the ESA.
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For the iterative methods, again, doubling the test length decreased the difference

in recovery rates between 5% and 10% misspecified Q-matrices. Similarly, when

N = 1,000 and J = 15, it was 18% for the QRM (i.e., 91− 73 = 18) and 13% for

the IMSSA (i.e., 96− 83 = 13). However, that gap was smaller when J = 30 than

N = 2,000. The difference substantially dropped for both methods after doubling the

test length with a constant sample size. However, that gap had a 1% increase for the

QRM and 1% decrease for the IMSSA after doubling the sample size with the constant

test length (i.e., J = 15). Therefore, based on these findings, it can be stated that dou-

bling the test length substantially improved the recovery for both iterative methods and

decreased the recovery differences depending on the amount of misspecifications. For

the QRM, doubling the test length had a positive impact but doubling the sample size

had a negative impact on the recovery.

2.5 Implementation with Real Data

In addition to the simulation study, real data were analyzed to investigate the appli-

cability of the method. The fraction-subtraction data (Tatsuoka, 1984) with 536 middle

school students responses to 12 fraction subtraction problems were examined. The

four attributes for this dataset are: (α1) performing a basic fraction subtraction oper-

ation, (α2) simplifying/reducing, (α3) separating a whole number from fraction, and

(α4) borrowing one from a whole number to fraction. The 12 items with the corre-

sponding attribute specifications and δ values are shown in Table 2.5. For the IMSSA,

δ
(1)
jl∗ statistic was computed and δ

(1)
jl∗ /δ

(1)
jl∗+1 ratios were reported.

2.5.1 Results

Note that the data set of Tatsuoka (1984) has been one of the most commonly exam-

ined real data designed for cognitively diagnostic assessment (e.g., Chiu, 2013; Chiu
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Table 2.5: Q-Matrix for Fraction-Subtraction Items
Attributes

Item α1 α2 α3 α4 δ

1. 3
4 −

3
8 1 0 0 0 0.72

2. 31
2 −23

2 1 1 1 1 0.66

3. 6
7 −

4
7 1 0 0 0 0.83

4. 37
8 −2 1 0 1 0 0.42

5. 4 4
12 −2 7

12 1 1 1 1 0.74

6. 41
3 −24

3 1 1 1 1 0.86

7. 11
8 −

1
8 1 1 0 0 0.80

8. 34
5 −32

5 1 0 1 0 0.86

9. 45
7 −14

7 1 0 1 0 0.80

10. 73
5 −

4
5 1 0 1 1 0.84

11. 4 1
10 −2 8

10 1 1 1 1 0.71

12. 41
3 −15

3 1 1 1 1 0.82

Note. α1 – performing a basic fraction subtraction operation; α2 – simplifying/reducing; α3
– separating a whole number from fraction; and α4 – borrowing one from a whole number
to fraction.

& Köhn, 2015; de la Torre, 2008; de la Torre & Chiu, 2016; DeCarlo, 2011). In CDM

analyses, one of the main concerns is the completeness of the Q-matrix. Unfortunately,

the fraction-subtraction data do not appear to have a complete Q-matrix. It was demon-

strated by Chiu, Douglas, and Li (2009) that a complete Q-matrix should identify all

possible attribute patterns and require each attribute to be represented by at least one

single-attribute vector. This issue has been further discussed with the original data (see

Table 4 on pp. 615, Chiu, 2013; DeCarlo, 2011) or subsets of it (see de la Torre, 2008;

de la Torre & Chiu, 2016). The incompleteness of the Q-matrix in this dataset occurs

because of the fact that only 58 of 256 (K = 8; Chiu, 2013) and 10 of 32 (K = 5; Chiu

& Köhn, 2015) possible attribute patterns can be identified by the items, meaning that

multiple classes may be merged (Chiu, 2013). Therefore, results of this data analysis

should be interpreted with caution.
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Table 2.6: Single-attribute specifications and the corresponding δ−values and −ratios
j α1 α2 α3 α4 δ jl∗ δ jl∗/δ jl∗+1 j α1 α2 α3 α4 δ jl∗ δ jl∗/δ jl∗+1

1

1* 0 0 0 0.72 1.61 X

7

1* 0 0 0 0.73 1.03 X

0 0 1* 0 0.45 1.13 X 0 1* 0 0 0.71 1.25 X

0 1* 0 0 0.40 1.16 X 0 0 1* 0 0.56 3.67 X

0 0 0 1* 0.34 X 0 0 0 1 0.15

2

0 0 0 1* 0.55 1.60 X

8

1* 0 0 0 0.82 1.09 X

1* 0 0 0 0.34 1.12 X 0 0 1* 0 0.75 1.49 X

0 1* 0 0 0.30 1.01 X 0 1* 0 0 0.51 3.92 X

0 0 1* 0 0.30 X 0 0 0 1 0.13

3

1* 0 0 0 0.83 1.84 X

9

1* 0 0 0 0.75 1.07 X

0 0 1* 0 0.45 1.23 X 0 0 1* 0 0.71 1.45 X

0 1* 0 0 0.37 5.21 X 0 1* 0 0 0.49 3.34 X

0 0 0 1 0.07 0 0 0 1 0.15

4

1* 0 0 0 0.39 1.04 X

10

0 0 0 1* 0.66 1.27 X

0 0 1* 0 0.37 1.44 X 1* 0 0 0 0.52 1.06 X

0 1* 0 0 0.26 3.35 X 0 0 1* 0 0.49 1.06 X

0 0 0 1 0.08 0 1* 0 0 0.46 X

5

0 0 0 1* 0.57 1.23 X

11

1* 0 0 0 0.56 1.10 X

1* 0 0 0 0.47 1.12 X 0 0 0 1* 0.51 1.01 X

0 1* 0 0 0.42 1.01 X 0 0 1* 0 0.50 1.04 X

0 0 1* 0 0.41 X 0 1* 0 0 0.48 X

6

0 0 0 1* 0.67 1.26 X

12

0 0 0 1* 0.64 1.33 X

1* 0 0 0 0.53 1.05 X 1* 0 0 0 0.48 1.02 X

0 1* 0 0 0.51 1.04 X 0 1* 0 0 0.47 1.06 X

0 0 1* 0 0.49 X 0 0 1* 0 0.44 X

Note. * indicates suggested attribute specifications.
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Table 2.7: Suggested Q-Matrix by the IMSSA and QRM

IMSSA QRM

Item α1 α2 α3 α4 α1 α2 α3 α4

1. 1 1* 1* 1* 1 0 0 1*

2. 1 1 1 1 1 1 1 1

3. 1 1* 1* 0 1 0 0 0

4. 1 1* 1 0 1 0 1 0

5. 1 1 1 1 1 1 1 1

6. 1 1 1 1 1 1 1 1

7. 1 1 1* 0 1 1 0 0

8. 1 1* 1 0 1 0 1 0

9. 1 1* 1 0 1 0 1 0

10. 1 1* 1 1 1 1* 1 1

11. 1 1 1 1 1 0* 1 1

12. 1 1 1 1 1 1 1 1

Note. α1 – performing a basic fraction subtraction operation; α2 – simplifying/reducing; α3
– separating a whole number from fraction; and α4 – borrowing one from a whole number
to fraction; * indicates suggested attribute specifications.

The changes in the relative size of δ s corresponding to each single-attribute q-

vector for 12 items are reported in Table 2.6. The suggested Q-matrix is also shown

in Table 2.7. Given the results in the first simulation study, ε(1) values were set at 2.2,

1.9, and 1.7 when δ̂ j ≥ 0.70, 0.50≤ δ̂ j < 0.70, and δ̂ j < 0.50, respectively. The results

of the fraction-subtraction data obtained from the IMSSA were compared to the QRM.

The IMSSA suggested attribute changes in seven items (i.e., items 1, 3, 4, 7, 8, 9, and

10); whereas, the QRM suggested attribute changes in three items (i.e., items 1, 10, and

11). Based on the IMSSA, the result indicated that item 1 (i.e., 3
4 −

3
8 ) should require

the other three attributes in addition to α1. This suggestion may have occurred because

this item requires more than just “performing a basic fraction subtraction problem”

(i.e., α1). Another suggestion was for item 3 (i.e., 6
7 −

4
7 ), where α2 and α3 were
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deemed required. Items 4 (i.e., 37
8 −2), 8 (i.e., 34

5 −32
5 ), 9 (i.e., 45

7 −14
7 ), and 10 (i.e.,

73
5−

4
5 ) required α2 in addition to α1 and α3. Note that another strategy for solving the

problem in one of these four items – borrowing one from a whole number to fraction,

performing a basic fraction, and simplifying/reducing – happens to give the correct

answer. The following example shows another strategy to solve item 9:

4
5
7
−1

4
7
=

(4×7)+5
7

− (1×7)+4
7

=
33−11

7
=

22
7

= 3
1
7
.

Another attribute suggestion (i.e., α3) was for item 7 (i.e., 11
8 −

1
8 ) on the top of

α1 and α2. Similar to the preceding example, a different strategy – separating a whole

number from fraction, performing a basic fraction subtraction operation, and simplify-

ing/reducing – could also give the correct answer to item 7, as in,

11
8
− 1

8
= 1

3
8
− 1

8
= 1

3−1
8

= 1
2
8
= 1

1
4
.

In applying the QRM, Chiu found that item 4, which appears as item 2 in this study,

did not require the possession of the third attribute to be correctly answered (2013). In

contrast, the QRM in this study suggested that the third attribute specification was

necessary. An explanation could be because of the fact that Chiu used 20 items with 8

attributes (2013). Whereas, the IMSSA indicated that the mastery of the third attribute

was required to answer item 2 correctly. The QRM also suggested to include and

exclude α2 in items 10 and 11, respectively.

As demonstrated by the examples, a deeper analysis is needed. The IMSSA has
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more 1s than the QRM that can be controlled by adjusting the cut-offs. The cut-off val-

ues defined in the simulation study do not correspond to the real data analysis, which

did not have a complete Q-matrix. The latter values were just approximations based

on the item qualities defined in the simulation study. However, having more 1s can be

a source of evidence about multiple strategies examinees can use. Further discussions

about multiple strategies in cognitive diagnosis using the fraction subtraction data can

be found in de la Torre and Douglas (2008), Huo and de la Torre (2014), and Mislevy

(1996). Other reasons could be because the fraction subtraction data have fewer num-

ber of items and attributes than the simulation study.

As stated, the general purpose of this study was not to replace existing validation

methods but rather to serve as a supplementary tool from a statistical point of view.

Moreover, employing both existing validation methods and domain experts may be a

more appropriate process for Q-matrix validation.

2.6 Summary and Discussion

CDMs aim to classify the attribute mastery or nonmastery of examinees. The Q-

matrix is needed for specifying required attributes for each item in a test. The impor-

tance of revising attribute specifications in the Q-matrix should not be underestimated

due to the inherent subjectivity of domain experts, consequently resulting in serious

validity concerns.

The IMSSA for Q-matrix validation presented in this study aimed to empirically

validate attribute specifications under a wide range of conditions with two degrees of

misspecifications. This work extended the SSA (de la Torre, 2008) in several ways.

First, it offered a more efficient solution that only the first K single-attribute q-vectors

were examined. Attribute specifications were identified depending on changes in the
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size of ordered δ -statistic. Second, in addition to less number of computational re-

quirements, an iterative algorithm was included in the method to decrease negative

effects of any misspecified attribute specification given in the previous iteration. Third,

an approximation was made to generally define optimal ε
(1)
j values applicable across

the specific set of conditions. These values were arbitrarily determined based on the

estimated item qualities as defined in Hou et al. (2014), and were divided into three

levels (i.e., high, medium, and low) so that a different ε value for the each level can be

defined. Choosing these values were not necessarily complete, but provides an approx-

imation to the three levels of the item qualities.

Two simulation studies were carried out to compare results between iterative and

non-iterative methods as well as between parametric and nonparametric methods. There-

fore, iterative and non-iterative algorithms can be examined if an iterative algorithm

can further identify and correct misspecifications in succeeding iterations. After fix-

ing ε values based on the estimated item qualities in the first study, the second study

compared three methods without iterative algorithms (SSA, ESA, and MSSA) to two

methods with iterative algorithms (IMSSA and QRM). Among the noniterative meth-

ods, the MSSA reported better results, which had higher recovery than the QRM on

average across all the factors.

Furthermore, as expected, the results showed that the IMSSA worked much better

than the noniterative methods. Specifically, the iterative parametric (i.e., IMSSA) and

nonparametric (i.e., QRM) methods were separately examined. The IMSSA resulted

in higher recovery rates in a short test. In particular, a large sample size with a short

test uncovered larger recovery discrepancy in favor of the IMSSA. However, when test

length was long, both methods worked equally well. Furthermore, given large sample

sizes and long tests, both methods had a perfect recovery regardless of the conditions

and amount of misspecifications. On average, the IMSSA outperformed the QRM

when data were generated from the medium quality item. When data were generated
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from the high quality item, both methods had perfect recovery with a longer test, and a

very high recovery rate with a short test; and that from the low quality item, the IMSSA

still had a higher recovery rate than the QRM.

According to the simulation studies, the IMSSA showed promising improvements

in Q-matrix validation that could enhance the estimation of model parameters, model-

data fit analyses, and ultimately, the accuracy of attribute-classifications. It was further

applied to the fraction-subtraction data. Based on the results suggested by the IMSSA,

there were some attribute suggestions for seven items. Existence of a different strategy

to solve the items could be a possible explanation for changes in attribute specifications.

This study suggests that the existing methods should be complementary to each other

so as to help domain experts for further investigation.

Using a 3.50-GHz I7 computer, it took the code the least amount of time to run

the validation procedures for MSSA, followed by IMSSA, ESA, SSA, and QRM. For

instance, it took 1.64, 3.11, 9.89, 24.35, and 30.00 minutes using MSSA, IMSSA, ESA,

SSA, and QRM procedures, respectively, for 100 iterations under the condition where

N = 2,000, J = 30, and medium quality items with 10% misspecifications in the Q-

matrix. The number of iterations in the iterative procedures was usually between two

and three, and did not go beyond four.

This present study had some limitations. For instance, the number of attributes

was assumed to be known and fixed to K = 5. It would be interesting to investigate

the method by relaxing this assumption. The findings of this study were based on

the attribute structure generated from a uniform distribution. The performance of the

methods should be investigated under a condition where attributes were generated from

a higher order distribution (de la Torre & Douglas, 2004). Also, in addition to the δ -

statistic used in this study, other statistics can be carried out for Q-matrix validation.

This study should also be extended to make it applicable to a wider class of CDMs such

as the G-DINA model (de la Torre, 2011). This will obviate the need to assume the
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specific CDMs involved. Finally, this method should be applied to other real data sets

with a complete Q-matrix so that further insights can be gained on how the proposed

method could work in practice.
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Chapter 3

Study II: The Iterative Jensen-Shannon Divergence
Index and Iterative GDI for Q-Matrix Validation

3.1 Abstract

Interest in formative assessment has been growing in the educational measurement

field. Specifically, cognitively diagnostic assessments (CDAs) are designed to provide

more specific information to pinpoint teaching and learning deficiencies in classroom

settings. Ultimately, CDAs aim to determine examinees’ mastery or nonmastery of at-

tributes in a particular content area. The Q-matrix is an important component of CDMs

that plays a key role in specifying required attributes for each item. The Q-matrix is

constructed by domain experts, which involves inherent subjectivity. Incorrect entries

in the Q-matrix can have a negative impact on examinee classifications as a result of

inaccurate item parameter estimation. Therefore, validity concerns have been brought

to experts’ attentions. This study proposes new indices, an iterative Jensen-Shannon

divergence (iJSD) index and an iterative G-DINA model discrimination index (iGDI),

to determine the correctness of attribute specifications in the Q-matrix for the DINA

model. Simulation studies are implemented to investigate the false-positive and true-

positive rates of both indices under a number of conditions. Results show that the

indices can identify misspecified q-entries at a high rate, in particular, when attributes

are correlated, and the false-negative rate is around the nominal level under favorable

conditions. The paper concludes with discussions about the strengths and limitations

of the indices followed by suggestions for future studies.
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3.2 Introduction

Cognitive diagnosis models (CDMs) are multidimensional latent variable models

that provide detailed feedback on students’ learning progress. These models are used

to classify examinees based on their mastery profiles in contrast to the traditional psy-

chometric frameworks, such as classical test theory and item response theory, in which

latent variables are reported on continuous scales. Attribute mastery profiles deter-

mined by CDMs specify membership in various latent groups. Each attribute pattern

is generally represented by a binary vector with 1s and 0s, indicating mastery and

nonmastery of each attribute being measured, respectively. Determining such mastery

profiles aims to help instructors provide more targeted remedial instruction.

Over the past decade, a number of CDMs have been proposed in the literature (e.g.,

de la Torre & Douglas, 2004; de la Torre, 2011; Hartz, Roussos, Henson, & Templin,

2005; Henson, Templin, & Willse, 2009; Junker & Sijtsma, 2001; Templin & Henson,

2006; von Davier, 2008). CDMs can be classified into two categories, reduced and

general, depending on whether or not cognitive processes underlying the responses

can be assumed. Some of the commonly used reduced models are the determinis-

tic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker & Sijtsma, 2001) model, the

deterministic input, noisy “or” gate (DINO; Templin & Henson, 2006) model, the com-

pensatory and reduced reparameterized unified model (C-RUM and R-RUM; Hartz et

al., 2005), the multiple-choice deterministic inputs, noisy “and” gate (MC-DINA; de la

Torre, 2009) model, the additive CDM (A-CDM; de la Torre, 2011), and the linear

logistic model (LLM; de la Torre & Douglas, 2004). Some of the commonly used gen-

eral models are the general diagnosis model (GDM; von Davier, 2008), the log-linear

CDM (Henson et al., 2009), and the generalized DINA (G-DINA; de la Torre, 2011)

model. For the most part, general CDMs subsume reduced CDMs. Regardless of their

generality, CDMs require a common component, called the Q-matrix (Tatsuoka, 1983).
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The Q-matrix, generally a binary J×K matrix, is used to relate a specific subset of

attributes to each item. Specifically, a q jk entry, representing row j and column k of the

Q-matrix, is 1 if the kth attribute is required to correctly answer item j, and is 0 if the kth

attribute is not required. In the process of constructing the Q-matrix, domain experts

need to spend a great deal of effort. However, inherently, this process is usually con-

sidered subjective due to the involvement of human judgments, and has raised serious

validity discussions among researchers (e.g., Chiu, 2013; de la Torre, 2008; Liu, Xu,

& Ying, 2012; Rupp & Templin, 2008). Entry misspecifications in the Q-matrix can

have a negative impact on attribute classifications as a result of inaccurately estimat-

ing the model parameters (de la Torre & Chiu, 2016). Without validating the attribute

specifications, it requires a big leap to assume that the Q-matrix entries have all been

correctly specified by domain experts. To obviate the need to make such an assump-

tion, researchers has proposed various methods to validate the attribute specifications

in the Q-matrix (Chiu, 2013; DeCarlo, 2011; de la Torre, 2008; de la Torre & Chiu,

2016; Liu et al., 2012).

Until recently, only few methods have been developed to detect misspecifications

in the Q-matrix. In 2008, de la Torre proposed an empirically based δ -method for pro-

visional Q-matrix validation implemented through a sequential search algorithm under

the DINA model. This method suggests the correct q-vector among all the possible

2K − 1 q-vectors based on the δ jl value, which is the discrimination index of item j.

The index for item j is the difference in the probabilities of correct responses between

those who have mastered all the required attributes and those who have not, which

are indicated by the latent variable, ηi j = 1 and ηi j = 0, respectively. The suggested

attribute specifications of a q-vector are chosen so that the difference between suc-

cess probabilities for the two groups is maximized. However, some questions remain

opened. First, ε was used to prevent recovery from over- or under-corrections, but it

remains uncertain how to determine ε values. Second, findings are not general enough,
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which are limited to conditions fixed in de la Torre (2008).

Terzi and de la Torre (2015) introduced an empirically based iterative δ -method for

Q-matrix validation by extending the empirically based δ -method (de la Torre, 2008).

Some of the previous limitations were addressed. First, this method uses an iterative

algorithm, which provided better results in identifying attribute specifications. Second,

optimal values of ε were defined as a function of the estimated item quality. Third, the

algorithm became more effective by focusing on single-attribute specifications. That

is, the K single-attribute vectors were used to determine the attribute specifications.

However, both empirically based δ -methods (de la Torre, 2008; Terzi & de la Torre,

2015) were limited to the DINA model only.

De la Torre and Chiu (2016) recently expanded the empirically based δ -method

(de la Torre, 2008) to a wider class of CDMs, by developing a procedure based on the

G-DINA model. Similar to de la Torre’s (2008) study, they introduced a new discrimi-

nation index that has greater applicability. However, the generalizability of the findings

was limited due to the fixed sample size, test length, and the number of attributes exam-

ined. Another concern of de la Torre and Chiu’s (2016) work is that the GDI does not

have a formal way for determining optimal ε values. The method is also not iterative

in that it stops the recovery after suggesting attribute specifications at the first step.

A model-based approach was developed by DeCarlo (2011). In this method, after

identifying possible misspecified Q-matrix entries in advance, these entries were con-

sidered random variables and estimated with the rest of the model parameters. How-

ever, in addition to identifying any misspecified q-vectors in advance, this method is

also computationally time-consuming. Liu et al. (2012) have proposed a data-driven

approach to identify misspecifications in the Q-matrix based on students’ responses.

This approach does not require any expert involvement. However, some limitations

exist in that the identifiability of the Q-matrix may be weaker under the presence of

unknown guessing parameters (Liu et al., 2012). This method was also only used with
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specific CDMs, and requires further investigation under more complex methods.

Chiu (2013) developed a Q-matrix validation method (QRM) based on a nonpara-

metric classification procedure (Chiu & Douglas, 2013). The QRM minimizes the

residual sum of squares (RRS) between the observed and ideal responses among all

the possible q-vectors given a provisional Q-matrix. The algorithm refines the attribute

specifications based on an item vector with the highest RSS replaced by another q-

vector with the lowest RSS, and is iterative in nature. This method, however, requires

that conjunctive or disjunctive models be specified in advance. Moreover, because the

QRM is a nonparametric method, parametric methods should provide more powerful

results if the underlying model is assumed, specifically when N is large.

The primary purpose of this paper is to propose new empirically-based Q-matrix

methods to validate the correctness of attribute specifications in the Q-matrix. To this

end, the iterative Jensen-Shannon divergence (iJSD) index and the iterative G-DINA

model discrimination index (iGDI) are introduced to obviate the need to assume any

specific reduced CDMs in the item calibration. The main advantage of the iJSD is that

it is applicable for dichotomous and nondichotomous models such as the continuous

G-DINA model (Minchen & de la Torre, 2016) and MC-DINA model (Yigit, Sorrel, &

de la Torre, 2016). Therefore, the iJSD is more general than the iGDI in that it can be

applied under different types of models. The main advantage of the iGDI, an extension

of the original GDI, is the inclusion of an iterative algorithm that could provide better

results. As with the iGDI, the iJSD was also implemented iteratively. In the iterative

process, if any changes occur in attribute specifications, a new calibration is carried out

with the suggested (i.e., updated) Q-matrix so that any potential effect of misspecified

entries can be eliminated. The feasibility of the iJSD and iGDI was investigated using

simulated and fraction subtraction data.
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3.3 Background

3.3.1 The G-DINA Model

The DINA model has been a commonly used CDM within the last two decades.

This model partitions examinees into two groups: those who have all the required at-

tributes and those who do not. The assumption is that missing any one of the required

attributes is the same as missing all of them. However, this restriction does not usually

reflect the reality that examinees with more attributes can be more capable than those

with less attributes. Given this limitation of the DINA model, de la Torre (2011) pro-

posed the generalized DINA model (G-DINA). The G-DINA model classifies exami-

nees into 2K j latent groups, where K j is the number of the required attributes for item j

(i.e., K j = ∑
K
k=1 q jk). Therefore, examinees who have mastered different attributes can

have different probabilities of correctly answering an item.

Assume that item j requires the first 1, · · · ,K j attributes. The reduced attribute vec-

tor can be denoted by α∗l j, which represents the columns of the required attributes (i.e.,

l = 1, · · · ,2K j). Thus, P(X j = 1|α∗l j) = P(α∗l j) is the probability of correctly answering

an item j by examinees with attribute pattern α∗l j. The item response function of the

G-DINA model for the identity link is given by

P(α∗l j) = δ j0 +
K j

∑
k=1

δ jkαlk +
K j

∑
k′=k+1

K j−1

∑
k=1

δ jkk′αlkαlk′+ · · ·+δ j12...K j

K j

∏
k=1

αlk, (3.1)

where δ j0 is the intercept for item j; δ jk is the main effect of αk; δ jkk′ is the interaction

effect of αk and αk′; and δ j12...K j is the interaction effect of α1, . . . ,αK j .

The G-DINA model is a saturated model that subsumes several commonly-used

reduced CDMs, which are the DINA model, the DINO model, the A-CDM, the LLM,

and the R-RUM. These reduced models can be obtained from the G-DINA model by
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using different constraints and link functions (de la Torre, 2011). The item response

function of the DINA model can be obtained from the G-DINA model by setting all

the parameters in Equation 3.1 to zero, except for δ j0 and δ j12...K j . That is,

P(α∗l j) = δ j0 +δ j12...K j

K j

∏
k=1

αlk. (3.2)

3.3.2 The G-DINA Model Discrimination Index

The G-DINA model discrimination index (GDI), denoted by ς̂2
j (1 ≤ l ≤ 2K), was

proposed by de la Torre and Chiu (2016) to empirically validate the Q-matrix specifi-

cations for the G-DINA model. A theorem was discussed to justify the use of the index

for the proposed validation method. The suggested q-vector is based on the proportion

of variance accounted for (PVAF) by a q-vector relative to the maximum ς̂2
j , which is

obtained when all the attributes are specified (de la Torre & Chiu, 2016). In particu-

lar, the q-vector with the fewest number of attributes required corresponding to ς̂2
j that

approximates the maximum GDI is suggested. The approximation was done with a

predetermined cutoff value for PVAF set at ε = 0.95 (de la Torre & Chiu, 2016).

Given an attribute distribution, the ς2
j measures the weighted variance of the prob-

abilities of correctly answering item j. Let the first K j attributes be required. The GDI

of an item with a specification qK′:K′′ is defined as

ς
2 = ς

2
K′:K′′ =

1

∑
αK′=0

· · ·
1

∑
αK′′=0

w(αK′:K′′)[p(αK′:K′′)− p(αK′:K′′)]
2

=
1

∑
αK′=0

· · ·
1

∑
αK′′=0

w(αK′:K′′)p2(αK′:K′′)− p2(αK′:K′′),

(3.3)

where p(αK′:K′′) = ∑
1
αK′=0 · · ·∑1

αK′′=0 w(αK′:K′′)p(αK′:K′′) is the weighted probability
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of success across all the 2K′′−K′+1 possible patterns of p(αK′:K′′); and w(αK′:K′′) is

the posterior probability of examinees being in class (α1, . . .αK′′), which is equal to

∑
1
α1=0 · · ·∑1

αK′−1=0 w(α1:K′′) (de la Torre & Chiu, 2016).

As briefly mentioned previously, the performance of the iGDI can be improved

because the iterative procedure was applied to the original GDI. For example, when

N = 1,000 and J = 31 with the medium quality item, including 5% misspecifications,

the true-positive rate of the iGDI was 0.81 given the iterative algorithm; however, it

would be 0.71 unless the iterative algorithm in the GDI was included. More specifi-

cally under the preceding condition, an original q-vector (0,0,0,1,0)′ was randomly

misspecified as (1,0,0,0,1)′ in the provisional Q-matrix. The following vectors were

the suggested q-vectors at each succeeding iteration: (1,0,1,1,1)′, (1,0,1,1,0)′, and

(0,0,0,1,0)′.

3.3.3 The Jensen-Shannon Divergence Index

Over the past decades, the Kullback-Leibler discrimination (KLD) index has been

widely used in educational assessment (e.g., Chang & Ying, 1996; Henson & Dou-

glas, 2005; Madigan & Almond, 1996; Veldkamp & van der Linden, 2002). It is a

distance measure between two distributions over the same random variable. The KLD,

which can be used with both discrete and continuous variables, is an alternative to the

Fisher information index, which can only be used with continuous variables (Cheng,

2009). Thus, the KLD is more suitable for CDMs due to the discrete nature of attribute

patterns. However, the KLD has some limitations in that it only compares two distribu-

tions, is not symmetric, and does not have a maximum value (i.e., it ranges from 0 to ∞)

(Henson, Roussos, Douglas, & He, 2008). As an alternative to the KLD, the Shannon

Entropy (SHE; Cover & Thomas, 2006) has been applied in the context of CDM (Xu,



42

Chang, & Douglas, 2003) to overcome some of the limitations of the KLD. For exam-

ple, the SHE is symmetric (Lin, 1991), has a maximum value when the probabilities of

distributions are equal (Xu et al., 2003), and can compare more than two distributions.

In Xu et al.’s (2003) study, the SHE was described as an item selection index in cogni-

tive diagnosis computerized adaptive testing (CD-CAT), where the authors found that

the SHE provided higher correct classification rates than the KLD.

The JSD index is known as a measure of similarity between probability distribu-

tions (Gómez-Lopera, Martı́nez-Aroza, Robles-Pérez, & Román-Roldán, 2000; Lin,

1991), which measures the average distances among multiple probability distributions.

Unlike the KLD, the JSD has better properties. Specifically, it is symmetric, bounded,

and always well-defined with finite values (Castner, 2014). Furthermore, the JSD can

offer more flexibility than the SHE to measure the spread of multiple distributions be-

cause a different weight to each probability distribution can be assigned (Lin, 1991).

The JSD computation for multiple probability distributions is given by

JSDw1,w2,...,wn(P1,P2, . . . ,Pn) = H(
n

∑
i=1

wiPi)−
n

∑
i=1

wiH(Pi), (3.4)

where w1,w2, . . . ,wn are weights that sum to 1; P1,P2, . . . ,Pn are the probability func-

tions; and H(·) is the SHE of the probability distribution expressed by

H(X) =−
∫

P(x)ln[P(x)]dx. (3.5)

Higher values of the JSD imply a greater spread in the predicted class probability

distributions, and it is zero if and only if the distributions are identical (Melville &

Mooney, 2004). In this present study, the JSD was adapted for Q-matrix validation

purposes based on binary attributes under the G-DINA model.
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3.3.4 The iJSD for Q-Matrix Validation

The JSD index was first introduced in the context of CDM by Minchen and de la

Torre (2016) for the continuous G-DINA (C-G-DINA) model. They adapted the JSD

index as an item selection algorithm for continuous responses in CD-CAT. According

to this study, the JSD provided higher attribute-wise and vector-wise classification rates

than random item selection algorithm (Minchen & de la Torre, 2016). Yigit et al.

(2016) further adapted the JSD for polytomous response data due to the complexity in

its Q-matrix. Specifically, they proposed a CD-CAT item selection rule based on the

JSD index for the MC-DINA model. They found that the JSD provided high attribute

classification accuracy even with a short test or low quality items.

This current study modified the original JSD index to be used for Q-matrix valida-

tion purposes, where assuming the underlying process in the estimation of item param-

eters and posterior distributions is not required. For the purpose of empirically-based

Q-matrix validation, the equation of the JSD for item j corresponding to a q-vector ql ,

1≤ l ≤ 2K , can be expressed as follows

JSD jl(P1,P2, . . . ,P2K) = JSD jl(P
(l)
1 ,P(l)

2 , . . . ,P(l)
2Kl

)

= H(
2Kl

∑
g=1

w(l)
g P(l)

g )−
2Kl

∑
g=1

w(l)
g H(P(l)

g ),
(3.6)

where P1, . . . ,P2K are the probabilities of success associated with the 2K latent classes;

Kl is the total number of attributes required in ql; w(l)
1 , . . . ,w(l)

g , . . . ,w(l)
2Kl

and

P(l)
1 , . . . ,P(l)

g , . . . ,P(l)
2Kl

are posterior weights and success probabilities of each 2Kl latent
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group, respectively. H(·) is the SHE defined as

H(P(l)
g ) = E[−ln(P(l)

g )]

=−[P(l)
g ln(P(l)

g )+(1−P(l)
g )(1− ln(P(l)

g ))].

Higher values for the JSD imply a greater spread in the latent group success proba-

bilities. The first term in Equation 3.6 is fixed for each studied item, and represents the

SHE of the weighted sum of all success probabilities. The second term of Equation 3.6

is the sum of the weighted SHE of each probability. This shows the sum of success in

latent groups. A higher value of JSD is related to a lower value of the second term of

the JSD.

Furthermore, q-vectors with more attribute specifications usually have higher JSDs.

Similar to the rationale in the GDI, in practice, real data introduce some noise, which

can affect the quality of estimation, and ultimately the accuracy of posterior weights

and success probabilities. This can result in choosing the full q-vector (i.e., q = 1).

Therefore, a q-vector with the lowest JSD that is within the confidence interval (CI) of

the q = 1 was chosen. The CI of the q = 1 was obtained based on the variance of the

JSD. Referring to each term of Equation 3.6, the mean of the SHE is the expected value

of ln(P(l)
g ), the variance of the SHE would be the expectation of the square of ln(P(l)

g )

minus the square of the expectation of ln(P(l)
g ). The variance of the JSD was further

standardized due to the fact that the size of each q-vector varies (i.e., 2Kl ). Thus, a

q-vector with the fewest number of attribute specifications corresponding to the lowest

JSD that is within the confidence interval of the q = 1 can be chosen as the correct

q-vector for item j.

Both the iJSD and iGDI were carried out in two steps. First, item parameters

and posterior distributions of attribute patterns were estimated using the provisional

Q-matrix. The estimates in item parameters were based on an empirical Bayesian im-

plementation of the expected-maximization algorithm. Second, the iJSD jl and iGDI jl
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were computed to identify the correct q-vector for item j. If a Q-matrix entry is modi-

fied at the first iteration, these steps are repeated for both methods and a new calibration

is carried out with the updated Q-matrix as the new provisional Q-matrix. A stopping

rule for the iterative cycle occurs when it stops suggesting additional changes in at-

tribute specifications. The code for this study was written in Ox (Doornik, 2009).

3.4 Design and Analysis

This study proposed two methods, the iJSD and iGDI, for Q-matrix validation un-

der a situation where a specific reduced CDM is unknown when calibrating the data.

In this present paper, the simulated data were only generated from the DINA model

because it has a more straightforward interpretation and requires a smaller sample size

for accurate parameter estimates (Rojas, de la Torre, & Olea, 2012). Therefore, using

the DINA model, 100 datasets were simulated under a number of conditions. Specif-

ically, sample sizes (N = 1,000 and 2,000), complexity of q-vectors considered in the

Q-matrix (see Table 3.1 for J = 30, and 31), item qualities (s j = g j = 0.1, 0.2, and 0.3),

and amount of misspecifications (5% and 10%) were controlled. In each condition, 100

misspecified Q-matrices, which consist of 5% and 10% misspecified q-entries, were

randomly generated from the true Q-matrices. Moreover, attribute structures were

generated from uniform and higher-order distributions (HO; de la Torre & Douglas,

2004). In the uniform distribution, all the possible attribute patterns are equally likely,

whereas, in the HO distribution, mastery or nonmastery of an attribute k is related to a

unidimensional latent variable θi for examinee i. The probability of mastering αk as a

function of θi can be formulated as in

P(αk|θi) =
exp(λ0k +λ1kθi)

1+ exp(λ0k +λ1kθi)
, (3.7)
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where λ0 = {−1.0,−0.5,0.0,0.5,1.0} and λ1 = 1.0 are the attribute difficulty and

discrimination parameters, respectively. The ability of examinee i, θi, was drawn from

N(0,1).

Table 3.1: True Q-matrix for the Simulated Data
Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 11 1 1 0 0 0 21 1 1 1 0 0

2 0 1 0 0 0 12 1 0 1 0 0 22 1 1 0 1 0

3 0 0 1 0 0 13 1 0 0 1 0 23 1 1 0 0 1

4 0 0 0 1 0 14 1 0 0 0 1 24 1 0 1 1 0

5 0 0 0 0 1 15 0 1 1 0 0 25 1 0 1 0 1

6 1 0 0 0 0 16 0 1 0 1 0 26 1 0 0 1 1

7 0 1 0 0 0 17 0 1 0 0 1 27 0 1 1 1 0

8 0 0 1 0 0 18 0 0 1 1 0 28 0 1 1 0 1

9 0 0 0 1 0 19 0 0 1 0 1 29 0 1 0 1 1

10 0 0 0 0 1 20 0 0 0 1 1 30 0 0 1 1 1

Note that we are not interested in differences between the performance across two

different test lengths (i.e., J = 30 and 31), instead, across different levels of complexity

in the Q-matrix (i.e., 1-, 2-, and 3-attribute q-vectors, and 1-, 2-, ..., and 5-attribute q-

vectors, where the latter one is much more complex). All the possible attribute combi-

nations are specified in the 31-item Q-matrix for K = 5, excluding the q= 0. Therefore,

this can allow us to investigate whether or not including all the possible combinations

of attribute specifications can provide a higher recovery of attribute misspecifications.

The number of attributes K was fixed to 5.

3.4.1 Results

Results based on the false-positive and true-positive rates of the iJSD and iGDI

were reported. The false-positive rate (i.e., Type-I error) is the proportion of cor-

rectly specified q-vectors that are modified; and the true-positive rate (i.e., power) is the

proportion of misspecified q-vectors that are correctly identified (de la Torre & Chiu,
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2016). For the iGDI, in addition to the cut-off value for PVAF set at ε = 0.95 in the

de la Torre and Chiu’s (2016) study, this current study further investigated results for

ε = 0.90 and 0.99.

Results were reported in Tables 3.2 and 3.3. In each table, findings were also split

into two parts based on attribute structures generated from uniform and HO distribu-

tions. Note that optimum results of the iGDI were obtained when ε = 0.95 for the high

quality item and ε = 0.90 for the medium and low quality items.

Table 3.2 reports the false-positive rates of the iJSD and iGDI. When attributes were

uncorrelated (i.e., uniform), the false-positive rates of the two methods were around

zero with at least medium quality items. When the item quality was low, the iGDI

showed lower false-positive rates than the iJSD, except when N = 1,000 and J = 31.

A larger sample size resulted in lower false-positive rates for both methods. In general,

the false-positive rates were lower when J = 30 than J = 31. When attributes were

correlated (i.e., HO), the false-positive rates increased for the high and medium quality

items. Even though the iJSD had higher inflation of the false-positive rates, it was still

around the nominal level. However, when the item quality was low, the iJSD had lower

false-positive rates under the HO distribution than that under the uniform distribution.

Similarly, the iGDI had lower false-positive rates under the HO distribution than that

under the uniform distribution, in particular, when N = 1,000 with the low quality item.

Again, increasing the sample size lowered the false-positive rates for both methods, and

the false-positive rates were generally lower when J = 30 than J = 31.

Based on the attribute structure generated from the uniform distribution, the iGDI

provided equally well as or better true-positive rates than the iJSD when the item qual-

ity was high, except when N = 1,000 and J = 31 with 10% misspecifications, where

the iJSD (0.98) had a higher true-positive rate than the iGDI (0.95). Given the medium

quality item, the iJSD had higher true-positive rates than the iGDI under two conditions

where N = 1,000 and J = 30. Specifically, when N = 2,000 and J = 30, both methods
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Table 3.2: False-Positive Rate of the iJSD and iGDI

Quality %

iJSD iGDI

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 30 J = 31 J = 30 J = 31 J = 30 J = 31 J = 30 J = 31

Uniform

H
5 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00

10 0.02 0.00 0.00 0.00 0.01 0.02 0.00 0.00

M*
5 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.00

10 0.00 0.03 0.00 0.03 0.00 0.01 0.00 0.00

L*
5 0.18 0.33 0.09 0.26 0.08 0.44 0.00 0.00

10 0.24 0.39 0.14 0.47 0.19 0.52 0.00 0.00

Higher-Order

H
5 0.06 0.04 0.04 0.03 0.00 0.00 0.00 0.00

10 0.06 0.04 0.03 0.04 0.00 0.00 0.00 0.01

M*
5 0.05 0.05 0.02 0.04 0.00 0.00 0.00 0.00

10 0.05 0.09 0.02 0.08 0.00 0.04 0.02 0.04

L*
5 0.09 0.07 0.02 0.04 0.01 0.01 0.00 0.00

10 0.11 0.11 0.02 0.10 0.02 0.05 0.00 0.06

Note. * indicates that the iGDI provided higher recovery when ε = 0.90 for the medium
and low quality items.

provided perfect true-positive rates with at least medium quality items. However, the

iGDI had a higher true-positive rate with 31-item tests. For the high and medium qual-

ity items, the true-positive rates were generally acceptable (> 0.8) for both methods,

except when N = 1,000 and J = 31 with both 5% and 10% misspecifications for the

iJSD, and with 10% misspecifications for the iGDI. Furthermore, when the item quality

was low, the true-positive rates were not acceptable (< 0.8) for both methods. Similar

to the findings of the false-positive rates in the preceding paragraph, the true-positive

rates were higher when J = 30 than J = 31 for both methods.
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Table 3.3: True-Positive Rate of the iJSD and iGDI

Quality %

iJSD iGDI

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 30 J = 31 J = 30 J = 31 J = 30 J = 31 J = 30 J = 31

Uniform

H
5 0.98 0.98 1.00 0.99 0.99 1.00 1.00 1.00

10 0.98 0.98 1.00 0.99 0.99 0.95 1.00 1.00

M*
5 0.98 0.77 1.00 0.88 0.92 0.81 1.00 0.97

10 0.98 0.70 1.00 0.83 0.93 0.79 1.00 0.96

L*
5 0.36 0.16 0.56 0.28 0.41 0.16 0.75 0.40

10 0.35 0.13 0.53 0.21 0.33 0.15 0.69 0.38

Higher-Order

H
5 0.93 0.96 0.98 0.97 1.00 1.00 1.00 1.00

10 0.94 0.95 0.97 0.95 1.00 0.99 1.00 0.99

M*
5 0.95 0.95 0.98 0.97 1.00 0.99 1.00 1.00

10 0.95 0.88 0.98 0.90 0.99 0.94 1.00 0.93

L*
5 0.89 0.84 0.98 0.95 1.00 0.93 1.00 0.97

10 0.88 0.77 0.97 0.86 0.97 0.87 0.99 0.89

Note. * indicates that the iGDI provided higher recovery when ε = 0.90 for the medium
and low quality items.

Results for the true-positive rates were more stable when attributes were generated

from HO distribution. Overall, the true-positive rates were acceptable (> 0.8) for both

methods, except for a condition of the low quality item when N = 1,000 and J = 31

with 10% misspecifications for the iJSD. Even though the iGDI outperformed the iJSD

under the HO distribution, both methods had the true-positive rates above 0.90, in par-

ticular, when N = 2,000. There was only one exception observed for both methods –

the true-positive rates were below 0.90 when J = 31 with the low quality item includ-

ing 10% misspecifictions, which was still above the acceptable level. Similar to the

previous findings, the true-positive rates were almost always higher when J = 30 than

J = 31 for both methods.
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3.5 Implementation with Real Data

The iJSD and iGDI were further investigated using the fraction-subtraction data

(Tatsuoka, 1984). This real data analysis can help compare the performance of the

iJSD and iGDI in practice. The fraction-subtraction test used in this study consists of

12 items administered to 536 middle school students. Only four attributes were in-

cluded in the analysis: α1 – performing a basic fraction subtraction operation; α2 –

simplifying/reducing; α3 – separating a whole number from fraction; and α4 – bor-

rowing one from a whole number to fraction. The 12 items with the corresponding

attribute specifications are shown in Table 3.4. Results from the two methods were ex-

amined based on suggested q-vectors under a saturated model (i.e., the G-DINA) with

an assumption that the specific reduced model is unknown when calibrating the data.

3.5.1 Results

Findings based on the iJSD and iGDI are displayed in Table 3.5. Results indicated

that the iJSD was more stringent than the iGDI because the iJSD had fewer 1s than the

iGDI. The iJSD suggested to change 10 attribute specifications in items 1, 2, 4, 5, 6, 7,

8, 9, 11, and 12 and the iGDI suggested to change six attribute specifications in items

1, 5, 6, 11, and 12 when ε = 0.95.

Item 1 originally required only α1, which is not necessarily true because the solu-

tion requires more than “performing a basic fraction subtraction operation.” That is,

3
4
− 3

8
=

2×3
2×4

− 3
8

=
6−3

8
=

3
8
,

meaning that an attribute “finding a common denominator” was necessary to solve item
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Table 3.4: Q-Matrix for Fraction-Subtraction Items

Attributes

Item α1 α2 α3 α4

1. 3
4 −

3
8 1 0 0 0

2. 31
2 −23

2 1 1 1 1

3. 6
7 −

4
7 1 0 0 0

4. 37
8 −2 1 0 1 0

5. 4 4
12 −2 7

12 1 1 1 1

6. 41
3 −24

3 1 1 1 1

7. 11
8 −

1
8 1 1 0 0

8. 34
5 −32

5 1 0 1 0

9. 45
7 −14

7 1 0 1 0

10. 73
5 −

4
5 1 0 1 1

11. 4 1
10 −2 8

10 1 1 1 1

12. 41
3 −15

3 1 1 1 1

Note. α1 – performing a basic fraction subtraction operation; α2 – simplifying/reducing; α3
– separating a whole number from fraction; and α4 – borrowing one from a whole number
to fraction.

1 correctly. Despite being different from this attribute, α2 was suggested by the iJSD,

and α3 and α4 were suggested by the iGDI on the top of α1. A explanation could be

due to the fact that the attribute “finding a common denominator” was not included in

the Q-matrix used in this study.

For items 4, 8, and 9, the iJSD recommended to exclude α3, however, the iGDI

retained α3. Furthermore, the iJSD excluded α2 from item 7, whereas, the iGDI con-

curred with the original Q-matrix, requiring α1 and α2. The iJSD and iGDI also indi-

cated α2 unnecessary in items 5, 6, 11, and 12, and that in item 2 for the iJSD only.

These suggestions could be, among others, due to the employment of another strategy

to solve the problems. For example, items 6, 11, and 12 can be answered correctly

without mastering α2 (i.e., simplifying/reducing), such that, – borrowing one from a
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whole number to fraction, separating a whole number from fraction, and performing a

basic fraction – happens to give the correct answer. The following example shows the

strategy to solve item 11

4
1

10
−2

8
10

= 3
(1×10)+1

10
−2

8
10

= (3−2)
11−8

10
= 1

3
10

,

meaning that item 11 can be answered correctly with another strategy, which does not

require to use the same attributes specified in the original Q-matrix.

Table 3.5: Suggested Q-Matrix by the iJSD and iGDI for the G-DINA model

iJSD iGDI

Item α1 α2 α3 α4 α1 α2 α3 α4

1. 1 1* 0 0 1 0 1* 1*

2. 1 0* 1 1 1 1 1 1

3. 1 0 0 0 1 0 0 0

4. 1 0 0* 0 1 0 1 0

5. 1 0* 1 1 1 0* 1 1

6. 1 0* 1 1 1 0* 1 1

7. 1 0* 0 0 1 1 0 0

8. 1 0 0* 0 1 0 1 0

9. 1* 0 0* 0 1 0 1 0

10. 1 0 1 1 1 0 1 1

11. 1 0* 1 1 1 0* 1 1

12. 1 0* 1 1 1 0* 1 1

Note. α1 – performing a basic fraction subtraction operation; α2 – simplifying/reducing; α3
– separating a whole number from fraction; and α4 – borrowing one from a whole number
to fraction; iGDI results were obtained when ε j = 0.95; * indicates suggested attribute
specifications.
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3.6 Summary and Discussion

This paper proposed two new methods, the iJSD and iGDI, for empirically vali-

dating the Q-matrix for the DINA model. Both methods can be used for dichotomous

models, however, the iJSD is more general than the iGDI that can also be applied un-

der nondichotomous models such as the C-G-DINA and MC-DINA. Furthermore, the

iGDI, an extension of the original GDI, provided better results because the iterative

procedure was applied to the original GDI.

Results showed that the iJSD and iGDI can identify misspecified q-entries at a

high rate, in particular, when the item quality was at least medium. Under favorable

conditions, the false-negative rate was around the nominal level. Generally, results

were stable for the iJSD, and similar to those of the iGDI, specifically, when the item

quality was high and medium.

When J = 30, both procedures provided better results than J = 31. At least based

on the findings in this study, including more single-attribute q-vectors provided higher

recovery of misspecified entries than fewer single-attribute items. In other words, more

complexity of q-vectors considered in the Q-matrix for J = 31 in comparison to J = 30

did not provide better results.

Attribute structures also affected the results of the iJSD and iGDI. When attributes

were uncorrelated (i.e., uniform), both procedures showed lower false-positive rates for

the high and medium quality items, which was inflated with the low quality items. In

terms of the true-positive rates, the iJSD and iGDI were not too different with at least

medium quality items. But, both procedures provided low true-positive rates with the

low quality items.

Given correlated attributes (i.e., HO), the true-positive and false-positive rates were

more stable. The iGDI showed lower false-positive rates, which was around the nomi-

nal level for the iJSD. The iJSD and iGDI presented quite high true-positive rates above
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the acceptable level, but the iGDI was generally better.

The running time of the code was shorter for the iJSD than the iGDI. For example, it

took the code 36.88 and 102.17 minutes using a 3.50-GHz I7 computer to run the iJSD

and iGDI, respectively, for 100 iterations under the condition where N = 2,000, J = 31,

and medium quality items with 10% misspecifications under a uniform distribution.

The number of iterations did not go beyond four.

A reason for different attribute suggestions based on the procedures could be be-

cause the fraction subtraction data have a small sample size and test item, and the

number of attributes is smaller than that of the simulation study. Thus, it would be

interesting to investigate how the iJSD and iGDI could behave under a small number

of sample sizes, test items, and attributes. More discussions about multiple strategies

in cognitive diagnosis using the fraction subtraction data can be found in de la Torre

and Douglas (2008), Hou, de la Torre, and Nandakumar (2014), and Mislevy (1996).

In the future, the iJSD and iGDI should be investigated in depth to see how they

would work when other reduced CDMs are involved. Furthermore, relaxing the as-

sumption that the number of attributes is fixed (i.e., K = 5) could provide a broader

perspective for the performance of the procedures. Finally, both indices should be

improved particularly when the low quality items are involved in a test.

The main idea of this study is not to replace existing validation procedures but

rather to serve as a supplementary tool from a statistical point of view. Moreover,

employing both existing validation methods and domain experts may be a more appro-

priate process for Q-matrix validation.
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Chapter 4

Study III: The Wald Test for Empirical Q-Matrix
Validation

4.1 Abstract

Cognitive diagnosis models (CDMs) have the advantage of providing finer-grained

information based on examinee responses to a cognitively diagnostic assessment. The

Q-matrix, which specifies the required attributes for each item, is an important com-

ponent of these models. However, specifying the Q-matrix is an inherently subjective

process. Over- or under-specifying one or more entries in the Q-matrix may negatively

affect item parameter estimates, and lead to examinee misclassifications. Thus, the

misspecification of Q-matrix entries is of serious validity concern. To ensure the valid-

ity of inferences from CDMs, Q-matrices developed by experts need to be validated.

This study proposes the Wald-Q – a Wald test-based Q-matrix validation method. Sim-

ulation studies are carried out to examine the false-positive and true-positive rates of

the Wald-Q in comparison to the IMSSA and iGDI under various conditions. Results

show that the Wald-Q can identify misspecified q-entries at a high rate, especially when

the test is long, and the false-positive rate is around the nominal level under favorable

conditions. The Wald-Q is also applied to fraction-subtraction data. The study con-

cludes with the strengths and limitations of the Wald-Q, and suggestions for future

studies.
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4.2 Introduction

Recently, interest in formative assessment based on cognitive diagnosis models

(CDMs) has been growing. Traditional test theories used for summative assessments,

such as classical test theory (CTT) and item response theory (IRT), have some limita-

tions. In particular, a single overall ability score based on CTT or IRT does not provide

useful diagnostic information about specific skills (e.g., Leighton & Gierl, 2007). This

limitation has led researchers (Akbay, Terzi, Kaplan, & Karaaslan, 2017; Tatsuoka,

1984; Tjoe & de la Torre, 2014) in the testing field to develop the latent construct as

finer-grained and interrelated, but separable latent skills within a domain of interest.

Compared to traditional item response models, CDMs provide more specific informa-

tion relevant to classroom instruction and learning. In other words, CDMs can be used

to determine examinees’ mastery profiles that can be used for targeted instruction. At

their core, CDMs specify the relationship, or interaction, between skills or attributes

and tasks.

The need to discover more specific skills has led researchers to develop different

reduced and general CDMs, which have been described in the literature. Examples

of reduced models include the deterministic inputs, noisy “and” gate (DINA; Haertel,

1989; Junker & Sijtsma, 2001) model, the deterministic input, noisy “or” gate (DINO;

Templin & Henson, 2006) model, the compensatory and reduced reparameterized uni-

fied model (C-RUM and R-RUM; Hartz, Roussos, Henson, & Templin, 2005), the

additive CDM (A-CDM; de la Torre, 2011), and the linear logistic model (LLM; de la

Torre & Douglas, 2004). Examples of general models include the general diagnosis

model (GDM; von Davier, 2008), the log-linear CDM (Henson, Templin, & Willse,

2009), and the generalized DINA model (G-DINA; de la Torre, 2011). For the most

part, reduced CDMs can be expressed as special cases of general CDMs. Regardless of

different formulations, the Q-matrix (Tatsuoka, 1983) is a common component in all
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these CDMs.

The Q-matrix is needed for CDMs to relate the specific subset of attributes to each

item. It is generally a binary J×K matrix where the jth item can be correctly answered

if the required attributes for item j have been mastered by the examinee. The row j

and column k entry of the Q-matrix, q jk, is 1 if the kth attribute is required to correctly

answer item j, and is 0 if it is not required. The process of constructing the Q-matrix

partly involves domain experts. As expected, the process can be questionable because

of the inherent subjectivity of the expert judgments and has caused serious validity

discussions among researchers (e.g., Chiu, 2013; de la Torre, 2008; Liu, Xu, & Ying,

2012; Rupp & Templin, 2008). Including or omitting multiple attribute specifications

in the Q-matrix may have a serious impact on the accuracy of the attribute classifi-

cations because of the inaccurate estimation of the model parameters (de la Torre &

Chiu, 2016). Additionally, any model-fit analysis becomes unreliable if the correctness

of the Q-matrix is not checked. However, the Q-matrix is usually assumed to be correct

after it has been specified by domain experts because of the lack of well-established

methods to verify attribute specifications in the Q-matrix (Chiu, 2013; DeCarlo, 2011;

de la Torre, 2008), particularly when general CDMs are involved (de la Torre & Chiu,

2016; Liu et al., 2012).

To date, only few novel statistical methods have been developed for validating at-

tribute specifications in the Q-matrix. For instance, DeCarlo (2011) proposed a model-

based approach where misspecified q-vectors are treated as random variables and es-

timated with the rest of the model parameters. However, aside from being compu-

tationally time-consuming, this method sometimes cannot identify the misspecified

q-vectors, and requires any misspecified q-vectors to be identified in advance. From

a different perspective, Liu et al. (2012) proposed a data-driven approach to identify

the Q-matrix and estimate related model parameters. This approach is based on ex-

aminees’ responses without involving any input from experts. However, among other



61

limitations, the identifiability of the Q-matrix may be weaker under some conditions,

such as if there is an unknown guessing parameter (Liu et al., 2012). Additionally, since

this method has only been used with specific CDMs, further investigation is needed to

see if it can be used when the underlying process is unknown.

Chiu (2013) developed another Q-matrix refinement method (QRM) based on a

nonparametric classification procedure (Chiu & Douglas, 2013). The QRM minimizes

the residual sum of squares (RRS) between the observed responses and the ideal re-

sponses among all the possible q-vectors of a given Q-matrix. The algorithm recovers

the Q-matrix by replacing the q-vector of the highest RSS (i.e., the worst) with the

q-vector of the lowest RSS (i.e., the best). The algorithm iterates until convergence is

met. One issue of the QRM is that it requires specifying in advance whether the under-

lying process is conjunctive or disjunctive method. Additionally, due to its nature as

a nonparametric method, parametric methods should provide more powerful results, if

the underlying model is known, particularly when N is large.

Another method, which was proposed by de la Torre (2008), is an empirically based

δ -method implemented through a sequential search algorithm for the DINA model. In

this method, the correct q-vector among all the possible 2K−1 q-vectors, excluding the

q= 0, is defined based on the δ jl value, the discrimination index of item j, when ql , the

lth q-vector, is used. The index is computed as differences in the probabilities of correct

responses between examinees who have the required attributes (i.e., η j = 1) and those

who do not (i.e., η j = 0). Among all the possible q-vectors, the correct specification

of a q-vector should maximize differences between the success probabilities of the two

groups (i.e., η j = 1 and η j = 0). However, this method has some limitations. First,

uncertainty remains in defining ε values, which are applied to prevent over or under

corrections. In practice, it is unclear how a formal single value for a threshold (i.e.,

ε) can be determined. The value can be more liberal or more stringent depending on
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many factors, such as sample sizes, test lengths, item qualities, and amount of misspec-

ifications, which were all fixed in de la Torre’s (2008) study. Additionally, the amount

of misspecifications was limited to 5 of 150 attributes in the Q-matrix (J = 30,K = 5),

which is approximately 3.3% misspecifications in total.

Given these issues in de la Torre’s (2008) paper, Terzi and de la Torre (2015) intro-

duced an empirically based iterative δ -method for Q-matrix validation as an extension

of the empirically based δ -method (de la Torre, 2008) to address some of the concerns

in de la Torre’s (2008) work. As the name suggests, the method involved an iterative

algorithm, which offered additional improvements in identifying attribute specifica-

tions. Moreover, optimal values of ε across different conditions were defined based on

the estimated item qualities. The effectiveness of the algorithm was further improved

by focusing on single-attribute specifications (Terzi & de la Torre, 2015). Therefore,

the K single-attribute vectors were enough to determine correct attribute specifications.

However, this method was only examined using a uniform attribute structure and the

DINA model.

The empirically based δ -method (de la Torre, 2008) was recently expanded to a

wider class of CDMs by de la Torre and Chiu (2016) by developing a method based

on the G-DINA model (de la Torre, 2011). Even though the discrimination index (i.e.,

ς2
j ) has greater applicability under the generalized model, the findings have limited

generality due to the fixed sample size and test length examined in the study. As with

the δ -method, de la Torre and Chiu’s (2016) work does not prescribe a formal way

for defining optimal ε values. Furthermore, the method does not include an iterative

algorithm, as in, it stops validating attribute specifications at the first step.

The primary objective of this study is to propose a new empirically based method

for validating the correctness of attribute specifications in a provisional Q-matrix. In

particular, the method, Wald-Q, adapts the Wald test (Morrison, 1967) for multivariate

hypothesis testing that performs all 2K − 2 tests for one item at a time. The Wald-Q
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should eliminate some of the limitations of the existing methods. For instance, al-

though the method is an empirically based procedure similar to that used by de la Torre

(2008), Terzi and de la Torre (2015), and de la Torre and Chiu (2016), the use of a

single optimal ε value is not required. Furthermore, the Wald-Q includes an iterative

process that continues validating attribute specifications after the first step as long as

any changes occur in attribute specifications. Using the updated Q-matrix, a new cal-

ibration is carried out to eliminate any potential effect of misspecified entries at the

succeeding steps. If no changes occur in attribute specifications, the iterative process

is terminated. Moreover, the Wald-Q can be designed for specific and general CDMs

based on the restriction matrix. Even though assuming a reduced or saturated model

results in a different restriction matrix, the data were always calibrated using the G-

DINA model. The performance of the Wald-Q was further compared to the iterative

modified sequential search algorithm (IMSSA; Terzi & de la Torre, 2015) and iterative

G-DINA model discrimination index (iGDI; Terzi & de la Torre, in preparation) in the

context of the DINA and G-DINA models, respectively. The iGDI is an extension of

the original GDI with an iterative algorithm in that better results were obtained (Terzi

& de la Torre, in preparation).

The rest of the paper consists of the following sections. In the second section,

background is provided about the G-DINA and DINA models, the G-DINA model

discrimination index, the Wald test, and the Wald test for Q-matrix validation. The

next section investigates the viability of the method by examining the false-positive and

true-positive rates of the Wald-Q in comparison to the IMSSA and iGDI. An empirical

example is included to examine the procedure with real data. The paper concludes with

a summary and discussion, and suggestions for further research.



64

4.3 Background

4.3.1 G-DINA and DINA Models

The G-DINA model is one of the most commonly used generalized CDMs. The

G-DINA model creates 2K j latent groups, where K j is the total number of the required

attributes for item j, as K j = ∑
K
k=1 q jk (de la Torre, 2011). Assuming the first 1, · · · ,K j

attributes to be required for item j, the reduced attribute vector α∗l j can be used to

represent the columns of the required attributes, where l = 1, · · · ,2K j . The probability

of correctly answering item j by examinees with attribute pattern α∗l j will be denoted

by P(X j = 1|α∗l j) = P(α∗l j). The item response function (IRF) of the G-DINA model

for the identity link is given by

P(α∗l j) = δ j0 +
K j

∑
k=1

δ jkαlk +
K j

∑
k′=k+1

K j−1

∑
k=1

δ jkk′αlkαlk′+ · · ·+δ j12...K j

K j

∏
k=1

αlk, (4.1)

where δ j0 is the intercept for item j, δ jk is the main effect due to αk, δ jkk′ is the inter-

action effect due to αk and αk′ , and δ j12...K j is the interaction effect due to α1, . . . ,αK j .

As a saturated model, the G-DINA model subsumes several commonly-used re-

duced CDMs, such as the DINA model, the DINO model, the A-CDM, the LLM, and

the R-RUM. Applying appropriate parameterization, these reduced models can be de-

rived from the G-DINA model under different constraints and link functions (de la

Torre, 2011). In this present paper, among these reduced models, the DINA model was

used because it has more straightforward interpretations, requires smaller sample sizes

for accurate parameter estimation (Rojas, de la Torre, & Olea, 2012), and is flexible

for extension to more general CDMs. By setting all the parameters in Equation 4.1 to

zero, except for δ j0 and δ j12...K j , the IRF of the DINA model can be formulated as
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P(α∗l j) = δ j0 +δ j12...K j

K j

∏
k=1

αlk. (4.2)

4.3.2 The G-DINA Model Discrimination Index

The empirically-based sequential δ -method (de la Torre, 2008) was proposed to

empirically validate a Q-matrix in conjunction with the DINA model. Because of the

limitation in the parameterization of the DINA model, a more general discrimination

index was needed for Q-matrix validation purposes. The idea of the δ -method for

empirically validating the correctness of attribute specifications was extended to the

G-DINA model, where a statistic based on 2K j groups is computed.

De la Torre and Chiu (2016) introduced the G-DINA model discrimination index

(GDI), denoted by ς2
j , which is a Q-matrix validation index for general CDMs. In the

paper, they discussed a theorem to justify the use of the index for Q-matrix validation

with the G-DINA model. The suggested q-vector is determined based on the proportion

of variance accounted for (PVAF) by a q-vector relative to the maximum ς̂2
j under

which all attributes are specified (de la Torre & Chiu, 2016). In particular, the q-

vector with the fewest attribute specifications corresponding to ς2
j that approximates

the maximum GDI is suggested. The approximation was done with a predetermined

cutoff value for PVAF set at ε = 0.95 (de la Torre & Chiu, 2016).

Given a particular attribute distribution, the ς2
j measures the weighted variance of

the probabilities of correctly answering item j. Let the first K j attributes be required.
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The GDI of an item with the specification qK′:K′′ is defined as

ς
2 = ς

2
K′:K′′ =

1

∑
αK′=0

· · ·
1

∑
αK′′=0

w(αK′:K′′)[p(αK′:K′′)− p(αK′:K′′)]
2

=
1

∑
αK′=0

· · ·
1

∑
αK′′=0

w(αK′:K′′)p2(αK′:K′′)− p2(αK′:K′′),

(4.3)

where p(αK′:K′′) = ∑
1
αK′=0 · · ·∑1

αK′′=0 w(αK′:K′′)p(αK′:K′′) is the weighted probability

of success across all the 2K′′−K′+1 possible patterns of p(αK′:K′′); and w(αK′:K′′) is

the posterior probability of examinees being in class (α1, . . .αK′′), which is equal to

∑
1
α1=0 · · ·∑1

αK′−1=0 w(α1:K′′) (de la Torre & Chiu, 2016).

4.3.3 The Wald Test

The Wald test (Morrison, 1967) has been a popular statistical test for decades. In

comparing the Wald, Lagrange multiplier (LM), and likelihood ratio (LR) tests, Buse

(1982) underscored that the Wald test has the advantage that it only requires estimating

the larger (i.e., unrestricted) model, and does not require derivatives. In contrast, the LR

test requires estimating both (i.e. unrestricted and restricted) models, whereas, the LM

test requires obtaining the derivatives to carry out the test. Recently, Sorrel, Abad, Olea,

de la Torre, and Barrada (2017) compared the performance of four inferential item-fit

statistics (i.e., Wald, LR, LM tests, and S−X2) in the context of CDM comparison,

and observed that the Wald and LR tests performed better than the LM and S−X2.

Several studies have applied the Wald test in the context of CDMs (de la Torre,

2011; de la Torre & Lee, 2013; Hou, de la Torre, & Nandakumar, 2014; Ma, Iaconan-

gelo, & de la Torre, 2016). The Wald test for CDM applications, first introduced by

de la Torre (2011), was used to examine whether the G-DINA model can be replaced

by one of the reduced models (i.e., DINA, DINO, or A-CDM). The null hypothesis to

test the fit of a reduced model with p < 2K j parameters can be written as R jp×P j = 0,
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where P j = {P(α∗l j)}, and R jp is the (2K j − p)×2K j matrix of restrictions. The Wald

statistic Wj to test the null hypothesis for item j is computed as

Wj = [R jp×P j]
′[R jp×Var(P j)×R′jp]

−1[R jp×P j], (4.4)

where Var(P j) is the variance-covariance matrix of the item parameters for the sat-

urated model computed from the inverse of the information matrix. Under the null

hypothesis for the DINA model, the Wald statistic is assumed to be an asymptotically

χ2 distributed with (2K j − p) degrees of freedom. For example, theR jp matrix for the

DINA model when K j = 3 is

R jp6×8 =



1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0


,

which constrains all the parameters in Equation 4.1 to zero except for δ j0 and δ j12...K j

(de la Torre, 2011).

The Wald test was further applied by de la Torre and Lee (2013) to investigate

the most appropriate CDM at the item level by comparing the fit of a saturated model

against the fits of reduced models. They examined the performance of the Wald test

with both simulated and real data analyses. The simulation study showed that the Wald

test had excellent power to identify the true underlying model even for small sample

sizes, while controlling the Type-I error for large sample sizes with a small number of

attributes. Furthermore, the Wald test was used to examine differential item functioning

(DIF) in the context of CDMs (Hou et al., 2014). The viability of the Wald test to detect
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both uniform and nonuniform DIF in the DINA model was explored via a simulation

study. The study showed Type I error rates close to the nominal level, and medium

to high power rates for reference item parameter values less than 0.3. The Wald test

application in the de la Torre and Lee’s (2013) study was extended by Ma et al. (2016),

who evaluated the Wald test across several popular additive models. It was shown that

the Wald test can identify correct reduced models and improve attribute classifications,

in particular, when the sample size is small and items are of low quality. Given the

previous applications of the Wald test in the context of CDMs, this study proposes the

Wald test for Q-matrix validation under the DINA and G-DINA models.

4.3.4 The Wald Test for Q-Matrix Validation

This paper introduces the Wald-Q, a new application of the Wald test, specifically,

for Q-matrix validation purposes in conjunction with both reduced and general models.

Among others, its primary appeal is that the Wald test only requires estimating the

larger model (Buse, 1982). The Wald-based procedure for Q-matrix validation is a

multivariate hypothesis test that performs all 2K − p tests for each item at once. The

test simultaneously compares all the possible q-vectors to the saturated specification at

the item level. This involves testing 0≺ q∗≺ 1 against q= 1. In its current application,

the Wald-Q can be considered as an all-subset search algorithm carried out iteratively.

For this study, a q-vector with a saturated specification (i.e., [1,1, . . . ,1]′) is referred

to as the full q-vector (i.e., q = 1), and the others are called reduced q-vectors (i.e.,

0≺ q∗ ≺ 1).

The Wald-Q can be used when the underlying specific model is either known or

unknown. The null hypothesis for Q-matrix validation can be written asR jp×P j = 0,

where P j = P(α∗l j) is the vector of item parameters of the saturated model (i.e., G-

DINA model with q = 1), and R jp is the (2K − p)× 2K matrix of restrictions, where
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p is the number of parameters of the reduced model (i.e., DINA or G-DINA model

with q∗ ≺ 1). The rows and columns in the restriction matrix represent the contrasts

and latent classes, respectively (see Tables 4.2 and 4.4). The number of rows of R jp,

(2K− p), also indicates the degrees of freedom. The Wald statistic W j to test the null

hypothesis for Q-matrix validation is computed using Equation 4.4. Under the null

hypothesis, the W j is assumed to be asymptotically χ2
2K−2 distributed when the smaller

model is the DINA model, and asymptotically χ2
2K−2Kj

distributed when the reduced

model is another G-DINA model, where the former assumes a particular underlying

process, whereas the latter does not. Note that the larger model is always the G-DINA

model that involves K attributes, whereas the smaller model can be the DINA or another

G-DINA model that involves K j < K attributes. Additional constraints are necessary

to specify a particular reduced CDM such that constraints are imposed to move from

K to K j.

For validation purposes, we need to estimate P j and Var(P j) for the full q-vector

(e.g., [1,1,1]′ for K = 3). In the all-subset search method, the full q-vector is fixed;

the remaining reduced q-vectors can be obtained by applying different constraints in

the restriction matrix. For example, six constraints (i.e., restrictions) are needed for the

DINA model, whereas, four constrains are needed for the G-DINA model when K = 3

and K j = 2.

DINA model. Assume that K = 3. Each row of Table 4.1 represents a candidate

q-vector. Entries in a row denote the latent groups to which attribute patterns belong.

This grouping is essentially the same as ηl j, where ηl j = 1 if a latent group is expected

to answer an item correctly, and 0 otherwise. For example, if α1 and α2 are required

for an item, as in the q-vector (1,1,0)′, the eight latent classes are classified into two

unique groups: ([0,0,0]′, [1,0,0]′, [0,1,0]′, [0,0,1]′, [1,0,1]′, [0,1,1]′) in group 0 and

([1,1,0]′, [1,1,1]′) in group 1.
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Table 4.1: Number of Parameters (i.e., Latent Groups) for Different Q-Vectors when
K = 3 (DINA Model Assumed)

Attribute Patterns

q-vector (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) #Par

(1,0,0) 0 1 0 0 1 1 0 1 2

(0,1,0) 0 0 1 0 1 0 1 1 2

(0,0,1) 0 0 0 1 0 1 1 1 2

(1,1,0) 0 0 0 0 1 0 0 1 2

(1,0,1) 0 0 0 0 0 1 0 1 2

(0,1,1) 0 0 0 0 0 0 1 1 2

(1,1,1) 0 0 0 0 0 0 0 1 2

Note. DINA: deterministic inputs, noisy “and” gate model. Entries in row denote the latent
groups to which attribute vectors belong. #Par is the number of parameters associated with
the corresponding q-vector.

According to the grouping formed by the q-vector (1,1,0)′, R jp matrix for the

DINA model is presented in Table 4.2. The first five restrictions in R jp, the success

probabilities for the six attribute vectors in group 0, are constrained to be equal; the

last restriction constrains the success probabilities of the two attribute vectors in group

1 to be equal. The restriction matrices for the remaining q-vectors can be derived

in the same manner. Applying each restriction matrix to test each q-vector provides

a hypothesis test. A reduced q-vector associated with retained null hypothesis can

replace the full q-vector. In other words, if H0 is retained, the q-vector with the fewest

attribute specifications corresponding to a highest nonsignificant p-value is deemed

correct for the item. If the null hypotheses for all the reduced q-vectors are rejected,

we can conclude that the true q-vector is the full q-vector.

It should be noted that the restriction matrix in Table 4.2 simultaneously tests a

particular reduced q-vector and a specific reduced CDM. However, in practice, we

may only be interested in the former. This can be done by using restriction matrices

corresponding to the G-DINA model. Conducting the restriction for the latter is the

same as conducting a model comparison at the item level (de la Torre & Lee, 2013; Ma
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Table 4.2: Restriction Matrix for the Q-Vector (1,1,0)′ (K j = 2) (DINA Model As-
sumed)

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) P(α∗l j)

1 -1 0 0 0 0 0 0 P(0,0,0) = P(1,0,0)

0 1 -1 0 0 0 0 0 P(1,0,0) = P(0,1,0)

0 0 1 -1 0 0 0 0 P(0,1,0) = P(0,0,1)

0 0 0 1 0 -1 0 0 P(0,0,1) = P(1,0,1)

0 0 0 0 0 1 -1 0 P(1,0,1) = P(0,1,1)

0 0 0 0 1 0 0 -1 P(1,1,0) = P(1,1,1)

et al., 2016).

G-DINA model. The restriction matrices for the G-DINA model can be obtained

in a manner similar to the DINA model. However, in this case, the form of a re-

duced CDM is not specified. To test whether the same q-vector, (1,1,0)′, is the correct

q-vector under the GINA model, four constraints are required because the item has

four parameters (i.e., 2K − p), where p = 2K j , as shown in the last column of Table

4.3. Given the q-vector (1,1,0)′, four unique groups are defined: ([0,0,0]′, [0,0,1]′) is

group 0, ([1,0,0]′, [1,0,1]′) is group 1, ([0,1,0]′, [0,1,1]′) is group 2, ([1,1,0]′, [1,1,1]′)

is group 3.

Table 4.4 shows the four restrictions corresponding to the q-vector (1,1,0)′ for the

G-DINA model. It also shows that the attribute patterns within the same group are

assumed to have equal probability of correctly answering an item. Similar to the DINA

model, identifying the suggested q-vector is based on the fewest attribute specifications

among the retained reduced q-vectors. The Wald-Q for both the DINA and G-DINA

models are implemented iteratively in that if any changes in attribute specifications are

suggested, a new calibration is carried out with the suggested (i.e., updated) Q-matrix.

In this iteration, the Wald-Q is again implemented. If further changes occur, the process

is repeated, otherwise, the process is terminated.
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Table 4.3: Number of Parameters (i.e., Latent Groups) for Different Q-Vectors when
K = 3 (No Model Assumed)

Attribute Patterns

q-vector (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) #Par

(1,0,0) 0 1 0 0 1 1 0 1 2

(0,1,0) 0 0 1 0 1 0 1 1 2

(0,0,1) 0 0 0 1 0 1 1 1 2

(1,1,0) 0 1 2 0 3 1 2 3 4

(1,0,1) 0 1 0 2 1 3 2 3 4

(0,1,1) 0 0 1 2 1 2 3 3 4

(1,1,1) 0 1 2 3 4 5 6 7 8

Note. G-DINA: generalized deterministic inputs, noisy “and” gate model. Columns with
the same number belong to the same group. #Par is the number of parameters associated
with the corresponding q-vector.

Table 4.4: Restriction Matrix for the Q-Vector (1,1,0)′ (K j = 2) (No Model Assumed)
(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1) P(α∗l j)

1 0 0 -1 0 0 0 0 P(0,0,0) = P(0,0,1)

0 1 0 0 0 -1 0 0 P(1,0,0) = P(1,0,1)

0 0 1 0 0 0 -1 0 P(0,1,0) = P(0,1,1)

0 0 0 0 1 0 0 -1 P(1,1,0) = P(1,1,1)

The implementation of the Wald-Q for each item can be summarized in the follow-

ing five steps:

1. Calibrate the entire test using the provisional Q-matrix and the G-DINA model.

2. For item j, obtain the P̂ j and Var(P̂ j) based on q j = 1 and the G-DINA model

using the P(αl|X) andX j.

3. Based on P̂ j and Var(P̂ j) from step 2, carry out (2K− p) Wald tests to determine

the correct q-vector for item j.

4. After completing the preceding steps for the first item, repeat the same steps for

each of the J items.

5. If a Q-matrix entry is modified, repeat steps 1 through 3, and use the updated

Q-matrix as the provisional Q-matrix.
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The estimates of the item parameters and posterior distribution of the attribute

patterns were obtained by an empirical Bayesian implementation of the expected-

maximization algorithm (de la Torre, 2009) using the provisional Q-matrix. The code

for the simulation study was written in Ox (Doornik, 2009).

4.4 Design and Analysis

This simulation study examined the performance of the Wald-Q by validating the

correctness of attribute specifications in the Q-matrix, and the true-positive and false-

positive rates were reported under various conditions. In the context of Q-matrix val-

idation, the true-positive rate is the proportion of misspecified q-vectors that are cor-

rectly identified; the false-positive rate is the proportion of correctly specified q-vectors

that are modified (de la Torre & Chiu, 2016). The true-positive and false-positive rates

can be considered as analogous to power and Type-I error rates, respectively.

The viability of the Wald-Q was analyzed using two simulation studies to compare

the effectiveness of: (1) the Wald-Q against the IMSSA when the underlying model can

be assumed to be the DINA model; and (2) the Wald-Q to the iGDI under a saturated

model when the underlying model cannot be assumed. In the simulation studies, 100

datasets were simulated using the DINA model with the following factors: sample

sizes (N = 1,000 and 2,000), test lengths (J = 15 and 30), item qualities (s j = g j = 0.1,

0.2, and 0.3), attribute structures (uniform and higher-order distributions), and amount

of misspecifications. In each condition, 100 misspecified Q-matrices, which contain

5% and 10% randomly misspecified q-entries, were generated from the true Q-matrix

shown in Table 4.5. The true Q-matrix has only 1- and 2-attribute q-vectors included

in J = 30, which was obtained by doubling the first J = 15 items. Therefore, results

across the test lengths can be comparable. Using the higher-order (HO) structure for

attribute generations, mastery or nonmastery of an attribute k is assumed to be related



74

to a unidimensional latent variable θi for examinee i. The probability of mastering αk

as a function of θi can be formulated as

P(αk|θi) =
exp(λ0k +λ1kθi)

1+ exp(λ0k +λ1kθi)
, (4.5)

where λ0 = {−1.0,−0.5,0.0,0.5,1.0} and λ1 = 1.0 are the attribute difficulty and

discrimination parameters, respectively; and θi, the ability of examinee i, was drawn

from N(0,1).

Table 4.5: Q-matrix for the Simulated Data
Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 11 0 1 0 1 0 21 1 1 0 0 0

2 0 1 0 0 0 12 0 1 0 0 1 22 1 0 1 0 0

3 0 0 1 0 0 13 0 0 1 1 0 23 1 0 0 1 0

4 0 0 0 1 0 14 0 0 1 0 1 24 1 0 0 0 1

5 0 0 0 0 1 15 0 0 0 1 1 25 0 1 1 0 0

6 1 1 0 0 0 16 1 0 0 0 0 26 0 1 0 1 0

7 1 0 1 0 0 17 0 1 0 0 0 27 0 1 0 0 1

8 1 0 0 1 0 18 0 0 1 0 0 28 0 0 1 1 0

9 1 0 0 0 1 19 0 0 0 1 0 29 0 0 1 0 1

10 0 1 1 0 0 20 0 0 0 0 1 30 0 0 0 1 1

Note. Each attribute is measured 10 times when J = 30 and five times when J = 15 with an
equal number of 1- and 2-attribute q-vector.

4.4.1 Results

Results were compared in two respects. First, the Wald-Q was compared to the

IMSSA when the DINA model is assumed, and second to the iGDI when a reduced

model cannot be assumed. For the IMSSA, ε(1) values were set at 2.2, 1.9, and 1.7 for

high, medium, and low quality items, respectively (Terzi & de la Torre, 2015). For the

iGDI, in addition to setting the cut-off value for PVAF at ε = 0.95, as in de la Torre and

Chiu (2016), this study investigated results for ε = 0.90 and 0.99 to further examine
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which ε value can provide optimal results for the iGDI. Results were divided into two

parts based on attribute patterns generated from the uniform and higher-order distri-

butions. Note that since (2K− p) Wald tests were carried out to determine the correct

q-vector for each item, the nominal α was modified using the Bonferroni correction

(i.e., α/(2K− p)).

Table 4.6 shows the false-positive rates of the Wald-Q in comparison to the IMSSA.

When attributes were uncorrelated (i.e., uniform), false-positive rates of both methods

were around zero. The Wald-Q sometimes showed lower false-positive rates than the

IMSSA, except when N = 1,000 and J = 15, and N = 2,000 and J = 30 with 10% mis-

specifications. Larger sample sizes and test items provided lower false-positive rates

for both methods. When attributes were correlated (i.e., HO), the false-positive rates

for both methods were higher than when attributes were uncorrelated. In particular,

the IMSSA had higher Type-I error inflation than the Wald-Q. Again, increasing the

sample size and test length lowered the false-positive rates for both methods, except

when J = 15 and item quality was low for the IMSSA.

Table 4.7 presents the true-positive rates of the Wald-Q against the IMSSA. When

attributes were generated from the uniform distribution, the Wald-Q provided equally

well as or higher true-positive rates across all the conditions. In particular, the Wald-Q

had perfect true-positive rates when item quality was high, with an exception when N =

1,000 and J = 15 with 10% misspecifications (0.99). The IMSSA also had perfect true-

positive rates when item quality was high, with the exception of two conditions where

N = 1,000, N = 2,000, and J = 15 with 10% misspecifications. Given the medium

quality item, the Wald-Q had above 0.95 true-positive rates when J = 15; however, it

was perfect when J = 30. The IMSSA showed above 0.84 true-positive rates, and were

at least 0.99 when J = 30. As expected, both methods provided lower true-positive rates

when the item quality was low. The true-positive rates of the Wald-Q ranged from 0.62

to 0.91 depending on the conditions. When J = 15 with 10% misspecifications, it was
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Table 4.6: False-Positive Rates of the Wald-Q and IMSSA (DINA Model Assumed)

Quality %

Wald-Q IMSSA

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 15 J = 30 J = 15 J = 30 J = 15 J = 30 J = 15 J = 30

Uniform

H
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.01 0.00 0.00 0.00 0.03 0.00 0.03 0.00

M
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L
5 0.02 0.00 0.00 0.00 0.02 0.01 0.00 0.00

10 0.07 0.01 0.01 0.01 0.02 0.01 0.01 0.00

Higher-Order

H
5 0.04 0.01 0.02 0.00 0.26 0.23 0.20 0.18

10 0.07 0.02 0.03 0.01 0.33 0.24 0.32 0.19

M
5 0.04 0.00 0.01 0.00 0.33 0.30 0.30 0.23

10 0.04 0.01 0.04 0.01 0.45 0.30 0.43 0.25

L
5 0.03 0.01 0.00 0.00 0.44 0.36 0.46 0.31

10 0.12 0.01 0.07 0.01 0.49 0.38 0.52 0.34

Note. IMSSA: iterative modified sequential search algorithm.

under the acceptable level (< 0.8). However, increasing the test length to 30 improved

the rates to above the acceptable level (> 0.8), and ranged from 0.86 to 0.91. For

the IMSSA, the true-positive rates were not acceptable (< 0.8). When attributes were

generated from the HO distribution, the Wald-Q showed more stable results, which

were above the acceptable level (> 0.8) throughout all the conditions. In particular, the

true-positive rates were all perfect when J = 30. When J = 15, all the rates were above

0.93 except for N = 1,000 under the low quality item with 10% misspecifications. For

the IMSSA, the true-positive rates were not acceptable (< 0.8) except for conditions

where N = 2,000, J = 15 and 30 with 5% misspecifications, and N = 2,000 and J = 30

with 10% misspecifications.
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Table 4.7: True-Positive Rate of the Wald-Q and IMSSA (DINA Model Assumed)

Quality %

Wald-Q IMSSA

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 15 J = 30 J = 15 J = 30 J = 15 J = 30 J = 15 J = 30

Uniform

H
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.99 1.00 1.00 1.00 0.95 1.00 0.97 1.00

M
5 0.97 1.00 0.98 1.00 0.91 1.00 0.93 1.00

10 0.95 1.00 0.98 1.00 0.84 0.99 0.86 1.00

L
5 0.72 0.88 0.73 0.91 0.45 0.72 0.46 0.75

10 0.62 0.86 0.68 0.91 0.36 0.72 0.36 0.75

Higher-Order

H
5 0.97 1.00 0.98 1.00 0.74 0.78 0.81 0.82

10 0.96 1.00 0.97 1.00 0.60 0.76 0.64 0.81

M
5 0.96 1.00 0.98 1.00 0.64 0.70 0.67 0.79

10 0.96 1.00 0.96 1.00 0.48 0.67 0.50 0.75

L
5 0.94 1.00 0.97 1.00 0.51 0.66 0.54 0.71

10 0.87 1.00 0.93 1.00 0.36 0.62 0.40 0.67

Note. IMSSA: iterative modified sequential search algorithm.

Table 4.8 displays the false-positive rates of the Wald-Q and iGDI. When attributes

were generated from the uniform distribution, the false-positive rates were very low

(i.e., 0) for the Wald-Q and iGDI with at least medium quality items. When N = 1,000

and J = 15 with the low quality item, the false-positive rates were inflated for the

Wald-Q, whereas, it was around the nominal level for the iGDI. When attributes were

generated from the HO distribution, the false-positive rates were higher than when the

attributes were generated from the uniform distribution; however, they were around

the nominal level. In comparison to the Wald-Q, the iGDI showed similar or lower

false-positive rates except when N = 1,000, J = 30, and the low quality item.

The true-positive rates of the Wald-Q and iGDI are reported in Table 4.9. Based on

attributes generated from the uniform distribution, the iGDI performed equally well as
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Table 4.8: False-Positive Rate of the Wald-Q and iGDI (No Model Assumed)

Quality %

Wald-Q iGDI

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 15 J = 30 J = 15 J = 30 J = 15 J = 30 J = 15 J = 30

Uniform

H
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M*
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L*
5 0.26 0.01 0.01 0.00 0.01 0.03 0.00 0.00

10 0.39 0.02 0.03 0.00 0.03 0.06 0.01 0.00

Higher-Order

H
5 0.04 0.01 0.01 0.00 0.01 0.00 0.01 0.00

10 0.08 0.01 0.05 0.01 0.01 0.00 0.01 0.00

M*
5 0.02 0.02 0.01 0.00 0.01 0.01 0.02 0.00

10 0.10 0.03 0.09 0.01 0.05 0.02 0.06 0.00

L*
5 0.03 0.01 0.00 0.00 0.04 0.14 0.02 0.00

10 0.12 0.01 0.07 0.01 0.10 0.15 0.07 0.01

Note. * indicates that the iGDI provided higher recovery when ε = 0.90 for the medium
and low quality items.

or better than the Wald-Q when the item quality was medium and high, where the true-

positive rates were above 0.95 for both methods. When the item quality was low, the

Wald-Q outperformed the iGDI. In particular, it was above 0.93 when N = 2,000 and

J = 30. For the other conditions, the true-positive rates were not acceptable (< 0.8) for

both methods. Results were more stable when attributes were generated from the HO

distribution. Overall, the Wald-Q performed equally well as or better than the iGDI.

The true-positive rates for the Wald-Q were at least close to perfect (above 0.99) when

J = 30 across all the conditions, and it was above 0.90 when J = 15. The true-positive

rates for the iGDI were also close to perfect (above 0.99) when N = 2,000 and J = 30.

The rates were also acceptable (> 0.8) for the iGDI across the rest of the conditions,

except when N = 1,000 and J = 15 with 10% misspecifications (0.70).
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Table 4.9: True-Positive Rate of the Wald-Q and iGDI (No Model Assumed)

Quality %

Wald-Q iGDI

N= 1,000 N = 2,000 N= 1,000 N = 2,000

J = 15 J = 30 J = 15 J = 30 J = 15 J = 30 J = 15 J = 30

Uniform

H
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

M*
5 0.97 1.00 0.95 1.00 0.97 1.00 1.00 1.00

10 0.96 1.00 0.96 1.00 0.95 1.00 1.00 1.00

L*
5 0.53 0.72 0.68 0.96 0.30 0.57 0.44 0.92

10 0.43 0.70 0.61 0.93 0.23 0.48 0.38 0.87

Higher-Order

H
5 0.97 1.00 0.98 1.00 0.97 1.00 0.97 1.00

10 0.96 1.00 0.97 1.00 0.97 1.00 0.97 1.00

M*
5 0.97 0.99 0.96 1.00 0.95 0.99 0.95 1.00

10 0.90 0.99 0.92 1.00 0.89 0.98 0.90 1.00

L*
5 0.93 0.99 0.95 1.00 0.85 0.82 0.92 1.00

10 0.90 0.99 0.92 0.99 0.70 0.82 0.82 0.99

Note. * indicates that the iGDI provided higher recovery when ε = 0.90 for the medium
and low quality items.

4.5 Implementation with Real Data

The viability of the Wald-Q against the IMSSA and iGDI was further investigated

using real data. The fraction-subtraction test (Tatsuoka, 1984) with 12 items taken by

536 middle school students were examined. The following four attributes were used in

the Q-matrix: α1 – performing a basic fraction subtraction operation; α2 – simplify-

ing/reducing; α3 – separating a whole number from fraction; and α4 – borrowing one

from a whole number to fraction.

Table 4.10 shows the 12 items with the corresponding attribute specifications. Re-

sults from the Wald-Q, IMSSA, and iGDI were compared based on suggested q-vectors.

First comparison of the Wald-Q to the IMSSA assumed that the underlying reduced

model is DINA, whereas, the next comparison of the Wald-Q to the iGDI assumed that
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Table 4.10: Q-Matrix for Fraction-Subtraction Items
Attributes

Item α1 α2 α3 α4

1. 3
4 −

3
8 1 0 0 0

2. 31
2 −23

2 1 1 1 1

3. 6
7 −

4
7 1 0 0 0

4. 37
8 −2 1 0 1 0

5. 4 4
12 −2 7

12 1 1 1 1

6. 41
3 −24

3 1 1 1 1

7. 11
8 −

1
8 1 1 0 0

8. 34
5 −32

5 1 0 1 0

9. 45
7 −14

7 1 0 1 0

10. 73
5 −

4
5 1 0 1 1

11. 4 1
10 −2 8

10 1 1 1 1

12. 41
3 −15

3 1 1 1 1

Note. (α1) performing a basic fraction subtraction operation, (α2) simplifying/reducing,
(α3) separating a whole number from fraction, and (α4) borrowing one from a whole num-
ber to fraction.

the underlying reduced model is unknown.

4.5.1 Results

The comparison of the Wald-Q to the IMSSA is shown in Table 4.11. The Wald-Q

suggested changes in nine attribute specifications (i.e., items 1, 2, 4, 5, 6, 7, 8, 9, and

12). In contrast, the IMSSA suggested changes in 10 attribute specifications (items

1, 3, 4, 7, 8, 9, and 10). These changes could be due to issues beyond the scope of

this paper, such as the incompleteness of the Q-matrix, different strategies of solving

questions, the small sample sizes, and short tests among others.

For example, the incompleteness of the Q-matrix in the data is due to the fact

that only 58 of 256 (K = 8; Chiu, 2013) and 10 of 32 (K = 5; Chiu & Köhn, 2015)

possible attribute patterns can be identified by the items. Therefore, multiple classes
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Table 4.11: Suggested Q-Matrix by the Wald-Q and IMSSA (DINA Model Assumed)

Wald-Q IMSSA

Item α1 α2 α3 α4 α1 α2 α3 α4

1. 1 0 1 0 1 1 1 1

2. 1 0 1 1 1 1 1 1

3. 1 0 0 0 1 1 1 0

4. 1 0 0 0 1 1 1 0

5. 1 0 1 1 1 1 1 1

6. 1 0 1 1 1 1 1 1

7. 1 0 0 0 1 1 1 0

8. 1 0 0 0 1 1 1 0

9. 1 0 0 0 1 1 1 0

10. 1 0 1 1 1 1 1 1

11. 1 1 1 1 1 1 1 1

12. 1 0 1 1 1 1 1 1

Note. (α1) performing a basic fraction subtraction operation, (α2) simplifying/reducing,
(α3) separating a whole number from fraction, and (α4) borrowing one from a whole num-
ber to fraction.

can be merged (Chiu, 2013). Another possibility is that examinees can apply different

strategies to answer items correctly. To give an example for item 2, where attribute

suggestions by the IMSSA concurred with the provisional Q-matrix that require all the

four attributes. However, the Wald-Q suggested excluding α2. It is interesting that

the other three attributes – borrowing one from a whole number to fraction, separating

a whole number from fraction, and performing a basic fraction – happen to give the

correct answer. The following example shows strategies step by step how to solve item

2:
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3
1
2
−2

3
2
= 2

(1×2)+1
2

−2
3
2

= (2−2)+(
3
2
− 3

2
) = 0+

3−3
2

= 0,

meaning that mastering these three attributes would be enough to answer item 2 cor-

rectly rather than mastering all the four attributes specified in the Q-matrix.

Table 4.12: Suggested Q-Matrix by the Wald-Q and iGDI (No Model Assumed)

Wald-Q iGDI

Item α1 α2 α3 α4 α1 α2 α3 α4

1. 1 1 0 0 1 0 1 1

2. 1 0 1 1 1 1 1 1

3. 1 0 0 0 1 0 0 0

4. 1 0 0 0 1 0 1 0

5. 1 0 1 1 1 0 1 1

6. 1 0 1 1 1 0 1 1

7. 1 0 0 0 1 1 0 0

8. 1 0 0 0 1 0 1 0

9. 1 0 0 0 1 0 1 0

10. 1 0 1 1 1 0 1 1

11. 1 0 1 1 1 0 1 1

12. 1 0 1 1 1 0 1 1

Note. (α1) performing a basic fraction subtraction operation, (α2) simplifying/reducing,
(α3) separating a whole number from fraction, and (α4) borrowing one from a whole num-
ber to fraction. iGDI results were obtained based on ε = 0.95.

The Wald-Q was further compared to the iGDI for the G-DINA model shown in

Table 4.12. Results indicated that the Wald-Q was more liberal than the iGDI. The

iGDI suggested changing only six attribute specifications in items 1, 5, 6, 11, and 12;

however, the Wald-Q suggested changing 10 attribute specifications in items 1, 2, 4, 5,
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6, 7, 8, 9, 11, and 12. The interpretations of the previous results can be applied to these

results obtained for the iGDI and Wald-Q under the G-DINA model.

It is important to state that the Wald-Q provided different attribute changes in two

items depending on whether or not the underlying DINA model can be assumed. For

item 1, the Wald-Q suggested α3 and α2 under the DINA and G-DINA models, re-

spectively. For item 11, the Wald-Q under the DINA model agreed with the original

Q-matrix, however, the Wald-Q under the G-DINA model excluded α2.

4.6 Summary and Discussion

This study adapted the Wald test as a method of empirically validating the Q-matrix

that can be used with reduced and general CDMs. Results showed that the Wald-Q can

identify misspecified q-entries at a high rate, especially when the test is long.

Under favorable conditions, the false-positive rates were around the nominal level.

The Wald-Q also behaved similarly for the reduced and general models. Longer tests

had more positive impact than larger sample sizes on the Wald-Q under both models,

which is similar to findings in Sorrel et al. (2017)’s study. Results were stable under

both models, especially when the item quality was high and medium.

Attribute structures affected the use of the Wald-Q with reduced and general models

differently. For instance, when attributes were correlated (i.e., HO), the reduced and

general models had similar true-positive and false-positive rates. When attributes were

uncorrelated (i.e., uniform), the reduced model showed higher true-positive rates, and

similar or lower false-positive rates than when attributes were correlated.

The performance of the Wald-Q was better than that of the IMSSA across the board,

particularly when the attributes were correlated. The Wald-Q and iGDI were not too

different when item quality was medium or high, but the former was generally better

than the latter with low quality items.



84

The time to implement the Q-matrix validation procedures using a 3.50-GHz I7

computer was the shortest for the IMSSA, followed by the iGDI and Wald-Q. Specif-

ically, it took the code 2.68, 14.02, and 21.10 minutes to run the IMSSA, iGDI, and

Wald-Q, respectively, for 100 iterations under the condition where N = 2,000, J = 30,

and medium quality items with 10% misspecifications under a uniform distribution.

The average number of iterations was two, and did not go beyond four.

In this study, assuming a reduced or saturated model differed based on the restric-

tion matrix after calibrating the data using the G-DINA model. However, it is possible

that better results could be obtained if a reduced model can be assumed in advance in

calibrating the data. More specifically, in this study the data were calibrated using the

G-DINA model for the Wald-Q and iGDI. However, the Wald-Q for the Q-matrix val-

idation was implemented using different restriction matrices based on the assumption

that if a reduced model can be assumed or not. For the IMSSA, the data calibration and

Q-matrix validation were carried out using the DINA model.

A general idea of this study is not to replace any existing validation methods or

domain experts but rather to provide a statistical perspective as an additional supple-

mentary tool. It should be emphasized that including domain experts in the process

of Q-matrix validation is as important as including available statistical methods for

validating the correctness of attribute specifications.

Future research is necessary to better understand the Wald-Q. Additional work

should be done to determine how the Wald-Q behaves when other reduced CDMs

are involved. The Wald-Q should also be examined including a different number of

attributes. Furthermore, different methods of computing Var(P j) should be explored

to see if the performance of the Wald-Q can be improved, particularly with the low

quality item.
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Chapter 5

Summary

Traditional unidimensional item response theory (IRT) models describe examinees’

proficiency by providing single overall ability scores. A main limitation of a single

score is its inability to provide detailed diagnostic information about specific skills

students should master to become proficient in a domain of interest (e.g., Leighton &

Gierl, 2007). In contrast, cognitively diagnostic assessments (CDAs) have been de-

signed to provide more detailed information by uncovering examinees’ current knowl-

edge, skill sets, and capabilities within a particular content area so that specific at-

tributes that may need academic support while learning is occurring can be identified

(de la Torre, 2009). The latent skills possessed by examinees can be discovered based

on examinee responses to test items primarily in conjunction with cognitive diagnosis

models (CDMs).

Most, if not all, CDMs require a Q-matrix to specify attributes measured by each

item. If attributes have been correctly specified, CDMs can accurately identify ex-

aminees’ mastery or nonmastery of attributes. However, conventional Q-matrix de-

velopment process has some degree of subjectivity due to the involvement of human

judgments, and has raised validity concerns due to the possibility of inaccurate attribute

classifications. Although some statistical procedures exist in the literature, additional

work is still needed to address remaining concerns in Q-matrix validation. With a

general aim to validate the accuracy of attribute specifications in cognitive diagnosis

modeling framework, this dissertation proposed new Q-matrix validation procedures,

and addressed concerns in some of the current validation methods.
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In the first study, a new search algorithm, iterative modified sequential search algo-

rithm (IMSSA), based on the sequential EM-based δ -method (de la Torre, 2008) was

proposed to empirically validate the correctness of attribute specifications. The IMSSA

is an extension of the sequential search algorithm (SSA; de la Torre, 2008) in that the

former addressed some limitations of the latter in various ways. Using two simulation

studies, the IMSSA was compared to three methods without an iterative algorithm and

to a method with an iterative algorithm. Among the noniterative algorithms, the mod-

ified sequential search algorithm (MSSA) showed better results, which also provided

higher recovery of attribute specifications than the Q-matrix refinement method (QRM)

on average across the conditions. Moreover, the IMSSA had much better results than

the noniterative algorithms. On average, the IMSSA and QRM had perfect recovery

with large sample sizes and long tests, and very high recovery rates with short tests

based on data generated from the high quality items; and the IMSSA outperformed the

QRM when data were generated from the medium and low quality items.

In the second study, the Jensen-Shannon divergence (iJSD) index and the iterative

generalized deterministic inputs, noisy “and” gate (G-DINA) model discrimination in-

dex (iGDI) were proposed. Both indices are used as empirically-based Q-matrix vali-

dation methods to verify the correctness of attribute specifications in the Q-matrix. As

with the iGDI, the iJSD was also implemented iteratively. Results showed that when

the item quality was at least medium, the iJSD and iGDI can identify misspecified q-

entries at a high rate. Attribute structures had a different impact on the results of the

iJSD and iGDI. When attributes were generated from a higher-order (HO) distribution,

the true-positive and false-positive rates were more stable than those generated from a

uniform distribution. Finally, given the complexity of q-vectors, a higher recovery of

attribute specifications was obtained based on the Q-matrix with more single-attribute

q-vectors than fewer single-attribute q-vectors. In other words, more complexity of

q-vectors considered in the Q-matrix did not provide better results.
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In the third study, the Wald test (Morrison, 1967) was adapted to carry out mul-

tivariate hypothesis testing to validate Q-matrix entries, which is called Wald-Q. The

Wald-Q can be applied to reduced and general CDMs based on the restriction matrix.

The effectiveness of the Wald-Q was compared to the IMSSA proposed in the first

study and to iGDI proposed in the second study in conjunction with the DINA and

G-DINA models, respectively. The Wald-Q outperformed the IMSSA across the con-

ditions, particularly when the attributes were correlated. The Wald-Q and iGDI were

not too different when item quality was at least medium, but the former was generally

better than the latter with low quality items. Results displayed that the Wald-Q can

identify misspecified q-entries at a high rate, especially when the test was long. More-

over, longer tests had a more positive impact than larger sample sizes on the Wald-Q

under both models. This interpretation was supported by Sorrel, Abad, Olea, de la

Torre, and Barrada (2017)’s findings that the impact of increasing the test length on the

Wald test was larger than increasing the sample size.

The Wald-Q under reduced and general models performed differently based on the

attribute structures. In particular, when attributes were generated from a HO distribu-

tion, the reduced and general models showed similar true-positive and false-positive

rates. When attributes were generated from a uniform distribution, the reduced model

had higher true-positive rates, and similar or lower false-positive rates than the general

model.

Attribute specifications in the Q-matrix should be correctly identified to obtain

maximum information from a CDM estimation (de la Torre, 2008). Hence, given the

results of the three studies as a whole, this dissertation showed considerable improve-

ment in verifying the correctness of attribute specifications. The dissertation’s first

study was useful in addressing some of the limitations with a current method on which

the proposed new method was based. The second study was important in proposing

more general indices with an iterative algorithm that can be extended to a wider class
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of CDMs so that assuming an underlying process would not be required. The third

study was essential in obtaining more accurate validity of attribute specifications in

the Q-matrix by providing comparisons of the Wald-Q to the other two methods, the

IMSSA and iGDI, proposed in the previous two studies.

A successful implementation of the proposed methods can lead to the advancement

of the use of CDAs in educational settings by accurately estimating attribute classifi-

cations. Results leading to improvements in Q-matrix validation can also help other

components of cognitive diagnosis modeling, such as the estimation of model param-

eters, model-data fit analyses, the accuracy of attribute classifications, and ultimately,

validity of CDA inferences. Nonetheless, there are still questions that need further

investigation. For example, the simulated response data were generated based on the

DINA model in the three studies. However, it would be interesting to analyze the ef-

ficiency of the new procedures using response data that would be generated based on

other reduced models. Moreover, the new procedures should be analyzed using real

data with a complete Q-matrix. Unfortunately, it was stated by Chiu, Douglas, and Li

(2009) and Chiu (2013) that the Q-matrix for the fraction-subtraction data is not com-

plete. So, all possible attribute patterns cannot be specified, which is actually a similar

problem of model misfit caused by an incomplete set of the skills in the Q-matrix (de la

Torre & Chiu, 2016). Finally, the proposed procedures need to be improved in cases

with short tests, small sample sizes, and low quality items.
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