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ABSTRACT OF THE DISSERTATION

Design and Implementation of Real-Time Cloud-Assisted

Systems

by Mehrnaz Tavan

Dissertation Director: Professor Roy D. Yates and Professor

Dipankar Raychaudhuri

The emergence of various mobile devices (e.g., smart phones, smart wearables,

tablets, etc.) has eliminated the location and timing constraints on access to a va-

riety of services including social networking, web search, data storage, video streaming,

and gaming. Limitations on resources in mobile devices such as battery life, storage,

and processing power along with the scalability requirements of such services have mo-

tivated companies to rely on cloud computing. Cloud computing has created a new

paradigm for mobile applications enabling access to computing and storage resources

in various locations on demand. This has drastically transformed the quality of ex-

perience (QoE) for the users and increased the popularity of cloud computing based

applications. This thesis studies the design and implementation of solutions for sup-

port of advanced real-time applications on mobile devices with stringent constraints on

responsiveness and throughput using cloud systems.

One of the main advantages of cloud computing platforms is to provide a logi-

cally centralized but geographically distributed database with on demand access. This

characteristic can be leveraged to develop a network layer solution for the problem of

maintaining connectivity and global reachability for mobile nodes. In the second chap-

ter of this thesis, the design and analysis of a connected vehicle architecture, called

FastMF, optimized for the deployment and support of advanced real-time services is
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examined. Motivated by current in-vehicle needs such as on demand video streaming

and safety applications and with a look to a future with cloud-assisted autonomous

driving and virtual reality goggles, we identify PHY, MAC, network, and transport

layer requirements to support these services. Furthermore, we discuss the issues with

current fixed-host/server IP architecture in providing service for mobile nodes and the

shortcomings of current cloud systems in terms of reacting slowly to coarse-grained

changes in the network.

To address these issues, we design a scalable, mobility-centric solution optimized for

high dynamicity based on MobilityFirst architecture. Our solution aims at providing

a mechanism for multi-hop bidirectional path discovery between vehicular nodes and

Internet gateways and enhancing global reachability and seamless connectivity of ve-

hicular nodes. To develop vehicular clustering for the purpose of obtaining the best

network access and to increase cluster stability, we start with an analytical evaluation

of vehicular mobility models followed by link lifetime analysis and description of mo-

bility event during a contact between two cars. Our proposed distributed clustering

algorithm forms tree-based clusters among nodes with similar mobility attributes. We

integrate our proposed clusters into named service layer supported by globally available

cloud servers. The distributed global name resolution service (GNRS) implemented in

the MobilityFirst architecture along with efficient vehicular clustering enable scalable

services with seamless connectivity and global reachability.

MobilityFirst services are provided mainly by routers with long-living links and rela-

tively consistent connectivity to a network infrastructure. To support dynamic scenarios

including connected vehicles, we enable nodes with short-living links and intermittent

access to the network infrastructure to act as MobilityFirst routers and extend the

MobilityFirst services to multiple-hops. The proposed scheme, assigns unique names

to clusters of vehicles. These names are independent of the locations of the clusters

and the interfaces. By aggregating vehicles in clusters, assigning unique identifiers to

them, and extending GNRS service to ad hoc mode, mobile nodes can benefit from

multi-homing and other services which are currently supported by MobilityFirst in a

seamless way only for nodes with one-hop access to Internet. The proposed method

can be added on top of IP or in an independent way as a network service for highly
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dynamic scenarios. By large scale simulation of various representative scenarios includ-

ing content delivery, web content retrieval, and store-and-forward service, we show the

flexibility and efficiency introduced by our design and the improvement in throughput

and reduction in delay that FastMF provides.

Another main advantage of the cloud computing platform is providing access to

enhanced computing resources. This enables providing more computationally complex

services such as cloud gaming through thin client devices. In this work, we investigate

the design and analysis of a cloud gaming platform with optimized QoE for players.

In cloud gaming, the game status updating and frame rendering tasks have migrated

to cloud resources. The players receive the rendered game scenes which are streamed

to their thin-client devices in real-time over the Internet. One of the main issues at

stake is maintaining responsiveness while having a smooth display of the game. What

makes this problem more challenging is that the existing solutions for video streaming

is not designed for latency-sensitive interactive applications. Furthermore, QoE is a

subjective metric and to the best of our knowledge, no quantitative modeling for QoE

in interactive systems exists.

In this regard, we introduce a novel application layer solution which efficiently adapts

itself to variations in the channel and server load. Our developed protocol performs on-

line frame selection to dynamically reduce traffic rate and proactively conserve network

resources for more fresh frames. This design performs optimization of responsiveness

and display smoothness by evaluating the freshness of information perceived by player

through video frames. Furthermore, we develop a mathematical analysis of interactive

applications and provide an analytical model for interactive real-time systems. Using

this model, we develop an objective QoE metric that suits the requirements of gaming

systems. This includes the minimization of age of information that the client perceives

subject to mitigating frozen screens and maintaining constant display frame rate and

smoothness. Through conducting extensive analytical modeling and network simula-

tion, we show the applicability of proposed model and protocol in improving the gaming

experience for both single-player and multi-player games.
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A.8. MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.7 and target speed difference

is 10 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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Chapter 1

INTRODUCTION

1.1 Overview

One of the key enabling factors in the evolution of mobile services is the cloud computing

platform which offers the following advantages:

• The clients are not under the burden of creating and maintaining infrastructure

or advanced in-device processing units for their computation needs.

• The globally distributed sites provide scalability and on-demand availability of

the service.

• The logically centralized servers can aggregate and process data from multiple

network entities involved in a service and make decisions knowing the dependen-

cies among entities involved.

Cloud-assisted strategies face challenges related to networking requirements, mobil-

ity of the nodes, reliability of the links and computing resources, and inherent sensitivity

of services to delay and congestion. Companies are hesitant to migrate their applica-

tions and services with stringent latency restrictions to cloud servers unless they are

assured that the quality of experience (QoE) for their customers does not deteriorate.

In the remaining parts of this work, the intrinsic challenges and proposed solu-

tions for two cloud-assisted applications, namely connected vehicles and cloud-assisted

gaming, will be discussed.

1.2 Connected Vehicles

The growing popularity of smartphones and networkable vehicles has resulted in a

significant increase in network utilization in challenging high mobility scenarios with
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vehicular nodes. Throughout this work, a vehicular node can be a passenger’s smart-

phone or a networking device installed in the vehicle. There are two main emerging

categories of services [1] for vehicular nodes:

1. Intelligent Transportation Systems (ITS): The emergence of sensor-equipped vehi-

cles with communication capabilities creates an opportunity to collect information

about traffic congestion and road status in real-time by crowd-sourcing. After de-

veloping models based on gathered data, periodic or event-driven safety or traffic

related messages can be disseminated among vehicles with relevant geographic or

other attributes. Examples of such safety messages include emergency and traffic

congestion warning, possible reroute options, sudden stop warning, notification

on approaching emergency vehicle, lane changing assistance, and intersection co-

ordination. In safety applications, most of the messages consist of only a single

or very limited number of small packets. Often times, the same message will be

broadcasted or multicasted to a group of vehicles.

2. In-vehicle Internet Access: Infotainment services [1] such as audio/video stream-

ing, sharing front view of neighboring cars, sending point of interest notifica-

tion, and updating maps along with automatic transfers of information between

cloud servers and related in-vehicle devices for autonomous driving require high

throughput links and long-living sessions. In this case, the data packets are mostly

intended for a single vehicle or a very limited number of vehicles. Furthermore,

most of the time, the messages consists of a stream of mid-size or large packets.

Providing reliable services in these scenarios is intertwined with intelligent usage of

urban infrastructure (e.g., multi-homing) as well as leveraging available peer-to-peer

WiFi links by forming ad hoc networks among vehicular nodes (i.e., vehicular ad hoc

networks (VANETs)). Multi-hop forwarding within VANETs facilitates providing high

quality services to nodes in weak coverage zones, compensating for the limited radio

range in vehicles, or adopting more cost-efficient data transfer strategies (e.g., cellular

offloading) [2]. Figure 1.1 illustrates an example of a smart city where VANETs help

in exchanging data among vehicles using peer-to-peer WiFi links or providing indirect

access to network infrastructure for cars without direct access.
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Figure 1.1: An example of a smart city with enhanced accessibility and reachability
through intelligent usage of urban infrastructure as well as leveraging available

peer-to-peer WiFi links

With the envisioned growth in vehicular infotainment deployment, the underlying

network should support global reachability, multi-homing, and low latency design for

mobile nodes. Seamless connectivity for vehicles faces various challenges:

1. PHY/MAC layer: Fast changing topologies, short living links, intermittent

connectivity, unpredictable network loads, and potential broadcast storms im-

pose challenges on connected car PHY/MAC layer design. In most current appli-

cations, location dynamicity triggers broadcast of control traffic. Consequently,

VANETs with unstable links are often prone to congestion. Link stability is cor-

related with mobility characteristics of the vehicles and the road/city structure.

Geographic proximity does not necessarily results in long living communication

(e.g., links between cars in opposite lanes in a highway). The interference among

nodes in close proximity limits the benefits of multi-hop communications. Most

of the proposed solutions for node dynamicity are restricted to local information

transfer (e.g., smart flooding using location information [3] and GeoServer as-

sisted multicast [4]), dissemination of popular content, or delay-tolerant scenarios

(e.g., carry and forward).
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2. Network layer: The default assumption behind most of today’s Internet proto-

cols is exchange of data among fixed nodes using a host-centric approach where

each node is identified with its IP address. The IP address depends on the location

of node’s network attachment point. However, with the shift in usage statistics in

favor of mobile platforms, services, and devices, mobile entities often change their

IP address multiple times while most of their services are still in progress. This

further complicates maintaining the quality of service. Identification of nodes

with IP addresses that are location-dependent has resulted in identity-location

conflation problem in IP networks [5]. Most of the proposed solutions for issues

incurred by IP are restricted to specific channels (e.g., cellular providers), using

an overlay network, or using an application layer solution without cooperative

support from the network [6, 7]. Application layer solutions incur overhead [8]

and solutions with overlay network such as MobileIP [5] and NEMO [9] suffer

from the routing bottleneck.

3. Transport layer: Current transport layer protocols revolve around the idea of

pushing the related functionalities to the end-host. This concept has resulted

in end-to-end reliability paradigm and flow/congestion control protocols such as

TCP and its variants. The recovery from congestion/loss in these designs happens

after an additional delay induced by end-to-end feedback. Mitigating congestion

and packet loss through link-level information is more efficient due to faster dis-

covery of such impairments. In addition, the recovery mechanism often consists

of the session restart and retransmission of in-flight packets. Most of the recovery

mechanisms are based on mitigating congestion since in the conventional fixed-

node Internet, the main impairment is congestion [8]. As a result, these mecha-

nisms are not applicable fully for mobile nodes. Unnecessary retransmissions due

to large backlogs at the routers are another disadvantage of this design.

4. Multi-homing: Although in today’s wireless world, it is very common for a de-

vice to be in the coverage area of different access technologies (e.g., WiFi+LTE,

WiFi+Bluetooth, DSRC+LTE, etc.,) at the same time and be equipped with

multiple network interfaces, multi-homing enabled systems still face major chal-

lenges imposed by network layer design. Identifying different active interfaces of
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a device is a major hurdle since each interface has a different IP address. Cur-

rent solutions are in transport or application layer and cannot be applied to the

en-route entities specially bifurcation routers.

5. Reachability: One of the key requirements of maintaining seamless connectivity

for mobile nodes is that the server must have access to the most recent network

attachment point that the client device, through one hop or multiple peer-to-peer

hops, is associated with. In current systems, only nodes with one hop connection

to network infrastructure are directly reachable by other nodes. If a node switches

the interface through which it is connected to the Internet, all ongoing sessions

will be interrupted and the mobile node must reinitiate the query through new

interface [8].

The prevalence of discussed issues among Internet services and applications has

motivated numerous researchers to think outside the TCP/IP box and propose new

network layer solutions and service abstractions [8,10–12]. Furthermore, new technolo-

gies such as routers with storage, network function virtualization (NFV), and software

defined networking (SDN) have helped in the realization of diverse designs [13].

In this work, we tackle the problem of providing an in-vehicle Internet access frame-

work in presence of dynamic links through a comprehensive solution called FastMF.

After identifying the requirements in having in-vehicle Internet accessibility and the

characteristics of the issues faced in connected vehicles, we developed a new distributed

clustering optimized for high dynamicity. The objective of this distributed cluster for-

mation algorithm is providing a mechanism for multi-hop bidirectional path discovery

between vehicular nodes and Internet gateways. Under this algorithm, we observe sig-

nificant improvements in terms of connectivity, overall throughput, and average latency.

Through exchange of location information with neighboring nodes, periodical es-

timation of the mobility parameters of neighbors, and detecting nodes with similar

mobility attributes, vehicles form stable clusters. These clusters are adaptable to the

mobility pattern of the nodes and network congestion conditions and can extend net-

work connectivity. To tackle topology instability while mitigating control traffic over-

head, clusters are formed in the shape of tree and react to coarse-grained changes in
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links. The proposed distributed tree-based clustering algorithm obtains real-time flex-

ibility with respect to channel status with no overhead cost. Each node has a partial

view of the cluster sufficient for forwarding data. To optimize clusters based on not

only stability but also connectivity to the infrastructure and to limit cluster size based

on channel conditions, our clustering algorithm minimizes vehicle to infrastructure path

length. The path length is measured using Expected Transmission Time (ETT) [14].

This is followed up by designing network service abstractions to solve the current

shortcomings of TCP/IP networks in providing accessibility (ability of a mobile node

to connect to the backbone Internet) and reachability (access to most recent address

of a mobile device from any server) for mobile nodes. Our solution is in the realm of

“named-object services” [8]. Specifically, we build on the global name resolution service

(GNRS) implemented in MobilityFirst [8,13,15] which provides an in-network real-time

distributed database of mappings between object IDs (GUID) and their current network

addresses (NAs). In general, the NA of an entity is an identifier that corresponds to

a routable network path to that entity. The NA can be a physical network address;

however, it may also be the address of a subnet or even an autonomous system (AS),

such that packets addressed with this NA will reach a router that can forward packets

to the network entity. By assigning a GUID to each network entity, including devices,

interfaces, and clusters of vehicles, we separate names from addresses of an entity.

Furthermore, GNRS makes the network address for each entity available to the whole

Internet. GUID enhances trustworthiness by using self-certifiable names. The end-hosts

can authenticate each other by two-way challenge response procedure.

MobilityFirst is designed mainly for mobile nodes with single-hop and relatively

consistent connectivity to a network infrastructure. For MobilityFirst to be applicable

to vehicular networking, we need to address the following challenges: i) The routing

schemes must be modified to reduce the control traffic overhead created by short lifetime

links. ii) The GNRS operations must be revised to include service for nodes with

no direct link to a network attachment point. iii) All named-object services must

be extended to include a continuously changing cluster of nodes. iv) The reliability

algorithm must adjust to situations with extremely intermittent links.

In the final step, we integrated clusters of vehicles with same mobility pattern into

the MobilityFirst architecture to increase the session lifetime beyond one-hop coverage
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interval. This is accomplished by assigning unique IDs to clusters and extending the

naming service in MobilityFirst to support detached cluster members through indirect

associations. Internet gateways will receive the identity of all members of a cluster

through the messages sent by a subset of cluster members directly associated to them.

These gateways periodically update GNRS of the identity of associated clusters and

their members to enhance tracking of vehicular nodes. This extension to MobilityFirst

provides all cluster members, including disconnected or poorly connected nodes, with

an opportunity to obtain an indirect association to Internet gateways that provide a

reachable NA for these nodes in the GNRS. In name-based architectures where IDs are

globally unique and routable, this extension enhances global reachability.

Availability of the reachability information in real-time in the network layer extends

the session lifetime specially for mobile nodes with intermittent direct Internet access.

The name-based forwarding and in-network store-and-forward mechanisms help recover

data, avoid retransmitting in-flight packets, resume data transfer through alternative

paths without noticeable interruptions, and access content with less delay [11, 12] for

nodes in poor coverage areas. While a mobile node cannot access Internet directly or

indirectly, its in-transit data is stored in the last NA the node was mapped to in the

GNRS. As soon as GNRS updates the mapping for the node, its data will be forwarded

from old NA to new NA . To address the transport layer challenges, a hop-by-hop

reliability mechanism is deployed. However, in case of high dynamicity, the checkpoint

for reliability is the same as the network attachment point mapped for cluster.

Through simulation of a representative set of data delivery scenarios, we illustrate

the capability of FastMF in reducing in-network load, avoiding congestion, and seamless

delivery. Results from ns-3 experiments illustrate the improvements in throughput

for downloading large files obtained by clustering and multi-hop transfer of data. In

addition, experiments with interactive web-browsing scenarios indicate a significant

delay reduction in various mobility scenarios.

1.3 Cloud Gaming

One of the most popular networked services is gaming [16]. Current popular games

designed for traditional platforms such as desktop computers and gaming consoles, are
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Figure 1.2: Cloud gaming system architecture (green packets are user commands and
yellow packets are game status updates).

appealing to players due to elaborate frame rendering, immersive gaming experience,

augmented functionalities, and dynamic scenes. We cannot expect to receive the same

quality from more constrained platforms such as smartphones and tablets.

With recent improvements in the capabilities of cloud infrastructure and quality of

wireless networks, mobile cloud computing systems have become an attractive choice

for hosting computationally complex services including latency-sensitive online games

[17–20]. In contrast to traditional platforms in which most of the computations are

conducted in the client device, the majority of the complex tasks in cloud-assisted

designs including game status updating, graphic rendering, and video encoding are run

in one or multiple data centers. Mobile clients submit actions through an access network

to a game server. The game server generates video frames at a constant frame rate.

The rendered game scenes are streamed to thin client devices from cloud servers. At the

mobile device, the display of these frames represent game status updates. Figure 1.2

illustrates an example of a cloud-assisted multi-player gaming system.

Cloud gaming has numerous advantages for both players and game developers [17,18]



9

including: a) Cost reduction: Migrating the game status computation and graphic ren-

dering to a remote server enables players to use thin devices. b) Platform independence:

A more diverse set of games can be played on the same device. c) Piracy prevention:

The game source code is stored only in the game server. d) Resource enhancement :

Servers have more processing power and memory as compared to mobile devices.

However, designing a cloud gaming system that provides a high QoE for players

involves numerous challenges. QoE metric analysis is difficult due to its subjective na-

ture and its dependence on various quantitative and content-based parameters. There

are two important factors affecting QoE [21]. First, since game updates are streamed

back to the thin client in the form of video frames, the design must maintain a high

user-perceived video quality. A user’s QoE is degraded when there are imperfections

in the sequence of displayed frames; neither frozen frames nor frame rate changes are

desirable. Second, the interactive and real-time nature of cloud gaming, particularly

its dependence on the online generation of game updates, imposes stringent delay con-

straints on the system. In this setting, video playback delays of even a handful of frames

constitutes an outage. Players are aggravated by delayed viewing of their commands.

Short-duration frame freezes are also undesirable. Variations of latency, called jitter,

can also have a drastic impact on QoE.

As an example, by increasing the frame rate in gaming systems, the perceptual

quality of experience for players is supposed to improve [22]. However, high frame

rate systems require high throughput in the range of 2-6 Mbit/s [22]. If the network

cannot support this throughput, frame loss, frozen screen, and significant delays will

happen which reduce the QoE significantly. If the frame rate is too low, the player

will receive delayed and sparsely sampled game updates which has a dramatic impact

on his/her gaming experience. Furthermore,the movements of game characters will

appear as consecutive snapshots with no smoothness. This example shows that designs

proposed to improve QoE in video streaming systems may not necessarily create the

same perceptual quality in interactive systems. Furthermore, it shows the complex

trade-offs and modeling challenges that exist in a cloud gaming system.

Similar to other distributed multimedia applications, network conditions have a sig-

nificant impact on the user experience in cloud gaming systems. Buffering and adaptive

bitrate (ABR) streaming protocols such as Dynamic Adaptive Streaming over HTTP
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(DASH) and HTTP Live Streaming (HLS) [23] have been long used for masking the net-

working latency in video streaming. However, these methods cannot be conveniently

applied to online gaming. Buffering, which is very effective in maintaining display

smoothness in video streaming over channels with varying conditions, incurs significant

delay and noticeable lag with respect to user commands in interactive applications.

ABR operates based on encoding video segments of size at the order of seconds using

different bit rates. Applying ABR to gaming which is developed in real-time, signifi-

cantly increases system complexity and delay.

An important QoE metric in cloud gaming is the response time which corresponds

to the elapsed time between the generation of an action and the displayed result of that

action. In fact, the response time reflects the accumulated delay in different components

including network and processing delays. In cloud gaming, the sensitivity of the users

to response-time delay depends on the type of the game; a low-latency game such as

a first person shooter, which is the focus of this work, requires a response time on the

order of 100 ms [18,24].

We try to tackle QoE evaluation by direct examination of the missing frame process.

The users observe the games through a fixed frame rate video. We aim at maximizing

the freshness of the data perceived by the client. In this work, we introduce a new model

for low-latency (sub 100 milliseconds) gaming enabled by edge cloud game servers. We

accomplish this goal in the following ways:

• We develop a Markov model which characterizes the frame delivery process in low-

latency edge cloud gaming systems and reflects the player’s watching experience.

This model evaluates susceptibilities of highly interactive cloud gaming systems

to lag, frame loss, and frozen screens.

• The main objective of a cloud gaming system is the “timely” update of players

regarding the game status, where game updates are reflected in displayed frames.

As a result, we follow the concept of age of information (AoI) introduced in [25]

to characterize the system performance based on the impact of missing frames.

AoI, as an objective QoE metric, focuses on application-layer events instead of

transport-layer events. Based on the developed Markov model, we derive a simple

formula for the average age of a tightly synchronized low-latency mobile gaming
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system in which the inter-frame period is a significant contributor to the system

latency. The freshness of frames reduces as they wait for medium access, re-

transmissions due to channel errors, backoff due to the activity of other wireless

transmitters, and screen refresh instants. The age metric incorporates both the

lag in response time and the latency associated with periodic framing. Status age

measures frame freezes seen by the player when frames go missing. Our proposed

metric, is in terms of both interaction delay and stream quality and captures

the effect of stochastic network and processing delay variations on the game’s

responsiveness and video display quality.

• We develop a novel application layer protocol for real-time interactive systems to

mitigate the impact of network latency, client device constraints, and server access

limitations. Our protocol improves streaming quality and system responsiveness

adapted to channel conditions. The adaptation indicates protocol’s capability

in proactively sensing lag-inducing events and dynamically adjusting the traffic

load. In exchange, we are willing to introduce ideally sufficiently minor and

isolated frame drops as long as the impact of these drops stays below the level

of sensitivity of human eye and can be mitigated by the interpolation capability

of human cognitive system. This protocol eliminates the aggregation of system-

induced lags over multiple frames, avoids noticeable stalling events, and conserves

the bandwidth for more fresh frames.

• We validate our system design by ns-3 simulation of low-latency edge cloud gam-

ing system (single-player as well as multi-player). Our results prove that our

analytical model provides an accurate performance characterization. In addition,

we show how careful synchronization of the game server and the mobile client

display can improve performance by roughly 20 percent.

1.4 Organization

The rest of this thesis is organized as follows. In chapter 2, we present our cloud-assisted

solution for enhancing accessibility and reachability for poorly connected vehicles. In

chapter 3, we present our analytical modeling, developed QoE metric, and designed

protocol for low-latency (sub 100 milliseconds) edge cloud gaming.
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Chapter 2

Connected Vehicles under Information-Centric

Architectures

2.1 Introduction

The proliferation of mobile computing devices has motivated us to investigate and de-

sign network services for highly dynamic environments such as vehicular nodes. With

the impairments mentioned in section 1.2 in consideration, we propose FastMF to tackle

the problem of providing high-throughput in-vehicle Internet access in presence of dy-

namic links, uncertain network load, and insufficient infrastructure. Our proposed

solution consists of integration of vehicular ad hoc networks (VANETs), formed by our

proposed distributed cluster formation algorithm, into the Internet backbone, equipped

with our proposed named-object services. Our distributed cluster formation algorithm

is a mechanism for multi-hop bidirectional path discovery between vehicular nodes and

Internet gateways.

Vehicles possess certain characteristics [26] which indeed support ad hoc network

formation. First, their mobility patterns on streets and highways are well-structured,

predictable, and more constrained compared to those for other Mobile Ad hoc Networks

(MANETs) [1]. Second, adjacent vehicles moving on the same road typically follow

correlated trajectories. Third, reliable location and velocity information is available

using GPS. Finally, there is potential support from in-vehicle infrastructure including

WiFi-enabled cars, passengers’ smartphones, energy supplies for charging nodes, and

various computationally powerful devices [1].

Vehicular nodes have speeds at least an order of magnitude higher than nodes in tra-

ditional MANETs. Practical studies of vehicular links have shown lifetimes around 10-

20 seconds [26]. In fact, to implement multi-hop forwarding, there are well-recognized
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VANET-specific challenges [26] including short-lifetime links and connection disrup-

tions [9] due to fast changing topology, being prone to channel congestion due to

exchanging more control data, the broadcast storm problem [6], and unpredictable

network load due to random density of nodes.

Being designed for networks of fixed entities, the IP architecture is not well suited

for dynamic scenarios [11, 15, 26] with intermittent connectivity, frequent changes in

network address (NA), and unreliable wireless links [1]. In addition, mobile nodes in

IP networks suffer from the identity-location conflation problem due to employing the

same name to identify an interface and its NA [5]. In general, the NA of an entity is an

identifier that corresponds to a routable network path to that entity. The NA can be

a physical network address; however, it may also be the address of a subnet or even an

autonomous system (AS), such that packets addressed with this NA will reach a router

that can forward packets to the network entity. When a route fails, since IP is based

on best-effort delivery policy, all in-flight data that had arrived at the previous network

address of the mobile device are dropped.

The dependence of traditional Internet on fixed-host/server model resulted in a

significant emphasis on pushing most of the functionalities, including TCP’s reliability

and congestion control mechanisms, to the end hosts [27]. The dependence of TCP on

the IP address for identification of end-hosts, relating packet loss to congestion instead

of link failure, induced delays due to slow start instead of switching the used interface,

and session interruptions due to the change of end-host’s IP address prove further the

inadequacy of TCP for mobile nodes.

IP networks provide services to mobile nodes using solutions containing overlay net-

works or extensions applicable only for local exchange of short messages. In MobileIP,

data is indirectly delivered to the mobile node through a pre-assigned home agent [5].

This indirect routing system generates considerable control traffic overhead (e.g., IP

encapsulation) and induces extra latency. In IPV6, the end nodes receive updated

addresses of mobile nodes from home agent. However, this information is not avail-

able to other en-route network entities [9]. NEMO [9], a mobility-friendly extension

of MobileIP, does not perform well in vehicular scenarios and requires support from

a complex infrastructure [9]. The Wireless Access in Vehicular Environments (Wave)

protocol stack supports IP-less exchange of short safety and traffic related messages
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without the need for connection setup operations. However, it needs to work alongside

the TCP/IP stack for non-safety applications and large file transfers [27]. Furthermore,

it does not support multi-hop data forwarding. Wave’s physical layer, dedicated short

range communications (DSRC), is not very scalable [28] and can only cover a limited

radio range before being congested.

Most of the algorithms proposed for VANETs [6, 7] use an overlay solution that

is strongly entangled with IP addressing. Recently, projects such as [8, 10–12] intend

to redesign the Internet-wide architecture to satisfy the needs of mobile nodes (e.g.,

location-independent communication) in network layer. Based on these designs, al-

ternatives for VANETs have emerged [9, 12, 15, 29, 30]. The structural shift in data

forwarding paradigms introduced in these designs supports seamless connectivity for

mobile nodes and multi-homing services which would otherwise face difficulty in tradi-

tional Internet architectures.

The Host Identity Protocol (HIP) [29] adds a naming layer between transport and

network layers only at the sender and receiver nodes, and identifies each end host by a

host ID. In [30], the Locator/Identifier Separation Protocol (LISP) assigns two separate

IP addresses to each end host’s name and NA and uses a name-to-address resolution

service. In [12], various designs for dissemination of popular contents among vehicular

nodes based on the Named Data Networking architecture (NDN) [10] are discussed. In

NDN, the routers forward data based on content IDs. A major challenge in designing

VANETs based on the NDN architecture is the scalability of content discovery and

routing [12]. In [9], a location-based content discovery mechanism, called Navigo, is

introduced for integration of VANETS into NDN architecture. In Navigo, the location

of content producer, when discovered after initial flooding, is added to the data chunks

and is used by intermediate nodes for guiding further requests for the same content.

For efficient delivery of popular content, Navigo is an advantageous solution. However,

for general improvement of in-vehicle Internet access including interactive web browsing

or downloading personal files, the initial flooding to locate the data source produces

significant overhead [12]. Furthermore, mobility of the data producer or consumer

results in frequent repetition of data source locating procedure.

To provide seamless connectivity and efficient delivery in presence of dynamic links,
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our designed protocol leverages an in-network real-time distributed database of map-

pings between object IDs and their current NAs (e.g., global name resolution service

(GNRS) implemented in the MobilityFirst [8, 13,15]).

In MobilityFirst [8], the concepts of identity-location separation and name resolution

service introduced in LISP [30] and content ID in NDN were incorporated and evolved

further by assigning globally unique identifiers (GUIDs) to all network entities and using

logically centralized but physically distributed cloud servers to make the most recent

mapping between ID and NA of any network entity accessible to other network entities.

Compared to initial flooding mechanism in NDN, MobilityFirst leverages the available

distributed cloud computing resources and builds GNRS to identify the location of

data producers. Compared to HIP, where resolution only happened in the end host,

any network entity have access to GNRS and can perform routing based on GUIDs.

The concept of globally available name resolution service is very similar to Domain

Name System (DNS) [31] which maintains the mapping between URL and IP address.

However, DNS is in application layer and URLs are hierarchical whereas GNRS is in

the network layer, and GUIDs are flat.

Using cloud servers for locating mobile nodes was previously proposed in GeoServers

[4] framework. The servers keep track of the geographic location of vehicles in a limited

area. Information maintained in GeoServers are used for local distribution of safety and

traffic related messages. Our design enables global reachability, seamless connectivity,

and possibility of transmitting over the globally optimum routes.

2.2 Contribution

In this work, we present the design and evaluation of FastMF, a framework for provid-

ing high-throughput in-vehicle Internet access and seamless connectivity [15]. FastMF

extends both accessibility of the Internet for vehicular nodes and reachability of vehic-

ular nodes from any remote server. Driven by the fundamental problems encountered

due to short-living links, intermittent routes, identification and location conflation in

IP networks, and domination of fixed-host/server paradigm in today’s Internet, we pro-

pose a simple yet effective solution to provide access to advanced services for vehicular

nodes with varying link conditions.
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MobilityFirst provides seamless connectivity for mobile nodes through routers with

enhanced functionalities and reliable attachment to the network infrastructure that

are connected with each other through long-living links. Nodes with one-hop access

to MobilityFirst infrastructure can leverage its services. If this one-hop access is lost,

routers store in-flight data and wait until the node gains a new one-hop access. The

following scenarios are satisfied fully by MobilityFirst: i) If the nodes have long-living

high-throughput one-hop access to MobilityFirst infrastructure ii) If the nodes with

poor one-hop access provide only delay-tolerant services or due to negligible relative

mobility, can be fully satisfied by tethering. Otherwise, the detached nodes are hidden

from GNRS and they cannot have seamless connectivity.

To provide seamless connectivity for vehicular nodes with intermittent links over one

or multiple hops, we integrated clustering and ad hoc networking into the MobilityFirst

architecture [32]. Our design enable vehicular nodes to function as MobilityFirst routers

by forming clusters and reducing the impact of node dynamicity.

To improve in-vehicle Internet accessibility, FastMF develops a mechanism for multi-

hop bidirectional path discovery between vehicular nodes and Internet gateways based

on a distributed cluster formation algorithm. The characteristics of the PHY/MAC

layer issues faced in connected vehicles lead us to develop solutions based on cluster-

based multi-hop forwarding. Under FastMF, we observe significant improvements in

terms of connectivity, overall throughput, and average latency for file delivery.

We design a novel clustering algorithm to take advantage of the MobilityFirst ar-

chitecture and reduce the impact of node mobility on the functionality of the node

as a router. The tree-based structure of clusters reduces the control traffic overhead

induced in case of changes to the cluster memberships or shape. To form stable clusters

adaptable to the mobility pattern of the nodes, stability of the links between pairs of

vehicles are estimated using exchanged location, speed, and other mobility attributes.

To extend network connectivity, clustering decisions over stable links are made based

on the path length to the nearest network attachment point where path length depends

on channel bandwidth and imposed latency.

Furthermore, our proposed clustering algorithm provides all cluster members, in-

cluding disconnected or poorly connected nodes, with the opportunity to obtain an

indirect association to Internet gateways and have reachable NAs in the GNRS. By
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forming clusters of vehicles with similar mobility patterns, leveraging cluster to infras-

tructure links, and maintaining the mapping between node IDs and NAs in a logically

centralized server, we provide the nodes without a direct Internet connection with the

benefit of an indirect association to an Internet gateway. These detached nodes are oth-

erwise hidden from the rest of the Internet. Furthermore, we extend the MobilityFirst

functionality over routers with short-living links and no consistent link to infrastructure.

Internet gateways receive the identity of all members of a cluster through the mes-

sages sent by a subset of cluster members directly associated to them. These gateways

periodically update GNRS on the identity of associated clusters and their members to

enhance tracking vehicular nodes. In name-based architectures where IDs are globally

unique and routable, this corresponds to global reachability. In case of interruption in

a file transfer due to intermittent connection, this reachability information results in

resuming the data transfer without noticeable delay and the need for the mobile node

to resend queries. In case of intermittent connections and unreliable links, in-network

storage helps recover data and access content with less delay and retransmission [11,12].

Our extended GNRS maintains the mapping between each network entity and a

dynamic set of NAs. Consequently, the reachability of an entity through multiple

interfaces is not only known to end points (the abstraction available today is through

transport or application layer protocols), but also to all network entities on the data

path. Thus, a bifurcation router at the branching point between interfaces can leverage

cross-layer feedback on link quality to perform load balancing. Further details about

our designed extensions to MobilityFirst are provided in section 2.6.1.

Simulation results illustrate the capability of FastMF in reducing in-network load,

avoiding congestion, and seamless delivery. Results from ns-3 experiments illustrate

the improvements in throughput for downloading large files derived by clustering and

multi-hop transfer of data. In addition, experiments with interactive web-browsing

scenarios indicate a significant improvement in delay in various mobility scenarios.

Although FastMF is based on the MobilityFirst architecture, it is applicable to any

architecture with address and identity separation such as LISP [30]. In addition, our

design principles for clustering in a distributed fashion are applicable to any architecture

regardless of its networking layer design. In this work, MobilityFirst is integrated with

IP architecture and network attachment points correspond to IP addresses.
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2.3 Related Work

Traditionally, flooding has been the most simple yet reliable method of disseminat-

ing data over a collection of highly dynamic nodes with time-varying connections [3].

However, considering the adverse radio propagation conditions, the channel can be-

come easily congested or the network may experience infinite retransmission loops. To

avoid these problems, three main categories of data dissemination mechanisms were

introduced for vehicular networks:

Location based : In geo-based routing algorithms such as GPSR and VADD [1], nodes

periodically broadcast their geographical location. Forwarding decisions are made based

on the geographical distance between neighbors of the node and the final destination

(may consider extra information such as density of cars in an area and city maps). The

location of the destination node is obtained through a node location service. Given

the data source is unknown a priori or changes frequently, considerable control traffic

overhead is needed for tracking the source. In addition, it is possible that neighbors

geographically closer to the destination lack a network path to the destination [9].

Data mules: In intermittently connected scenarios [3], past information about the

vehicles (e.g., mobility traces, destination, social media,...) are used to identify vehicles

with high probability of contacting a disconnected or poorly connected node to serve as

data mules. These algorithms require an extensive amount of past information to derive

contact possibilities. For delay-sensitive scenarios, other alternatives are preferred.

Multi-hop forwarding : In delay-sensitive applications, extending Internet coverage

by multi-hop forwarding of packets has been proposed as a solution. In these algorithms,

nodes exchange information to gain partial overview about the topology of the local

network and apply a routing algorithm to relay packets to/from client nodes from/to an

Internet gateway. The routing algorithms can be divided into two groups: i) proactive

(table driven) where nodes share the information on local topology with neighbors ii)

reactive (on-demand) where upon a new data request, a route query is broadcast.

A classic approach to reduce the complexity of multi-hop forwarding using mobile

nodes is to divide them into clusters of nodes with similar movement patterns [6] and

thus more stable links. Clustering can improve the rate of successful packet delivery,

provide a multi-hop path adaptive to mobility of nodes, and reduce network congestion
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[6]. In this work, we focus on this method of data dissemination.

Various algorithms have been introduced for forming clusters in ad hoc networks

including MOBIC [33], MobDhop [7], affinity propagation [6], (α, t)-based clustering,

and DMAC [7]. These methods differ in the cluster formation criteria or maximum

number of hops allowed between members. For instance, affinity propagation [6] max-

imizes the similarity among clustermates where similarity is measured based on their

designed affinity metric which depends on the mobility parameters of vehicles.

In most clustering algorithms, the clusterhead manages the cluster membership of

the nodes, routing, and forwarding packets within the cluster. Other cluster members

periodically contact the clusterhead to provide it with updated topological information.

The clusterhead might be the node with the lowest ID, highest degree, least variation

in mobility, or an optimizer of some specified criteria [7]. For instance, in MOBIC [33],

the node with lowest relative mobility to its neighbors becomes the clusterhead where

relative mobility is measured based on logarithmic change of received power over time.

When applied to nodes with group mobility behavior such as vehicles in highways,

MOBIC is very likely to form efficient clusters.

Due to the level of dynamicity in VANETs, the rate of clusterhead change in

VANETs is significantly higher than MANETs [6, 34]. This can result in frequent

flooding of a cluster for the purpose of reassigning the clusterhead, providing a new

clusterhead with member states, and reaffirming the existence of a clusterhead.

In [35], a multi-hop forwarding cross-layer (MAC and network) design is introduced

for improving in-vehicle Internet access. In this algorithm, using their designed MAC

layer protocol called VeMAC, each node assigns the subset of neighbors with high prob-

ability of having a network path to the destination as packet forwarders. The resulting

algorithm provides a multi-hop path from a node to an Internet gateway. However, this

algorithm does not improve reachability to the vehicular node from remote servers. Fur-

thermore, for path discovery, no clustering is imposed; source routing (from a vehicular

node) is applied, and the Internet gateway uses the path provided by the client node.

In vehicular networks with high mobility, the source routing creates large overhead, the

discovered path is usable for a very short time, and data retransmission happens very

often [6, 34].
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2.4 MobilityFirst Architecture Overview

The core architecture of the Internet is designed for interaction among fixed nodes. The

naming and addressing creates many issues for enabling seamless mobility (since chang-

ing network attachment point causes changing identity) or multi-homing (since different

interfaces have different identities). For vehicular nodes, the point of attachment to the

Internet changes rapidly and providing seamless connectivity is challenging.

MobilityFirst [8] is one of the named-object architectures which features the sepa-

ration of names from addresses and provides a scalable name-based service layer using

GUIDs (see Figure 2.1). A GUID is a flat self-certifying identifier of a network entity

(e.g., user, interface, device, service, content, context, and cluster of mobile nodes).

A GUID is a consistent and long-lasting identifier. Each network entity is assigned a

GUID by name certification services based on the cryptographic hash of entity’s public

key. A GUID is designed such that its owner can be authenticated using public/private

keys [8] without using an external entity. This can be beneficial in VANET scenarios

where traditional authentication settings (using a third-party server) creates substantial

delays due to frequent disruptions.

GNRS as an in-network mobility management framework [8] eliminates the need

for treating mobile nodes as special fixed entities and implementing mechanisms such

as MobileIP’s home and foreign agents [5]. The GNRS provides the basis for tracking

nodes. When nodes move, they update GNRS of their most recent NAs. Furthermore,

GNRS facilitates multi-homing by hosting the mapping between the GUID of an entity

and the NAs connected to all active interfaces of the entity.

There are various design proposals for implementing GNRS as a globally distributed

data structure. The original implementation, DMAP [13] consists of a local (per do-

main) and a global resolution server. The mapping between each GUID and its cor-

responding NAs are stored in K servers (for reliability purposes). The NAs of these

servers are determined by applying hashing functions to the GUID. Through large-scale

simulations, [13] showed that if the mappings are replicated at 5 servers chosen uni-

formly random, the 95% of latency to receive the NA for a queried GUID is at most 86

milliseconds. In GMap [36], the mappings are distributed based on the popularity and

geographic location of the corresponding network entities in local, regional and global
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Figure 2.1: Separation of identity from address in the MobilityFirst architecture

servers. GMap, in general, has better latency results than DMap [36].

Support of hop-by-hop transport of large protocol data units (chunks) in the Mobil-

ityFirst routing protocol [13] along with having in-network storage for chunks in transit

suit the VANET scenarios with frequent connection disruptions and varying link qual-

ity [11]. The hop-by-hop chunk transfer capability eliminates the extra delay incurred

by end-to-end packet loss recovery or congestion detection. Sending a large chunk over

short-living links in VANETs generally increases channel efficiency. In-network storage

divides the burden imposed by frequent link disruptions among in-network routers and

shifts that from end-points. It enables routers to make store vs. forward decisions per

chunk based on the quality of the link to the next hop. In addition, it provides the sys-

tem with multiple data sources which has been shown to reduce access latency [11]. The

link state routing in MobilityFirst is an integration of delay tolerance capabilities into

Open Shortest Path First (OSPF). To enable backward compatibility with IP-based

systems, packet headers contain both the GUID and the IP address of the receiver.

An extensive discussion of the transport layer protocol in MobilityFirst appears

in [8]. In MobilityFirst, the requested content is divided into multiple-packet chunks.
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The size of the chunk is based on a compromise between forwarding overhead and

available network resources [8]; here we use 500 KBytes chunks.

To Forward a chunk to its next hop, a node sends out a chunk synchronization

packet (CSYN) containing the ID and size of the chunk. The next hop replies with a

CSYN-ACK message that specifies which packets of the current chunk were received.

This way, lost packets are detected and retransmitted following the same procedure.

Upon complete reception of a chunk, each node begins forwarding the chunk to the

next hop. If a node does not receive the CSYN-ACK within a pre-specified interval, it

resends the CSYN message.

In case the client moves before receiving the requested chunk, the network layer

assists by delegating the data transfer responsibility to the nodes holding in-transit

chunks. If the chunk cannot be completely delivered by the link layer after some

attempts, the CSYN will timeout. The node will store the chunk and schedule for its

retransmission. The current chunk holder then periodically queries the GNRS for any

NA update before attempting to deliver the chunk to its next hop.

2.5 Clustering Algorithm

In this section, we discuss our distributed protocol for forming clusters. Our goal is

to design a dynamic clustering algorithm that builds on MobilityFirst to optimize the

trade-off between the stability of a cluster and the control traffic overhead needed for

both cluster formation and maintenance. The proposed clustering algorithm consists

of a 3-stage VANET formation protocol. In the first stage, nodes exchange Link Probe

(LP) messages to identify neighbors. In the second stage, nodes perform link stability

assessment in order to exclude short-lived unstable links. In the final stage, nodes ex-

change Cluster Status (CS) messages to make clustering decisions and find the shortest

path to an Internet gateway.

2.5.1 Neighbor Discovery

To describe the neighbor discovery and cluster formation algorithms, we classify nodes

based on the following categories:

• Single: A node that does not belong to any cluster.
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Message Content Size (Bytes) Description

Node GUID, cluster GUID, All nodes (including gateways) periodically
Link Probe (LP) current velocity, current location, 14 broadcast LP which is used to discover neighbors,

correlation in recent west speed samples and determine stable adjacent links.

Broadcasted by nodes who receive LP
Link Probe ACK Node GUID, cluster GUID 8 and have a stable link with LP owner

and is used to evaluate link ETTs

GUID, PathAP(A, t), Cluster GUID Each node periodically broadcasts (as a multiple of
GUID of the cluster tree root the LP period) CS messages to provide neighbors

Cluster Status (CS) GUIDs of descendants of A in the cluster 14+2N with its updated clustering-related characteristics.
GUID of A’s parent node in the cluster

Table 2.1: Network layer messages for arbitrary node A which has N subtree members

• Disconnected Cluster Member (DCM): A node that belongs to a cluster but lacks

a direct (one-hop) connection to an AP.

• Internet-Connected Member (ICM): A cluster member that has direct connection

to an AP.

Each node periodically broadcasts LP messages to discover peers in its neighbor-

hood, determine its stable adjacent links, and estimate the transmission delay over such

links using ACKs received in response to LP messages (see Table 2.1). LP messages

comprise the node GUID, the cluster GUID, and the mobility parameters (i.e., current

velocity, current location, and estimated correlation in recent speed samples). The clus-

ter GUID is a unique identifier assigned to a cluster and shared by all cluster members.

Single nodes, although not a member of any cluster, announce a fresh self-made GUID

as a cluster GUID in their transmitted messages. When a node becomes responsible for

naming a cluster, this self-made GUID will be used (see section 2.6). Similarly, when

a node becomes single by leaving a cluster, it creates a new cluster GUID. Instead of

exchanging LP messages, nodes can obtain this information exploiting the lower layer

beaconing functionality (e.g., 802.11p beacons provide speed, direction, and ID of the

vehicle with 10 Hz frequency) [1]. APs similarly broadcast LPs that contain GUID and

location of the AP. These messages can be incorporated into the AP’s beacon messages.

Stability of a cluster is ensured by evaluating the stability of the links based on the

mobility parameters of the nodes involved. For vehicular nodes, reasonably accurate

measurements of location and speed can provide a basis for stability metrics. The

accuracy of this information depends on LP broadcast period which is 0.3 sec (to avoid

generating large overhead traffic). In this work, we determine the stability of a link

between two nodes based on the difference between their velocities [6]. This follows
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the stability analysis in highly dynamic scenarios where stable links with long lifetime

occur more frequently among nodes with similar velocities.

2.5.2 Cluster Formation

The quality of a cluster is evaluated primarily based on the length of the path to the

nearest AP, where the path length metric is expected transmission time (ETT) [14].

ETT of a link corresponds to the estimated time required to send a packet through the

link successfully. For vehicular scenarios, ETT is ideally suited since both link packet

loss (quality of uplink and downlink) and bandwidth (the effect of interference from

other concurrent transmissions) impact the ETT. It dynamically adapts the cluster

size with the channel conditions, and if the channel is congested, the cluster does not

grow further. Nodes deduce the ETT of an adjacent link from the timing between their

LP messages and the corresponding received ACKs from neighbors.

Each node periodically broadcasts (as a multiple of the LP message period) CS

messages to provide neighbors with its updated clustering-related characteristics (see

Table 2.1). Based on this knowledge, nodes form tree-based clusters in which the root

of the tree is an ICM and each member of the tree is on its estimated shortest path

to the AP. The cluster formation step is in fact a path discovery mechanism where

each cluster member identifies its adjacent subtree and its next hop node towards the

Internet gateway. By putting this restriction on the information that each node has, we

thrive to minimize the amount of clustering overhead and make the protocol robust with

respect to mobility. Figure 2.2 illustrates an example of a cluster containing B,D,E, F

and the cluster status messages exchanged between B and D.

As specified in Table 2.1, the contents of a CS message transmitted at time t for an

arbitrary node A, advertises the path length PathAP(A, t) to an AP as well as GUIDs

of nodes in the adjacent subtree that ultimately enable construction of the full tree at

the AP. To avoid issues related to looping, and to distinguish fresh and different paths

to an AP from old paths advertised by subtree members of A, GUIDs of the parent and

root of the tree are provided in the CS message. We also include a sequence number for

the last update message generated by the root of the cluster tree that was incorporated

in the PathAP(A, t).
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Figure 2.2: An example of a cluster and exchanged CS messages between B and D

Upon reception of CS messages, nodes update their estimate of the path from neigh-

boring nodes to an access point, form clusters, or update their membership in a cluster

accordingly.

The cluster formation process is as follows: Assume that nodes A and B identify

the link (A,B), and have shared clustering information. In addition, assume that

PathAP(A, t) > PathAP(B, t). In this case, A will join B’s cluster if

PathAP(A, t)− ETTthresh > PathAP(B, t) + ETT(A,B),

where ETTthresh is the minimum improvement in path length to an AP for which A

will switch clusters. The hysteresis induced by ETTthresh is intended to prevent nodes

from oscillating between clusters and generating excessive GNRS updates. When A

decides to cluster with B, it uses the cluster GUID of B as its own cluster GUID. As

such, A makes its clustering decision asynchronously and autonomously without further

exchange of specific coordination messages with B. When A produces its next LP or

CS, other neighboring nodes would detect the cluster change.

An arbitrary node A in cluster C detects loss of its network path to its clustermates

by virtue of not receiving LP messages from the entire set of cluster neighbors after

some prespecified interval. Hence, it resets its cluster GUID entry in its broadcast
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messages to a fresh GUID to mark its departure from the old cluster. This indicates

that nodes make the clustering decisions independent from each other.

Each node maintains a Neighbor table that summarizes the information received

in LP and CS messages from adjacent nodes (including APs) containing their GUID,

cluster GUID, link ETT, and path ETT, parent and root GUID and their subtree on

their cluster tree. Cluster members can leverage the Neighbor table in the disconnected

mode (when the cluster has no ICM). In this mode, access to the GNRS is denied, but

a member can still communicate with others based on information in its Neighbor

table. In addition, nodes in disconnected mode can advertise for content, context,

and other supported services available in the cluster. The cluster topology is stored

in a distributed way. Over time, new nodes join or old nodes leave the cluster and

information is propagated to the root node.

Exchanges of CS messages with neighboring clustermates causes the aggregation and

dissemination of the topology information (i.e., gaining knowledge about the subtrees

of children) on the cluster trees. As such, upon receiving CS messages from root nodes,

APs are provided with a list of all cluster members, which can be used for GNRS

updating (see Section 2.6). Each cluster can be attached to zero, one or multiple

Internet gateways. One of the novelties of FastMF is that an end host can send data

to cluster members without knowledge of their cluster structure. After the cluster is

established, each member forwards a received chunk if either the destination node is in

the node’s subtree or the destination node is the NA of the cluster.

In addition to enhancing connectivity, we take advantage of the broadcast nature

of vehicular environments and the high possibility of connection among members by

allowing these members to cache data addressed to other members for a limited time

and forward to the intended clustermate when a path between them is available. A

summary of the cluster formation algorithm is presented in Algorithm 1.

2.5.3 Cluster Maintenance

Nodes periodically scan their Neighbor tables, and discard expired neighbors from which

no message was received for TTLneighb milliseconds. If the discarded neighbor was a

parent node, clustering will be repeated. If a node loses its parent or all links to its

cluster, it tries to repeat the clustering decision process where it searches through the
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Algorithm 1 Cluster formation

1: procedure Cluster(node A)
2: Input: Neighbor set NA, Subtree set TA, Access point set AP
3: //A * AP
4: for all B ⊆ NA do
5: if ETTA,B →∞ then
6: continue to the next neighbor
7: end if
8: if B ⊆ TA then
9: A is part of B’s path to AP

10: continue to the next neighbor
11: end if
12: if ((B,ParentA * AP) & (B 6= ParentA) & (RootA * ∅)) then
13: if ((RootA = RootB) & (SeqRootA < SeqRootB )) then
14: B is showing stale path length
15: continue to the next neighbor
16: end if
17: end if
18: if (B ⊆ AP) then
19: if (PathAP(B) + ETTA,B < PathAP(A)) then
20: ParentA ← B
21: PathAP(A)← PathAP(B) + ETTA,B

22: return ;
23: end if
24: else if(PathAP(B) + ETTA,B < PathAP(A)− ETTthresh)
25: if clusterA = clusterB then
26: CmateBetterPathA ← B
27: else
28: NonCmateBetterPathA ← B
29: end if
30: end if
31: end for
32: if CmateBetterPathA 6= ∅ then
33: Assume C ∈ CmateBetterPathA minimizes PathAP(.) + ETTA,.

34: ParentA ← C
35: PathAP(A)← PathAP(C) + ETTA,C

36: else if NonCmateBetterPathA 6= ∅
37: Assume C ∈ NonCmateBetterPathA minimizes PathAP(.) + ETTA,.

38: ParentA ← C
39: PathAP(A)← PathAP(C) + ETTA,C

40: clusterA ← clusterC
41: end if
42: end procedure
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Neighbor table for a node with a better path to an AP. The preference is given to

current clustermates to minimize the number of cluster changes.

If a node exits the coverage area of other nodes, it will remain undecided for a

specific interval. If it does not see any other path, it creates a new cluster. However, it

still periodically reattempts to join neighboring clusters.

2.6 Integration of Highly Dynamic Nodes into MobilityFirst

A main step for improving in-vehicle Internet coverage is to make reachability infor-

mation for disconnected or poorly connected nodes (their most recent indirectly associ-

ated network attachment points) globally available. CS messages broadcasted by ICMs

provide the APs with the status of all cluster members based on ICM’s most recent

knowledge about the cluster (see Section 2.5.2). In other words, CS messages provide

the seamless yet efficient status updating system required to combine ad hoc clusters

and the in-network mobility management system (GNRS) without generating excessive

control traffic overhead. APs collect CS messages from all associated nodes and de-

tect changes in the status of members of attached clusters. When a change occurs, i.e.,

node joining or leaving a cluster, the AP submits an update message to the GNRS. Fig-

ure 2.3 depicts how our proposed FastMF algorithm improves the accuracy of mapped

NAs specially for DCM nodes. Hence, FastMF enhances the reachability service and

seamless connectivity in highly dynamic scenarios. Integration of structured VANETs

into original MobilityFirst architecture minimizes the amount of time that DCM nodes

are hidden from GNRS and the core Internet. .

GNRS maintains the mappings between cluster members and their corresponding

cluster GUID. In addition, it keeps the mappings between cluster GUIDs and all of

the cluster attachment points. When GNRS receives a query for a cluster member, it

performs indirect mapping and returns all the NAs that the cluster is attached to.

Figure 2.4 illustrates an example of FastMF implementation in a highway with

intermittent connections. In this example, clusters C1 and C2 are already formed. Nodes

V1, V4, and V6 have one-hop connections to the AP, while V2 and V5 have multi-hop

connections to the AP, and V3 (a previous member of C1) is in the process of discovery

and clustering.
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Figure 2.3: GNRS maintains the mappings for all members of C1.

BS1
AP1           

V1

V2

V3

V4

V5

V6

C 1

C2

NA1

NA2

GNRS
Identifier GUID mapping 
GUIDV1  GUIDC1  
GUIDV2  GUIDC1  
GUIDV3  GUIDC1  
GUIDV4  GUIDC2  
GUIDV5  GUIDC2  
GUIDV6  GUIDC2  
GUIDC1  NA1 
GUIDC2  NA2 

 

Internet
Backbone

NA3

Figure 2.4: FastMF architecture
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Figure 2.5: Remote server NA3 queries the NA mapped to GUID V5

To forward a packet to V5, the remote server NA3 sends a query to the GNRS to

obtain the NA mapped to V5 (see Figure 2.5). In the GNRS, the V5 GUID is mapped

to its corresponding cluster GUID C2. GNRS then proceeds to resolve the mapping for

C2, and returns NA2 to the remote server.

The remote server addresses the chunk using GUID of V5 and NA2. Within C2,
any node whose subtree member list contained the GUID of V5 forwards the chunk.

Figure 2.6 illustrates the packet forwarding in backbone Internet and within the cluster.

Chunks addressed to V3 are stored in NA1 as long as V3 remains in the disconnected

area. NA1 periodically queries GNRS to find the updated NA for V3. NA2 updates the

GNRS as soon as V3 reconnects through NA2 (directly or through other members of

C2). Upon receiving the updated NA, NA1 forwards the stored chunks to the updated

address. This eliminates the need for stored chunks to be retransmitted all the way

from NA3 to the NA. If one of the vehicular nodes such as V2 needs to send a query to

a remote server, the query will be forwarded over the cluster tree until it reaches NA1.

To minimize the rate of updates sent to GNRS and changes within the cluster,
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Figure 2.6: Forwarding chunks from remote server NA3 to V5

each cluster is named by a separate cluster GUID, rather than cluster identification

alternatives such as the GUID of a member or the NA of an ICM clustermate.

2.6.1 Enhancements to MobilityFirst Forwarding Mechanism

Section 2.4 describes the hop-by-hop forwarding algorithm in MobilityFirst. In case

of VANETs, nodes decide on forwarding a received chunk by analyzing its source and

destination GUID. If the node is a member of the path between source and destination

(e.g., the source belongs to the subtree of the node and the destination is an Internet

gateway or vice versa), it will forward the chunk.

Various issues arise when applying original MobilityFirst forwarding mechanism to

vehicular ad hoc scenarios. In this work, we designed and implemented mechanisms

to extend the MobilityFirst routing functionality to nodes with short-living links and

intermittent connection to the infrastructure and allow MobilityFirst accommodate

nodes with high dynamicity or located in areas with partial coverage of infrastructure-

based wireless network.



32

Link stability evaluation adapted to dynamicity : Due to high dynamicity in vehicular

networks, we design new algorithms in FastMF to estimate link stability using mobility

parameters of the nodes. More information can be found in Appendix A.

Indirect association for DCM nodes: In the original MobilityFirst, nodes detached

from network infrastructure are hidden from the GNRS and the backbone Internet.

As a result, for highly dynamic scenarios, the sessions are interrupted inevitably since

maintaining a session requires client/server to have direct Internet access. The routers

that are in charge of providing most of the MobilityFirst services are assumed to be

connected with each other through long-living links and have a consistent attachment

to the network infrastructure. In FastMF, we allow nodes with short-living links and

intermittent network connection to function as MobilityFirst routers. As a result, the

GNRS is updated with the most recent NAs for all nodes including DCMs. Furthermore,

DCMs are not hidden from GNRS anymore and the stream of chunks towards them

continue over multiple hops.

Extension of named-object based services: In FastMF, we extend the named-object

based services to include nodes with high dynamicity or those in poor coverage areas.

By integration of peer-to-peer links into MobilityFirst, FastMF enhances the capability

of MobilityFirst in performing multihoming and maintaining seamless connectivity for

nodes faster than Mobilityfirst’s original design. To do so, we group network entities

with similar mobility attributes, assign unique IDs to these groups, and provide GNRS

with real-time update on NAs that such groups are reachable from.

Multiple CSYN-ACK : In the original MobilityFirst architecture, data chunks are

exchanged among pairs of nodes and the chunk forwarder receives CSYN-ACK only

from one node. In FastMF, multiple nodes may be eligible next hops and send CSYN-

ACK for the same chunk (to avoid concurrent transmissions, each sends CSYN-ACK

after a random delay). In the current implementation, all ACKs received during a

specified interval after sending the chunk are aggregated and replied.

Extension of store-and-forward service: FastMF faces more resource limitations and

higher randomness in network paths compared to MobilityFirst. As a result, FastMF

leverages its own multi-hop forwarding capabilities to extend the store-and-forward

mechanism in MobilityFirst. Based on the broadcast nature of transmissions in ad hoc

networks, nodes other than the intended next hops may also receive a chunk. These
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nodes do not reply with a CSYN-ACK to avoid multiple retransmissions of data and

channel congestion. However, they cache the received chunk for a limited period of

time and forward it in case of receiving requests for the stored chunk.

Reliability mechanism in VANETs: Due to the unreliability of links, inaccurate

routing information, and intermittent connectivity in VANETs, FastMF has an addi-

tional client-to-gateway reliability mechanism to ensure the delivery of requested chunk

to the client. As such, the client, upon complete reception of the requested chunk, sends

an ACK which is forwarded to the client’s current NA. The client’s NA is responsible

in part for ensuring the delivery of each requested chunk. If the designated NA does

not receive the client-to-gateway ACK after a pre-determined time and if the client is

still a member of one of NA’s associated clusters, the NA will retransmit the chunk.

If the client has left the associated clusters, the NA stores the chunk and queries the

GNRS for the updated NA of the client. In addition to this strategy, based on the type

of transferred chunks, we can implement a client-to-server mechanism using ACKs for

each chunk or NACKs for lost chunks [8].

Mobile server : FastMF extends the data delivery services currently available in

MobilityFirst to include highly dynamic data servers that are sending data over one-

hop or multiple hops (e.g., Facebook Live, Periscope, etc.,). In these scenarios, the

NA adjacent to the server’s cluster stores a copy of transferred chunks, acts as a proxy

for server, and is responsible for chunk delivery and end-to-end reliability with clients.

This can mitigate the issues imposed by intermittent connections of the server.

Implicit ACK : If a node receives a data request for chunk i, it assumes that all

previous chunks were completely delivered.

Flow control : Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) links in

a cluster usually share the same channel bandwidth. FastMF extends the flow control

mechanism in MobilityFirst to adapt the data transfer decisions to Internet access

patterns of clusters. When a cluster has Internet access, the priority for channel use

is given to V2I transmissions. In the disconnected area, nodes use the V2V links to

transfer the stored data to the final destination.
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Parameter Amount

Highway radius 2000 m

Number of APs 12

Number of mobile nodes 200

Time step 0.001 sec

simulation time 2000 sec

AP coverage radius 125 m

Speed (one direction) N
(
µ(m/s), σ2v = 5

)

Ttarget exp(λ), λ = 1/20 sec−1

Beaconing period 200*Time step

Link probe period 0.3 sec

Standard IEEE 802.11a

Table 2.2: Simulation parameters (test 1)

2.7 Performance Evaluation

In this section, we present the results from a proof-of-concept ns-3 simulation of FastMF.

These results evaluate the quality of our designed clustering algorithm and enhancement

in accessibility and reachability obtained by FastMF.

2.7.1 Simulation Setup

Our simulation contains vehicles with IEEE 802.11a wireless network interface operating

at 6Mbit/s moving along a simulated path. The coverage radius for each node is 125

meters. The simulated path is a multi-lane circular highway with 2 km radius. Due

to our link stability assessment algorithm, vehicles moving in opposite directions are

ignored. The path is partially covered with uniformly spaced 802.11a access points.

This provides intermittent connections for the vehicles as they move along the highway.

Table 2.2 summarizes the basic simulation parameters.

To model the mobility of vehicles in sections 2.7.2-2.7.4, we used the Gauss-Markov

mobility model [37]. In this model, each vehicle has a randomly selected target speed

to demonstrate moving behaviors in different environments such as traffic jam, inter-

section, and highways. The target speed changes after an exponentially distributed

random time Ttarget. The vehicle speed changes over time to converge to its target

speed. To mimic the mutual interactions between vehicles, such as overtaking, traffic

jam, and preferred paths, the distribution of target speed for neighboring nodes can
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Test Differences with test 1

2 Speed ∝ N (µ = 20m/s, σ = 5)

3 Number of mobile nodes=100

4 Speed ∝ N (µ = 15m/s, σ = 5)

5 Highway radius=1000 m

Table 2.3: Parameters modified in each test compared to test 1

be correlated. Table 2.3 points out those parameters that were modified in subsequent

tests in sections 2.7.2-2.7.4. Additional analysis of the Gauss-Markov mobility model

appears in Appendix A. For performance evaluation at scale in sections 2.7.5-2.7.7, we

deploy mobility data derived from SUMO [38].

2.7.2 Overhead

The improvement in Internet connection using FastMF is appealing as long as the

algorithm does not require exchange of a large amount of control messages. There are

two sets of control traffic involved in this algorithm. The first set consists of LP, CS,

and ACKs exchanged between nodes to form and maintain clusters (see Section 2.5.2).

Figure 2.7(a) compares the clustering overhead per node for different tests. Considering

that LP and CS messages are sent periodically, the difference in overhead between

different tests is due to the different number of ACK messages and CS message sizes

exchanged over different tests.

The second set of control traffic messages consists of periodic GNRS updates sent by

APs (see section 2.6). To provide accurate reachability information in the GNRS, APs

send the NAs for all associated (directly or indirectly) nodes. In vehicular settings, these

updates are sent more frequently than general settings. This raises concerns related to

scalability and amount of overhead required for maintaining acceptable precision in

the GNRS. The total traffic generated by AP for updating each node in the GNRS is

shown in Figure 2.7(b) for different tests. Figure 2.7(b) demonstrates that such precise

reachability information (see Figure 2.13) requires a negligible control overhead. In ad-

dition, by comparing the number of updates required for each test, we can observe that

clustering enables aggregation and summarizing of update information about vehicles

and reduces update traffic size (compare test 1 and test 3).
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Figure 2.7: Control traffic overhead for various tests (a) overhead due to clustering (b)
overhead due to GNRS update
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Figure 2.9: Cumulative distribution of the number of clusters for test 1

Cluster size has a direct impact on the size of clustering traffic overhead. Figure 2.8

illustrates the distribution of the cluster size per time unit. Approximately 97% of

the time, clusters have sizes of less than 20. This indicates that the improvement in

Internet connectivity can be achieved without a need to build large clusters. When the

density was 100 nodes, around 45% of the clusters had just 2 nodes due to sparsity.

2.7.3 Cluster Stability

In highly dynamic scenarios, we expect the structure of the cluster to be robust against

frequent topology changes. In this work, three metrics are used to evaluate the stability

of the generated clusters.

The first metric is the number of clusters in each time step. If the clustering algo-

rithm generates stable enough clusters, this number is low and remains steady during

the simulation. Figure 2.9 illustrates the cumulative distribution function of the num-

ber of clusters in each time step. Based on this plot, approximately 99% of the time,

we had at most 30 clusters for a set of 200 nodes. One of the parameters affecting the

number of clusters is the ratio of the covered area to the total highway length. As more

of the highway is covered with AP coverage, fewer clusters are generated.

The second metric is the average residency time of a node in a cluster illustrated
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Figure 2.10: CDF for the average residence time in seconds of a node in a cluster
(test 1)

in Figure 2.10 which indicates how much the decision of this node to evaluate a link

as stable and join the cluster was suitable. The median residence time was roughly

32 seconds. The reasons for having long residence time are the threshold imposed for

cluster switching (1) and having approximately fixed cluster structure in disconnected

area.

The third metric is the average cluster lifetime, which is the length of an interval

during which a cluster has at least two members. Figure 2.11 shows the cumulative

distribution for cluster lifetime. The median cluster lifetime is 45 seconds. This shows

that the generated clusters are robust enough to have long lifetimes.

2.7.4 Delay within a Cluster

One of the important quality of service metrics is the delay imposed by the network.

Two important parameters affecting the end-to-end delay in this setting are GNRS

query-response round trip time and the delay over ad hoc links. The former is approxi-

mately between 0.030 and 0.173 milliseconds [13]. Figure 2.12 depicts the CDF for the

path length (in milliseconds) of any ad hoc node (either one-hop or multi-hop) to the

nearest AP. This figure shows that the multi-hop path does not impose a huge latency

on the packet and 94% of delays are less than 10 ms.
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Figure 2.11: CDF of cluster lifetime in seconds
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Figure 2.12: CDF for the path length (either one-hop or multi-hop) to NA
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2.7.5 Connectivity Enhancement Results

Figure 2.13(a) illustrates the cumulative distribution function (CDF) of the percentage

of time that a node has Internet connection (Accessibility). By comparing scenarios

with and without multi-hop forwarding capability, the advantages of clustering and

multi-hop forwarding in improving the uplink quality and extending the session life-

times over multiple hops can be deduced. Clustering improves the opportunities for a

highly dynamic node to connect to the Internet by a factor of 2 or 3 over its obtained

connectivity with one-hop links. As illustrated in this figure, the average connectivity

increased from 25% in the one-hop scenario to 56% in the multi-hop scenario with 100

nodes and 72% in the multi-hop scenario with 200 nodes. In addition, 60% of nodes

were connected to the Internet at most 59% of simulation time in the scenario with 100

nodes and at most 74% of simulation time in the scenario with 200 nodes.

Figure 2.13(b) depicts the CDF of percentage of the time that the GNRS contains

a correct mapping for a vehicular node (reachability). Similar to Internet connection

percentage, the GNRS accuracy improves significantly by clustering.

Comparing Figures 2.13(a) and (b), we observe that the graphs for GNRS accuracy

precisely follow their Internet connectivity counterparts. In other words, approximately

as soon as a node obtains access to AP over one or multiple hops, the network attach-

ment point is registered in GNRS and the node becomes reachable. In other words,

nodes obtain seamless connectivity and reachability regardless of their connection qual-

ity or mobility dynamics. The minor difference between these graphs is because the

APs aggregate the observed updates and periodically send them to the GNRS (GNRS

update period is set to 1 second in this work).

2.7.6 Large File Download

In this section, we evaluate the performance of the designed system for a file retrieval

scenario. At the start of the experiment, the client (a randomly chosen car) issues

a fetch request for a content GUIDf , get(GUIDf ), without specifying the location of

the server. This request reaches an access point connected to the client that queries

the GNRS, receives the NA of the server with the content, and forwards the request

message. In this experiment, we assume that the content owner is a remote server
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Figure 2.13: (a) accessibility: CDF for Internet connectivity percentage comparing
one-hop scenario versus scenario with clustering (for 100 node and 200 node

experiments) (b) reachability: CDF for GNRS accuracy percentage comparing one-hop
scenario versus scenario with clustering (for 100 node and 200 node experiments)
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Figure 2.14: Aggregate throughput comparison of MF combined with clustering,
original MF, MF with controlled flooding, and TCP/IP

which is connected to the Internet through a back-end wired network. Upon receiving

the request, the server with the content initiates a flow of chunks to the client (0.5

MByte chunks every 100 milliseconds). The remote server queries the GNRS of the

current NA of the client periodically (approximately every 3 seconds). The round trip

time for GNRS query/update is between 30-170 milliseconds [13]. The nodes benefit

from having the same ID moving among different APs which results in increasing the

useful time spent in the coverage area of an AP.

Figure 2.14 shows the average accumulated received data over time by clients with

intermittent connection. The total received data for two different average speeds are

presented to evaluate the effect of mobility. In addition to our proposed protocol, we

evaluate the basic MobilityFirst without clustering. Furthermore, we compare our pro-

tocol with a more reactive multi-hop data dissemination approach (i.e., with no neighbor

information exchange), namely controlled flooding, integrated int MobilityFirst. In the

controlled flooding scenario, the client device periodically broadcasts its query, which is

rebroadcasted over all adjacent stable links. To avoid a broadcast storm, nodes do not

rebroadcast a duplicate of a query received less than 1 second after the preceding query.

When the query reaches the AP, the AP updates the GNRS about the NA of client

node and forwards the query. When the AP receives the requested chunks, the same
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rebroadcasting algorithm is used towards client. To compare the proposed protocol

with current implementation of Internet access for vehicular nodes, we also examined

the throughput of TCP/IP based Internet access over one-hop. In this scenario, the

application layer after experiencing disconnection resumes sending the rest of the file

instead of restarting.

Our current results are based on 1047 meters distance between APs, and 125 meters

coverage radius for each AP. The flat horizontal parts of the curve in Figure 2.14

correspond to no connectivity areas. Due to the adaptation of flow control mechanism

to connectivity pattern implemented in FastMF (see section 2.6.1), in the FastMF

scenario, the throughput increases in disconnected areas.

In Figure 2.14, comparing the throughput in MobilityFirst-enabled scenarios with

and without clustering, the significant improvement resulted from using clustering is

illustrated. The clustering enhances the throughput due to extension of coverage area

by cluster members, enhanced reachability, and multi-hop forwarding of cached data in

disconnected area. This improvement is achieved regardless of the average speed which

indicates the robustness of our clustering algorithm in vehicular scenarios. Furthermore,

comparing the results of scenario with clustering and scenario with controlled flooding,

we can see the effect of cluster formation and providing a data forwarding path adaptive

to node dynamics on extending the session lifetime and improving throughput. These

comparisons show that FastMF extends the routing functionality of MobilityFirst to

vehicular nodes with intermittent connections to the Internet and short-living links.

As expected, the disadvantage of TCP/IP systems results in a very low throughput

compared with other MobilityFirst-enabled experiments.

2.7.7 Interactive Web-browsing

In this scenario, at each time 10% of the clients have an interactive session with a

remote server. The clients initiate a request for a content with uniformly distributed

size between 0.5 and 5 MBytes. After the requested data is completely received, the

next request is issued after an exponentially distributed time (with mean 10 sec). These

requests occur regardless of whether the node has a connection at that time and where

the node is located.

Figure 2.15 depicts the CDF for data request completion times. Figure 2.15(a)
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Figure 2.15: CDF of data request completion times in the interactive web-browsing
scenario (a) effect of mobility parameters (in m/sec) on the performance of our

clustering protocol (b) comparison of MF combined with clustering, original MF, and
MF with controlled flooding with average speed of 15 (m/sec)

evaluates the effect of mobility parameters such as average speed (in m/sec) and speed

variance on the performance of our clustering protocol. An interesting observation is

that approximately 56% of requests are completed in 22 seconds regardless of mobility

parameters. This proves the robustness of FastMF with respect to node mobility.

Figure 2.15(b) illustrates the significant reduction in interactive web-browsing delay

when using clustering. If no multi-hop forwarding is applied, the mean and standard

deviation of data request completion time is 30.76 and 20.78 sec respectively, while

controlled flooding results in 39.4578 and 45.37 sec respectively and FastMF clustering

results in 14.47 and 16.70 sec respectively. Furthermore, near 60% of requests are

completed in 10 seconds using FastMF whereas other scenarios require 40 seconds.

FastMF shows significant improvement due to extension of connection time obtained

by clustering (see Figure 2.13), modifications to MobilityFirst, caching, and adaptive

flow control.
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2.8 Conclusion

In this chapter, we designed and evaluated algorithms for improving the network con-

nectivity of vehicular nodes based on named object architectures such as MobilityFirst.

Through simulating a highly disconnected scenario, we showed a significant improve-

ment in in-vehicle Internet access, data throughput for large file download, and data

request completion time for interactive web-browsing in the presence of traffic from

other nodes. This improvement was achieved due to clustering, multi-hop forwarding,

delay tolerant and storage-capable routing, indirect association to Internet gateways,

and in-network mobility management. We enable nodes with short-living links and

intermittent Internet access to perform routing functionalities of MobilityFirst. Thus,

the MobilityFirst services were extended over multiple hops.
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Chapter 3

Cloud Gaming

3.1 Introduction

Cloud computing systems have facilitated offering gaming services through thin devices

regardless of the location of the clients. The cloud gaming architecture, shown in

Figure 3.1, consists of the following stages [18]:

The user inserts its commands through the keyboard or touch screen of a mobile

terminal. These commands are recorded by input manager and transformed into packets

by input encoder in the client device. The gameplay commands are then submitted to

the game server over the Internet.

In the game server, the user input processing unit buffers the received gameplay

commands. During each scheduled server access event, the simulation of the game is re-

sumed for a fraction, one, or multiple inter-frame intervals. The buffered inputs/actions

of the players and the inputs of the artificial intelligence of the game (aka the game

AI) induce changes in the game state. The game state evolves continuously at the

game server but the updates in game status are recorded at a certain tick rate. The

game server generates responses in the form of instructions for the frame renderer to

construct game frames. We refer to these instructions as updates since they update

the renderer (and ultimately the player) on the status of the game. The game status

updates may contain far fewer bytes than the images that they describe.

Graphic rendering unit translates game server updates to video frames (i.e., images

to be displayed on the screen of the mobile client) and frame encoding unit compresses

the output frames and sends the results back to the user device. A display buffer at

the mobile client maintains buffered frames and sends them to display unit at a fixed

rate. A player observes the game via a full-motion video at a fixed nominal frame rate.

Each video frame displayed at the mobile client represents a sample of the game status
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Figure 3.1: Cloud Gaming System Architecture

as provided to the player.

Our choice of transport layer for cloud gaming is UDP since state synchronization

among endpoints through acks in TCP generates redundancy. Furthermore, the high

throughput demand and stringent delay constraint in gaming is not compatible with

packet retransmission and congestion control mechanisms in TCP. In streaming systems

with UDP, packet loss creates “jump effect” since user actions may not get registered

or game status updates may not arrive at the user device at a proper time.

One prominent factor in designing cloud gaming system architecture is the game

genre. Games can be classified based on the type of offered user involvement [39]. First

Person Avatar games (e.g., car racing games or first person shooter such as Half-Life,

Counter-Strike, the Quake series, the Unreal Tournament series, and etc.) corresponds

to the class of games in which the player views the game world from the viewpoint of

his/her own avatar. These games are the most demanding in terms of responsiveness

and [39] recommends latencies lower than 100 milliseconds. In Third Person Avatar

games, the player sees the world from outside the body of his/her own avatar. These

games have intermediate latency requirements (lower than 500 milliseconds) [39]. In

Omnipresent (Real Time Strategy (RTS)) games, the player controls multiple elements

in a large world. These games have more relaxed latency requirements (up to 1000 mil-

liseconds). A summary of game genres is presented in table 3.1.
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Game genre Description

First Person Avatar Player sees the world as his/her avatar
(e.g., car racing or first person shooter games)

Third Person Avatar Player sees the world from outside his/her avatar

MMORPG Collaborative game among many people

Omnipresent (Real Time Strategy) A strategic style of game playing
involving planning and resource management

Table 3.1: Classifications of games

3.2 Problem Statement

The functionality enhancement presented by using cloud resources comes with the price

of additional induced delay and constraint on data transmission. These limitations

deteriorate the user experience. A key factor in success of cloud gaming systems is

maintaining the viewer experience at the level of console games. Imperfections in the

sequence of displayed frames will result in deviation of the display from a smooth

presentation through reduced frame rates, frame freezings, and frame droppings. In

the event of frame freezing, a frame is displayed for more than one frame interval.

When a cloud gaming system has limited resources such as bandwidth, the displayed

frame process will deviate from optimality. The resulting temporal artifacts create

flickering (blinking), motion jerkiness, jittering, and reduce responsiveness [40].

In display flickering, adjacent frames at the same spatial location have different

quality. In display jerkiness, changes in the frame rate results in a regular pattern in

frames drops and movement of characters appear like a sequence of distinct snapshots.

In display jitter, latency variance results in irregular and abrupt frame drops. The

human eye can adapt to frame drops since the observed frames still have correlation

and their content can be interpolated. In interactive applications such as gaming, lack

of responsiveness results in inconsistency in the game status (e.g., a dead character

starts shooting) which has an even worse impact on the gaming experience for players.

The impact of timing impairments (e.g., start-up latency, rebufferings, jitter, stutter,

and bitrate changes) on QoE in video streaming systems has been studied before [41].

Rebuffering (pausing and resuming) is the most frustrating experience for video audi-

ence [41]. [42] investigated the QoE degradation due to frame rate reduction. They

showed that having a long freeze is less disturbing to the viewers than a set of recurring
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short stalling events. Furthermore, they concluded that as long as the system is expe-

riencing temporal distortions (e.g. jitter), increasing bit rate and image quality does

not improve QoE. Solutions focused on smart frame dropping and frame interpolation

algorithms have been developed [40] for video streaming systems.

Considerable work has been accomplished to evaluate and improve the quality of

bandwidth-efficient video streaming from cloud servers to user devices (e.g., Netflix,

Hulu and YouTube); see, for example, [41,43]. To reduce the effect of network congestion

and server limitations, large playback buffers and adaptive bitrate (ABR) streaming

techniques are employed by popular video streaming systems such as Apples HTTP

Live Streaming (HLS), Microsofts Smooth Streaming(SS), Adobes HTTP Dynamic

Streaming, and Dynamic Adaptive Streaming over HTTP (DASH). In ABR streaming,

the bandwidth depends on network conditions, number of packets in the buffer, screen

resolution, and display refresh frequency.

In low-latency gaming, however, a large video buffer is a non-starter. For a 30

fps system, three buffered frames contribute 100 milliseconds delay. This latency con-

straint also precludes complex video compression methods [44] that code over multiple

correlated frames. When image compression is restricted to individual frames, dynamic

adjustment of the frame resolution based on client feedback could still be employed

to facilitate smooth display. Practical techniques however use playback buffer backlog

variations to signal rate changes [41] and thus are unsuitable for low-latency gaming.

Furthermore, network-layer QoS metrics such as packet throughput and delay do not

precisely capture the viewer experience [17,18]. Packet delay may only loosely correlate

with the timely delivery of a frame and it generally fails to describe the likelihood of

missing and frozen frames. Inadequacy of these metrics in case of multi-player gaming

where in addition to responsiveness, multiple clients must be working collaboratively,

is even more clear.

In this work, we present a quantified representation of the user-perceived QoE of the

cloud gaming system based on novel client-side measurements [45]. The users observe

the games through a fixed frame rate video. A user’s QoE is degraded when there

are imperfections in the sequence of displayed frames. In here, we try to tackle QoE

evaluation by direct examination of the missing frame process. Our proposed metric,

is in terms of stream quality, and reflects the effects of network and processing delay



50

variability on a game’s responsiveness. In contrast to video streaming systems, the

value of each frame in gaming systems depends on the freshness of its contents and this

value reduces over time.

As the main performance objective of a cloud gaming system is the “timely” up-

date of players regarding the game status, we follow the concept of age of information

introduced in [25] (see section 3.4.2) to characterize the system performance. Age of

information approach measures system performance in terms of the average freshness

of status updates. [46] used the age of information to optimize the status message gen-

eration process. Assuming that the game frames are status updates that are generated

by game server, these packets form a queue and may wait for medium access, possi-

bly retransmissions due to channel errors, backoff due to the activity of other wireless

transmitters, and screen refresh instants until they can be displayed. In this system

our design is not solely focused on minimizing bandwidth consumption or the delay

in receiving frames. If the update rate is too low, the player will experience unnec-

essarily outdated status updates and lack of smoothness. On the other hand, If the

update/frame rate increases beyond to enhance the smooth experience perceived by

end users, the player will observe stream of stale and significantly lagged data and will

be even more frustrated. Timely updating is not completely the same as minimizing

the system delay or network traffic [46,47].

In online gaming, a variety of predictive rendering techniques have been devel-

oped [48, 49] which enhances user-perceived timeliness at the expense of consistency,

a measure of how accurately a video frame describes the true game state. In most

of the proposed solutions, they still struggle with respect to response time minimiza-

tion, graphical video encoding, network aware adaption, quality of experience (QoE)

optimization, and cloud resource management. By contrast, we attempt to separate

issues related to the depiction of the game state from the timeliness of the game state

information at the client. Our approach is based on timeliness of the state information

at the mobile client, rather than how that state is depicted for the client. While a game

status update generated by the game server at time t is a snapshot of the game state

at time t, networking and rendering delays imply that updates will be old by the time

it is displayed at the mobile client. In particular we will use status age to measure how

the game status, as displayed on the player’s screen, lags the true game state.
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In the most general setting, the mobile client, the game server, and the frame

renderer are each entities connected by networks. In mobile gaming, the connection

from the mobile client to the game server will include a wireless access link. In a

conventional gaming system, the frame renderer is integrated in a relatively powerful

client. In this case, the game server sends status updates across the wireless link to the

mobile client. In our thin-client mobile setting, we consider two scenarios:

• The frame renderer may be integrated with the game server so that forwarded

frames from the game server to the renderer takes negligible time. In this case,

image frames are transmitted over the wireless link to the mobile client.

• The frame renderer may be a separate entity in the network. For example, the

renderer may be located in an edge cloud server that renders image frames for

many mobiles in the same local area [20].

3.3 System Model

Each of the network entities as well as the network interfaces may degrade the game

performance. If the access network is slow, a player’s actions will suffer queueing delay

in the network. As the game server is likely to be processing game updates for multiple

mobiles, possibly in multiple games, there may be queueing of actions at the game

engine. Game updates, which may process multiple queued actions in a single frame,

can have varying execution times as the task complexity can fluctuate. Randomness in

game updates, in combination with randomness in the network can result in queueing of

updates at the output of the game server. Randomness in the execution time required

to render a frame can also result in both queueing at the input to the renderer and

queueing of frames at the output of the frame renderer.

To analyze this complex situation, we propose to decompose the system. The “ac-

tions” submitted by the mobile are short instructions, possibly just a few bytes each in

length. Furthermore the offered rate of these actions will be low; human responses at a

rate of more than 100 actions per second are unlikely [50]. Thus, the traffic generated

by the user actions will be small, on the order of 10 kb/s [17], relative to the data rates

sustainable on even a moderate-rate access network. Thus in a well designed system,

the delays in delivering these actions to the action queue at the game server should
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be negligible, relative to either the delays in human response or the downlink delay of

transmitted frames. The default setting for the game server is to process all queued

actions for the player simultaneously.

Processing of the video frame requires a random service time that depends on the

complexity of both the ongoing gameplay and the queued actions. The output of the

game engine is a video frame or a set of instructions for rendering a video frame. We

focus on the timely rendering of game server updates at the mobile display. Specifically,

we assume updates are produced at a fixed frame rate f such that the mobile client

displays a frame every T = 1/f seconds. Specifically, for k = 1, 2, . . ., the game server

instantiates game status update k at time kT . That is, update k is the game server’s

authoritative update of the game state at time kT . We note that the game server may

simulate the game evolution at a tick rate that is a multiple of f , but updates are

generated only at the frame rate f .

In terms of the game state at the game server, user actions that arrive for processing

in the interval [(k − 1)T, kT ) are said to occur in that time interval. That is, latency

in the user responses is assumed by the game server to be the latency of the user,

rather than latency of the network in delivering those user actions. Under this model,

consistency of the game state at the game server is maintained in that all actions that

occur prior to time kT are incorporated in update k. That is, if the scheduler decides

to generate a game update at time t, all actions in the queue at time are passed to the

game update engine. Included in this set of actions is the virtual action of the game AI.

If the action queue is empty, then only the virtual action of the game AI is processed.

The mobile client employs a time lag τ such that it schedules the display of frame

k at time Tk = kT + τ . In the interval (kT, kT + τ),

• the game server incorporates user inputs and game AI to produce update k;

• update k is sent, possibly through a network, to the frame renderer;

• the frame renderer generates the video frame k;

• frame k is sent to the mobile for display at time Tk.

If frame k is not ready to be displayed at time Tk, then the most recently received frame

is displayed instead.
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The mobile client can optimize the lag τ , subject to the limitations of its access

network and frame renderer. We will see that the selection of the lag parameter τ

can have a substantial effect on system age. In the context of a low-latency game,

every frame matters, and the precise selection of the lag τ represents a tight (though

intentionally lagging) synchronization of the game server and the mobile client.

In general, the game server sends game status updates via a network to the frame

renderer. It is difficult to analyze this without making strong assumptions regarding

both the network and the update delivery protocol. In prior status updating work,

the disadvantages of queueing status updates have been noted in a variety of contexts

[25,51]. Specifically, status age suffers if a service facility is processing old updates when

newer updates are in the system. That is, the delivery of a newer update offers a larger

reduction in status age and also obviates the need for discarding the older update. In

short, the objective of the system is to display the most recently generated frame by

avoiding the processing and queueing of old updates and frames at the expense of newer

updates and frames.

To facilitate this goal, we adopt a form of preemptive stop-and-wait protocol for

the forwarding of updates from the game server to the renderer. We describe this as

an application-layer protocol, although its logic could be implemented at the transport

layer. Specifically, the game server initiates the creation of update k at time kT . Each

update may consist of multiple packets and contains the information to create one

frame. After processing, the game server pushes update k to an output buffer that

holds only the most recently generated update. If update k − 1 is still in the output

buffer at that time, it is preempted (i.e., discarded and replaced) by update k. The

game server then attempts to send update k to the renderer. Update k remains in the

game server output buffer until either a delivery acknowledgement is received from the

renderer or it is preempted by update k+ 1. Note that no queueing occurs at the game

server output buffer; only the most recently generated update is held in the buffer.

The logic of this preemptive service is assumed to be employed throughout the

system. At the input to the frame renderer, update k is preempted if update k + 1

arrives before update k is processed. At the network interface queue at the output of

the frame renderer, frame k may be preempted by frame k+ 1. Ideally, frame k will be

delivered to the mobile client in time for display at time Tk. Note, however, the frame



54

may still be useful to display even if it is received late. Specifically, the late arriving

frame k will be displayed at time Tk+1 if frame k+1 fails to be delivered on time. Thus,

the system’s effort to generate frame k may continue until time Tk+1.

3.4 The Update Age: An Analytic Model

To build a tractable analytic model, we assume that the time required for processing

and sending update k plus rendering and sending frame k are described by a random

variable Yk that we refer to as the update service time. For the purpose of an analytic

model, we further assume that the update service times Y1, Y2, . . . are independent and

identically distributed (iid) sequence. In our system model, the role of Yk in the display

of frames is codified in these rules:

• At time Tk, the mobile displays its most recently buffered frame.

• If Yk ≤ τ , then frame k will be displayed at time Tk.

• If τ < Yk ≤ T + τ , then frame k will be received by the mobile at time kT + Yk.

It will be displayed at time Tk+1 unless it has been preempted by frame k + 1.

The idea behind this model is that until time Tk, the system makes its best effort to

deliver and display frame k. However, starting at time (k+1)T , the system components

give priority to the delivery of update/frame k + 1. In particular, the renderer may

choose to terminate update k, either in rendering or in transmission, if its timely delivery

to the mobile frame buffer appears to be unlikely.

This model is idealized in certain ways. First, if update/frame k is in transit in the

network, protocol layering may preclude its immediate termination. If frame k is still

in transit to the mobile client at time (k+1)T , it could ultimately be delivered and dis-

played at time Tk+1. Second, we note that backlogs in the network will generally result

in dependencies among the delivery times Yk. However, because the sending protocol

has been designed to preclude the queueing of outdated frames, these dependencies will

be chiefly the result of memory induced by network backlogs. In this case, even a high

frame rate like 60 fps yields a new frame every 16 milliseconds, which, in the context of

modern networks, may be sufficient to decorrelate the network response to successive

packets.
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Even with this simplified system model, basic tradeoffs between system configura-

tions are not well understood. Where should the frame renderer be located? What

frame rate optimizes the user experience? How should the lag τ be chosen? Here we

analyze a status age metric to address these questions.

3.4.1 Notation

For random variable X, we denote the probability mass function (PMF) of X by

PX(x) = P[X = x], the cumulative distribution function (CDF) by FX(x) = P[X ≤ x]

and the complementary CDF by FX(X) = 1− FX(x).

3.4.2 Status Update Age Analysis

As described earlier, the age of information is a metric that evaluates the freshness of

information observed by the client. It computes the time elapsed since the last instant

that the client has received information from the server. The characteristics of age as

a metric is different from throughput and delay. In a wireless network, by maximizing

the frame rate, the throughput is maximized but since the update packets will form

larger queues and induce extra delay, the client views stale information and the age

increases. On the other hand, a very low frame rate reduces the waiting times in the

queue but the client views stale information and the age increases. This trade-off shows

the importance of devising a policy to optimize the waiting times in the queues.

Frame k represents the game status at its generation time kT . We characterize

system performance by the status age process ∆(t). That is, if at time t the current

displayed frame is k with timestamp kT , then the status age is ∆(t) = t− kT . In the

absence of a new frame being displayed, the status age ∆(t) grows with time. If frame

k with timestamp kT is displayed at time Tk = kT + τ , then ∆(Tk) = Tk − kT = τ

since frame k represents the game state τ seconds ago. The “age penalty function” [52]

corresponds to the amount of dissatisfaction with respect to the data staleness.

Thus, the age process ∆(t) is given by the sawtooth function shown in Figure 3.2.

Specifically, the age grows linearly at unit rate in the absence of a new frame while at

time instance Tn, the age drops if a more recent frame is displayed. We now derive

the time-average status update age ∆(t) using a graphical argument. Without loss of
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Fig. 2: Example change in status update age �(t) (the upper
envelope in bold) at the mobile client display. In this example, frames
1 and 2 are displayed on time, but frame n is lost. At time Tn+1,
frame n + 1 is displayed on time, which resets the age to ⌧ .

should the frame renderer be located? What frame rate opti-
mizes the user experience? How should the lag ⌧ be chosen?
Here we analyze a status age metric to address these questions.

A. Notation

For random variable X , we denote the probability mass
function (PMF) of X by PX(x) = P[X = x], the cumulative
distribution function (CDF) by FX(x) = P[X  x] and the
complementary CDF by FX(X) = 1� FX(x).

B. Status Update Age Analysis

Frame k represents the game status at its generation time
kT . We characterize system performance by the status age
process �(t). That is, if at time t the current displayed frame
is k with timestamp kT , then the status age is �(t) = t�kT .
In the absence of a new frame being displayed, the status
age �(t) grows with time. If frame k with timestamp kT is
displayed at time Tk = kT + ⌧ , then �(Tk) = Tk � kT = ⌧
since frame k represents the game state ⌧ seconds ago.

Thus, the age process �(t) is given by the sawtooth function
shown in Figure 2. Specifically, the age grows linearly at unit
rate in the absence of a new frame while at time instance
Tn, the age drops if a more recent frame is displayed. We
now derive the time-average status update age �(t) using a
graphical argument. Without loss of generality, assume that
we begin observing at t = 0 when frame k = 0 is displayed,
so that �(0) = ⌧ .

The time-average age of the status updates is the area under
the age graph in Figure 2 normalized by the time interval
of observation. For simplicity of exposition, the observation
interval is chosen to be (⌧, KT + ⌧). Over this K-frame
interval, the average age is

�(K) =
1

KT

Z KT+⌧

⌧

�(t) dt. (1)

We decompose the area defined by the integral (1) into a sum
of disjoint polygonal areas Q0, Q1, . . . , QK�1 (with Q1 and
Qn highlighted in the figure.) This decomposition yields the
average age over K frames

�(K) =
1

KT

K�1X

k=0

Qk. (2)

The area Qk depends on the delivery of frames to the mobile
display. At time Tk, let Xk denote the number of prior frames
that have gone missing. That is, if frame k is displayed at time
Tk, then no frames are missing and Xk = 0. If frames k and
k � 1 are missing, and frame k � 2 is displayed at time Tk,
then Xk = 2. From Figure 2, we see that each Qk includes
a right triangle of base and height T atop a base rectangle of
width T and height ⌧ . In addition, each missing frame at time
k contributes a square of area T 2. This implies

Qk = T 2/2 + ⌧T + XkT 2. (3)

It follows from (2) that

�(K) = T

"
1

2
+

⌧

T
+

1

K

K�1X

k=0

Xk

#
. (4)

The time-average age is limK!1 �K and one would expect
the normalized sum in (4) to converge to an average value of
Xk. However, the missing frame process Xk has memory and
modeling Xk is the key to characterizing the average age.

We first observe that Xk = 0 if Yk  ⌧ . Similarly, Xk = 1
if Yk > ⌧ but Yk�1  T + ⌧ . In principle, this process
could continue indefinitely; that is, frame k � i could be
displayed at time Tk as long as Yk�i  iT + ⌧ . In practice,
however, delayed frames will be preempted. In order to model
preemption, we assume that frame k will be preempted (i.e.
discarded by the system) if Yk > (B�1)T + ⌧ , where B > 1
is a backlog parameter. This constraint ensures that no more
than B updates are kept in the system. Under this assumption,
frame k may be displayed at times Tk, Tk+1, . . . , Tk+B�1,
but if it fails to be displayed by Tk+B�1 then it will never be
displayed. This implies

Xk = min

⇢
i � 0

����
Yk�i  iT + ⌧,
Yk�i  (B � 1)T + ⌧.

�
(5)

We note in (5) that the first condition ensures that frame k� i
is delivered by time Tk and the second condition enforces the
buffering limit.

C. Missing Updates Markov Chain Analysis

Given that buffering outdated updates is generally a bad
idea, we now present a Markov chain analysis of Xk process
when B = 2. When B = 2, (5) simplifies to

Xk = min{i � 0|Yk�i  min(1, i)T + ⌧}. (6)

This implies

P[Xk = 0] = P[Yk  ⌧ ] (7)
and for j � 1,

P[Xk = j] = P[Yk�j  T + ⌧, Yk�j+1 > T + ⌧,

. . . , Yk�1 > T + ⌧, Yk > ⌧ ]. (8)

With the assumption that the Yk are iid, (7) and (8) imply that
Xk has PMF

PXk
(j) =

(
FY (⌧) j = 0,

FY (T + ⌧)FY (T + ⌧)
j�1

FY (⌧) j � 1.
(9)

Figure 3.2: Example change in status update age ∆(t) (the upper envelope in bold) at the
mobile client display. In this example, frames 1 and 2 are displayed on time, but frame n is

lost. At time Tn+1, frame n+ 1 is displayed on time, which resets the age to τ .

Figure 3.3: Age of client’s information when frame rate is too high

generality, assume that we begin observing at t = 0 when frame k = 0 is displayed, so

that ∆(0) = τ . Figure 3.3 corresponds to a scenario where the frame rate is too high.

The large number of updates intensifies the congestion in the channel and as a result,

the value that each frame brings will reduce.

The time-average age of the status updates is the area under the age graph in

Figure 3.2 normalized by the time interval of observation. For simplicity of exposition,

the observation interval is chosen to be (τ,KT + τ). Over this K-frame interval, the

average age is

∆(K) =
1

KT

∫ KT+τ

τ
∆(t) dt. (3.1)

We decompose the area defined by the integral (3.1) into a sum of disjoint polygonal
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areas Q0, Q1, . . . , QK−1 (with Q1 and Qn highlighted in Figure 3.2.) This decomposition

yields the average age over K frames

∆(K) =
1

KT

K−1∑

k=0

Qk. (3.2)

The area Qk depends on the delivery of frames to the mobile display. At time Tk,

let Xk denote the number of prior frames that have gone missing. That is, if frame k

is displayed at time Tk, then no frames are missing and Xk = 0. If frames k and k − 1

are missing, and frame k− 2 is displayed at time Tk, then Xk = 2. From Figure 3.2, we

see that each Qk includes a right triangle of base and height T atop a base rectangle of

width T and height τ . In addition, each missing frame at time k contributes a square

of area T 2. This implies

Qk = T 2/2 + τT +XkT
2. (3.3)

It follows from (3.2) that

∆(K) = T

[
1

2
+
τ

T
+

1

K

K−1∑

k=0

Xk

]
. (3.4)

The time-average age is limK→∞∆K and one would expect the normalized sum in

(3.4) to converge to an average value of Xk. However, the missing frame process Xk

has memory and modeling Xk is the key to characterizing the average age.

We first observe that Xk = 0 if Yk ≤ τ . Similarly, Xk = 1 if Yk > τ but Yk−1 ≤ T+τ .

In principle, this process could continue indefinitely; that is, frame k − i could be

displayed at time Tk as long as Yk−i ≤ iT + τ . In practice, however, delayed frames will

be preempted. In order to model preemption, we assume that frame k will be preempted

(i.e. discarded by the system) if Yk > (B−1)T+τ , where B > 1 is a backlog parameter.

This constraint ensures that no more than B updates are kept in the system. Under

this assumption, frame k may be displayed at times Tk, Tk+1, . . . , Tk+B−1, but if it fails

to be displayed by Tk+B−1 then it will never be displayed. This implies

Xk = min



i ≥ 0

∣∣∣∣∣∣
Yk−i ≤ iT + τ,

Yk−i ≤ (B − 1)T + τ.



 (3.5)
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We note in (3.5) that the first condition ensures that frame k − i is delivered by time

Tk and the second condition enforces the buffering limit.

3.4.3 Missing Updates Markov Chain Analysis

Given that buffering outdated updates is generally a bad idea, we now present a Markov

chain analysis of Xk process when B = 2. When B = 2, (3.5) simplifies to

Xk = min{i ≥ 0|Yk−i ≤ min(1, i)T + τ}. (3.6)

This implies

P[Xk = 0] = P[Yk ≤ τ ] (3.7)

and for j ≥ 1,

P[Xk = j] = P[Yk−j ≤ T + τ, Yk−j+1 > T + τ,

. . . , Yk−1 > T + τ, Yk > τ ]. (3.8)

With the assumption that the Yk are iid, (3.7) and (3.8) imply that Xk has PMF

PXk(j) =




FY (τ) j = 0,

FY (T + τ)F Y (T + τ)j−1F Y (τ) j ≥ 1.

(3.9)

While (3.9) captures the marginal PMF of Xk, it does not fully reveal the Markov

structure of the Xk process. In Appendix B, we show that Xk is described by the

Markov chain shown in Figure 3.4 with transition probabilities

p0 = P[Xk = 0|Xk−1 = j] = FY (τ), (3.10)

and for j ≥ 1,

p1 = P[Xk = 1|Xk−1 = j] = FY (T + τ)− FY (τ), (3.11)

q = P[Xk = j + 1|Xk−1 = j] = F Y (T + τ). (3.12)

The Markov chain is ergodic as long as FY (T + τ) > 0. The stationary probabilities
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πj = lim
k→∞

P[Xk = j] (3.13)

satisfy

π0 =
∞∑

i=0

πiFY (τ) = FY (τ), (3.14)

π1 = F Y (τ)π0 +
∞∑

i=1

πi[FY (T + τ)− FY (τ)]

= π0 + (1− π0)FY (T + τ)− FY (τ)

= F Y (τ)FY (T + τ), (3.15)

and for j ≥ 1,

πj = F Y (T + τ)j−1π1

= F Y (τ)FY (T + τ)F Y (T + τ)j−1. (3.16)

As we would expect, (3.16) is consistent with the PMF of Xk given in (3.9). Ergodicity

of the Markov chain implies that

lim
K→∞

1

K

K−1∑

k=0

E[Xk] =

∞∑

j=1

jπj =
F Y (τ)

FY (T + τ)
. (3.17)

The next claim then follows from (3.4) as K →∞.

Theorem 3.4.1. The average age of the system with frame period T , lag τ , 0 ≤ τ < T ,

and backlog limit B = 2 is

∆2(T, τ) = T

[
1

2
+
τ

T
+

F Y (τ)

FY (T + τ)

]
.

Theorem 3.4.1 provides a simple characterization of the average in terms of the

distribution of update delivery times. When the system is designed cautiously, F Y (τ) ≈
0 and virtually all updates are delivered on time. In this case, Theorem 3.4.1 says

∆2(T, τ) ≈ T/2 + τ where ∆2(T, τ) measures how out-of-date the current video frame

is when frames are delivered on time. We see that both the frame lag τ and the period

T contribute. Specifically T/2 is the average age between periodic updates; when the
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frame rate is low, the period T will be large. The frame lag τ is the response time of

the system once a user action is incorporated in a game server update. The age metric

incorporates both the lag in response time and the latency associated with periodic

framing.

Despite the approximations made by the analytic model, we will see that it provides

a surprisingly accurate calculation of the status age in a low-latency edge-cloud gaming

system. For fixed T , we will see that Theorem 3.4.1 captures the complex way that the

age varies with the lag τ . Nevertheless, Theorem 3.4.1 should be used carefully. Specif-

ically, as the frame period T shrinks, the rate of updates/frames grows and queueing

will cause the frame delivery time Y to increase.

3.4.4 Lag Periodicity of the Age

Theorem 3.4.1 describes the average age ∆2(T, τ) for 0 ≤ τ < T . One may wonder what

benefit may be obtained by a lag τ ≥ T . To examine this, it is sufficient to consider lag

τ = jT + τ0 with 0 ≤ τ0 < T . Here we refer to τ0 as the local lag and j as the frame

lag. At the mobile client, the display rule is that the most recently received frame is

displayed at time kT + τ . Thus, when τ = jT + τ0, the most recently received frame at

time (k+ j)T + τ0 is displayed. However, as k and k+ j are arbitrary frame indices, we

see the display rule depends only τ0. That is, in the context of (3.5), the display rule

at time Tk is to display the most recent frame k − i such that Yk−i ≤ iT + τ0. What

changes, however, is that the frame lag j enables additional frames to be displayed

rather than discarded. Specifically, the second condition in (3.5) requires

Yk−i ≤ (B − 1)T + τ = (B + j − 1)T + τ0. (3.18)

To summarize, when τ = jT + τ0, the Xk process is given by

Xk = min



i ≥ 0

∣∣∣∣∣∣
Yk−i ≤ iT + τ0,

Yk−i ≤ (B + j − 1)T + τ0.



 (3.19)
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While (9) captures the marginal PMF of Xk, it does not fully
reveal the Markov structure of the Xk process. In Appendix A,
we show that Xk is described by the Markov chain shown in
Figure 3 with transition probabilities

p0 = P[Xk = 0|Xk�1 = j] = FY (⌧), (10)
and for j � 1,

p1 = P[Xk = 1|Xk�1 = j] = FY (T + ⌧)� FY (⌧), (11)

q = P[Xk = j + 1|Xk�1 = j] = FY (T + ⌧). (12)

The Markov chain is ergodic as long as FY (T + ⌧) > 0.
The stationary probabilities

⇡j = lim
k!1

P[Xk = j] (13)

satisfy

⇡0 =
1X

i=0

⇡iFY (⌧) = FY (⌧), (14)

⇡1 = FY (⌧)⇡0 +
1X

i=1

⇡i[FY (T + ⌧)� FY (⌧)]

= ⇡0 + (1� ⇡0)FY (T + ⌧)� FY (⌧)

= FY (⌧)FY (T + ⌧), (15)
and for j � 1,

⇡j = FY (T + ⌧)
j�1

⇡1

= FY (⌧)FY (T + ⌧)FY (T + ⌧)
j�1

. (16)

As we would expect, (16) is consistent with the PMF of Xk

given in (9). Ergodicity of the Markov chain implies that

lim
K!1

1

K

K�1X

k=0

E[Xk] =
1X

j=1

j⇡j =
FY (⌧)

FY (T + ⌧)
. (17)

The next claim then follows from (4) as K !1.

Theorem 1. The average age of the system with frame period
T , lag ⌧ , 0  ⌧ < T , and backlog limit B = 2 is

�2(T, ⌧) = T


1

2
+

⌧

T
+

FY (⌧)

FY (T + ⌧)

�
.

Theorem 1 provides a simple characterization of the average
in terms of the distribution of update delivery times. When
the system is designed cautiously, FY (⌧) ⇡ 0 and virtually
all updates are delivered on time. In this case, Theorem 1
says �2(T, ⌧) ⇡ T/2+ ⌧ where �2(T, ⌧) measures how out-
of-date the current video frame is when frames are delivered
on time. We see that both the frame lag ⌧ and the period
T contribute. Specifically T/2 is the average age between
periodic updates; when the frame rate is low, the period T
will be large. The frame lag ⌧ is the response time of the
system once a user action is incorporated in a game server
update. The age metric incorporates both the lag in response
time and the latency associated with periodic framing.

Despite the approximations made by the analytic model, we
will see that it provides a surprisingly accurate calculation of
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Fig. 3: The discrete-time Markov chain Xk.

the status age in a low-latency edge-cloud gaming system. For
fixed T , we will see that Theorem 1 captures the complex way
that the age varies with the lag ⌧ . Nevertheless, Theorem 1
should be used carefully. Specifically, as the frame period T
shrinks, the rate of updates/frames grows and queueing will
cause the frame delivery time Y to increase.

D. Lag Periodicity of the Age

Theorem 1 describes the average age �2(T, ⌧) for 0 
⌧ < T . One may wonder what benefit may be obtained by
a lag ⌧ � T . To examine this, it is sufficient to consider lag
⌧ = jT + ⌧0 with 0  ⌧0 < T . Here we refer to ⌧0 as
the local lag and j as the frame lag. At the mobile client,
the display rule is that the most recently received frame is
displayed at time kT + ⌧ . Thus, when ⌧ = jT + ⌧0, the most
recently received frame at time (k + j)T + ⌧0 is displayed.
However, as k and k + j are arbitrary frame indices, we see
the display rule depends only ⌧0. That is, in the context of (5),
the display rule at time Tk is to display the most recent frame
k � i such that Yk�i  iT + ⌧0. What changes, however, is
that the frame lag j enables additional frames to be displayed
rather than discarded. Specifically, the second condition in (5)
requires

Yk�i  (B � 1)T + ⌧ = (B + j � 1)T + ⌧0. (18)

To summarize, when ⌧ = jT + ⌧0, the Xk process is given by

Xk = min

⇢
i � 0

����
Yk�i  iT + ⌧0,
Yk�i  (B + j � 1)T + ⌧0.

�
(19)

Comparing (19) and (5), we see that buffering limit B and
lag ⌧ = jT + ⌧0 is identical to buffering limit B + j and lag
⌧ = ⌧0. It then follows that

�B(T, jT + ⌧0) = �B+j(T, ⌧0). (20)

Figure 3.4: The discrete-time Markov chain Xk.
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Figure 3.5: Time instance ti corresponds to instances where server initializes game
status updating

Comparing (3.19) and (3.5), we see that buffering limit B and lag τ = jT + τ0 is

identical to buffering limit B + j and lag τ = τ0. It then follows that

∆B(T, jT + τ0) = ∆B+j(T, τ0). (3.20)

When the system is well designed, FY (BT + τ) = 1 − ε and almost all updates are

delivered on time. In this case, the buffering limit B has almost no impact on system

performance in that ∆B+j(T, τ0) ≈ ∆B(T, τ0). In such practical cases, the age is a

periodic function of the lag τ . Henceforth we consider lags only in the interval (0, T ).

3.5 Timely Cloud Gaming Protocol Description

Based on the age of information metric introduced earlier, we developed a novel trans-

mission scheduling protocol for improving responsiveness in cloud gaming streaming.

Our protocol improves streaming quality and system responsiveness adapted to channel

conditions. The adaptation indicates protocol’s capability in proactively sensing lag-

inducing events and dynamically adjusting the traffic load. In exchange, we are willing

to introduce ideally sufficiently minor and isolated frame drops as long as the impact of

these drops stays below the level of sensitivity of human eye and can be mitigated by

the interpolation capability of human cognitive system. This protocol eliminates the ag-

gregation of system-induced lags over multiple frames, avoids noticeable stalling events,

and conserves the bandwidth for more fresh frames. This solution can be implemented

in the application layer when transport layer is UDP.
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Figure 3.6: Time instance t′i corresponds to instances where game status updating
packets are generated

• Upon start of each scheduled server access event at times ti illustrated in Fig-

ure 3.5, the simulation of the game is resumed and the time in the game world

progresses for an inter-frame interval.

• Depending on the complexity of events occurred during game status updating

interval and number of characters involved in each scene, a random processing

time passes before game status updates are generated at t′i in Figure 3.6.

• Based on the complexity of the frame, encoding complexity and available resources

in the frame renderer, the compressed frames will be generated at random instants

indicated by t′′i in Figure 3.7.

• The frames are streamed over the Internet, arrive at the client device and are

decoded. ti + yi instances in Figure 3.8 correspond to the moments when the

frames are ready to be displayed. It is important to note that frames are not

necessarily displayed at ti + yi since the mobile client displays frames at a fixed

frame rate. The ready-to-display frames are buffered in display buffer and wait

until the screen refresh time arrives.

• To maintain the QoE for clients, one of the system requirements is having a

constant screen refresh rate. ti+ τ in Figure 3.9 indicates the screen refresh times

when τ is the intentional lag between server and client.

• Each video frame displayed at the mobile client represents a sample of the game

status as provided to the player and reduces the age of his/her information. In
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Figure 3.7: Time instance t′′i corresponds to instances where frames are generated

Figure 3.10, frame 0 was ready to be displayed before its intended display instant

and as a result, the client’s perception of the game is updated at t0 + τ .

• In Figure 3.11, frame 1 is not ready to be displayed before its intended display

instant and as a result, the client’s perception of the game is not updated at t1+τ .

This shows the sensitivity of the age of information metric to responsiveness in

the game.

• In Figure 3.12, frame 1 is ready to be displayed before next display instant and as

a result it remains in the display buffer. Since frame 2 is not ready to be displayed

in its intended display instant, frame 1 is displayed and the client’s perception

of the game is updated at t2 + τ . However, the reduction in age is smaller than

before to indicate the staleness of frame 1.

• In Figure 3.13, frame 1 is ready to be displayed before next display instant and

as a result it remains in the display buffer. However, since the congestion in the

downlink or server traffic was eliminated, frame 2 is ready to be displayed in its

intended display instant. To avoid aggregation of such delays and propagation

of that throughout the next multiple frames, frame 1 is dropped and frame 2

is displayed. The client’s perception of the game is updated at t2 + τ and the
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Figure 3.8: Time instance ti + yi indicates the instances when the most freshly
received frame is ready to be displayed

Figure 3.9: Time instance ti + τ indicates the screen refresh times when τ is the
intentional lag between server and client
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Figure 3.10: Variation of system age when a frame is displayed in its intended instant

Figure 3.11: Increment in age of system age when a frame is not displayed in its
intended instant
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Figure 3.12: Variation of system age when an old frame is displayed at t2 + τ

reduction in age is larger than before to indicate the freshness of frame 2.

3.6 Evaluation

In this section we evaluate the role of the average age of the system as a metric in

providing richer information on design and optimization of real-time interactive cloud-

assisted applications. Our simulated cloud gaming system is illustrated in Figure 3.1.

To evaluate the proposed analytical model, we implemented a mobile cloud gam-

ing scenario in ns-3 where the main parameters of this simulation are summarized in

Tables 3.2 and 3.3. The simulation parameters are chosen to capture the complex-

ity of cloud-gaming systems including bandwidth constraints, rendering, and encod-

ing/decoding delays. In our simulations, we have considered both single-player games

and geographically distributed multi-player games where in the multi-player scenario,

different players submit their commands to the same game server, and the game server

sends game status update messages to edge servers responsible for rendering the frames.

Each client receives its frames from the edge server which is associated to.

Throughout this section, the term single-server refers to a scenario where processing
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Figure 3.13: Variation of system age when an old frame is dropped and a more fresh
frame is displayed at t2 + τ

tasks for both game status update and frame rendering are conducted in the same server.

Similarly, the term multi-server refers to the alternative case where game status update

is performed in a central server and frame rendering is done in edge cloud servers.

We start with a simple example in which the single-server execution duration has an

exponential distribution with expected value 1/µ and the transmission time is a constant

y0 such that y0 < T . In this case, random variable Y has the shifted exponential

distribution

FY (y) =





0 y < y0,

1− e−µ(y−y0) y ≥ y0.
(3.21)

Similarly, in the multi-server scenario, if both game and rendering servers have expo-

nentially distributed execution times each with expected value 1/µ and the transmission

time is a constant y0 such that y0 < T , then Y has the shifted Erlang distribution with
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Parameter Value

game-edge propagation delay 5 milliseconds, 1 Gbps link

game-edge bandwidth 1 Gbps

edge-client channel 802.11a with 6Mbps

command packet size 60 Bytes

frame size 4 KBytes

game status packet 1 KBytes

frame rate 30

command generation Poisson process of rate 10

Simulation time 1000 sec

Transport protocol UDP

Table 3.2: Simulation Parameters

Figure analytical FY (y)

3.14 (3.21) y0 = 5.32, µ = 1/14.5

3.15 (3.22) y0 = 5.32, µ = 1/7.95

3.16 (3.22) y0 = 11, µ = 1/4.9

3.18 (3.21) y0 = 6.32, µ = 1/16.6

3.19 (3.22) y0 = 6.9, µ = 1/8.1

Table 3.3: Analytical FY (y) parameters

shape parameter k = 2 such that

FY (y) =





0 y < y0,

1− e−µ(y−y0) (1 + µ(y − y0)) y ≥ y0.
(3.22)

3.6.1 Analysis of the average age of the system

As indicated in section 3.4.2, the age of a system depends on target frame rate and

the fine tuning parameter τ . Figures 3.14, 3.15, and 3.16 illustrate analytical and

simulated average age of the system as a function of τ for lightly loaded systems.

The system is lightly loaded in the sense that network delays can be approximated

by the update/frame transmission times and that the game server and renderer do

not have queued jobs. Figures 3.14 and 3.15 correspond to systems that have servers

with exponential and Erlang execution interval distribution respectively. Figure 3.16

corresponds to a multi-player scenario with two separate exponential servers. In these

systems, the randomness in Yk derives solely from the randomness in processing and

rendering. Comparing the analytical results with corresponding simulation graph, we
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Figure 3.14: Average age of the system as a function of τ for exponential (mean 15
milliseconds) server

can see that Theorem 3.4.1 precisely describes the system.

In all three presented systems, the maximum age corresponds to having τ equal to

the transmission delay. In other words, when the chosen τ consider service delay as 0,

all arriving frames will be buffered and age for more than one frame period (interval

between two consecutive frame display instants). If τ is less than the transmission

delay, all arriving frames will be buffered but they age less since the upcoming frame

display instant will be earlier. If τ is more than the transmission delay, the age of the

system reduces since many frames will arrive before their corresponding display instant.

As indicated in the presented results, depending on the frame rate and distribution of

Yk, there exists an optimal τ that minimizes the age. For τ larger than the optimal

value, the performance will be degraded. By overestimating the system delay, most of

the received frames will age unnecessarily and the average age of the system will grow.

As indicated in Figures 3.14, 3.15, and 3.16, the range of the values for system age is

on the order of 50-63 milliseconds. Although this might look trivial, for delay sensitive

applications, especially gaming systems, it would be considered large. As shown above,

the age presents an interpretation for the system such that the client device can optimize
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Figure 3.15: Average age of the system as a function of τ for Erlang
(k = 2, µ = 0.1 msec−1) server
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Figure 3.16: Average age of the system as a function of τ for Multi-player: game
server Exponential (mean 10 milliseconds) and edge server Exponential (mean 5

milliseconds)
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its synchronization with the server and adapt over time. This is possible for both single-

player (Figures 3.14 and 3.15) and multi-player games (Figure 3.16).

In Figures 3.14 and 3.15, in addition to the B = 2 scenario, we simulated the B →∞
scenario called “soft” policy in which frames are dropped only if either server has sent

a newer frame or receiver has received a newer frame. Comparing this soft policy with

our model, we see that in lightly loaded systems for small values of τ , the soft policy will

reduce age. However, for τ larger than the transmission delay, both policies correspond

to the same amount of age. In fact, as indicated in section 3.4.4, the soft policy would

correspond to having the age as a periodic function of τ with periods equal to frame

display period.

Figure 3.17 illustrates the dependency of the average age on the system frame rate.

We have compared lightly loaded channel with a busy channel for both B = 2 and soft

policy systems. In all cases, low frame rates increase the average age of the system since

the frames are sampling the game infrequently. As expected, the average age is higher

in busy channels since frames suffer from queuing delay more. Furthermore, the age

captures the compromise between frame rate and channel congestion. As an example,

a system with 30 fps in 1.2 Mbps channel updates the clients with the same age as a

25 fps system in 6Mbps channel.

3.6.2 Effect of channel congestion on age

To investigate the effect of suboptimal network and server resources on age of the sys-

tem, we simulated two scenarios with exponential servers where clients are sending with

rate 30 fps but the available channel is limited to 2 Mbps and 1.2 Mbps. Figures 3.18

and 3.19 illustrate the resulting age as a function of τ along with the corresponding

analytical curves. Comparing Figures 3.14 and 3.18, we can see that the designed

frame selection protocol mitigates the impact of channel congestion and as a result, the

performance of the system is not significantly degraded. Furthermore, the distribution

of Yk still can be approximated as shifted exponential and characterized by the ana-

lytical model. For τ larger than the channel transmission delay and smaller than the

optimal τ , the distribution of Yk is more similar to Erlang.

Comparing Figure 3.19 with Figures 3.18 and 3.14, we can see that in a more heavily

congested scenario, the age of the system has increased. Moreover, since the frames for
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Figure 3.18: Average age of the system as a function of τ for 2 Mbps available channel
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Figure 3.19: Average age of the system as a function of τ for 1.2 Mbps available
channel

10 20 30 40 50 60 70 80
time (ms)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 Yk distribution

Erlang (k=2,λ = (8.1)-1)

Figure 3.20: Distribution of Yk for scenario with 1.2 Mbps available channel



75

0 3 6 9 12 15 18 21 24 27 30 33
τ (msec)

60

65

70

75

80

85

Av
er

ag
e 

ag
e 

(m
se

c)

(µ)-1=5 msec, Edge delay= 16 msec
(µ)-1=10 msec, Edge delay= 13 msec
(µ)-1=15 msec, Edge delay= 10 msec
(µ)-1=20 msec, Edge delay= 8 msec
(µ)-1=25 msec, Edge delay= 5 msec

Figure 3.21: Average age of the system as a function of τ for different players of a
geographically distributed multi-player game

different clients are queued in the network interface of the server, each game update

experiences an exponential service time and an M/M/1 queue. Consequently, Yk has

Erlang (k = 2) distribution (see Figure 3.20).

3.6.3 Multi-player scenario

In this section, we simulated a multi-player scenario with geographically distributed set

of edge servers where each player is associated to a different edge server with different

processing power and edge delay (i.e., transmission time from edge server to the client

terminal). Figure 3.21 illustrates the variations of age versus τ for different players.

Each client terminal is able to use the tuning parameter τ to optimize its synchroniza-

tion with the game server. Furthermore, this figure exhibits the potential of age of a

system as an important tool for assigning game sessions to different edge servers since

it incorporates various parameters that affect the subjective QoE for players.

3.7 Related Work: System Architecture

One of the first game streaming demos was provided by G-cluster in 2001 using PDAs

over WiFi links [53]. [54] was one of the first academic works that introduced the cloud
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gaming architecture and design specifics. By the late 2000’s, companies such as OnLive

and GaiKai were offering cloud gaming services [55]. OnLive’s business model revolved

around subscription services using geographically distributed game servers. Due to high

incurred costs, by 2015 they closed the company. Gaikai used the cloud gaming platform

to provide free game trials. The interested customers would then buy the game. Sony

acquired Gaikai in 2012 and launched PlayStation Now in 2014 [56]. After analyzing the

network traffic from OnLive game streaming systems, [57] concluded that its downlink

is very similar to live videos. Furthermore, its traffic for first-Person, third-Person and

omnipresent have the same features but different bitrates.

In [58], three main cloud gaming architectural frameworks were investigated: Re-

mote Rendering (in the central game server or in edge servers), Local Rendering and

Cognitive Resource Allocation. Browser games [59] are examples of local rendering

where the gaming procedure is executed in the cloud servers and the game frames are

rendered in the browser of mobile terminal using instructions from cloud servers. Such

games usually rely on social networks (e.g., FarmVille on Facebook). The focus of this

work is on edge-cloud rendering systems as described in [20]. Perhaps the most closely

related system is the StreamMyGame (SMG) system evaluated in [17]. Just as in the

experimental model evaluated in this work, the SMG system deploys a game server

attached to the same local network as the client. Unlike this work, however, server

processing times on the order of 300-400 milliseconds dominated the response time of

the SMG system [17]. Instead of migrating all workload to a single server, [59] used a

set of physically distributed servers and evaluated the impact of game type and content

on cloud gaming design.

Some gaming frameworks are designed such that they can use unmodified game

software in their cloud gaming systems whereas others try to modify the game’s software

to improve the performance [60].

3.8 Related Work: Performance Evaluation

To determine the perceptual QoE, both subjective and objective metrics have been

developed. One of the subjective metrics is Mean-Opinion-Score (MOS) which corre-

sponds to the results of surveying players and taking an average of their opinions [40].
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One way to evaluate the QoE but not through explicit surveying is through user engage-

ment with the game. Involvement of user can be evaluated through number of times

playing a game and duration of each play [61] though this metric fails to evaluate how

much player was focused on the game. These metrics capture more of the conditions

of the game and game play situation. [62] used facial electromyography (FEMG) to

evaluate the amount of satisfaction of game players for cloud gaming systems.

One of the main objective metrics is peak signal to noise ratio (PSNR) that measures

the effect of spatial impairments in each frame but fails to consider the effect of temporal

impairments. [63] evaluates the perceived jerkiness of a video as a function of display

stalling length, video resolution, and the intensity of the displayed frame following the

freezing event. The choice of these features and the impact (modeled by S function)

that they have on jerkiness is determined based on the sensitivity of Human Visual

System (HVS).

One of the main challenges in developing QoE metric for gaming systems is under-

standing the influential system characteristics. The subjective nature of QoE makes

this task even more difficult. Analyzing network traces from running games, [64] evalu-

ated the impact of network QoS (e.g., packet loss, latency, and jitter) on QoE (QoE was

measured based on the duration of game sessions). They showed that RTT between

45-75 milliseconds decreases the length of the game session linearly. Furthermore, they

found an even stronger correlation between game length and the standard deviation of

latency (jitter). Maintaining a constant frame rate is proven to have a very important

impact on the user performance in the game [65] where they recommended preserving

frame rate at the cost of frame quality degradation. After investigating three different

thin clients LogMeIn, TeamViewer, and UltraVNC, [21] reached the same conclusion

about the effect of frame rate. They further showed that the frame quality has influ-

ence on QoE, though to a lesser degree. Through a more comprehensive analysis, [21]

showed the role of frame rate, network delay, packet loss, contexts such as game genres

and player skills, and graphic quality on QoE where network delay has the highest

impact [62].

[66] decomposed the response delay of a gaming system into three parts: network

delay, processing delay and playout delay. They measured the network delay and evalu-

ated OnLive and StreamMyGame methods in masking the network delay.The network
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delay consists of the uplink delay incurred when player’s command is sent to the game

server and downlink delay for returning game updates to the client. The processing

delay corresponds to the time elapsed in server from receiving user command until up-

dates are transmitted. The playout delay is the time frames are decoded and wait to

be displayed. They concluded that OnLive modifies the resource allocation based on

the game type and as a result has lower latency. In [17],they measured game delay

as well and investigated the impact of scene complexity, size of updated regions, and

screen resolution. In [67], the network load and traffic characteristics of cloud gaming

and online gaming was compared in the context of packet inter-arrival time, size and

inter-departure times. The [68] calculated the bandwidth usage of a variety of game

genres and showed that it falls in the range of 3-4 Mb/sec regardless of player’s action

rate.

The sensitivity of the player to the responsiveness in the game depends on the genre

of the game as well. For traditional gaming [39,69] proved that the sensitivity to latency

will decrease in order for first person avatar, third person avatar, and omnipresent.

In their experiments, they reported delays up to 100 milliseconds acceptable for the

first person avatar genre and a delay up to 500 milliseconds can be acceptable to the

third person avatar genre and a delay up to 1000 milliseconds can be acceptable to

the omnipresent genre. [70] used FPS game “Call of Duty Modern Warfare 2” using

subjective measures and divided the players based on their level of gaming experience

and showed the 100 milliseconds latency threshold. [71] investigated delay in cloud

gaming using subjective and objective measures. Their subjective tests were evaluated

using their designed QoE metric. Their objective metric was the performance of player

and their score. They show that the performance reduces up to 25% when delay is more

than 100 milliseconds.

When network quality degrades, [72] showed that players are willing to sacrifice

video quality (modified through quantization parameter) in favor of more responsive

playing experience where network quality was evaluated using RTT jitter. [22] developed

a scheduling and frame selection design for cloud gaming frame delivery over wireless

networks to reduce the impact of delay based distortions. Outatime [60] is a predictive-

based solution implemented on top of commercial games. It masks network latency and

substitutes the lack of buffer with sending game frames predicted based on user-specific
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behavior patterns one RTT in advance.

In the area of age of information, the analysis of the properties of queue-based models

have dominated the emerging literature; see, for example [25, 51, 73–75]. However,

these analytic models are approximations of real systems. A first effort to evaluate the

accuracy of analytic models by simulation was provided in [76]. The ns-3 performance

evaluation in Section 3.6 of the cloud gaming system is similar in spirit in that our

analytic model is only an approximation of the gaming system with both networking

and processing delays.

The assumption of iid delivery times in the analytic model is similar to the model

in [74, 75] in which packets travel through a network on independent parallel paths.

However, here the independence is motivated not by independent network paths but

by a combination of independence in frame processing times and the temporal spacing

of updates at a fixed frame rate.

3.9 Conclusion

In this work, we presented a quantified representation of the user-perceived QoE of

latency-sensitive real-time cloud-assisted applications such as gaming based on missing

frames. As the objective of a cloud gaming system is the “timely” update of players

regarding the game status, we employed an age of information metric to characterize

the system performance. The age metric incorporates both the lag in response time

and the latency associated with periodic framing. Our designed metric, is in terms of

both interaction delay and stream quality and captures the effect of stochastic network

and processing delay variations on the game’s responsiveness.

Based on the developed timeliness metric, we provide an analytical framework sup-

ported by extensive simulation for the problem of optimizing frame rate and lag syn-

chronization of server and player. Based on the obtained results, age can be applied as

a tool to synchronize game sessions based on the current status of the server. Further-

more, it can be used as a parameter in assigning edge servers to clients and designing

resource allocation algorithms for cloud gaming systems.

We have suggested that user QoE in a low latency gaming system can be captured

by the delayed or missed video frames, and proposed the average age of video frames as
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a QoE metric. However, we observe that further study is needed to determine whether

the average frame age is an effective measure of user-perceived QoE for various types of

games with different sensitivity to latency. It may be that other metrics derived from

the missing frame process Xk (e.g., the variance of Xk) better capture the user QoE.

For example, if we say the system is in outage when Xk > 0, the average duration of

outages may be a suitable metric. We note that our Markov chain analysis of the Xk

process permits analytic consideration of these alternate metrics.
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Chapter 4

Conclusion

The proliferation of mobile devices and cloud computing resources have contributed

to the emergence of cloud-assisted applications. Cloud computing has created a new

paradigm for mobile applications where computation and storage has migrated to cen-

tralized computing platforms in the cloud. This has drastically transformed the quality

of experience for the users and increased popularity of cloud computing based appli-

cations. This thesis studied the design and implementation of solutions for support

of advanced real-time applications with stringent constraints on responsiveness and

throughput using cloud systems on mobile devices.

In the second chapter, we investigated the design and development of a network

abstraction for the problem of maintaining connectivity and obtaining global reachabil-

ity for vehicular networks using cloud servers as a global database of information with

on-demand access. To address the challenges in in-vehicle communication including on-

demand video streaming, safety applications, cloud-assisted autonomous driving, and

virtual reality goggles, we determined the bottlenecks in PHY, MAC, network, and

transport layers. Our scalable, mobility-centric solution, through “network abstrac-

tions” and clustering schemes with high resilience against failure, provided seamless

connectivity, global reachability, and enhanced connection for vehicular nodes with

high dynamicity and possibly no direct association to an access point.

To develop vehicular clustering for the purpose of obtaining best network attach-

ment points along with cluster stability, we started with an analytical evaluation of

vehicular mobility models that appears in Appendix A. This was followed by link life-

time analysis and description of mobility parameters during a contact between two cars.

We derived a theoretical metric to evaluate the link lifetime that is mostly flexible with

respect to mobility model. The vehicular clusters maintained tree structures that im-

prove performance over conventional clusters, reduce control overhead and make them
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adaptive to application requirements and network conditions.

This was followed with the extension of the naming service in MobilityFirst to en-

able support for highly dynamic scenarios. By aggregating vehicles in clusters, assigning

unique identifiers to these clusters, and extending GNRS service to ad hoc mode, ve-

hicles can benefit from multi-homing and other services available for fixed nodes in a

seamless way. The proposed method can be added on top of IP or in an independent

way as a network abstraction for highly dynamic scenarios. By simulation of various

representative scenarios including content delivery, web content retrieval, and store and

forward service, we show the flexibility and efficiency introduced by our design.

In chapter 3, cloud gaming was investigated where enhanced computing resources

in the cloud servers results in delivery of high quality gaming experience through thin

clients. In cloud gaming, the players receive the rendered game scenes which are

streamed in real-time over network. One of the main issues at stake is maintaining

responsiveness while having a smooth display of the game. What makes this problem

more challenging is that the existing solutions for video streaming is not designed for

latency-sensitive interactive applications.

In this regard, we introduced a novel application layer solution which supports

flexibility of streaming with respect to the channel quality and efficiently adapts itself

to variations in the channel. Our proposed protocol performed online frame selection to

dynamically reduce traffic rate to conserve network resources. We presented the steps

of this protocol and discussed system optimization based on responsiveness and display

smoothness. Our final aim was optimizing quality of experience (QoE) for cloud gaming

systems. This includes the minimization of age of information that the client perceives

subject to improving QoE and maintaining constant display frame rate and smoothness.

Through conducting extensive analytical modeling and network simulation, we showed

the applicability of proposed model and protocol in improving the gaming experience.

Using the proposed protocol, we can have a more steady game streaming.
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Appendix A

Vehicular Movement Modeling

To form stable vehicular clusters for the purpose of providing high-throughput Inter-

net access to the nodes with poor Internet connections, we study the characteristics of

vehicular mobility models in highways and cities. Furthermore, we investigate the link

stability evaluation metrics which are crucial to forming long-living clusters and elim-

inating redundant exchanges of control messages related to short-living links. Finally,

after conducting an analytical study of the vehicular mobility models, we provide an

insight into the relative mobility parameters of two cars connected with peer-to-peer

WiFi links and conclude with a new probabilistic link stability assessment metric.

A.1 Analysis of Mobility Events

In the simplest mobility model, vehicles maintain a constant speed throughout their

trips. Two vehicles may come into contact if the faster vehicle is located behind the

slower car and passes over. One of the widely used metrics to evaluate stability of a link

is introduced in Associativity Based Routing (ABR) protocol [77]. The ABR metric

considers a link stable if the link lifetime is at least 2r/4v where r is the coverage radius

of each vehicle and 4v is the difference between the most recent speed samples of the

two nodes. [77] showed that for links younger than the ABR threshold, by increasing

the time elapsed since the link formation instant, the residual link lifetime decreases.

When links are older than the ABR threshold, the residual link lifetime is independent

from the age of the link. Furthermore, [77] proved that the link lifetime distribution

has exponential tail and its mode is approximately equal to the ABR threshold.

A more realistic mobility model for vehicles allows variations of speed over time.

One of the main mobility models used for MANETs is Random Way Point (RWP)

model [78] in which nodes randomly and independently from each other select their
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next speed and direction (or destination). After reaching the destination, the nodes

pause for a random time and choose new speeds and directions. Although RWP model

captures the variations in speed and direction over time, in reality the cars move with

more constraints since they follow roads and highways. One aspect of the mobility

pattern of a vehicle in real life is the smooth variation in speed and direction such that

consecutive samples of the velocity over time are correlated [79]. Due to the structure

of the roads, sudden stops and sharp turns are not very prominent mobility events. To

capture this change, [80] applied speed limits per lane in their proposed model.

If vehicular speeds are independent and identically distributed random variables

that follow the Gaussian distribution with mean µv and standard deviation σv, Vi(t) ∼
N (µv, σv), the distribution of speed difference between any two vehicles will correspond

to 4V (t) ∼ N
(
0,
√

2σv
)
. However, given that the two cars are entering the WiFi

coverage area of each other, the speed difference between them approximately follows

f4Vmeeting(t)(y) =
|y|f4V (t)(y)∫
|y′|f4V ′(t)(y′)dy′

, (A.1)

where f4V (t)(y) is the probability distribution for 4V (t) in general and f4Vmeeting
(y) is

the probability distribution for 4V (t) when nodes are meeting.

Figure A.1 compares the distribution of 4Vmeeting(t) derived from simulation data

and the analytical distribution proposed in (A.1). Based on this figure, not only vehicles

with significant speed difference, but also vehicles with approximately the same speed

are very unlikely to meet. In fact, two vehicles are more likely to meet and form stable

links if initially they have a considerable speed difference and after meeting, their speed

difference reduces.

A mobility model that fully captures smooth correlated variations in movements

is the Gauss-Markov mobility model [37, 81]. In this model, the jth speed sample vj

evolves as a convex combination of the previous speed sample vj−1 and target speed vα

as follows:

vj = ζvj−1 + (1− ζ)vα + σv
√

1− ζ2wj−1, (A.2)
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Figure A.1: probability distribution of 4Vmeeting where Vi ∼ N (µv, 5)

where the asymptotic mean and variance of vj are vα and σ2v respectively, ζ parame-

terizes the process memory, and wj−1 is an i.i.d. zero mean and unit variance Gaussian

process such that wj−1 is independent of vj−1. Figure A.2 illustrates the link lifetime

distribution for vehicles moving based on (A.2) in a highway with average speed around

27 m/s. This figure highlights the high possibility of short lifetime links. The mode of

the distribution is 27 seconds that is equal to the ABR threshold.

The target speed vα is a random variable that allows the mobility model to adapt

to different environments including intersection, highway, and traffic jam. To mimic

the mutual interactions between vehicles, such as overtaking, traffic jam, and preferred

paths, the distribution of target speed for neighboring nodes can be correlated. The

time interval between two consecutive updates of target speed, called Ttarget is an expo-

nentially distributed random variable (with average λ seconds). Starting from the time

that a pair of cars meet, the time until one of the target speed changes is exponential

of rate 2λ. Figure A.3 illustrates an example of the speed and target speed over time.
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Figure A.2: Link lifetime distribution for a highway scenario with ABR threshold of
27 seconds.

Figure A.3: A sample of the evolution of speed over time based on Gauss-Markov
mobility model
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A.2 Speed Process Dependencies

The accuracy of the link stability predictions that a car makes depends on the precision

in estimation of future speed samples based on past speed samples. From (A.2), for an

arbitrary node A, assuming constant target speed with distribution Vα ∼ N
(
µAα , σvAα

)

and initial speed v0,

vAj = ζj,AvA0 + (1− ζj,A)vAα + σvAα

√
1− ζ2,A

j−1∑

m=0

ζj−m−1WA
m−1. (A.3)

As j goes to infinity, the variance of vj approaches 2σ2
vAα

. Assuming the speed of A

and its neighbors follow independent and identically distributed random processes, we

investigate the speed difference process between A and its neighbor B indicated by

4V (j). The autocovariance of 4V (j) given the target and initial speed of each node is

C(j, j + τ) = E[(4V (j)− µ4V (j))(4V (j + τ)− µ4V (j+τ))]

= E

[
σ2vα(1− ζ2)

(
j−1∑

m=0

ζj−m−1+τζj−m−1W 2,A
m−1

+

j−1∑

m=0

ζj−m−1+τζj−m−1W 2,B
m−1

)]

= 2σ2vα(1− ζ2)ζ2j−2+τ
(

1− ζ−2j
1− ζ−2

)

= 2σ2vαζ
τ (1− ζ2j).

Figure A.4 illustrates the autocovariance for v0 ∼ N (27, 5), vα ∼ N (27, 5), and

ζ = 0.5. When j grows sufficiently, the speed difference process becomes wide sense

stationary. Given the standard deviation of 4V (j + τ) process as

σ4V (j + τ) =
√
E[(4V (j + τ)− µ4V (j+τ))(4V (j + τ)− µ4V (j+τ))]

=

√√√√E[σ2vα(1− ζ2)(
j−1+τ∑

m=0

ζ2(j+τ−m−1)W 2,A
m−1 +

j+τ−1∑

m=0

ζ2(j+τ−m−1)W 2,B
m−1)]

=

√
2σ2vα(1− ζ2)ζ2j+2τ−2

(
1− ζ−2(j+τ)

1− ζ−2
)

=
√

2σ2vα(1− ζ2(j+τ)),
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Figure A.4: The autocorvariance for speed difference process when v0 ∼ N (27, 5),
vα ∼ N (27, 5), and ζ = 0.5

the autocorrelation coefficient for τ > 0 is

ρ(j, τ) =
C(j, τ)

σ4V (j)σ4V (j + τ)

=
2σ2vαζ

τ (1− ζ2j)√
2σ2vα(1− ζ2(j+τ))

√
2σ2vα(1− ζ2j)

=
ζτ
√

(1− ζ2j)√
(1− ζ2(j+τ))

.

Figure A.5 illustrates the autocorrelation coefficient for v0 ∼ N (27, 5), vα ∼ N (27, 5),

and ζ = 0.5. It can be seen that ρ(j, τ) between consecutive samples is significant, and

when j increases, ρ(j, τ) is not a function of time any more. Figure A.5 shows that for

estimating future samples of speed difference process, a limited number of past samples

is sufficient.

A.3 Link Stability Evaluation

Defining link lifetime as the length of the interval that two cars remain in coverage area

of each other, it can be formulated as



89

20
15

j

100
0

0.1

2 5

0.2

4

(j,
j+

) 0.3

6 8

0.4

010

0.5

Figure A.5: The autocorrelation coefficient for speed difference process when
v0 ∼ N (27, 5), vα ∼ N (27, 5), and ζ = 0.5

max
j≥0

j

j∑

i=0

4vi ≤ 2Dcov

where Dcov is the coverage radius. Link lifetime prediction depends on the accuracy of

the estimation of the distance between two cars. In the rest of this section, we introduce

three scenarios where simplifying assumptions help estimate the distance between cars.

Scenario 1 : Assuming that the two cars have the same target speed and the target

speed and ζ are known, the distance between cars at time j is

S(j) =

j∑

i=0

4vi −Dcov.

Peer-to-peer link exists if −Dcov ≤ S(j) ≤ Dcov. The estimated distance at time j is

Ŝ(j) =

j∑

i=0

4̂vi −Dcov =

j∑

i=0

4vmeetζ
i −Dcov = 4vmeet

1− ζj+1

1− ζ −Dcov,

which asymptotically, when j →∞, is 4vmeet/(1− ζ) where 4vmeet corresponds to the

difference between the earliest speed samples of vehicles. The mean squared error in
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the estimation of S(j) will be

MSE[Ŝ(j)] = E

[(
Ŝ(j)− S(j)

)2]

= E



(
4vmeet

1− ζj+1

1− ζ −
j∑

i=0

4vi
)2



= E

[(
σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WA
m−1

−σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WB
m−1

)2



= 2σ2α
(
1− ζ2

)
[

j∑

i=0

i−1∑

m=0

ζ2(i−m−1)

]

= 2σ2α

j∑

i=0

(1− ζ2i)

= 2σ2α

[
j + 1− 1− ζ2j+2

1− ζ2
]
.

The MSE[Ŝ(j)] increases unboundedly when j → ∞. However, in this work, the

performance of estimator in a limited time is of our interest. The baseline estimator

(which assumes vehicles have constant speed) will be

MSEbaseline[Ŝ(j)] = E

[(
Ŝ(j)− S(j)

)2]

= E



(
4vmeetj −

j∑

i=0

4vi
)2



= E

[(
4vmeetj −4vmeet

1− ζj+1

1− ζ

)2
]

+E

[(
σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WA
m−1

−σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WB
m−1

)2



= 2σ2α

[
j + 1− 1− ζ2j+2

1− ζ2
]

+

(
j − 1− ζj+1

1− ζ

)2

E
[
(4vmeet)

2
]
.

Figures A.6 and A.7 compare the MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.7 and
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Figure A.6: MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.7
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Figure A.7: MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.99
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ζ = 0.99 respectively.

The probability that the actual distance is more than the asymptotic distance is

P

(
S(j) ≥ 4vmeet

1− ζ

)

= P

(
j∑

i=0

4vi ≥
4vmeet

1− ζ

)

= P

(
σvα
√

1− ζ2
j∑

i=0

ζi−1

(
i−1∑

m=0

ζ−mWA
m−1 −

i−1∑

m=0

ζ−mWB
m−1

)
≥ 4vmeetζ

j+1

(1− ζ)

)
.

Defining

L(i) =

i−1∑

m=0

ζ−mWA
m−1 −

i−1∑

m=0

ζ−mWB
m−1

and

M(j) = σvα
√

1− ζ2
j∑

i=0

ζi−1L(i),

we see that

L(i) ∼ N (0,
2
(
1− ζ−2i

)

1− ζ−2 ) (A.4)

and

M(j) ∼ N
(

0, 2σ2α

[
j + 1− 1− ζ2j+2

1− ζ2
])

. (A.5)

This implies

P

(
S(j) ≥ 4vmeet

1− ζ

)
= Q




4vmeetζj+1

(1−ζ)√
2σ2α

[
j + 1− 1−ζ2j+2

1−ζ2

]


 .

Scenario 2 : Assume that cars have different target speed but the target speed never

changes and is known, the estimation of distance between cars at time j is

Ŝ(j) =

j∑

i=0

4̂vi = 4vmeet
1− ζj+1

1− ζ +4vα
(
ζj+1 − ζ

1− ζ

)
.

The mean squared error in the estimation process will be
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MSE[Ŝ(j)] = E



(
4vmeet

1− ζj+1

1− ζ +4vα
(
ζj+1 − ζ

1− ζ

)
−

j∑

i=0

4vi
)2



= E

[(
σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WA
m−1

−σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WB
m−1

)2

 ,

which can be further simplified as

MSE[Ŝ(j)] = 2σ2α
(
1− ζ2

)
[

j∑

i=0

i−1∑

m=0

ζ2(i−m−1)

]
= 2σ2α

j∑

i=0

(1− ζ2i)

= 2σ2α

[
j + 1− 1− ζ2j+2

1− ζ2
]
. (A.6)

The mean squared error (A.6) can increase unboundedly and is not a function of

the 4vmeet. The MSE for the baseline estimator will be

MSEbaseline[Ŝ(j)]

= E

[(
Ŝ(j)− S(j)

)2]

= E



(
4vmeetj −

j∑

i=0

4vi
)2



= E

[(
4vmeetj −4vmeet

1− ζj+1

1− ζ

)2
]

+ E

[(
4vα

(
ζj+1 − ζ

1− ζ

))2
]

+ E

[(
σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WA
m−1

−σvα
√

1− ζ2
j∑

i=0

i−1∑

m=0

ζi−m−1WB
m−1

)2



= 2σ2α

[
j + 1− 1− ζ2j+2

1− ζ2
]

+

(
j − 1− ζj+1

1− ζ

)2

E
[
4v2meet

]

+

(
4vα

(
ζj+1 − ζ

1− ζ

))2

.

Figures A.8 and A.9 compare the MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.7 and ζ =
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Figure A.8: MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.7 and target speed difference is
10 m/s
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Figure A.9: MSE[Ŝ(j)] and MSEbaseline[Ŝ(j)] for ζ = 0.99 and target speed difference is
10 m/s
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Figure A.10: the plot for P
(
S(j) ≥ 4vmeet

1−ζ +4vα
(
−ζ
1−ζ

))
when cars have target

speed difference of 10 m/s and ζ = 0.95

0.99 respectively. The probability that the actual distance is more than the asymptotic

distance is

P

(
S(j) ≥ 4vmeet

1− ζ +4vα
( −ζ

1− ζ

))

= P

(
j∑

i=0

4vi ≥
4vmeet

1− ζ −4vα
ζ

1− ζ

)

= P

(4vmeet

1− ζ −4vα
ζ

1− ζ ≤ 4vmeet
1− ζj+1

1− ζ +4vα
(
ζj+1 − ζ

1− ζ

)

+σvα
√

1− ζ2
(

j∑

i=0

i−1∑

m=0

ζi−m−1WA
m−1 −

j∑

i=0

i−1∑

m=0

ζi−m−1WB
m−1

))

Based on (A.4) and (A.5),

P

(
S(j) ≥ 4vmeet

1− ζ +4vα
( −ζ

1− ζ

))
= Q




(4vmeet−4vα)ζj+1

(1−ζ)√
2σ2α

[
j + 1− 1−ζ2j+2

1−ζ2

]




which is illustrated in Figure A.10.

Scenario 3 : In the most general case, vehicles have different target speed which is

unknown. Given V(L) = [vL, vL−1, · · · , v0]T where L is a function of ζ, cars estimate vα

using v̂α = ST(L+1)×1V(L)+d where S, and d are random variables. They exchange their
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estimated target speed and estimate the distance based on the previous two scenarios.

A.4 Design of the New Link Stability Metric

Most of the current link stability metrics make the simplifying assumptions that i)

vehicles move with constant speed, ii) when two cars meet, the contact event starts

with one car entering the coverage area of the other car and leave from the other side of

the coverage area. It does not consider other relative mobility events between vehicles.

The probability that link lifetime, namely Life, is j seconds is defined as

P [Life] = P (Dcov ≤ S(j)) + P (−Dcov ≥ S(j)) (A.7)

where

P [Dcov ≤ S(j)] = P

[
2Dcov ≤

j∑

i=0

4vi
]

= P

[
2Dcov ≤

j∑

i=0

(
ζi4v0 +

(
1− ζi

)
4vα

+σvα
√

1− ζ2
i−1∑

m=0

ζi−m−14Wm

)]

= P

[
2Dcov ≤ 4vmeet

1− ζj+1

1− ζ +4vα
(
ζj+1 − ζ

1− ζ

)

+

j∑

i=0

(
σvα
√

1− ζ2
i−1∑

m=0

ζi−m−14Wm−1

)]

and

P [Dcov ≤ S(j)|4vmeet,4vα]

= P

[
2Dcov ≤

j∑

i=0

(
ζi4v0 +

(
1− ζi

)
4vα

+σvα
√

1− ζ2
i−1∑

m=0

ζi−m−14Wm−1

)
|4vmeet,4vα

]

= P

[
2Dcov ≤ 4vmeet

1− ζj+1

1− ζ +4vα
(
ζj+1 − ζ

1− ζ

)

+

j∑

i=0

(
σvα
√

1− ζ2ζi−1
i−1∑

m=0

ζ−m4Wm−1

)
|4vmeet,4vα

]
.
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Defining

L(j) =

j∑

i=0

(
σvα
√

1− ζ2ζi−1
i−1∑

m=0

ζ−m4Wm−1

)
,

since it is sum of correlated random variables, we re-write this sum as

L(j) = σvα
√

1− ζ2
j−1∑

m=0

(
4Wm−1

j−1−m∑

i=0

ζi

)
.

Since

W (m) = 4Wm−1

j−1−m∑

i=0

ζi = 4Wm−1
1− ζj−m

1− ζ ,

we see that

W (m) ∼ N (0, 2

(
1− ζj−m

1− ζ

)2

)

and

M(j) ∼ N
(

0, 2σ2α(1− ζ2)
j−1∑

m=0

(
1− ζj−m

1− ζ

)2
)
.

This implies

P [Dcov ≤ S(j)|4vmeet,4vα] = Q




2Dcov −4vmeet
1−ζj+1

1−ζ −4vα
(
ζj+1−ζ
1−ζ

)

√
2σ2α(1− ζ2)∑j−1

m=0

(
1−ζj−m

1−ζ

)2




and similarly since Q(x) = 1−Q(−x),

P [−Dcov ≥ S(j)|4vmeet,4vα] = 1−Q



−4vmeet

1−ζj+1

1−ζ −4vα
(
ζj+1−ζ
1−ζ

)

√
2σ2α(1− ζ2)∑j−1

m=0

(
1−ζj−m

1−ζ

)2




= Q



4vmeet

1−ζj+1

1−ζ +4vα
(
ζj+1−ζ
1−ζ

)

√
2σ2α(1− ζ2)∑j−1

m=0

(
1−ζj−m

1−ζ

)2


 .

Finally, the CDF for link lifetime is

P [Life ≤ τ ] = P [∪τt=1 {S(t) < −Dcov} ∪ {S(t) > Dcov}]

≤
τ∑

t=1

P [{S(t) < −Dcov} ∪ {S(t) > Dcov}] . (A.8)
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Figure A.11: Link lifetime CDF computed using the proposed union bound and
heuristically when the meeting speed difference is 15 m/s
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Figure A.12: Link lifetime CDF computed using the proposed union bound and
heuristically when the meeting speed difference is 25 m/s

Figures A.11 and A.12 illustrate the upper bound on link lifetime CDF computed

using the proposed union bound in (A.8) and compare the results with precise CDF

computed heuristically. These plots belong to the links that the meeting speed difference

between two cars is 15 m/s and 25 m/s respectively. The estimations using (A.8) are

very close to the results of heuristic CDF for the first 6-8 seconds. This indicates the

benefit of using the proposed algorithm to determine the link lifetime estimate. Vehicles

can periodically repeat the estimation process using their most recent L samples to

ensure the correctness of their link lifetime estimates.
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Appendix B

Markov Chain Analysis

The Xk process evolves according to the following rules:

• If Xk = 0, then

– If Yk+1 ≤ τ , then Xk+1 = 0; otherwise, Xk+1 = 1.

• If Xk = j > 0, then

– If Yk+1 ≤ τ , then Xk+1 = 0.

– If τ < Yk+1 ≤ T + τ , then Xk+1 = 1.

– If Yk+1 > τ and Yk > T + τ , then Xk+1 = j + 1.

For τ ≤ T , we now build a Markov chain from these rules. First we observe that for all

j ≥ 0,

P[Xk+1 = 0|Xk = j] = P[Yk+1 ≤ τ ] = FY (τ). (B.1)

Of course, this implies P[Xk+1 = 1|Xk = 0] = F Y (τ). Furthermore, for j ≥ 1,

P[Xk+1 = j + 1]

= P[Xk = j, Yk > T + τ, Yk+1 > τ ]. (B.2)

Note that Xk = j ≥ 1 implies Yk > τ , and thus

P[Xk+1 = j + 1|Xk = j]

= P[Yk > T + τ, Yk+1 > τ |Xk = j]

= P[Yk > T + τ |Xk = j]

× P[Yk+1 > τ |Yk > T + τ,Xk = j]
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= P[Yk > T + τ |Xk = j, Yk > τ ] P[Yk+1 > τ ]

= P[Yk > T + τ |Yk > τ ] P[Yk+1 > τ ]

=
P[Yk > T + τ ]

P[Yk > τ ]
P[Yk+1 > τ ] (B.3)

= F Y (T + τ), (B.4)

where (B.4) follows from (B.3) because the Yk are iid. With similar logic, we observe

for j ≥ 1 that

P[Xk+1 = 1|Xk = j]

= P[Yk ≤ T + τ, Yk+1 > τ |Xk = j]

= P[Yk ≤ T + τ |Xk = j]

× P[Yk+1 > τ |Yk > T + τ,Xk = j]

= P[Yk ≤ T + τ |Yk > τ ] P[Yk+1 > τ ]

= P[τ < Yk ≤ T ] = FY (T + τ)− FY (τ). (B.5)

We observe that (B.1), (B.4) and (B.5) verify that Xk is described by the discrete-time

Markov chain shown in Figure 3.4.
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