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THEOREM

By

MENG-TSUNG TSAI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Mart́ın Farach-Colton

and approved by

New Brunswick, New Jersey

October, 2017



ABSTRACT OF THE DISSERTATION

On the Algorithmic Aspects of Turán’s Theorem

by Meng-Tsung Tsai

Dissertation Director: Mart́ın Farach-Colton

Turán’s Theorem gives an upper bound on the number of edges of n-node, Kr-free

graphs, or equivalently it can be restated as that every n-node, m-edge graph has an inde-

pendent set of size n2/(n+2m). We illustrate how to apply Turán’s Theorem to algorithmic

problems in several ways.

The complexity of dictionary operations, insertion for example, in external memory is

well studied. However, the complexity of a batch of n operations is less known, and is

seldom as easy as summing up the complexity of individual operations. We obtain lower

bounds for batched predecessors by showing the necessity of fetching a set of information

that preserves some “independence”, where Turán’s Theorem applies. We also prove lower

bounds for batched deletions in cross-referenced dictionaries based on the existence of an

adversarial input that forbids some patterns, where Turán’s Theorem again applies.

In addition, we present an interesting class of problems that are NP-hard to approximate.

Turán’s theorem is useful in the proof that a large class of problems that can be defined in

a simple framework are all NP-hard to approximate.
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Chapter 1

Introduction

Turán’s Theorem [94] is one of the most fundamental results in extremal graph theory. It

proves an upper bound on the number of edges that any n-node graph G can have if G

contains no clique of size r, as follows.

Theorem 1.1 (Turán’s Theorem (First Formulation)). Let G be any n-node graph that

contains no clique of size r. Then, the number of edges that G has is at most

(

1− 1

r − 1

)

n2

2
.

Observe that a clique in G is an independent set in the complement graph Ḡ, and

therefore Turán’s Theorem can be restated as the following formulation. We will give a

formal proof for the equivalence in Section 2.2.

Theorem 1.2 (Turán’s Theorem (Second Formulation)). Any n-node, m-edge graph G has

an independent set of size at least

n2

n + 2m
.

In this dissertation, we will illustrate how to apply Turán’s Theorem, mainly the second

formulation, to algorithmic problems in several ways, part of my previous publications [5,

10, 21]. We focus ourselves on the parts where we use Turán’s Theorem in Chapter 2, and

defer the full details of these algorithmic problems to Chapters 3, 4, and 5. We summarize

the algorithmic problems that we solved as follows.

The batched predecessor problem. The main question we answered in Chapter 3 is

a problem in the external memory model, in which each disk page has size B and each I/O

can read or write a disk page. Note that the performance is measured in the number of

I/Os rather than the number of CPU instructions because the former is the bottleneck of
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the entire performance. Given a sequence of N updates (insertions or deletions), one can

implement the updates with amortized

O
(

log1+Bε N

B1−ε

)

I/Os for any constant ε > 0, (1.1)

while retaining the cost of queries to be optimum. We are interested in whether the amor-

tized cost of predecessor search can be analogously better than O(logB N), the cost in the

worst case.

We show, unless a preprocessing with an Ω(N4/3) number of I/Os for is used, the

amortized cost of predecessor search cannot be better than that in the worst case in the

pointer machine model. We lower bound the amortized cost by analyzing the generalized

diameter of the graph underlying the structure of any feasible data structure. We introduce

in Section 2.4 the generalized diameter where we apply Turán’s Theorem. We refer readers

to Chapter 3 for the full details of the batched predecessor problem.

Cross-referenced dictionaries. The main question we answered in Chapter 4 is a prob-

lem in the comparison-based external memory model. It is known that the amortized cost

for updates in Equation (1.1) is the best possible (see the survey in [5]), if the cost for

queries needs to match the information-theoretical optimum. We show, however, that the

cost in Equation (1.1) cannot be attained when the input elements have dimension more

than 1. To state the result formally, we are given a sequence of insertions of tuples (ai, bi)

for i ∈ [1, N ], followed by a sequence of deletions (dk, ∗) for k ∈ [1, N1/2] that deletes all

(ai, bi)’s whose ai = dk. To answer range queries on b’s in a linear number of I/Os, the

amortized cost of insertions and deletions has a lower bound Ω(logB N/B2/3).

Not every input sequence, induced by the rank of ai’s and bi’s, yields the hardness result.

Thus, we require our proof to rely on an adversary input sequence, the concatenation of a

sufficiently large set S of independent permutations; that is, every pair of permutations

preserves a certain property. We resort to Turán’s Theorem to obtain a lower bound of

|S| in Section 2.3. We refer readers to Chapter 4 for the full details of our analysis for the

cross-referenced dictionaries.
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rSUM-hardness yields APX-hardness. In Chapter 5, we prove the APX-hardness

for every problem in a class of maximization problems, each of which is encoded by a

polynomial f . This class includes several natural problems, listed in Section 5.1. Let

f ∈ Z[x1, x2, . . . , xr] be an r-variate polynomial, and let S be f-root-free if for all distinct

x1, x2, . . . , xr ∈ S, f(x1, x2, . . . , xr) 6= 0. We denote by Pf the predicate of deciding if a

given set S has a root for f whose coordinates are distinct, i.e. S is not f -root-free, and by

Max-RF(f) the problem of finding the largest subset of a given S ⊂ Z that is f -root-free.

Our main theorems are:

Theorem 1.3. If f ∈ Z[x1, x2, . . . , xr] is a homogeneous linear polynomial consisting of

r ≥ 3 variables, then Max-RF(f) is APX-hard and cannot be approximated to within 1− εr

unless P = NP for any

εr < ∆r ≡
1

744.64 + 601.44(r − 3)
. (1.2)

Theorem 1.3 restricts the characteristic polynomials to be linear. We show two ways to

combine linear polynomials that yield APX-hard maximization problems.

Theorem 1.4. Let f =
∏k

i=1 ℓi where k is a constant and each ℓi ∈ Z[x1, x2, . . . , xri ] is a

homogeneous linear polynomial consisting of ri variables. If r = max1≤i≤k ri is at least 3,

then Max-RF(f) is APX-hard, and cannot be approximated to within 1− εr unless P = NP

for any εr < ∆r.

We can think of the products of polynomials as a disjunctive combination, in that an

r-tuple is a root of f if it is a root of any of the constituent linear polynomials. We also

have a conjunctive generalization, as follows. We say an r by k matrix M is strongly full

rank if k ≤ r and every k× k submatrix of M is full rank. Let v1,v2, . . . ,vk be vectors of

a same dimensionality, and let M = (v1|v2| . . . |vk) be the matrix where Mij = vj[i]. We

call M the aggregation of v1,v2, . . . ,vk. We say a vector space is in general position

if it has a set of basis vectors whose aggregation is strongly full rank.

Theorem 1.5. Let f =
∑k

i=1 ℓ
2
i be a r-variate polynomial1 where k is a constant and each

ℓi ∈ Z[x1, x2, . . . , xr] is a homogeneous linear polynomial. If the solution set of f = 0 is in

1We note here that r − 1 ≥ d and d ≥ 2 together yield r ≥ 3.
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general position and has dimension d at least 2, then Max-RF(f) is APX-hard, and cannot

be approximated to within 1− εr unless P = NP, for any

εr < Γr ≡
1

140(6⌈(r − 2)/6⌉+ 1)
.

As promised, Theorem 1.5 can be viewed as the conjunctive generalization of Theo-

rem 1.3, because the f -root-freeness of some set S implies that S is ℓi-root-free for every

i.

Our results rely on extending the NP-hardness to APX-hardness for several problems.

We show how to achieve the extensions in Section 2.5 by appealing to Turán’s Theorem.

We refer readers to Chapter 5 for the full proof of Theorems 1.3, 1.4, and 1.5.
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Chapter 2

Preliminaries

2.1 Notation

We define some notions that are used throughout this chapter. Let α(G) be the size of

maximum independent set of graph G. Let κ(G) be the size of maximum clique of graph

G. Let E [X] be the expectation value of random variable X. Let P [E] be the probability

that event E happens.

2.2 Proof of Turán’s Theorem

For the sake of self-contained, we first revisit the probabilistic proof of Theorem 1.2 that

was introduced in [88]. Then, we prove that Theorem 1.1 and Theorem 1.2 are equiva-

lent. This immediately gives a probabilistic proof for Theorem 1.1, which was proved by a

combinatorial argument [94].

Proof of Turán’s Theorem (Second Formulation). We prove this by a probabilistic

proof. Let G = (V,E) where V denotes the node set of G and E denotes the edge set of

G. Thus, |V | = n and |E| = m. Let f : V → {1, 2, . . . , n} be a bijective function, and note

that there are n! different such f ’s. Let If = {x ∈ V : f(x) < f(y) for all (x, y) ∈ E} be

a subset of V with respect to f . Clearly, If is an independent set of G because If cannot

contain both x and y if (x, y) ∈ E. Our goal is to show that

|If | ≥
n2

n + 2m
for some f. (2.1)

Let π be a random function sampled uniformly at random from the n! possible f ’s. Let

deg(x) be the degree of node x and d̄ =
∑

x∈V deg(x)/n be the average degree. For every
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node x ∈ V , we have the probability

P [x ∈ Iπ] = P [π(x) < π(y) ∀(x, y) ∈ E] =
1

1 + deg(x)
. (2.2)

Therefore, the expected size of Iπ is

E [|Iπ|] =
∑

x∈V
P [x ∈ Iπ] (linearity of expectation)

=
∑

x∈V

1

1 + deg(x)
(By (2.2))

≥
∑

x∈V

1

1 + d̄
((1 + x)−1 is convex for x ≥ 0)

=
∑

x∈V

1

1 + 2m/n
(handshaking lemma)

=
n2

n + 2m

Since there exists some f whose |If | ≥ E [|Iπ|], we are done. �

Theorem 2.1. The two formulation of Turán’s Theorem in Chapter 1 are equivalent, i.e.

Theorem 1.1 ⇔ Theorem 1.2.

Proof. (Theorem 1.1 ⇒ Theorem 1.2) Let G be any n-node, m-edge graph. Since α(G) =

κ(Ḡ), we know that Ḡ = (V̄ , Ē) contains no clique of size r = α(G) + 1. Thus,

(

1− 1

α(G)

)

n2

2
≥ |Ē| (Theorem 1.1)

⇒ (α(G)− 1)
n2

2
≥ α(G)|Ē| (2.3)

⇒
(

n2

2
− |Ē|

)

α(G) ≥ n2

2
(2.4)

⇒
(

n2

2
−
((

n

2

)

−m

))

α(G) ≥ n2

2
(2.5)

⇒ α(G) ≥ n2

n + 2m
(2.6)

(Theorem 1.1 ⇐ Theorem 1.2) Let G be any n-node graph that contains no clique of
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size r. Since κ(G) = α(Ḡ), we have that r − 1 ≥ κ(G) = α(Ḡ). Thus,

n2

n + 2|Ē| ≤ r − 1 (Theorem 1.2)

⇒ n2

n + 2
((

n
2

)

− |E|
) ≤ r − 1 (2.7)

⇒ n2 ≤ (r − 1)(n2 − 2|E|) (2.8)

⇒ 2(r − 1)|E| ≤ (r − 2)n2 (2.9)

⇒ |E| ≤
(

1− 1

r − 1

)

n2

2
(2.10)

Combining Theorems 1.2 and 2.1 yields a proof of Theorem 1.1.

2.3 On a Certain Set of Independent Permutations

We begin with the definition of independent permutations. Then, we discuss how large a

set of independent permutations can be.

Definition 2.2. Let πA, πB be two bijective functions from {1, 2, . . . , n} to {1, 2, . . . , n},

a.k.a. permutation functions. Let z be a factor of n, where qz = n for some q ∈ N. We de-

fine that π1, π2 are z-chunk independent iff for every k, ℓ ∈ {1, 2, . . . , q}, the intersection

of Ak and Bℓ has a constant size, independent of n, where

Ak = {πA(x) : (k − 1)z + 1 ≤ x ≤ kz} and Bℓ = {πB(x) : (ℓ− 1)z + 1 ≤ x ≤ ℓz} .

Definition 2.3. We say a set S of permutation functions from {1, 2, . . . , n} to {1, 2, . . . , n}

are z-chunk independent iff for every two permutation functions in S are z-chunk inde-

pendent.

Our main theorem is:

Theorem 2.4. For every integer n ≥ 1, every constant δ ∈ (0, 1/2) whereas nδ divides n,

there exists an nδ-chunk independent set S of permutation functions from {1, 2, . . . , n} to

{1, 2, . . . , n} whose size is at least nC for any constant C > 0.
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Proof. We construct a graph G = (V,E) of n! nodes where each node represents a unique

permutation function, and connect an edge between two nodes iff the represented permu-

tation functions are not z-chunk independent where z = nδ for some constant δ. Our goal

is thus to prove that G has an independent set of size nC .

By Theorem 1.2, we have that

α(G) ≥ |V |2
|V |+ 2|E| (2.11)

=
|V |2

|V |+ ∑

x∈V deg(x)
(2.12)

Because of symmetry, G is d-regular. Let f be the permutation function where f(x) = x,

and π be a permutation function sampled uniformly at random from the n! possible ones.

Let vf and vπ be the nodes in G that represent f and π, respectively. We have that:

d = |V |P [(vf , vπ) ∈ E] (2.13)

≤ |V |n1−δ

(

nδ

T

)(

1

n1−δ

)T

n1−δ (note that δ > 0)

≤ |V |n2−2δ−T (1−2δ) (note that δ < 1/2, and pick a sufficiently large T )

≤ |V |/nC for any constant C > 0 (2.14)

Combining Equations (2.12) and (2.14), we get

α(G) ≥ |V |2
(1 + d)|V | ≥

|V |
1 + |V |/nC

= nC−o(1) for any constant C > 0. (2.15)

Remark 2.5. If δ = 0 or δ > 1/2, it is clear that Theorem 2.4 does not hold. For δ = 1/2,

we do not know whether Theorem 2.4 hold or not, which is no easier than the almost

orthogonal vector problem for {0, 1}n. The corresponding almost orthogonal vector problem

for R
n needs a number theoretical construction due to Tao [87].

2.4 Generalized Diameter

We generalize the definition of graph diameter to k nodes for any k ≥ 2, denoted by k-

diameter dk(G), and prove a lower bound of k-diameter by Turán’s Theorem. 2-diameter
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is exactly the graph diameter; i.e. the greatest distance between any pair of nodes, where

the distance between two nodes is the number of edges in a shortest path that connects

them. For general k, we define the k-diameter as follows:

Definition 2.6. Let k-diameter be the maximum hyper-distance among any group of k

nodes, where the hyper-distance between k nodes is the number of edges in a minimum

node-cardinality spanning tree that connects them.

We recall the definition of r-independent set before proceeding to the helper lemma

(Lemma 2.7) where the r-independent set is a set of nodes whose pairwise distance is

more than r. Clearly, 1-independent set is exactly the independent set. Let αr(G) be the

cardinality of the maximum r-independent set.

Our helper lemma is:

Lemma 2.7.

dk(G) ≥ k(r + 1)/2 if k ≤ αr(G)

for any connected graph G.

Proof. Since k ≤ αr(G), there exist k nodes that form an r-independent set S. It suffices

to prove that any tree spanning S has at least k(r + 1)/2 edges.

Let T be any such tree of ℓ edges. Let v1, v2, . . . , vk be the order that vi ∈ S first appears

in the Eulerian tour of T that starts from an arbitrary node. Since the Eulerian tour of

T traverses each edge in T twice, and for each i the number of edges in the Eulerian tour

between the first appearance of vi and vi+1 cannot be less than their distance, we have:

2ℓ ≥ d(vk, v1) +
∑

1≤i≤n−1

d(vi, vi+1) ≥ k(r + 1).

Because T is arbitrarily picked, we are done.

Based on Lemma 2.7, we are able to obtain a lower bound of dk(G) if the αr(G) can be

bounded. A particular example is for regular graphs:

Theorem 2.8. For any connected t-regular n-node graph G where t ≥ 2, a lower bound for

the k-diameter of G is

dk(G) ≥ k
(

2 + logt−1

n

4tk

)

.
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Proof. Since a connected 2-regular graph is a cycle graph, the statement immediately holds.

We assume that t > 2 for the rest of the proof.

Let Gi be the i-th graph product of G, where an edge (u, v) ∈ Gi iff there is a path of

length i that connects u and v. Let G+ = G ∪ G2 ∪ · · · ∪ Gr. Clearly, an independent set

of G+ is an r-independent set of G and the degree of each node in G+ is at most

∑

0≤i≤r−1

t(t− 1)i ≤ 2t(t− 1)r−1 − 1 (2.16)

By Turán’s Theorem,

αr(G) ≥ n

2t(t− 1)r−1
. (2.17)

To apply Lemma 2.7, we require k ≤ αr(G). This can be asserted by letting

n

2t(t− 1)r−1
≥ k. (2.18)

⇔ 1 + logt−1

n

2tk
≥ r (2.19)

We are done by picking r as the greatest possible.

2.5 Extending the MIS-based NP-hardness Results

The NP-hardness of many problems is based on the NP-hardness of Maximum Independent

Set Problem (MIS). Usually, the NP-hardness reduction suffices to be an APX-hardness

reduction with resorting to Turán’s Theorem. We illustrate how to achieve this for several

example problems.

2.5.1 Hardness of Max-3SUM

We define Max-3SUM to be the maximization version of the 3SUM problem: Given a set S

of integers, find the largest T ⊆ S so that T has no 3 (distinct) elements that sum to 0, that

is, the largest T ⊆ S that fails the 3SUM test. We say such T a 3SUM-free set . For the

ease to explain the use of Turán’s Theorem, we restrict ourselves to the case that the three

elements are distinct. For the case of allowing repetition, we refer readers to Chapter 5.

In Chapter 5, we show that:
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Lemma 2.9. For any n-node m-edge graph G = (V,E), there exists an injective function

f : V ∪ E → Z so that G has an independent set of size k iff the set

S = {f(x) : x ∈ V ∪ E}

has a 3SUM-free subset of size m + k, where the function f can be found and evaluated in

time polynomial in n.

Since MIS is NP-hard, by Lemma 2.9 we know that Max-3SUM is NP-hard. By Turán’s

Theorem, Lemma 2.9 indeed implies something further:

Theorem 2.10. Max-3SUM is APX-hard.

Proof. Suppose for contradiction that there exists a polynomial-time algorithm A that can

compute a (1−ε)-approximation for the Max-3SUM problem where ε is some constant > 0.

For every n-node m-edge graph G = (V,E) where m ≤ δn for some constant δ, we use the

function f mentioned in Lemma 2.9 to obtain S = {f(x) : x ∈ V ∪E} and then run A with

the input S. The output of A will give a quantity

r ∈ [(1− ε)(α(G) + m), (α(G) + m)] (2.20)

in a bounded range by Lemma 2.9. On the other hand, by Turán’s Theorem we have that

α(G) ≥ n2

n + 2m
≥ n

1 + 2δ
≥ m

δ(1 + 2δ)
. (2.21)

Combining Equations (2.20) and (2.21), we get

α(G) ≥ r −m ≥ (1− ε)α(G)− εm ≥
[

1− (1 + δ + 2δ2)ε
]

α(G). (2.22)

Equation (2.22) suggests that if algorithm A can pick ε as an arbitrarily small positive

constant, then r −m gives an accurate estimation of α(G), up to a constant multiplicative

error arbitrarily close to 1. This leads to a contradiction because MIS has no PTAS for

3-regular graphs that have 1.5n edges. As a result, for some constant ε > 0, such algorithm

A does not exist, meaning that Max-3SUM is APX-hard.
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2.5.2 Hardness of MIS for Bounded-Girth Graphs

Let us recall that girth of graph G is the length of a shortest cycle in G. Let Cg be the

collection of all graphs that have girth > g. Clearly, C3 is the collection of all triangle-free

graphs. It is known in the literature that MIS for C3 is APX-hard [34] and MIS for Cg for

any constant g ≥ 3 is NP-hard [69]. Here, we gives a complementary result:

Lemma 2.11. For any n-node m-edge graph G, there exists a mapping f : G→ H so that

1. H has n + 2ℓm nodes, (2ℓ + 1)m edges, and girth ≥ 6ℓ + 3 for some constant ℓ,

2. H has an independent set of size k + ℓm iff G has an independent set of size k,

where f(G) can be computed in time polynomial in n.

Proof. Initially, let H be a copy of G. Then, for each edge (u, v) ∈ H, we replace the edge

with a path u−x1uv−x2uv−· · ·−x2ℓuv− v of length 2ℓ+ 1, where xiuv are newly added nodes.

It is clear that the resulting graph H satisfies the first condition.

(2.⇐) If G has an independent set S, we construct an independent set I of H by setting

I = S initially. Then, for each edge (u, v) ∈ G, if u ∈ S add x2uv, x
4
uv, . . . , x

2ℓ
uv to I, or

otherwise add x1uv, x
3
uv, . . . , x

2ℓ−1
uv to I. I thus has size |S| + ℓm and is an independent set

of H because for every edge (u, v) ∈ G, u, v cannot be both contained in S.

(2.⇒) Let I0 = B0 ∪W0 be an independent set of H where B0 is a subset of the nodes

from G and W0 is a subset of the newly added nodes. For each edge (u, v) ∈ G, if both

u and v are in B0, then |W0 ∩ {xiuv : i ∈ [1, 2ℓ]}| = t < ℓ. Thus, we can perform such an

operation

I1 ←
(

I0 \ {v} \ {xiuv : i ∈ [1, 2ℓ]}
)

∪ {x2uv, x4uv, . . . , x2(t+1)
uv }

while retaining |I1| = |I0|. Let I1 = B1 ∪W1, which are defined analogously. We iterate

the above procedure until we reach Ic where Ic = Bc ∪Wc and for every edge (u, v) ∈ G at

least one of u, v is not in Bc. Thus, Bc is an independent set of G. Since Wc has size at

most ℓm and |Ic| = |I|, we have |Bc| = |Ic| − |Wc| ≥ k.

Theorem 2.12. Maximum Independent Set problem is APX-hard for graphs in Cg for any

constant g ≥ 3.
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Proof. The proof is similar to that of Theorem 2.10. Suppose for contradiction that MIS

for graphs in Cg can be approximated to within a factor of (1 − ε) in polynomial time by

an algorithm A. Then, for any n-node m-edge graph G where m ≤ δn for some constant δ,

we use the function f indicated in Lemma 2.11 with such a constant ℓ that 6ℓ + 3 > g and

run A with input f(G). The output of A is

r ∈ [(1− ε)(ℓm + α(G)), (ℓm + α(G))] (2.23)

by Lemma 2.11. On the other hand, by Turán’s Theorem we have

α(G) ≥ n2

n + 2m
≥ n

(1 + 2δ)
≥ m

δ(1 + 2δ)
. (2.24)

Combining Equations (2.23) and (2.24), we get

α(G) ≥ r − ℓm ≥ (1− ε)α(G)− εℓm ≥
[

1− (1 + δℓ + 2δ2ℓ)ε
]

α(G). (2.25)

Again, if ε can be any arbitrarily small positive constant, then α(G) can be approximated

to within any constant factor arbitrarily close to 1, a contradiction.

Corollary 2.13. Maximum Independent Set problem is APX-hard for graphs that have

≤ δn edges and have girth ≥ g, where n is the number of nodes in a graph and g, δ are any

constants that g ≥ 3, δ ≥ 3/2.

Proof. In the proof of Theorem 2.12, we have a PTAS reduction from MIS for any n-node

m-edge graph that has m = 1.5n edges to MIS for any graph that has n + 2ℓm nodes and

(2ℓ + 1)m edges, where 6ℓ + 3 ≥ g. Thus, we require to set

δ ≥ (2ℓ + 1)m

n + 2ℓm
=

2ℓ + 1

2ℓ + 1
1.5

. (2.26)

Hence, any δ ≥ 1.5 suffices.

2.5.3 Hardness of Finding the Largest Subgraph Without Small Cycles

Based on Corollary 2.13 and Turán’s Theorem, we are able to generalize the classic NP-

hardness result for largest (in terms of the number of nodes) node-induced subgraph that

satisfies some hereditary property [64]. We say P a hereditary property if for any sub-

graph H ⊆ G, G satisfies P implies that H satisfies P. It is clear that containing no
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cycles of length ℓ is a hereditary property. Therefore, finding the largest node-induced sub-

graph that contains no cycles of length ℓ is NP-hard. We extend the NP-hardness result to

APX-hardness result as follows.

Theorem 2.14. Finding the largest node-induced subgraph that contains no cycle of length

ℓ is APX-hard.

Proof. Let G be any graph of girth > ℓ whose number of edges is at most 1.5 times of the

number nodes, which in the graph class described in Corollary 2.13. By the definition of

girth, G has no cycle of length ℓ. Let H be a copy of G. For each edge (u, v) ∈ H, replace

(u, v) with a cycle u− x1uv − x2uv − · · · − xℓ−2
uv − v− u of length ℓ where xiuv are newly added

nodes. Clearly, every cycle of length ℓ in H has the form u− x1uv − x2uv − · · · − xℓ−2
uv − v− u

for some u, v. Thus, to remove at least one node from each cycle of length ℓ, one can

simply consider the removal of u or v, or both, because the removal of a newly added node

eliminates the only one cycle of length ℓ where it locates. Hence, H has a node-induced

subgraph of size k + m(ℓ − 2) iff G has an independent set of size k. If there exists an

algorithm can approximate the largest node-induced subgraph to within a factor of (1− ε),

then one can get the quantity

r ∈ [(1− ε)(α(G) + m(ℓ− 2)), α(G) + m(ℓ− 2)]. (2.27)

On the other hand, by Turán’s Theorem we have

α(G) ≥ n2

n + 2m
≥ n

4
≥ m

6
. (2.28)

Combining Equations (2.27) and (2.28),

α(G) ≥ r − (ℓ− 2)m ≥ (1− ε)α(G)− ε(ℓ− 2)m ≥ [1− (6ℓ− 11)ε]α(G). (2.29)

Thus, the ε cannot be arbitrarily small. We are done.
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Chapter 3

Batched Predecessor Problem

3.1 Problem Definition and Background

A static dictionary is a data structure that represents a set S = {s1, s2, . . . , sn} subject

to the following operations:

Preprocess(S): Prepare a data structure to answer queries.

Search(q, S): Return true if q ∈ S and false otherwise.

Predecessor(q, S): Return maxsi∈S{si < q}.

The traditional static dictionary can be extended to support batched operations. Let Q =

{q1, . . . , qx}. Then, the batched predecessor problem can be defined as follows:

BatchedPred(Q,S): Return A = {a1, . . . , ax}, where

ai = Predecessor(qi, S).

In this chapter we prove lower bounds on the batched predecessor problem in external

memory [6], that is, when the dictionary is too large to fit into main memory. We study

tradeoffs between the searching cost and the cost to preprocess the underlying set S. We

present our results in the pointer-machine I/O model [86].

We focus on query size x ≤ nc, for constant c < 1. Thus, the query Q can be large,

but is still much smaller than the underlying set S. This query size is interesting because,

although there is abundant parallelism in the batched query, common approaches such as

linear merges and buffering [13, 28, 30] are suboptimal.

Our results show that the batched predecessor problem in external memory cannot be

solved asymptotically faster than Ω(logB n) I/Os per query element if the preprocessing
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is bounded by a polynomial; on the other hand, the problem can be solved asymptot-

ically faster, in Θ((log2 n)/B) I/Os, if we impose no constraints on preprocessing [21].

These bounds stand in marked contrast to single-predecessor queries, where one search

costs Ω(logB n) even if preprocessing is unlimited.

We assume that S and Q are sorted. Without loss of generality, Q is sorted because

Q’s sort time is subsumed by the query time. Without loss of generality, S is sorted, as

long as the preprocessing time is slightly superlinear. We consider sorted S throughout the

chapter. For notational convenience, we let s1 < s2 < · · · < sn and q1 < q2 < · · · < qx, and

therefore a1 ≤ a2 ≤ · · · ≤ ax.

Given that S and Q are sorted, an alternative interpretation of this problem is as follows:

how can we optimally merge two sorted lists in external memory? Specifically,

what is the optimal algorithm for merging two sorted lists in external memory when one

list is some polynomial factor smaller than the other?

Observe that the näıve linear-scan merging is suboptimal because it takes Θ(n/B) I/Os,

which is greater than the O(nc logB n) I/Os of a B-tree-based solution. Buffer trees [13,

28, 30] also take Θ(n/B) I/Os during a terminal flush phase. This chapter shows that

with polynomial preprocessing, performing independent searches for each element in Q is

optimal, but it is possible to do better for higher preprocessing.

Dittrich et al. [39] consider multisearch problems where queries are simultaneously pro-

cessed and satisfied by navigating through large data structures on parallel computers.

They give a lower bound of Ω(x logB(n/x) + x/B) under stronger assumptions: no dupli-

cates of nodes are allowed, the ith query has to finish before the (i+ 1)st query starts, and

x < n1/(2+ε), for a constant ε > 0.

Buffering is a standard technique for improving the performance of external-memory

algorithms [13, 28, 30]. By buffering, partial work on a set of operations can share an

I/O, thus reducing the per-operation I/O cost. Queries can similarly be buffered. In this

chapter, the number of queries, x, is much smaller than the size, n, of the data structure

being queried. As a result, as the partial work on the queries progresses, the query paths

can diverge within the larger search structure, eliminating the benefit of buffering.
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In order to show results in the I/O pointer-machine model, we define a graph whose

nodes are the blocks on disk of the data structure and whose edges are the pointers between

blocks. Since a block has size B, it can contain at most B pointers, and thus the graph

is fairly sparse. We show that any such sparse graph has a large set of nodes that are far

apart. If the algorithm must visit those well-separated nodes, then it must perform many

I/Os. The crux of the proof is that, as the preprocessing increases, the redundancy of the

data structure increases, thus making it hard to pin down specific locations of the data

structure that must be visited. We show that if the data structure is reasonable in size—in

our case O(n4/3−ε)—then we can still find a large, well dispersed set of nodes that must be

visited, thus establishing the following lower bound:

Theorem 3.1 (Lower bound, I/O pointer-machine model). Let S be a set of size n. In

the I/O pointer-machine model, if Preprocessing(S) uses O(n4/3−ε) blocks of space and

I/Os, for any constant ε > 0, then there exists a constant c and a set Q of size nc such that

computing BatchedPred(Q,S) requires Ω(x logB(n/x) + x/B) I/Os.

3.2 The Proof

Here we analyze the batched predecessor problem in the I/O pointer-machine model. We

show that if the preprocessing time is O(n4/3−ε) for any constant ε > 0, then there exists a

query set Q of size x such that reporting BatchedPred(Q,S) requires Ω(x/B+x logB n/x)

I/Os. Before proving our theorem, we briefly describe the model.

I/O pointer machine model. The I/O pointer machine model [86] is a generalization

of the pointer machine model introduced by Tarjan [89]. Many results in range reporting

have been obtained in this model [3, 4].

To answer BatchedPred(Q,S), an algorithm preprocesses S and builds a data struc-

ture comprised of nk blocks, where k is a constant to be determined later. We use a directed

graph G = (V,E) to represent the nk blocks and their associated directed pointers. Every

algorithm that answers BatchedPred(Q,S) begins at the start node v0 in V and at each

step picks a directed edge to follow from those seen so far. Thus, the nodes in a computa-

tion are all reachable from v0. Furthermore, each fetched node contains elements from S,
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and the computation cannot terminate until the visited set of elements is a superset of the

answer set A. A node in V contains at most B elements from S and at most B pointers to

other nodes.

Let L(W ) be the union of the elements contained in a node set W , and let N (a) be the

set of nodes containing element a. We say that a node set W covers a set of elements A if

A ⊆ L(W ). An algorithm for computing A can be modeled as the union of a set of paths

from v0 to each node in a node set W that covers A.

To prove a lower bound on BatchedPred(Q,S), we show that there is a query set

Q whose answer set A requires many I/Os. In other words, for every node set W that

covers A, a connected subgraph spanning W contains many nodes. We achieve this result

by showing that there is a set A such that, for every pair of nodes a1, a2 ∈ A, the distance

between N (a1) and N (a2) is large, that is, all the nodes in N (a1) are far from all the nodes

in N (a2). Since the elements of A can appear in more than one node, we need to guarantee

that the node set V of G is not too large; otherwise the distance between N (a1) and N (a2)

can be very small. For example, if |V | ≥
(

n
2

)

, every pair of elements can share a node, and

a data structure exists whose minimum pairwise distance between any N (a1) and N (a2) is

0.

First, we introduce two measures of distance between nodes in any (undirected or

directed) graph G = (V,E). Let dG(u, v) be the length of the shortest (di-)path from

node u to node v in G. Furthermore, let  LG(u, v) = minw∈V (dG(w, u) + dG(w, v)). Thus,

 LG(u, v) = dG(u, v) for undirected graphs, but not necessarily for directed graphs.

For each W ⊆ V , define fG(W ) to be the minimum number of nodes in any connected

subgraph H such that (1) the node set of H contains W ∪ {v0} and (2) H contains a path

from v0 to each v ∈ W . Observe that fG({u, v}) ≥  LG(u, v). The following lemma gives

a more general lower bound for fG(W ). In other words, the size of the graph containing

nodes of W is linear in the minimum pairwise distance within W .

Lemma 3.2. For any directed graph G = (V,E) and any W ⊆ V of size |W | ≥ 2, fG(W ) ≥

rW |W |/2, where rW = minu,v∈W,u 6=v  LG(u, v).

Proof Sketch. Consider the undirected version of G, and consider a TSP of the nodes in
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W . It must have length rW |W |. Any tree that spans W must therefore have size at least

rW |W |/2. Finally, fG(W ) contains a tree that spans W .

Our next goal is to find a query set Q such that every node set W that covers the

corresponded answer set A has a large rW . The answer set A will be an independent set of

a certain kind, that we define next. For a directed graph G = (V,E) and an integer r > 0,

we say that a set of nodes I ⊆ V is r-independent if  LG(u, v) > r for all u, v ∈ I where

u 6= v. The next lemma guarantees a substantial r-independent set.

Lemma 3.3. Given a directed graph G = (V,E), where each node has out-degree at most

B ≥ 2, there exists an r-independent set I of size at least |V |2
|V |+4r|V |Br .

Proof. Construct an undirected graph H = (U,F ) such that U = V and (u, v) ∈ F iff

 LG(u, v) ∈ [1, r]. Then, H has at most 2r|V |Br edges. By Turán’s Theorem [88], there

exists an independent set of the desired size in H, which corresponds to an r-independent

set in G, completing the proof.

In addition to r-independence, we want the elements in A to occur in few blocks, in

order to control the possible choices of the node set W that covers A. We define the

redundancy of an element a to be |N (a)|. Because there are nk blocks and each block

has at most B elements, the average redundancy is O(nk−1B). We say that an element

has low redundancy if its redundancy is at most twice the average. We show that there

exists an r-independent set I of size nε (here ε depends on r) such that no two blocks share

the same low-redundancy element. We will then construct our query set Q using this set of

low-redundancy elements in this r-independent set.1

Finally, we add enough edges to place all occurrences of every low-redundancy element

within ρ < r/2 of all other occurrences of that element. We show that we can do this

by adding few edges to each node, therefore maintaining the sparsity of G. Since this

augmented graph also contains a large r-independent set, all the nodes of this set cannot

share any low-redundancy elements.

1Our construction does not work if the query set contains high redundancy elements, because high
redundancy elements might be placed in every block.
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The following lemma shows that nodes sharing low-redundancy elements can be con-

nected with low diameter and small degrees.

Lemma 3.4. For any k > 0 and m > k there exists an undirected k-regular graph H of

order m having diameter logk−1m + o(logk−1m).

Proof. In [24], Bollobás shows that a random k-regular graph has the desired diameter with

probability close to 1. Thus there exists some graph satisfying the constraints.

Consider two blocks B1 and B2 in the r-independent set I above, and let a and b be

two low-redundancy elements such that a ∈ B1, b /∈ B1 and a /∈ B2, b ∈ B2. Any other

pair of blocks B
′

1 and B
′

2 that contain a and b respectively must be at least (r− 2ρ) apart,

since B
′

i is at most ρ apart from Bi. By this argument, every node set W that covers A

has rW ≥ (r − 2ρ). Now, by 3.2, we get a lower bound of Ω((r − 2ρ)|W |) on the query

complexity of Q. We choose r = c1 logB(n/x) and get ρ = c2 logB(n/x) for appropriate

constants c1 > 2c2. This is the part where we require the assumption that k < 4/3 as shown

in Theorem 3.1, where nk was the size of the entire data structure. We then apply 3.3 to

obtain that |W | = Ω(x).

Proof of Theorem 3.1. We partition S into Sℓ and Sh by the redundancy of elements in

these nk blocks and claim that there exists A ⊆ Sℓ such that query time for the corresponded

Q matches the lower bound.

Let Sℓ be the set of elements of redundancy no more than 2Bnk/n (i.e., twice of the

average redundancy). The rest of elements belong to Sh. By the Markov inequality, we

have |Sℓ| = Θ(n) and |Sh| ≤ n/2. Let G = (V,E) represent the connections between the nk

blocks as the above stated. We partition V into V1 and V2 such that V1 is the set of blocks

containing some elements in Sℓ and V2 = V \ V1. Since each block can at most contain B

elements in Sℓ, |V1| = Ω(n/B).

Then, we add some additional pointers to G and obtain a new graph G′ such that, for

each e ∈ Sℓ, every pair u, v ∈ N (e) has small  LG′(u, v). We achieve this by, for each

e ∈ Sℓ, introducing graph He to connect all the nk blocks containing element e such that

the diameter in He is small and the degree for each node in He is O(Bδ) for some constant

δ. By 3.4, the diameter of He can be as small as
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ρ ≤ 1

δ
logB |He|+ o(logB |He|) ≤

k − 1

δ
logB n + o(logB n).

We claim that the graph G′ has a (2ρ+ ε)-independent set of size nc, for some constants

ε, c > 0. For the purpose, we construct an undirected graph H(V1, F ) such that (u, v) ∈ F

iff  LG′(u, v) ≤ r. Since the degree of each node in G′ is bounded by O(Bδ+1), by 3.3, there

exists an r-independent set I of size

|I| ≥ |V1|2
|V1|+ 4r|V |O(Br(δ+1))

≥ n2−k

4rO(Br(δ+1)+2)
= nc.

Then, r = ((2−k−c) logB n)/(δ+1)+o(logB n). To satisfy the condition made in the claim,

let r > 2ρ. Hence, (2 − k − c)/(δ + 1) > 2(k − 1)/δ. Then, k → 4/3 for sufficiently large

δ. Observe that, for each e ∈ Sℓ, e is contained in at most one node in I; in addition, for

every pair e1, e2 ∈ Sℓ where e1, e2 are contained in separated nodes in I, then  LG′(u, v) ≥ ε

for any u ∋ e1, v ∋ e2. By 3.2, we are done. �
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Chapter 4

Cross-referenced Dictionaries

4.1 Problem Definition and Background

Dictionaries remain the most well studied class of data structures. A dictionary supports

insertions, deletions, membership queries, and usually successor, predecessor, and extract-

min operations. But surprisingly basic questions about dictionaries remain unanswered.

Some of these basic questions arose as far back as the pre-computer era, whenever people

indexed large collections of data. The library of Alexandria is thought to have contained over

600,000 volumes, partitioned first into seven broad topics and then shelved alphabetically by

author [52,100]. Each volume is thought to have had tags called pinakes,1 which contained

metadata. Pinakes were also compiled into a separate volume, which is thought to have been

the first library catalog. Thus, people could search for books using the pinakes, but only by

scanning through the pinakes in 〈subject, author〉 order. It was many centuries before there

were any libraries of size comparable to that of Alexandria after that library was destroyed,

and during that time, libraries were indexed using content-addressable-memory systems—

that is, “curators, slaves or freedmen” [55,58].

Circa 1295, the library at the Collège de Sorbonne at the Université de Paris introduced

indexes [78], in the sense that there were volumes compiled for the purpose of locating books

according to a variety of criteria. For the first time it became possible to search the content

of a library according to distinct orders (by author, subject, or collection2), while the books

themselves were stored on the shelves in any convenient order. In 1791, Enlightenment

thinkers of the French Revolution introduced card catalogs as indexes, making it easier for

1“Pinakes” is ancient Greek for “tables”, and is thus consistent with modern database nomenclature.

2No title indexes were compiled, since titles were not fixed at that time [77].
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the indexes to track the changing collection [54].

Today books are stored on the shelves according to a subject-classification scheme

(usually the Dewey Decimal System [38] or the Library of Congress Classification Sys-

tem (LC) [71]) to allow for browsing, but they are also indexed in other orders (author,

title, subject, keyword). Each particular index on the books is a dictionary ordered by a

different key.

Specifying Operations of a Dictionary.

The actual data structure at work organizing a library is not merely a set of dictionaries, but

a system of cross-referenced dictionaries, which we call a compound dictionary . We

call a compound dictionary an L-dictionary if it consists of L cross-referenced dictionaries.

A compound dictionary maintains a cross-reference invariant , where each dictionary—

which we sometimes call an index—stores the same set of items but orders them according

to a different comparison function. Thus, every time that a book is inserted into or deleted

from the library, each index needs to be updated.

An abstraction of a compound dictionary is as follows. The L-dictionary maintains a

set S ⊆ U1×U2×· · ·×UL. Each (potentially infinite) key space Ui is totally ordered. Items

can be inserted, deleted, and queried:

• insert(x): S ←− S ∪ {x}. That is, add x to S.

• delete(i, x): S ←− S − U1 × · · · × Ui−1 × {x} × Ui+1 × · · · × UL.

That is, remove all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 whose ith component is x.

• lookup(i, x): return S ∩ U1 × · · · × Ui−1 × {x} × Ui+1 × · · · × UL.

That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 whose ith component is x.

• range(i, r1, r2): return S ∩ U1×· · ·×Ui−1× [r1, r2]×Ui+1×· · ·×UL, where [r1, r2] =

{x | r1 ≤ x ≤ r2}.

That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 in S for which r1 < x < r2.

We refer to the index on Ui as Ii.
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Observe that compound dictionaries are distinct from multi-dimensional indexes because

delete and query operations on compound dictionaries specify only a single coordinate,

whereas delete and query operations on a multi-dimensional dictionary might allow all or

some of the coordinates of the deleted item or queried rectangle to be specified.

Compound Dictionaries in Databases.

The compound dictionary is one of the most (if not the most) widely used data-structural

abstraction, because it appears in essentially every relational database management system

(RDBMS). In database terminology, indexes are sometimes also called tables, and the

elements that are inserted and deleted are typically called rows.

The actual specification of a database is slightly different: indexes can be defined on

tuples of fields; deletions can only be specified on so-called primary keys; and in some

databases, only U1 can be primary; some fields may not have any index associated with

them; etc. Our version of the problem is similar enough to capture the essential algorithmic

challenge of compound dictionaries.

The Complexity of Deletes in a Compound Dictionary.

Considering that compound dictionaries have been around for 720 years and are the basic

data structure of databases, it may seem surprising that the algorithmic literature is largely

silent on this data structure.

On the other hand, at first glance, there’s not that much to say. Insertions, for example,

into an L-dictionary are simply L times slower than an insertion into a single dictionary,

on both a RAM and in external memory.

Now consider deletes. On a RAM, deletions take O(logN) operations on a dictionary

and O(L logN) on an L-dictionary. As with insertions, a deletion from an L-dictionary can

be decomposed into L deletions from regular dictionaries.

Even in external memory, the problem seemed trivial until recently. The B-tree [18]

achieves optimal O(logB N + K/B) I/Os for range queries on K elements and O(logB N)
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I/Os for insertions and deletions. On an L-dictionary implemented using B-trees, the dele-

tion cost is O(L logB N) I/Os. Once again, a deletion to the compound dictionary is a

deletion on each dictionary.

But a little bit more is actually going on, because a deletion seems to require a search.

Consider a 2-dictionary on U1×U2. An insertion of 〈u, v〉 consists of adding 〈u, v〉 into I1 or-

dered by u and into I2 ordered by v. A deletion delete(1, u) seems to require lookup(1, u)

to fetch the pair 〈u, v〉, followed by removing 〈u, v〉 from both I1 and I2. In short, an actual

delete from a constituent index requires knowing the key to be deleted. But this seems to

require a query to find all the necessary keys.

For a B-tree, this query is not a problem. We get the desired bounds by noting that

deletions take the same amount of time as searches. One query to get all keys does not slow

down the L deletions from the individual dictionaries.

Compound Dictionaries and Write Optimization.

In recent years, both the theory and practice of external-memory dictionaries have been

revolutionized by write-optimization techniques. Write-optimization is a somewhat in-

formal concept in the file-system and database communities, but it boils down to this: a

dictionary is write-optimized if insertions and deletions are substantially better than those

of a B-tree, while point queries are as good or nearly as good.

The best (write-optimized) dictionaries maintain (optimal) O(log1+Bε N + K/B) I/Os

for range queries while achieving a substantially improved insertion and deletion cost of

O(
log1+Bε N

B1−ε ) amortized I/Os, for 0 ≤ ε ≤ 1, while [20, 27, 29].

Write optimization techniques are now widespread in the database world [12, 33, 51, 62,

91, 92] and are starting to have an impact on file systems [46, 56, 57, 75, 102].

Deletes and Write Optimization.

Write-optimized databases and file systems show a marked asymmetry between inser-

tions/deletions and queries in that for ε < 1, the cost of inserting and deleting is much

lower than the cost of a query. In such data structures, a delete is typically implemented
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as the insertion of a tombstone message, which changes the state of the data structure so

that subsequent queries no longer see the deleted item. Given the gap in the I/O budgets of

insertion/deletions vs queries, it is not possible to determine if an insertion is overwriting a

previous insertion, if a delete is deleting an item that actually belongs to the set, etc. This

asymmetry introduces an algorithmic issue with compound dictionaries.

An L-dictionary composed of write-optimized dictionaries (WODs) takes time

O
(

L
log1+Bε N

B1−ε

)

(4.1)

to insert into all indexes. However, consider the deletion algorithm, which includes a search.

Searches are much slower than insertions, and so the time to delete is

O
(

log1+Bε N + L
log1+Bε N

B1−ε

)

. (4.2)

Write optimization does help, because the L multiplies a low-order term, but deletions do

not enjoy the full benefits of write optimization.

The alternative is to push the slowdown to the query: one could keep a data structure of

all the deletions. Suppose that there is a set D = {d1, d2, ..., dℓ} of deletion delete(1, di).

A query range(2, x, y) considers a sequence 〈ai, bi〉, where x ≤ bi ≤ y. Some of these ai

might belong to D, and any such pair would need to be filtered out of the answer. These

lookups in a data structure on D would slow down the queries, thus yielding deletions that

match the write-optimization bound for deletions but with suboptimal queries.

In either case, the crux of the difficulty seems to be the jump from a single dictionary

to a 2-dictionary. In the remainder of the chapter, we therefore restrict our attention to

2-dictionaries when talking about compound dictionaries.

Deletes and Databases.

So far, we have described the problem of deletes in write-optimized indexes. This problem

is of algorithmic interest, certainly, because the run-time of deletes is a big gap in our

understanding of indexing. However, we did not come to this problem originally from a

consideration of algorithmic issues. Instead, while building TokuDB [93], we had to deal

with the issue of deletions. Deletions are a big problem in the design of write-optimized
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storage systems. What is particularly interesting to us in this problem is that the pragmatics

of building a database so exactly line up with the algorithmics of compound dictionaries.

Warming Up.

Before we consider the problem of deletes in 2-dictionaries, we examine the simpler count

problem on single dictionaries. In its simplest version, the count of a dictionary returns the

cardinality of the set S being indexed.

In many instantiations of a dictionary, such as in a database, dictionaries support over-

write insertions, in which a new insertion with the same key replaces the old key. (Actually,

the value associated with the key replaces the old value). In RAM, such operations takes

O(logN) time, and counts can be computed in O(logN) time. In a B-tree, such operations

take O(logB N) I/Os, and counts can be computed in O(logB N) I/Os.

In a WOD, however, insertions take very few I/Os compared to queries. There are not

enough I/Os in an insertion to resolve whether a particular insertion is a new insertion or an

overwrite. It seems that we need a query to resolve this issue, either at the time of insertion

or at query time, in order to achieve an accurate count. Once again, the asymmetry between

the cost of insertions and the cost of queries in a WOD seems to cause some algorithmic

problems for some operations.

Our Results.

In this chapter, we warm up by showing that the count operation is slow if insertions are

write optimized. Specifically, we show that it is impossible to achieve O(logB N) I/Os for

count in the external-memory comparison model unless insertions take Ω(logB N). That is,

no write optimization is possible at all for this problem. This result serves as both a first

proof on the limits of write optimization and as a simplified proof that shows some of the

techniques of the main result. The details can be found in 4.2.

In 4.3, we establish limits on write optimization for deletions on 2-dictionaries. We prove

that one may either achieve fast deletes or optimal range queries but not both. Our result

is not as general as the count result, because our lower bound establishes that some parts of

the write-optimization tradeoff curve are not achievable, whereas in the count lower bound,
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we show that no write optimization is achievable at all. We conjecture that if range queries

are optimal, then deletes takes Ω(logB N) (in the I/O comparison model), that is, that no

write optimization is possible for this problem either. We leave this conjecture for future

work.

Related Lower Bounds.

Brodal and Fagerberg [29] derived lower bounds on the update/query tradeoff for exter-

nal memory one-dimensional dictionaries. For the predecessor problem, they showed that

to achieve query time O(logB N), updates must take Ω(
log1+Bε N

B1−ε ) I/Os amortized. They

also constructed buffered-B trees that achieve this tradeoff, thus essentially solving the 1D

predecessor problem for most choices of parameters.

Verbin and Zhang [95] considered problems like 1D range counting, membership, prede-

cessor, etc., in dictionaries. They show that: if the update take is less than 1 I/O, queries

must be roughly logarithmic in N ; and if the update take 1 + o(1) I/Os, then hashing gives

O(1) query time.

Ke Yi [101] considered the range query problem in dictionaries, and showed that es-

sentially all known versions of dynamic B-trees are optimal for this problem, as long as

logB(N/M) is a constant.

4.2 Counts and Dictionaries

We define 1-D count problem as follows:

• Static Insertion Phase: Preprocess set S = {a1, a2, . . . , aN}.

• Dynamic Insertion Phase: Insert a sequence of
√
N elements D = {d1, d2, . . . , d√N}.

• Counting Phase: Output the count, |S ∪ D|.

Theorem 4.1. In the comparison-based external-memory model, for any algorithm that

solves the 1-D count problem using O(N logB N) I/Os for the static insertion phase, there

is a constant c < 1 so that if it performs at most c
√
N logB N I/Os for the dynamic insertion

phase, it must perform Ω(
√
N logB N) I/Os in the worst case to output the count |S ∪ D|.
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Proof. Let the sorted order of S be a1 < a2 < · · · < aN . Suppose the adversary reveals

that each dk is in a disjoint subrange of S as follows: a1 ≤ d1 ≤ a√N , a√N+1 ≤ d2 ≤

a2
√
N , . . . , a(

√
N−1)

√
N+1 ≤ d√N ≤ aN . In the comparison-based model, the only information

that the algorithm can learn about dk is the set of possible ai that might match dk, i.e. that

dk = ai, for some i, or that there it lies in some open interval (ai, aj), but the relative order

of ai+1 and dk is unknown, (and symmetrically with aj−1). We say that dk is resolved

if we know that dk = ai or dk ∈ (ai, ai+1), for some i. Otherwise it is unresolved on

some interval (ai, aj), j > i + 1. We note here that in this setting, the algorithm knows

that d1 < d2 < · · · < d√N , so no extra information can be inferred by comparing pairs of

elements in D.

Suppose that the adversary reveals to the algorithm the additional information |S ∪ D|

is either N +
√
N or N +

√
N − 1. That means at most one member of D matches some

member of S.

To distinguish between the two cases, the algorithm can be forced to identify the pre-

decessors and successors for the each dk. The adversary never declares that an element of

D is equal to an element of S and this forces the algorithm to resolve all the intervals. To

see this, suppose at the end of Counting Phase some dk is unresolved in interval (ai, aj),

j > i+ 1. For all the other members of D, the adversary chooses to have those elements be

distinct from the elements of S; this is possible since the adversary has never declared the

existence of an equality between elements of D and S. Now, the adversary can choose to

set dk = ai or ai < dk < ai+1 that results in an incorrect count.

Therefore, all the elements of D must be resolved, however, if dk is resolved, then

the algorithm knows the successor and predecessor of dk. It is known that finding the

predecessors for each dk requires Ω(
√
N logB N) (say, at least c+

√
N logB N) I/Os [22,

Theorem 7]. We set c = c+/2, and since the I/Os spent on the second phase is c
√
N logB N

(choose c < c+/2), the third phase must pay off the difference c+
√
N logB N−c

√
N logB N ∈

Ω(
√
N logB N), hence proving the theorem.



30

4.3 Deletes and 2-Dictionaries

In this section we show that a 2-dictionary supporting optimal range queries cannot achieve

the write-optimization bound (O(
log1+Bε N

B1−ε )) for any ε ∈ (0, 1/3). Brodal and Fagerberg [29]

proved a lower bound on the update/query tradeoff for the predecessor problem in one-

dimensional external memory dictionaries, and showed that the buffered-Bε tree achieves

the optimal write-versus-query tradeoff (same as the write-optimization bound mentioned

earlier). Here we show that such a tradeoff is not possible in cross-referenced dictionaries.

Specifically, we show a lower bound for 2-Dictionary Deletion Problem (2DD),

which we define as the problem of performing the following compound-dictionary commands,

during three different phases.

• Phase 1: Let A = {ai} and B = {bi} be sorted sets of N elements each. This phase

consists of inserting a set S = {〈ai, bj〉}, by performing N insertions insert(ai, bj).

Define π by ai = π(bj).

• Phase 2: This phase consists of a set D = {di} ⊆ A of
√
N deletions delete(1, di)

on the first coordinate.

• Phase 3: This phase consists of one range query range(2, bℓ, br) on the second coor-

dinate.

In the general setting, inserts, deletes and range queries can be provided in any order. This

general problem is obviously harder than the “three phase” problem defined above (the

defined problem is an instance), so a lower bound on our problem is a lower bound on the

general cross-referenced 2-dictionary maintenance problem.

Our main result is the following theorem:

Theorem 4.2. For any data structure that solves the 2DD problem, if an insertion takes

amortized O(logB N) I/Os and a deletion takes amortized O((logB N)/Bα) I/Os for any

constant α > 2/3, then some range query range(2, bℓ, br) requires ω(logB N +K/B) I/Os,

where K = |B ∩ [bℓ, br]| is the number of b’s inserted (but not deleted) in the range [bℓ, br].



31

4.3.1 Proof Outline.

As in the proof of Theorem 4.1, we specify that the members of D come from disjoint ranges

of A, each of size
√
N . We perform the allowed I/Os and find the uncertainty ranges for

all the deletions. In this proof, we more carefully quantify the uncertainty that remains in

all the deletions, because we need this uncertainty to be large enough to lower bound the

number of I/Os of a range query.

In other words, counts take O(logB N) I/Os, whereas range queries take O(logB N +

K/B). If K is large, then this term dominates the I/O complexity of a range query.

Specifically, it is not enough simply to figure out that there are unresolved deletions, since

the unresolved deletions could potentially be resolved while answering the range query.

Thus, we need to make sure that the I/Os required to resolve the deletion completely cannot

be amortized against those used to answer the range query.

To begin, we need to refine Theorem 7 from [22] (which states that not all searches can

fully resolve in less than c+ logB N I/Os per query, for some constant c+) with a stronger

lower bound on the total size of the unresolved intervals. (See Lemma 4.4.)

Because the remaining uncertainty is large, there are many tuples in I2 that might

be deleted. We want to find a range query that has many such potential deletions. In

Lemma 4.6 we show that such hot regions exist they involves a sufficient number of different

di’s. We need to show that not too many of these di’s can be filtered out as having been

deleted (it is important to know that it is enough for the range query to simply not output

any of the di’s rather than fully resolve them). This is done by showing that not too many

of these deletions can be fetched into memory as a byproduct when the algorithm fetches

other di’s. To guarantee this, we require π to satisfy two conditions, Ca and Cb, that

roughly speaking require that π sufficiently “shuffles” the elements of A and B. Lemma 4.3

guarantees the existence using the probabilistic method and Turán’s Theorem [88].

4.3.2 Preliminaries.

We assume that every I/O can read/write a disk page capable of storing B = logτ N tuples

for some sufficiently large constant τ , the physical memory can store M = O(Nµ) tuples,
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and the range query has size K = N δ and µ < δ < 1/4 are constants. The constants τ and

δ are found during the course of the proof.

Specifying the insertions and deletions.

Let a1, . . . , aN be the sorted order of A and b1, . . . , bN the sorted order of B. We assume

that ai 6= ai+1 and bi 6= bi+1, for 1 ≤ i < N , that is, A and B each have N distinct values.

Recall that the N inserted tuples be (π(bi), bi) for i ∈ [N ], where π is a mapping from

{b1, . . . , bN} to {a1, . . . , aN}.

We will break A into chunks of size
√
N as we did in the proof of Theorem 4.1. We say

that ai has color k, abbreviated as c(ai) = k, if ⌈i/
√
N⌉ = k. We say bi has color k if π(bi)

has color k and overload the color function so that c(T ) = {c(bi) : bi ∈ T}. For every fixed

constant r ∈ (0, 1) and 1 ≤ t ≤ N1−r, we define the sets

St,Nr = {bi : ⌈i/N r⌉ = t}.

Not every π is suitable for our lower bound. Consider, for example, the degenerate case

that π(bi) = ai for all i ∈ [N ]. If π(bi) is directly computable from ai with no I/Os, then

the theorem does not hold. We can insert a deletion message into both indices and write

optimization works just fine.

Hence, to prove the theorem, we cannot choose π arbitrarily. We will pick a π that

satisfies the following two conditions.

Ca. c(bi) 6= c(bj) if bi 6= bj and bi, bj ∈ St,
√
N for some t ∈ [

√
N ].

In other words, the permutation must be compatible with the following: Break B into

chunks of size
√
N in order. Take the elements of each of these chunks and map them to

some element in A, so that no two elements in the same chunk of B fall within the same

chunk of size
√
N in A.

Cb. |c(St,Nδ) ∩ c(St′,Nδ)| = O(1) for every t 6= t′ ∈ [N1−δ], for some fixed constant δ ∈

(0, 1/4).

This is a crucial property. Note here that |c(St,
√
N ) ∩ c(St′,

√
N )| =

√
N given Ca. This

condition requires that if we break B into finer chunks of size N δ, that we call subchunks,
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A :
︷ ︸︸ ︷

√
N

︸︷︷︸

N
δ

Figure 4.1: We decompose the ordered list of elements inA into
√
N chunks of size

√
N . The

elements in the same chunk are assigned the same color. Each chunk is further decomposed
into subchunks of size N δ for some parameter δ to be fixed later.

then the pairwise intersections must have constant size. See Figure 4.1. The following

lemma shows the existence of such a π.

Lemma 4.3. For every N and δ ∈ (0, 1/4), there exists some π that satisfies both Ca and

Cb.

Proof. To satisfy Ca, it requires that c(St,
√
N ) = {1, 2, . . . ,

√
N} for every t ∈ {1, 2, . . . ,

√
N}.

Hence, c(b1), c(b2), . . . , c(bN ) is a concatenation of
√
N permutations of {1, 2, . . . ,

√
N}.

There are (
√
N)! such permutations but, to satisfy Cb, some permutations cannot be

placed together in the concatenation. We construct a graph G = (V,E) to describe which

permutations cannot be placed together. Each node in G denotes a permutation and thus

|V | = (
√
N)!. If two permutations cannot be placed together in the concatenation due to

Cb, then we connect the representative nodes by an edge. Because of symmetry, the graph

is regular.

Here we upper bound the degree of each node. Let π0 be a permutation specified by

some fixed node and πrand be a permutation specified by the node picked uniformly at

random. Let T be the threshold constant in Cb (i.e. |c(St,Nδ)∩ c(St′,Nδ)| < T ). Let further

P [[] i1, i2, . . . , iT ;πrand] be the probability that i1, i2, . . . , iT fall within the same subchunk

of πrand. Then, each node in G has degree

d =
(√

N
)

! · P [[]π0 and πrand can’t be placed together]

≤
(√

N
)

!
∑

i1,i2,...,iT distinct, and
are in the same π0’s subchunk

P [[] i1, i2, . . . , iT ;πrand]

≤
(√

N
)

!
(

N1/2−δ
)

(

N δ

T

)(

1

N1/2−δ

)T
(

N1/2−δ
)

≤
(√

N
)

!
(

N1−2δ−T (1/2−2δ)
)

(note that δ < 1/4)

≤
(√

N
)

!/N (pick a sufficiently large T )
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By Turán’s Theorem, the graph G = (V,E) has an independent set of size at least

|V |2
|V |+ 2|E| ≥

((√
N
)

!
)2

(√
N
)

! +
((√

N
)

!
)2

/N
= N − o(1),

meaning that some carefully chosen
√
N permutations can be placed together in the con-

catenation without violating Cb. As a result, the desired π exists.

Given a mapping π that satisfies the both conditions, the adversary conducts the fol-

lowing adversarial sequence of insertions and deletions:

• Insertion Phase: The adversary inserts, in any order, N tuples (π(bi), bi) for every

i ∈ [N ].

• Deletion Phase: The adversary deletes, in any order,
√
N tuples (dk, ∗) for every

k ∈ [
√
N ], where dk = ai for some ai whose color is k.

At the beginning of the deletion phase, each dk, for k ∈ [
√
N ], might match any ai whose

color is k. We say that dk has uncertainty u, abbreviated as U(dk) = u, if the number of

ai’s that can match dk equals u. While performing the I/Os for deletions, some comparisons

between a’s and d’s are made and thus the uncertainly U(dk) of any dk might shrink, but

we claim that not by too much, in aggregate, of all k. Here we prove a quantitative bound

for the sum of the U(dk) at the end of the deletion phase.

Lemma 4.4. Any algorithm for 2DD over an adversarial sequence that uses amortized

O(logB N) I/Os per insertion and O(logB N/Bα) I/Os per deletion, for any constant α ∈

(2/3, 1), has
∑

k∈[
√
N ],U(dk)>1

U(dk) = Ω(N/B1−α)

at the end of the deletion phase.

Proof. It suffices to show that the desired lower bound holds even if the adversary reveals

some information for each dk at the beginning of the deletion phase. For each k ∈ [
√
N ],

the adversary partitions the range [(k − 1)
√
N + 1, k

√
N ] into Br equal-sized consecutive

subranges for some constant r determined later. See Figure 4.3. It then randomly picks a
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subrange and reveals to the algorithm that dk equals some ai in the subrange. After such

a revelation,
∑

k∈[
√
N ],U(dk)>1

U(dk) = Ω(N/Br).

A :
︷ ︸︸ ︷

√
N

︸︷︷︸√
N

Br

dk

Figure 4.2: Partitioning a chunk into Br subranges. dk will be chosen inside the some
subrange inside the k-th chunk.

Claim 4.5. For some combination of randomly picked subranges and r ∈ (0, 1/3), the sum

of uncertainty Ω(N/Br) cannot be further narrowed down by any superconstant factor at

the end of the deletion phase.

Proof. Let us consider the I/Os performed during the deletion phase. These I/Os can bring

a’s from disk to memory for subsequent comparisons with d’s, and thus the uncertainty of

d’s can be reduced. For each a that is brought into memory, it is only possible to reduce

the uncertainty of one d. We assume that the adversary reduces the uncertainty of the

appropriate d, even if that d isn’t in memory. Thus, we give the algorithm more power than

any actual algorithm could have.

We say that some a is fresh if it has not yet been brought into memory since the

beginning of the deletion phase, and therefore only fresh a’s can be used to reduce the

uncertainty further given the assumption. We note that only fetching the disk pages written

in the insertion phase can give the algorithm fresh a’s. Those written in the deletion phase

cannot, since all uncertainty is maximally reduced when an a is fetched during the deletion

phase. There are O(N logB N) disk pages written in the insertion phase, and therefore the

number of disk pages that can contain some fresh a’s is O(N logB N).

Pi :

︸ ︷︷ ︸

Pi,k

Figure 4.3: The i-th block written during the insertion phase. It may contain elements of
different color with Pi,k referring to the elements that have color k.
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Let Pi ⊆ {aj : j ∈ [N ]} denote the aj ’s contained in the ith disk page written in the

insertion phase. Note that |Pi| ≤ B. Let Pi,k = {aj ∈ Pi : c(aj) = k} (see Figure 4.3). We

partition Pi into two disjoint sets Hi and Li, where Li = Pi \Hi and

Hi = {aj ∈ Pi : |Pi,c(aj)| ≥ Br}.

That is Hi is the set of elements in Pi whose color is frequently represented in Pi. Let Rk

be the randomly picked subrange for dk. Let Xi,k denote the random variable |Rk ∩ Pi|.

Then Xi,k ∈ [0, |Pi,k|], E [Xi,k] = |Pi,k|/Br, and all Xi,k’s are independent for every fixed i.

Let

Yi =
∑

k∈[
√
N ],Pi,k⊆Li

Xi,k,

and from linearity of expectation

E [Yi] =
∑

k∈[
√
N ],Pi,k⊆Li

E [Xi,k] =
|Li|
Br

.

By Hoeffding’s inequality [53], we have

P
[

Yi − E [Yi] ≥ B1−r
]

≤ exp






− 2(B1−r)2
∑

Pi,k⊆Li

k∈[
√
N ]

|Pi,k|2







≤ e
−Ω

(

B2−2r

B1+r

)

,

which is e−BΩ(1)
= e− logΩ(τ) N = 1/N2 if we pick any constant r ∈ (0, 1/3) and pick τ to

be sufficiently large. By the union bound, we know that for some combination of Rk for

k ∈ [
√
N ],

Yi ≤ E [Yi] + B1−r ≤ 2B1−r

for every disk page written in the insertion phase.

The adversary picks some such combination of Rk, and reveals the information to the

algorithm. No matter what O(
√
N logB N/Bα) I/Os are fetched by the algorithm in the

deletion phase — w.l.o.g. let them be P1, P2, . . . , PT for T = O(
√
N logB N/Bα) — we

have:

• The number of colors contributed by Hi for i ∈ [T ] is at most (
√
N logB N/Bα)(B/Br).
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• The number of aj ’s contributed by Li for i ∈ [T ] is at most (
√
N logB N/Bα)(2B1−r).

• The number of aj ’s is in memory at the beginning of the deletion phase is at most

M = o(N δ).

If we pick α > 1−r, there are o(
√
N) dk’s whose uncertainty can be further narrowed down

by the aj ’s fetched by some Hi. Furthermore, the number of aj ’s contained in some Li and

in memory at the beginning of the deletion phase is bounded by o(
√
N), which means that

few dk’s can have a comparison with aj in some Li to further narrow down the uncertainty.

As a result, Ω(
√
N) dk’s have the uncertainty unchanged since the revelation, yielding the

total uncertainty Ω(N/Br).

Since r can be any constant in (0, 1/3), then α can be any constant in (2/3, 1). By

Claim 4.5, we complete the proof of 4.4.

After performing all deletions, the number of disk pages that contain some di for i ∈

[
√
N ] is at most (

√
N logB N)/Bα (i.e. no more than the budget of I/Os for deletions).

We are now in a position to prove the existence of a range query that requires superlinear

number of I/Os. Observe that if a range query contains some bj whose π(bj) still might

match some di, to answer the range query correctly, the algorithm must, due to Ca: (1) fetch

some disk page that contains di, and (2) compare bj with di to see whether bj is deleted. By

Lemma 4.4, we know that there are Ω(N/B1−α) such bj ’s and thus some range query of size

N δ has Ω(N δ/B1−α) such bj ’s, which is more than the claimed budget O(logB N +N δ/B).

We note here that the number of d’s that are already in memory at the beginning of the

range query phase is M = O(Nµ) = o(N δ/B1−α), and thus are insufficient to change the

bound. By the Markov inequality, we can say something stronger:

Lemma 4.6. There are Ω(N1−δ/B1−α) range queries of size N δ so that, to answer any

of the queries correctly, any algorithm needs to fetch Ω(N δ/B1−α) different di’s for the

required comparisons.

However, the observation is not sufficient to prove Theorem 4.2 because a single I/O

might fetch back multiple di’s for the required comparisons. That is the reason why we need

Cb. Observe further that every such expensive query range(2, (i − 1)N δ + 1, iN δ) needs
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the existence of some disk page that contain Ω(Bα) different dj ’s for required comparisons,

denoted by the set Di. Note that c(Di) ⊆ c(Si,Nδ) and therefore |c(Di)∩c(Dj)| ≤ |c(Si,Nδ)∩

c(Sj,Nδ)| = O(1) for every i 6= j. Since there are at most o(
√
N) disk pages containing

some di, and each of the disk page can be a superset of O(B1−α) different Di’s because

|c(Di) ∩ c(Dj)| = O(1) for i 6= j, Bα > B2/3 >
√
B and the following lemma:

Lemma 4.7. Let T1, T2, . . . , TC be the subsets of S, where |Ti ∩ Tj | = O(1) for every

i 6= j ∈ [C] and |Ti| = ∆ = ω(
√

|S|) for each i ∈ [C], then C = O(|S|/∆).

Proof. We prove this by a counting argument. Consider the elements in Di = Ti \
⋃

j<i Tj .

Since |Ti ∩ Tj | = O(1) for every j < i, |Di| = ∆−O(i). We are done because

|S| ≥
∑

i∈[C]

|Di| =
∑

i∈[C]

|Ti| − O(i)

and thus C = O(|S|/∆), where the last equality holds due to the fact that ∆ = ω(
√

|S|).

The number of different Di’s that are subsets of some disk page is only o(N1/2B1−α).

However, the number of different Di’s that are needed for the expensive range queries is

Ω(N1−δ/B1−α), implying that some range query requires ω(logB N + K/B) I/Os. This

establishes 4.2.

4.4 Conclusion

In this chapter, we consider issues of both practical and theoretical importance in imple-

mentations of and algorithms for dictionaries. The development of write optimization has

reduced the cost of insertions and deletions. As this tide of insertion/deletion cost recedes,

the cost of queries becomes significant in many settings.

We show that natural operations, including count in single dictionaries and delete in

compound dictionaries, limit the applicability of write optimization. Our lower bounds cor-

respond to our experience, that these operations do, in fact, sometimes reduce the benefits

of write optimization and can become bottlenecks of actual systems.

In addition to showing lower bounds that start to put a boundary around the applicabil-

ity of write optimization and that provide an explanation for the difficulty of implementing
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fast versions of some operations in databases and file systems, we consider one of our contri-

butions to be the introduction of a set of problems around compound dictionaries, which are

a heretofore poorly studied aspects of dictionaries, despite being one of the most common

ways in which they are used.

We leave one major open question: can the lower bound for deletes in 2-dictionaries

be extended to the entire write-optimization range and raised to show that deletes take

Ω(logB N) time, in compound dictionaries with optimal range queries? In other words, can

it be shown that each delete requires a search?

In this chapter we worked in the external memory comparison model. One natural

question to investigate is whether hashing allows for write-optimization in a cross-referenced

dictionary. By an easy application of hashing, we can show that one can achieve write-

optimized bounds for insertions, O(1) update time for deletions, and answer range queries

optimally. Thus the picture is already different since in the comparison model we conjecture

an Ω(logB N) update I/O cost for our problem. We believe there is potential to prove non-

trivial cell probe lower bounds for our problem but we remark that doing so very likely is

going to require investigating the batched predecessor problem [22] in the cell-probe model,

which is a difficult problem. We leave this for future work.
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Chapter 5

rSUM-hardness yields APX-hardness

5.1 Problem Definition and Background

Recently, surprising connections have been established between exponential hardness and

polynomial hardness. Specifically, the strong exponential time hypothesis (SETH) has been

used to prove super-linear lower bounds for problems in P [1,14,26,74,76]. In this chapter,

we establish complementary results: that hardness of a predicate in P can imply APX-

hardness of the corresponding maximization problem.

Consider the 3SUM problem of deciding if a set of integers has a multisubset of size

3 that sums to 0 [48]. This problem has a natural generalization to the set of rSUM

problems. It is known that rSUM-hard problems have an Ω(n⌈r/2⌉) lower bound in some

models [7, 45], and the rSUM Conjecture [1, 73] states that these problems cannot be

solved in O(n⌈r/2⌉−ε) time for any constant ε > 0, on a RAM.

We define Max-rSUM to be the maximization version of these problems: Given a set S

of integers, find the largest T ⊆ S so that T has no multisubset of size r that sums to 0, that

is, the largest T ⊆ S that fails the rSUM test. Our first result establishes the hardness of

Max-rSUM:

Theorem 5.1. Max-rSUM is APX-complete for every fixed r ≥ 3.

This theorem implies the APX-hardness of many problems, because:

Observation 5.2. There are many rSUM-hard decision problems P whose hardness reduc-

tion can be directly restated as an L-reduction from Max-rSUM to Max-P.

Examples [17, 25, 48] include:
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• Max-P3P1L: Given S ⊂ R
2, find the largest T ⊆ S so that T contains no three

(distinct) colinear points.

• Max-Pδ∆-free: Given S ⊂ R
2, find the largest T ⊆ S so that T contains no three

(distinct) points that form a triangle with area at least δ for any constant δ.

• Max-P3AP -free: Given S ⊂ Z, find the largest T ⊆ S so that T contains no three

(distinct) integers that form an arithmetic progression.

• Max-P3L1P : Given S, a set of lines in R
2, find the largest T ⊆ S so that T contains

no three (distinct) lines that intersect at a point.

Theorem 5.1 implies these problems Max-P are APX-hard.

Some rSUM-hard problems P have no known hardness reduction from the correspond-

ing rSUM problem that can be restated as an L-reduction from Max-rSUM to Max-P,

and therefore Theorem 5.1 does not directly establish their APX-hardness. For example,

deciding if a set is a Golomb ruler (i.e. whether all pairwise differences are distinct) is

4SUM-hard but its hardness reduction does not translate into an L-reduction for the max-

imization problem. The problem of finding a maximum-size subset that is a Golomb ruler

was not previously known to be APX-hard, though an additive inapproximability result

was known [67].

In short, Observation 5.2 is limited. One of the main contributions of this chapter is to

generalize the techniques used to prove Theorem 5.1 in order to establish the APX-hardness

of a larger class of problems.

Reformulating rSUM as Root-free Subset Problems rSUM problems are some-

times encoded as root-testing problems in polynomials [31,59], and the natural polynomials

encoding rSUM have been generalized to encode a wider class of problems [16]. We take a

similar approach here.

Let f ∈ Z[x1, x2, . . . , xr] be an r-variate polynomial, and let S be f-root-free if for all

distinct x1, x2, . . . , xr ∈ S, f(x1, x2, . . . , xr) 6= 0. We denote by Pf the predicate of deciding

if a given set S has a root for f whose coordinates are distinct, i.e. S is not f -root-free, and
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by Max-RF(f) the problem of finding the largest subset of a given S ⊂ Z that is f -root-free.

We call f the characteristic polynomial of Pf and Max-RF(f).

Consider f3(x, y, z) = 3x(2x + y)(x + y + z). Then, Pf3 = 3SUM and Max-RF(f3)

= Max-3SUM. The simpler polynomial, x + y + z, is not the characteristic polynomial of

3SUM, because items in 3SUM are allowed to be repeated, whereas our root-free formalism

requires distinct choices. The polynomial f3 covers triple, double or no repetitions. We

observe in Section 5.6 that, for every r ≥ 3, there exists an fr that is the characteristic

polynomial of rSUM.

In the following, we present some classes of polynomials whose root-free-maximization

problems are APX-hard. For example, the characteristic polynomial for the Golomb ruler

is fGR = (x−2y+z)(x−y−z+w), which is a product of linear terms of at least 3 variables.

Theorem 5.5 below covers this simple syntactic criterion and we conclude:

Corollary 5.3. It is APX-hard to find the cardinality of the maximum-size subset of a

given S ⊂ Z that is a Golomb ruler. That is, Max-RF(fGR) is APX-hard.

Not all characteristic polynomials yield APX-hard maximization problems. For example,

if f(x) = x, then Max-RF(f) is trivial. Other polynomials, including all those in Fr = {fr |

r ≥ 3}, induce maximization problems that are APX-hard. In the following, our goal is to

find a large class F of polynomials, with Fr ⊆ F , such that, for every f ∈ F , Max-RF(f)

is APX-hard. We begin with the following restricted class of polynomials that does not yet

include Fr.

Theorem 5.4. If f ∈ Z[x1, x2, . . . , xr] is a homogeneous linear polynomial consisting of

r ≥ 3 variables, then Max-RF(f) is APX-hard and cannot be approximated to within 1− εr

unless P = NP for any

εr < ∆r ≡
1

744.64 + 601.44(r − 3)
.

This class is not general enough to encode rSUM, which motivates our quest to consider

larger classes of polynomials.

Combining Linear Polynomials Theorem 5.4 restricts the characteristic polynomi-

als to be linear. We show two ways to combine linear polynomials that yield APX-hard
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maximization problems.

Theorem 5.5. Let f =
∏k

i=1 ℓi where k is a constant and each ℓi ∈ Z[x1, x2, . . . , xri ] is a

homogeneous linear polynomial consisting of ri variables. If r = max1≤i≤k ri is at least 3,

then Max-RF(f) is APX-hard, and cannot be approximated to within 1− εr unless P = NP

for any εr < ∆r.

This class of polynomials includes Fr, as desired, as well as fGR. We can think of the

products of polynomials as a disjunctive combination, in that an r-tuple is a root of f

if it is a root of any of the constituent linear polynomials. We also have a conjunctive

generalization, as follows. We say an r by k matrix M is strongly full rank if k ≤ r

and every k × k submatrix of M is full rank. Let v1,v2, . . . ,vk be vectors of a same

dimensionality, and let M = (v1|v2| . . . |vk) be the matrix where Mij = vj[i]. We call M

the aggregation of v1,v2, . . . ,vk. We say a vector space is in general position if it has

a set of basis vectors whose aggregation is strongly full rank.

Theorem 5.6. Let f =
∑k

i=1 ℓ
2
i be a r-variate polynomial1 where k is a constant and each

ℓi ∈ Z[x1, x2, . . . , xr] is a homogeneous linear polynomial. If the solution set of f = 0 is in

general position and has dimension d at least 2, then Max-RF(f) is APX-hard, and cannot

be approximated to within 1− εr unless P = NP, for any

εr < Γr ≡
1

140(6⌈(r − 2)/6⌉+ 1)
.

As promised, Theorem 5.6 can be viewed as the conjunctive generalization of Theo-

rem 5.4, because the f -root-freeness of some set S implies that S is ℓi-root-free for every

i. A natural problem in this subclass is the Max-rAP problem for any r ≥ 3, finding the

largest subset containing no r-term arithmetic progression.

Related Work. A similar generalization from rSUM problems [31,59] to a wider class of

problems (replacing sum polynomials with more general polynomials) has also been found

useful in studies of the time complexity of rSUM-hard problems in P, because the sum

polynomial may be not sufficient to encode an rSUM-hard problem but a more general

1We note here that r − 1 ≥ d and d ≥ 2 together yield r ≥ 3.
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polynomial may [16]. Our focus, in considering larger classes of polynomials, is to under-

stand the APX-hardness of Max-rSUM-hard problems.

We present a class of approximation problems that are APX-hard because of a simple

syntactic criterion. In that respect, there is some similarity to prior work on the MaxOnes

problem. In [61], syntactic criteria were presented for certain MaxOnes problems, that

also imply APX-hardness. Related topics were also discussed in [15, 60]. Our results are

not closely related to [15, 60, 61]; the full version of this chapter will compare and contrast

our results in more detail.

Max-RF(f) Hardness to Compute
Applications

Problem f Lower Bound Known This chapter

Max-3SUM 3x(2x + y)(x + y + z) ≥ |S|/2 - (1− ε)Opt
Max-3SUM-hard

[17,48]

3AP-free subset (x + y − 2z)
≥ |S|1−o(1)

- (1− ε)Opt
Matrix Mult

[19, 42,68,79] [35, 36,63,99]

Golomb ruler
(x− 2y + z)(x− y − z + w)

√

|S|(1− o(1)) Opt− δ
(1− ε)Opt

Telecom Engineer
(aka Sidon set) [44] [67] [37, 40,67,84,90].

rAP-free subset ∑

r−2
i=1 (xi − 2xi+1 + xi+2)2

≥ |S|1−o(1)

- (1− ε)Opt
van der Waerden no.

for fixed r ≥ 3 [70] [82, 96]

Table 5.1: Improved results for the problems that have a polynomial encoding.

Implications. We summarize the improved hardness results for the problems that have

a polynomial encoding in Table 5.1, and for the problems that do not have a polynomial

encoding as follows. The dependence diagram of all results is illustrated in Figure 5.1.

• A QPTAS algorithm for finding the largest subset of non-intersecting segments in the

plane is known [2]. Unless the ETH fails, this problem cannot be APX-hard. Theorem 5.1

and Observation 5.2 together yield the APX-hardness of Max-P3L1P , implying that the

problem Max-P3S1P of finding a largest subset of a set of line segments so that no three

line segments intersect at a point is APX-hard. This gives a sharp separation between

the hardness of excluding pairs of intersecting line segments versus triples.

We note that the separation is new because the latter problem was only known to be

NP-hard via a reduction from finding an Mis (maximum independent set) of intersection

graphs on segments [32, 49].
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• Some of the problems we consider, notably Max-3AP, and Max-RF(fGR), appear to be

more general than the problem that is usually studied. For example, one of the most

important uses of 3AP-free sets arises in matrix multiplication [35, 36, 63, 99], where

S = [n] = {1, 2, . . . , n}. There is a long line of research [19, 42, 43, 68, 79] on how to

construct large 3AP-free subsets of [n], but the hardness of computing an optimal subset

itself remains open, and our results say nothing about the hardness of this problem.

Similarly, our results say nothing about computing the maximum Golomb-ruler subset

of [n] [67].

To see why, notice that these problems have tally representations that are sparse lan-

guages. For example, to compute the largest 3AP-free subset of [n], the input is n,

and takes O(logn) bits, whereas the output is an 3AP-free set, which is exponentially

larger. The standard trick of computing the size of the 3AP-free subset and encoding

the input [n] in the tally representation yields a sparse language in NP. Such sparse

languages, which arise in many setting, such as in lattice problems in statistical physics

(survey in [97]) or in determining Ramsey numbers (survey in [81]), are known not to be

NP-complete unless P = NP [72].

On the other hand, the fastest known algorithms for computing, say, the largest 3AP-

free subsets of [n] rely on branch-and-bound [41, 50], and hence require good bounding

conditions. That is, they rely on algorithms for approximating the cardinality of the

largest 3AP-free subset of a given set S. So until a fast algorithm for computing the

largest 3AP-free subset of [n] directly is devised, the generalization to arbitrary sets will

remain important to many applications.

• Our techniques used to prove the APX-hardness of Max-rSUM can provide better hard-

ness results for optimization problems in graph theory. Specifically, we slightly modify

the many-one reduction used in Lemma 5.8 to prove Lemma 5.19, the APX-hardness

of finding Mis for graphs of girth at least any constant r, which was known to be NP-

hard [69]. Furthermore, Lemma 5.19 implies Corollary 5.15, the APX-hardness of finding

the largest (in terms of the number of nodes) node-induced r-cycle-free subgraph for any

r ≥ 3, denoted by Max-Cr-free, which was also known to be NP-hard [64].
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↑ Known Results ↑
↓ New APX-hardness ↓

Staton’s bound [85] Derandomize [65,66] Turan’s Thm [88] Mis (3-reg, ∆-free) [34] Max-P2S1P [2]

Thm 5.4: Max-RF(ℓ) Lem 5.19: Mis (r+-girth ∀r) (was NP-hard [69])

Thm 5.5: Max-RF
(
∏

i ℓi
)

Thm 5.6: Max-RF
(
∑

i ℓ
2
i

)

Cor 5.15: Max-Cr-free ∀r ≥ 3

(was NP-hard [64])

Cor 5.3: Max-GolombRuler

(was additive-inapproximable [67])

Thm 5.1: Max-rSUM ∀r ≥ 3 Cor 5.21: Max-rAP-free ∀r ≥ 3

Obs 5.2: Max-P3P1L Obs 5.2: Max-Pδ∆-freeObs 5.2: Max-P3AP -freeObs 5.2: Max-P3L1P

Obs 5.2: Max-P3S1P

(was NP-hard [32,49])
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Figure 5.1: The dependence diagram of the results in this chapter.

Our Techniques and Organization. In Section 5.2, we prove the APX-hardness of

Max-3SUM, as a warmup to the full proof. First, we show the existence of an NP-hardness

reduction from Mis to Max-RF(x+y+z) by a probabilistic proof, relying on the Schwartz-

Zippel Lemma [80, 103]. Then, the probabilistic proof is derandomized [65, 66] so as to

construct a deterministic, polynomial-time NP-hardness reduction. However, such a reduc-

tion is not approximation-preserving. To remedy this issue, we restrict Mis to 3-regular

graphs, because every O(n)-edge graph has independence ratio above some positive constant

due to Turán’s Theorem [88], thereby yielding a PTAS reduction. Lastly, we extend the

APX-hardness of Max-RF(x+ y+ z) to Max-3SUM by appealing to the Erdös construction

of 3AP-free sets [43].

In Section 5.3, we prove the APX-hardness of Max-RF(f) for any homogeneous, 3+-

variate, linear polynomial f by the same approach as that in Section 5.2, but pay more

attention to the structure of f . Since we are generalizing f , we need to carefully avoid

letting f be zeroed by substituting the variables in f with a set of dependent random

variables used in the probabilistic proof. In addition, we discuss the sharpness of the three

constraints by showing that, for any constraint we leave out, there exists a polynomial f so
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that Max-RF(f) is in P.

In Section 5.4, we give a proof of Theorem 5.5. We begin by defining the canonical

representation of f and the equivalence classes of polynomials under Max-RF(·). Then,

we pick a suitable polynomial ℓ∗ from the ℓi’s, where a tricky case appears when f is 3-

variate. In the tricky case, ℓ∗ is selected from the equivalence class of (x + y − z). Then,

our approach conducts multiple hardness reductions used for Max-RF(ℓ∗); a probabilistic

argument then shows that, for one of these reductions, the solutions for Max-RF(f =
∏

i ℓi)

and Max-RF(ℓ∗) coincide.

In Section 5.5, we give a proof of Theorem 5.6. To prove the case for d = r − 1,

Theorem 5.4 suffices. For d < r−1 in general, dependence increases between the coordinates

in a solution, thus requiring the solution set of f = 0 to be in general position. To further

avoid the undesired dependence, we prove a helper lemma showing that Mis for graphs of

girth ≥ r for any r is APX-hard, from which we are able to conduct a PTAS reduction to

Max-RF(f =
∑

i ℓ
2
i ).

Lastly, in Section 5.6, we study the inapproximability constant. We first appeal to

Turán’s Theorem [88] to obtain an initial bound. We also discuss (see also [8, 83]) why the

AKS Theorem [9], which is stronger than Turán’s Theorem for triangle-free graphs, does not

yield a better inapproximability constant. Then we provide an improved inapproximability

constant using an extremal graph result by Staton [85].

5.2 Hardness of Max-3SUM

In this section, we prove the hardness of Max-RF(f∗) where f∗(x, y, z) = x+y+z and defer

a proof for the general case to Section 5.3. The proof of the hardness of approximating Max-

RF(f∗) will serve as intuition for the general case. We modify the proof for the hardness

of Max-RF(f∗) to show the hardness of Max-3SUM, which implies the hardness of the

maximization version of numerous 3SUM-hard problems whose hardness reduction satisfies

Observation 5.2.

NP-hardness. We claim the existence of a polynomial-time many-one reduction from

instances of Mis to instances of Max-RF(f∗). Let n-node m-edge graph G = (V,E) be an
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instance of Mis. We need a mapping h from V ∪ E to a set S of n + m integers so that

G has an independent set of size k iff S has a f∗-root-free subset of size k + m. We show

that such a set S exists by the probabilistic method [11] and present how to construct S

deterministically in time polynomial in n, using derandomization [65, 66].

G : v1

v2 v3 v4

v5

→
S :

Y 1
2

Y23 Y34

Y
45

Y15

Y
13

X1

X2 X3 X4

X5

Figure 5.2: The mapping h : V ∪ E → S, where Xi = h(vi) for each node vi ∈ V and
Yij = h({vi, vj}) if {vi, vj} ∈ E.

Theorem 5.7. Max-RF(x + y + z) is NP-hard.

Proof. To implement a mapping h : V ∪ E → S, we will use an n-order superpos-

able set w.r.t. the polynomial f∗, which we define as follows. For any set B of n in-

tegers X1, X2, . . . , Xn, we define the auxiliary set Af∗ induced by B and f∗ to be {Yij :

f∗(Xi, Xj , Yij) = 0, i 6= j}. We say B is an n-order superposable set if |B ∪Af∗ | = n+
(

n
2

)

,

and for every three distinct elements a1, a2, a3 ∈ B∪Af∗ , f∗(a1, a2, a3) = 0 iff {a1, a2, a3} =

{Xi, Xj , Yij} for some i 6= j.

Given the superposable set B, one can realize a mapping h : V ∪E → S, where h(vi) = Xi

for vi ∈ V and h({vi, vj}) = Yij for {vi, vj} ∈ E, as illustrated in Figure 5.2. The following

lemma will establish that the image set S and graph G preserve the relation required in the

many-one reduction.

Lemma 5.8. An n-node m-edge graph G = (V,E) has an independent set of size k iff the

set S = h(V ∪ E) has a f∗-root-free subset of size k + m.

Proof. (⇒) Let I be an independent set. Every I ∪ E corresponds to a set T = h(I ∪ E),

a subset of S. Since I is an independent set, for every edge {vi, vj}, the two integers Xi,

Xj are not simultaneously contained in T . By the definition of a superposable set, T is

f∗-root-free since it does not contain all three of Xi, Xj , Yij .

(⇐) Let T be a f∗-root-free subset of S. For each edge {vi, vj} ∈ E, if both Xi, Xj ∈ T ,

then Yij /∈ T because T is f∗-root-free. In that case, one can modify T by replacing Xi with
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Yij . Such a modification does not change the size of T but reduces the number of pairs of

(Xi, Xj) in T where the corresponding nodes vi, vj are adjacent. One can repeat the change

until there is no such (Xi, Xj) pair. Hence, G has an independent set of size at least k.

Let Rp(n) be a set of n integers r1, r2, . . . , rn sampled uniformly at random from the

universe U = Zp, for some prime p. In Lemma 5.9, we prove that, for sufficiently large

p, Rp(n) is a superposable set with positive probability. We choose Zp to facilitate the

derandomization. However, if a set is superposable under Zp, then it is superposable under

Z. After the construction, we use this superposable set under Z.

Lemma 5.9. The probability that Rp(n) is an n-order superposable set is 1−O(n6/p).

Proof. We note that for any pair of different linear polynomials, assigning an integer sampled

uniformly at random from a universe U to each variable in the polynomials makes the two

polynomials equal in Zp with probability peq = 1/|U |, by a simple version of the Schwartz-

Zippel Lemma [80, 103]. Here U = Zp and 1/|U | = 1/p. In subsequent sections, we will

replace U with another set and will rely more heavily on the Schwartz-Zippel Lemma.

To show B = Rp(n) is superposable, we consider the two probabilities:

P

[

|B ∪Af∗ | < n +

(

n

2

)]

≤
∑

Xi,Xj∈B
peq +

∑

Xi∈B,Yij∈Af∗

peq +
∑

Yij ,Yi′j′∈Af∗

peq = O(n4/p)

and

P [f∗(a1, a2, a3) = 0 for some {a1, a2, a3} 6= {Xi, Xj , Yij}] ≤
∑

a1,a2,a3∈B∪Af∗

peq = O(n6/p).

We are done by applying the Union bound to the two failure probabilities.

Observe that a fully random assignment to the variables of the polynomials is not nec-

essary to make the two polynomials equal with probability as small as 1/p. Instead, if the

variables are assigned 6-wise-independently, the probability peq is still 1/p. This observation

yields a polynomial-time construction of the superposable set, as follows.

Lemma 5.10. One can construct an n-order superposable set in time polynomial in n.

Proof. Exhaustively explore the polynomial-size probability space of 6-wise independence

to find the superposable set, which we know to exist [65, 66].
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We complete the proof of Theorem 5.7 by combining Lemmas 5.8, 5.9, and 5.10.

Inapproximability. In the NP-hardness reduction, we present a mapping h : V ∪E → S,

so that every n-node m-edge graph G has an independent set of size k iff the set S has a f∗-

root-free subset of size k+m. Here we demonstrate the inapproximability of Max-RF(f∗) by

a PTAS reduction. Indeed we show that if one has a (1−ε)-approximation for Max-RF(f∗)

for any constant ε > 0, then one can approximate the Mis of some types of graphs to within

a (1 − O(ε)) factor. If Mis is hard to approximate in the graph class, then Max-RF(f∗)

similarly has no PTAS unless P = NP.

To make the NP-hardness reduction be a PTAS reduction as well, we restrict the Mis

problem to graphs whose maximum independent set has size Ω(m). The graph class we

select is 3-regular graphs, for which Mis has no PTAS unless P = NP [23], and by Turán’s

Theorem [88] every such graph has a maximum independent set of size at least m/6 = Ω(m).

We now give a PTAS reduction from Mis for 3-regular graphs to Max-RF(f∗).

Lemma 5.11. If there exists a polynomial-time algorithm that, for every 3-regular graph

G = (V,E), can find a f∗-root-free subset of h(V ∪E) whose size approximates the maximum

possible to within a factor of (1− ε), then an independent set of G whose size approximates

the maximum possible to within a factor of (1− 7ε) can be found in polynomial time.

Proof. Every (1−ε)-approximation algorithm for Max-RF(f∗) can find a f∗-root-free subset

of size (1−ε)(m+k), which corresponds to an independent set of size (1−ε)k−εm ≥ (1−7ε)k,

where the last inequality follows from the fact that k ≥ m/6 for every 3-regular graph due

to Turán’s Theorem [88].

From the PTAS reduction in Lemma 5.11 and the APX-hardness of Mis for 3-regular

graphs [23], we have Theorem 5.12.

Theorem 5.12. Max-RF(x + y + z) is APX-hard.

Max-3SUM-hardness. In Theorem 5.12, we prove the inapproximability for finding a

maximum f∗-root-free subset, i.e. containing no three distinct elements a, b, c such that

a + b + c = 0. This problem is equivalent to the Max-3SUM problem, except that in the
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Max-3SUM problem, the three elements are allowed to repeat. To handle duplicates using

the Max-RF(·) scheme, we consider the inapproximability of Max-RF(g) for the polynomial

g(x, y, z) = 3x(2x + y)(x + y + z), so that a set S is g-root-free if and only if it contains no

three (perhaps repeating) elements whose sum equals zero. Note that the 3 in the definition

of g is superfluous, since we are only interested in the roots. We leave it in to emphasize

that we are considering the three cases of no repetition (x + y + z), one element selected

twice (2x + y), and one element selected three times (3x).

Finding a maximum f∗-root-free subset from a given set S is as hard as finding a

maximum g-root-free subset if S does not contain 0 and S does not contain two elements

where one is twice the negative of the other. We present how to extend the PTAS reduction

for Max-RF(f∗) to that for Max-RF(g). To impose the needed restriction on S, one can

replace the universe U used in Lemma 5.9 with an 3AP-free subset of Zp \ {0, 2, 4, . . .}.

We note here that replacing the universe U is simpler than constructing a superposable set

w.r.t. g from scratch. This technique will be more useful when the structure of the function

becomes much more complicated in subsequent sections. Then, the maximum f∗-root-free

subset of S has the same size of the maximum g-root-free subset, as follows:

Lemma 5.13. For every three distinct integers a, b, c in B ∪Af∗ where B is any 3AP-free

subset of Zp \ {0, 2, 4, . . .} and Af∗ = {x : f∗(x, y, z) = 0, y, z ∈ B, y 6= z}, g(a, b, c) = 0 iff

f∗(a, b, c) = 0.

Proof. If f∗(a, b, c) = 0, then g(a, b, c) = 0. On the other hand, if for some a, b, c, g(a, b, c) =

0 but f∗(a, b, c) 6= 0, then either one of a, b, c is zero or one of the a, b, c is twice the negative

of another. We note that B only contains positive integers and Af∗ only contains negative

integers. Hence, B ∪ Af∗ does not contain zero, which makes the former case impossible.

As for the latter, if one of {a, b, c} is twice the negative of the another, say w.l.o.g. that

a = −2b, then a and b come from different sets B and Af∗ . Then a ∈ Af∗ due to a even and

thus a = −(w+z) for w, z ∈ B,w 6= z. However, this means −(w+z)+2b = 0 contradicting

the 3AP-freeness of B.

To complete the proof for showing the inapproximability of Max-RF(g), we appeal to

the known polynomial-time construction of pΩ(1)-size 3AP-free subsets due to Erdös [43] or
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any of the subsequent works [19,42,68,79] that improve the size of the constructed 3AP-free

subset. Now the universe U has size pΩ(1), so to make the existence proof work, one needs

to choose a p that is polynomially larger than before. As a consequence of Theorem 5.12,

Lemma 5.13, and the polynomial-time construction due to Erdös, Max-3SUM is APX-hard.

To show the APX-completeness of Max-3SUM, we note that picking the larger of the subset

of all positive integers and the subset of all negative integers gives a 2-approximation for

Max-3SUM because a solution cannot include 0.

Theorem 5.14. Max-3SUM is APX-complete.

5.3 Hardness of Max-RF(f)

We generalize the hardness result of Max-RF(x + y + z) in Section 5.2 to Max-RF(f) for

every homogeneous 3+-variate linear polynomial f .

We defined superposable sets for 3-variate polynomials. Here we extend the definition

and define an n-order superposable set w.r.t. an (r + 3)-variate polynomial f as follows.

For any set B of n + r
(

n
2

)

integers Xi, Xijk for i < j ∈ [n], k ∈ [r], we define the auxiliary

set Af induced by B and f to be {Yij : f(Xi, Xj , Xij1, . . . , Xijr, Yij) = 0, i 6= j}. Let

Sij = {Xi, Xj , Xij1, . . . , Xijr, Yij} for every i 6= j. We say B is an n-order superposable set

if |B ∪Af | = n + (r + 1)
(

n
2

)

, and for every (r + 3) distinct elements a1, . . . , ar+3 ∈ B ∪Af ,

f(a1, . . . , ar+3) = 0 only if {a1, . . . , ar+3} = Sij for some i 6= j.

Given a superposable set B, one can realize a mapping h : V ∪ E → 2S , the power set

of S, where h(vi) = {Xi} for vi ∈ V and h({vi, vj}) = {Xij1, . . . , Xijr, Yij} for {vi, vj} ∈ E.

As in the proof of Theorem 5.7, if an n-order superposable set B can be constructed in

time polynomial in n for every n, then Max-RF(f) is NP-hard. Furthermore, the hardness-

reduction can be generalized to a PTAS reduction for every constant-variate polynomial f

simply by replacing (1 − 7ε) with (1 − (7 + 6r)ε) in the statement Lemma 5.11. Hence, a

polynomial-time construction of B yields a proof of Theorem 5.4, shown as follows.

Proof of Theorem 5.4. Let f =
∑r+3

i=1 cixi, ci 6= 0, and let m = ℓcm(c1, . . . , cr+3). We

construct an n-order superposable set B by sampling Xi, Xijk for i < j ∈ [n], k ∈ [r] from

the following universe U = Zp ∩mZ for some prime p. We choose the universe U thusly
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because no matter what the sampled X’s are, they make all Yij integral. We claim that the

sampled set B is an n-order superposable set with positive probability.

We sample each Xi, Xijk in B uniformly at random from the universe U . Before the

sampling is made, each Xi, Xijk in B can be seen as an independent random variable

and each Yij in Af can be seen as some linear combination of these independent random

variables.

A bound on the success rate of this random construction of B can be computed from

the following two failure rates. The first failure rate P1 = P
[

|B ∪Af | < n + (r + 1)
(

n
2

)]

is

bounded by nO(1)/(p/m). To see this, we note that every pair of distinct a, b ∈ B ∪Af is a

pair of different linear combinations of the independent random variables. By the Schwartz-

Zippel Lemma, the sampled value of a equals that of b with probability 1/(p/m). Hence,

the claimed bound for P1 holds by the Union bound.

To bound the second failure rate

P [f(a1, . . . , ar+3) = 0 for some {a1, . . . , ar+3} /∈ {Sij : i 6= j}] ,

we observe that f(a1, . . . , ar+3) is a non-zero polynomial for every {a1, . . . , ar+3} /∈ {Sij :

i 6= j} where a1, . . . , ar+3 are distinct elements in B ∪ Af . Suppose that f(a1, . . . , ar+3)

were a zero-polynomial for some {a1, . . . , ar+3} /∈ {Sij : i 6= j}. If we express each aℓ for

ℓ ∈ [r + 3] as a linear combination of the random variables in B, then each variable in B

either does not appear or appears at least twice in all of aℓ’s expressions. This happens

only when r = 0 and {a1, a2, a3} = {Yij , Yjk, Yik} for some i < j < k. However,

f(a1, a2, a3) = c1

(

c1Xi + c2Xj

−c3

)

+ c2

(

c1Xj + c2Xk

−c3

)

+ c3

(

c1Xi + c2Xk

−c3

)

cannot be a zero polynomial because Xj ’s coefficient is non-zero, or

f(a1, a2, a3) = c1

(

c1Xi + c2Xj

−c3

)

+ c2

(

c1Xi + c2Xk

−c3

)

+ c3

(

c1Xj + c2Xk

−c3

)

cannot be a zero polynomial unless (c1, c2, c3) = (t,−t, t) for some t 6= 0, which is avoided by

sorting the variables in f by their coefficients. The same argument works when (a1, a2, a3)

equals other permutations of (Yij , Yjk, Yik). Hence, the observation is true. There are a poly-

nomial number of linear polynomial f(a1, . . . , ar+3) that cannot be zero given the random

assignment of Xi, Xijk for i < j ∈ [n], k ∈ [r]. Therefore the failure rate is nO(1)/(p/m).
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Given the bounds on failure probability, the randomly sampled B is an n-order su-

perposable set with positive probability by picking p polynomially large in n. After a

derandomization step similarly to that in Lemma 5.10, we have B constructed in deter-

ministic polynomial time. This proves Theorem 5.1 in part, and we defer the discussion of

inapproximability constants to Section 5.6.

The above PTAS reductions are based on the hardness of Mis on 3-regular graphs,

which specifies additional structure on the given input set S. Our reduction still works if

the underlying graph is replaced with another graph class G as long as G has O(n) edges and

Mis admits no PTAS on G unless P = NP. Such a replacement is useful for proving further

hardness results. To illustrate, let G be 3-regular triangle-free, where both conditions hold

by Turán’s Theorem and [34]. Then, finding a maximum independent set on G ∈ G can be

reduced to Max-Triangle-Free-Subgraph on H, which can be seen by replacing each

edge in G with a triangle that connects a newly added node. Now let G have maximum

degree at most 3 and girth at least r, for any r, where both conditions hold by Lemma 5.19.

Let Max-Cr-free by the problem of finding the largest (in terms of number of nodes) node-

induced r-cycle-free subgraph. We get that:

Corollary 5.15. Max-Cr-free is APX-hard for any r ≥ 3.

Sharpness of the Three Conditions. Theorem 5.4 is our base result. It applies, as

noted to f that are homogeneous, 3+-variate, and linear. All three conditions are necessary

to achieve inapproximability over the entire class of f , which we can see as follows. We

say a function f(x) is trivial if there are finitely many integral solutions to f(x) = 0. In

this case, one can compute the Max-RF(f) problem exactly in polynomial time based on

a precomputed table. Therefore, to prove that Max-RF(f) is hard to approximate, trivial

functions must be excluded. Some inhomogeneous functions are trivial. For example let

f(x) = c0 +
∑r

1 cix
ti
i and suppose gcd(c1, . . . , cr) does not divide c0. Then f(x) = 0 has

no integral solution. Furthermore, some high-order polynomial functions are trivial. Notice

that every homogeneous even-order polynomial whose coefficients are all non-negative has

only one solution, 0, and from Fermat’s Last Theorem [98] it follows that some homogeneous

3-variate 3+-order polynomial xk + yk − zk for k ≥ 3 has no integral solution other than
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(a,−a, 0). One can simply remove 0 to compute Max-RF(xk+yk−zk) optimally. Therefore,

both homogeneity and linearity are necessary for the entire class to be inapproximable.

Now consider the requirement that f be 3+-variate. One can observe that for every

2-variate quadratic or linear f(x), the Max-RF(f) problem is equivalent to the maximum

independent set problem on degenerate graphs where each node has degree at most 2 and

is thus a union of cycles and paths. Solving Max-RF(f) for such a f(x) takes linear time

and therefore it is necessary to require that f be 3+-variate.

5.4 Hardness of Max-RF(
∏

ℓi)

We extend the base inapproximability result of Theorem 5.4 to show the inapproximability

result of Max-RF(f) for f =
∏

i∈[k] ℓi where each ℓi is a homogeneous and linear polynomial.

Specifically, we will prove Theorem 5.5, that is, we will show that if any ℓi is 3+-variate,

then Max-RF(f) is APX-hard.

We begin by defining a canonical representation for f . Observe that Max-RF((x +

y− z)(y + a− b)) equals Max-RF((x+ y− z)2), which also equals Max-RF(δ(x+ y− z)) for

any δ ∈ Z\{0}. Let Coef(ℓi) be the multi-set of coefficients in ℓi. We say that ℓi and ℓj are

in the same equivalence class if Coef(ℓi) = {δC : C ∈ Coef(ℓj)} for some non-zero integer

δ. Then, we obtain the representation of f by removing ℓi from f if ℓi and ℓj are from the

same equivalence class for some j < i. Given the representation, let ℓ∗ be the ℓi that has

the most number of variables. If there is a tie, then pick any of them, but if all ℓi’s have at

most 3 variables, pick ℓ∗ from the same equivalence class as (x + y − z) if any.

Claim 5.16. There exists some superposable set B w.r.t. ℓ∗, whose auxiliary set is Aℓ∗,

such that the largest f -root-free subset of B ∪ Aℓ∗ has the same cardinality as the largest

ℓ∗-root-free subset of B ∪Aℓ∗ .

Given Claim 5.16, if such a superposable set B can be found, then one can use the

APX-hardness of Max-RF(ℓ∗) to conclude that Max-RF(f) is APX-hard. However, we do

not know how to find such a superposable set B directly. Our approach is to prove the

existence of such a superposable set in a small pool Q of possible superposable sets, but
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without knowing which one is the desired one. Then, we implement an algorithm for Max-

RF(ℓ∗) by asking which B ∪ Aℓ∗ for B ∈ Q has the largest f -root-free subset, which gives

the answer for Max-RF(ℓ∗) and thus Max-RF(f) is APX-hard as well. To see why, the

cardinality of the largest ℓ∗-root-free subset is an upper bound of the cardinality of f -root-

free-subset, and by Claim 5.16 the upper bound is matched for some B ∪ Aℓ∗ , B ∈ Q. As

a result, the existence of such a pool Q implies the correctness of Theorem 5.5.

To demonstrate the existence of such a Q, for an (r + 3)-variate polynomial f we first

construct a superposable set B = {Xi : i ∈ [n]}∪{Xijk : i, j ∈ [n], k ∈ [r]} as before, noting

that each element in B is a random variable, where will be later received a value. Similarly,

define Aℓ∗ = {Yij : ℓ∗(Xi, Xj , Xij1, . . . , Xijr, Yij) = 0} where Yij is a linear combination

of X’s rather than a value. For every graph G = (V,E), we construct a set Γ of random

variables containing Xi’s if i ∈ V as well as Yij , Xijk for k ∈ [r] if (i, j) ∈ E. Then, we use

the naive exponential-time algorithm to remove one of Xi, Xj from Γ for each (i, j) ∈ E so

that the number of removals is minimized. The exponential-time computation is allowed

here because we are proving the existence of Q rather than performing a hardness reduction.

Let Γ̄ be the resulting set, a set of variables. We note here that, if the variables in Γ̄ (rather

than Γ) take values uniformly at random, then they are independent.

Lemma 5.17. For every linear factor ℓi 6= ℓ∗ of f , replacing variables in ℓi with distinct

variables in Γ̄ cannot make ℓi a zero polynomial.

Proof. Case 1: if ℓi has fewer variables than ℓ∗, then it is clear. Case 2: if ℓi has the same

number of variables as ℓ∗, then ℓi could be a zero polynomial only when both ℓi and ℓ∗ are

3-variate. Thus, let ℓi = a1x + a2y + a3z and ℓ∗ = b1x + b2y + b3z. Given ℓ∗, we have that

Yij = (b1Xi + b2Xj)/− b3. The only case that ℓi could be a zero polynomial is thus

ℓi = a1

(

b1Xi + b2Xj

−b3

)

+ a2

(

b1Xj + b2Xk

−b3

)

+ a3

(

b1Xi + b2Xk

−b3

)

.

Note that a’s and b’s are non-zero, and thus ℓi is a zero only if Coef(ℓi) = {a1, a2, a3} =

{1, 1,−1}. However, ℓ∗ has the same equivalence class as (x + y − z) if any ℓi does. That

means ℓi, ℓ∗ are in the same equivalence class, a contradiction on the representation of f .

Since every linear factor ℓi of f cannot be a zero polynomial by such a replacement,
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f =
∏

ℓi cannot either. We claim that:

Lemma 5.18. For any set U where |U | = |Γ̄|c for some sufficiently large constant c, if

the variables in Γ̄ takes values from U uniformly at random, then the evaluated set of Γ̄ is

f -root-free with positive probability.

Proof. We prove this by the Schwartz-Zippel Lemma. Let f be a k-variate polynomial with

total degree d. By Lemma 5.17, f is not a zero polynomial no matter how the variables in

f are replaced with distinct variables in Γ̄. Therefore,

P [f(W1,W2, . . . ,Wk) = 0] ≤ d

|U | for every W1,W2, . . . ,Wk ∈ Γ̄.

There are O(|Γ̄|k) different combinations of W1,W2, . . . ,Wk. By the union bound on all

possible combinations of Wi’s, the evaluated set of Γ̄ is f -root-free with probability

1− d|Γ̄|k
|U | .

We are done because d and k are constants, and we can pick c = k + 1.

Note that the largest ℓ∗-root-free subset of Γ has cardinality |Γ̄|, and the largest f -

root-free subset of Γ has cardinality no less than a f -root-free subset of Γ̄ because Γ̄ ⊆ Γ.

Since Lemma 5.18 states that the largest f -root-free subset of Γ̄ has cardinality |Γ̄| for some

B ∈ Un, Claim 5.16 holds.

To make Q small, we replace the fully random sample space Un with a k-wise indepen-

dent sample space of size |U |k. Consequently, Theorem 5.5 immediately follows, where the

inapproximability constant is obtained from that of Max-RF(ℓ∗).

5.5 Hardness of Max-RF(
∑

i ℓ
2
i )

In this section, we will show that Max-RF(f) is APX-hard for any r-variate polynomial

f =
∑

i∈[k] ℓ
2
i if the solution set of f = 0 is in general position and has dimension d ≥ 2

where ℓ1, ℓ2, . . . , ℓk ∈ Z[x1, x2, . . . , xr] are homogeneous linear polynomials. That is, we

prove Theorem 5.6.

To prove Theorem 5.6 for d = t − 1, one can appeal to the proof of Theorem 5.4. For

d < t−1 in general, the number of dependent random variables induced by the superposable
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set B is no longer 1, thus requiring the solution set of f = 0 to be in general position. We

need to modify the definition of the superposable set w.r.t. such an f , as described below.

We begin by proving a helper lemma that Mis for graphs of maximum degree at most

3, girth at least g is APX-hard for any constant g, which extends the NP-hardness result

shown in [69].

Lemma 5.19. Mis for graphs of maximum degree at most 3, girth at least g is APX-hard

for any constant g, and cannot be approximated to within 1− εg unless P = NP for any

εg <
1

140(6⌈(g − 3)/6⌉+ 1)
.

Proof. We prove this by giving a PTAS reduction from Mis for 3-regular graphs G3r =

(V3r, E3r) to Mis for graphs Gg+ = (Vg+ , Eg+) of girth ≥ g. We obtain Gg+ from G3r by

replacing each edge in E3r with a path of length 2t + 1 (t ∈ Z), connecting 2t new nodes.

Hence, the smallest cycle in Gg+ is 3 + 6t. We pick t = ⌈(g−3)/6⌉ so that Gg+ has no cycle

of length < g.

It is known [69] that Gg+ has an independent set of size t|E3r| + k iff G3r has an

independent set of size k. Every (1 − ε)-approximation algorithm for Mis of Gg+ can find

an independent set of size (1 − ε)(t|E3r| + k), which corresponds to an independent set of

size (1− ε)k − εt|E3r| ≥ (1− (6t + 1)ε)k in G3r, where the last inequality follows from the

fact that k ≥ |E3r|/6 for every 3-regular graph, due to Turán’s Theorem [88].

Based on [23], Mis for 3-regular graphs cannot be approximated to within 1 − ε3r for

any ε3r < 1/140. Thus, ε cannot be less than 1
140(6t+1) = 1

140(6⌈(g−3)/6⌉+1) .

Proof of Theorem 5.6. For any n-node, m-edge G = (V,E) that have maximum degree at

most 3 and girth at least r + 1, we construct a set B of independent random variables and

an auxiliary set Af so that

B = {Xi : i ∈ V } ∪ {Xijk : (i, j) ∈ E, i < j, k ∈ [1, d− 2]}, and

Af =
{

Yij1, . . . , Yij(r−d) : f
(

Xi, Xj , Xij1 . . . Xij(d−2), Yij1 . . . Yij(r−d)

)

= 0, (i, j) ∈ E, i < j
}

,

where the solution space of f = 0 is in general position and has dimension d ≥ 2. Hence,

for every (i, j) ∈ E, i < j,
(

Yij1, Yij2, . . . , Yij(r−d)

)

is unique.
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Here we define the Yijk explicitly. Let v1,v2, . . . ,vd be a set of basis vectors (column

vectors) in Z
r of the solution set of f = 0. Let A be the aggregation of v1,v2, . . . ,vd

where A = (v1|v2| · · · |vd). Let Q be the square matrix composed of the upper d rows of

A. By the definition of general position, A is strongly full rank, Q is full rank, and thus z

is uniquely defined by

Qz =

























Xi

Xj

Xij1

...

Xij(d−2)

























, and we set Az = A

























Q−1

























Xi

Xj

Xij1

...

Xij(d−2)

















































=













































Xi

Xj

Xij1

...

Xij(d−2)

Yij1
...

Yij(r−d)













































.

Hence, each of Yij1, . . . , Yij(r−d) is a linear combination of Xi, Xj , Xij1, . . . , Xij(d−2). Note

that AQ−1 is also strongly full rank, yielding that a linear combination of any d variables

from the set
{

Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)

}

cannot be a zero polynomial. We are ready to prove that B is superposable w.r.t. E, that

is:

Lemma 5.20. For any distinct a1, a2, . . . , ar ∈ B∪Af , f(a1, a2, . . . , ar) is a zero polynomial

iff {a1, a2, . . . , ar} = {Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some (i, j) ∈ E, i < j.

Proof. If {a1, a2, . . . , ar} ⊂ {Xi : i ∈ [n]}, then f(a1, a2, . . . , ar) cannot be a zero polynomial

because the Xi’s are independent variables and each Xi appears at most once in any linear

polynomial ℓj that comprises f . Thus, to zero f(a1, a2, . . . , ar) we may assume that

ap ∈ Sij ≡ {Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some p ∈ [r], (i, j) ∈ E, i < j.

Say ap appears in some homogeneous linear polynomial ℓq that comprises f . To make

f(a1, . . . , ar) a zero polynomial, one must make ℓq a zero polynomial. We disprove the

possibility of making ℓq zeroed as follows. If ℓq picks ≥ d variables from Sij , then each of
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a1, . . . , ar can be represented by linear combination of random variables in Sij . In other

words, {a1, . . . , ar} ⊂ (Sij ∪ {Xi, Xj}) because d ≥ 2. If ℓq picks d − 1 variables from Sij ,

then to make ℓq zeroed, ℓq needs to pick two variables aw and az where aw is from Sik∪{Xi}

and az is from Sjℓ∪{Xj}. Note that k 6= ℓ because G has girth r+1 ≥ d+2 ≥ 4. This would

lead to a contradiction since if we solve the system by the d − 1 variables from Sij as well

as aw, then az can be represented by linear combination of variables from Sij ∪ Sik ∪ {Xi},

contradicting that az ∈ Sjℓ, ℓ 6= k, and d ≥ 2. If ℓq picks ≤ d − 2 variables from Sij , since

the rest of variables can be partitioned into subsets, each of which sum to a multiple of

Xi, or a multiple of Xj , but not a linear combination of Xi and Xj due to G having girth

at least r + 1, therefore ℓq cannot be zeroed since this effectively picks ≤ d variables from

Sij ∪ {Xi, Xj}.

Lastly, the exact construction of the superposable set is similar to that in Theorems 5.4

and 5.5. By Lemma 5.20 and the Swartz-Zippel Lemma, we know that sampling {Xi : i ∈

[n]} ∪ {Xijk : (i, j) ∈ E, i < j, k ∈ [d − 2]} uniformly at random from (det(Q)Z)n+(d−2)m

yields a superposable set with positive probability. We pick every Xi and Xijk as multiples of

det(Q) to ensure that all dependent variables Yijk’s are in Z. Then, after derandomization

using techniques for constant-wise independence, the construction takes time polynomial

time in n. Setting g = r + 1, we get our inapproximability constant by Lemma 5.19.

An implication of Theorem 5.6 is the APX-hardness of finding the maximum-cardinality

r-term AP-free subset S for any fixed r ≥ 3, noting that S may contain elements that form

an c-term arithmetic progression for c < r but not c ≥ r. This problem can be encoded as

Max-RF(f) for f =
∑r−2

i=1 (xi − 2xi+1 + xi+2)
2, and the solution set of f = 0 is the plane

(x1, x2, . . . , xk) = α(1, 3, . . . , 2k − 1) + β(2, 4, . . . , 2k) for constant α, β ∈ R.

Therefore,

B =





1 3 . . . 2k − 1

2 4 . . . 2k



 in which every 2× 2 submatrix





2i− 1 2j − 1

2i 2j





is full rank. By Theorem 5.6, we get:
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Corollary 5.21. Finding a maximum-cardinality r-term AP-free subset of a given integral

set S for any fixed r ≥ 3 is APX-hard.

Sharpness of d ≥ 2. Not every problem in the class Max-RF(
∑

i ℓ
2
i ) is hard to approx-

imate. If the solution set of f = 0 is a point2, then it suffices to remove an integer in the

set S that coincides with the coordinate of the point. If it is a line, for example α(1, 2, 4, 8)

for α ∈ R, then a greedy algorithm can solve this case in P by removing the last coordinate

for every tuple of 4 integers that are multiples of (1, 2, 4, 8).

5.6 Inapproximability Constant

Lastly, we determine an inapproximability constant 1− εr for Max-RF(f), for every homo-

geneous, r-variate for r ≥ 3, linear polynomial f . We use the facts that Mis on 3-regular

graphs cannot be approximated to within the constant C3 = 139/140 + ε for any constant

ε > 0 [23], and Mis on 3-regular triangle-free graphs can not be approximated to within

the constant C3∆ = 1422/1432 + ε for any constant ε > 0 [34].

We first apply Lemma 5.11 to bound a inapproximability constant 1 − δr based on C3

and then replace the use of Turán’s Theorem in Lemma 5.11 with the AKS Theorem [9]

and Staton’s result [85] to bound the claimed inapproximability constant 1 − εr based on

C3∆.

Since Mis on 3-regular graphs cannot be approximated to within C3, from Lemma 5.11

we have following theorem:

Theorem 5.22. For every homogeneous, r-variate (r ≥ 3), linear polynomial f , Max-

RF(f) cannot be approximated to within any constant factor larger than 1−δr in polynomial

time unless P = NP, where δr = 1−C3
7+6(r−3) .

Simply replacing C3 with C3∆ cannot increase δr because C3 < C3∆ and such replace-

ment in Theorem 5.22 makes δr smaller. Instead, we replace the use of Turán’s Theorem,

which applies to general graphs, with the AKS Theorem (see Theorem 5.23), which works

for triangle-free graphs. In [8,83], the constant in the big-Omega notation in AKS Theorem

2
0 must be a solution of f = 0 because the ℓi are homogeneous.
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is bounded above by 1/100 and 1/8, respectively. Though the size of an independent set

guaranteed by the AKS theorem is asymptotically larger than that of Turán theorem, it is

numerically smaller when d = 3.

Theorem 5.23 (AKS Theorem [9]). Every d-regular triangle-free graph has an independent

set of size Ω(n log d/d).

Note that the constant in the big-Omega notation is universal for every d. For a par-

ticular value of d the constant can be larger. In particular, in [85] Staton shows that every

3-regular triangle-free graph has an independent set of size 5m/21, which is more than the

m/6 guaranteed by Turán theorem. The constant 5/21 is tight due to Fajtlowicz [47]. Based

on this improved guarantee of the size of an independent set, we obtain the following result.

Theorem 5.24. For every homogeneous, r-variate, linear polynomial f , Max-RF(f) cannot

be approximated to within any constant factor larger than 1− εr in polynomial time unless

P = NP, where εr = 1− 1−C3∆
5.2+4.2(r−3) .

The inapproximability constant of Max-rSUM problems. As noted in Section 5.1, we

have f3 = 3x(2x+y)(x+y+ z), and by Theorem 5.5 Max-3SUM has the inapproximability

constant 1 − ε3 because the ℓ∗ of f3 has 3 variables. As for r = 4, f4 = 4x(3x + y)(2x +

2y)(2x+ y+ z)(x+ y+ z+w) and therefore Max-4SUM has the inapproximability constant

1− ε4. One can observe that each linear factor ℓi in fr has Coef(ℓi) equal to some partition

of the integer r, and thus for each r the ℓ∗ for fr is
∑

1≤i≤r xi. This implies that Max-rSUM

has inapproximability constant 1− εr for every r ≥ 3.
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