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Kevlar has a remarkable combination of high strength, high modulus, toughness and 

thermal stability compared to many other organic fibers. These impressive properties are 

due to their molecular structure, developed during their production process which is based 

on liquid crystal technology, as the rigid molecular chains form a mesophase in solution. 

Modeling of the high-performance ballistic fabric has gradually shifted from the 

continuum and yarn length scales to the sub-yarn length scale which enabled 

establishment of the relationships between the fabric penetration resistance and various 

fiber-level phenomena such as fiber-fiber friction, fiber twist, and transverse properties of 

the fibers. 

An instrumented indentation method was established in this thesis work to accurately 

measure the local elastic-plastic material properties of a single fiber. As indentation theory 

assumes that the indent is being placed on a semi-infinite flat surface, general area function 

cannot predict accurate projected area on a circular specimen. The indentations on 

cylindrical surface require modified equations to determine the area function and 

subsequently, the hardness and reduced modulus.  
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The Oliver-Pharr instrumented indentation data analysis method is followed for the 

calculation of area function of the indenter geometry through the simulation of the known 

properties of the material. This new area function calculation method is compared with 

the geometry correction method by Quinn McAllister and John W. Gillespie, Jr to 

calculate the elastic modulus of the fiber in transverse direction. In addition, Compliance 

contributions are attributed to the lack of constraint due to the finite geometry of a curved 

fiber surface. This compliance contribution is accounted by using a proposed area 

correction to capture the geometry of the curved fiber-probe contact. Implementation of 

these corrections to experimental indentation curves results in accurate measurements of 

the fiber elastic modulus. 
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1. INTRODUCTION 

 

High performance fibers have strong anisotropy in their mechanical properties 

owing to the highly oriented chain molecules or crystals along the fiber axis. Measurement 

of mechanical properties at micro and nano scales could be very difficult especially for the 

single fibers having a diameter in range of 5 - 20 microns. There are many techniques 

available for the measurement of longitudinal modulus which is the modulus in the fiber 

axis direction whereas measurement of transverse modulus which is in normal direction to 

the fiber axis direction is very difficult because of the difficulty in the measurement change 

in fine diameter of these fibers. With the increasing applications high performance fibers, 

study of these properties at nano scales is very important.  Very limited technology is 

available today for the quantitative measurement of mechanical properties at nano scale, 

one of which is Nano indentation. Various other methods are used to characterize the 

mechanical properties of fibers which include micro tension and micro bending.  Bunsell 

[1] studied the tensile and fatigue behavior of Kevlar - 49. Ward et al [2, 3] measured the 

transverse modulus of polyethylene and some other thick polymeric micro filaments. The 

experimental method that was employed by ward et al. was that a monofilament was 

compressed between two parallel plates transversely to the fiber axis, and the amount of 

flattening of the contact area of the fiber resulting from the compression was measured 

with a microscope. The transverse modulus of the filament was then estimated from the 

size of the contact area and the compression force. These authors also showed that the 

transverse modulus could the estimated from the diametric change in the fiber caused by 

the transverse compression. In this project, a simulation of nanoindentation is carried out 
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to find mechanical properties of the K-29 single fiber in the transverse direction of the 

fiber.  
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2. THEORY OF NANOINDENTATION 

 

2.1. History 

Nanoindentation is a technique used to find the mechanical properties of a material at nano 

and micro scale. The nanoindentation technique was developed in the mid-1970s to 

measure the hardness of small volumes of a material [4]. Over the past few decades, many 

researchers utilize this technique to measure the modulus, hardness, and the properties of 

thin films and coatings have used this technique. 

Nanoindentation provides an insight to measure the mechanical properties of materials of 

very small volumes. A very sharp tip is used to measure the arbitrarily small volumes of a 

material, but this leads to difficulty in determining the indentation area. To address this 

issue various depth sensing indentation methods have been developed. 

To measure the elastic modulus, the displacement of the indenter tip and the force during 

the indentation process is recorded and plotted in a graph. The slope of the unloading curve 

is used to calculate the elastic modulus. The most common unload curve analysis 

techniques are Oliver - Pharr [5] and Doerner-Nix [6] methods. According to the literature, 

either of these techniques is used to measure the elastic modulus of metals and the results 

are far from the actual tensile-test values. While the known elastic modulus of tungsten is 

420 GPa, Doerner-Nix [6] found the value to be 480 GPa using the nanoindentation 

technique. Similarly, the known elastic modulus for aluminum is 70 GPa, but Rodriguez 

and Gutierrez found the elastic modulus of aluminum to be 80GPa [7]. Garrido Maneiro 

and Rodríguez [8] studied the nanoindentation with spherical–conical tips and observed an 

increasing elastic modulus with an increasing load for two aluminum alloys. This inflated 
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elastic modulus value for metals is often attributed to the indentation pile-up, indent size 

effect, and the elastic recovery [9-12]. The indentation test is similar to the compression 

test [13-14] and the stress under an indenter is different than that in a round or flat bar in 

tension. Also, the lateral displacement of a material at the free surface around the edge of 

the indenter means that a uniaxial stress field is not maintained during unloading. On the 

other hand, nonmetallic materials, such as fused silica, soda-lime glass, and silicon, do not 

pile-up during indentation and therefore the unload curve provides good results of elastic 

modulus [5]. 

Figure 1 illustrates the load-displacement curve during nanoindentation where P represents 

load and h represents displacement of the indenter. 

 

Figure 1: Schematic of load vs. displacement curve for an elastic-plastic material from a nano 

indenter with Berkovich indenter. 
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Figure 2: Schematics representation showing the quantities used in the analysis 

 

Pmax is the point at maximum applied load, slope of the unloading curve can be defined 

by slope S = dp/dh. 

In the indentation process at the unloading stage the boundary of the test specimen make 

a rounded surface as shown in figure 2. 

The elastic modulus is calculated using the following equation derived from the Hertzian 

theory of contact mechanics [24]: 

 
1

𝐸𝑟
=

(1 − 𝜈𝑠
2)

𝐸𝑠
+

(1 − 𝜈𝑖
2)

𝐸𝑖
 (1) 

The elastic modulus, Es, the Poison ratio, 𝜈𝑠, of the specimen, and the reduced modulus, Er   

of the material can be calculated from Eqn (1). 

The most accepted analysis method for calculating the slope of the indentation unload 

curve at maximum displacement is the Oliver-Pharr method [5]. In this method, the unload 

curve is described by the power-law: 
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 𝑃 = 𝛼(ℎ𝑚𝑎𝑥 − ℎ𝑓)𝑚 (2) 

The above equation is non-linear and numerical analysis techniques are used to determine 

the values of constants α and m. In this case, final depth, hf = 0 as the indentation is elastic 

and there is no permanent mark on the specimen. All the data points of the curve are used 

for the fitting function. The slope S at the maximum displacement data point hmax can be 

calculated by taking the first derivative of Eqn (2). 

 
𝑆 =

𝑑𝑃

𝑑ℎ
= 𝛼𝑚(ℎ𝑚𝑎𝑥 − ℎ𝑓)(𝑚−1) 

(3) 

The indentation contact depth hc is not equal to the total displacement hmax of the indenter 

into the sample because the surrounding surface has elastic relaxation during the process 

after the load is removed. According to Doerner-Nix [6] and Oliver-Pharr analysis methods 

[5], hc can be calculated from Eqn (4) where Ԑ is a geometric correction factor to determine 

the edge effects at the contact perimeter. 

 ℎ𝑐 = ℎ𝑚𝑎𝑥 − Ԑ(ℎ𝑚𝑎𝑥 − ℎ𝑟) (4) 

 ℎ𝑟 = ℎ𝑚𝑎𝑥 − (
𝑃𝑚𝑎𝑥

𝑆
) (5) 

By substituting the Eqn (5) in Eqn (4), the term hr can be eliminated, 

 ℎ𝑐 = ℎ𝑚𝑎𝑥 − Ԑ (ℎ𝑚𝑎𝑥 − [ℎ𝑚𝑎𝑥 − (
𝑃𝑚𝑎𝑥

𝑆
)]) (6) 
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 ℎ𝑐 = ℎ𝑚𝑎𝑥 − Ԑ (
𝑃𝑚𝑎𝑥

𝑆
) (7) 

From Hertzian method theory [24] 

 
𝐸𝑟 =

1

𝛽
.
√𝜋

2
.

𝑆

√𝐴(ℎ𝑐)
 

(8) 

Where β is defined as the shape parameter for the indenter tip and it is generally assumed 

equal to 1 for Berkovich indenters [15-20]. 

Once hc has been calculated, the area function is then approximated by a fitting polynomial 

[2-7] as in Eqn (9): 

 𝐴(ℎ𝑐) = 𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐 + 𝐶2ℎ𝑐

1
2⁄

+ 𝐶3ℎ𝑐

1
4⁄

+ 𝐶4ℎ𝑐

1
8⁄

+ 𝐶5ℎ𝑐

1
16⁄

+ ⋯ (9) 

Area function can be simple or complicated relationships. On a simpler side a function of 

the type 𝐴(ℎ𝑐) = 𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐  is a reasonably robust approach which can be used for the 

modulus measurements to within about 2% of literature values across a width range of 

indentation depths. The higher order terms are used in the approximation of the indenter 

profile with a higher order polynomial fit to capture irregularity in the indenter surface 

which has an impact in the data at very small indentation depths. In this work, a 2nd order 

function is considered for the analysis as the indenter used in the experimental 

investigations is new and has minimum irregularities. Also, the indentation depth range 

used is this investigation is always more than 500nm. 
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2.2.  Finite element analysis Theory 

Abaqus is a general-purpose finite element code now maintained by Dassault Systemes. It 

uses large deformation nonlinear Lagrangian solid mechanics principles to model the 

response of a wide range of structures and systems to mechanical loading. The explicit 

methods calculate the state if the system at later time form the state of system at the current 

time, while implicit methods find a solution by solving an equation involving both current 

state and the later one. In this work, explicit analysis is used as implicit method is harder 

to implement as it is computationally heavy method. Also, a practically small time step 

was possible for the explicit method for the current simulation. 

2.2.1. Explicit Dynamic Analysis 

(a) Introduction 

Explicit dynamic analysis uses finite strain theory and infinitesimal strain theory. It can be 

used to analyse: 

 Relatively short dynamic response time of large models. 

 Events and processes those are discontinuous. 

 Contact definitions. 

 Adiabatic stress when inelastic dissipation generates heat in a material. 

 Quasi-static events for complex contact conditions. 

 Automatic or fixed time incrimination to scale global time estimate. 

The explicit dynamic method uses central-difference time integration rule and performs 

small time increments accurately in a large number. Each increment in this analysis is 

relatively inexpensive when compared to the increments in a direct-integration dynamic 
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analysis. The dynamic equilibrium equations are satisfied at the beginning of the 

increment, t. The accelerations calculated at t, advance the velocity solution to time 𝑡 +

∆𝑡/2   and the displacement solution to time𝑡 + ∆𝑡. 

(b) Numerical Implementation 

The explicit dynamic analysis method is based on explicit integration rule along with 

diagonal element mass matrices. The following equations for the motion of a body are 

combined with explicit central-difference integration rule: 

 
𝑢̇

(𝑖+
1
2

)

𝑁 = 𝑢̇
(𝑖+

1
2

)

𝑁 +
∆𝑡(𝑖+1) + ∆𝑡(𝑖)

2
𝑢̈(𝑖)

𝑁  
(10) 

 

𝑢̇(𝑖)
𝑁 = 𝑢̇(𝑖)

𝑁 + ∆𝑡(𝑖+1)𝑢̇
(𝑖+

1
2

)

𝑁  (11) 

Where, uN = degree of freedom and i = number of increments, N represents the 

displacement or the rotational component 

The central difference time integration method is explicit as the kinetic state is advanced 

using known values of 𝑢̇
(𝑖+

1

2
)

𝑁  state at a later time step and 𝑢̈(𝑖)
𝑁  state at the current time step 

of the previous increment. 

The explicit method uses diagonal element mass matrices because lumped mass matrix 

inverse is easy to calculate. 

The accelerations of the increment are calculated by: 
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𝑢̇(𝑖)
𝑁 = (𝑀𝑁𝐽)−1(𝑃(𝑖)

𝐽 − 𝐼(𝑖)
𝐽 ) (12) 

Where, 𝑀𝑁𝐽= mass matrix, 𝑃(𝑖)
𝐽

= applied load vector, and 𝐼(𝑖)
𝐽  = internal force vector. 

The vector multiplication of the mass inverse by the inertial force requires n operations, 

with n denoting the number of degrees of freedom in a model. The explicit method does 

not require iterations and tangent stiffness matrix. The internal force vector, IJ is assembled 

from contributions from the individual elements such that a global stiffness matrix need 

not be formed. 

 

(c) Nodal Mass and Inertia 

Abaqus/Explicit requires a nonzero nodal mass or inertia at all translational degrees of 

freedom and nonzero rotary inertia at all rotational degrees of freedom unless any 

constraint are applied using the boundary conditions. More precisely, a nonzero nodal mass 

must exist unless all activated translational degrees of freedom are constrained and nonzero 

rotary inertia must exist unless all activated rotational degrees of freedom are constrained. 

Nodes of a rigid body and Eulerian elements do not require mass, but the whole rigid body 

should have mass and inertia unless any constraints are applied. When degrees of freedom 

at a node are activated by elements with a nonzero mass density like solid, shell, beam or 

mass and inertia elements, a nonzero nodal mass or inertia occurs naturally from the 

assemblage of lumped mass contributions. 
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(d) Stability 

This explicit procedure integrates through time by using many small time increments. The 

central-difference operator is conditionally stable, and the stability limit for the operator 

(with no damping) is given in terms of the highest frequency of the system as 

 
∆𝑡 ≤

2

𝜔𝑚𝑎𝑥
 

(13) 

While the stability time increment with damping is described as: 

 
∆𝑡 ≤

2

𝜔𝑚𝑎𝑥
(√1 + 𝜉𝑚𝑎𝑥

2 − 𝜉𝑚𝑎𝑥) 
(14) 

Where 𝜉𝑚𝑎𝑥 is the fraction of the critical damping, max, with the highest frequency. 

Damping reduces the stable time increment as rigid body motions are suppressed by the 

bulk viscosity. Therefore, in Abaqus/Explicit a small amount of damping is given in the 

form of bulk viscosity to control high frequency oscillations. Apart from bulk viscosity, 

physical damping such as dashpots or material damping can also be assigned. 

(e) Estimating the Stable Time Increment Size 

The stability limit is approximated to the smallest transit time of a dilatational wave across 

the elements in a mesh: 

 
∆𝑡 ≈

𝐿𝑚𝑖𝑛

𝑐𝑑
 

(15) 



12 
 

 

Where 𝐿𝑚𝑖𝑛 = smallest element dimension in a mesh and 𝑐𝑑 = dilatational wave speed in 

terms of 𝜆0 and𝜇0, with 𝜆0 and 𝜇0 denoting effective Lame’s constants  

The element thickness, or cross-sectional dimensions, is not considered in determining the 

smallest element dimension for beams, conventional shells, and membranes. The stability 

limit is based on midplane, or membrane, dimensions, and depends on the transverse shear 

behaviour of the nodes when the transverse shear stiffness is defined for shell elements. 

This value of Δ𝑇 is not a conservative approximation because damping, bulk viscosity and 

penalty contact stiffness are not considered at this stage. Therefore, the actual stable time 

increment chosen by Abaqus/Explicit is always less than the estimate by a factor between 

1
√2

⁄  and 1 in a two-dimensional model and between 1
√3

⁄  and 1 in a three-dimensional 

model. The stable time increment is also dependent on the stiffness behaviour of a model 

with a penalty contact which is helpful in the reduction of the computational cost. 

(f) Stable Time Increment Report 

During the data check phase of analysis, Abaqus/Explicit writes a report to the status (.sta) 

file. The report contains an estimate of the minimum stable time and the smallest stable 

time increments of the elements. Initially, the stable time increments do not include 

damping, mass scaling, or penalty contact effects. As the simulation progresses then this 

parameter are accounted for in the calculation of the stable time step. 

Few elements have smaller stability limits. The stable limit can be increased by increasing 

the size of the controlling element or by using mass scaling, therefore modifying the mesh. 

In this work we used an optimised mesh size for the computational cost and stable time 

step without using any mass scaling factor. 
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(g) Dilatational Wave Speed 

In Abaqus/Explicit, the current dilatational wave speed, 𝑐𝑑  is determined by calculating 

the effective hypo elastic material moduli from the material’s constitutive response. By 

employing the effective Lamé's constants 𝜆̂ and 𝐺̂ = 2𝜇̂ one may utilize a hypo elastic 

stress-strain rule of the form of: 

 

∆𝑃 = (3𝜆̂ + 2𝜇̂)Δ𝜖𝑣𝑜𝑙 (16) 

With Δ𝑃defined as the increment in the mean stress, Δ𝑆 the increment in the deviatroic 

stress,  Δ𝜖𝑣𝑜𝑙 the increment of volumetric strain, and Δ𝑒 the deviatroic strain increment. 

The effective Lamé's constant, 𝜆̂, in an isotropic elastic material is defined in terms of 

Young’s modulus, E, and Poisson’s ratio,  as 

 
𝜆̂ = 𝜆0 =

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

(17) 

And 

 
𝜇̂ = 𝜇0 =

𝐸

2(1 + 𝜈)
 

(18) 

The effective moduli, 𝐾,̂  𝜇̂, are then calculated as: 

 
3𝐾̂ = (3𝜆̂ + 2𝜇̂) =

Δ𝑃

Δ𝜖𝑣𝑜𝑙
 

(19) 

with 
(2𝜇̂) =

Δ𝑆 ∶  Δ𝑒

Δ𝑒 ∶  Δ𝑒
 

(20) 
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The effective moduli, 𝐾,̂  𝜇̂ for the shell elements that require numerical integration is 

calculated by integrating the effective moduli at the section points through thickness. 

Effective moduli represent the element stiffness and calculate the current dilatational wave 

speed in the elements as follows: 

 𝑐𝑑 = √
𝜆̂ + 2𝜇̂

𝜌
 

(21) 

(h) Time Increment 

In explicit dynamic analysis, the time increment must be smaller than the stability limit of 

the central-difference operator. Large time increment results in an unstable solution. 

Therefore, the response of solution variables such as displacement oscillates with 

increasing amplitudes. The total energy balance also changes. 

The initial increment is directly proportional to the size of the smallest element in the mesh 

if the model is of single material type. The element with the highest wave speed determines 

the initial time increment if the mesh contains uniform size elements with multiple material 

descriptions. 

(i) Scaling the Time Increment 

To decrease the instability of a solution, adjust the stable time increment calculated by 

Abaqus/Explicit by a constant scaling factor. 
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Constant scaling factor can be used to scale the default global time estimates, the element-

by-element estimates, or the initial element-by-element estimate. 

(j) Automatic Time Increment 

In Abaqus/Explicit, the default time increment is completely automatic. The stability limit 

is determined by element-by-element and global estimates. Element-by-element method is 

used to begin the analysis and the global estimation method is used later, if required. 

(k) Element-by-Element Estimation 

Initially, Abaqus/Explicit uses stability limit depending on the highest element frequency. 

The element-by-element estimate is calculated using the current dilatational wave speed in 

each element. 

This estimation gives a smaller stable time increment than the true stability, which is 

dependent on the maximum frequency of the model. Boundary conditions and kinematic 

contact have the effect of suppressing the Eigen vale spectrum. Now, the global stability 

estimates can be used to make the time increment less sensitive to element size. 

(l) Global Estimation 

Global estimator determines the stability limit unless the fixed time increment is specified. 

After the algorithm determines the accuracy of the global estimation method, the switch to 

the global estimation method takes place. 

The global estimation algorithm uses the speed of the current dilatational wave to 

determine the maximum frequency of the model.  The global estimator allows time 

increments that exceed the element-by-element values. 
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(m) Fixed Time Increment 

Initial element-by-element stability estimate or a user-specified time increment determines 

a fixed time Increment. Fixed time increment is useful for accurate representation of higher 

mode response of a problem. The dilatational wave speed in each element is used to 

compute the fixed time increment size.  
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3. METHODS 

 

3.1. Experimental Setup 

The sample that is used for the measurement is KM2 Kevlar. The diameter of a single fiber 

is estimated to be 12µm. In this study to measure the transverse elastic modulus of a single 

fiber, the sample is prepared by picking a single fiber from a yarn with a length of 8 inches. 

To isolate a single fiber from the yarn it is placed on a black background for a better 

visibility. An SEM puck is used as a mount for the fiber to be placed in the instrumented 

indentation machine. The fiber is attached with two washers using Cyanoacrylate (CA) 

glue as shown in the Figure 3a. The glue is then used for binding the fiber to the mount. 

The glue is applied on either ends of the mount as shown in Figure 3b. The adhesive is left 

undisturbed to cure overnight for binding. During this process, a minimal amount of 

prestretch is applied to the fiber which is then relaxed during the curing process of the glue.  

Instrumented indentation tests are performed using a NanoTest Vantage manufactured by 

Micro Materials with a diamond indenter with Berkovich tip. Indentations should be 

performed at least 100µm away from the glued area. Load-controlled indentations are 

performed at various loads ranging from 1mN to 40mN, and then the indentations are 

performed on the fiber using NanoTest Vantage using Continuous stiffness measurement 

(CSM) method. In the instrumented indentation process the total compliance is the sum on 

machine compliance structural compliance [21-26]. The machine compliance is estimated 

by calibrating the machine with known materials. 
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Figure 3:  (a) Kevlar single fiber is mounted on polished SEM puck, pretension measured by 

hanging two 1.1g washers (b) Placement of the glue to constrain the fiber movement over the 

SEM puck for indentation 

 

3.2. Simulation method  

Load-displacement curves are the results from the indentation test. As explained in the 

previous section, the unloading curve is used for determining hardness and reduced 

modulus, and this calculation requires the area function, or projected indentation area at a 

given depth. However, this assumes that the triangular indent is being placed on a flat 

surface. The indentations on the KM2 specimens are performed on a cylindrical surface, 

which requires modified equations to determine the area function and subsequently, the 

hardness and reduced modulus. The novel idea behind this research is to use a combination 

of simulations and experimental data to produce a way to calculate these values for 

nanometer-diameter fibers using indentation. 
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Figure 4:  Schematic illustration of Berkovich Indenter 

 

In this work, a commercial FEA software ABAQUS is used for the simulation of elastic 

behavior of the material in the nanoindentation process. A 3D model was employed to 

represent a Berkovich indenter tip. The Berkovich geometry consists of a 3-sided pyramid 

with a half angle of 65.3o. A 100 nm tip curvature is modeled to symbolize the indenter 

used in the experiment as shown in the Figure 4. The KM2 specimen is modeled as a 

cylinder representing fiber section with 100 µm length and variable diameter as shown in 

Figure 6.  
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The specimen and the indenter are meshed with C3D8R, which is continuum three 

dimensional eight node quadrilateral, reduced integration elements. In the indentation 

process, deformation is mainly concentrated at the point of contact of the indenter and the 

specimen; a denser mesh is used at the indentation area of the specimen to capture the stress 

distribution. In order to reduce the computational time a coarser mesh was used in the areas 

away from the indenter contact point on the specimen.  Various specimens with diameter 

ranging from 7 µm to 50 µm are used to simulate the indentation process. 

The fiber material is considered to be elastic and homogenous isotropic with young’s 

modulus, E = 70 GPa as this is the material property of quartz. Quartz is used for the area 

function calibration in instrumented indentation as the properties are well known. . This 

approximation is strictly used for the calculation of geometry of the contact surface 

between the indenter and specimen.  Each specimen is then simulated using three different 

values of Poisson’s ratio 𝜈𝑠 = 0.15, 0.21, 0.33 in order to check the sensitivity of the results 

over change in the Poisson’s ratio. The elements of the indenter were defined as rigid 

element, which does not undergo any deformation. This approximation is used for the 

computational analysis as it reduced one term from the equation (1). All these are 

considered to be quasi static with no internal deformations or rigid body motion.  

The contact boundary condition between the indenter tip and the specimen is defined as 

frictionless surface-to-surface contact in which the indenter surface is the master surface 

and the surface of the specimen is the slave. The contact direction was defined from 

indenter surface to the specimen so that the master surface penetrates into the slave 

allowing deformation of the sample upon contact. The boundary condition for the specimen 

was modeled as a fixed support at the lower edge to prevent movement and rolling. 
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As an elastic material model is defined for the specimen, the simulation process of the 

indentation is defined by single step loading with displacement of indenter into the 

specimen as boundary condition. A mesh convergence analysis is done to eliminate the 

mesh dependence on the results as shown in the Figure 5. 

 

Figure 5:  Mesh convergence analysis 

 

To validate the model another specimen with flat surface is created and meshed using the 

same elements and boundary conditions described above and the model used as shown in 

Figure 7. The material properties of quartz were used to compare the results with the 

experiments. The area function is calculated for the obtained load – displacement graph 

from the simulation of the flat specimen. The calculated function is 𝐴(ℎ𝑐) = 22.25ℎ𝑐
2 +

2914ℎ𝑐 which is very near to the area function calibrated in the experimental analysis. 
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Figure 6:  Finite element mode of indenter and specimen 

 

Figure 7:  Finite element model for validation with flat specimen 
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4. RESULTS AND DISCUSSION 

 

4.1. Simulation Results 

Analysis was performed on different diameter fibers with 7, 15, 30, 40 and 50 µm diameter 

fibers with Berkovich indenter with indentation depths up to 2µm. As the material model 

used for the specimen is isotropic and only elastic properties are considered. The reaction 

force vs. indenter displacement for the various fibers is shown in the Plot 1 and Plot 2 at 

different indentation depths. 

 

Figure 8:  Load Vs Displacement of various diameter fibers with an indentation depth of up to 2 

microns. Various displacements are considered according to the diameter of the fiber so that the 

shape of the fiber does not disintegrate at final indentation depth 

 

Indentation depths at each diameter of a fiber are chosen carefully such that there is no 

shape deformation at the depths. At each diameter, analysis is performed at two depths, 

which are tabulated in Table 1. 
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Table 1: Indentation depth for various fiber diameters used in the simulation to calculate the load 

Diameter 

[µm] 

Depth 1 

[nm] 

Depth 2 

[nm] 

7 500 350 

15 500 350 

30 1000 500 

40 1500 1000 

50 2000 1000 

 

4.2. Area function calculation by Simulation method 

A straightforward approach for the measurement of the elastic modulus from 

nanoindentation is explained in the above section. But, to find the area function a bottom 

up approach is used. Figure 9 explains the schematics of area function calculation. A 

known material property is assigned to the model and the indentation process is simulated 

to reach a prescribed displacement. The reaction force experienced by the tip of the indenter 

is taken as output from the simulation. The results are as shown in Figure 8. As the material 

properties for the model are known the area function can be calculated for these values to 

fit the equation. 
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Figure 9: Schematic for the calculation of area function of the sample with circular geometry 

where material properties of the sample are known 

 

A finite element model was developed using Abaqus to determine the area function for the 

indentation of cylindrical specimens. With the use of the solver in the software package 

various types of specimens with different parameters to obtain the load - displacement data 

for the indentation. 

Material properties of 
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curve 
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Er 

Contact 
depth (hc) 

Eqn (7) 

Area of 
contact (Ar) 

Eqn (1) 

Eqn (9) 

Area function 
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Area function is considered to a second-degree polynomial. Eliminating all the higher order 

terms from the Eqn (9), the area function equation takes the following form: 

 𝐴(ℎ𝑐) = 𝐶0ℎ𝑐
2 + 𝐶1ℎ𝑐 (22) 

Analysis was first performed on a flat specimen and fibers with 7, 15, 30, 40, 50 µm 

diameters with Berkovich indenter with indentation depths up to 2µm. 

Material Properties: 

Elastic modulus:  70 GPa  

Poisson’s ratio: 0.21 

Fiber diameter: 7 microns 

Material Model: Linear elastic   

 

(a) Case –I: Indentation depth 2µm i.e. hmax = 500nm and Ɛ = 0.75 

Er can be computed from Eqn (1) 

 𝐸𝑟 = 0.066913 𝑁/𝜇𝑚2 (23) 

Stiffness can be calculated by Eqn (2), where Values of α and m are computed from 

power law fit analytically using least square method considering all data point in the 

curve.  

 𝛼 = 0.0960 And m = 1.6065 (24) 

Here as the material model is isotropic and homogenous, indentation does not leave any 

mark after the process and the final depth of zero i.e. hf = 0 
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From Eqn (2), 

 𝑆 = 0.083 (25) 

Eqn (7) can find contact depth  

 ℎ𝑐 = 0.20748 µ𝑚 (26) 

Area of the indent can be found for the known material by using Eqn (9) 

 𝐴(ℎ𝑐) = 1.2011196 µ𝑚2 (27) 

Equation the known area to the area function with calculated contact depth, we get 

 𝐴(ℎ𝑐) = 0.043 𝐶0 + 0.2075 𝐶1 (28) 

(b) Case – II: Indentation depth 1 µm i.e. hmax = 350 nm and Ɛ = 0.75 

Er can be computed from Eqn (1) 

 𝐸𝑟 = 0.066913 𝑁/𝜇𝑚2 (29) 

Stiffness can be calculated by Eqn (2), where 

Values of α and m can be computed from power law fit analytically using least square 

method. 
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 𝛼 = 0.0960 And m = 1.6065 (30) 

Here as the material model is isotropic and homogenous, indentation does not leave any 

mark after the process and the final depth of zero i.e. hf = 0 

From Eqn (2), 

 𝑆 = 0.060 (31) 

Contact depth can be found by Eqn (7) 

 ℎ𝑐 = 0.11730 µ𝑚 (32) 

Area of the indent can be found for the known material by using Eqn (9) 

 𝐴(ℎ𝑐) = 0.6275 µ𝑚2 (33) 

Equation the known area to the area function with calculated contact depth, we get 

 𝐴(ℎ𝑐) = 0.0138𝐶0 + 0.1173 𝐶1 (34) 

Therefore, the calculated area function is  

 𝐴(ℎ𝑐) = 3.89945 ℎ𝑐
2 + 4.77312 ℎ𝑐 

 

 

(35) 
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4.3.  Observations 

       

(a)                                                                            (b) 

 

(c) 

Figure 10:  C0 and C1 at various diameter of the fiber samples Poisson’s ratio at (a) 0.15, (b) 0.21, 

and (c) 0.33 

 

The derived equations for the constants with respect to the diameter of a fiber include the 

correction for the rounded surface from the assumption of semi-infinite plane that are 

averaged over various Poisson’s ratios: 

 
𝐶0 = 2.791 ln(𝐷) − 1.9447 (36) 
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𝐶1 = 1.547 ln (𝐷) + 1.9323 (37) 

The above equations are in 95% agreement with the actual scenario. The extrapolated value 

of the C0 equation at very large diameters is around 25 which are in complete agreement 

with the literature C0 value for Berkovich indenter, which are around 24.5. 

Therefore, the elastic modulus found using the area function calculated from the equations 

(11) and (12) is true to 95% confidence. 

The general equation for the area function derived from the analysis is 

 𝐴𝑟(ℎ𝑐) = [2.791 ln(𝐷) − 1.9447]ℎ𝑐
2 + [1.547 ln (𝐷) + 1.9323]ℎ𝑐 (38) 

4.4. Experimental results  

KM2 fiber is used as a test specimen for the experiments to determine the transverse 

mechanical properties of the fiber using the method discussed in section 4.2. Figure 8 

explains the typical load-displacement curves from the instrumented indentation at various 

loads ranging from 5mN to 40mN. The mechanical properties determined through the 

traditional indentation theory assume the sample to have a semi-infinite plane. In the 

present study, the sample has a curvature. This curvature can be accounted by using the 

method explained in the section 4.2 to find the projected contact area to obtain the material 

properties. 

The indentations are performed with maximum load as boundary condition, starting from 

a load of 5mN where the displacement of the indenter is around 1200nm. The fiber has a 

coating of 200nm. As the load is increased displacement of the indenter increases. 10 
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indents are performed at each load as light deviation can be accounted for the surface 

roughness, which may be local morphological defect on the fiber surface. Also, deviation 

in the indentation data is more after the depth of 2000nm as at this point the coating is 

completely pierced and the indenter touches the fibrils. This can be seen in Figures 9d, 9e 

and 9f. 

In Figure 11 the experimental load vs. indentation data at different loads is plotted. The 

bend in the indentation data in the unloading curve is due to thermal drift. This parameter 

is taken into account in the post processing in the calculation of indentation modulus. 
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Figure 11:  Load Vs displacement data obtained from the Berkovich indenter on KM2 fiber at 

different load (a) 5mN (b) 10mN (c) 15mN (d) 20mN (e) 35mN (d) 40mN. At each load, at least 

7 indents were performed to ensure repeatability. 
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The load vs. displacement data obtained from the instrumented indentation process is used 

in the calculation of elastic modulus of a fiber in the transverse direction as described in 

Figure 10. 

 

Figure 12:  Flow charts showing the calculation of elastic modulus from instrumented indentation 

process 

 

Elastic modulus of the KM2 fiber is calculated from Eqn (1) – Eqn (9) as shown in the 

above Figure 12 with the experimental data. Area function correction for the circular 

Elastic Modulus 

Load 
Displacement 

Curve 

S, Pmax  

Er 
Contact 

Depth (hc) 

Eqn (7) 

Area of 
contact 

Eqn (1) 

Eqn (9) 

Area function 



34 
 

 

geometry compliance is calculated from the function derived by the simulation method.  

The material properties of the diamond indenter used in the experiment are E = 1,250 GPa 

and ν = 0.33. The only value assumed here is the Poisson’s ratio of the sample which is 𝜈𝑠 =

0.27 [27]. The transverse modulus of the KM2 fiber is estimated to be 7.76 ± 0.22 𝐺𝑃𝑎.  

In reality these fibers are viscoelastic and they undergo plastic deformations during the 

indentation process. For the calculation of the elastic modulus only the linear region of the 

unloading curve is taken into consideration. This corresponds to around 40% of the curve 

data from the start of unloading curve. The final contact depth also depends on plastic 

properties of the fiber as well. But plasticity is a diversely nonlinear phenomenon and it is 

very difficult to quantitatively generalize plastic behavior of the different materials to one 

constitutive model.  

The approximation in the simulation for an elastic model has a good fit to the experimental 

data as the linear region of the unloading curve in the test data captures the elastic properties 

of the material. Therefore, this is considered to be a valid approximation for the quantifying 

the geometric compliance of the fiber with respect to is physical shape. 

For comparison, the transverse elastic modulus of the fibers found through general Oliver 

and Pharr [5] analysis is 3.5± 0.83 GPa. The results agree reasonably well with the 

previously reported values of transverse elastic modulus for KM2 fiber. The reported 

values are 7.74 ± 0.96 GPa [27] and 6.2 ± 1.00 GPa [20]. In these reported values from 

McAllister et al [19-20] the area function correction is geometrically calculated with the 

approximation of projected surface area of the conical indenter is equivalent to that of 

Berkovich indenter. The Berkovich indenter has three edges which is in contact with the 

material with a greater stiffness than the other surfaces because of which prediction of 
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elastic modulus is higher in case of Berkovich indenter in comparison with the conical 

indenter where all of the indenter surface is equally in contact with the sample.  

In this study, as the indenter model used is identical to Berkovich the results of elastic 

modulus are as predicted and are on the higher side than the estimation of correction with 

the conical geometry approximation for Berkovich. Also, it can be seen that the function 

had relatively less error and also the area function is a parametric function of diameter of 

the fiber which means, using this function, projected area of the Berkovich indenter can be 

accurately calculated for various diameters of fibers. 

 

Figure 13: Comparison of elastic modulus values for KM2 

  

0

2

4

6

8

10

T
ra

n
sv

e
rs

e 
E

la
st

ic
 M

o
d

u
lu

s 
[G

P
a
]

Comparison with literature - KM2

Simulation method Oliver-Pharr method Cole McAllister



36 
 

 

5. CONCLUSIONS 

 

In this study, nanoindentation techniques are used to estimate the elastic modulus 

of circular of the fibers and this calculation requires the area function, or projected 

indentation area at a given depth. As indentation theory assumes that the triangular indent 

is being placed on a semi-infinite flat surface, general area function cannot predict accurate 

projected area on a circular specimen. The indentations on cylindrical surface require 

modified equations to determine the area function and subsequently, the hardness and 

reduced modulus. Therefore, a combination of simulations and experimental data is used 

to produce an area function 𝐴(ℎ𝑐) = [2.791 ln(𝐷) − 1.9447]ℎ𝑐
2 + [1.547 ln (𝐷) +

1.9323]ℎ𝑐 which includes the corrections for the convex geometry of the fiber surface. 

This calculation method is then validated with experimental studies using instrumented 

indentation of KM2 fibers. The calculated elastic modulus for KM2 was estimated to be 

7.76±0.22 GPa which compares favorably with values found in literature. 
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