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For commercial scale reactors, insufficient mixing is a common phenomenon. 

Imperfect mixing can have significant impact on product quality. Therefore, improving 

the efficiency of mixing is an important part of process design and optimization. This 

study intends to develop a computationally feasible model of a stirred tank reactor, and 

use this model to improve the mixing efficiency. In this study, a scaled-down version of 

a real stirred tank reactor is modelled. A computational fluid dynamics (CFD) based 

compartmental model was developed through finite volume discretization of mass balance 

equation. A resolution sensitivity test was conducted to determine the discretization mesh 

scheme. This model demands less computation than dynamic CFD simulation while 

shows satisfactory predictive power. A benchmark chemical reaction system was 

integrated to characterize the mixing efficiency, which is composed of a first-order decay 

and a parallel second order coupling. Two operating policies were studied to optimize the 

mixing efficiency. The first is a static policy which employs a constant feeding rate in a 

semi-batch process, and the second is a dynamic policy which adjusts the feeding rate 

dynamically.  Feeding point and feeding rate profile are the decision variables. Mixed-
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integer surrogate optimization was implemented to find the optimum, and the solution 

was validated with interior point method. The results obtained indicate that the choice of 

feeding point is independent of feeding rate profile. Additionally, it has been concluded 

that the static policy results in poor utilization of feed. By implementing the dynamic 

policy, through the extra degree of freedom, the waste of material is reduced and 

improvement in the economy of process is achieved.  
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Chapter 1: Introduction 

Stirred tank reactors (STRs) are widely used in chemical industry and pharmaceutical 

industry. They provide excellent mixing performance for gas dispersion, solid suspension 

and chemical reactions. Flow in STRs are created by interaction between the rotating 

impellers and the stationary baffles. Fluid is driven around by the impellers, and deformed 

by the shear created by impellers and baffles. Both affect the mixing process, and show 

substantial influence on the course of chemical reaction. Traditional design of STRs are 

based on the assumption of perfect mixing. However, in cases where the time scale of 

reactions are smaller than that of mixing, the efficiency of mixing should be taken into 

consideration. Perfect mixing assumption can be justified in bench-scale device since 

strong agitation can be provided inside a small vessel. However, for commercial scale 

reactors, where technical-economical performance should be taken into consideration, this 

assumption cannot be justified. The deviation from perfect mixing models can lead to 

severe damage to product quality1. Mixing is an important factor in process design. 

Mixing inside STRs is categorized according to their characteristic length scales: the 

first category is driven by convection, which has length scale higher than the inertial 

subrange, usually referred to as macro-mixing2. The second category is driven by coarse-

scale turbulent exchange, which has a length scale larger than Kolmogorov scale, usually 

referred to as meso-mixing3. Finally, the third category is driven by viscous-convective 

deformation and the following molecular diffusion, which has a smaller length scale than 

Batchelor scale; commonly described as micro-mixing4. 
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Different categories of mixing contributes to the course of chemical process differently. 

To understand the states of mixing and the associate impact, their characteristic time scales 

should be compared to that of chemical reactions. For macro-mixing the characteristic time 

scale is of the order of one second, while for micro-mixing, it’s around 10-2 seconds5. It 

can be concluded that the most desired state of mixing, which is well macro-mixing and 

well micro-mixing, may only be feasible for slow reaction systems. Moreover, partial 

segregation can be easily encountered in systems with fast kinetics.  

The mechanism of different mixing category are different. Considering variations in 

length and time scales, first principle model of mixing is numerically infeasible. Similar to 

the case with turbulence, direct simulation is infeasible with current computational 

resources. Moreover, modeling micro-mixing relies on the information of turbulence, 

therefore the difficulties in modeling turbulence is inherited in micro-mixing models. In 

addition, for the discretization of space required in numerical simulations of turbulent flow, 

the grid size defined by the discretization method is larger than the characteristic length 

scale of micro-mixing. As a result, micro-mixing models are formulated as a source term 

in the mass balance equation instead of the flux term.  

The early researches of mixing majorly focused on micro-mixing. Models developed 

include multi-environmental model6, engulfment-deformation-diffusion model7, and 

interaction by exchange with mean model8. Nevertheless, limited description of the bulk 

flow field was included, which accounts for the efficiency of macro-mixing. Considering 

the characteristic time scale of micro and macro mixing, for industrial reactors partial 

segregation caused by insufficient macro-mixing is more likely to happen. To deal with 

this problem, compartmental models are developed to describe the macro-mixing 
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efficiency in reactors. The fluid body in the reactor is modelled with a matrix of 

interconnecting cells9. Each cells inside the matrix is modelled as perfect reactors. The bulk 

velocity profile of certain reactor configuration was determined by experiments, which was 

used to calculate the flow throughput of each cell. Network of Zones model9 is developed 

based on the idea of compartmental modeling. The radially dominant flow driven by a 

Rushton turbine is captured, and the distribution of chemical species is solved. For 

situations where the flow pattern is simple, assumptions could be made based on the 

preliminary understanding, and the mass transfer process could be quantified with flow 

numbers10. Improvement of compartmental model was introduced later by integrating 

Stocks-Einstein equation to describe the streamline profile11. A stochastic switching 

mechanism was introduced to account for the influence of turbulence, which contributes to 

the species shifting between different streamlines. Multiple models were developed to 

further improve compartmental mixing models10, 12, but its incapability to deal with 

complex flow still limit the implementation of compartmental mixing model. 

With the development of computers, Computational Fluid Dynamics (CFD) has become 

a good alternative. With CFD, robust solutions of the bulk flow field is available with 

limited time and economical cost. CFD based mixing models, which combines CFD with 

chemical kinetics models has been widely adopted. Good predictive power has been 

achieved in the work of multiple-time-scale turbulent mixer model13, finite-mode 

probability density function14, direct quadrature method of moments combining with the 

interaction by exchange with the mean micro-mixing model(DQMOM-IEM)15, and finite-

rate/eddy-dissipation(FR/ED) model16. Although some models have parameters 

determined by experiments, CFD-based mixing model in general do not require 
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experimental input or preliminary knowledge of the flow pattern. As a result, CFD-based 

mixing model is more robust and its predictive power is not compromised with complex 

flow field.  

With the wide adoption of CFD-based mixing model, CFD-based optimization 

frameworks were implemented to optimize the mixing process. CFD models were 

developed for quench reactor17, heat exchangers18, cyclone separator19, and combustion 

chamber20. Good results are achieved, and this integrated framework has shown its 

potential as a promising design method. In these works, evolutionary algorithms are widely 

adopted. Genetic Algorithm (GA) was implemented in the work with quench reactor and 

heat exchangers 17, 18. Artificial Neural Networks (ANNs) was used together with GA in 

the work with cyclone separator19. Through the implementation of evolutionary 

optimization algorithm, no assumptions about the nature of the models are needed, which 

make the adaptation easy.  

However, evolutionary algorithms are relatively inefficient, because a significant 

amount of function evaluations are required, which further increase the computational 

expense. In the work with quench reactor, which has a four-dimensional design space, 2000 

function evaluations were performed. Each function evaluation included a CFD simulation, 

which takes around 182 minutes on a 20-core server for each individual simulation17. The 

overall computational expense is prohibitive.  

Moreover, considering the complex nature of reactive flow, models with higher 

complexity are required in many processes. Probability density function model is adopted 

to model chemical reactions where different phases are generated21. To model the 

precipitation process inside a STR22, 23, adopting population balance equations has become 
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the standard method to predict the particle size distribution. To replace the empirical model 

of mass flux, E-model was developed4 in which the interested chemical species were 

modelled with a pseudo phase and its distribution is tracked with the volume of fluid (VOF) 

simulation. Despite the significant improvement these models have achieved, the 

corresponding computational expense also increase significantly. As a result, the integrated 

CFD-based optimization framework could be computationally prohibitive, which limited 

its wide implementation.  

Instead of replacing compartmental models with CFD simulations, many researchers 

are trying to make full use of both methods, and CFD-based compartmental models are 

developed. In this method, CFD is implemented to provide a prediction of the flow field, 

which is later used to model the mass flux in compartmental model. Comparing to 

experimentally measuring the flow field, CFD simulation is more cost and time efficient. 

Moreover, without a need for preliminary knowledge of the flow field, reactors with 

complex flow field could also be easily modelled while still maintaining accuracy and 

robustness. On the other hand, comparing to direct CFD simulations, because the Navier-

Stocks equation is replaced with a system of simple ordinary differential equations (ODE), 

CFD-based compartmental model is significantly cheaper computationally. 

With the listed advantages, CFD-based compartmental model is becoming more and 

more popular in providing computationally cheap description for chemical processes. Wide 

applications are seen in modeling crystallizers. In crystallizers where flow patterns has a 

huge influence on the resulting particle size distribution (PSD), mixing has been the focus 

of research. Previously, Computational Fluid Dynamics- Population Balance Equations 

(CFD-PBE) model was the standard tool for predicting industrial-scale crystallizers22, 24, 25. 
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However, considering the computational cost of this simulation, a CFD-based 

compartmental model was developed14. This CFD-based compartmental model accounts 

for the hydrodynamics, and PBE is integrated to keep track of the growth of particles. This 

model is computationally cheaper and good predictive power has been achieved.  

Considering the computationally expensive methods of previous work in CFD-based 

optimization, CFD-based compartmental model could be a good alternative. In this project, 

we developed a CFD-based compartmental model to describe the mixing process inside 

reactors. A more efficient optimization algorithm is implemented to solve for the optimal 

operating policy. This method can significantly save the computational time and providing 

easy interface. 
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Chapter 2: Modeling Mixing Process 

2.1 Objectives 

Mixing plays an important role in industrial processes, in this project we’ll develop an 

integrated model of mixing process, including both the flow pattern and chemical kinetics. 

Considering the realities in industry, we are more interested in certain situations and some 

simplifications are done accordingly. In industry, many processes are conducted at the 

vendor site, and designing the reactor would be unnecessary. For simplification purpose, 

designing the geometry of the reactor is not in the scope of this project. Moreover, 

considering that many reactions are conducted in solutions, the dilute solution 

simplifications could be made. Comparing to gas reactions happening in combustion 

engines, the course of reaction in liquid solution don’t have a significant influence on the 

overall flow pattern. Despite that strong exothermic process could influencing the density 

of fluid and in turn influence the flow pattern, comparing to the turbulent flow created by 

the impeller, this influence is still not significant. With these ideas in mind, in this work 

the reaction kinetics and flow pattern would be decoupled and solved separately. 

Based on the listed simplifications, model structure is determined. Description of 

macro-mixing is based on the bulk convection predicted by CFD. Meso-mixing is also 

simplified into the convective term. After CFD-based bulk flow pattern is solved, micro-

mixing model and chemical kinetics models are coupled. With this structure, the great 

variation in time and length scale can be effectively treated. In addition, with this decoupled 

structure, we don’t have to re-solve the flow field if we make alterations to the kinetics. 
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2.2 Model development 

Mixing is driven by the mass transfer process, the first principle equation is 

implemented to describe the mixing process, 

 ∂𝐶𝐶𝑖𝑖
∂t

= −∇ ∙ 𝑵𝑵𝑖𝑖 + 𝑅𝑅𝑖𝑖  (1) 

Where 𝐶𝐶𝑖𝑖 represents the concentration of chemical species i, 𝑁𝑁𝑖𝑖 represents the mass flux of 

species i, while 𝑅𝑅𝑖𝑖is the source term for species i.  

The flux term and the source term are both function of time, concentration and space. 

To make it feasible for numerical solution, some derivation based on the assumptions made 

in the beginning of this chapter should be performed.  

 

2.2.1 Discretization 

We discretized the fluid body in space to allow numerical solution. Similar to current 

CFD software packages, Finite Volume Method (FVM) is adopted. In the case with CFD, 

momentum conservation equation is discretized and studied. This method could be 

implemented in arbitrary geometry while remaining robust. Moreover, balance of flux 

between different control volumes is guaranteed throughout the discretization process. 

Through the implementation of the Gauss Divergence Theorem, integrals are done at the 

surface instead of the whole volume, which automatically guaranteed conservation at the 

surface between different control volumes. In addition, FVM gives good prediction even 

without adequate functional framework26. Considering these properties, FVM is widely 

adopted in fluid mechanics, semi-conductor simulation and heat transfer, where flux is 

important.  
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Before discretizing the mass balance equation, a mesh T of domain Ω over which the 

conservation law is to be studied is introduced. K is an element of mesh T which is an open 

subset of domain Ω, called a control volume. The structure of mesh T is an important step 

of this discretization method, and it relies heavily on the conservation equation. 

The principle of FVM is to discretize equations in space according to the defined mesh. 

Variables are assigned at each control volume to represent the space distribution. With each 

variable one equation is written. The derivative of the variables at each discretization point 

is replace by finite difference. 

In this project, mass balance equation of chemical species is studied. With finite volume 

method, the ‘volume averaged’ concentration 𝐶𝐶𝑖𝑖 is assigned as the unknown variable for 

every control volume. A volume integral is taken for each control volume: 

 ∫ 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

 
𝜥𝜥𝑖𝑖

+ ∫ 𝛻𝛻 ∙ 𝑵𝑵𝑖𝑖 = ∫ 𝑅𝑅𝜥𝜥𝑖𝑖
 
𝜥𝜥𝑖𝑖

 
𝜥𝜥𝑖𝑖

  (2) 

Where the concentration profile 𝐶𝐶𝑖𝑖 is replaced with the volume-averaged concentration 𝐶𝐶𝑖𝑖 

for every control volume. The partial differential equation (PDE) used to describe mass 

transfer is replaced with a set of ODEs.  Moreover, with the divergence theorem, the flux 

term is calculated with a surface integral: 

 𝑉𝑉𝑖𝑖
𝑑𝑑𝐶𝐶𝑖𝑖 
𝑑𝑑𝜕𝜕

+ ∮ 𝑵𝑵𝑖𝑖
 
𝑆𝑆𝑖𝑖

∙ 𝒏𝒏𝑑𝑑𝑑𝑑 = ∫ 𝑅𝑅𝜥𝜥𝑖𝑖
 
𝜥𝜥𝑖𝑖

  (3) 

Where n is the unit normal vector of surface Si, pointing outwards from control volume Ki, 

𝑉𝑉𝑖𝑖 is the volume of Ki. 
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In the framework of FVM, the space distribution of variable inside each control volume 

is ignored. The flux term and source term should also be transformed into functions of the 

volume averaged concentration.  

 

2.2.2 Mass flux modeling 

To solve the discretized ODE system, the flux term across the boundaries should be 

modelled as a function of volume averaged concentration 𝐶𝐶𝑖𝑖. The mass flux in fluid system 

is described with: 

 𝑵𝑵 = 𝐶𝐶𝒗𝒗+ 𝑱𝑱  (4) 

Where v is mass averaged flow velocity, and J is the molar flux relative to the mass 

averaged velocity of the mixture. The mass averaged velocity is derived from continuity 

equation, and is solved together with the conservation of momentum. Diffusion term J is 

described with Fick’s law for dilute solution with constant density. However, the diffusion 

term may vary for different systems at different length scale. Specifically for this project, 

the bulk flow inside a stirred tank has high Reynolds number, leading to turbulent flow. 

Within the turbulent flow regime, mass flux is dominated by the mass-averaged velocity 

term and the diffusion terms is negligible on the macro-scale. Although mass diffusion J is 

significant on micro-mixing, its length scale is below the mesh. As a result, to capture it 

with mass flux in current discretization method is infeasible. According to our model 

framework, we will leave the diffusion effect to the micro-mixing model which is 

integrated later.  

 𝑵𝑵 = 𝐶𝐶𝒗𝒗  (5) 
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Based on the assumption that the course of reaction has no influence on the flow field, 

we can decouple the reaction kinetics from the bulk flow pattern.  The mass-average 

velocity 𝒗𝒗 is independent from  𝐶𝐶𝑖𝑖 and we could study them separately. The velocity field 

𝒗𝒗 should be calculated first. 

Turbulent flow is an unsteady complex process, which means that the velocity field v is 

a function of time. To model turbulent flow is a critical area for any engineering field that 

involves CFD. The most common way to deal with this complex problem is by solving for 

the time-averaged solution. This method is called Reynolds-averaged Navier–Stokes 

equations (RANS). It requires less computational resources comparing to Eddy Simulation, 

while remaining good precision unless it involved separation or large recirculating regions. 

In this work, the time-averaged velocity field is solved to model the mass flux. This 

adaptation is justified since the unsteadiness is not severe in stirred tanks. Moreover, our 

operating time is longer comparing to the characteristic time scale of unsteady eddies. 

Given that velocity field is no longer dependent on time, it’s calculated in priority as the 

constant coefficient in the ODE system. For simplicity, we write it as 𝐹𝐹𝑖𝑖,𝑗𝑗, describing the 

flux from control volume i to control volume j. 

 𝑉𝑉𝑖𝑖
𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝜕𝜕

+ ∑ 𝐹𝐹𝑗𝑗,𝑖𝑖𝐶𝐶𝑗𝑗
 
𝑗𝑗 − 𝐶𝐶𝑖𝑖 ∑ 𝐹𝐹𝑖𝑖,𝑘𝑘

 
𝑘𝑘 = ∫ 𝑅𝑅𝜥𝜥𝑖𝑖

 
𝜥𝜥𝑖𝑖

  (6) 

In order to determine the velocity field and in turn determine 𝐹𝐹𝑖𝑖,𝑗𝑗, CFD is adopted to 

export the velocity field which is independent from the kinetics. Since the same mass-

average velocity is used to solve for the conservation of momentum, it’s justified to solve 

for the flux term from the momentum conservation equation in CFD simulation. The flux 
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term 𝐹𝐹𝑗𝑗,𝑖𝑖 is the surface integral of the velocity field over the interface between different 

control volumes. 

 𝐹𝐹𝑖𝑖,𝑗𝑗 = ∫ 𝒗𝒗 
𝑆𝑆𝑖𝑖,𝑗𝑗

∙ 𝒏𝒏𝑑𝑑𝑑𝑑 (7) 

When surface integral is calculated numerically, some alteration to the finite volume 

method should be done. In standard finite volume method, the flux is solved together with 

momentum equation, continuity equation and energy equation with the same mesh. This 

treatment ignored the distribution of concentration inside the control volume, and the 

surface integral is replaced with multiplication. However, in reality, the distribution of 

concentration on the control volume surface is important. In fluid bodies, strong circulation 

could present between two different control volumes, which contributes strongly to mass 

transfer. If we take the surface integral without considering the distribution on the surface, 

the circulation is evened out, which will introduce significant error.  

Alteration applied in this project is based on the decoupling of flow and kinetics. Other 

than solving the mass-flux together with momentum equation and continuity equation with 

the same mesh, the velocity term could be exported from CFD simulation, where a much 

finer mesh is used. With this method, the sub-cell information is captured and the flux is 

defined as such so we could capture the turbulent exchange between different zones: 

 𝐹𝐹𝑖𝑖,𝑗𝑗 = ∑ 𝝍𝝍(𝒗𝒗 ∙ 𝒏𝒏) 
𝑆𝑆𝑖𝑖,𝑗𝑗 Δ𝑑𝑑 

Where   𝝍𝝍(x) = �0, x < 0
x, x ≥ 0 (8) 
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2.2.3 Source modeling 

Now that the flux term is defined, we need to model the source term to close the 

equations. In finite volume method, we are ignoring sub-control volume informations. 

Underlying this method is the idea of homogeneous reaction inside each control volume.  

 ∫ 𝑅𝑅𝜥𝜥𝑖𝑖
 
𝜥𝜥𝑖𝑖

= 𝑉𝑉𝑖𝑖𝑅𝑅𝜥𝜥𝑖𝑖 (9) 

Chemical reactions and micro-mixing which have smaller length scale than the mesh 

should be modeled in the source term. In this work, chemical kinetics is modelled with rate 

law: 

 𝑹𝑹𝑉𝑉𝑖𝑖 = ∑ 𝑘𝑘𝑟𝑟 ∏ [𝐶𝐶𝑗𝑗,𝑟𝑟]𝜂𝜂𝑗𝑗,𝑟𝑟 
𝑗𝑗

 
𝑟𝑟  (10) 

Where 𝜂𝜂𝑗𝑗,𝑟𝑟 is the rate exponents of species j in reaction r, while k is the rate constant of 

reaction r.  

Micro-mixing is defined with EDD models: 

 𝑹𝑹𝑉𝑉𝑖𝑖 = 𝐶𝐶𝝓𝝓
2
𝜀𝜀
𝑘𝑘
 (11) 

Where 𝐶𝐶𝝓𝝓 is the mechanical time to scalar time ratio, which is a function of local Reynolds 

number. ε is the turbulent dissipation rate, and k is the turbulent kinetic energy. Although 

turbulent dissipation rate and turbulent kinetic energy cannot be directly measured, these 

parameters can be exported from turbulent model in CFD simulation. 

In the source term, semi-batch addition of chemicals should also be considered. 

 𝑹𝑹𝑉𝑉𝑖𝑖 = 𝜹𝜹𝑖𝑖,𝑝𝑝
 
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑 (12) 
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Where i stands for control volume i, while p stands for feed zone p. 𝜹𝜹𝑖𝑖,𝑝𝑝
 

 is the Kronecker 

delta. 

With this modeling framework, we can easily integrate different kinetics and micro-

mixing models. In cases where rate law and EDD model fails to give satisfactory precision, 

population balance equations and VOF simulation can also be incorporated 22. 

 

2.2.4 Integrated mixing model 

Based on the models developed for different processes, integrated mixing model could 

be built. The way they are integrated is based on the mechanism of the process itself. The 

process of semi-batch addition happens in parallel to micro-mixing and chemical reaction, 

so it should be integrated by addition. However, in the case with micro-mixing and 

chemical reaction, better agreement with the experimental data has been achieved if 

different processes are considered to happen in serial16. If mixing happens faster than 

chemical reactions, the overall performance is dominated by kinetics, and vice versa. With 

this consideration, source term is governed by the slower process. The integrated model 

for the mass balance of chemical species is built. It’s a system of ODEs which could be 

used to solve for the concentration profile, and further implemented for optimization.  
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𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑 (13) 
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2.2.5 Resolution sensitivity test 

Based on finite volume method, mass balance equation is discretized into control 

volumes. The complex PDE is replaced by a set of ODEs. However, underlying this method 

lies the assumption of homogeneity inside each control volume. Behavior of medium in 

this model should exhibit higher diffusivity than the true medium. This deviation is called 

numerical diffusion.  

Deviation caused by numerical diffusion is determined by the system being modelled 

and the type of discretization that is used. Heuristically, with higher resolution mesh, the 

discretized model should behave more like the continuous reality. However, with 

increasing resolution, the size of the ODE system also increases, which may lead to higher 

computational expense. In addition, with the increasing resolution, the size of each control 

volume is decreasing, which may lead to an increasing stiffness of the whole system.  

To deal with this problem, a resolution sensitivity test is implemented to find the optimal 

resolution for the mesh. In this method, the integrated model is tested with different 

resolutions. If the output of this model is no longer changing significantly with the 

increasing resolution, the model can be viewed as insensitive to resolution. With this 

method, we could determine the lowest resolution that gives acceptable precision. 

This test is kinetic sensitive, and should be run with the integrated model. If the system 

has slow chemical reactions, perfect mixing assumption could be adopted, without hurting 

the predictive power, which is essentially only using one control volume. However, for fast 

reaction, the deviation caused by numerical diffusion could be significant, which would 

require higher resolution. Although for different kinetics we can use the same flow field 

data from CFD, if a new kinetics is adopted, the resolution sensitivity test should be re-
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conducted with the updated integrated model. The flowchart in Figure 1 displays how this 

method works. 
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Figure 1. Flowchart of resolution sensitivity test  
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Chapter 3: Case study 

With this model development framework from chapter 2, we’ll model a scaled-down 

version of a real industrial stirred tank reactor as a case study, which would later be used 

to solve for the optimal operating policy. A benchmark reaction system for mixing 

efficiency is integrated in this work so the performance of mixing can be characterized. In 

this chapter, an integrated mixing model is developed based on the properties of the reactor 

and the reaction system. The developed model is then validated through the resolution 

sensitivity test. 

 

3.1 Reaction system 

Reaction system used in this project is a famous pair of parallel competitive reactions. 

This reaction system is composed of a first-order decay and a parallel second order 

coupling. 

  A
  𝑘𝑘1   �⎯� S    (14) 

 A + B
  𝑘𝑘2   
�⎯� R.  (15) 

Where A is a diazonium salt (diazotized 2-chloro-4-nitroaniline) and B is pyrazolone (4-

sulphophenyl-3-carboxypyrazol-5-one). R the desirable product, which is a dyestuff and S 

is the unwanted product of decomposition10. Since first order reaction is not sensitive to 

mixing, and is only dependent on Residence Time Distribution (RTD) 27. The first-order 

decaying is added as a characterization of time, serving as the clock inside the reactor. The 

rate constant of this reaction system is k1=10-3s-1 at a PH of 6.6 at 40℃, and k2 is 7000m3 

kmol-1 s-1. This reaction is chosen so that the characteristic time scale of this reaction system 
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is similar to that of macro-mixing. The logic is that influence of macro-mixing is most 

significant when the characteristic time scale of macro-mixing is at the same order as that 

of chemical reactions. The same logic holds for Bourne reaction for micro-mixing, both 

have a characteristic time scale several orders of magnitude lower than that of macro-

mixing 7.  

Considering the characteristic time scale of kinetics and micro-mixing, we can see that 

in this chosen process, micro-mixing is dominated by chemical reactions. Since micro-

mixing and chemical reaction happen in a serial manner, micro-mixing model could be 

removed from this integrated model.  

 𝑉𝑉𝑖𝑖
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𝜂𝜂𝑘𝑘,𝑟𝑟 
𝑘𝑘

 
𝑟𝑟 + 𝜹𝜹𝑖𝑖,𝑝𝑝

 
𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑 (16) 

With this reaction system, selectivity of side product can be chosen as a quantitative 

index for the effect of macro-mixing. With better macro-mixing performance, more R 

could be produced with less A consumed.  

 

3.2 Reactor setup 

A 74L fully baffled stirred tank is chosen to study its macro-mixing performance. The 

inner diameter is 0.5m and the liquid height is 0.4m. The agitation system has two impellers. 

The one on the bottom is a Rushton impeller with a diameter of 0.2m and an offset from 

bottom of 0.1m. The upper impeller is a pitched blade turbine (PBT) with a diameter of 0.2 

and is place above Rushton impeller with an offset of 0.14m. The blade angle of the PBT 

is 45°. The direction of rotation is set up in a way that PBT is driving fluid downwards to 

 
 



19 
 

the Rushton impeller. The agitation speed is chosen to be 60rpm, which is derived from a 

real process from industry. Structure of this reactor is shown in Figure 2. 

Both reactants are dissolved in aqueous solution. The stirred tank is initially charged 

with pyrazolone (B) solution with a concentration of 6 x 10-5M. Diazo (A) solution is added 

into the stirred tank in a semi-batch manner, the concentration of which is 7.4 x 10-2M. 

This set up is adopted from the original design in the literature 9.  

Considering that if the feeding rate is infinitely slow, high selectivity can be reached 

regardless of the efficiency of macro-mixing. The time span of this process should be 

defined reasonably so the influence of macro-mixing is highlighted. In this work, 

considering the characteristic time scale of macro-mixing, the time span of this process is 

set as 150s. 

 

Figure 2. Geometry of the two-impeller stirred tank 
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3.3 CFD simulation 

CFD simulation on this reactor is adopted to solve for velocity field. This simulation 

only needs to be run once and can be integrated with different chemical reactions and 

operating policies. In that way the model is computationally cheaper without hurting the 

accuracy.  

Although pyrazolone solution is fed in a semi-batch manner into the stirred tank, the 

influence of the feeding pipe over the flow pattern is ignored. A simulation without feeding 

is done with the same set up. Based on the simulation result, each control volume defined 

during model development has a volumetric flow rate at the order of 0.1L/S. However, the 

volumetric flow rate of feeding is at the order of 1 x 10-3L/S. Since the flow rate of feeding 

is significantly smaller than that of the bulk flow inside the reactor, influence of feeding 

over the flow pattern is ignored. 

In CFD simulation, a steady state solution is solved with the commercial code of Fluent 

16.0. With this code, the Reynolds-Averaged-Navier-Stocks (RANS) equation was 

numerically solved with multi-reference frame (MRF) method. To close the equations, k-

epsilon turbulence model with standard wall functions was adopted. The velocity field is 

shown in Figure 3. 
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Figure 3. Vector plot of velocity field inside the stirred tank 

 

3.4 Discretization 

The mesh is defined by evenly dividing the reactor in radial, axial and tangential 

directions. The discretization of the mass balance equation is proceeded according to the 

mesh defined. With the results from CFD simulation, the unknown parameters for the 

discretized mass balance equation could be defined.  
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Where Vi for each control volume is defined by the mesh, Fi,j can be determined by the 

velocity field from CFD simulation. With this closed set of ODEs, the concentration profile 

could be solved in time. 
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3.5 Resolution sensitivity test 

Resolution sensitivity test is done in an iterative manner for each discretization scheme. 

Considering that different addition point is adopted for different operating policy, 

theoretically every possible addition point should be tested before implementing this model 

for optimization. In this work, seven samples are taken inside the reactor to represent all 

possible choice of addition points. If the chemical reaction trajectory no longer change for 

every sample point with respect to increased resolution, this model is considered as no 

longer sensitive to resolution. The seven sample points are, above PBT, PBT tip, between 

PBT and Rushton, at Rushton tip, below Rushton, the corner of the reactor and behind 

baffle. Considering the slow dynamic of this reaction system, the number of control 

volumes is initially set as 504 and gradually increase. By comparing the concentration 

trajectory of different species in time, we can see that 640 control volumes is the least 

refined mesh when the model is no longer sensitive to resolution. Comparing to the 

trajectory with 704 and 768 control volumes, no significant difference has been witnessed. 

In Figure 4, the trajectory of concentration of A when the addition point is at the corner is 

displayed.  

Through resolution sensitivity test, discretization scheme with 640 control volumes is 

chosen. The discretized reactor is shown in Figure 5. It has 8 segments in the radial 

direction, 10 segments in the height direction and 8 segments in the tangential direction. 

All control volumes are indexed with a 3-d vector, in the format of [radial index, axial 

index, tangential index]. 
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Figure 4. Trajectory of species A for (a) 504 cells (b) 576 cells (c) 640 cells (d) 704 cells (e) 768 cells. 
The addition point is at the corner of STR 

 

 

Figure 5. Final mesh adopted in this project 
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Chapter 4: Static Operating Policy Optimization 

4.1 Problem formulation 

With the integrated model, space variation of chemical concentration could be captured. 

Unlike the situation in ideal reactors, the route of reaction depends not only on the feeding 

rate, but also on the feeding point of reagents. For simple reactor geometries with single 

impeller, generally the feeding point is chosen at the tip of the impeller. However, for 

reactors with more complex setup, the best addition point is no longer obvious. With this 

integrated model, however, we could easily set up the feeding point and study its influence 

on the chemical process. In Figure 6, the influence of addition point is displayed. In that 

plot two addition point is studied, one is at the corner of the reactor, which has an index of 

[7, 0, 2], the other one is at the pitched blade tip, which has an index of [4, 4, 3]. 

Through the comparison between trajectories of different addition points, influence of 

addition point over chemical process is pronounced. Reagents added at the corner of the 

reactor is not distributed well inside the stirred tank, and the overall progress of chemical 

reaction is slowed down. It’s reasonable to take addition point into the design space. 

Underlying the discretization framework, each control volume is treated as homogeneous. 

Different choices of addition point would behave exactly the same if they are in the same 

cell. So the control volume where the feeding point lies could be chosen as the variable 

that defines the addition point. 
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Figure 6. Trajectory of the desired product yield when then addition rate is at  

(a) corner of STR ([7,0,3]) (b) tip of Rushton turbine ([4,4,3]) 

 

The objective is to optimize the macro-mixing performance. Instead of defining a multi-

objective optimization problem, two factors are considered into one terms. In experiments, 

macro-mixing is characterized by the selectivity of the side product, which is used to 

characterize different reactors with identical feeding rate. However, this method would fail 

if it’s used to characterize different feeding rate in the same reactor, since the selectivity 

index would always prefer slow feeding. In this project, a new index is adopted based on 

real life situations. For a chemical process, it’s preferred that more product is made with 

less raw material fed. Our objective function is defined in the form of revenue, assuming 

the worth of R is ten time as that of A. With this set up, we could formulate the problem 
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that maximize the performance of the reactor by choosing the best feeding point and 

feeding rate. 

 𝑀𝑀𝑀𝑀𝑀𝑀         (10𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐴𝐴) (18) 

subject to 

 [𝑦𝑦𝑅𝑅 ,𝑦𝑦𝐴𝐴] = 𝝋𝝋(𝑟𝑟,𝑀𝑀, 𝑡𝑡, 𝑓𝑓) (19) 

 𝑟𝑟, 𝑡𝑡 ∈ [0,7]                      (20) 

  𝑀𝑀 ∈ [0,9]                                         (21) 

 𝑓𝑓 ∈ [0,2]                         (22) 

  

Where 𝑦𝑦𝑅𝑅 denotes the yield of R, and 𝑦𝑦𝐴𝐴 denotes the amount of A fed. r, a and t are integer 

variables that defines the control volume in which the feeding pipe lies. f denotes the 

feeding rate of A, which has a unit of 0.1ml/s.  𝝋𝝋(𝑟𝑟,𝑀𝑀, 𝑡𝑡,𝑓𝑓) is the 150s simulation run with 

the model developed in last chapter.  

 

4.2 Mixed integer surrogate optimization 

The formulated optimization problem has both integer and continuous decision 

variables, and it is categorized as mixed-integer optimization problems. These problems 

can be easily found in engineering, planning and portfolio management, and are in general 

NP-hard. The methods proposed to solve mixed-integer problems have two major groups, 

branch and bound method, and evolutionary strategies. 
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Branch and bound method is currently the most universally adopted method to solve 

mixed-integer optimization problems, first proposed in 1960 28. This method is based on 

two major steps, branching and bounding. In branching step, the candidate points are 

recursively divided into sub-sets. All sub-sets are arranged in the form of a rooted tree, 

with the full set at the root. In the bounding step, each nodes in the rooted tree is bounded 

by solving a relaxed problem. Based on the upper and lower bound solved in the bounding 

step, nodes which can’t produce better results comparing to the best solution so far is 

discarded.  

Evolutionary strategy is inspired by reproduction, mutation, recombination and 

selection, which are natural processes in biology. The mechanism is based on the idea that 

through mutation, crossover and selection of individuals and their offspring, the whole 

population evolves and better individuals can be found. Offspring are generated through 

mutation and crossover, so this method is able to get out from local optimum and approach 

global optimum. This approach is widely applied in engineering, art, biology and economy. 

The reason for this wide application lies in the fact that this method don’t require any 

assumption about the nature of the problem, so it could be easily implemented even without 

sufficient knowledge of the system. 

The problem we are trying to solve has some special properties other than mixed-integer 

decision variables, which brings many difficulties. First of all, evaluation of objective 

function is computationally expensive since it requires running a simulation based on the 

integrated mixing model. Moreover, the simulation is based on an ODE solver, in which 

the decision variables serves as the parameter. As a result, this model can only be treated 
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as a black-box. In addition, to relax the integer constrains that defines addition zone is not 

theoretically sound.  

Based on the properties of this problem, the implementation of branch and bound is not 

feasible. Since the evaluation of objective function is expensive, the bounding step is 

computationally prohibitive. Moreover, the integer constraints can’t be relaxed, so solving 

for the upper and lower bound would require mixed-integer solvers. These properties also 

prohibits the adoption of evolutionary strategies. Comparing to other optimization 

algorithms, evolutionary strategies requires more function evaluations. Since the 

evaluation of function is expensive, evolutionary algorithm would require prohibitive 

computational resources.  

Currently, surrogate based optimization has been the focus in global optimization 

research. Its ability to find global optimum has been proven and it has become a promising 

field in derivative-free optimization algorithms. Comparing to classical optimization 

methods which is based on calculating derivatives analytically or numerically, this method 

searches for optimizer based on the surrogate model instead of derivatives. This property 

has made this method successful with black-box models, where calculating the derivatives 

numerically requires a significant amount of function evaluations. Moreover, with 

surrogate model, both local and global search is included, which makes it possible to get 

out of local optimum and reaches global optimum. For classical optimization algorithms, 

however, searching based solely on derivatives or first order optimality will be trapped in 

local optimum. On the other hand, comparing to evolutionary strategies, surrogate 

optimization is more effective. Unlike evolutionary algorithms, surrogate optimization can 

find global optimum with significantly less function evaluation.  
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Surrogate optimization works in an iterative manner. In the initial step, a certain number 

of sampling point is chosen by random sampling or other sampling strategies. Based on the 

function evaluation at chosen sample points, an initial surrogate model is built. Based on 

the initial surrogate model, new sampling points are chosen by solving an auxiliary 

problem which evaluates the surrogate model. The auxiliary problem is defined as 

maximizing the expected improvement 29, or minimizing the bumpiness30. At new 

sampling point, a function evaluation of the computationally expensive model is done and 

the surrogate model is updated. This process is conducted iteratively until a stopping 

criteria is met, and the best point so far is returned. 

Although surrogate optimization is successful in solving optimization problems with 

continuous decision variables, limited work has been done in solving mixed-integer 

problem. Difficulties arise when faced with integer decision variables. Since solving 

auxiliary problem is the key step in surrogate optimization, with integer variables, the 

auxiliary problem became a mixed-integer optimization problem. Considering the huge 

increase of computational expense when integer variables are introduced, solving the 

auxiliary problem is no longer computationally cheap. Moreover, since the surrogate model 

may not be unimodal, global optimization should be implemented when solving the 

auxiliary problem, which would further increase the computational expense. 

Available works in surrogate optimization with integer variables are 31, 32, both uses 

radial basis function (RBF) to build the surrogate model. In Holmstrom’s work31, the 

commercial TOMLAB optimization environment is integrated, and the auxiliary problem 

is solved with mixed-integer sub-solvers provided in this environment. With this method, 

constrains are added as a penalty term in objective function, which requires careful 

 
 



30 
 

treatment of the penalty term. In Müller’s work33, auxiliary problem is no longer defined 

as an optimization problem. Instead, a random sampling strategy is implemented, where a 

random sequence of sampling points are chosen, and evaluated based on the surrogate 

model. Certain scores are assigned to each points based on the surrogate evaluation and the 

next sampling point is determined based on the scores. In this method no commercial code 

is required and according to the author, the performance is satisfactory comparing to other 

methods. In our project, this method is chosen to solve for the optimizer. 

Before adopting this method for solving the optimization problem, how this method deal 

with feasibility should be discussed. Since the model is computationally expensive to 

evaluate, the feasibility analysis based on function evaluation would further increase the 

computational burden. To deal with this difficulty, effective methods have been proposed 

that build an extra surrogate model for the feasibility problem 34. However, in current work, 

the feasibility problem is considered in a simpler manner. During updating the surrogate 

model with new sampling points, the constraints are checked. If the sampling point is 

infeasible, the worst value plus a penalty is assigned to this point and the surrogate model 

is updated with this penalized value. This method would discourage sampling near the 

infeasible regions. However, if the feasible region is scarce, or many infeasible points are 

sampled, the surrogate model might be distorted and fail to give a good prediction about 

the optimizer.  

Considering this limitation, the implementation of this method should be cautious. In 

current project, the only constraints are boxed constraint without requiring evaluation of 

this computationally expensive model. So in this work, the implementation could be 

 
 



31 
 

justified. But in cases where feasibility analysis is not trivial, improvement should be done 

before this method could be implemented. 

 

4.3 Results and discussion 

Considering the properties of this optimization problem, mixed integer surrogate 

optimization algorithm is adopted. The cubic radial basis function is chosen to build the 

surrogate model. Initial sampling points are selected with Latin Hypercube Sampling and 

the algorithm would stop after 500 function evaluation. Shown in Figure 7 is the progress 

plot. After 50 function evaluation the algorithm has found the optimizer, which is efficient. 

The optimal addition policy favors the addition at the Rushton turbine region. 

Comparing to the pitched blade region or the region in the middle. Feeding at Rushton 

turbine region can distribute materials more effectively and produce more desired product 

with less reagents added. The optimal feeding rate is 5.39258x10-4L/s. With this feeding 

policy, the reaction trajectory for different chemical species are plotted in Figure 8, 9 and 

10. 
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Figure 7. Progress of MISO solver towards the optimizer 

 

 

Figure 8. Trajectory of species A under the optimal static operating policy 
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Figure 9. Trajectory of species B under the optimal static operating policy 

 

Figure 10. Trajectory of desired product under the optimal static operating policy  
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As the trajectory of A suggested, when the process ended, amount of A presenting in 

the system is at the highest level. This is reasonable since the reactant is feeding with a 

constant rate. With consumption of B, A would be accumulated faster. However, this 

accumulation would lead to a waste of reagents and compromise the economic 

performance. So constant feeding is not the optimal option. Since the concentration of B is 

decreasing in time, the feeding rate should also be decreasing in time for better performance.  
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Chapter 5: Dynamic Operating Policy Optimization 

5.1 Problem formulation 

Considering the waste of reactants when adopting a constant feeding strategy, a dynamic 

feeding strategy could be used. By tailoring addition rate with respect to time, higher 

degree of freedom is available to further optimize the feeding policy. In this chapter an 

optimization problem would be formulated aiming to produce more desired product with 

less reagents fed. In this dynamic feeding policy, the whole operating time is divided into 

Np discrete feeding stages. In each feeding stages feeding rate is kept constant, but the 

feeding rate varies for different feeding stages. Time span of each feeding stage and the 

corresponding feeding rate are the decision variables that defines the feeding policy. 

Considering that the best addition point is not highly dependent on the addition rate, 

addition point is no longer in the scope of this problem and the best addition point found 

from last chapter is adopted. The optimal stage length and feeding rate will be determined 

by solving the following optimization problem. 

 𝑀𝑀𝑀𝑀𝑀𝑀           (10𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐴𝐴)  (23) 

subject to 

 [𝑦𝑦𝑅𝑅 ,𝑦𝑦𝐴𝐴] = 𝝋𝝋�𝑡𝑡1,𝑓𝑓1, 𝑡𝑡2,𝑓𝑓2, … , 𝑡𝑡𝑁𝑁𝑝𝑝 ,𝑓𝑓𝑁𝑁𝑝𝑝� (24) 

 ∑ 𝑡𝑡𝑖𝑖 = 150,                    𝑖𝑖 = 1, … ,𝑁𝑁𝑝𝑝       (25) 

  𝑓𝑓𝑖𝑖 ∈ [0,2],                      ∀𝑖𝑖 = 1, … ,𝑁𝑁𝑝𝑝        (26) 

  𝑡𝑡𝑖𝑖 ≥ 0,                            ∀𝑖𝑖 = 1, … ,𝑁𝑁𝑝𝑝       (27) 
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The objective function is defined in the same way as the last chapter, which is in the 

form of revenue. Time span of each feeding stage i is defined with the variables ti, and the 

corresponding feeding rate is defined with variable fi. The first constraint specifies that the 

time span of the whole process is 150s. The remaining are lower and upper bound of the 

decision variables. In here the number of stages Np is treated as a parameter instead of a 

variable. Considering the higher degree of freedom more stages would provide, a larger 

stage number would always be preferred. In addition, it’s difficult to penalize the increase 

of stage numbers, so it’s not in the scope of this project. Instead, an increased number of 

addition stages is tested and it would stop when an increased addition policy don’t lead to 

a significantly improvement in operating policy. 

To solve this optimization problem, interior point method is chosen. In this method 

constrains are treated with barrier functions, and the Karush–Kuhn–Tucker (KKT) 

conditions is numerically solved to get the optimizer. Since KKT is only the necessary but 

not sufficient condition for optimizer, this method is a local solver and different starting 

point should be tested. The nonlinear optimization toolbox provided by Matlab is chosen 

to numerically solve this problem. 

 

5.2 Result discussion  

The optimization problem is numerically solved for single feeding stage (constant 

feeding), two-stage feeding and three-stage feeding. Single stage feeding works as a way 

to validate the optimizer of the static addition policy. Two-stage and three-stage feeding 

policy are also solved, and significant improvement from the constant feeding policy is 

achieved. Since no significant improvement has been found comparing the three-stage and 

 
 



37 
 

two-stage policies, the two-stage policy is finally adopted. The best feeding rate found for 

the constant feeding policy is 5.4370x10-4L/s, which agrees well with the optimizer found 

by the mixed integer surrogate optimization algorithm. From this result, we can conclude 

that the mixed-integer surrogate optimization algorithm gives satisfactory results. The best 

two-stage feeding policy found with this optimization solver is to start feeding at 

16.3532x10-4L/s for 43.0005s, followed by 106.9995s feeding at the rate of 0.0366x10-4L/s. 

The three stage feeding policy is solved in the same manner, and the best feeding policy is 

a 8.5097s stage feeding at 37.1512x10-4L/s, followed by a 33.3592s feeding at 11.6149 

x10-4L/s. The feeding is stopped and reactants are consumed for the remaining time. In 

Figure 11,12 and 13, the comparison between three feeding policies are shown. 

 

Figure 11. Trajectory of species A with optimal (a) constant feeding policy (b) two stages feeding 
policy (c) three stages feeding policy 
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Figure 12. Trajectory of species B with optimal (a) constant feeding policy (b) two stages feeding 
policy (c) three stages feeding policy 

 

Figure 13. Trajectory of objective function with optimal (a) constant feeding policy (b) two stages 
feeding policy (c) three stages feeding policy  
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Chapter 6. Conclusions 

We developed a model to study single phase mixing process in a stirred tank reactor 

driven by a Rushton turbine and a pitched blade impeller. Based on CFD simulations and 

finite volume discretization method, a CFD-based compartmental model is built. To 

characterize mixing performance, a benchmark reaction system is integrated. The model is 

validated by a resolution sensitivity test and the best resolution for discretization is 

determined. With the developed model, optimization problems were defined and solved to 

find the best operating policy. First a static operating policy which feed reactants in a 

constant rate was studied. In this problem we solve for the best addition point and addition 

rate that maximize the yield with least reactants fed. To solve this optimization problem, 

mixed-integer surrogate optimization algorithm is adopted and the best static operating 

policy is determined. Noticing that a constant feeding rate will lead to accumulation of 

reactants at the end of process which result in significant waste, dynamic operating policies 

are considered. Instead of feeding in a constant rate, the whole process is broken into 

several feeding stages and different feeding rate is adopted at different stages. By 

determining the time span and feeding rate at each feeding stage, the optimal dynamic 

operating policy is solved. Interior point method is adopted to solve for the optimizer and 

significant improvement from constant feeding rate is achieved. Using this framework, we 

can find the optimal operating policy for reactors where imperfect mixing presents. 
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