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High throughput and automatic procedures for NMR structure determination are under intensive 

study in the current era of structural genomics. The major steps include data collection, data 

processing, resonance assignment with validation, derivation of structural restraints, generation of 

20 conformers satisfying the structural restraints (the ensemble), and refinement of the 

conformers. The final step structure refinement typically refers to further energy minimization 

based on certain force fields. Refinement could improve the structure quality to a large extent due 

to the sparseness of NMR experimental measurements. A scientific and robust refinement 

methodology is desired as a vital part of the standard protocols of automatic NMR structure 

determination. In this study, we compare the performances of two refinement methods, CNS 

refinement and AMBER refinement. The core algorithm of CNS refinement is simulated 

annealing with gradient descent while AMBER uses molecular dynamics simulated annealing. 
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Eight protein targets are chosen randomly from the NESG depository and the two refinement 

methods tested on these targets. All the targets have chemical shifts and NOESY peak lists 

available, and 4 of them also have RDC data. Using the available NMR experiment data, initial 

coarse structures are generated by ASDP-CYANA. These coarse structures further go through 

CNS refinement and AMBER refinement. Then the CNS-refined and AMBER-refined structures 

are evaluated in terms of RMSD (reference to X-ray PDB structure) and DP score. We find that 

AMBER refinement achieves better results than CNS on 7 out of 8 targets—AMBER refined 

structures have smaller average RMSDs and higher ensemble-average DP scores. The 

differentiated performance of the two refinement methods could stem from the different 

algorithms and force fields implemented.  
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1 Introduction 

 

1.1 General principles of NMR-based structure determination  

Spin is an intrinsic property of the elementary particles. The particle behaves as though 

it were spinning. However, spin is a quantum mechanical phenomenon without any 

analogue in classical mechanics. Not all the nuclei have spin. When both the number of 

protons and the number of neutrons are even, the nucleus has no spin; If one of them is 

odd, the spin is half-integer; If both of them are odd, the spin is positive integer valued. 

Nuclei with positive spins are spin-active, have a magnetic moment, and thus can be 

studied by magnetic resonance techniques (Günther 2013). In the presence of an 

external magnetic field, the spin-active nuclei will splits into two energy levels. The 

nuclear state corresponding to the spin quantum number -1/2 has higher energy than 

the one corresponding to +1/2. The nuclei are populated between the two energy levels 

according to the Boltzmann distribution. The energy gap between the two levels 

corresponds to a transition frequency, namely the Larmor frequency in NMR. In 

Modern NMR techniques, a pulse sequence will first be applied to the protein sample 

in solution, and then the facilities monitor the re-equilibrium of the system. The signal 

is digitized at regularly spaced time points followed by Fourier transform. The 

resulting spectrum expresses the signal as a histogram of frequencies and their 

intensities. By recognizing the spectrum patterns, NMR is able to explore the structures, 
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interactions, and motions of macromolecules.  

 

Chemical shift is a critical measurement that can help determine the secondary 

structure (Sebastiani, Goward et al. 2002). Different structural geometries give rise to 

different local molecular environment and hence varied magnetic fields. H atoms in 

these specific geometric configurations would their respective signals. Following such 

logic, chemical shifts are informative of the local structural characteristics. Generally, 

the chemical shifts obtained in NMR experiments are with respect to the reference 

frequency, i.e. a quotient of the difference between the observed frequency and the 

reference frequency over the reference frequency. This value is independent of the 

external magnetic field. A commonly used reference compound is 

2,2-methyl-2-silapentane-5-sulfonate (DSS) whose 1H NMR frequency is defined as 0 

ppm. The electrons around the nuclei, including electron pairs and 𝜋 electron current, 

cause the variation in the local magnetic field. These electrons form a weak magnetic 

field opposite to the main magnetic field and thus shield the nuclei from the main 

magnetic field to some extent. Besides, the spin states of adjacent nuclei will be 

affected by each other through intervening bonds. This phenomenon is named as 

spin-spin coupling, scalar coupling, or J-coupling. Due to the through-bond interactions, 

the signal of a set of equivalent nuclei is split into a multiplet whose pattern contains 

rich information about molecular configuration and conformation. In summary, 

chemical shift values are determined by electron densities, bond orbitals, spin-spin 
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interactions, and some other physical-chemical factors, and therefore are characteristic 

of the local structures.  

 

Correlation Spectroscopy (COSY) and Total Correlation Spectroscopy (TOCSY) are 

the center of homonuclear nuclear magnetic resonance. Both COSY and TOCSY 

produce a two-dimensional spectrum, where both the axes measure the hydrogen 

chemical shifts. Their working principle is that the magnetization transferred through 

chemical bonds generates a cross-peak. Yet there is a major difference. COSY is only 

able to transfer magnetization between protons on adjacent atoms while in TOCSY 

magnetization can be transferred through all the protons connected by chemical bonds. 

Hence TOCSY usually contains richer information than COSY. For unlabeled proteins, 

these two types of experiments  are used to build the spin systems. A common 

drawback in COSY and TOCSY is peak overlap, especially in larger proteins. 

Therefore, homonuclear NMR is usually limited to small proteins (Kessler, Gehrke et 

al. 1988).  

 

Nuclear Overhauser Effect (NOE) are the fundamentals of some advanced NMR 

techniques for resolving molecular tertiary structures, including Nuclear Overhauser 

Effect Spectroscopy (NOESY), Heteronulcear Overhauser Effect Spectroscopy 

(HOESY), transferred Nuclear Overhauser Effect (TRNOE), etc. The general 

procedure is as following: apply the radiation to the sample at the transition frequency 
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of one type of protons; this saturates these particular protons; the saturated nuclei will 

affect proximate nuclei through dipole-dipole interaction and change the spin 

population of proximate nuclei from their equilibrium distribution; the intensities of the 

NMR peaks of nearby nuclei will change. There is something common between 

spin-spin coupling and NOE—they are both due to the interaction of two nuclei. But 

NOE is through space rather than through chemical bonds. The strength of an NOE 

cross-peak is approximately proportional to 𝑟!!, so only close neighbors can give 

observable peaks. Since NOE is extremely sensitive to space distance, it can be used to 

determine the neighbors of a target nucleus and their quantitative distances to the 

nucleus. If an NOE cross-peak is observed between two protons that are far away in 

amino acid sequence, then the peptide must have folded in such a way that these two 

protons are close in space. Therefore, NOE can provide distance constraints for 

determining the macromolecule conformation. There have been multi-dimensional 

NOE spectroscopies, where each frequency domain corresponds to a type of nuclei that 

are being correlated and has a time delay in the pulse sequence. A cross peak indicates 

that the nuclear pair with the corresponding frequencies is interacting with each other. 

Multi-dimensional NMR spectroscopy spreads the one-dimensional spectrum and 

makes it simpler to exploit the wealthy spectrum information (Günther 2013).   

 

Residual Dipolar Coupling (RDC) proves complementary information for exploiting 

the global folding of a biomolecule. It tells the orientation of the dipole-dipole 
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interaction vectors (nucleus pairs) with respect to the common reference frame. When 

the molecules in solution are partially aligned, which results in an incomplete 

averaging of anisotropic magnetic interaction, the phenomenon of residual dipolar 

coupling can be observed. Partially oriented media was first introduced and explained 

in 1960s (Saupe and Englert 1963). After that, large progress has been made in the 

development of alignment methods, including biocelles made of 

dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), 

filamentous phages, stretched or compressed polyacrylamide gel, and poly (ethylene 

glycol) / hexanol mixture (Chen and Tjandra 2012). The dipolar coupling between two 

nuclei depends on the distance between them, and the angle of bond relative to the 

external magnetic field, which can further tell the relative orientation information of 

parts of the molecule that are far apart in space. 

 

From a systematic point of view, NMR structure determination will combine all the 

information derived from the experiments listed above. Generally, the first step is 

sequential assignment of the resonances, including linking each spin system to its 

corresponding amino acid residue (spin system identification) and assigning each spin 

system to the amino acid sequence (sequence specific assignment). In the stage of spin 

system identification, some amino acids have very unique COSY patterns and are easy 

to identify while other amino acids might be confusing and would need other NMR 

experiments (e.g. NOESY, TOCSY). The second stage—assigning each spin system to 
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a particular amino acid residue in the sequence, relies on the through-space 

connectivity observed in NOESY spectra. For an isotope-labeled (usually15N-labeled) 

protein, the first experiment performed is 2D heteronuclear single quantum correlation 

spectrum (HSQC). It is very sensitive and regarded as the footprint of a protein. There 

are also some 3D extension of HSQC, such as TOCSY-HSQC and NOESY-HSQC, 

which resolve the overlapped peaks in a 2D 1H-1H spectrum. Triple resonance NMR 

spectroscopy emerged in 1990. The triple resonance assignment strategy is different 

from the sequential assignment method described above. In this experiment, proteins 

are labeled with 13C and 15N. Magnetization can be transferred over the peptide bonds 

and thus different spin systems are connected. Six types of spectroscopy are commonly 

used—HNCO, HN(CA)CO, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH. Taking 

HNCO as an example, it consists the 1H-15N plane expanded by the 13C dimension. 

Each 1H-15N plan contains the peaks originated from the proceeding carbonyl carbon. 

In this case, sequential assignment is by matching the chemical shifts of each residue 

and its processor’s carbons. The second step of NMR structure determination is to 

derive several categories of restraints from all the information collected, including 

torsion angle restraints, distance restraints, and orientation restraints. Torsion angle 

restraints are calculated from the chemical shifts and coupling constants. Each 

crosspeak in NOE spectrum stands for the spatial proximity of two nuclei. The distance 

is not precise and a distance range is used. Orientation restraints are derived from the 

RDC data, which measures the relative orientations of the bond vectors to the reference 
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frame (Günther 2013). These restraints are input into a structure-calculation computer 

program and it generates structure models satisfying as much restraints as possible. See 

Table 1 for a summary of the above. 

 

Experiment Labeling Dimensionality Utility 

COSY; TOCSY None 2D Identification of the spin 

systems  

NOESY None 2D Sequential assignment 

1H-15N HSQC 15N 2D 15N assignment; NH 

assignment 

TOCSY-HSQC; 

NOESY-HSQC 

15N 3D Reducing the overlap in 

TOCSY and NOESY 

HNCO; 

HN(CA)CO; 

HNCA; 

HN(CO)CA; 

HNCACB; 

CBCA(CO)NH 

13C, 15N 3D Resonance assignment 

    

 Table 1. Elements of NMR spectroscopy 
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With the progress in the development of NMR techniques, the size of accessible 

molecules keeps increasing. Isotope labeling and multidimensional spectra allow 

correlation and assignment of thousands of nuclei. Although NMR solved structures 

may not be as accurate as X-ray solved ones (especially for large proteins), but they 

would approximate the native conditions of protein and provide complementary 

information to X-ray solved ones.  

 

1.2 Automatic NMR structure determination  

Traditionally NMR structures determination is manually solved by an NMR expert, 

which is often laboratory-specific, or expert-specific, and cannot be reproduced from 

one laboratory to another. Moreover, the manual analysis requires tremendous 

expertise in NMR principles. Scientists are kept from NMR technique due to the large 

expertise barrier. Yet most part of spectrum analysis is relatively sample-independent. 

Actually, the whole process of NMR structure determination is possibly turned 

automated except a few adjustable parameters. For the past few decades, the 

community is devoted to realizing a fully automated procedure for spectrum 

interpretation and data analysis, whose success would eventually evolve the field of 

NMR structure determination. We are expecting that computers solve the structures 

with higher efficiency and robust.  
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To achieve the above goal, certain experiments that ease automation are to be created 

or modified. The use of multidimensional triple resonance NMR has become a routine 

in many biomolecular structural laboratories (Ikura, Kay et al. 1990). With the power 

of reduced-dimensionality (RD) (Szyperski, Wider et al. 1994) and G-matrix Fourier 

Transformation (GFT) (Kim and Szyperski 2004), triple resonance NMR gains the 

advantage of rapid data collection and generates spectra that are more amenable to 

automation. There are also hybrid approaches, which combine experimental and 

computational methods, such as nonlinear sampling with maximum entropy 

reconstruction (Schmieder, Stern et al. 1994), Hadamard techniques for selective 

multichannel excitation and selection (Kupce and Freeman 2003), spectral 

reconstruction from tilted planes (Kupce and Freeman 2004), etc. Even with the 

standardization of some data interpretation and structure validation rules, the process of 

NMR structure determination still retains some subjective aspects, which limits its 

scientific utility. To break this bottleneck, several algorithms or computer programs 

have been created to automate the NMR structure determination. These algorithms will 

be discussed later. Parallel computation hardware architecture also speeds up the 

calculation.  

 

The general procedure for automated NMR structure determination is summarized in 

Figure 1, five steps—data collection, pre-processing, peak editing, resonance 

assignment, and structure calculation. A big challenge in building a reliable automation 
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platform is how to generate complete and self-consistent data in each step. Validations 

have been added to the last three steps to improve the data quality (Zolnai, Lee et al. 

2003). Self-inconsistency rises in data collection when mixing data from different 

NMR spectrometers or using different samples of the protein. It is known that each 

implementation of a sophisticated NMR experiment has a unique set of procedures and 

parameters. And different types of proteins require respective collection strategies. 

Therefore, efforts should be made to standardize the sets of NMR experiments (with 

certain parameters or conditions adjustable) for each type of protein samples. NMR 

data archiving remains to be a problematic issue in the application of modern NMR 

techniques. The conventional way of archiving is to store the data in the form of time 

domain free induction decay (FID), which is inefficient and error-prone. It is desired 

that appropriate database structure be used, which is simple to track and recover (Baran, 

Huang et al. 2004). With the emergence of world-widely public databases, such as The 

Protein Data Bank (PDB) and Biological Magnetic Resonance Bank (BMRB) (Seavey, 

Farr et al. 1991), it demands a standard set of deposit formats for the multiple data lists. 

Standardizing formats would allow public sharing of the data, make the NMR 

structural laboratories more productive, and make it possible to test novel 

computational algorithms. Currently a Self-defining Text Archival and Retrieval 

(NMR-STAR) format is used for depositing NMR solved structures. Coordinating with 

the worldwide PDB, the NMR community is developing a common format for 

encoding the various data lists generated by the available experimental techniques, the 
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NMR Exchange Format (NEF) (Gutmanas, Adams et al. 2015). This common format 

would promisingly make the output and input of multiple programs compatible. As the 

high-throughput omics projects started, NMR data grows almost exponentially. It 

brings the problem how to archive, organize, and process the data efficiently. Sesame 

(Zolnai, Lee et al. 2003) and SPINS (Baran, Moseley et al. 2002) systems are 

computing infrastructures designed for managing the high-volume NMR projects. 

Besides data storage, they can link all the steps in the process of NMR structure 

determination, from data collection to database depository.  

 

 

 

Figure 1. Flow chat of the procedure for NMR structure determination 

 

1.3 Algorithms for automated NMR structure determination 
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To fully get rid of subjective aspects in the process of NMR structure determination, it 

is reasonable to employ computational algorithms for resonance assignment and 

structure calculation. Two categories of programs have been developed—for 

sequence-specific resonance assignment and for NOE assignment. The first category 

(automated sequential assignment) includes neural network based algorithm (Hare and 

Prestegard 1994), connectivity tracing assignment tools (CONTRAST) (Olson and 

Markley 1994), AUTOASSIGN (Baran, Huang et al. 2004), ALPS (Assignment for 

Labeled Protein Spectra) (Morelle, Brutscher et al. 1995), GARANT (General 

Algorithm for Resonance Assignment) (Bartels, Guntert et al. 1997), SAGA 

(Sequential assignment of GSs Algorithm) (Crippen, Rousaki et al. 2010), etc. 

Relatively fewer attempts have been made to automate NOE assignment (the second 

category). Indeed, many difficulties exist in NOE data interpretation, including noisy 

bands, artificial peaks, peak missing due to fast relaxation, and peak overlap. Only 

those protons that are spatially close due to covalent bonds or secondary structure can 

be assigned without ambiguity. With these inevitable issues, interactive programs are 

the mainstream tools. In early 90’s, several computer programs were created to 

automate the NOE assignment problem. Most of these algorithms iteratively determine 

structures since a large portion of cross peaks cannot be assigned with certainty at the 

very beginning. The small portion of unambiguous NOEs that can be assigned initially 

are used to calculate the preliminary structure and other NOEs can be assigned based 

on the preliminary structure. The updated NOE assignment will be the input for the 
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next iteration. Such cycles continue until no further update can be made on the NOE 

assignment. ASNO (Assign NOEs) implemented in XEASY program uses the 

explicitly assigned NOE cross peaks/inter-nuclear distances to calculate a preliminary 

structure. Subsequently, the preliminary structure is taken as a reference to eliminate 

the possible pairs of protons that violate the reference to a large extent (Guntert, Berndt 

et al. 1993). ARIA (Ambiguous Restraints for Iterative Assignment) incorporated spin 

diffusion correction in the iterative assignment of NOEs. It calculates NOE intensities 

based on the intermediate structure of current iteration, takes the theoretic NOE 

intensities as a correction factor, and calculates distance restraints for the next iteration 

(Linge, Habeck et al. 2003). It also integrated refinement module, refinement in 

explicit solvent using PARALLHDG 5.3 force field. However, such iterative approach 

can fail since it heavily depends on the correctness of the structure generated in 

previous cycle. If two protons are far apart in the preliminary structure, it will not be 

assigned even they are the true “answer” of the cross peak. Therefore, the iterative 

approach depends on how well the preliminary structure samples the conformation 

space. While ANSRS (Assignment of NOESY Spectra in Real Space) (Kraulis 1994) 

and another publication (Oshiro and Kuntz 1993) use a novel procedure—an inversion 

of the traditional strategy. First they get a three-dimensional real-space geometry 

model/conformation based on the NOE data, and then assign the sequential spectral by 

matching the measured frequency to the theoretical ones calculated from the 

three-dimensional real-space geometry model. Assignment ambiguity caused by 
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chemical shift degeneracy and cross-peak overlap is not considered seriously in the 

above methods. The first method that addressed this issue works as following: 

ambiguity of a NOE cross peak is represented as the distances of all the proton pairs 

that may explain this cross peak. A new ambiguous distance restraint that allows all the 

possible assignments, is added to the energy minimization based on simulated 

annealing (Nilges 1995). NOAH treats ambiguous assignments as separate distance 

restraints, and iteratively calculates an ensemble of structures by distance geometry 

from unambiguous assignments and selected ambiguous assignments (Mumenthaler, 

Guntert et al. 1997). The wrong assignments are eliminated in subsequent cycles 

according to the principle of “self-consistency”. Combined automated NOE assignment 

and structure determination module (CANDID) takes the similar iterative approach. 

Meanwhile it incorporates two new elements, network-anchoring and 

constraint-combination (Herrmann, Guntert et al. 2002). It is known that any possible 

set of assignments that may explain the collected NOE spectra forms a self-consistent 

set. Therefore the weights given to the multiple possible assignments of a cross peak 

are adjusted by the extent to which they can be embedded into the network formed by 

all other cross-peak assignments. One way to reduce the error induced by the artifact 

NOE upper distance constraints is to combine the assignments for two or several peaks 

into a single upper limit distance constraint. Network-anchoring and 

constraint-combination make the algorithm robust to high ambiguously NOE data. 

KNOWNOE uses a knowledge-driven Bayesian algorithm for dealing with the 
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ambiguity in NOE data (Gronwald, Moussa et al. 2002). PASD (probabilistic 

assignment algorithm for automated structure determination) (Kuszewski, Schwieters 

et al. 2004) has three features that initial errors will not propagate through successive 

cycles—a linear item representing NOE restraint in energy function; treating all the 

possible assignments of a cross peak as independent; a probabilistic model to allow the 

elimination and re-entering of a certain NOE restraint during simulated annealing.  

 

In this project, we use ASDP, an updated version of the AutoStructure program for 

NOE assignment (Huang, Tejero et al. 2006). Its core algorithm is a bottom-up 

topology-constrained network anchoring approach. Given a set of sequence-specific 

resonance assignments (each atom of the protein has been assigned a resonance 

frequency) R and the NOE peak lists, an ambiguous NOE network can be constructed 

by linking each NOE peak to one or more proton pairs. The distance between a pair of 

protons is decided based on the relationship that intensity of a peak is proportional to 

the inverse of the sixth power of inter-proton distance. To take into account of the 

experimental error, the algorithm allows certain tolerances for matching chemical shifts 

in the resonance assignment set R with those in the NOE peak lists. The true solution 

network is a subgraph of this ambiguous network. There are two major parts consisted 

in the algorithm, initial fold analysis and iteratively generating structures. First part is 

mostly preparation for iterative structure generation. First, the input data sets (chemical 

shifts, NOE peak lists, scalar coupling constant—optional, dihedral 
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constraints—optional, RDC—optional) are preprocessed. Second, the algorithm will 

construct an initial ambiguous distance network derived from the sequence-specific 

resonance assignment set R and NOE peak lists, followed by validation of the input 

data sets using M score. Then it will build heuristic distance network starting from 

close proton pairs (within four covalent bonds). Based on the heuristic network, the set 

R of chemical shifts is refined. And reversely using the refined set R and NOE peak 

lists to prune the initial distance network results in a new ambiguous distance network. 

The heuristic distance network will be replenished by adding 

secondary-structure-specific proton pair contacts and well-assigned proton pair 

contacts gradually. With all these preparation, the initial structure models are generated 

based on the distance constraints, dihedral angle constraints, H-bond distance 

constraints, etc. The information extracted from the initial structure models are again 

used to refine the heuristic distance network. The second part consists of several 

iterative cycles. In each cycle the program generates structure models based on the 

heuristic distance network, and then refines the heuristic distance network using the 

intermediate structure models and topology constraints. The workflow of ASDP 

algorithm is shown in Figure 2.  
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Figure 2. Workflow of the algorithm implemented in AutoStructure 

(Huang et al. 2006) 

The first cycle (initial fold analysis) includes steps 1-6, and cycles 2-6 (the iterative fold analysis) 

include steps 4, 7, and 6. The initial ambiguous network in step 2 is reanalyzed in each iterative cycle. 

 

1.4 General principles of NMR structure refinement 

NMR experimental data gives sparse spatial constraints. They are not sufficient to 
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completely determine the tertiary structure of a macromolecule. Additional information 

(e.g. force fields) is needed to generate a reasonably accurate model. Irrespective of the 

algorithm used, NMR refinement attempts to minimize the energy function that has 

many local minima (see Figure 3 for an example) (Bertini, Case et al. 2011). Usually 

the force field energy function includes three parts, covalent geometry (bonds, angles, 

planarity, and chirality), non-bonded interactions, and terms representing constraints 

derived from NMR experimental data. The covalent geometry term cannot introduce 

much variability since the values of bond lengths, bond angles, planes, and chirality are 

all accurately known. While there are many ways to represent the non-bonded 

interaction term, like a simple van de Waals repulsion, or Lennard-Jones potential, a 

considerable amount of variability would be introduced. However, the major 

determinant of structure accuracy resides in the number and quality of the constraints 

derived from experimental data, the last energy term discussed above (Clore and 

Gronenborn 1998). Common algorithms for NMR structure refinement include 

simulated annealing in Cartesian or torsion angle space, metric matrix distance 

geometry, and minimization of a defined energy function (Clore and Gronenborn 

1998).  
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Figure 3. An example of a rough energy landscape 

(Ren et al. 2015) 

 

CNS (Crystallography and NMR system) is a software package designed for structure 

calculation, refinement, and modeling molecular dynamics. Scientists also use it as a 

computational framework to explore how to integrate the available information at 

multiple stages of structure determination (Brunger 2007). It has been a routine step in 

NMR structure determination procedure. In this project, we use CNS refinement 

protocol for energy minimization in water. The core algorithm in CNS water 

refinement is simulated annealing and gradient descent (Brunger, Adams et al. 1998). 

The detailed energy function is described as below: distance restraints are represented 

as harmonic functions, quadratic square-well functions, or quadratic asymptotic 

functions; torsion angle restraints are taken as harmonic or quadratic square-well 

functions; for RDC restraints, the axis system can be magnetic susceptibility or 
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molecular alignment tensor, and the orientation of the axis system is allowed to float 

during simulated annealing; Lennard-Jones potential is adopted for the non-bonded 

interaction. One feature of CNS is direct refinement against NOE intensities via full 

relaxation matrix or quasi-relaxation matrix. The CNS water refinement protocol works 

as following: first, creating a topology file according to the target sequence and 

disulfide bonds; second, generating an extended starting model, which has good local 

stereo properties but no folding patterns; third, folding the extended model using 

distance geometry and generating five accepted structures which are consistent to the 

experimental derived constraints and also self-consistent; finally, the structures are 

further refined through simulated annealing.  

 

Molecular Dynamics (MD) studies the biochemical systems at the atomistic levels and 

on timescale of milliseconds, complementing conventional experimental techniques. 

AMBER is widely used for the purpose of Molecular Dynamics simulation 

(Salomon-Ferrer, Case et al. 2013). Yet AMBER refers to more than just a molecular 

dynamics package. Besides a collection of modules that setup, conduct MD simulation 

and analyze the results, it also includes a series of classical molecular mechanics force 

fields (Ponder and Case 2003). The multiple modules possess their stand-alone utilities 

(e.g. sqm for semiempirical and DFTB quantum chemistry, pbsa for 

Poisson-Boltzmann modeling, 3D-RISM for solvation integral equation modeling, 

cpptraj/pytraj for trajectory analysis) and can also be integrated for comprehensive 
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analysis. The molecular dynamics simulation engine in AMBER consists of three parts, 

referred to as sander, pmemd, and pmemd.cuda. Among the three forks, sander is the 

most important for computation and originally development in the history of AMBER, 

whereas pmend and pmemd.cuda are designed to optimize the efficiency of MD 

simulation.  

 

1.5 Assessment of the structure quality 

With the rapid progress in the automation of NMR structure determination, it is critical 

to find a fast and sensitive way to evaluate the structure quality. A good structure 

quality measurement would help guide the automated structure determination process, 

and prevent deviation from the native structure. The community has been seeking for 

validation methods for NMR determined structure. Since NOESY peak lists are the 

prominent clues for structure determination, it is reasonable to evaluate the structure 

quality against NOE data. Conventional validation is to compare the back-calculated 

dihedral angles, or inter-proton distances with the corresponding constraints interpreted 

from experimental data (Doreleijers, Raves et al. 1999). Yet it has been realized that 

such comparison is biased since the constraints are manually derived (Nabuurs, Spronk 

et al. 2003). Analogous to the R-factor used in X-ray crystallography, the 

goodness-of-fit of the structure to the NOE data can be used as a quality assessment. 

Several programs take the strategy that compares the back-calculated NOESY peak list 

from the structure with the experimental NOESY peak list (Gronwald, Kirchhofer et al. 
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2000). However, cross-peak overlaps, spin diffusion, molecular tumbling, and other 

factors make it difficult to estimate NOESY peak intensities from three-dimensional 

structures, even with explicit relaxation matrix. Here we use DP score to measure the 

structure quality. DP score is derived from the RPF (Recall, Precision, F-measure) 

score, which relies on information retrieval (Huang, Powers et al. 2005). The key 

definitions are described as following: An ambiguous NOE network 𝐺!"# is built 

based on the experimental NOESY peak lists and resonance assignment, where the 

vertices represent all the protons in this protein, and the edges linking vertices stand for 

all potential proton pairs that may explain the NOESY peak lists within a pre-defined 

match tolerance. Each cross peak in NOESY peak list corresponds to one, two, or 

multiple edges which may explain this cross peak. The correct solution network 

𝐺!"#$%&"' corresponding to the true three-dimensional structure is a subgraph of 𝐺!"#, 

assuming no artifacts in the NOESY peak lists. For a given query ensemble of 

structures, an ensemble-average distance network 𝐺!"#!$%&!  is built. Then the 

differences between 𝐺!"#  and 𝐺!"#!$%&!  is a measure of the goodness-of-fit 

between the structure and NOESY data. Assuming no artifacts in NOESY peak lists, 

the edges in both 𝐺!"#  and 𝐺!"#!$%&!  are true positives (TPs); the edges in 

𝐺!"#!$%&! but not in 𝐺!"# are false positives (FPs); the edges not in 𝐺!"# and not 

in 𝐺!"#!$%&! are true negatives (TNs); a peak will be assigned false negative (FN) if 

none of the potential proton pairs are in 𝐺!"#!$%&!. Recall, Precision, and F-measure 

statistics are defined in Table 2.  
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Table 2. Definitions of Recall, Precision, F-measure statistics 

(Huang, Powers et al. 2005) 

 

We also calculated the average root mean squared deviation (RMSD) between the 

X-ray crystal structure and the NMR ensemble to measure the accuracy of NMR 

conformers. The wwPDB NMR-VTF has recommended that the “representative 

conformer of the ensemble” is the conformer that is most similar to all the other 

conformers, i.e. the medoid of the conformer distribution. The ill-defined regions that 

do not converge across the conformers are excluded from RMSD calculation. The 

FindCore2 algorithm of PDBStat is used to detect these ill-defined regions (Snyder, 

Grullon et al. 2014). In summary, we superimpose the X-ray crystal structure with the 

medoid, based on the superimposing calculate the backbone RMSD between the X-ray 

crystal structure and each conformer of the ensemble, and take the average RMSD. 

interleukin-13 (IL-13, 113 a.a.).30 For each protein, 3D 13C- and 15N-
NOESY peak lists (set NOE) and resonance assignments (set R) were
used to generate the ambiguous NOE network GANOE. Atomic coordi-
nates for these three proteins (the Expert I group), determined using
the same NOESY peak lists and resonance assignments, were obtained
from the Protein Data Bank (PDB): FGF-2 (PDB-ID: 1BLD; a !-fold);
MMP-1 (PDB-ID: 1AYK; an R/! fold); IL-13 (PDB-ID: 1IK0; an R
fold). For each structure evaluated, a second independently determined
3D structure was also evaluated (the Expert II group), including the
1.9-Å X-ray crystal structure of FGF-2 (PDB-ID: 1BAS),31 the 1.56-Å
X-ray crystal structure of MMP-1 (PDB-ID: 1HFC),32 and a second
solution NMR structure of IL-13 (PDB-ID: 1GA3).33 In this paper,
we also report the NMR RPF scores for quality control in determining
the 3D structure of the 100-residue Escherichia coli YggU protein, a
target of the Northeast Structural Genomics Consortium (http://
www.nesg.org).
Solution NMR structures and resonance assignments for FGF-2,26,27

MMP-1,28,29 and IL-1330 were described in detail previously, based on
manual analysis methods. In this work, we also used the previously
unpublished NOESY peak lists. NMR spectra were recorded on a
Bruker DRX or AMX 600 spectrometer equipped with a triple-
resonance gradient probe. Spectra were processed using the NMRPipe
software package 34 and manually peak-picked and analyzed with the
software package PIPP.35 13C/15N and 15N-enriched samples of FGF-2,
IL-13, and MMP-1 were prepared in 90% H2O/10% D2O and “100%”
D2O at a 1 mM concentration. FGF-2 NMR spectra were collected at
25 °C in a buffer containing 50 mM potassium phosphate, 2 mM NaN3,
10 mM deuterated DTT at pH 5.5. IL-13 NMR spectra were collected
at 25 °C in a buffer containing 40 mM sodium phosphate, 2 mM NaN3,
40 mM NaCl at pH 6.0. MMP-1 NMR spectra were collected at 35 °C
in a buffer containing 10 mM deuterated Tris-Base, 100 mM NaCl, 5
mM CaCl2, 0.1 mM ZnCl2, 2 mM NaN3, 10 mM deuterated DTT at
pH 6.5. The assignments of the 1H, 15N, 13CO, and 13C resonances were
based primarily on the following experiments: CBCA(CO)NH, CB-
CANH, C(CO)NH, HC(CO)NH, HBHA(CO)NH, HNCO, HCACO,
HNHA, HNCA, HCCH-COSY and HCCH-TOCSY.36 The 15N-edited
NOESY and 13C-edited NOESY experiments were collected with 100

ms and 120 ms mixing times, respectively. The structures were
calculated using the hybrid distance geometry-dynamical simulated
annealing method of Nilges et al. 37 using the program XPLOR.38,39
RPF analyses were also carried out using unpublished NMR data

for 100-residue Escherichia coli protein YggU, a target of the Northeast
Structural Genomics Consortium (http://www.nesg.org) with unknown
biochemical function. Atomic coordinates for YggU are deposited in
the Protein Data Bank (PDB-ID 1YH5), and the structure determination
will be presented in detail elsewhere (Aramini & Montelione, in
preparation). NMR spectra were recorded on Varian INOVA 500, 600
and 750 MHz spectrometers. Spectra were processed using the
NMRPipe software package and manually peak-picked and analyzed
with SPARKY.40 13C/15N and 15N-labeled samples of YggU were
prepared in 95% H2O/5% D2O at a 1 mM concentration. NMR spectra
were collected at 20 °C in a buffer containing 20 mM MES, 50 mM
NaCl, 5 mM DTT at pH 6.5. The assignments of the 1H, 15N, 13CO,
and 13C resonances were based on the following experiments: 2D 1H-
15N HSQC, 3D HNCO, HN(CO)CACB, HNCACB, HN(CO)CA,
HNCA, HA(CA)NH, HA(CACO)NH, 3D (H)CC(CO)NH-TOCSY,
H(CCCO)NH-TOCSY, HCCH-COSY, RD HCCH-COSY, and 2D
HBCB(CGCD)HD and H-TOCSY-HCH-COSY RD experiments.41
The 15N-edited NOESY and 13C-edited NOESY experiments were
collected with 80 ms and 70 ms mixing times, respectively. NOESY
peak lists were interpreted using a fully automated approach12 and the
structures were calculated using the program XPLOR.38,39
Generation of Different Incorrect-Fold Structures: 6-12 Å rmsd

Range. To test the sensitivity of RPF scores for identifying 3D
structures with incorrect folds, we generated sets of different incorrect
structures using the homology-modeling tool HOMA.42 An incorrect
!-fold (incorrect fold I) of FGF-2 was generated by modeling with a
different beta barrel protein template, cyclophilin isomerase (PDB-
ID: 1CLH), in which two of the !-strands form FGF-like interactions,
but the rest of the protein structure is significantly different from the
correct FGF-2 structure. An incorrect R-fold (incorrect fold II) for
FGF-2 was modeled from the 3D structure of myoglobin (PDB-ID:
101M), and an incorrect R/!-fold (incorrect fold III) for FGF-2 was
modeled using the coordinates of MMP-1 (PDB-ID: 1AYK). Similarly,
an incorrect !-fold (incorrect fold I) of MMP-1 was modeled based on
the structure of a beta barrel, E. coli cyclophilin isomerase (PDB-ID:
1CLH), an incorrect R-fold (incorrect fold II) of MMP-1 was modeled

(29) Moy, F. J.; Chanda, P. K.; Cosmi, S.; Pisano, M. R.; Urbano, C.; Wilhelm,
J.; Powers, R. Biochemistry 1998, 37, 1495-1504.

(30) Moy, F. J.; Diblasio, E.; Wilhelm, J.; Powers, R. J. Mol. Biol. 2001, 310,
219-230.

(31) Zhu, X.; Komiya, H.; Chirino, A.; Faham, S.; Fox, G. M.; Arakawa, T.;
Hsu, B. T.; Rees, D. C. Science 1991, 251, 90-93.

(32) Spurlino, J. C.; Smallwood, A. M.; Carlton, D. D.; Banks, T. M.; Vavra,
K. J.; Johnson, J. S.; Cook, E. R.; Falvo, J.; Wahl, R. C.; Pulvino, T. A.;
et al. Proteins 1994, 19, 98-109.

(33) Eisenmesser, E. Z.; Horita, D. A.; Altieri, A. S.; Byrd, R. A. J. Mol. Biol.
2001, 310, 231-241.

(34) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J.
Biomol. NMR 1995, 6, 277-293.

(35) Garrett, D. S.; Powers, R.; Gronenborn, A. M.; Clore, G. M. J. Magn.
Reson. 1991, 95, 214-230.

(36) Clore, G. M.; Gronenborn, A. M. Methods Enzymol. 1994, 239, 349-362.

(37) Nilges, M.; Gronenborn, A. M.; Bruenger, A. T.; Clore, G. M. Protein
Eng. 1988, 2, 27-38.

(38) Clore, G. M.; Appella, E.; Yamada, M.; Matsushima, K.; Gronenborn, A.
M. Biochemistry 1990, 29, 1689-1696.

(39) Brunger, A. T. X-PLOR, Version 3.1: A System for X-ray Crystallography
and NMR; Yale University Press: New Haven, 1992.

(40) Goddard, T. D.; Kneller, D. G. SPARKY 3. University of California: San
Francisco, 1999.

(41) Aramini, J. M.; Mills, J. L.; Xiao, R.; Acton, T. B.; Wu, M. J.; Szyperski,
T.; Montelione, G. T. J. Biomol. NMR 2003, 27, 285-286.

(42) Li, H.; Tejero, R.; Monleon, D.; Bassolino-Klimas, D.; Abate-Shen, C.;
Bruccoleri, R. E.; Montelione, G. T. Protein Sci. 1997, 6, 956-970.

Table 1. Recall and Precision Analysis for Information Retrieval and Its Application for Quality Assessment of NMR Structures, Assuming
Input Data Are Complete with No Noise

truth: relevant truth: not-relevant

algorithm: relevant (retrieved) TP FP
algorithm: not-relevant (not retrieved) FN TN

Recall ) TP
TP + FN Precision ) TP

TP + FP F-measure ) 2 × Recall × Precision
Recall + Precision

peak is observed
{p| (h1,h2, p) ∈ GANOE}

peak is not observed
(h1, h2, p) ∉ GANOE

interaction retrieved by query structures
(h1,h2,d) ∈ Gh

TP FP

interaction is not retrieved by query structures
(h1,h2,d) ∉ Gh

FN TN
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ously linked to more than one proton pair, as indicated by chemical
shift degeneracies and match tolerances. The solution network, GNOE,
corresponding to the true 3D structure, is a subgraph of GANOE.
Given complete NOESY peak lists and resonance assignments, for

each NOESY cross peak, at least one of its linked proton pairs belongs
to GNOE. From an ensemble of query 3D structures, an ensemble-average
distance network Gh is then calculated from the sum of inverse sixth
powers of individual degenerate proton-proton distances, assuming
uniform effects of nuclear relaxation processes (Figure 1). Protons
(vertices) are connected (edges) if their corresponding midrange
interproton distance in the ensemble of model structures is e dNOE_max,
where dNOE_max is the maximum distance detected in the NOESY
spectrum. In this approach, the problem of finding a global measure
of the goodness-of-fit of the query structures with the NOESY spectra
is reduced to comparing the differences of the two graphs Gh (derived
from the structures(s)) and GANOE (derived from the NOESY peak list
data).
To provide a statistical measure of the agreement between Gh and

GANOE, we have adopted the F-measure metric from information
retrieval statistics,22,23 in which the performance of a search algorithm
is assessed by its ability to correctly distinguish “documents” relevant
to a particular query from those that are not relevant to the query. The
four possible outcomes of a retrieval search are summarized in Table
1. “Relevant” documents retrieved by the algorithm are classified as
true positives (TP), while “not-relevant” documents retrieved by the
algorithm are false positives (FP). “Relevant” documents not retrieved
by an algorithm are false negatives (FN) and “not-relevant” documents
that are also not retrieved by an algorithm are true negatives (TN).
Recall is defined as the fraction of relevant documents that are retrieved
by the algorithm and Precision is defined as the fraction of retrieved
documents that are in fact relevant. The F-measure characterizes the
combined performance of Recall and Precision.
In the context of NOESY-based structure analysis, proton pair

interactions (h1, h2) are analogous to “documents”. Observed NOESY
cross peaks are defined as true relevant documents, assuming the peak
lists (set NOE) have no noise. Potential NOESY peaks not observed
in the data are analogous to not-relevant documents, assuming the input
data are complete. As illustrated in Figure 1, particular proton pair
interactions present in (or “retrieved by”) the atomic coordinates of a
model structure may either be represented in the graphical representation
of the NOESY peak list data GANOE (TP), or not represented in GANOE
(FP). Proton pair interactions “not retrieved” by the structure and also
not represented in GANOE are defined as TNs. Proton pair interactions
not retrieved by the structure but represented in GANOE have to be
considered carefully with respect to the ambiguous relationship between
peaks and their multiple possible assignments. Since GANOE is an
ambiguous network, a FN score is assigned to the peak only if none of
the several possible interactions are observed in Gh . In this context,
Recall (eq 1) measures the fraction of NOE cross peaks that are retrieved
by the query structures, while Precision (eq 2) measures the fraction
of retrieved proton pair interactions in the query structure that are
relevant (in GANOE), weighted by interproton distance. The upper-bound
observed distance, dNOE_max, used in these measures is 5 Å, but

can also be calibrated from the NOESY data. Accordingly, the
performance score (F-measure) of the final ensemble of structures F(Gh )
is assessed by the following set of statistics:

In this analysis, a distance (d-6) weighting of the precision metric,
precisonw(Gh ), is used to reduce the otherwise dominant influence of
the many weak NOEs arising from interproton distances close to the
upper-bound detection limit, dNOE_max. This weighting also makes the
quality scores less sensitive to the value chosen for dNOE_max.
Discriminating Power (DP-score). While the F-measure statistic

is useful for distinguishing accurate from inaccurate structures, we have
found it useful to also report a normalized F-measure statistic that
accounts for lower-bound and upper-bound values of the F-measure
that are indicated by the NMR data quality. The lower-bound of F(Gh )
is estimated by the performance F(Gfree), where Gfree is a distance
network graph computed from interproton distances in a freely rotating
polypeptide chain model first described by Flory and co-workers24,25
(details are presented in Supporting Information). The upper-bound of
F(Gh ) is estimated by F(Gideal), where Gideal is the graph of a hypothetical
ideal structure that is perfectly consistent withGANOE. Specifically, Gideal
is defined so that recall(Gideal) ) 1 and precision(Gideal) ) precision-
(Glocal), where Glocal is a network of all conformation-independent two-
and three-bond connected proton pairs. With these definitions, F(Gideal)
represents the best possible performance considering the quality of the
input NOESY peak lists and resonance assignments. F(Gideal), and
particularly the Precision of Gideal, thus provides a measure of the
combined quality of the resonance assignment and NOESY peak lists
for one or more spectra. F(Gideal) and F(Gfree) describe the two bounds
of the performance F(Gh ); i.e., F(Gideal) g F(Gh ) g F(Gfree). With these
definitions, the fold Discriminating Power (DP) for Gh is then estimated
as:

where, DP(Gideal) ) 1 and DP(Gfree) ) 0.
The F-measure score provides an assessment of the overall fit

between the query model structure(s) and the experimental data,
assuming that the input data are near complete; the Discriminating
Power score, DP(Gh ), measures how the query structure is distinguished
from the freely rotating chain model.
NMR Datasets. We have validated the sensitivities of NMR RPF

scores on experimental NMR data sets of: human basic fibroblast
growth factor (FGF-2, 154 a.a.),26,27 the inhibitor-free catalytic fragment
of human fibroblast collagenase (MMP-1, 169 a.a.),28,29 and human
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(25) Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry; W. H. Freeman:
San Francisco, 1980.
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(27) Moy, F. J.; Seddon, A. P.; Bohlen, P.; Powers, R. Biochemistry 1996, 35,
13552-13561.

(28) Moy, F. J.; Pisano, M. R.; Chanda, P. K.; Urbano, C.; Killar, L. M.; Sung,
M.-L.; Powers, R. J. Biomol. NMR 1997, 10, 9-19.

Figure 1. Comparison of distance network Gh generated from an ensemble
of 3D query structures and GANOE generated from input NOE peaklist (NOE)
and resonance assignment (R) data. Edges that are present in both Gh and
GANOE are true positives (TP). Edges present in Gh , but not in GANOE are
false positives (FP). Edges that are not present in both Gh and GANOE are
true negatives (TN). NOE cross peaks (p) are counted (only once) as false
negatives (FN) if corresponding linking edges in GANOE are not present in
Gh .

Recall (Gh ) )
|{p|(h1, h2, p) ∈ GANOE, (h1, h2, d)∈ Gh}|

|{p|(h1, h2, p) ∈ GANOE}|
(1)

Precisionw(Gh ) )

∑
(h1,h2,d)∈ Gh ,

(h1,h2,p)∈ GANOE

d(h1, h2)-6

∑
(h1,h2,d)∈ Gh

d(h1,h2)-6
(2)

F(Gh ) )
2 × Recall(Gh ) × Precisionw(Gh )
Recall(Gh ) + Precisionw(Gh )

(3)

DP(Gh ) )
F(Gh ) - F(Gfree)

F(Gideal) - F(Gfree)
(4)
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ously linked to more than one proton pair, as indicated by chemical
shift degeneracies and match tolerances. The solution network, GNOE,
corresponding to the true 3D structure, is a subgraph of GANOE.
Given complete NOESY peak lists and resonance assignments, for

each NOESY cross peak, at least one of its linked proton pairs belongs
to GNOE. From an ensemble of query 3D structures, an ensemble-average
distance network Gh is then calculated from the sum of inverse sixth
powers of individual degenerate proton-proton distances, assuming
uniform effects of nuclear relaxation processes (Figure 1). Protons
(vertices) are connected (edges) if their corresponding midrange
interproton distance in the ensemble of model structures is e dNOE_max,
where dNOE_max is the maximum distance detected in the NOESY
spectrum. In this approach, the problem of finding a global measure
of the goodness-of-fit of the query structures with the NOESY spectra
is reduced to comparing the differences of the two graphs Gh (derived
from the structures(s)) and GANOE (derived from the NOESY peak list
data).
To provide a statistical measure of the agreement between Gh and

GANOE, we have adopted the F-measure metric from information
retrieval statistics,22,23 in which the performance of a search algorithm
is assessed by its ability to correctly distinguish “documents” relevant
to a particular query from those that are not relevant to the query. The
four possible outcomes of a retrieval search are summarized in Table
1. “Relevant” documents retrieved by the algorithm are classified as
true positives (TP), while “not-relevant” documents retrieved by the
algorithm are false positives (FP). “Relevant” documents not retrieved
by an algorithm are false negatives (FN) and “not-relevant” documents
that are also not retrieved by an algorithm are true negatives (TN).
Recall is defined as the fraction of relevant documents that are retrieved
by the algorithm and Precision is defined as the fraction of retrieved
documents that are in fact relevant. The F-measure characterizes the
combined performance of Recall and Precision.
In the context of NOESY-based structure analysis, proton pair

interactions (h1, h2) are analogous to “documents”. Observed NOESY
cross peaks are defined as true relevant documents, assuming the peak
lists (set NOE) have no noise. Potential NOESY peaks not observed
in the data are analogous to not-relevant documents, assuming the input
data are complete. As illustrated in Figure 1, particular proton pair
interactions present in (or “retrieved by”) the atomic coordinates of a
model structure may either be represented in the graphical representation
of the NOESY peak list data GANOE (TP), or not represented in GANOE
(FP). Proton pair interactions “not retrieved” by the structure and also
not represented in GANOE are defined as TNs. Proton pair interactions
not retrieved by the structure but represented in GANOE have to be
considered carefully with respect to the ambiguous relationship between
peaks and their multiple possible assignments. Since GANOE is an
ambiguous network, a FN score is assigned to the peak only if none of
the several possible interactions are observed in Gh . In this context,
Recall (eq 1) measures the fraction of NOE cross peaks that are retrieved
by the query structures, while Precision (eq 2) measures the fraction
of retrieved proton pair interactions in the query structure that are
relevant (in GANOE), weighted by interproton distance. The upper-bound
observed distance, dNOE_max, used in these measures is 5 Å, but

can also be calibrated from the NOESY data. Accordingly, the
performance score (F-measure) of the final ensemble of structures F(Gh )
is assessed by the following set of statistics:

In this analysis, a distance (d-6) weighting of the precision metric,
precisonw(Gh ), is used to reduce the otherwise dominant influence of
the many weak NOEs arising from interproton distances close to the
upper-bound detection limit, dNOE_max. This weighting also makes the
quality scores less sensitive to the value chosen for dNOE_max.
Discriminating Power (DP-score). While the F-measure statistic

is useful for distinguishing accurate from inaccurate structures, we have
found it useful to also report a normalized F-measure statistic that
accounts for lower-bound and upper-bound values of the F-measure
that are indicated by the NMR data quality. The lower-bound of F(Gh )
is estimated by the performance F(Gfree), where Gfree is a distance
network graph computed from interproton distances in a freely rotating
polypeptide chain model first described by Flory and co-workers24,25
(details are presented in Supporting Information). The upper-bound of
F(Gh ) is estimated by F(Gideal), where Gideal is the graph of a hypothetical
ideal structure that is perfectly consistent withGANOE. Specifically, Gideal
is defined so that recall(Gideal) ) 1 and precision(Gideal) ) precision-
(Glocal), where Glocal is a network of all conformation-independent two-
and three-bond connected proton pairs. With these definitions, F(Gideal)
represents the best possible performance considering the quality of the
input NOESY peak lists and resonance assignments. F(Gideal), and
particularly the Precision of Gideal, thus provides a measure of the
combined quality of the resonance assignment and NOESY peak lists
for one or more spectra. F(Gideal) and F(Gfree) describe the two bounds
of the performance F(Gh ); i.e., F(Gideal) g F(Gh ) g F(Gfree). With these
definitions, the fold Discriminating Power (DP) for Gh is then estimated
as:

where, DP(Gideal) ) 1 and DP(Gfree) ) 0.
The F-measure score provides an assessment of the overall fit

between the query model structure(s) and the experimental data,
assuming that the input data are near complete; the Discriminating
Power score, DP(Gh ), measures how the query structure is distinguished
from the freely rotating chain model.
NMR Datasets. We have validated the sensitivities of NMR RPF

scores on experimental NMR data sets of: human basic fibroblast
growth factor (FGF-2, 154 a.a.),26,27 the inhibitor-free catalytic fragment
of human fibroblast collagenase (MMP-1, 169 a.a.),28,29 and human
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Figure 1. Comparison of distance network Gh generated from an ensemble
of 3D query structures and GANOE generated from input NOE peaklist (NOE)
and resonance assignment (R) data. Edges that are present in both Gh and
GANOE are true positives (TP). Edges present in Gh , but not in GANOE are
false positives (FP). Edges that are not present in both Gh and GANOE are
true negatives (TN). NOE cross peaks (p) are counted (only once) as false
negatives (FN) if corresponding linking edges in GANOE are not present in
Gh .
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1.6 Northeast Structural Genomics (NESG) consortium  

Northeast Structure Genomics consortium is one of the four large-scale centers that 

conduct Protein Structure Initiative (PSI) project funded by NIH. The long-term goal of 

PSI is accurate prediction of the three-dimensional atomic-level structure of most 

proteins from their DNS sequences (Montelione, Zheng et al. 2000) To achieve this 

goal, the Structural Genomics centers are making efforts to build a paradigm for 

high-throughput structure determination. The accumulation of resolved structures will 

eventually increase our knowledge on the natural law of peptide chain folding with 

regard to its sequence. With the abundant data generated by Structural Genomics 

Consortia, we are able to conduct experiments on the data sets, e.g. testing algorithms, 

comparing methods. In this project, we tested two refinement methods, CNS 

refinement and AMBER refinement, on 8 NESG targets (Everett, Tejero et al. 2016). 

Each of these targets has NMR solved structure deposited in the BMRB database and 

X-Ray solved structure deposited in the PDB database. Automated calculated 

structures are going through CNS refinement and AMBER refinement respectively. 

The CNS-refined and AMBER-refined ensembles are evaluated based on their RMSD 

to the “golden standard”—X-Ray solved structure, and their DP scores that measure 

the goodness of the fit between the structure and the NOESY data (Bhattacharya, 

Tejero et al. 2007).  
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2 Material and Methods 

 

2.1 Constraints preparation 

We choose 8 targets (Table 3) from the NESG X-ray/NMR pair repository, ranging 

from 78 residues to 175 residues, and various folding patterns (α helix, β sheet, α helix 

+ β sheet). For each target, the sequence, chemical shifts and NOE peak lists are 

extracted from the NMR-STAR v3.1 file deposited in BMRB, and transformed into 

CYANA format. Four of the eight targets also have RDC data available. The dihedral 

constraints are obtained by using the TALOSN program with the chemical shift data as 

input. TALOSN is a program that implements artificial neural network (ANN) to 

predict protein backbone and sidechain Χ1 torsion angles and secondary structure 

based on the chemical shifts of HN, Hα, Cα, Cβ, CO, N. There are two major methods 

used by TALOSN—search a high-resolution structural database for the 25 best 

matches to the secondary chemical shifts of a given residue triplet and averaging these 

best matches; cut the Ramachandran map into 324 pixels and use ANN to classify a 

given residue into one of the 324 pixels; combine the database mining result with the 

classification result (Shen and Bax 2013). Moreover, the TALOSN program outputs a 

measure of uncertainty in the prediction (the quality score) and the RCI-𝑆! value 

(Berjanskii and Wishart 2005) for each residue. The quality score indicates how many 

out of the 25 best matches fall into a “consistent” region of the Ramachandran map. If 

the quality score is 25, then it is a “strong” prediction. The distance constraints are 
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calculated by automated NOE assignment using the ASDP program. For the RDC data, 

we use the CYANA program to calculate the magnitude and rhombicity. Before 

structure calculation, the dihedral constraints and RDC constraints are filtered based on 

their 𝑆! score and quality score—the ones with 𝑆! < 0.75 or quality score < 25 are 

removed. The 𝑆! is a measure of order. The larger 𝑆! score is, the higher plausibility 

that this region has rigid structure and hence more confidence in the constraints.  

 

NESG-ID Residue number Availability of RDC data Reso. of X-ray structure 

GmR137  78 RDC 1 medium 1.9 Å 

CcR55  115 No RDC 1.8 Å 

HR4694F  94 No RDC 1.99 Å 

HR41  175 No RDC 2.54 Å 

DhR29B  90 RDC 2 media 1.9 Å 

HR4435B  83 No RDC 1.2 Å 

PfR193A  127 RDC 1 medium 1.7 Å 

CtR107  158 RDC 2 media 1.81 Å 

 

Table 3. Targets summary 

 

2.2 Structure calculation by ASDP-CYANA 
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The chemical shift lists, NOE peak lists, dihedral constraints, and RDC lists (when 

available) are input to the ASDP program. The workflow of ASDP is analogous to the 

routine analysis by an NMR expert. First, it will generate an ambiguous distance 

network by matching NOE peaks to the chemical shifts with certain tolerance and 

make ambiguous assignments. Then this ambiguous distance network will be used to 

evaluate the quality of the input data. After validating the input data sets, a heuristic 

distance network is gradually built from the sequential contacts, to the secondary 

structure specific contacts, then to the uniquely assigned contacts, and finally to the 

ambiguous assignments. The initial structure ensemble will be generated based on the 

distance constraints, dihedral constraints, H-bond distance constraints, etc. In the 

following iterative cycles, the program alternates between updating the heuristic 

distance network using the intermediate structure models and generating new structure 

models based on the refined distance constraints. The structure calculation takes 6 

cycles. The DP scores of the final structure models will be reported for quality 

assessment. These structure models generated by ASDP-CYANA are further going 

through CNS and AMBER refinement.  

 

2.3 CNS refinement 

The conformers generated by ASDP-CYANA together with other information (the 

peptide sequence, chemical shift list, dihedral angle constraints, distance constraints, 

RDC constraints) are transformed into CNS format using the PDBStat program (Tejero, 
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Snyder et al. 2013) and input into CNS water refinement. The commend used for CNS 

water refinement is WaterRefinement_cns/WaterRefCNS -na CNS  -que pbs -par 

PARAM19 -tsc 0.001, where -na denotes the name of the target, -que indicates which 

que system is used, -par specifies the force field used for non-bonded interactions, and 

-tsc denotes the cooling time steps.  

 

2.4 AMBER refinement 

In this project, we use the generalized Born explicit solvent protocol. The conformers 

obtained from ASDP-CYANA and the restraints (the peptide sequence, chemical shift 

list, dihedral angle constraints, distance constraints, RDC constraints) are taken as 

input. It first carries out local minimization (small changes to the atom coordinates) to 

get rid of the bad contacts, and then conducts molecular dynamics simulated annealing 

to reach or approximate global energy minimum. At the start of the molecular 

dynamics simulated annealing, the system will be heated up (rise the temperature 

dramatically in a short time) so as to explore a wide range of the conformational space. 

Such regime would reduce the risk of getting trapped in local minima. Then it will cool 

down gradually and the molecules descend gently to the global minima (but not 

guaranteed of the global minimum).  

 

2.5 Evaluation of the structure models 

The quality of a structure is evaluated by two criteria—the RMSD between the 
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obtained NMR structure and the corresponding X-ray PDB structure; the DP score of 

the obtained NMR structure, which measures the fit between the structure and the NOE 

data. For each target, the RMSDs as well as the DP scores of CNS-refined conformers 

and the corresponding AMBER-refined conformers are collected. Then the 

distributions of the RMSDs and DP scores are plotted. To rigorously differentiate the 

performance of CNS refinement and AMBER refinement, paired one-tail t-tests are 

applied to the RMSDs and DPs. Note, two types of DP scores are used in this work. 

The ensemble-average DP score is the DP score of the average structure of the 

ensemble. The average DP score of an ensemble is the average of the DP scores of the 

individual structures in the ensemble. The DP score of the X-ray PDB structure would 

measure any discrepancy between the solution and crystal conformation. We expect 

that the structures obtained by the automatic procedure of structure determination  

would achieve comparable or slightly less accuracy than the ones solved manually by 

NMR experts. We also expect that refinement would improve the structures output 

from ASDP-CYANA. Which refinement method works better, CNS or AMBER, is the 

main question we are going to address. Another question to explore is whether the DP 

score always highly correlates to the RMSD. Assuming there is no spurious or missing 

data in the NOE peak lists, the DP scores and corresponding RMSDs should be highly 

correlated.  
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3 Results 

 

3.1 The structures obtained by the procedure of automatic NMR structure determination 

are reasonably accurate. 

The average RMSDs of ASDP-CYANA model, CNS-refined model, and 

AMBER-refined model are around 2-3 Å for all the targets except CtR107 (Table 4-11 

(a)). The ensemble-average and average DP scores of the ASDP-CYANA models, 

CNS-refined models, and AMBER-refined models are around 0.7-0.8 for all the targets 

except CtR107 (Table 4-11 (a)). These structures obtained by the fully automatic 

procedure are comparable to the NMR structures deposited in PDB, which are 

manually solved by NMR spectroscopy experts (Table 4-11 (a)).  Figures 4-11 show 

that most regions in the 7 targets (except CtR107) converge and align well with the 

X-ray structure. It is reasonable that some coil and loop regions are divergent from the 

X-ray structure as they are flexible in solution.  

 

3.2 AMBER refinement achieves better results than CNS. 

For all the targets except PfR193A, AMBER refinement achieves smaller average 

RMSDs and higher average DP scores. Tables 4-11 (a) show that the average RMSDs 

of CNS-refined structures are larger than those of AMBER-refined structures. While 

the ensemble-average and average DP scores of CNS-refined structures are smaller 

than those of AMBER-refined structures. The paired one-tail t-tests confirm that 
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AMBER refinement achieves better results in 5 targets (Tables 4-11 (b)). Figure 12 (a) 

and (b) visualize the distributions of RMSDs and DP scores. Similar phenomena can be 

found: the RMSD distributions of AMBER-refined structures shift downward while the 

DP distributions of AMBER-refined structures shift upward compared to those of 

CNS-refined structures.  

 

(a) 

Residue number 78 

X-ray PDB DP 0.784 

NMR PDB RMSD 1.66 Å 

DP Ensemble average 0.881 

Average of the ensemble 0.762 

ASDP-CYANA RMSD 1.72 Å 

DP Ensemble average 0.873 

Average of the ensemble±SD 0.801 ± 0.0100 

CNS-refined RMSD 1.62 Å 

DP Ensemble average 0.835 
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Average of the ensemble±SD 0.688 ± 0.0254 

AMBER-refined RMSD 1.16 Å 

DP Ensemble average 0.869 

Average of the ensemble±SD 0.775 ± 0.0170 

 

(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 1.89 1.46 1.10 0.81 0.709 0.775 

Model2 1.74 1.77 0.87 0.81 0.643 0.776 

Model3 1.81 1.77 1.06 0.81 0.688 0.776 

Model4 1.64 1.82 1.41 0.81 0.679 0.73 

Model5 1.46 1.71 1.21 0.80 0.699 0.789 

Model6 1.77 1.37 1.21 0.80 0.674 0.787 

Model7 1.88 1.39 1.59 0.81 0.689 0.781 

Model8 1.88 1.44 0.90 0.82 0.709 0.785 

Model9 1.72 1.76 1.08 0.80 0.692 0.751 

Model10 1.64 1.77 0.99 0.80 0.708 0.771 

Model11 1.58 1.71 1.11 0.79 0.662 0.758 
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Model12 1.54 1.58 1.21 0.79 0.674 0.743 

Model13 1.69 1.99 1.16 0.79 0.621 0.768 

Model14 1.77 1.82 1.06 0.79 0.636 0.784 

Model15 1.67 1.46 1.11 0.79 0.713 0.781 

Model16 1.95 1.48 1.19 0.79 0.669 0.776 

Model17 1.67 1.74 1.28 0.78 0.667 0.764 

Model18 1.76 1.32 1.22 0.79 0.692 0.78 

Model19 1.72 1.47 1.38 0.79 0.699 0.763 

Model20 1.71 1.60 1.11 0.80 0.669 0.743 

Paired one-tail t-test  3.13E-07 Paired one-tail t-test  7.76E-12 

 

Table 4. Structure evaluation for target GmR137 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 4. Visualization of the results for target GmR137 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 
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(a) 

Residue number 115 

X-ray PDB DP 0.699 

NMR PDB RMSD 1.45 Å 

DP Ensemble average 0.791 

Average of the ensemble 0.641 

ASDP-CYANA RMSD 2.23 Å 

DP Ensemble average 0.770 

Average of the ensemble±SD 0.670 ± 0.0105 

CNS-refined RMSD 1.97 Å 

DP Ensemble average 0.779 

Average of the ensemble±SD 0.609 ± 0.0181 

AMBER-refined RMSD 1.51 Å 

DP Ensemble average 0.786 

Average of the ensemble±SD 0.667 ± 0.0132 
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(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 1.95 1.66 1.705 0.6770  0.6 0.632 

Model2 2.54 2.045 1.696 0.681  0.634 0.672 

Model3 1.92 1.663 1.759 0.665  0.613 0.675 

Model4 2.11 2.069 1.299 0.668  0.585 0.677 

Model5 2.16 2.013 1.599 0.671  0.613 0.658 

Model6 2.10 1.826 1.643 0.671  0.594 0.65 

Model7 2.34 2.029 1.469 0.658  0.609 0.66 

Model8 2.55 2.276 1.725 0.66  0.568 0.643 

Model9 2.66 2.336 1.565 0.658  0.609 0.64 

Model10 2.25 2.003 1.333 0.662  0.607 0.675 

Model11 2.16 1.884 1.444 0.675  0.579 0.671 

Model12 2.11 1.881 1.163 0.654  0.579 0.668 

Model13 2.04 1.904 1.303 0.668  0.594 0.664 

Model14 2.20 1.918 1.479 0.684  0.591 0.662 

Model15 2.39 2.358 1.611 0.66  0.643 0.668 

Model16 2.28 2.07 1.242 0.654  0.583 0.667 

Model17 2.34 1.819 1.68 0.647  0.594 0.65 
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Model18 2.18 1.849 1.468 0.664  0.6 0.675 

Model19 2.31 2.065 1.598 0.655  0.604 0.645 

Model20 2.07 1.693 1.501 0.647  0.604 0.66 

Paired one-tail t-test  2.20E-07 Paired one-tail t-test  3.43E-11 

 

Table 5. Structure evaluation for target CcR55 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 5. Visualization of the results for target CcR55 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 

 

 

(a) 

Residue number 96 

X-ray PDB DP 0.565 

NMR PDB RMSD 1.02 Å 

DP Ensemble average 0.806 

Average of the ensemble 0.743 

ASDP-CYANA RMSD 2.93 Å 

DP Ensemble average 0.797 
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Average of the ensemble±SD 0.701 ± 0.0210 

CNS-refined RMSD 2.76 Å 

DP Ensemble average 0.788 

Average of the ensemble±SD 0.658 ± 0.0212 

AMBER-refined RMSD 1.78 Å 

DP Ensemble average 0.788 

Average of the ensemble±SD 0.705 ± 0.0180 

 

(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 2.63 2.50 1.63 0.73 0.68 0.71 

Model2 2.69 2.54 2.48 0.73 0.68 0.69 

Model3 2.56 2.03 2.16 0.70 0.66 0.70 

Model4 2.40 2.20 1.31 0.70 0.65 0.71 

Model5 2.35 2.24 1.58 0.72 0.68 0.69 

Model6 2.98 2.82 1.75 0.69 0.65 0.67 

Model7 4.21 3.77 1.39 0.70 0.68 0.74 
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Model8 3.28 2.79 1.64 0.70 0.60 0.70 

Model9 2.19 2.32 1.88 0.70 0.64 0.69 

Model10 2.78 2.90 1.61 0.70 0.65 0.74 

Model11 2.99 2.64 1.98 0.69 0.65 0.68 

Model12 2.48 2.17 1.51 0.68 0.64 0.70 

Model13 2.68 2.52 1.58 0.70 0.63 0.71 

Model14 3.32 3.12 3.65 0.69 0.65 0.68 

Model15 3.65 3.30 1.74 0.68 0.64 0.68 

Model16 3.26 3.11 1.43 0.69 0.65 0.71 

Model17 2.17 2.25 1.55 0.69 0.67 0.72 

Model18 2.45 2.42 2.03 0.69 0.65 0.69 

Model19 3.73 3.54 1.34 0.67 0.67 0.70 

Model20 3.83 4.04 1.37 0.68 0.64 0.71 

Paired one-tail t-test  1.73E-05 Paired one-tail t-test  3.40E-08 

 

Table 6. Structure evaluation for target HR4694F 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 

 

 



 

	

41	

 

 

Figure 6. Visualization of the results for target HR4694F 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 
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(a) 

Residue number 175 

X-ray PDB DP 0.763 

NMR PDB RMSD 1.52 Å 

DP Ensemble average 0.852 

Average of the ensemble 0.768 

ASDP-CYANA RMSD 2.46 Å 

DP Ensemble average 0.818 

Average of the ensemble±SD 0.741 ± 0.0042 

CNS-refined RMSD 2.22 Å 

DP Ensemble average 0.754 

Average of the ensemble±SD 0.651 ± 0.0114 

AMBER-refined RMSD 1.79 Å 

DP Ensemble average 0.83 

Average of the ensemble±SD 0.761 ± 0.00685 
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(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 2.07 2.36 1.76 0.74  0.66 0.76 

Model2 2.10 2.33 1.52 0.74  0.65 0.76 

Model3 2.09 2.16 1.95 0.74  0.64 0.76 

Model4 2.14 2.49 1.71 0.74  0.65 0.77 

Model5 2.18 2.29 2.08 0.74  0.66 0.76 

Model6 2.14 2.29 1.49 0.74  0.65 0.77 

Model7 1.95 2.28 1.56 0.74  0.63 0.76 

Model8 2.15 1.88 1.84 0.74  0.63 0.76 

Model9 2.07 2.21 2.12 0.74  0.65 0.75 

Model10 2.21 2.12 1.97 0.74  0.67 0.76 

Model11 2.10 2.23 1.79 0.74  0.64 0.75 

Model12 2.08 2.28 1.89 0.74  0.64 0.76 

Model13 2.11 2.11 1.62 0.74  0.65 0.74 

Model14 2.06 2.13 1.98 0.73  0.63 0.76 

Model15 2.09 2.12 1.59 0.74  0.66 0.77 

Model16 2.14 2.31 1.70 0.73  0.63 0.76 
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Model17 2.15 2.33 1.93 0.73  0.64 0.76 

Model18 2.10 2.17 1.92 0.74  0.65 0.76 

Model19 2.15 2.08 1.72 0.73  0.65 0.77 

Model20 2.13 2.25 1.57 0.73  0.65 0.77 

Paired one-tail t-test  1.27E-07 Paired one-tail t-test  2.21E-20 

 

Table 7. Structure evaluation for target HR41 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 7. Visualization of the results for target HR41 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 

 

 

(a) 

Residue number 90 

X-ray PDB DP 0.676 

NMR PDB RMSD 1.54 Å 

DP Ensemble average 0.798 

Average of the ensemble 0.692 

ASDP-CYANA RMSD 3.57 Å 
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DP Ensemble average 0.759 

Average of the ensemble±SD 0.657 ± 0.0161 

CNS-refined RMSD 3.27 Å 

DP Ensemble average 0.778 

Average of the ensemble±SD 0.602 ± 0.0302 

AMBER-refined RMSD 2.49 Å 

DP Ensemble average 0.800 

Average of the ensemble±SD 0.689 ± 0.02 

 

 

(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 2.67 2.79 3.43 0.69 0.57 0.68 

Model2 2.82 2.69 1.83 0.67 0.60 0.72 

Model3 3.40 3.12 1.86 0.67 0.60 0.69 

Model4 4.02 3.27 1.52 0.66 0.58 0.70 

Model5 3.00 2.65 3.27 0.66 0.61 0.68 
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Model6 3.38 3.28 3.62 0.66 0.63 0.65 

Model7 3.90 3.77 1.99 0.66 0.60 0.71 

Model8 2.87 2.97 1.91 0.66 0.65 0.71 

Model9 4.00 3.59 3.65 0.66 0.62 0.66 

Model10 4.66 4.38 2.67 0.65 0.60 0.67 

Model11 3.32 3.17 2.28 0.65 0.57 0.66 

Model12 3.10 2.77 3.32 0.64 0.57 0.70 

Model13 3.31 2.85 3.57 0.64 0.58 0.67 

Model14 3.69 3.24 2.18 0.64 0.56 0.66 

Model15 4.70 4.18 2.31 0.64 0.63 0.69 

Model16 4.67 4.31 1.48 0.63 0.52 0.69 

Model17 3.00 2.74 3.13 0.63 0.57 0.68 

Model18 3.05 2.85 1.54 0.63 0.59 0.69 

Model19 3.75 3.06 1.86 0.64 0.60 0.68 

Model20 4.09 3.71 2.38 0.63 0.63 0.68 

Paired one-tail t-test  1.72E-03 Paired one-tail t-test  5.82E-10 

 

Table 8. Structure evaluation for target DhR29B 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 8. Visualization of the results for target DhR29B 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 
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(a) 

Residue number 83 

X-ray PDB DP 0.654 

NMR PDB RMSD 2.11 Å 

DP Ensemble average 0.773 

Average of the ensemble 0.660 

ASDP-CYANA RMSD 3.58 Å 

DP Ensemble average 0.788 

Average of the ensemble±SD 0.724 ± 0.0069 

CNS-refined RMSD 3.47 Å 

DP Ensemble average 0.781 

Average of the ensemble±SD 0.661 ± 0.0222 

AMBER-refined RMSD 3.45 Å 

DP Ensemble average 0.793 

Average of the ensemble±SD 0.687 ± 0.013 

 



 

	

50	

(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 3.19 3.36 3.24 0.73 0.700 0.71 

Model2 3.62 3.69 3.16 0.73 0.66 0.69 

Model3 3.56 3.57 3.92 0.72 0.65 0.68 

Model4 3.52 3.43 3.28 0.74 0.63 0.68 

Model5 3.58 3.44 3.78 0.73 0.66 0.69 

Model6 3.43 3.42 3.04 0.72 0.63 0.66 

Model7 3.37 3.35 3.04 0.73 0.68 0.66 

Model8 3.70 3.21 3.27 0.72 0.68 0.68 

Model9 3.71 3.53 3.22 0.72 0.61 0.68 

Model10 3.66 3.49 3.65 0.71 0.66 0.69 

Model11 3.47 3.38 4.24 0.72 0.63 0.66 

Model12 3.61 3.57 2.98 0.72 0.62 0.70 

Model13 3.67 3.43 3.79 0.72 0.66 0.68 

Model14 3.73 3.69 3.4 0.72 0.64 0.66 

Model15 3.68 3.69 3.65 0.71 0.64 0.67 

Model16 3.64 3.57 4.01 0.72 0.66 0.68 

Model17 3.68 3.58 3.36 0.71 0.68 0.70 
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Model18 3.70 3.50 3.85 0.73 0.67 0.69 

Model19 3.54 3.31 4.20 0.71 0.66 0.68 

Model20 3.51 3.26 3.54 0.71 0.65 0.67 

Paired one-tail t-test  0.27 Paired one-tail t-test  8.73E-06 

 

Table 9. Structure evaluation for target HR4435B 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 9. Visualization of the results for target HR4435B 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 

 

 

(a) 

Residue number 127 

 X-ray PDB DP 0.808 

NMR PDB RMSD 0.85 Å 

DP Ensemble average 0.875 

Average of the ensemble 0.854 

ASDP-CYANA RMSD 1.74 Å 

DP Ensemble average 0.854 
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Average of the ensemble±SD 0.787 ± 0.0133 

CNS-refined RMSD 1.36 Å 

DP Ensemble average 0.868 

Average of the ensemble±SD 0.789 ± 0.0153 

AMBER-refined RMSD 1.42 Å 

DP Ensemble average 0.871 

Average of the ensemble±SD 0.827 ± 0.005 

 

(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 2.05 1.22 1.58 0.79 0.77 0.83 

Model2 1.71 1.34 1.45 0.79 0.77 0.83 

Model3 2.04 1.73 1.42 0.79 0.78 0.83 

Model4 1.65 1.24 1.47 0.78 0.78 0.82 

Model5 1.39 1.05 1.63 0.79 0.81 0.83 

Model6 2.32 1.61 1.55 0.76 0.79 0.83 

Model7 1.93 1.52 1.58 0.77 0.76 0.82 
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Model8 1.08 1.21 1.45 0.80 0.79 0.83 

Model9 1.14 0.96 1.22 0.81 0.82 0.83 

Model10 2.00 1.37 1.38 0.77 0.80 0.82 

Model11 1.88 1.42 1.52 0.78 0.77 0.82 

Model12 2.11 1.61 1.33 0.77 0.78 0.82 

Model13 1.25 1.12 1.39 0.81 0.79 0.82 

Model14 1.93 1.46 1.24 0.78 0.77 0.82 

Model15 1.56 1.28 1.67 0.77 0.76 0.83 

Model16 1.30 1.02 1.48 0.78 0.80 0.83 

Model17 1.83 1.61 1.07 0.80 0.80 0.83 

Model18 1.67 1.54 1.10 0.79 0.79 0.82 

Model19 2.33 1.54 1.65 0.77 0.77 0.82 

Model20 1.72 1.42 1.25 0.78 0.77 0.83 

Paired one-tail t-test  0.20 Paired one-tail t-test  1.31E-10 

 

Table 10. Structure evaluation for target PfR193A 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 

 

 



 

	

55	

 

 

 

 Figure 10. Visualization of the results for target PfR193A 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 
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(a) 

Residue number 158 

X-ray PDB DP 0.481 

NMR PDB RMSD 3.09 Å 

DP Ensemble average 0.734 

 

Average of the ensemble 0.410 

ASDP-CYANA RMSD 4.69 Å 

DP Ensemble average 0.793 

Average of the ensemble±SD 0.531 ± 0.0194 

CNS-refined RMSD 5.41 Å 

DP Ensemble average 0.805 

Average of the ensemble±SD 0.400 ± 0.0277 

AMBER-refined RMSD 5.14 Å 

DP Ensemble average 0.811 

Average of the ensemble±SD 0.511 ± 0.0431 
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(b) 

 RMSD DP 

 ASDP-CYANA CNS AMBER ASDP-CYANA CNS AMBER 

Model1 4.72  4.87  4.12  0.56  0.40  0.57  

Model2 4.25  5.38  5.76  0.56  0.36  0.52  

Model3 4.76  6.23  3.78  0.54  0.40  0.50  

Model4 3.49  5.55  4.82  0.54  0.36  0.50  

Model5 4.80  5.16  6.67  0.52  0.39  0.43  

Model6 5.44  6.17  5.59  0.52  0.36  0.43  

Model7 5.33  3.86  5.33  0.52  0.39  0.47  

Model8 3.74  3.79  5.07  0.51  0.38  0.57  

Model9 3.81  6.10  5.38  0.52  0.43  0.54  

Model10 4.72  7.35  5.38  0.51  0.32  0.48  

Model11 5.55  5.97  4.42  0.52  0.39  0.48  

Model12 4.77  5.67  4.68  0.51  0.36  0.53  

Model13 3.96  4.51  5.43  0.51  0.41  0.50  

Model14 5.08  5.94  5.58  0.50  0.38  0.49  

Model15 4.85  4.35  6.78  0.50  0.36  0.46  

Model16 5.68  4.46  4.76  0.50  0.39  0.43  
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Model17 4.30  4.54  4.84  0.50  0.36  0.49  

Model18 5.55  5.90  4.76  0.50  0.35  0.56  

Model19 4.55  6.15  4.25  0.50  0.44  0.49  

Model20 4.38  6.28  5.46  0.50  0.38  0.53  

Paired one-tail t-test  0.18 Paired one-tail t-test  4.95E-10 

 

Table 11. Structure evaluation for target CtR107 

(a) Summary of the ensemble-average and average RMSDs and DP scores 

(b) Paired one-tail t-test to compare the CNS-refined and AMBER-refined conformers 
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Figure 11. Visualization of the results for target CtR107 

(a) The NMR structure deposited in PDB 

(b) The NMR structure ensemble output from ASDP-CYANA (blue lines)     

    superimposed to the X-ray structure deposited in PDB (red stick) 

(c) The CNS-refined NMR structure ensemble (blue lines) superimposed to the 

X-ray structure deposited in PDB (red stick) 

(d) The AMBER-refined NMR structure ensemble (blue lines) superimposed to 

the X-ray structure deposited in PDB (red stick) 

 

(a) 
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(b) 

 

 

Figure 12. The distributions of RMSDs and DP scores 

(a) The RMSD distributions of the ASDP-CYANA, CNS-refined, and 

AMBER-refined ensembles of each target. 

(b) The DP distributions of the ASDP-CYANA, CNS-refined, and 

AMBER-refined ensembles of each target. 

 

3.3 When the structure models are beyond certain accuracy, the linear correlation between 

DP scores and RMSDs becomes weaker. 

The DP scores and RMSDs of each structure model in all the ensembles generated by 
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ASDP-CYANA, CNS, and AMBER are collected. Then DP scores are plot against the 

corresponding RMSDs (Figure 13). From a global point of view, there is a certain trend 

between DP score and RMSD, an approximately linear relationship negative correlated. 

The larger the RMSD, the lower the DP score. However, when we zoom in the trend, 

there is some discontinuity. The data points with RMSD ≥  2 Å  have a linear 

correlation equal to -0.73 while the data points with RMSD < 2 Å have a correlation 

equal to -0.33. This implies that when the structures reach certain accuracy, DP score 

becomes less sensitive to the goodness of the structure in terms of RMSD. 

   

 

Figure 13. The correlation between the RMSDs and DP scores 
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4 Discussion 

 

4.1 Fully automata structure determination is promising.  

The results listed in 3.1 are encouraging. For proteins of moderate size (under 200 

residues), the automatic procedure generates reasonably accurate structures compared 

to the manually solved PDB structures. Further efforts may result in more accurate and 

efficient automatic procedure, which even beats the NMR experts. Then high 

throughput determination of protein structures or structural genomics would come true. 

Yet there is one exception, target CtR107. The RMSDs are around 4-5 Å. One possible 

reason is that its conformation in solution is different from its conformation in crystal, 

supported by the large RMSD between the PDB X-ray structure and NMR structure as 

well as the low DP score of the PDB X-ray structure. Inconsistency between solution 

conformation and crystal conformation also explains why the RMSDs get larger after 

CNS or AMBER refinement—refinement makes the NMR structure closer to the true 

conformation in solution and thus more deviant from the X-ray structure. In Figure 11, 

the ensemble of CtR107 is loose, implying the structure calculation does not converge. 

This might be due to the fact that this protein becomes flexible in solution since there is 

a large amount of loops in it (Figure 11 a). 

 

4.2 AMBER refinement achieves better results than CNS. 

Judging from the average RMSDs and average DP scores, AMBER refinement results 
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in better structures than CNS for all 8 targets except PfR193A. PfR193A has regular 

folding and is relatively rigid in solution. The automatic procedure generates 

sufficiently accurate structures (with RMSD a little more than 1 Å). At this level of 

accuracy, little space left for further improvement, and hence AMBER refinement does 

not beat CNS in this case. As for CtR107, the structure calculation does not even 

converge. The conformers output from ASDP-CYANA are not worthy further 

refinement. Excluding these two special targets (PfR193A and CtR107), paired one-tail 

t-tests provide statistical significance that AMBER refinement performs better than 

CNS refinement in 5 out of 6 targets.  

 

One interesting phenomena in Figure 12 is that the DP score is sometimes lowed by 

further refinement. This could be explained by the nature of the algorithm implemented 

in ASDP. In the step of assigning the NOE peaks, structures with higher DP scores are 

selected. On the other hand, refinement is generally based on some potential energy 

function.  

 

4.3 DP score becomes less sensitive for the structures beyond certain accuracy 

Generally, there is a negative correlation between DPs and RMSDs. However, as the 

RMSD becomes smaller, the correlation tends to be weaker. Such phenomenon 

indicates that DP score would be less discriminant for evaluating structures beyond 

certain accuracy, say with RMSD < 2 Å. There are two potential explanations. First, 
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there is inevitably some measuring error in the NOE data, including spurious or 

missing peaks, which makes the NOE data deviant from the native solution 

conformation. Second, even assuming the NOE data is of perfect quality or there is no 

measuring error, the references based on which DP scores and RMSDs are computed 

are different. DP score measures the agreement between the NMR structure and the 

NOE data, while RMSD measures the similarity between the NMR structure and the 

X-ray structure. NOE data is a time-average measurement of solution conformers 

varying fast along time. The solution conformers might be close to the crystal structure, 

but not exactly the same. The NOE data does not fit X-ray structure perfectly, i.e. the 

DP score of the X-ray structure is not very close to 1. That is why DP score is sensitive 

when the structures are deviant far from the X-ray structure, and becomes less sensitive 

when the structures are close to the X-ray structure.  

 

 

 

 

 

 

 

 

 



 

	

65	

5 Conclusions 

 

In this project, the procedure of automatic NMR structure determination is use to generate 

conformers for 8 targets randomly selected from the NESG depository. These conformers 

further go through CNS and AMBER refinements. The results show that structures obtained 

by the automatic procedure have comparable qualities to the ones solved by NMR experts. 

This promises the fully automata of NMR structure determination which is more efficient 

and economic than the manual approach. The results also imply that AMBER refinement has 

better performance that CNS refinement on normal cases. The differentiated performance 

might be due to the different algorithms implemented in these two programs. The detailed 

mechanism needs to be further studied. When the structure accuracy has reached certain 

threshold, RMSD does not correlated strongly with DP score.  
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