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This dissertation consists of three essays on modeling financial risk under Bayesian

framework. The first essay compares the performances of Maximum Likelihood Esti-

mation (MLE), Probability-Weighted Moments (PWM), Maximum Product of Spacings

(MPS) and Bayesian estimation by using the Monte Carlo Experiments on simulated

data from GEV distribution. I compare not only how close the estimates are to the

true parameters, but also how close the combination of the three parameters in terms of

estimated Value-at-Risk (VaR) to the true VaR. The Block Maxima Method based on

student-t distribution is used for analysis to mimic the real world situation. The Monte

Carlo Experiments show that the Bayesian estimation provides the smallest standard

deviations of estimates for all cases. VaR estimates of the MLE and the PWM are

closer to the true VaR, but we need to choose the initial values carefully for MLE. MPS

gives the worst approximation in general.

The second essay analyzes the movement of implied volatility surface from 2005 to
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2014. The study period is divided into four sub-periods: Pre-Crisis, Crisis, Adjust-

ment period and Post-Crisis. The Black-Scholes model based daily implied volatility

(IV) is constructed and the time series of IV given different moneyness (m = K/S)

and time to maturity (τ) is fitted into a stochastic differential equation with mean-

reverting drift and constant elasticity of variance. After estimating the parameters

using a Bayesian Metropolis Hastings algorithm, the comparison across different time

periods is conducted. As it is natural to expect abnormality in Crisis and Adjustment

period, it is interesting to see the difference between Post-Crisis movement and the

Pre-Crisis’s. The results reveal that if the catastrophe does not permanently change

the investment behavior, the effect from Crisis may last longer than expected. It is

unwise to assume the market movement or investment behavior would be identical in

Pre-Crisis and Post-Crisis periods. Market participants learn from Crisis and behave

differently in Post-Crisis comparing to Pre-Crisis.

The third essay attempts to predict financial stress by identifying leading indicators

under a Bayesian variable selection framework. Stochastic search variable selection

(SSVS) formulation of George and McCulloch (1993) is used to select more informative

variables as leading indicators among a number of financial variables. Both linear

model and Probit model under normal error assumption and fat tail assumption are

used for analysis. Financial stress indexes issued by Federal Reserve Banks combined

with Bloom(2009) and Ng(2015)’s paper are used to identify financial stress. An ex-post

approach based on historical perspective and ex ante approach combined with rolling

window are used for analysis. The results show promising predictive power and the

selection of variables can be used to signal financial crisis period.
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Chapter 1

Introduction

Econometric modeling and estimation have made great contributions to the develop-

ment of risk management in financial markets over the past several decades. This

dissertation considers three topics that are crucial in the different sub-fields in finan-

cial risk management: left tail risk estimation, implied volatility surface movement

and financial stress prediction. My dissertation aims to investigate these topics under

a Bayesian framework and provide practical guidance to both policymakers and the

private sector in reviewing and developing policies and investment strategies.

Statistical distributions have played an important role in financial modeling and the

recent global financial crisis has brought increased attention to the Generalized Extreme

Value (GEV) distribution as a way of modeling the extreme observations and the left

tail risk in finance. Motivated by this, the question of how well we can estimate the

GEV distribution becomes crucial. In the second chapter, I compare the performances

of Maximum Likelihood Estimation (MLE), Probability-Weighted Moments (PWM),

Maximum Product of Spacings (MPS) and Bayesian estimation by using the Monte

Carlo Experiments on simulated data from GEV distribution. I compare not only how

close the estimates are to the true parameters, but also how close the combination of

the three parameters in terms of estimated Value-at-Risk (VaR) to the true VaR. After

estimating the parameters of the GEV distribution, I estimate the VaR at 1%, 5%, 10%,

25% and 50% level, and compare the estimation based on averaging the absolute values

of the difference between the estimated VaR and the true VaR. Then the Block Maxima

Method is used for analysis because in real data analysis, people use this method to

sample the extreme values. To do this, I conduct Monte Carlo experiments of the

student-t distribution with 5 degrees of freedom. Then I select the extreme values with
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sub-group size 5, 10 and 20, and finally compare the MLE, the MPS, the PWM and the

Bayesian estimation on these extreme values originated from the student-t distribution.

The Monte Carlo Experiments show that the Bayesian estimation provides the smallest

standard deviations of estimates for all cases. VaR estimates of the MLE and the PWM

are closer to the true VaR, but we need to choose the initial values carefully for MLE.

MPS gives the worst approximation in general.

The Black-Scholes-Merton (BSM) model was developed in the early 1970s and im-

plied volatility based on it has been widely studied due to the implications to trading,

pricing and risk management. It is widely believed that implied volatility provides

important information of the market expectation of future volatility. Moreover, BSM

implied volatility has been used as a quoting convention of the option price by practi-

tioners due to historical reasons. Therefore there is a long history of studying the BSM

implied volatility surface (see Cont and Fonseca (2002), Szakmary, Ors, Kim and David-

son(2003), Busch, Christensen and Nielsen (2011) and Goncalves and Guidolin (2005)).

The third chapter of this dissertation analyzes the movement of implied volatility sur-

face in four time periods: Pre-Crisis, Crisis, Adjustment period and Post-Crisis. I first

construct the daily implied volatility surface which is a three-dimensional plot that dis-

plays implied volatility given different moneyness (m = K/S) and time to maturity (τ).

Given each set of (m, τ), the implied volatility time series IVt(m, τ) is obtained. The

data is then fitted into a stochastic differential equation with mean-reverting drift and

constant elasticity of variance. The mean-reverting drift is consistent with the observa-

tion and the constant elasticity of variance allows flexibility of modeling the volatility

of volatility (vol-of-vol). After estimating the parameters using a Bayesian Metropolis

Hastings algorithm, the comparison across different time periods is conducted. I find

out that in most scenarios, although the long-run level of implied volatility in Post-

Crisis is close to it is in Pre-Crisis, the speed that pulls the implied volatility toward

long-run level is much bigger in Post-Crisis. Loosely speaking, the combined effect of

volatility parameters: b1 and b2 shows the implied volatility of the out-of-the-money put

options has bigger conditional vol-of-vol in Post-Crisis than in Pre-Crisis. For at-the-

money option the change is more complicated. As it is natural to expect abnormality in
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Crisis and Adjustment period, it is interesting to see the difference between Post-Crisis

movement and the Pre-Crisis’s. The results reveal that if the catastrophe does not per-

manently change the investment behavior, the effect from Crisis may last longer than

expected. It is unwise to assume the market movement or investment behavior would

be identical in Pre-Crisis and Post-Crisis periods. Market participants learn from Crisis

and behave differently in Post-Crisis comparing to Pre-Crisis.

The fourth chapter of this dissertation attempts to predict financial stress by iden-

tifying leading indicators under a Bayesian variable selection framework. While large

proportion of the literature in this field focuses on financial crisis, especially for banking

crisis, this paper also includes non crisis periods in order to provide more guidance to

policy makers and the private sector. To improve the prediction and differentiate my

work from others, I use weekly financial variables instead of quarterly macro variables

that are used by most of the literature in this strand (see Vasicek et al. (2016) and

Slingenberg and de Haan (2011)). A number of financial variables belonging to five

categories: interest rate, yield spread, volatility, inflation and market return are used in

the analysis. Stochastic search variable selection (SSVS) formulation of George and Mc-

Culloch (1993) is used to select more informative variables as leading indicators. Both

linear model and Probit model under normal error assumption and fat tail assumption

are used for analysis. Three financial stress indexes issued by Federal Reserve Banks are

used to identify the level data of financial stress. These indexes together with other pa-

pers on financial uncertainty ( Bloom(2009) and Ng(2015) ) are used to identify binary

variable representing the occurrence of financial stress. An ex-post approach based on

historical perspective and ex ante approach combined with rolling window are used for

analysis. Prediction results are evaluated using predictive likelihoods throughout the

sample. The results show that all five variable categories are informative in predicting

financial stress. But under normal error assumption less variables are selected compared

to fat tail assumption especially for interest rate category. It also shows that none or

very few potential indicators are selected when the market is under normal financial

stress level. More variables are selected during the 07-09 crisis period. With the impact

of economic crisis weakened, few variables are selected. It is also interesting to see that
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the log return of S&P 500 index is less informative than expected in predicting financial

stress level.
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Chapter 2

Estimation of Left Tail Risk Using Generalized Extreme

Value Distribution and Block Maxima Data

2.1 Introduction

Modeling of tail behavior in statistical distributions have played an important role

in financial modeling. The recent recessions have brought increased attention to the

Generalized Extreme Value (GEV) distribution as a way of modeling the extreme ob-

servations and the left tail risk in finance. As a result, how well we can estimate the

GEV distribution becomes crucial.

The GEV distribution was first introduced by Jenkinson (1955) and many papers

have been working on analyzing the performance of different estimations for GEV dis-

tribution. The Maximum Likelihood Estimation (MLE) is one of the most widely used

estimations although it is not favored when applied to small or moderate samples which

is the common situation for extreme valued observations. Hosking et al. (1985) estimate

the GEV distribution by the method of Probability-Weighted Moments (PWM) and

conclude that the PWM estimators compare favorably with the MLE estimators. Wong

and Li (2006) argue that the MLE may fail to converge due to the unbounded likelihood

function. Moreover they argue that the Maximum Product of Spacings (MPS) gives

estimators closer to the true values than the MLE and it performs more stable than

the MLE and the PWM, especially for small sample size. In this paper, I compare the

performances of the MLE, the MPS and the PWM by using the Monte Carlo Experi-

ments on simulated data from GEV distribution and reach the different conclusion from

the Wong and Li (2006). The results show that the mean, the median, and the mean

absolute error (MAE) of the MLE, the MPS, and the PWM are more or less similar

to each other regardless of the number of replications, and the MLE and the PWM
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perform slightly better than the MPS. Moreover, the MLE provides higher convergence

rate than the MPS in all cases I conducted. When the sample size is large, the average

runtime of the MLE is smaller than the average runtime of the MPS. Also, I conclude

that the PWM estimates are good choices as initial values for the MLE and the MPS.

I compare not only how close the estimates to the true parameters are, but also

how close the combination of the three parameters in terms of estimated Value-at-Risk

(VaR) to the true VaR. VaR has been widely used in risk management in finance. It

measures how much would loss over a defined period for a given probability level. For

example if a portfolio has a one week 5% VaR of $100, it means there is a 5% chance

that the value of the portfolio will drop more than $100 in a week. In other words,

given the distribution and the probability level, we can calculate the VaR. This gives

me an idea that instead of comparing the precision of the parameters individually, we

should care more about the precision of the combination of all the parameters. In this

paper, I use VaR as a model selection criteria. After estimating the parameters of the

GEV distribution, I estimate the VaR at 1%, 5%, 10%, 25% and 50% level respectively,

and compare the estimation based on averaging the absolute values of the difference

between the estimated VaR and the true VaR. The conclusion is that the VaR estimates

of the MLE and the PWM are closer to the true VaR than the MPS in general.

GEV distribution is also closely related to the Block Maxima Method which is a

method of selecting out extreme observations that follow the GEV distribution. The

Block Maxima Method is used to partition the whole sample into groups. According

to the Fisher-Tippett-Gnedenko theorem, when the sample size in each group is large

enough, as well as the number of groups, the maximum values sampled from each group

follow the GEV distribution in limit. I raise the Block Maxima Method in this paper

because in real data analysis, people use this method to sample the extreme values. For

example, Logan (2000) estimates the GEV distribution of market index returns with

r = 5 (5 days), r = 21 (one month), r = 63 (one quarter) and r = 125 (1 semester),

where r is the sample size in each group. First, I conduct Monte Carlo experiments of

the student-t distribution with 5 degrees of freedom. Then, I select the extreme values

based on r = 5, 10 and 20, respectively, and finally compare the MLE, the MPS, the
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PWM and the Bayesian estimation on these extreme values originated from the student-

t distribution. The Monte Carlo Experiments using Block Maxima method show that

the Bayesian estimation provides the smallest standard deviations of estimates for all

cases. Based on the VaR estimates, the MPS gives the worst approximation in general.

As to the choice of estimation methods of the GEV parameters, I choose the MLE,

the PWM, and the Bayes over the PMS. In using the MLE algorithms, we need to

choose the initial values carefully. The PWM procedure does not require initial values

and it produces good values of MAEV aR. However, the estimation of the variance

matrix of the PWM by the delta-method tends to give large estimates and sometimes

it fails to produce an estimate. The Bayesian procedure is free of initial values, since the

MCMC draws are burned (i.e. discarded) until the convergence of the MCMC draws is

attained.

This paper is organized as follows. Section 2 provides the introduction of the GEV

distribution. Section 3 provides the introduction of the MLE, the MPS and the PWM.

Section 4 presents the results of the Monte Carlo experiments on simulated data drawn

from the GEV. Section 5 presents the results of the Monte Carlo experiments using the

Block Maxima Data and the empirical analysis of the Block Maxima Data. Section 6

provides the conclusions and future work.

2.2 Generalized Extreme Distribution (GEV)

Let me present the distribution function (or cumulative density function, cdf) and the

probability density function (pdf) of the generalized extreme value distribution (GEV).

The cdf of GEV is

F (x) = exp

[
−
(

1− γ x− µ
σ

) 1
γ

]
, (2.1)

where

1− γ x− µ
σ

> 0, σ > 0, γ 6= 0, and µ ∈ (−∞, ∞).
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The parameters γ, µ and σ are often labelled as the shape, location, and scale param-

eters. The pdf is

f(x) =
1

σ

(
1− γ x− µ

σ

) 1
γ
−1

exp

[
−
(

1− γ x− µ
σ

) 1
γ

]
. (2.2)

In some text books and papers the cdf and pdf of GEV are given by setting γ as −γ.

Then the GEV distribution gives the cdf and pdf as

F (x) = exp {−t(x)} (2.3)

and

f(x) =
1

σ
t(x)ξ+1 exp {−t(x)} (2.4)

where

t(x) =

(
1 +

x− µ
σ

ξ

)− 1
ξ

.

If I put ξ = −γ equations (2.3) and (2.4) become equations (2.1) and (2.2), respectively.

Among the three parameters, the shape parameter γ is the most important: de-

pending on the sign of the shape parameter γ, the GEV is sometimes classified into

Type I (Gumbel): γ = 0, Type II (Frechet): γ < 0 and Type III (Weibull):γ > 0.1. To

get a clear idea of how the GEV pdf’s look like, I present three graphs in Figure 2.1.

In the first graph γ is 0 and thus it is a Gumbel pdf (i.e. Type I GEV). In the

second graph γ is negative and thus it is a Frechet pdf (i.e. Type II GEV) In the third

graph γ is positive and thus it is a Weibull pdf (i.e. Type III GEV). The Frechet and

Gumbell pdf’s are positively skewed, while the Weibull pdf is negatively skewed. If we

let γ grow large the negative skewnesss and kurtosis of Type II Weibbull pdf grows

large as shown in Figure 2.1.

From equation (2.1) by using the probability integral transformation, we can draw

the random numbers, x, of the GEV as2

x = µ+
σ

γ
(1− (− ln u)γ) (2.5)

1The Gumbel, Frechet, and Weibull distributions are given, for example, in Extreme value distribu-
tions, Mathwave, data analysis and simulation, www.mathwave.com

22.5 is derived based on: Luc Devroye (1986), Non-Uniform Random Variate Generation.
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Figure 2.1: Examples of GEV Pdf’s
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where u is drawn from the uniform distribution over (0, 1).

The four moments of the GEV distribution and the domain (or suport) of the

GEV variate can be obtained from the probability density function. It is an exercise

in integration to obtain the four moments and all four moments involve the gamma

function Γ(·). The first moment, median, and mode are functions of all the three

parameters: γ, µ, and σ. The variance is a function of σ and γ. The skewness and

kurtosis are functions only of the shape parameter γ. For example, the skewness is

Skewness =


g3 − 3g1 g2 + 2g3

1

(g2 − g1)
3
2

if ξ 6= 0

12
√

6 ζ(3)

π3
if ξ = 0

where gk = Γ(1− k ξ) and ζ(x) is the Riemann zeta function. The negative of ξ is γ:

ξ = −γ

For ξ < 0 (or γ > 0), the sign of the numerator is reversed. Since the argument in

the gamma function, 1− ξ k needs to be strictly positive the variance does not exist if

ξ ≥ 1

2
or

(
γ − 1

2

)
.

2.3 Three Sample Theory Estimation Procedures for the Parameters

of GEV Distribution

Let me discuss the three sample theory estimation procedures for the parameters of the

GEV distribution: the maximum likelihood estimation (MLE), the maximum product of

spacing estimation (MPS), and the probability-weighted moments estimation (PWM).

Among the three sample theory estimation procedure MLE is most frequently used.

2.3.1 Maximum Likelihood Estimation (MLE)

The pdf of GEV is given in equation (2.2). For the independent and identically dis-

tributed sample, the joint density function is given as

f(x1, x2, ..., xn|θ) = f(x1|θ)× f(x2|θ)× ...× f(xn|θ)
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where θ = {γ, µ, σ}. Consider x1, x2, ..., xn are the observed values and the parameters

are the values that are allowed to vary. The likelihood function is given as

L(γ, µ, σ) =

n∏
i=1

f(xi|θ)

Take the the natural logarithm, we derive the log-likelihood function. The maximum-

likelihood estimates are obtained by maximizing

lnL(γ, µ, σ) =
n∑
i=1

{
−lnσ +

(
1

γ
− 1

)
ln

(
1− γ xi − µ

σ

)
−
(

1− γ xi − µ
σ

) 1
γ

}
(2.6)

subject to two constraints below

1− γ x− µ
σ

> 0 (2.7)

and

σ > 0 (2.8)

2.3.2 Maximum Product of Spacing Estimation (MPS)

Let x(1) < x(2) < ... < x(n) be an ordered sample of size n. Di(γ, µ, σ) is define as

Di(γ, µ, σ) = F (x(i+1))− F (x(i)), i = 1, 2, ..., n (2.9)

where F (x) is the cdf of GEV. The Maximum Product of Spacing (MPS) estimates are

obtained by maximizing

M(γ, µ, σ) =

n∑
i=1

lnDi(γ, µ, σ) (2.10)

or

M(γ, µ, σ) =
1

n

n∑
i=1

lnDi(γ, µ, σ) (2.11)

subject to equations (2.7) and (2.8). Same as did in MLE, we use CML in Gauss to

find the optimal solution.

2.3.3 Probability-Weighted Moments Estimation (PWM)

The probability-weighted moments of a random variable X is defined as

Mp, r, s = E[Xp{F (X)}r{1− F (X)}s] =

∫ 1

0
Xp{F (X)}r{1− F (X)}sdF
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Greenwood et al. (1979) favored M(1, 0, s) (s = 0, 1, 2...) for parameter estimation,

while Hosking et al. (1985) considered M(1, r, 0) (r = 0, 1, 2...) which is also the

moments used in this paper. Define moments βr as

βr = M1, r, 0 = E[X{F (X)}r] (r = 0, 1, 2...)

Hosking et al. (1985) shows that if βr is known, the parameters in GEV can be calcu-

lated from following equations

c =
2β1 − β0

3β2 − β0
− ln2

ln3
(2.12)

γ̂ = 7.8590c+ 2.9554c2 (2.13)

σ̂ =
(2β1 − β0)γ̂

Γ(1 + γ̂)(1− 2−γ̂)
(2.14)

µ̂ = β0 + σ̂{Γ(1 + γ̂)− 1}/γ̂ (2.15)

To estimate the moments βr, there are two ways: unbiased estimator br and plotting-

position estimator β̂r[pj,n]. The unbiased estimator of βr was given by Landwehr et al.

(1979) based on the ordered sample x(1) < x(2) < ... < x(n)

br = n−1
n∑
j=1

(j − 1)(j − 2)...(j − r)
(n− 1)(n− 2)...(n− r)

x(j) and b0 = n−1
∑

x(j)

Alternatively, βr may be estimated by the plotting-position estimator

β̂r[pj,n] = n−1
n∑
j=1

prj,nx(j) (2.16)

where pj,n is called plotting position. Hosking et al. (1985) use pj,n = (j − .35)/n to

estimate equation (2.16), then apply equation (2.12), equation (2.13), equation (2.14)

and equation (2.15) to estimate parameters in GEV. In this paper I follow the procedure

given in Hosking et al. (1985).

Let me note that initial values are required for the iterative optimization algorithms

of MLE and MPS while the PWM algorithms initial values are not required.
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2.4 Monte Carlo Experiments on Simulated Data Drawn from GEV

Distribution

Let me compare the performances of the MLE, the MPS, and the PWM by two cases

of Monte Carlo experiments. In the first section I examine the Monte Carlo simulations

given in Wong and Li (2006) while in the second section I use the value-at-risk (VaR) as

the model selection criterion. In the second section the parameters of GEV distributions

are set at the typical values that are close to the real data estimates.

2.4.1 Examining the Monte Carlo Experiments of Wong and Li (2006)

Wong and Li (2006) conducted Monte Carlo experiments to compare the performances

of the three sample theory estimation procedures: the MLE, the MPS, and the PWM.

Focusing on the small sample sizes of 10, 20, and 50, they make up four parameter

settings and concluded that the MPS outperform the MLE and the PWM judged by the

mean absolute errors of estimates (MAE). They argue that the MPS provides estimates

closer to the true parameters than the MLE. The MPS is also more stable comparing

to the PWM and the MLE when sample size is small. The four sets of parameters

Wong and Li (2006) evaluated are presented in Table 2.1 together with the support (or

domain) of the GEV random variables x. The supports of x are determined by

x ∈


(µ+ σ/γ, ∞) if γ < 0 (Type II: Frechet)

(−∞, ∞) if γ = 0 (Type I: Gumbell)

(−∞, (µ+ σ/γ) if γ > 0 (Type III: Weibul)

In Figures 2.2 and 2.3, I present the probability density functions (pdf’s) of GEV

variables for the four cases in Table 2.1 to get a clear idea of how the GEV pdf’s look

like. We see when γ is negative (γ < 0) the pdf is skewed to the right and when

it is positive (γ > 0) the pdf is skewed to the left. When γ ≥ 1, the mode of the

distribution is at the upper limit of the support of x. Although we do not give the

pdf’s, the GEV distribution is almost symmetric when γ ∈ (0.1, 0.3).

Examining the Monte Carlo experiments Wong and Li (2006) presented in Table 1
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Figure 2.2: Exact Densities: Case 1 and Case 2
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Figure 2.3: Exact Densities: Case 3 and Case 4
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Table 2.1: Exact Support of GEV

True parameters Exact Support

γ µ σ x

Case 1 −.2 1 1 (−4(1), ∞)

Case 2 .2 1 1 (−∞, 6(2))

Case 3 1.0 1 1 (−∞, 2(2))

Case 4 1.2 1 1 (−∞, 1.8333(2))

Notes: (1) When γ < 0 the lower bound is given by
µ+ σ/γ = 1− 1/.2 = −4.

(2) When γ > 0 the upper bound is given by µ+ σ/γ.
For Case 2: 1+1/.2=6.
For Case 3: 1+1/1=2.
For Case 4: 1+1/1.2=1.8333.

of their paper, we notice that in Cases 2 and 3 the mean absolute errors of estimates

(MAE) of the MLE are exceedingly large compared to those of the MPS and PWM. To

verify their Monte Carlo experiments, I conducted Monte Carlo experiments for Case

2 where γ is .2 and for Case 4 where γ is 1.0. Tables 2.2 and 2.3 for the sample sizes of

50 and 1,000. The number of replications range from 100 to 1,000.

From the Monte Carlo experiments presented in Tables 2.2 and 2.3 I observe:

1. The mean, median, and MAE of the MLE, the MPS, and the PWM are more or

less similar to each other regardless of the number of replications.

2. In footnote (1) of Tables 2.2 and 2.3, I stated that I used CML in GAUSS and

put the initial starting values for MLE and MPS. The reasons I put the initial

starting values is that the convergence of the MLE and the MPS are extremely

sensitive to the choices of the initial values.

3. Let me focus on the results in Table 2.2. For r = 1, 000. As the sample size

increases from 50 to 1,000 the means and medians of estimates of µ and σ get

closer to the true values and MAE’s get much smaller. However, for the estimates

of γ, the MPS estimates deviate slightly further from the true value and the MAE

is larger than those of the MLE and the PWM. The MLE and the PWM perform
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slightly better than the MPS.

4. In Table 2.3, given the replication number of r = 1, 000 the MPS estimates are

relatively worse than the estimates of other two estimates. When the sample size

increases to 1,000 the PWM slightly outperforms the MLE in general.

The reasons why I obtain the Monte Carlo results so different from those of Wong

and Lee (2006) seem to lie in the choices of the initial starting values for MLE and

MPS and in how the nonlinear constraints are handled. In their paper Wong and Lee

do not explicitly state about the initial values and the nonlinear constraint.

The GEV distribution has two constraints on the parameters that are given as

equations (2.17) and (2.18):

1− γ x− µ
σ

> 0 (2.17)

and

σ > 0 (2.18)

The positive constraint on σ causes no problem, but the constraint given in constraint

(2.17) plays a crucial role in the MLE and MPS algorithms since equation (2.17) shows

that the support of the GEV random variable, x, depends on the parameters of the dis-

tribution. If we ignore constraint (2.17), the MLE and MPS algorithm do not converge.

Also we have often encountered an error message in CML telling us that the Hessian

failed to be calculated.

Although the estimates from the Monte Carlo Experiments in Table 2.2 and Table

2.3 show that the mean, the median, and MAE of three estimations give similar es-

timates and it does not matter much which estimation to use, we can still reach one

conclusion that the PWM estimates is good choices as initial values for the MLE and

the MPS. This is because first of all the PWM estimates are very close to true values

and secondly, the PWM is a point estimation which does not need initial values.

Since the Monte Carlo simulation shows the MLE and the MPS are close to one

another in terms of the mean, the median and the MAE, I try to compare the perfor-

mance of the MLE and the MPS in other ways: the global convergence rate and the

runtime. For the Monte Carlo simulation, we know the true parameter values. The
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idea is to draw initial values qualified with constraints (2.17) and (2.18) from normal

distributions with mean set up at the true values. As the standard deviation of the

normal distribution gets larger and larger, we collect the average convergence rate and

the average runtime for each Monte Carlo Simulation and compare. Below gives the

procedure:

1. Draw sets of random values for three parameters (γ, µ, σ) from normal distribu-

tions with mean set up at the true parameter values and standard deviation set

up at a given value.

2. Plug in the sets random values to the constraints (2.17) and (2.18). Select 100

sets which meet the two constraints and treat them as qualified initial values for

the MLE and the MPS.

3. Set the Monte Carlo simulation number to 100. For each set of initial values,

calculate the convergence rate and the mean runtime by taking average among

100 Monte Carlo simulations.

4. Given the convergence rate and mean runtime for each set of the initial values,

calculate the mean convergence rate and the mean runtime by taking average

among 100 sets of the initial value.

For each set of the initial values, I draw random values for γ, µ, and σ separately

from each normal distribution with the same standard deviation. I set the standard

deviation of the normal distribution as 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 respectively.

As you can see, I call this procedure a global measure because the larger the standard

deviation is, the more possible the randomly initial value deviates further from the true

values. As a result, I am able to compare the convergence rate and the runtime of the

MLE and the MPS from a global point of view.

Figure 2.4 and Figure 2.5 provide the easy visual comparison of the MLE and the

MPS. Within each figure, the sub-figure a and b show the average convergence rates

when the sample size is 50 and 1000, respectively. The sub-figure c and d show the

average runtime when the sample size is 50 and 1000, respectively. Although Figure
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Figure 2.4: Convergence Analysis: γ = 0.2

Figure 2.5: Convergence Analysis: γ = 1
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2.4 and Figure 2.5 are based on Monte Carlo Experiments of different true parameter

values, they reach the same conclusion. First of all, the MLE show higher convergence

rate than the MPS in all cases and different standard deviations, while Wong and Li

(2006) find out the MLE has higher rate of failure convergence when γ = 1 and the

sample size is 50. As I mentioned before, this may due to Wong and Li (2006) does

not take the nonlinear constraint into the consideration. Secondly, when the sample

size is as large as 1000, the average runtime of the MLE is smaller than the average

runtime of the MPS for different standard deviations. It means when we need to do

large amount of Monte Carlo simulations for large sample size, using the MLE is a big

advantage then the MPS. When the sample size is 50, the lines of average runtimes of

the two estimations cross each other.

2.4.2 Monte Carlo Experiments Using Value-at-Risk (VaR) as the

Model Selection Criteria

In financial time series analysis the GEV distribution is often used to estimate the

Value at Risk (VaR) since the GEV distribution can capture the stylized facts that

the distributions of the financial returns are skewed and leptokurtic. Also, the sample

sizes used in financial time series are often larger than 1,000. Accordingly I conduct

Monte Carlo experiments setting the parameter values of the GEV distribution close

to estimates of real data (see Table 2.9 and Table 2.11). And I set the sample size at

2,000.

Value-at-Risk (VaR): Before conducting Monte Carlo experiments, let me discuss

Value-at-Risk (VaR). According to Holton (2002) the origin of VaR can be traced back

to 1922. Since then VaR has been used to measure such risks as market risk, credit

risk, operation risk and regulation risk.

Adam et al. (2008) analyse the portfolio optimization problem with VaR as one

of the risk constraints. Huisman et al. (1999) develop an asset allocation model by

using US stocks and bonds. The model maximizes the expected return subject to the

constraint that the expected maximum loss should be at most of the α-level VaR where

α is to be specified apriori. Da Silva et al. (2003) compare the VaR estimates using
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data from the Asian emerging markets. They conclude that the GEV model tends to

yield more conservative capital requirements. Gencay and Selcuk (2004) investigate

the performance of VaR with the daily stock returns of nine different emerging markets

and indicate that VaR estimates based on EVT are more accurate at higher quantiles.

Hyung and De Vries (2007) focus on the portfolio selection problem under a downside

risk and analyse the sensitivity and convexity of VaR and extend it to the multi assets

with dependence. More recently, McGill and Chavez-Demoulin (2012) measure VaR to

intra-day high-frequency data since high-frequency data since GEV tends to have fat

tails.

The GEV distribution is an appealing candidate to calculate VaR since once the

parameters of the GEV distribution are estimated the VaR at the α level can be obtained

analytically by the inverse function of the GEV distribution given in equation (2.5) by

replacing u by α:

VaRα = µ+

(
σ

γ

)
[1− (−ln (α))γ ] (2.19)

Monte Carlo Experiments: I set the sample size of n is 2000 and make the first 100

Monte Carlo simulations setting the parameter values of GEV at:

γ = −0.15, µ = −0.0005, σ = 0.016

Figure 2.6 presents the exact GEV pdf and the kernel density that is obtained by

drawing 2,000 GEV random variables using the inverse function of equation (2.5).

The exact pdf and the kernel density are close to each other. With the value of γ

set at −0.15 the pdf and the kernel density are skewed to the right. In the financial

data analysis the loss is often turned into a positive value by multiplying the loss by

−1 so that the left hand tail becomes the right hand tail. The financial loss usually

has a long fat left tail. As shown in Figures 2.2 and 2.3, the long fat tail of the GEV

distribution is more easily captured by a Type II GEV (or Frechet) pdf that has the

domain in (µ + σ/γ, ∞). Hence, the loss of financial return is multiplied by −1 to

express it as a positive number. Consequently, the left tail is turned around to be the

right hand tail, the VaR at the α% level, VaRα, is evaluated at the (1− α)-percentage
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Figure 2.6: Exact Pdf and Kernel Density of GEV with Parameter Values Set at γ =
−.15, µ = −.0005, σ = .016

level:

VaRα = µ+

(
σ

γ

)
[1− (−ln (1− α))γ ] (2.20)

The model selection measure using the VaR’s is based on the difference between the

actual and estimated VaR. First I define DIFα as

DIFα = true.VaRα − dat.VaRα (2.21)

where true.VaRα is the VaR from the true GEV distribution at α-percentile given in

equation (2.20) and dat.VaRα is the α-percentile from the simulated data. Choosing

five percentile points of α1 = .01, α2 = .05, α3 = .1, α4 = .25, α5 = .5, I obtain the

mean absolute error of VaR:

MAEV aR =
1

5

5∑
i=1

|DIFαi |. (2.22)

Since GEV is often used in financial analysis to examine the left tail risk, I have chosen

the five α-percentile points of .01 to .5.

Table 2.4, table 2.5 and Table 2.6 present the estimated parameters and estimated
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VaRs using different initial values for the MLE and MPS algorithms to demonstrate

the choice of the initial values has a huge impace on the estimates of MLE and of MPS.

The PWM does not require initial values , so the results for the PWM part are the

same in these tables. Table 2.4 shows the results based on the initial values closet to

the true values. The performance, in terms of the parameter estimates and VaR, from

the best to worst are MLE, PWM and MPS. The parameter estimates by MPS are

worse than those in Table 2.4. Table 2.6 shows the results based on initial values that

are further away from the true parameter values. The estimates of MPS show large

deviations from the true ones. The MAEV aR’s of MPS are larger than those of MLE

and PWM in Tables 2.4, 2.5 and 2.6.

2.5 Block Maxima Data Analysis

Block maxima data analysis have been widely used in financial risk analysis to check

whether financial returns follow a normal distribution or to estimate VaR and the

expected Shortfall (ES) and to evaluate the left tails of financial returns. For example,

Longin (2005) used the daily returns of S&P500 index from January 1954 to December

2003 for the total of 12,587 observations and concluded that the extreme price changes

during the stock market crashes are incompatible with the assumption that the S&P500

returns follow a normal distribution. Da Silva et al. (2003) analysed the Asian stock

indices by fitting block maxima data to GEV distribution and concluded that the

VaR’s estimated by GEV are much better fit to actual VaR’s than those estimated by

using normal distribution. DiTraglia et al. (2013) used block maxima data to measure

left dependence among the assets. They employed copulas to obtain left dependence

measures and used them for portfolio selection.

The statistical justification of using GEV in block data analysis goes back to Fisher

and Tippett (1928), but Gnedenko(1943) is often cited as the one who established that

the maximum order statistic, under certain assumptions, converge converge to GEV

distribution.

Let me first explain how block maxima data are created from n data points, x1, x2, · · · , xn.
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We partition xi’s into m blocks with each block containing r number of data points (r

is the block size). Then the maximum (or the minimum) of each block is selected. The

collection of the maximums (or minimums) is called block maxima (or minima) data.

Assuming that xi’s are independently and identically distributed, Gnedenko (1943)

proved that block maxima data, after appropriate scaling, converges to the GEV dis-

tribution. Let us present block maxima formally. Suppose there are n iid random

variables xi, i = 1, ...n. Divide the whole sample into m blocks (or subsets) with block

size r (i.e. r elements in each of them.) Denote the maximum value in each block as

x(i), i = 1, ...m. Let F denotes the cumulative distribution of xi and Fm denotes the

cumulative distribution of x(m). The degenerate distribution is:

lim
m→+∞

Fm(x) =

 1 if F (x) = 1

0 if F (x) < 1

To obtain the non-generate distribution, assume that there exist sequences {am}

and {bm} and the random variable x(m) can be standardized to
x(m) − am

bm
. Gnedenko

(1943) proved that as m and r→∞, the distribution of x(m), after scaling, convergences

to the Generalized Extreme Value (GEV) distribution. Let me call this convergence

theorem as the Fisher-Tippett-Gnedenko theorem since Fisher and Tippet have their

contribution to it.

As an illustration of block maxima data, suppose that 2,400 xi’s are drawn from the

student-t distribution from 5 degrees of freedom. We have n = 2, 400 observations and

they are distributed equally into m blocks with each block containing r observations.

If we decide on the block size r, then the number of block maxima observations, m,

is given by m = n/r. We take the maximum from each block. The distribution of m

maxima data points no longer follows a symmetric student-t distribution. As m and r

grow larger the distribution of the maximums will converge, with appropriate scaling,

to a GEV distribution.

In Figure 2.7 the first graph is the student-t pdf with 5 degrees of freedom. The pdf

is symmetric. The second graph is the kernel density of m maxima data points with

block size r set at 10. Following the convention in financial data analysis the minimum

of each block is multiplied by −1 to make it the maximum.
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Figure 2.7: Block Maxima and Block Minima Generated from Student-t
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Figure 2.8: Distributions of block maxima data for different number of blocks, m

Figure 2.8 shows the kernel densities of the block maxima data as the block size r

changes. The black line is the kernel density of the block maxima data obtained by

setting the block size at 5 and thus m = 240. The red line is the kernel density of the

block maxima data with r = 10, m = 240. The green line is the kernel density of the

block maxima data with r = 20, m = 120, r = 20. We observe that all the kernel

densities are skewed to the right and that given the sample size of 2, 400 (n = 2, 400)

the kernel densities of block maxima data shift to the right as block size r increases.

However, the largest maxima data values are the same for all r, and the tails get fatter

and fatter as r increases.

In the financial applications of block maxima data it has been pointed out that block

maxima data analysis depends on the choice of block size r. The block size r has to be

large enough so that the distribution is close to GEV. But the larger is the block size r,

the smaller is the sample size m of the maxima block data, and the larger is the number

of discarded observations. Given the original 2,400 observations, we only have to work
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with 120 maxima data points if we set r=20. In the literature, often more than one

block size is chosen: Da Silva et.al. (2003) partitioned the Asian stock market indices

into one month (block size of 21 days, r = 21), two months (r = 42), three months

(r = 63) and six months (r = 120.) Logan (2000) estimates the GEV distribution of

market index returns with r = 5 (5 days), r = 21 (one month), r = 63 (one quarter)

and r = 125 (1 semester). DiTraglia et al. (2013) choose 22 trading days as the block

size.

To sum up, the commonly used block sizes are one month, two months, one quarter,

and half a year. However, very few papers justify the choice of the block size. Longin

(2000) uses Sherman ’s goodness-to-fit statistic that was developed by Sherman (1957)

to justify the block size. The Sherman’s goodness-to-fit statistic compares how close

the estimated and observed distributions are. The method orders the maxima data by

xi : x1 ≤ x2 ≤ ... ≤ xm. The statistic is:

Ωm =
1

2

m∑
i=0

|F asymp(xi+1)− F asymp(xi)−
1

m+ 1
|

where, F asymp is the estimated asymptotic distribution, F asymp(x0) = 0 and F asymp(xm+1) =

1. Ωm is asymptotically normal with mean (m/(m+ 1))m+1 and an approximated vari-

ance (2e−5)/(e2m), where e is Napier’s constant or the basis of natural logarithm. Lon-

gin (2000) uses 5% confidence level to reject/accept the null hypothesis which stands for

the adequacy of the asymptotic distribution. The database of Longin (2000) consists

of daily S&P 500 returns from Jan 1962 to Dec 1993 (7927 observations). Based on 5%

confidence level, the maxima data from the 21-day block, 63-day block and the 125-day

block are accepted to obey the null hypothesis that the distributions follow GEV, while

the maxima data from the 5-day block is rejected.

2.5.1 Monte Carlo Experiments Using Block Maxima Data

I conducted Monte Carlo experiments using block maxima data first drawing 2,400

random variables from the student-t distribution with 5 degrees of freedom, and made

3 sets of block maxima data by setting r = 5, 10, and 20. In addition to estimating

the parameters of GEV by the three sample theory estimators: the MLE, the MPS,
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and the PWM I present the Bayesian estimates using the posterior means as the point

estimates. I call the Bayesian estimates as Bayes. I use the griddy Gibbs sampler as

Bayesian estimation. The number of replications of the Monte Carlo experiments are

100. I present in Table 2.7 the means and standard deviations of the MLE, the MPS,

the PWM and the Bayes.

From Table 2.7 we observe that:

1. Bayesian estimation provides the smallest standard deviations for all cases.

2. For (m = 480, r = 5) and for (m = 240, r = 10) the mean values of µ̂ are close

to each other for all the four estimation methods, and so are the mean values

of σ̂. For the average of γ̂, the mean values from the PWM and the Bayesian

estimations are closer to each other and they are larger than the mean values

from the MLE and the MPS estimations.

3. For m = 240, r = 10, the mean values of both µ̂ and σ̂, the estimates from the

MPS estimation differ most from the estimates of the other three estimations.

For the mean values of the γ̂, the estimates from the MLE estimation differ most

from the estimates of the other three estimations.

4. For (m = 120, r = 20), the mean values of all three parameters from the MLE

are closer to those from the PWM estimations. For the mean values of γ̂, the

estimates from the Bayesian estimation differ most from the estimates from the

other three estimations. For the mean values of the µ̂ and σ̂, the estimates from

the MPS estimation differ most from those of the other three estimations.

Unlike the Monte Carlo experiments in the previous sections, we do not know the

true parameter values. For that matter, we do not know if the GEV is the better

choice to fit the m block maxima data points, but for now let us assume that the GEV

distribution is a reasonable choice. We will leave the issue of what distribution fit block

maxima data to future work.

Since there is no way of comparing the different estimates to the non-existing un-

known true parameters, I will use the MAEV aR criterion that was introduced in the
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previous section replacing true.VaRα by dat.VaRα:

DIFα = est.VaRα − dat.VaRα (2.23)

where est.VaRα is the VaR from the estimated GEV distribution at α-percentile:

est.VaRα = µ̂+

(
σ̂

γ̂

)[
1− (− ln (1− α))γ̂

]
(2.24)

and dat.VaRα is the α-percentile from the block maxima data. Choosing five percentile

points of α1 = .01, α2 = .05, α3 = .1, α4 = .25, α5 = .5, we take the mean:

MAEV aR =
1

5

5∑
i=1

|DIFαi | . (2.25)

The results are presented in Table 2.8. From Table 2.8 we observe

1. Overall, the MPS estimation provides worst approximation of VaR. Especially

when m = 240, r = 10 and m = 120, r = 20, the the absolute value of DIF,

|DIF|, from MPS estimation are significantly larger than the DIFs from the other

estimations.

2. For the case that m = 480, r = 5, when α = .01, the PWM estimation provides

the smallest DIF. For other values of α, the DIFs of the MLE and the MPS

estimations are quite close and the DIFs of the MPS estimation are a little bit

smaller than the DIFs of the MLE estimation. None of the estimators dominate

the others for all values of α and for all block sizes. The results vary depending

on the value of α .

3. For the case that m = 240, r = 10, the Bayesian estimation gives the smallest

DIFs for all α. In general, the PWM estimation provides smaller DIFs than the

MLE estimation, except when α = .05.

2.5.2 Empirical Analysis of Block Maxima Data

Let us make an empirical analysis of block maxima data. Two market indices, FTSE100

and SP500, are the most widely used stock indices in the U.K. and U.S., respectively. I

downloaded daily data from May 3 2001 to December 31 2012 from Yahoo Finance. The
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number of observations are 3,001. When the price is missing for one series on a specific

day while the other price is not I take the average of the preceding and succeeding prices.

For FTSE100, 56 out of 3,000 (1.87%) are calculated by averaging the preceding and

succeeding prices, while for SP500, 68 out of 3,001 (2.27%) are computed in the similar

manner. Most of the missing prices are due to holidays. The price for 9/11/01 is

missing due to the 9-11 incident. The daily return rt is calculated as

rt = ln Pt − ln Pt−1.

The total number of observations are now 3,000. We multiply the daily return by −1

to express the loss as a positive number.

In conducting Monte Carlo experiments presented in Table 2.7 I have reported the

means of the 100 estimates of each parameter as well as its standard deviation. The

standard deviation is computed from the 100 estimates of the parameter. In actual

empirical data analysis the custom is to report the estimate of a parameter and its

standard deviation (or more commonly known as the standard error.) For the MLE and

the MPS the standard deviation is computed from the Hessian. For Bayes, the posterior

standard deviation is computed from the Markov Chain Monte Carlo (MCMC) draws.

For PWM we need to get an estimator of the standard error. I use Hoskin et al.’s

asymptotic variance-covariance matrix that is given in Appendix A.

Tables 2.9 and 2.10 present the results for FTSE100 while tables 2.11 and 2.12

present the results for SP500. Examining the tables we observe:

1. From Tables 2.9 and 2.11 we see that the four estimators (the MLE, the MPS,

the PWM, and the Bayes) yield similar point estimates. The standard deviations

of the parameters by the MLE, the MPS, and Bayes are similar. However, the

standard deviations of the PWM are much larger than those of the MLE, the

MPS, and the Bayes.

2. From Tables 2.10 and 2.12 we see that the MAEV aR of the PWM is consistently

the smallest and that of Bayes the largest.
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2.6 Conclusions

In this paper I first used three sample theory estimators of the parameters of GEV. The

three estimators are the MLE, the MPS, and the PWM. Using Monte Carlo experiments

I examined the Monte Carlo experiments of Wong and Li (2006). Contrary to their

findings that both the MPS and the PWM estimates perform better than the MLE

estimates, I found that the MLE and the PWM outperform the MPS.

In estimating the three parameters of GEV, we need to take care of the two con-

straints, 1−γ x− µ
σ

and σ > 0. The first constraint rises from the fact that the support

of GEV variable, x, depends on the parameters of distribution. This first constraint

plays a crucial role in the maximization algorithms of the MLE and the MPS. From the

paper by Wong and Li (2006) I am unable to find how they handled this constraint.

I conjecture the difference between my findings and their findings may be due to how

the constraint is handled.

Then I conducted Monte Carlo experiments in the typical settings of the GEV

parameters that are found in the empirical studies of financial returns. In addition to

the three sample theory parameters I used the MCMC algorithms by Gibbs sampler.

I also introduced a model selection criterion, MAEV aR,that is the mean absolute error

of Value-at-Risk. This model selection criterion works well.

Block maxima data, the major part of this paper, are created by picking the max-

imum of each block of size r. In creating block maxima data we need to choose the

block size r. The larger the block size, the fewer is the number of observations of the

block maxima data. I conducted Monte Carlo experiments generating block maxima

data from the student-t distribution with 5 degrees of freedom. Then I estimated the

block size data created from 3,000 observations of FTSE100 and of SP500 data.

As to the choice of estimation methods of the GEV parameters, I choose the MLE,

the PWM, and the Bayes over the PMS. In using the MLE algorithms, we need to

choose the initial values carefully. The PWM procedure does not require initial values

and it produces good values of MAEV aR. However, the estimation of the variance

matrix of the PWM by the delta-method tends to give large estimates and sometimes
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it fails to produce an estimate. The Bayesian procedure is free of initial values, since the

MCMC draws are burned (i.e. discarded) until the convergence of the MCMC draws

is attained.

Table 2.2: Case 2(1) γ = .2 µ = 1 σ = 1

n(2) r(3) MLE MPS PWM
γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

50 100
Mean 0.2013 1.0517 0.9698 0.2205 1.0869 0.9166 0.1991 0.9920 1.0086
Median 0.1987 1.0517 0.9718 0.2162 1.0918 0.9215 0.1984 0.9967 0.9947
MAE 0.0821 0.1390 0.0791 0.0916 0.1537 0.1071 0.0773 0.1245 0.0851

50 1000
Mean 0.1964 1.0431 0.9493 0.2055 1.0727 0.8959 0.1878 1.0030 0.9942
Median 0.1907 1.0442 0.9483 0.2028 1.0744 0.8924 0.1860 1.0031 0.9934
MAE 0.0887 0.1331 0.0894 0.0895 0.1390 0.1216 0.0805 0.1263 0.0858

1000 1000
Mean 0.1989 1.0015 0.9955 0.1862 0.9998 0.9779 0.1985 1.0002 0.9978
Median 0.1993 1.0041 0.9955 0.1932 1.0091 0.9786 0.1994 1.0017 0.9988
MAE 0.0145 0.0282 0.0183 0.0224 0.0370 0.0278 0.0184 0.0280 0.0197

Notes: (1) Programs are written in Gauss and CML library is used for MLE and MPS.
The initial values of CML for n = 50, r = 100 is: −γ = µ = σ = 0.2.
The initial values of CML for n = 50, r = 1000 is: −γ = µ = σ = 0.2.
The initial values of CML for n = 1000, r = 1000 is: γ = −0.2, µ = σ = 0.4.
The results are calculated based on replications with converged CML results.

(2) n is sample size in each replication.
(3) r is number of replication.
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Table 2.3: Monte Carlo experiments: Case 3(1) with true parameter values of γ = 1 µ =
1 σ = 1

n(2) r(3) MLE MPS PWM
γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

50 100
Mean 0.9306 1.1706 0.7518 0.8741 1.1868 0.6909 0.9242 0.9496 1.0302
Median 0.9458 1.1581 0.7574 0.8841 1.1812 0.6891 0.9181 0.9567 1.0353
MAE 0.0802 0.1774 0.2482 0.1275 0.1934 0.3091 0.1282 0.1306 0.1283

50 1000
Mean 0.9195 1.1648 0.7474 0.8670 1.1761 0.6939 0.9086 0.9632 1.0052
Median 0.9459 1.1708 0.7428 0.8754 1.1822 0.6937 0.9054 0.9680 0.9965
MAE 0.0910 0.1789 0.2548 0.1356 0.1848 0.3061 0.1418 0.1302 0.1258

1000 1000
Mean 0.958 1.015 0.945 0.9237 1.0498 0.8796 0.9708 0.9890 1.0000
Median 0.976 1.001 0.979 0.9309 1.0307 0.8966 0.9712 0.9901 0.9997
MAE 0.044 0.047 0.072 0.0779 0.0740 0.1326 0.0382 0.0292 0.0278

Notes: (1) Programs are written in Gauss and CML library is used for MLE and MPS.
The initial values of CML for n = 50, r = 100 is: −γ = µ = σ = 0.2.
The initial values of CML for n = 50, r = 1000 is: −γ = µ = σ = 0.2.
The initial values of CML for n = 1000, r = 1000 is: γ = 0.2, µ = σ = 0.4.
The results are calculated based on replications with converged CML results.

(2) n is sample size in each replication.
(3) r is number of replication.
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Table 2.4: Monte Carlo Experiments with the Initial Values: γ = −0.1 µ = −0.1 σ = 0.1

MLE(1) MPS(1) PWM
γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

Mean -0.1506 -0.0005 0.0160 -0.1136 -0.0088 0.0314 -0.1318 -0.0003 0.0160
Median -0.1472 -0.0006 0.0160 -0.1208 -0.0007 0.0237 -0.1305 -0.0004 0.0160
MAE 0.0147 0.0003 0.0002 0.0495 0.0131 0.0156 0.0651 0.0013 0.0012

α(2) true.VaR(2) est.VaR(2) DIF(3) est.VaR(2) DIF(3) est.VaR(2) DIF(3)

1% -0.1055
Mean -0.1055 0.0000 -0.1791 -0.0736 -0.1031 0.0024
Median -0.1049 0.0006 -0.1374 -0.0319 -0.1029 0.0026

MAE
(4)
V aR 0.0040 0.0787 0.0152

5% -0.0594
Mean -0.0593 0.0001 -0.1012 -0.0418 -0.0583 0.0010
Median -0.0590 0.0004 -0.0820 -0.0226 -0.0592 0.0002

MAE
(4)
V aR 0.0016 0.0445 0.0062

10% -0.0423
Mean -0.0422 0.0001 -0.0711 -0.0288 -0.0418 0.0005
Median -0.0422 0.0001 -0.0605 -0.0182 -0.0419 0.0005

MAE
(4)
V aR 0.0011 0.0309 0.0040

25% -0.0214
Mean -0.0213 0.0001 -0.0330 -0.0116 -0.0214 0.0000
Median -0.0213 0.0001 -0.0310 -0.0096 -0.0211 0.0003

MAE
(4)
V aR 0.0006 0.0137 0.0024

50% -0.0055
Mean -0.0055 -0.0001 -0.0030 0.0026 -0.0057 -0.0002
Median -0.0054 0.0001 -0.0054 0.0002 -0.0056 -0.0001

MAE
(4)
V aR 0.0004 0.0101 0.0016

Notes: (1) True parameter values are: γ = −0.15 µ = −0.0051 σ = 0.01
Results are calculated based on Monte Carlo experiments with 100 replications.

(2) true.VaR and est.VaR are computed by equation (2.20): true.VaR uses true γ, µ and σ
while est.VaR uses γ̂, µ̂, and σ̂..

(3) DIF = est.VaR - true.VaR.
(4) MAEV aR is given in equaion (2.25).
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Table 2.5: Monte Carlo Experiments with the Initial Values: γ = 0.1 µ = 0.1 σ = 0.1

MLE(1) MPS(1) PWM
γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

Mean -0.1519 -0.0001 0.0162 0.0435 -0.0042 0.0247 -0.1318 -0.0003 0.0160
Median -0.1553 -0.0001 0.0162 0.0613 0.0002 0.0205 -0.1305 -0.0004 0.0160
MAE 0.0153 0.0004 0.0003 0.1945 0.0074 0.0090 0.0651 0.0013 0.0012

α(2) true.VaR(2) est.VaR(2) DIF(3) est.VaR(2) DIF(3) est.VaR(2) DIF(3)

1% -0.1055
Mean -0.1079 -0.0024 -0.0963 0.0092 -0.1031 0.0024
Median -0.1081 -0.0026 -0.0923 0.0132 -0.1029 0.0026

MAE
(4)
V aR 0.0041 0.0244 0.0152

5% -0.0594
Mean -0.0607 -0.0014 -0.0631 -0.0037 -0.0583 0.0010
Median -0.0609 -0.0015 -0.0582 0.0012 -0.0592 0.0002

MAE
(4)
V aR 0.0017 0.0153 0.0062

10% -0.0423
Mean -0.0434 -0.0010 -0.0477 -0.0054 -0.0418 0.0005
Median -0.0434 -0.0010 -0.0421 0.0002 -0.0419 0.0005

MAE
(4)
V aR 0.0011 0.0124 0.0040

25% -0.0214
Mean -0.0221 -0.0007 -0.0254 -0.0039 -0.0214 0.0000
Median -0.0221 -0.0007 -0.0229 -0.0015 -0.0211 0.0003

MAE
(4)
V aR 0.0007 0.0090 0.0024

50% -0.0055
Mean -0.0060 -0.0004 -0.0047 0.0008 -0.0057 -0.0002
Median -0.0060 -0.0005 -0.0069 -0.0014 -0.0056 -0.0001

MAE
(4)
V aR 0.0005 0.0071 0.0016

Notes: (1) True parameter values are: γ = −0.15 µ = −0.0051 σ = 0.01
Results are calculated based on Monte Carlo experiments with 100 replications.

(2) true.VaR and est.VaR are computed by equation (2.20): true.VaR uses true γ, µ and σ
while est.VaR uses γ̂, µ̂, and σ̂..

(3) DIF = est.VaR - true.VaR.
(4) MAEV aR is given in equaion (2.25).
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Table 2.6: Monte Carlo Experiments with the Initial Values: γ = 0.5 µ = 0.5 σ = 0.5

MLE(1) MPS(1) PWM
γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

Mean -0.0868 -0.0031 0.0247 0.3031 -0.0165 0.0983 -0.1318 -0.0003 0.0160
Median -0.1439 -0.0006 0.0160 0.3131 -0.0061 0.0858 -0.1305 -0.0004 0.0160
MAE 0.0763 0.0047 0.0090 0.4591 0.0261 0.0825 0.0651 0.0013 0.0012

α(2) true.VaR(2) est.VaR(2) DIF(3) est.VaR(2) DIF(3) est.VaR(2) DIF(3)

1% -0.1055
Mean -0.1158 -0.0103 -0.1953 -0.0898 -0.1031 0.0024
Median -0.1060 -0.0005 -0.1818 -0.0763 -0.1029 0.0026

MAE
(4)
V aR 0.0139 0.0958 0.0152

5% -0.0594
Mean -0.0702 -0.0108 -0.1520 -0.0926 -0.0583 0.0010
Median -0.0594 0.0000 -0.1468 -0.0874 -0.0592 0.0002

MAE
(4)
V aR 0.0124 0.0950 0.0062

10% -0.0423
Mean -0.0518 -0.0095 -0.1260 -0.0836 -0.0418 0.0005
Median -0.0425 -0.0002 -0.1227 -0.0804 -0.0419 0.0005

MAE
(4)
V aR 0.0106 0.0867 0.0040

25% -0.0214
Mean -0.0272 -0.0058 -0.0775 -0.0561 -0.0214 0.0000
Median -0.0214 0.0000 -0.0731 -0.0517 -0.0211 0.0003

MAE
(4)
V aR 0.0068 0.0612 0.0024

50% -0.0055
Mean -0.0059 -0.0003 -0.0166 -0.0111 -0.0057 -0.0002
Median -0.0054 0.0001 -0.0171 -0.0116 -0.0056 -0.0001

MAE
(4)
V aR 0.0041 0.0272 0.0016

Notes: (1) True parameter values are: γ = −0.15 µ = −0.0051 σ = 0.01
Results are calculated based on Monte Carlo experiments with 100 replications.

(2) true.VaR and est.VaR are computed by equation (2.20): true.VaR uses true γ, µ and σ
while est.VaR uses γ̂, µ̂, and σ̂..

(3) DIF = est.VaR - true.VaR.
(4) MAEV aR is given in equaion (2.25).
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Table 2.7: Monte Carlo Experiments with Block Maxima Data

MLE(1) MPS PWM Bayes

γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

m = 480 (r = 5)
Mean −.0130 .9845 .7868 −.0088 .9900 .7760 −.0336 .9787 .7634 −.0430 .9956 .7788
Std (.0377) (.0396) (.0314) (.0375) (.0416) (.0309) (.0462) (.0401) (.0306) (.0004) (.0011) (.0008)

m = 240 (r = 10)
Mean −.0632 1.5037 .7581 −.0743 1.1719 .6275 −.0879 1.4945 .7395 −.0813 1.5560 .7678
Std (.0533) (.0575) (.0447) (.0595) (.5074) (.2018) (.0638) (.0580) (.0414) (.0005) (.0015) (.0011)

m = 120 (r = 20)
Mean −.1061 2.0225 .7668 −.0925 1.8079 0.6873 −.1201 2.0136 .7611 −.0665 2.1251 .8157
Std (.0772) (.0765) (.0679) (.0805) (.4990) (.1622) (.0832) (.0797) (.0723) (.0006) (.0022) (.0015)

Notes: (1) m = number of blocks; r = block size.
(2) For MLE and MPS, the initial values are: γ = −0.1 µ = 0.2 σ = 0.2. Results are

calculated based on Monte Carlo experiments with 100 replications.
(3) Mean = The average of 100 estimates.
(4) Std = Standard deviation
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Table 2.8: Monte Carlo Experiments with Block Maxima Data with Sample Size n set at 2,400

MLE(1) MPS PWM Bayes

α est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF

m = 480 (r = 5)
.01 4.73 4.95 .22 4.65 4.95 .30 4.80 4.95 .15 4.96 4.74 .22
.05 3.37 3.31 .06 3.33 3.32 .01 3.37 3.31 .06 3.46 3.48 .02
.10 2.78 2.69 .09 2.76 2.69 .07 2.77 2.69 .08 2.84 2.74 .10
.25 1.97 1.91 .06 1.96 1.92 .04 1.95 1.91 .04 1.99 1.99 .0
.50 1.27 1.27 .00 1.27 1.27 .00 1.26 1.27 .01 1.28 1.30 .02

MAEV aR= .086 MAEV aR=.070 MAEV aR= .057 MAEV aR=.060

m = 240 (r = 10)
.01 5.60 5.72 .12 4.63 5.72 1.09 5.75 5.72 .03 5.84 5.86 .02
.05 4.00 3.97 .03 3.26 3.98 .72 4.02 3.97 .05 4.14 4.13 .01
.10 3.34 3.28 .06 2.71 3.30 .59 3.34 3.28 .06 3.45 3.45 .0
.25 2.49 2.44 .05 2.00 2.45 .45 2.47 2.44 .03 2.56 2.53 .03
.50 1.78 1.78 .00 1.40 1.78 .38 1.77 1.78 .01 1.84 1.85 .01

MAEV aR= .043 MAEV aR=.538 MAEV aR= .036 MAEV aR=.017

m = 120 (r = 20)
.01 6.68 6.50 .18 5.84 6.52 .68 6.81 6.50 .31 6.51 6.15 .36
.05 4.73 4.69 .04 4.18 4.69 .51 4.76 4.69 .07 4.80 4.71 .09
.10 3.98 3.94 .04 3.53 3.95 .42 4.00 3.94 .06 4.10 4.13 .03
.25 3.05 3.01 .04 2.72 3.01 .29 3.04 3.01 .03 3.18 3.13 .05
.50 2.31 2.30 .01 2.06 2.30 .24 2.30 2.30 .00 2.43 2.33 .10

MAEV aR= .052 MAEV aR=.357 MAEV aR= .077 MAEV aR=.105

Notes: (1) est.VaRα is the averages of 100 est.VaRα’s.
(2) Dat.VaRα is the average of 100 Dat.VaRα’s.
(3) DIF is the average of |VaRα−Dat.VaR|.
(4) m= number of blocks.
(5) r = number of data points in each blocks.
(6) n = m× r.
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Table 2.9: Block Maxima Data: FTSE100

MLE(1) MPS PWM Bayes

γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

m = 600 (r = 5)
Est. −.1085 .0074 .0076 −.1764 .0072 .0071 −.1868 .0071 .0071 −.1111 .0778 .0083
Std (.0234) (.0003) (.0003) (.0326) (.0003) (.0003) (.4233) (.0105) (.0160) (.0254) (.0068) (.0138)

m = 300 (r = 10)
Est. −.2652 .0110 .0069 −.2702 .0110 .0067 −.2134 .0111 .0071 −.2661 .0113 .0076
Std (.0533) (.0005) (.0005) (.0554) (.0005) (.0004) (.0638) (.0147) (.0230) (.0210) (.0068) (.0139)

m = 150 (r = 20)
Est. −.2316 .0146 .0079 −.2145 .0146 .0078 −.1780 .0147 .0082 −.2297 .0150 .0087
Std (.0775) (.0007) (.0006) (.0799) (.0007) (.0006) (.8330) (.0246) (.0374) (.0230) (.0066) (.0139)

Notes: (1) m = number of blocks; r = block size.
(2) Est.=Point Estimate
(3) Std = Standard deviation
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Table 2.10: VaR: FTSE 100 – Block Maxima Data

MLE(1) MPS PWM Bayes

α est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF

m = 600 (r = 5)
.01 .055 .053 .002 .055 .058 .003 .055 .059 .004 .055 .058 .003
.05 .036 .034 .02 .036 .035 .001 .036 .035 .001 .036 .037 .001
.10 .027 .027 0 .027 .027 0 .027 .027 0 .027 .029 .002
.25 .017 .018 .001 .017 .017 0 .017 .017 0 .017 .018 .001
.50 .010 .010 0 .010 .010 0 .010 .010 04 .010 .011 .001

MAEV aR= .001 MAEV aR=.001 MAEV aR= .001 MAEV aR=.002

m = 300 (r = 10)
.01 .056 .073 .017 .056 .072 .016 .056 .067 .011 .056 .079 .023
.05 .040 .042 .002 .040 .042 .002 .040 .041 .001 .040 .045 .005
.10 .032 .032 0 .032 .032 0 .032 .035 .003 .032 .035 .003
.25 .022 .021 .001 .022 .021 .001 .022 .021 .001 .022 .023 .001
.50 .014 .014 0 .014 .014 0 .014 0 .01 .014 .014 .0

MAEV aR= .004 MAEV aR=.004 MAEV aR=.002 MAEV aR=.006

m = 150 (r = 20)
.01 .056 .079 .023 .056 .076 .019 .056 .073 .017 .056 .086 .030
.05 .049 .048 .001 .049 .047 .002 .049 .047 .002 .049 .052 .003
.10 .039 .038 .001 .039 .037 .002 .039 .037 .002 .039 .040 .001
.25 .026 .026 0 .026 .027 .001 .026 .026 0 .026 .028 .001
.50 .017 .018 .001 .017 .018 .001 .017 .018 .001 .017 .018 .001

MAEV aR= .005 MAEV aR=.005 MAEV aR= .004 MAEV aR=.006

Notes: (1) est.VaRα is the VaR estimate using γ̂, µ̂ and σ̂.
(2) Dat.VaRα is the α-percentile of block maxima data.
(3) DIF is |VaRα−Dat.VaR|.
(4) m= number of blocks.
(5) r = number of data points in each blocks.
(6) n = m× r.
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Table 2.11: Block Maxima Data: SP500

MLE(1) MPS PWM Bayes

γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂ γ̂ µ̂ σ̂

m = 600 (r = 5)
Est. −.2107 .0073 .0069 −.2146 .0073 .0068 −.1856 .0074 .0071 −.2124 .0077 .0076
Std (.0234) (.0003) (.0003) (.0326) (.0003) (.0003) (.4233) (.0105) (.0160) (.0219) (.0068) (.0139)

m = 300 (r = 10)
Est. −.2360 .0111 .0071 −.2411 .0111 .0070 −.1907 .0113 .0074 −.2369 .0115 .0079
Std (.0520) (.0005) (.0004) (.0551) (.0005) (.0004) (.6031) (.0155) (.0238) (.0218) (.0068) (.0139)

m = 150 (r = 20)
Est. −.2705 .0144 .0074 −.2536 .0145 .0074 −.1937 .0147 .0080 −.2707 .0147 .0082
Std (.0833) (.0007) (.0006) (.0845) (.0007) (.0006) (.85790) (.0234) (.0361) (.0240) (.0067) (.0139)

Notes: (1) m = number of blocks; r = block size.
(2) Est.=Point Estimate
(3) Std = Standard deviation
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Table 2.12: VaR: SP500 – Block Maxima Data

MLE(1) MPS PWM Bayes

α est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF est.VaRα Dat.VaRα DIF

m = 600 (r = 5)
.01 .063 .061 .002 .063 .061 .002 .063 .059 .004 .063 .067 .004
.05 .033 .036 .003 .033 .036 .003 .033 .036 .003 .033 .039 .006
.10 .027 .027 0 .027 .027 0 .027 .027 0 .027 .029 .002
.25 .017 .017 0 .017 .017 0 .017 .017 0 .017 .018 .001
.50 .010 .010 0 .010 .010 0 .010 .010 0 .010 .011 .001

MAEV aR= .001 MAEV aR=.001 MAEV aR= .001 MAEV aR=.003

m = 300 (r = 10)
.01 .069 .070 .001 .069 .073 .004 .069 .066 .003 .069 .066 .003
.05 .035 .042 .006 .035 .043 .007 .035 .041 .005 .035 .045 .010
.10 .032 .031 .001 .032 .033 .001 .032 .031 .001 .032 .035 .003
.25 .023 .021 .002 .023 .022 .002 .023 .022 .001 .023 .023 0
.50 .014 .014 0 .014 .014 0 .014 .014 0 .014 .014 .0

MAEV aR= .002 MAEV aR=.003 MAEV aR= .002 MAEV aR=.004

m = 150 (r = 20)
.01 .069 .079 .010 .069 .079 .010 .069 .074 .005 .069 .090 .021
.05 .044 .045 .001 .044 .048 .004 .044 .047 .003 .044 .052 .008
.10 .035 .037 .002 .035 .037 .002 .035 .037 .002 .035 .040 .005
.25 .026 .022 .004 .026 .025 .001 .026 .026 0 .026 .027 .001
.50 .018 .014 .004 .018 .017 .001 .018 .018 0 .018 .018 .0

MAEV aR= .004 MAEV aR=.003 MAEV aR= .002 MMAEV aR=.006

Notes: (1) est.VaRα is the VaR estimate using γ̂, µ̂ and σ̂.
(2) Dat.VaRα is the α-percentile of block maxima data.
(3) DIF is |VaRα−Dat.VaR|.
(4) m= number of blocks.
(5) r = number of data points in each blocks.
(6) n = m× r.



43

Figure 2.9: Comparison of Kernel Densities of Data with the Estimated Pdf’s:FTSE100
and SP500
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Chapter 3

Does the 08-09 Crisis Change the Dynamics of Implied

Volatility Surface?

3.1 Introduction

The Black-Scholes-Merton (BSM) model was developed in the early 1970s and implied

volatility based on it has been widely studied due to the implications to trading, pricing

and risk management. In the BSM model, the factors that determine the value of an

option P are the moneyness m = K/S1 (S is the current stock price and K is the strike

price), time to maturity τ , underlying asset volatility σ and risk free interest rate r.

BSM model defines the function of option price as P (K/S, τ, σ, r), and the BSM implied

volatility is backed out by treating the price as one of the inputs: IV (K/S, τ, P, r).

It is widely believed that implied volatility implies the market expectation of future

volatility. Future volatility is crucial for option traders because the bigger the volatility,

the bigger the magnitude the underlying asset would move towards one’s favorable

direction within certain time frame. After all, buying an option is no different to

buying the volatility of underlying asset. This makes it easier to understand why the

BSM implied volatility is used as a quoting convention of the option price. Having said

that, different implied volatilities can be derived from different models. Accepting the

BSM implied volatility as a communication tool by practitioners is due to historical

convention, rather than agreeing with the BMS model assumptions.

Studying the change of implies volatility surface and its relationship to future/realized

volatility has a long history. Cont and Fonseca (2002) use time series of option price of

1Some literature defines the moneyness as S/K. The moneyness defines the relationship between
strike price and the price of underlying asset.
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S&P 500 and FTSE indices, study the deformation of this surface based on a Karhunen-

Loeve decomposition and show that it may be represented as a randomly fluctuating

surface driven by a small number of orthogonal random factors. Busch, Christensen

and Nielsen (2011) find that implied volatility contains incremental information about

future volatility in the foreign exchange, stock, and bond markets. The heterogeneous

autoregressive (HAR) model is applied and the out-of-sample forecasting experiments

confirm that implied volatility is important in forecasting future realized volatility com-

ponents in all three markets. Szakmary, Ors, Kim and Davidson(2003) test how well the

implied volatilities embedded in option prices predict subsequently realized volatility

(RV) in 35 futures options markets from eight separate exchanges. They find that for

this broad array of futures options, the implied volatilities outperform historical volatil-

ity (HV) as a predictor of the subsequently RV in the underlying futures prices over

the remaining life of the option. Goncalves and Guidolin (2005) propose a two-stage

approach to model and forecast the S&P 500 index options implied volatility surface.

They claim that not only the S&P 500 implied volatility surface can be successfully

modeled, but also that its movements over time are highly predictable in a statistical

sense.

Studying the BSM implied volatility is also due to its implications to trading, pricing

and risk management. For example, one of the option trading rules is to buy option at

low implied volatility and sell it at high implied volatility. Such strategy requires good

understanding of the movement of implied volatility. Measure the movement of the

implied volatility conditioned on current implied volatility level is crucial. Like other

products, option price is also affected by supply-demand relationship. Theoretical price

is not always the price settled by market participants. In reality it is common to observe

the price deviate from the theoretical price and fluctuate. The variation of the implied

volatility for the same option not only reflects the supply-demand relationship but also

suggests the different anticipation from market participants.

This paper analyzes the movement of implied volatility surface in four time periods:

Pre-Crisis, Crisis, Adjustment period and Post-Crisis. As it is natural to expect abnor-

mality in Crisis and Adjustment period, it is interesting to see the difference between
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Post-Crisis movement and the Pre-Crisis’s. The results reveal that if the catastrophe

does not permanently change the investment behavior, the effect from Crisis may last

longer than expected. It is unwise to assume the market movement or investment be-

havior would be identical in Pre-Crisis and Post-Crisis periods. Market participants

learn from Crisis and behave differently in Post-Crisis comparing to Pre-Crisis.

In this paper, I construct the daily implied volatility surface which is a three-

dimensional plot that displays implied volatility given different moneyness (m = K/S)

and time to maturity (τ). Given each set of (m, τ), the implied volatility time series

IVt(m, τ) is obtained. The data is then fitted into a stochastic differential equation

with mean-reverting drift and constant elasticity of variance. The mean-reverting drift

is consistent with the observation and the constant elasticity of variance allows flex-

ibility of modeling the volatility of volatility (vol-of-vol). Another reason to use this

model rather than more complicated one is due to its small number of parameters and

easy interpretation. Four parameters in this model can be interpreted as the long-run

level of implied volatility, the speed that pulls implied volatility towards long run level,

the scale of variance and the parameter controlling the relationship between vol-of-vol

and level of current implied volatility. After estimating the parameters, the comparison

across different time periods are conducted.

The paper is organized as follows. Section 2 describes the methods constructing the

implied volatility surface and the data structure. Section 3 explains the model that the

data is fitted to. Section 4 analyzes the results. Section 5 concludes.

3.2 Construct Implied Volatility Surface

3.2.1 IVS and Non-parametric Nadaraya-Watson Estimator

At a given trading day, implied volatilities are backed out by plugging all the available

put and call option prices into the BSM model. The implied volatility surface IV S :

[mmin,mmax]×[τmin, τmax]→ (0,∞) can be constructed by using non-parametric kernel

smoothing method. Once the implied volatility surfaces are constructed for all the

trading days, a time series IVt can be obtained at each set of (m, τ) and used for further
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analysis. Different kernel smoothing methods are used in literature for implied volatility

surface construction. Audrino and Colangelo(2008) use the non-parametric least square

kernel (LSK) smoothing estimator introduced by Gourieroux, Monfort, and Tenreiro

(1995). Cont and da Fonseca (2002) use non-parametric Nadaraya-Watson estimator

which is also the estimator used in this paper.

Denote the time series of implied volatility measured at specific moneyness m and

time to maturity τ given a trading day t as IVt(m, τ). The IVt at (m, τ) is calculated

by non-parametric Nadaraya-Watson estimator based on following formula:

ˆIV t(m, τ) =

∑n
i=1 IVt(mi, τi)K(m−mih1

)K( τ−τih2
)∑n

i=1 K(m−mih1
)K( τ−τih2

)
(3.1)

where K = 1√
2π

exp(−x2/2) is the Gaussian kernel. Here, n is the number of different

option series traded on the specific trading day. mi and τi are the moneyness and time

to maturity of each option at day t. h1 and h2 are the bandwidth parameters. Cont and

da Fonseca (2002) claim that the choice of the kernel distribution does not affect the

results, but the choice of bandwidths does. Ways of determining the optimal bandwidth

are proposed in literature. Here I refer to the normal optimal smoothing bandwidth

proposed by Bowman and Azzalini (1997):

hi = σi

{
4

(d+ 2)n

}1/(d+4)

(3.2)

where σi is the standard deviation of m or τ and i = 1, 2, ..., d. d denotes the number

of dimensions. In our case, we have m and τ two variables, thus d = 2. n denotes

the sample size. Here it equals to the number of option series traded on a trading day.

Figure 3.1 illustrates the implied volatility surface on 08/01/2006.

3.2.2 Data Structure

The data used in this paper is the daily S&P 500 exchange-traded option data obtained

from Market Data Express. The whole period used for analysis is from January 2005 to

October 2014. It is divided into four sub-periods: Pre-Crisis, Crisis, Adjustment Period

and Post-Crisis. Table 3.1 gives the begin and end dates of each sub-period. While

there is no consensus about the beginning and ending of each sub-period, I choose them
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Figure 3.1: S&P 500 Implied Volatility Surface on 08/01/2006
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by eyeballing the average level of implied volatilities. Figure 3.2 gives an illustration of

implied volatility movement for at-the-money-option with time to maturity equal to 90

days. In general implied volatilities at other moneyness levels and time to maturities

display similar shapes across the whole period.

Table 3.1: Period Classification

Period Begin Date End Date

Pre-Crisis 01/03/2005 12/31/2007
Crisis 01/02/2008 12/31/2009
Adjustment Period 01/04/2010 12/31/2012
Post-Crisis 01/02/2013 10/31/2014

The data structure of options includes trading date, expiry date, call/put type, strike

price, trading volume, high (the highest trade price in this series on this day), low (the

lowest trade price in this series on this day), open (the trade price on the first trade

in this series on this day), last (the trade price on the last trade in this series on this

day), and underlying price (the closing price on the associated underlying instrument

on this day). The Market Data Express does not provide BSM implied volatility, but

it is easy to calculate it by using the BSM framework. To do so, I use the last trade
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Figure 3.2: S&P 500 Implied Volatility
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price of options in order to match the stock closing price on the day. Moneyness is

defined as the ratio of strike price over stock price. Time to maturity is calculated as

the difference between the trading date and the expiry date.

In regard to the risk free rate, I use the treasury yield curve rates published by

the US Department of the Treasury. Many literature simply uses a fixed risk-free rate,

such as the 3-month US Treasury bill rate. In practice, allowing varying interest rate

facilitates accuracy in estimating implied volatility. In this paper, I use 1,3,6 month

and 1,2,3 years daily treasury yield curve rates. I use the polynomial interpolation

method to approximate the risk-free interest rate for each option series at specific time

to maturity for each trading day.

Some criteria are used to filter the data before analysis. First, the options with

trading volume smaller than 100 are eliminated. The purpose is to exclude the illiquid

options so that to minimize the noise from the meaningful market movements. For

the same reason, I exclude options if their time to maturities are less than three days.

Third, based on the put-call parity relationship, put options and call options with the

same strike price and time to maturity should have the same implied volatility in theory.

To avoid conflict, only the out-of-the-money options are included in. Equivalently, let

m = K
S denotes the moneyness. Only call options with m > 1 and put options with

m < 1 are used. According to Cont and da Fonseca (2002), these are the options
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that are believed to contain the most information about the implied volatility surface

movements. Out-of-the-money options are less expensive than in-the-money and at-

the-money options. They are not only attractive to investors with little capital but also

to those who wants to use leverage tool to bet the movement of underlying asset.

Table 3.2: Summary Statistics for Implied Volatilities (Jan 2005 - Oct 2014)

Short-term Medium-term Long-term
(3, 60) [60, 180] (180, 360]

Put

0.75-0.84 Obs. 27087 11615 4674
Mean IV 0.4188 0.3063 0.2730
STD IV 0.1286 0.0755 0.0635

0.85-0.9 Obs. 73355 23514 8294
Mean IV 0.2900 0.2390 0.2324
STD IV 0.0991 0.0705 0.0597

0.95-1.00 Obs. 73909 21389 7351
Mean IV 0.1814 0.1972 0.2059
STD IV 0.0736 0.0705 0.0586

Call

1.00-1.04 Obs. 62333 16165 5064
Mean IV 0.1338 0.1541 0.1659
STD IV 0.0680 0.0695 0.0570

1.05-1.14 Obs. 38864 17477 7486
Mean IV 0.1792 0.1535 0.1522
STD IV 0.0848 0.0671 0.0576

1.15-1.24 Obs. 3732 2884 2200
Mean IV 0.3027 0.2024 0.1643
STD IV 0.1318 0.0802 0.0628

Most literature studying option pricing focuses on the at-the-money options, or those

out-of-the money options (in-the-money option) within a small range of deviating from

the at-the-money situation. This is simply because those are the most liquid options and

have less noise. However in reality the deep-out-of-the money options receive a lot of

attention and are actively traded by practitioners. Options belonging to the deep-out-

of-the category are those with strike price significantly above or below the underlying

asset price. There is no consensus of the threshold separating the at-the-money, out-of-

the-money and deep-out-of-the-money options. Goncalves and Guidolin (2005) defines

a call option to be deep-out-the-money (DOTM) if the moneyness m = K
S > 1.06; out-

of-the-money (OTM) if 1.01 < m ≤ 1.06; a put option to be out-of-the-money (OTM) if

0.94 ≤ m < 0.99; and deep-out-of-the-money (DOTM) if m < 0.94; and at-the-money

(ATM) if 0.99 ≤ m ≤ 1.01. Audrino and Colangelo (2008) defines a call option to be

out-of-the-money (OTM) if 1.04 < m ≤ 1.2; deep out-of-the-money (DOTM) if 1.2 <
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m; a put option to be out-of-the-money (OTM) if 0.8 < m ≤ 0.94; deep out-of-the-

money (DOTM) if m ≤ 0.8; and at-the-money (ATM) if 0.94 < m ≤ 1.04. In this paper,

I do the analysis for options with moneyness at 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.10, 1.15 and

1.2 and define the deep-out-the-money if moneyness is 0.8, 0.85, 1.15 and 1.2, the out-

the-money if moneyness is 0.9, 0.95, 1.05 and 1.10, and at-the-money if the moneyness

is 1. Table 3.2 gives the summary statistics of the data.

3.3 Model Specification

A stochastic differential equation is used to capture the movement of the BMS implied

volatility. It is, given the moneyness m and the time to maturity τ , IVt(m, τ) follows

the process as below:

dIVt = µ(IVt)dt+ σ(IVt)dWt (3.3)

The drift term in this paper is assumed to follow the mean-reverting process. Specif-

ically, the drift term is defined as following:

µ(IVt) = α(β − IVt) (3.4)

Cont and da Fonseca (2002) is one of the pioneers analyzing the dynamics of implied

volatility surface over time. In that paper, the authors construct implied volatility

surface by using the end-of-day prices of European style call and put options on two

major indices: the SP500 index and the FTSE 100 index. They find out that the

time series of implied volatilities follows a mean-reverting pattern which implies some

well-designed diffusion model may be taken into the consideration when tracking the

dynamic movement. The data used in this paper also shows the mean-reverting pattern

and illustrations are given in figure 3.3 for the sets of moneyness and time to maturity

equal to (0.9, 90) and (1.0, 120). In equation (3.4), β is interpreted as the long-run

level and α as the speed that pulls IVt toward long run level. If IVt does display mean

reverting, then we should obtain positive estimates of α and β.

Next, the diffusion term is defined to follow the form of constant elasticity of variance

(CEV) model, that is,

σ(IVt) = b1IV
b2
t (3.5)
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Figure 3.3: S&P 500 Daily Difference of Implied Volatilities (Jan 2005 - Oct 2014)
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Many literature studying equity is based on the square-root stochastic volatility model.

However, more and more recent studies find the evidence in favor of constant elastic-

ity of variance (CEV) process due to its flexibility of modeling vol-of-vol. There are

other strand of literature specifies volatility process as nonlinear diffusion with more

complicated stochastic volatility structure. See Ignatieva et al. (2015) and Bakshi et

al. (2006). Although these more complicated models sometimes outperform the others,

they are criticized for lacking economic interpretation. In this paper, I adopt the mean-

reverting drift with the constant elasticity of variance model to capture the change of

implied volatility time series. That is,

dIVt = α(β − IVt)dt+ b1IV
b2
t dWt (3.6)

where b1 > 0. In this model, β is interpreted as the long-run level of implied volatility.

α represents the speed that pulls implied volatility towards long-run level. If the data

does exhibit mean-reverting property, the estimates of α and β should be non-negative.

b2 controls the relationship between the volatility of IVt+1 and level of IVt. When b2 is
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below 0, the volatility of IVt+1 increases as IVt falls. Conversely, when b2 is above 0,

the volatility of IVt+1 increases as IVt increases. b1 is another parameter controls the

volatility of IVt+1.

To estimate the model, I set the interval dt = 1 which corresponds to one day. The

Euler discretization version of the model becomes

IVt+1 − IVt = α(β − IVt) + b1IV
b2
t εt (3.7)

where εt ∼ N(0, 1). For the estimation convenience, I rewrite the model as following:

IVt+1 − IVt = a1 + a2IVt + b1IV
b2
t εt (3.8)

If the implied volatility time series displays mean-reverting property, I will get non-

negative estimates of a1 and non-positive estimates of a2.

The Metropolis Hastings algorithm is used to estimate the model. The prior dis-

tribution of a1 and a2 are assumed to be N(0, 1). b1 is a positive number. Instead

of estimating b1, I map it to the real line and estimate variable c, where c = log(b1).

Both c and b2 are assumed to have N(0, 3)2 prior distribution. Due to the data filter,

there is small amount of missing values in the time series. Here data augmentation is

applied to handle the issue. Let Xmis represents the missing data, Xobs represents the

observations and θ = {a1, a2, c, b2} represents the parameters. For each iteration in the

Metropolis Hastings algorithm, I draw

X
(i)
mis ∼ p(Xmis|θ(i−1), Xobs) (3.9)

θ(i) ∼ p(θ|Xobs, X
(i)
mis) (3.10)

Drawing the missing values helps to complete the sample that is used to estimate the

parameter. Ideally, a function including all observations should be developed as the

conditional distribution to draw Xmis. Here the nonlinearity of the model with respect

to IVt adds complexity. To simplify the problem, I just draw each missing value at time

t+ 1 by plugging the observation at time t into equation (3.8).

23 is standard deviation
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Figure 3.4: Long-Run Mean (β) given Moneyness
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3.4 Results

This part analyze how the financial crisis affects the dynamics of implied volatility and

investment behavior.

Figure 3.4 displays the long-run level of implied volatility for each sub-period across

all the time to maturities given the moneyness. In general, the Crisis period has the

highest long-run mean across all the time to maturities. Lines representing the Adjust-

ment period lie in the middle while the lines of Pre-Crisis and Post-Crisis are in the

bottom. This result is consistent with observations. During Crisis the stock market

suffers big turmoil and the average market volatility is much bigger than it is in other

periods. During the Adjustment period the market is in recovery process. We still

can see the market’s fluctuation during this period but not as big as it’s during the

Crisis period. The Pre-Crisis and Post-Crisis periods represent normal or prosperous

economic condition. The result is consistent with the findings in other literature, that

is, the volatility of equity market decreases as its price increases.
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Figure 3.5: Long-Run Mean (β) given Time to Maturity
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Several things worth mentioning. First lines are almost flat for all periods when the

moneyness (K/S) falls in the range of [0.95, 1.20]. This means in those cases, the time

to maturity does not affect implied volatility much for out-of-the-money options. Lines

representing Pre-Crisis and Post-Crisis are almost overlap except when moneyness in

[0.80, 0.90]. We observe skewness for moneyness [0.80, 0.90] and lines representing the

Post-Crisis period deviate from lines representing the Pre-Crisis as the time to maturity

shrinks. Many reasons contribute to the skewness. Firstly, the market participants

expect higher volatility in the short-run than in the long-run. In short-run, a news could

cause big turmoil of the stock market while in the long-run different effects tend to cancel

each other out. On the other hand, the high demand of protecting short-term asset

value from bad news pushes short-term out-of-the-money put option price up which

in turn increases its implied volatility. The deviation between the lines representing

Pre-Crisis and Post-Crisis reveals the market adjustment, that is, market participants

increase their estimation of the likelihood of crushes in the short-term and settle at
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a higher price for short-term out-of-the-money put option after experiencing crisis.

Consequently the price increase leads to implied volatility increase. It is interesting to

see that implied volatilities from out-of-the-money calls and at-the-money options are

not affected much by time to maturity.

Figure 3.5 displays the long-run level of implied volatility for each sub-period across

the moneynesses given time to maturities. Again, it shows that the short-term out-

of-the-money put options have implied volatility much higher during Post-Crisis than

during Pre-Crisis. As the time to maturity increases, the phenomenon disappears.

Figure 3.5 exhibits the well-known option smirk, that is, the implied volatility for

option at low moneyness is higher then the implied volatility for option at high money-

ness. For Pre-Crisis, Crisis and Adjustment periods, lines almost shift paralleled across

all the moneyness. As mentioned previously, implied volatility is used as quoting con-

vention of option price and it is affected by the demand-supply relationship. On the

buy-side, majority of the market positions is long positions and the out-of-the-money

put options are bought to protect long positions in case the market plunges. Since these

options are out of the money, the prices are much cheaper than the at-the-money and

in-the-money options. All those factors boost strong demand on the buy-side. On the

sell-side, market participants who write and sell out-of-the-money options may suffer

severe loss when crisis hits if they underestimate the probability of downside risk and

sell the options too cheap. The strong demand and the high asking price in sell-side

together raise the price of out-of-the-money option and lead to implied volatility smirk.

Figure 3.6 compares the speed that pulls implied volatility towards long-run level for

each sub-period across all the time to maturities given the moneyness. More specifically,

|β−IVt| measures the difference between current level of IVt and the long-run mean. If

IVt lies below the long-run mean β, part of the difference is added to the next period so

that the implied volatility is pulled back upwards long-run mean. If IVt lies above the

long-run mean β, part of the difference is subtracted from the next period so that the

implied volatility is pulled back downward long-run mean. IVt + α(β − IVt) represents

the expected value of IVt+1. α controls how much of the difference is added to or

subtracted from IVt. Equivalently, it controls how fast the implied volatility is pulled
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Figure 3.6: Speed (α) given Moneyness
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Figure 3.7: Speed (α) given Time to Maturity
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towards long-run level.

In general, lines of Pre-Crisis, Crisis and Adjustment periods are quite close except

when moneyness is at 0.80, 1.15 and 1.20. Lines of Post-Crisis lie on top. While it is

easy to understand that during Crisis it takes longer for market to oscillate back to

long term mean, the much greater pulling back powder in the Post-Crisis period than

in Pre-Crisis period for most cases indicates the change of investment behavior caused

by crisis. That is without take the error term b1IV
b2
t εt into the consideration, implied

volatility moves back to long term level faster in Post-Crisis than in Pre-Crisis under

most scenarios. Another phenomenon is that when the moneyness moves to deep-out-

of-the-money scenarios, lines of Post-Crisis and Pre-Crisis cross each other. For time

to maturity shorter than the point of intersection, Post-Crisis has α smaller than Pre-

Crisis. For time to maturity longer than the point of intersection, Post-Crisis has α

bigger than Pre-Crisis.

We can see the same intersections in Figure 3.7 that exhibits the speed that pulls

implied volatility toward long-run level for each sub-period across all the time to ma-

turities given the moneyness. For the time to maturity bigger than 120 days, lines

from bottom to top represent Crisis, Adjustment, Pre-Crisis and Post-Crisis. For op-

tions with time to maturity smaller than 120 days, lines representing Pre-Crisis and

Post-Crisis cross each other when the moneyness is far below and above 1. The big

gap between the Pre-Crisis and Post-Crisis suggests the change of the speed that pulls

the implied volatility towards the long-run level. Figure 3.6 and 3.7 shows for short-

term deep-out-of-the-money options with the moneyness at 0.8 and 1.2, the speed in

Pre-Crisis is higher than in Post-Crisis.

b2 controls the relationship between the volatility of IVt+1 and level of IVt. When

b2 is below 0, the volatility of IVt+1 increases as the level of IVt falls. Conversely, when

b2 is above 0, the volatility of IVt+1 increases as the level of IVt increases. The bigger

the b2, the more volatile the IV is in next period given the current level of IV.

Figure 3.8 displays b2 for each sub-period across all the time to maturities given

the moneyness. The big discrepancy between Pre-Crisis and Post-Crisis happens to

out-of-the-money put option. And lines represent Crisis and Adjustment period lie in
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Figure 3.8: (b2) given Moneyness
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Figure 3.9: (b1) given Moneyness
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between. b2 is bigger in Post-Crisis than in Pre-Crisis. As the moneyness decreases,

four lines tend to get closer. And for deep-out-of-the-money call option, lines represent

Post-Crisis moves downward and tend to sit below the Pre-Crisis.

b1 is a scale parameter controlling the volatility of IVt+1. Figure 3.9 compares b1

for each sub-period across all the time to maturities given the moneyness. It shows the

similar pattern as b2. For out-of-the-money put options, b1 of Post-Crisis lies above

the lines of other periods. The line representing Pre-Crisis lies at the bottom. As the

moneyness moves from 1 to above 1, lines represent Post-Crisis moves downward and

tend to sit below the Pre-Crisis.

The combined effect of volatility parameters: b1 and b2 shows that in general the

implied volatility of the out-of-the-money put options has bigger conditional vol-of-vol

in Post-Crisis than in Pre-Crisis. For at-the-money option, conditional vol-of-vol in

Post-Crisis is bigger than in Pre-Crisis when time to maturity is bigger than 60 days,

and when time to maturity is smaller than 60 days, the relationship reverse. For out-of-

the-money call option, when the moneyness is 1.05, conditional vol-of-vol in Post-Crisis

is bigger than in Pre-Crisis when time to maturity is between 210 and 300 days. The

relationship reverses when time to maturity is shorter than 210 days or longer than 300

days. When moneyness is 1.10, conditional vol-of-vol in Post-Crisis is smaller than in

Pre-Crisis. When moneyness is 1.15 and 1.20, conditional vol-of-vol in Post-Crisis is

bigger than in Pre-Crisis for mid to long term options.

Figure 3.10 compares b2 across the moneynesses given the time to maturity. It

shows the same results from a different perspective. The lines representing Pre-Crisis

and Post-Crisis are not even close, rather they cross each other. In general, on the left

side of the intersection point, lines of Post-Crisis lie above the line of Pre-Crisis and

the difference between the two gets bigger when the moneyness decreases. On the right

side of the intersection point, as the time to maturity gets bigger, lines of Post-Crisis

turn to lie below the line of Pre-Crisis and the difference increases as the moneyness

increase. Figure 3.11 compares b1 across the moneynesses given the time to maturity.

It shows the similar pattern as it is in Figure 3.10.
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Figure 3.10: (b2) given Time to Maturity
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Figure 3.11: (b1) given Time to Maturity
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3.5 Conclusions

In this paper, I construct the implied volatility surface for S&P 500 index options

with moneyness from 0.80 to 1.20 and time to maturity from 30 days to 360 days. A

stochastic differential model with mean-reverting drift and constant elasticity of vari-

ance is used to analyze the time series of the implied volatility at the given moneyness

and time to maturity. I find out that in most scenarios although the long-run level of

implied volatility in Post-Crisis is close to it is in Pre-Crisis, the speed that pulls the

implied volatility toward long-run level is much bigger in Post-Crisis.

Loosely speaking, the combined effect of volatility parameters: b1 and b2 shows the

implied volatility of the out-of-the-money put options has bigger conditional vol-of-vol

in Post-Crisis than in Pre-Crisis. For at-the-money option, conditional vol-of-vol in

Post-Crisis is bigger than in Pre-Crisis when time to maturity is bigger than 60 days,

and when time to maturity is smaller than 60 days, the relationship reverse. For out-of-

the-money call option, when the moneyness is 1.05, conditional vol-of-vol in Post-Crisis

is bigger than in Pre-Crisis when time to maturity is between 210 and 300 days. The

relationship reverses when time to maturity is shorter than 210 days or longer than 300

days. When moneyness is 1.10, conditional vol-of-vol in Post-Crisis is smaller than in

Pre-Crisis. When moneyness is 1.15 and 1.20, conditional vol-of-vol in Post-Crisis is

bigger than in Pre-Crisis for mid to long term options.

It is worth noting that although the long-term mean of implied volatilities are close

in these two periods, the change of speed and conditional vol-of-vol indicates that the

effect from Crisis may last longer than expected if the catastrophe does not permanently

change the investment behavior. It is unwise to expect the market movement or invest-

ment behavior to be similar in Pre-Crisis and Post-Crisis periods. Market participants

learn from Crisis and behave differently before and after Crisis.



63

Table 3.3: Parameter Estimates - Pre-Crisis Perod

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.8 30 0.07683 -0.2899 -2.5212 0.6766 0.0804 0.2899 0.2650

(0.0005)4 (0.0021) (0.0051) (0.0038)

0.8 60 0.0634 -0.2454 -2.6969 0.6366 0.0674 0.2454 0.2582

(0.0005) (0.0019) (0.0057) (0.004)

0.8 90 0.0505 -0.2013 -2.9340 0.5625 0.0532 0.2013 0.2506

(0.0004) (0.0018) (0.0076) (0.0053)

0.8 120 0.0328 -0.1354 -4.2083 -0.2485 0.0149 0.1354 0.2419

(0.0004) (0.0017) (0.0074) (0.0051)

0.8 150 0.0235 -0.1010 -4.5430 -0.3761 0.0106 0.1010 0.2331

(0.0004) (0.0018) (0.0086) (0.0057)

0.8 180 0.0191 -0.0845 -4.6964 -0.3998 0.0091 0.0845 0.2256

(0.0003) (0.0013) (0.006) (0.004)

0.8 210 0.0161 -0.0735 -4.8026 -0.4002 0.0082 0.0735 0.2196

(0.0003) (0.0012) (0.0067) (0.0042)

0.8 240 0.0143 -0.0666 -4.9639 -0.4553 0.0070 0.0666 0.2152

(0.0003) (0.0011) (0.0064) (0.0041)

0.8 270 0.0145 -0.0686 -5.0474 -0.4938 0.0064 0.0686 0.2120

(0.0003) (0.0013) (0.0073) (0.0046)

0.8 300 0.0186 -0.0882 -4.4617 -0.1166 0.0115 0.0882 0.2108

(0.0003) (0.0016) (0.0145) (0.0093)

0.8 330 0.0205 -0.0983 -4.4744 -0.1385 0.0114 0.0983 0.2089

(0.0004) (0.0017) (0.0156) (0.0098)

0.8 360 0.0217 -0.1045 -4.4896 -0.1542 0.0112 0.1045 0.2076

(0.0004) (0.0018) (0.0139) (0.0087)

0.85 30 0.0424 -0.1806 -2.6618 0.7483 0.0698 0.1806 0.2350

(0.0004) (0.0016) (0.0067) (0.0046)

0.85 60 0.0345 -0.1501 -2.8560 0.7011 0.0575 0.1501 0.2297

(0.0004) (0.0017) (0.0087) (0.0057)

0.85 90 0.0217 -0.0969 -4.2854 -0.1845 0.0138 0.0969 0.2238

(0.0003) (0.0013) (0.0065) (0.0042)

Continued on next page

3Mean of 100 estimates.

4Standard error of 100 estimates.
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.85 120 0.0159 -0.0733 -4.5631 -0.2712 0.0104 0.0733 0.2176

(0.0002) (0.001) (0.0056) (0.0037)

0.85 150 0.0122 -0.0575 -4.7711 -0.3192 0.0085 0.0575 0.2114

(0.0002) (0.001) (0.006) (0.0038)

0.85 180 0.0096 -0.0466 -4.9698 -0.3645 0.0069 0.0466 0.2061

(0.0002) (0.0009) (0.0056) (0.0035)

0.85 210 0.0079 -0.0392 -5.1951 -0.4358 0.0055 0.0392 0.2020

(0.0002) (0.0009) (0.0059) (0.0036)

0.85 240 0.0074 -0.0374 -5.3562 -0.5014 0.0047 0.0374 0.1989

(0.0002) (0.0008) (0.0058) (0.0035)

0.85 270 0.0079 -0.0403 -5.3541 -0.4875 0.0047 0.0403 0.1971

(0.0002) (0.001) (0.0061) (0.0036)

0.85 300 0.0108 -0.0549 -4.5141 0.0370 0.0110 0.0549 0.1968

(0.0002) (0.0012) (0.0124) (0.0074)

0.85 330 0.0130 -0.0666 -4.1550 0.2372 0.0157 0.0666 0.1956

(0.0003) (0.0015) (0.0153) (0.0092)

0.85 360 0.0155 -0.0794 -3.9606 0.3221 0.0191 0.0794 0.1950

(0.0003) (0.0017) (0.0148) (0.009)

0.9 30 0.0228 -0.1146 -1.8991 1.3574 0.1497 0.1146 0.1993

(0.0003) (0.0017) (0.0086) (0.0053)

0.9 60 0.0197 -0.1007 -2.0351 1.3404 0.1307 0.1007 0.1957

(0.0003) (0.0016) (0.0096) (0.006)

0.9 90 0.0126 -0.0649 -4.0448 0.1435 0.0175 0.0649 0.1949

(0.0002) (0.001) (0.0062) (0.0038)

0.9 120 0.0096 -0.0500 -4.3407 0.0395 0.0130 0.0500 0.1921

(0.0002) (0.0008) (0.0049) (0.0028)

0.9 150 0.0076 -0.0401 -4.5846 -0.0365 0.0102 0.0401 0.1895

(0.0002) (0.0008) (0.0057) (0.0033)

0.9 180 0.0065 -0.0350 -4.8083 -0.1195 0.0082 0.0350 0.1872

(0.0001) (0.0007) (0.0057) (0.0032)

0.9 210 0.0059 -0.0320 -4.9945 -0.1907 0.0068 0.0320 0.1856

(0.0001) (0.0008) (0.0059) (0.0034)

0.9 240 0.0059 -0.0320 -5.0807 -0.2185 0.0062 0.0320 0.1845

(0.0002) (0.0008) (0.0058) (0.0034)

Continued on next page
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.9 270 0.0067 -0.0362 -5.0561 -0.2104 0.0064 0.0362 0.1836

(0.0002) (0.001) (0.0066) (0.0038)

0.9 300 0.0107 -0.0583 -3.7376 0.5502 0.0238 0.0583 0.1826

(0.0002) (0.0013) (0.0147) (0.0085)

0.9 330 0.0127 -0.0698 -3.7672 0.4906 0.0231 0.0698 0.1824

(0.0002) (0.0014) (0.0142) (0.0084)

0.9 360 0.0140 -0.0765 -3.9428 0.3545 0.0194 0.0765 0.1824

(0.0003) (0.0016) (0.0172) (0.01)

0.95 30 0.0113 -0.0688 -1.4397 1.6793 0.2370 0.0688 0.1637

(0.0002) (0.0013) (0.0098) (0.0054)

0.95 60 0.0095 -0.0579 -3.0998 0.7705 0.0451 0.0579 0.1645

(0.0002) (0.001) (0.0063) (0.0034)

0.95 90 0.0080 -0.0489 -3.3619 0.6670 0.0347 0.0489 0.1642

(0.0001) (0.0008) (0.0065) (0.0035)

0.95 120 0.0070 -0.0424 -3.5894 0.5824 0.0276 0.0424 0.1643

(0.0001) (0.0009) (0.005) (0.0027)

0.95 150 0.0059 -0.0359 -3.8785 0.4696 0.0207 0.0359 0.1652

(0.0001) (0.0008) (0.0059) (0.0032)

0.95 180 0.0056 -0.0339 -4.2266 0.2963 0.0146 0.0339 0.1664

(0.0001) (0.0007) (0.0064) (0.0035)

0.95 210 0.0055 -0.0329 -4.5630 0.1182 0.0104 0.0329 0.1676

(0.0001) (0.0008) (0.0065) (0.0036)

0.95 240 0.0060 -0.0360 -4.7266 0.0146 0.0089 0.0360 0.1682

(0.0001) (0.0007) (0.007) (0.0038)

0.95 270 0.0087 -0.0519 -4.4119 0.1343 0.0121 0.0519 0.1682

(0.0002) (0.0012) (0.008) (0.0044)

0.95 300 0.0130 -0.0774 -4.0748 0.2453 0.0170 0.0774 0.1681

(0.0002) (0.0014) (0.0084) (0.0046)

0.95 330 0.0196 -0.1168 -3.0186 0.7968 0.0489 0.1168 0.1676

(0.0004) (0.0022) (0.0159) (0.0088)

0.95 360 0.0223 -0.1328 -3.2189 0.6439 0.0400 0.1328 0.1681

(0.0004) (0.0022) (0.0173) (0.0097)

1 30 0.0079 -0.0587 -1.1480 1.7499 0.3173 0.0587 0.1343

(0.0002) (0.0015) (0.0089) (0.0045)

Continued on next page
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

1 60 0.0075 -0.0558 -1.6963 1.4980 0.1834 0.0558 0.1346

(0.0002) (0.0013) (0.0083) (0.0041)

1 90 0.0070 -0.0514 -1.7963 1.4763 0.1659 0.0514 0.1353

(0.0002) (0.0014) (0.0084) (0.0041)

1 120 0.0066 -0.0481 -1.9856 1.4115 0.1373 0.0481 0.1365

(0.0002) (0.0013) (0.0087) (0.0044)

1 150 0.0066 -0.0476 -2.3055 1.2694 0.0997 0.0476 0.1388

(0.0002) (0.0013) (0.0085) (0.0043)

1 180 0.0072 -0.0505 -2.8052 1.0137 0.0605 0.0505 0.1421

(0.0002) (0.0012) (0.0096) (0.0048)

1 210 0.0074 -0.0510 -3.4173 0.6908 0.0328 0.0510 0.1460

(0.0002) (0.0011) (0.0109) (0.0055)

1 240 0.0076 -0.0510 -3.9284 0.4101 0.0197 0.0510 0.1490

(0.0001) (0.001) (0.0112) (0.0057)

1 270 0.0087 -0.0574 -4.2323 0.2061 0.0145 0.0574 0.1507

(0.0002) (0.0011) (0.0124) (0.0065)

1 300 0.0104 -0.0688 -4.3406 0.0985 0.0130 0.0688 0.1515

(0.0002) (0.0011) (0.0126) (0.0065)

1 330 0.0154 -0.1014 -3.6900 0.3957 0.0250 0.1014 0.1518

(0.0003) (0.0018) (0.0181) (0.0095)

1 360 0.0199 -0.1310 -3.5655 0.4061 0.0283 0.1310 0.1521

(0.0003) (0.0023) (0.0259) (0.0136)

1.05 30 0.0091 -0.0779 -1.0574 1.6729 0.3474 0.0779 0.1171

(0.0002) (0.0017) (0.009) (0.0041)

1.05 60 0.0085 -0.0722 -1.1194 1.6693 0.3265 0.0722 0.1173

(0.0002) (0.0016) (0.0078) (0.0035)

1.05 90 0.0077 -0.0656 -1.1196 1.6985 0.3264 0.0656 0.1179

(0.0002) (0.0016) (0.0088) (0.004)

1.05 120 0.0074 -0.0624 -1.1014 1.7321 0.3324 0.0624 0.1187

(0.0002) (0.0017) (0.0097) (0.0045)

1.05 150 0.0075 -0.0624 -1.1403 1.7369 0.3197 0.0624 0.1202

(0.0002) (0.0015) (0.0088) (0.0041)

1.05 180 0.0082 -0.0674 -1.2829 1.6807 0.2772 0.0674 0.1223

(0.0002) (0.0015) (0.01) (0.0046)

Continued on next page
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

1.05 210 0.0089 -0.0715 -1.6092 1.5304 0.2001 0.0715 0.1251

(0.0002) (0.0019) (0.0128) (0.0061)

1.05 240 0.0097 -0.0762 -1.9125 1.3810 0.1477 0.0762 0.1277

(0.0002) (0.0015) (0.0142) (0.0068)

1.05 270 0.0115 -0.0886 -2.0099 1.3019 0.1340 0.0886 0.1298

(0.0002) (0.0015) (0.0123) (0.006)

1.05 300 0.0137 -0.1047 -1.9158 1.3117 0.1472 0.1047 0.1312

(0.0002) (0.002) (0.0151) (0.0073)

1.05 330 0.0155 -0.1178 -1.5788 1.4541 0.2062 0.1178 0.1320

(0.0003) (0.0022) (0.0132) (0.0065)

1.05 360 0.0174 -0.1308 -1.7988 1.3151 0.1655 0.1308 0.1330

(0.0003) (0.0024) (0.0175) (0.0086)

1.1 30 0.0113 -0.1004 -0.9220 1.6855 0.3977 0.1004 0.1125

(0.0002) (0.0019) (0.008) (0.0036)

1.1 60 0.0101 -0.0904 -0.7976 1.7680 0.4504 0.0904 0.1120

(0.0002) (0.0018) (0.0085) (0.0038)

1.1 90 0.0090 -0.0805 -0.8430 1.7801 0.4304 0.0805 0.1115

(0.0002) (0.0016) (0.0086) (0.0039)

1.1 120 0.0080 -0.0717 -0.6449 1.9021 0.5248 0.0717 0.1116

(0.0002) (0.0016) (0.0097) (0.0044)

1.1 150 0.0073 -0.0655 -0.5007 2.0022 0.6061 0.0655 0.1121

(0.0002) (0.0016) (0.0089) (0.004)

1.1 180 0.0074 -0.0651 -0.5061 2.0243 0.6029 0.0651 0.1130

(0.0002) (0.0019) (0.011) (0.005)

1.1 210 0.0079 -0.0686 -0.6295 1.9759 0.5329 0.0686 0.1145

(0.0002) (0.0019) (0.0094) (0.0043)

1.1 240 0.0083 -0.0711 -0.7524 1.9242 0.4713 0.0711 0.1160

(0.0002) (0.0016) (0.0108) (0.005)

1.1 270 0.0087 -0.0743 -0.9436 1.8314 0.3892 0.0743 0.1175

(0.0002) (0.0018) (0.0106) (0.0049)

1.1 300 0.0096 -0.0806 -0.9105 1.8195 0.4024 0.0806 0.1190

(0.0002) (0.0019) (0.0112) (0.0052)

1.1 330 0.0098 -0.0813 -0.8553 1.8398 0.4252 0.0813 0.1203

(0.0002) (0.0017) (0.0102) (0.0048)

Continued on next page
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

1.1 360 0.0106 -0.0877 -0.9035 1.8045 0.4052 0.0877 0.1211

(0.0002) (0.002) (0.0108) (0.0051)

1.15 30 0.0341 -0.2928 -2.6944 0.6073 0.0676 0.2928 0.1163

(0.0002) (0.0019) (0.0065) (0.003)

1.15 60 0.0292 -0.2544 -2.8165 0.6030 0.0598 0.2544 0.1147

(0.0002) (0.002) (0.0067) (0.003)

1.15 90 0.0238 -0.2099 -2.8983 0.6230 0.0551 0.2099 0.1132

(0.0002) (0.0018) (0.008) (0.0037)

1.15 120 0.0186 -0.1664 -2.7877 0.7371 0.0616 0.1664 0.1120

(0.0002) (0.0019) (0.0069) (0.0031)

1.15 150 0.0151 -0.1358 -1.9897 1.1714 0.1367 0.1358 0.1109

(0.0002) (0.0019) (0.0106) (0.0047)

1.15 180 0.0123 -0.1109 -1.3085 1.5474 0.2702 0.1109 0.1105

(0.0002) (0.002) (0.0122) (0.0055)

1.15 210 0.0100 -0.0902 -1.1367 1.6807 0.3209 0.0902 0.1109

(0.0002) (0.002) (0.0105) (0.0048)

1.15 240 0.0088 -0.0791 -1.2374 1.6621 0.2902 0.0791 0.1118

(0.0002) (0.0018) (0.0115) (0.0052)

1.15 270 0.0091 -0.0804 -1.3068 1.6270 0.2707 0.0804 0.1127

(0.0002) (0.002) (0.0122) (0.0055)

1.15 300 0.0099 -0.0868 -1.2151 1.6499 0.2967 0.0868 0.1136

(0.0002) (0.0017) (0.0103) (0.0047)

1.15 330 0.0102 -0.0887 -1.1865 1.6529 0.3053 0.0887 0.1146

(0.0002) (0.0019) (0.01) (0.0046)

1.15 360 0.0103 -0.0889 -1.1779 1.6580 0.3079 0.0889 0.1155

(0.0002) (0.0018) (0.0087) (0.004)

1.2 30 0.0922 -0.7389 -3.1223 0.0829 0.0441 0.7389 0.1248

(0.0003) (0.0019) (0.0078) (0.0037)

1.2 60 0.0865 -0.7074 -3.2173 0.0941 0.0401 0.7074 0.1222

(0.0003) (0.0023) (0.0074) (0.0033)

1.2 90 0.0765 -0.6402 -3.1910 0.1732 0.0411 0.6402 0.1195

(0.0003) (0.0025) (0.0072) (0.0033)

1.2 120 0.0615 -0.5267 -2.9204 0.3815 0.0539 0.5267 0.1167

Continued on next page
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Table 3.3 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0003) (0.0022) (0.0066) (0.003)

1.2 150 0.0457 -0.3997 -2.6531 0.5969 0.0704 0.3997 0.1143

(0.0003) (0.0026) (0.0086) (0.0039)

1.2 180 0.0318 -0.2831 -2.4164 0.8028 0.0893 0.2831 0.1124

(0.0002) (0.0019) (0.0092) (0.0042)

1.2 210 0.0214 -0.1929 -1.9496 1.1291 0.1423 0.1929 0.1110

(0.0003) (0.0024) (0.0119) (0.0054)

1.2 240 0.0150 -0.1355 -1.5308 1.4102 0.2164 0.1355 0.1105

(0.0002) (0.0023) (0.0127) (0.0057)

1.2 270 0.0119 -0.1075 -1.4133 1.5203 0.2434 0.1075 0.1105

(0.0002) (0.0019) (0.012) (0.0054)

1.2 300 0.0115 -0.1034 -1.2768 1.5937 0.2789 0.1034 0.1109

(0.0002) (0.002) (0.0119) (0.0054)

1.2 330 0.0119 -0.1065 -1.2606 1.5866 0.2835 0.1065 0.1116

(0.0002) (0.0019) (0.0112) (0.005)

1.2 360 0.0123 -0.1092 -1.2049 1.6042 0.2997 0.1092 0.1122

(0.0002) (0.002) (0.0105) (0.0048)

Table 3.4: Parameter Estimates - Crisis Period

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.8 30 0.0203 -0.0470 -2.0564 1.5782 0.1279 0.0470 0.4318

(0.0003) (0.001) (0.0044) (0.0046)

0.8 60 0.0159 -0.0379 -2.1928 1.5644 0.1116 0.0379 0.4199

(0.0004) (0.0011) (0.0043) (0.0046)

0.8 90 0.0120 -0.0294 -2.2422 1.6536 0.1062 0.0294 0.4082

(0.0003) (0.0009) (0.0037) (0.0039)

0.8 120 0.0089 -0.0223 -2.1915 1.8350 0.1118 0.0223 0.3972

(0.0003) (0.0009) (0.0042) (0.0042)

0.8 150 0.0071 -0.0185 -2.0641 2.0483 0.1269 0.0185 0.3852

(0.0003) (0.0009) (0.0039) (0.0037)

0.8 180 0.0060 -0.0160 -1.8931 2.2732 0.1506 0.0160 0.3756

(0.0003) (0.001) (0.0045) (0.0045)
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Table 3.4 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.8 210 0.0058 -0.0159 -1.8111 2.3741 0.1635 0.0159 0.3647

(0.0003) (0.001) (0.0045) (0.0043)

0.8 240 0.0066 -0.0185 -1.9410 2.2164 0.1436 0.0185 0.3547

(0.0004) (0.0012) (0.0041) (0.004)

0.8 270 0.0083 -0.0238 -2.2614 1.8460 0.1042 0.0238 0.3476

(0.0003) (0.001) (0.0061) (0.0056)

0.8 300 0.0117 -0.0339 -2.4876 1.4836 0.0831 0.0339 0.3440

(0.0004) (0.0011) (0.0058) (0.0052)

0.8 330 0.0144 -0.0422 -2.9360 1.0001 0.0531 0.0422 0.3408

(0.0003) (0.001) (0.006) (0.0055)

0.8 360 0.0153 -0.0451 -3.5021 0.4373 0.0301 0.0451 0.3386

(0.0004) (0.0011) (0.0049) (0.0044)

0.85 30 0.0159 -0.0404 -1.8816 1.7708 0.1524 0.0404 0.3924

(0.0004) (0.0011) (0.0043) (0.0042)

0.85 60 0.0126 -0.0329 -2.0453 1.7230 0.1293 0.0329 0.3833

(0.0003) (0.001) (0.0039) (0.004)

0.85 90 0.0096 -0.0255 -2.1130 1.7820 0.1209 0.0255 0.3749

(0.0003) (0.0008) (0.0046) (0.0045)

0.85 120 0.0072 -0.0197 -2.0878 1.9252 0.1240 0.0197 0.3666

(0.0003) (0.001) (0.0045) (0.0043)

0.85 150 0.0057 -0.0160 -2.0013 2.0947 0.1352 0.0160 0.3585

(0.0003) (0.0008) (0.0043) (0.0038)

0.85 180 0.0050 -0.0143 -1.8837 2.2541 0.1520 0.0143 0.3510

(0.0003) (0.001) (0.0047) (0.0042)

0.85 210 0.0051 -0.0148 -1.8861 2.2562 0.1517 0.0148 0.3427

(0.0003) (0.0011) (0.0047) (0.0042)

0.85 240 0.0059 -0.0176 -2.0542 2.0633 0.1282 0.0176 0.3355

(0.0003) (0.001) (0.0049) (0.0043)

0.85 270 0.0071 -0.0215 -2.3994 1.7066 0.0908 0.0215 0.3307

(0.0003) (0.0009) (0.0053) (0.0047)

0.85 300 0.0096 -0.0292 -2.5327 1.4642 0.0794 0.0292 0.3285

(0.0003) (0.0011) (0.0056) (0.0049)

0.85 330 0.0118 -0.0362 -3.1782 0.8174 0.0417 0.0362 0.3266

(0.0003) (0.001) (0.0049) (0.0043)
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Table 3.4 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.85 360 0.0132 -0.0408 -3.8971 0.0810 0.0203 0.0408 0.3246

(0.0003) (0.0009) (0.0041) (0.0034)

0.9 30 0.0114 -0.0323 -1.9199 1.7237 0.1466 0.0323 0.3533

(0.0003) (0.0009) (0.0044) (0.0041)

0.9 60 0.0092 -0.0264 -2.0441 1.7097 0.1295 0.0264 0.3478

(0.0003) (0.001) (0.0042) (0.0038)

0.9 90 0.0072 -0.0210 -2.0810 1.7850 0.1248 0.0210 0.3420

(0.0002) (0.0008) (0.0036) (0.0032)

0.9 120 0.0056 -0.0166 -2.0490 1.9221 0.1289 0.0166 0.3367

(0.0003) (0.001) (0.005) (0.0044)

0.9 150 0.0045 -0.0136 -1.9859 2.0701 0.1373 0.0136 0.3316

(0.0003) (0.001) (0.0038) (0.0032)

0.9 180 0.0040 -0.0123 -1.9070 2.1880 0.1485 0.0123 0.3277

(0.0003) (0.001) (0.0046) (0.004)

0.9 210 0.0045 -0.0138 -1.9351 2.1506 0.1444 0.0138 0.3218

(0.0002) (0.0009) (0.005) (0.0043)

0.9 240 0.0052 -0.0165 -2.0466 2.0130 0.1292 0.0165 0.3174

(0.0003) (0.001) (0.006) (0.0049)

0.9 270 0.0062 -0.0197 -2.3272 1.7354 0.0976 0.0197 0.3137

(0.0003) (0.0009) (0.0056) (0.0046)

0.9 300 0.0082 -0.0262 -2.6583 1.3578 0.0701 0.0262 0.3115

(0.0003) (0.0009) (0.0049) (0.0042)

0.9 330 0.0105 -0.0338 -3.6036 0.4267 0.0272 0.0338 0.3115

(0.0002) (0.0008) (0.0047) (0.0038)

0.9 360 0.0117 -0.0379 -4.0849 -0.0761 0.0168 0.0379 0.3088

(0.0002) (0.0008) (0.0039) (0.0031)

0.95 30 0.0077 -0.0240 -2.0218 1.5977 0.1324 0.0240 0.3189

(0.0002) (0.0009) (0.0039) (0.0033)

0.95 60 0.0063 -0.0200 -2.0724 1.6403 0.1259 0.0200 0.3161

(0.0002) (0.0008) (0.004) (0.0033)

0.95 90 0.0052 -0.0164 -2.0631 1.7378 0.1271 0.0164 0.3139

(0.0002) (0.0008) (0.0042) (0.0034)

0.95 120 0.0043 -0.0139 -2.0259 1.8568 0.1319 0.0139 0.3111
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0002) (0.0008) (0.0039) (0.0033)

0.95 150 0.0038 -0.0123 -1.9955 1.9608 0.1359 0.0123 0.3088

(0.0002) (0.0007) (0.0045) (0.0037)

0.95 180 0.0038 -0.0126 -1.9834 2.0180 0.1376 0.0126 0.3052

(0.0002) (0.0007) (0.0048) (0.0039)

0.95 210 0.0045 -0.0148 -2.0431 1.9533 0.1296 0.0148 0.3026

(0.0002) (0.0009) (0.0051) (0.0041)

0.95 240 0.0054 -0.0182 -2.2298 1.7614 0.1076 0.0182 0.2999

(0.0002) (0.0009) (0.0051) (0.0042)

0.95 270 0.0064 -0.0217 -2.3705 1.6099 0.0934 0.0217 0.2973

(0.0002) (0.0006) (0.0054) (0.0043)

0.95 300 0.0085 -0.0286 -2.7153 1.2331 0.0662 0.0286 0.2957

(0.0002) (0.0008) (0.0061) (0.0048)

0.95 330 0.0102 -0.0345 -3.2816 0.6883 0.0376 0.0345 0.2952

(0.0002) (0.0008) (0.0056) (0.0045)

0.95 360 0.0120 -0.0408 -3.5660 0.3735 0.0283 0.0408 0.2942

(0.0002) (0.0008) (0.005) (0.0039)

1 30 0.0064 -0.0219 -2.0577 1.4595 0.1278 0.0219 0.2918

(0.0002) (0.0007) (0.004) (0.003)

1 60 0.0056 -0.0193 -2.0753 1.5081 0.1255 0.0193 0.2904

(0.0002) (0.0007) (0.004) (0.003)

1 90 0.0050 -0.0172 -2.0639 1.5803 0.1270 0.0172 0.2896

(0.0002) (0.0007) (0.0033) (0.0026)

1 120 0.0047 -0.0163 -2.0561 1.6455 0.1280 0.0163 0.2877

(0.0001) (0.0006) (0.0047) (0.0034)

1 150 0.0046 -0.0162 -2.0716 1.6909 0.1260 0.0162 0.2858

(0.0002) (0.0008) (0.0043) (0.0032)

1 180 0.0049 -0.0171 -2.0625 1.7390 0.1271 0.0171 0.2848

(0.0002) (0.0008) (0.0047) (0.0036)

1 210 0.0055 -0.0195 -2.0809 1.7328 0.1248 0.0195 0.2837

(0.0002) (0.0009) (0.0038) (0.0031)

1 240 0.0065 -0.0229 -2.2549 1.5825 0.1049 0.0229 0.2827

(0.0002) (0.0009) (0.0053) (0.0039)

1 270 0.0077 -0.0275 -2.5057 1.3478 0.0816 0.0275 0.2817
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Table 3.4 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0002) (0.0008) (0.006) (0.0045)

1 300 0.0094 -0.0334 -2.7915 1.0575 0.0613 0.0334 0.2810

(0.0002) (0.0008) (0.0063) (0.0048)

1 330 0.0109 -0.0391 -2.9909 0.8497 0.0502 0.0391 0.2799

(0.0002) (0.0009) (0.0069) (0.0053)

1 360 0.0125 -0.0447 -2.9873 0.8103 0.0504 0.0447 0.2788

(0.0003) (0.001) (0.0064) (0.0049)

1.05 30 0.0066 -0.0241 -1.9546 1.4101 0.1416 0.0241 0.2730

(0.0002) (0.0007) (0.004) (0.0029)

1.05 60 0.0061 -0.0226 -1.9765 1.4347 0.1386 0.0226 0.2715

(0.0001) (0.0007) (0.0043) (0.0029)

1.05 90 0.0059 -0.0219 -1.9869 1.4633 0.1371 0.0219 0.2700

(0.0001) (0.0006) (0.0041) (0.0029)

1.05 120 0.0060 -0.0223 -2.0082 1.4792 0.1342 0.0223 0.2684

(0.0002) (0.0007) (0.0039) (0.0028)

1.05 150 0.0063 -0.0236 -2.0413 1.4865 0.1299 0.0236 0.2672

(0.0002) (0.0008) (0.0038) (0.0028)

1.05 180 0.0069 -0.0258 -2.0470 1.5095 0.1291 0.0258 0.2661

(0.0002) (0.0008) (0.0041) (0.0032)

1.05 210 0.0074 -0.0277 -2.0966 1.4981 0.1229 0.0277 0.2662

(0.0002) (0.0009) (0.0049) (0.0036)

1.05 240 0.0079 -0.0298 -2.2764 1.3802 0.1027 0.0298 0.2661

(0.0002) (0.0008) (0.005) (0.0036)

1.05 270 0.0087 -0.0327 -2.4923 1.2170 0.0827 0.0327 0.2658

(0.0002) (0.0008) (0.0053) (0.0039)

1.05 300 0.0099 -0.0374 -2.6558 1.0640 0.0702 0.0374 0.2654

(0.0002) (0.0008) (0.0061) (0.0045)

1.05 330 0.0111 -0.0419 -2.7305 0.9803 0.0652 0.0419 0.2648

(0.0002) (0.0009) (0.0065) (0.0047)

1.05 360 0.0120 -0.0454 -2.7957 0.9141 0.0611 0.0454 0.2643

(0.0002) (0.0009) (0.0066) (0.0048)

1.1 30 0.0065 -0.0248 -1.7644 1.4798 0.1713 0.0248 0.2642

(0.0002) (0.0008) (0.0038) (0.0028)

1.1 60 0.0061 -0.0234 -1.7808 1.5015 0.1685 0.0234 0.2617
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Table 3.4 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0001) (0.0007) (0.0046) (0.0032)

1.1 90 0.0060 -0.0232 -1.7875 1.5225 0.1674 0.0232 0.2587

(0.0001) (0.0007) (0.0041) (0.0028)

1.1 120 0.0062 -0.0243 -1.8050 1.5295 0.1645 0.0243 0.2559

(0.0002) (0.0008) (0.004) (0.0027)

1.1 150 0.0067 -0.0266 -1.8337 1.5251 0.1598 0.0266 0.2536

(0.0002) (0.0008) (0.004) (0.0027)

1.1 180 0.0078 -0.0307 -1.8733 1.5002 0.1536 0.0307 0.2522

(0.0002) (0.0009) (0.0052) (0.0034)

1.1 210 0.0087 -0.0343 -1.9789 1.4284 0.1382 0.0343 0.2523

(0.0002) (0.001) (0.005) (0.0033)

1.1 240 0.0091 -0.0361 -2.1387 1.3417 0.1178 0.0361 0.2517

(0.0002) (0.0008) (0.0048) (0.0033)

1.1 270 0.0093 -0.0369 -2.2603 1.2822 0.1043 0.0369 0.2509

(0.0002) (0.001) (0.0055) (0.0039)

1.1 300 0.0097 -0.0387 -2.3479 1.2256 0.0956 0.0387 0.2504

(0.0002) (0.001) (0.0055) (0.004)

1.1 330 0.0103 -0.0410 -2.4132 1.1788 0.0895 0.0410 0.2501

(0.0002) (0.0009) (0.0066) (0.0046)

1.1 360 0.0112 -0.0448 -2.4932 1.1080 0.0826 0.0448 0.2500

(0.0002) (0.0011) (0.0065) (0.0045)

1.15 30 0.0072 -0.0281 -1.6480 1.5273 0.1924 0.0281 0.2565

(0.0002) (0.0009) (0.0037) (0.0026)

1.15 60 0.0063 -0.0249 -1.6407 1.5739 0.1938 0.0249 0.2542

(0.0002) (0.0008) (0.0037) (0.0026)

1.15 90 0.0058 -0.0230 -1.6096 1.6282 0.2000 0.0230 0.2521

(0.0001) (0.0008) (0.0041) (0.0027)

1.15 120 0.0057 -0.0227 -1.5874 1.6670 0.2045 0.0227 0.2493

(0.0002) (0.001) (0.0042) (0.0029)

1.15 150 0.0062 -0.0254 -1.6076 1.6601 0.2004 0.0254 0.2450

(0.0002) (0.0009) (0.0046) (0.003)

1.15 180 0.0074 -0.0303 -1.6896 1.5777 0.1846 0.0303 0.2435

(0.0002) (0.0009) (0.0047) (0.0033)

1.15 210 0.0086 -0.0353 -1.8447 1.4432 0.1581 0.0353 0.2432
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0002) (0.001) (0.0045) (0.003)

1.15 240 0.0092 -0.0382 -1.9663 1.3823 0.1400 0.0382 0.2411

(0.0002) (0.0009) (0.0051) (0.0035)

1.15 270 0.0095 -0.0398 -2.0479 1.3631 0.1290 0.0398 0.2387

(0.0002) (0.001) (0.0049) (0.0033)

1.15 300 0.0101 -0.0422 -2.1687 1.2883 0.1143 0.0422 0.2381

(0.0002) (0.0009) (0.0054) (0.0037)

1.15 330 0.0105 -0.0441 -2.2446 1.2413 0.1060 0.0441 0.2383

(0.0002) (0.0009) (0.0057) (0.0038)

1.15 360 0.0112 -0.0469 -2.2380 1.2473 0.1067 0.0469 0.2384

(0.0002) (0.001) (0.0058) (0.0039)

1.2 30 0.0151 -0.0613 -1.9159 1.1931 0.1472 0.0613 0.2472

(0.0002) (0.001) (0.0041) (0.0028)

1.2 60 0.0122 -0.0504 -1.8787 1.2934 0.1528 0.0504 0.2423

(0.0002) (0.001) (0.0042) (0.0028)

1.2 90 0.0095 -0.0398 -1.7804 1.4326 0.1686 0.0398 0.2387

(0.0002) (0.0008) (0.0042) (0.0028)

1.2 120 0.0074 -0.0311 -1.6398 1.5914 0.1940 0.0311 0.2374

(0.0002) (0.0011) (0.0048) (0.0033)

1.2 150 0.0066 -0.0279 -1.5614 1.6792 0.2098 0.0279 0.2360

(0.0002) (0.001) (0.0045) (0.0029)

1.2 180 0.0072 -0.0308 -1.6136 1.6290 0.1992 0.0308 0.2337

(0.0002) (0.001) (0.0047) (0.0031)

1.2 210 0.0080 -0.0345 -1.7239 1.5409 0.1784 0.0345 0.2323

(0.0002) (0.001) (0.0042) (0.0027)

1.2 240 0.0084 -0.0364 -1.7710 1.5321 0.1702 0.0364 0.2301

(0.0002) (0.001) (0.0046) (0.003)

1.2 270 0.0087 -0.0380 -1.8478 1.4933 0.1576 0.0380 0.2289

(0.0002) (0.0009) (0.0046) (0.0031)

1.2 300 0.0096 -0.0421 -2.0030 1.3758 0.1349 0.0421 0.2289

(0.0002) (0.0011) (0.0049) (0.0032)

1.2 330 0.0110 -0.0481 -2.1316 1.2651 0.1186 0.0481 0.2294

(0.0002) (0.001) (0.0055) (0.0035)

1.2 360 0.0121 -0.0525 -2.1109 1.2695 0.1211 0.0525 0.2297
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Table 3.4 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0002) (0.0009) (0.0058) (0.0039)

Table 3.5: Parameter Estimates - Adjustment Period

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.8 30 0.0552 -0.1526 -1.8724 1.7275 0.1538 0.1526 0.3617

(0.0008) (0.0024) (0.0081) (0.0078)

0.8 60 0.0396 -0.1133 -2.0537 1.6643 0.1283 0.1133 0.3498

(0.0007) (0.002) (0.0083) (0.0079)

0.8 90 0.0304 -0.0899 -2.3094 1.4902 0.0993 0.0899 0.3378

(0.0006) (0.0018) (0.0075) (0.0068)

0.8 120 0.0232 -0.0710 -2.5292 1.3689 0.0797 0.0710 0.3267

(0.0005) (0.0015) (0.0075) (0.0066)

0.8 150 0.0186 -0.0587 -2.6469 1.3436 0.0709 0.0587 0.3167

(0.0004) (0.0013) (0.0063) (0.0054)

0.8 180 0.0160 -0.0518 -2.6589 1.3938 0.0700 0.0518 0.3084

(0.0004) (0.0013) (0.0071) (0.006)

0.8 210 0.0150 -0.0498 -2.7817 1.3224 0.0619 0.0498 0.3024

(0.0004) (0.0012) (0.0074) (0.006)

0.8 240 0.0156 -0.0522 -2.9543 1.1866 0.0521 0.0522 0.2986

(0.0004) (0.0012) (0.0076) (0.0062)

0.8 270 0.0166 -0.0562 -3.0718 1.0850 0.0463 0.0562 0.2963

(0.0004) (0.0013) (0.008) (0.0066)

0.8 300 0.0189 -0.0642 -3.0321 1.0900 0.0482 0.0642 0.2947

(0.0004) (0.0015) (0.0075) (0.0062)

0.8 330 0.0224 -0.0762 -3.1750 0.9210 0.0418 0.0762 0.2936

(0.0005) (0.0018) (0.0076) (0.0063)

0.8 360 0.0277 -0.0946 -4.1167 0.0527 0.0163 0.0946 0.2925

(0.0005) (0.0017) (0.0079) (0.0063)

0.85 30 0.0497 -0.1545 -1.6508 1.7992 0.1919 0.1545 0.3214

(0.0007) (0.0023) (0.0087) (0.0075)

0.85 60 0.0355 -0.1138 -1.8119 1.7614 0.1633 0.1138 0.3118

(0.0006) (0.0021) (0.0086) (0.0073)
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Table 3.5 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.85 90 0.0259 -0.0856 -2.0505 1.6344 0.1287 0.0856 0.3024

(0.0005) (0.0016) (0.0083) (0.0068)

0.85 120 0.0190 -0.0645 -2.2231 1.5808 0.1083 0.0645 0.2939

(0.0004) (0.0016) (0.0075) (0.006)

0.85 150 0.0145 -0.0507 -2.1899 1.7067 0.1119 0.0507 0.2869

(0.0003) (0.0013) (0.0057) (0.0046)

0.85 180 0.0120 -0.0425 -2.1350 1.8376 0.1182 0.0425 0.2818

(0.0003) (0.0013) (0.0081) (0.0064)

0.85 210 0.0109 -0.0392 -2.1339 1.8973 0.1184 0.0392 0.2788

(0.0004) (0.0013) (0.0083) (0.0064)

0.85 240 0.0116 -0.0418 -2.3980 1.6942 0.0909 0.0418 0.2775

(0.0003) (0.0013) (0.0086) (0.0066)

0.85 270 0.0131 -0.0473 -2.5643 1.5442 0.0770 0.0473 0.2770

(0.0003) (0.0013) (0.0069) (0.0053)

0.85 300 0.0164 -0.0592 -3.0832 1.0795 0.0458 0.0592 0.2765

(0.0004) (0.0016) (0.0091) (0.007)

0.85 330 0.0207 -0.0749 -4.4315 -0.0979 0.0119 0.0749 0.2760

(0.0005) (0.0017) (0.0065) (0.0049)

0.85 360 0.0263 -0.0956 -4.6122 -0.3348 0.0099 0.0956 0.2751

(0.0005) (0.0017) (0.0063) (0.0049)

0.9 30 0.0352 -0.1278 -1.4151 1.8670 0.2429 0.1278 0.2755

(0.0005) (0.0019) (0.0078) (0.006)

0.9 60 0.0252 -0.0935 -1.5573 1.8463 0.2107 0.0935 0.2698

(0.0004) (0.0017) (0.0079) (0.006)

0.9 90 0.0186 -0.0703 -1.7337 1.7958 0.1766 0.0703 0.2642

(0.0004) (0.0015) (0.0067) (0.0049)

0.9 120 0.0140 -0.0538 -1.8227 1.8250 0.1616 0.0538 0.2596

(0.0003) (0.0012) (0.0067) (0.0049)

0.9 150 0.0109 -0.0423 -1.7298 2.0000 0.1773 0.0423 0.2567

(0.0003) (0.0012) (0.0065) (0.0047)

0.9 180 0.0095 -0.0371 -1.8187 2.0166 0.1622 0.0371 0.2555

(0.0003) (0.0012) (0.0078) (0.0056)

0.9 210 0.0095 -0.0371 -2.0749 1.8732 0.1256 0.0371 0.2555

(0.0003) (0.0012) (0.0077) (0.0056)
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.9 240 0.0103 -0.0404 -2.4097 1.6367 0.0898 0.0404 0.2562

(0.0003) (0.0011) (0.0071) (0.0051)

0.9 270 0.0125 -0.0485 -2.8685 1.2619 0.0568 0.0485 0.2570

(0.0003) (0.0012) (0.0078) (0.0056)

0.9 300 0.0172 -0.0666 -4.2443 0.1091 0.0143 0.0666 0.2575

(0.0003) (0.0013) (0.0061) (0.0045)

0.9 330 0.0226 -0.0878 -4.3761 -0.0877 0.0126 0.0878 0.2569

(0.0005) (0.0019) (0.0062) (0.0045)

0.9 360 0.0282 -0.1101 -4.4771 -0.2458 0.0114 0.1101 0.2565

(0.0005) (0.0018) (0.0072) (0.0053)

0.95 30 0.0197 -0.0842 -1.4537 1.7341 0.2337 0.0842 0.2338

(0.0003) (0.0014) (0.0063) (0.0042)

0.95 60 0.0149 -0.0644 -1.4641 1.8074 0.2313 0.0644 0.2313

(0.0003) (0.0012) (0.0068) (0.0045)

0.95 90 0.0114 -0.0500 -1.4464 1.9079 0.2354 0.0500 0.2291

(0.0003) (0.0012) (0.0057) (0.0039)

0.95 120 0.0094 -0.0413 -1.4221 2.0141 0.2412 0.0413 0.2279

(0.0002) (0.0011) (0.0064) (0.0042)

0.95 150 0.0085 -0.0373 -1.4835 2.0516 0.2268 0.0373 0.2282

(0.0003) (0.0013) (0.007) (0.0047)

0.95 180 0.0089 -0.0388 -1.7635 1.9079 0.1714 0.0388 0.2297

(0.0002) (0.001) (0.0064) (0.0043)

0.95 210 0.0100 -0.0431 -2.1078 1.6897 0.1215 0.0431 0.2321

(0.0003) (0.0013) (0.0082) (0.0056)

0.95 240 0.0120 -0.0513 -2.6925 1.2688 0.0677 0.0513 0.2344

(0.0003) (0.0014) (0.0081) (0.0056)

0.95 270 0.0154 -0.0653 -3.6099 0.5580 0.0271 0.0653 0.2362

(0.0003) (0.0012) (0.008) (0.0053)

0.95 300 0.0192 -0.0813 -4.0539 0.1711 0.0174 0.0813 0.2367

(0.0003) (0.0014) (0.0069) (0.0046)

0.95 330 0.0252 -0.1067 -4.0734 0.0679 0.0170 0.1067 0.2366

(0.0004) (0.0018) (0.0089) (0.0061)

0.95 360 0.0296 -0.1252 -4.1122 -0.0105 0.0164 0.1252 0.2366

(0.0005) (0.0019) (0.0086) (0.0059)
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

1 30 0.0132 -0.0654 -1.4812 1.6184 0.2274 0.0654 0.2013

(0.0002) (0.0014) (0.0055) (0.0034)

1 60 0.0107 -0.0536 -1.4308 1.7157 0.2391 0.0536 0.2002

(0.0002) (0.0012) (0.0056) (0.0034)

1 90 0.0087 -0.0438 -1.3363 1.8522 0.2628 0.0438 0.1998

(0.0002) (0.0011) (0.0054) (0.0032)

1 120 0.0080 -0.0399 -1.3549 1.9110 0.2580 0.0399 0.2001

(0.0002) (0.001) (0.0059) (0.0037)

1 150 0.0081 -0.0404 -1.4737 1.8914 0.2291 0.0404 0.2018

(0.0002) (0.0011) (0.0065) (0.004)

1 180 0.0092 -0.0450 -1.7522 1.7462 0.1734 0.0450 0.2049

(0.0002) (0.0013) (0.0074) (0.0046)

1 210 0.0110 -0.0530 -2.1324 1.5060 0.1186 0.0530 0.2086

(0.0002) (0.0012) (0.0069) (0.0045)

1 240 0.0132 -0.0623 -2.7032 1.1215 0.0670 0.0623 0.2119

(0.0002) (0.0011) (0.0082) (0.0052)

1 270 0.0162 -0.0754 -3.5221 0.5290 0.0295 0.0754 0.2145

(0.0002) (0.0012) (0.0083) (0.0054)

1 300 0.0198 -0.0917 -3.3841 0.5746 0.0339 0.0917 0.2156

(0.0003) (0.0015) (0.0087) (0.0056)

1 330 0.0233 -0.1076 -3.5458 0.4181 0.0288 0.1076 0.2162

(0.0004) (0.0016) (0.0086) (0.0055)

1 360 0.0265 -0.1222 -3.6798 0.2879 0.0252 0.1222 0.2167

(0.0003) (0.0016) (0.0098) (0.0064)

1.05 30 0.0115 -0.0638 -1.2856 1.6755 0.2765 0.0638 0.1801

(0.0002) (0.0014) (0.0057) (0.0033)

1.05 60 0.0099 -0.0552 -1.2744 1.7244 0.2796 0.0552 0.1789

(0.0002) (0.0013) (0.0049) (0.0028)

1.05 90 0.0086 -0.0483 -1.2196 1.8069 0.2954 0.0483 0.1783

(0.0002) (0.0012) (0.0053) (0.0029)

1.05 120 0.0081 -0.0452 -1.2658 1.8297 0.2820 0.0452 0.1787

(0.0002) (0.0012) (0.0065) (0.0037)

1.05 150 0.0079 -0.0437 -1.2845 1.8669 0.2768 0.0437 0.1807

(0.0002) (0.0011) (0.007) (0.004)
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

1.05 180 0.0085 -0.0465 -1.4524 1.8019 0.2340 0.0465 0.1837

(0.0002) (0.0012) (0.0062) (0.0036)

1.05 210 0.0098 -0.0522 -1.7635 1.6346 0.1714 0.0522 0.1872

(0.0002) (0.0011) (0.0068) (0.004)

1.05 240 0.0110 -0.0578 -1.9851 1.5081 0.1374 0.0578 0.1905

(0.0002) (0.0011) (0.0074) (0.0044)

1.05 270 0.0129 -0.0670 -2.3223 1.2840 0.0980 0.0670 0.1932

(0.0002) (0.0013) (0.0076) (0.0045)

1.05 300 0.0161 -0.0823 -2.3751 1.1993 0.0930 0.0823 0.1954

(0.0003) (0.0014) (0.0077) (0.0046)

1.05 330 0.0188 -0.0957 -2.6374 0.9981 0.0715 0.0957 0.1969

(0.0002) (0.0013) (0.0076) (0.0046)

1.05 360 0.0211 -0.1063 -2.9740 0.7663 0.0511 0.1063 0.1982

(0.0003) (0.0015) (0.0075) (0.0046)

1.1 30 0.0113 -0.0668 -0.9466 1.8675 0.3881 0.0668 0.1695

(0.0002) (0.0013) (0.0061) (0.0034)

1.1 60 0.0097 -0.0581 -0.9577 1.8881 0.3838 0.0581 0.1673

(0.0002) (0.0013) (0.0066) (0.0037)

1.1 90 0.0086 -0.0517 -0.9705 1.9062 0.3789 0.0517 0.1661

(0.0002) (0.0012) (0.0061) (0.0034)

1.1 120 0.0080 -0.0485 -1.0250 1.9066 0.3588 0.0485 0.1655

(0.0002) (0.0012) (0.0063) (0.0033)

1.1 150 0.0073 -0.0439 -0.9560 1.9885 0.3844 0.0439 0.1668

(0.0002) (0.0012) (0.0065) (0.0036)

1.1 180 0.0076 -0.0450 -1.0609 1.9616 0.3461 0.0450 0.1688

(0.0002) (0.0012) (0.007) (0.0039)

1.1 210 0.0086 -0.0499 -1.3151 1.8345 0.2684 0.0499 0.1715

(0.0002) (0.0011) (0.0056) (0.0031)

1.1 240 0.0095 -0.0543 -1.4466 1.7664 0.2354 0.0543 0.1744

(0.0002) (0.0013) (0.0073) (0.0041)

1.1 270 0.0105 -0.0595 -1.5830 1.6867 0.2054 0.0595 0.1771

(0.0002) (0.0012) (0.007) (0.004)

1.1 300 0.0131 -0.0727 -1.8509 1.4948 0.1571 0.0727 0.1795

(0.0002) (0.0012) (0.0087) (0.0051)
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

1.1 330 0.0153 -0.0844 -2.0175 1.3623 0.1330 0.0844 0.1815

(0.0002) (0.0014) (0.0082) (0.0047)

1.1 360 0.0167 -0.0915 -2.2777 1.1879 0.1025 0.0915 0.1830

(0.0002) (0.0014) (0.0072) (0.0042)

1.15 30 0.0150 -0.0900 -1.0757 1.7737 0.3411 0.0900 0.1667

(0.0003) (0.0018) (0.0074) (0.0041)

1.15 60 0.0122 -0.0747 -1.0208 1.8424 0.3603 0.0747 0.1632

(0.0002) (0.0015) (0.0063) (0.0034)

1.15 90 0.0100 -0.0622 -0.8951 1.9394 0.4086 0.0622 0.1604

(0.0002) (0.0016) (0.0073) (0.0039)

1.15 120 0.0084 -0.0528 -0.7970 2.0220 0.4507 0.0528 0.1589

(0.0002) (0.0015) (0.0074) (0.0039)

1.15 150 0.0071 -0.0445 -0.6009 2.1721 0.5483 0.0445 0.1589

(0.0002) (0.0013) (0.0069) (0.0037)

1.15 180 0.0070 -0.0439 -0.6786 2.1568 0.5073 0.0439 0.1599

(0.0002) (0.0014) (0.007) (0.0038)

1.15 210 0.0078 -0.0486 -0.8160 2.0931 0.4422 0.0486 0.1615

(0.0002) (0.0012) (0.0079) (0.0043)

1.15 240 0.0087 -0.0532 -0.9919 1.9943 0.3709 0.0532 0.1638

(0.0002) (0.0013) (0.0076) (0.004)

1.15 270 0.0097 -0.0585 -1.0353 1.9594 0.3551 0.0585 0.1664

(0.0002) (0.0015) (0.0075) (0.0042)

1.15 300 0.0118 -0.0701 -1.2882 1.7948 0.2758 0.0701 0.1684

(0.0002) (0.0013) (0.0081) (0.0045)

1.15 330 0.0136 -0.0799 -1.4347 1.6858 0.2382 0.0799 0.1705

(0.0002) (0.0014) (0.008) (0.0046)

1.15 360 0.0156 -0.0907 -1.8449 1.4330 0.1580 0.0907 0.1718

(0.0002) (0.0015) (0.007) (0.0039)

1.2 30 0.0266 -0.1560 -1.8563 1.2033 0.1563 0.1560 0.1703

(0.0003) (0.0016) (0.0073) (0.004)

1.2 60 0.0215 -0.1299 -1.9091 1.2396 0.1482 0.1299 0.1655

(0.0003) (0.0018) (0.0076) (0.0042)

1.2 90 0.0171 -0.1066 -1.7184 1.4046 0.1794 0.1066 0.1607

(0.0002) (0.0016) (0.0088) (0.0048)
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

1.2 120 0.0133 -0.0850 -1.4692 1.5958 0.2301 0.0850 0.1568

(0.0002) (0.0015) (0.0083) (0.0044)

1.2 150 0.0104 -0.0675 -1.1993 1.8010 0.3014 0.0675 0.1546

(0.0002) (0.0015) (0.0071) (0.0037)

1.2 180 0.0090 -0.0586 -1.0313 1.9351 0.3566 0.0586 0.1542

(0.0002) (0.0014) (0.0075) (0.0039)

1.2 210 0.0088 -0.0564 -0.9351 2.0056 0.3926 0.0564 0.1552

(0.0002) (0.0012) (0.009) (0.0049)

1.2 240 0.0091 -0.0581 -0.7523 2.0987 0.4713 0.0581 0.1571

(0.0002) (0.0016) (0.0078) (0.0041)

1.2 270 0.0096 -0.0606 -0.6472 2.1449 0.5235 0.0606 0.1593

(0.0003) (0.0017) (0.0078) (0.0042)

1.2 300 0.0109 -0.0679 -0.7669 2.0622 0.4645 0.0679 0.1611

(0.0003) (0.0018) (0.0091) (0.005)

1.2 330 0.0127 -0.0782 -0.8562 1.9857 0.4248 0.0782 0.1631

(0.0003) (0.0019) (0.0075) (0.0041)

1.2 360 0.0150 -0.0915 -1.2491 1.7489 0.2868 0.0915 0.1641

(0.0003) (0.0017) (0.0085) (0.0047)

Table 3.6: Parameter Estimates - Post-Crisis Period

Moneyness Time to Maturity a1 a2 c b2 b1 α β

0.8 30 0.0324 -0.0921 -1.1667 2.2313 0.3114 0.0921 0.3523

(0.0009) (0.0029) (0.0069) (0.0063)

0.8 60 0.0338 -0.1021 -0.8332 2.5210 0.4347 0.1021 0.3316

(0.0009) (0.0031) (0.0096) (0.0084)

0.8 90 0.0511 -0.1683 -0.4509 2.7429 0.6371 0.1683 0.3034

(0.0015) (0.0053) (0.0157) (0.0129)

0.8 120 0.0977 -0.3561 -0.8610 2.3255 0.4228 0.3561 0.2744

(0.0018) (0.0068) (0.0178) (0.0137)

0.8 150 0.1243 -0.4923 -1.1699 2.1548 0.3104 0.4923 0.2525

(0.0027) (0.011) (0.0163) (0.0118)

0.8 180 0.1032 -0.4340 -0.1578 3.0116 0.8543 0.4340 0.2379
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0023) (0.0099) (0.0253) (0.0176)

0.8 210 0.0729 -0.3174 -0.8958 2.6431 0.4089 0.3174 0.2298

(0.0023) (0.01) (0.0556) (0.0378)

0.8 240 0.0604 -0.2674 -1.0077 2.6372 0.3662 0.2674 0.2261

(0.0024) (0.0107) (0.0805) (0.0541)

0.8 270 0.0660 -0.2938 -0.1385 3.1837 0.8730 0.2938 0.2245

(0.0024) (0.0106) (0.074) (0.0496)

0.8 300 0.0734 -0.3280 -0.1823 3.1020 0.8358 0.3280 0.2239

(0.0024) (0.011) (0.077) (0.0515)

0.8 330 0.0793 -0.3543 -1.0177 2.5011 0.3623 0.3543 0.2237

(0.0023) (0.0102) (0.0712) (0.0474)

0.8 360 0.0779 -0.3485 -4.1286 0.3908 0.0162 0.3485 0.2236

(0.0023) (0.0103) (0.0764) (0.0509)

0.85 30 0.0550 -0.1860 -0.6009 2.4945 0.5484 0.1860 0.2957

(0.0012) (0.0043) (0.0094) (0.0075)

0.85 60 0.0586 -0.2113 -0.3755 2.6931 0.6870 0.2113 0.2775

(0.0012) (0.0047) (0.0113) (0.0087)

0.85 90 0.0803 -0.3131 -0.4894 2.5723 0.6131 0.3131 0.2565

(0.0014) (0.0059) (0.013) (0.0095)

0.85 120 0.1028 -0.4334 -1.4004 1.9194 0.2466 0.4334 0.2372

(0.0019) (0.0083) (0.0204) (0.0142)

0.85 150 0.0852 -0.3833 -1.5947 1.8878 0.2030 0.3833 0.2223

(0.0019) (0.0088) (0.0285) (0.0189)

0.85 180 0.0526 -0.2467 -2.0822 1.7492 0.1247 0.2467 0.2132

(0.0017) (0.0079) (0.0361) (0.0234)

0.85 210 0.0366 -0.1750 -2.2998 1.7542 0.1004 0.1750 0.2092

(0.0015) (0.0072) (0.0402) (0.0257)

0.85 240 0.0371 -0.1783 -0.7342 2.7696 0.4801 0.1783 0.2081

(0.0016) (0.0079) (0.0326) (0.0207)

0.85 270 0.0411 -0.1973 -0.9866 2.5915 0.3731 0.1973 0.2083

(0.0017) (0.0085) (0.0399) (0.0254)

0.85 300 0.0451 -0.2157 -1.9102 1.9902 0.1482 0.2157 0.2089

(0.0016) (0.0075) (0.047) (0.03)

0.85 330 0.0546 -0.2605 -1.8606 1.9658 0.1558 0.2605 0.2095
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0019) (0.0093) (0.0531) (0.034)

0.85 360 0.0579 -0.2757 -1.5353 2.1674 0.2156 0.2757 0.2101

(0.0017) (0.008) (0.0437) (0.0281)

0.9 30 0.0751 -0.3267 -0.4131 2.4196 0.6617 0.3267 0.2298

(0.0011) (0.005) (0.0138) (0.0093)

0.9 60 0.0686 -0.3125 -0.3126 2.5460 0.7316 0.3125 0.2197

(0.0014) (0.0064) (0.0177) (0.0115)

0.9 90 0.0630 -0.3016 -0.8095 2.2666 0.4452 0.3016 0.2090

(0.0013) (0.0062) (0.0234) (0.0149)

0.9 120 0.0532 -0.2667 -1.5770 1.8432 0.2067 0.2667 0.1994

(0.0012) (0.0063) (0.0312) (0.0194)

0.9 150 0.0365 -0.1893 -1.3760 2.0956 0.2527 0.1893 0.1926

(0.001) (0.0052) (0.0276) (0.0167)

0.9 180 0.0237 -0.1250 -1.0281 2.4646 0.3578 0.1250 0.1895

(0.001) (0.0052) (0.026) (0.0156)

0.9 210 0.0213 -0.1125 -1.0283 2.5319 0.3578 0.1125 0.1891

(0.001) (0.0055) (0.0278) (0.0167)

0.9 240 0.0254 -0.1336 -1.6425 2.1455 0.1936 0.1336 0.1900

(0.0011) (0.0059) (0.0388) (0.0233)

0.9 270 0.0319 -0.1669 -2.5231 1.5729 0.0803 0.1669 0.1913

(0.0012) (0.0062) (0.044) (0.0265)

0.9 300 0.0397 -0.2059 -3.0654 1.2030 0.0467 0.2059 0.1926

(0.0014) (0.0074) (0.0555) (0.0336)

0.9 330 0.0514 -0.2654 -2.5645 1.4597 0.0772 0.2654 0.1936

(0.0018) (0.0096) (0.0712) (0.0432)

0.9 360 0.0594 -0.3054 -3.2948 0.9781 0.0372 0.3054 0.1947

(0.0022) (0.0112) (0.0863) (0.0525)

0.95 30 0.0407 -0.2344 -0.6632 2.1007 0.5153 0.2344 0.1736

(0.0008) (0.0046) (0.0177) (0.0101)

0.95 60 0.0335 -0.1972 -0.9585 1.9950 0.3835 0.1972 0.1698

(0.0007) (0.0042) (0.017) (0.0095)

0.95 90 0.0271 -0.1634 -1.2100 1.9297 0.2982 0.1634 0.1661

(0.0007) (0.0042) (0.0171) (0.0096)

0.95 120 0.0215 -0.1316 -0.9364 2.1783 0.3921 0.1316 0.1636
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Table 3.6 – continued from previous page

Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0006) (0.004) (0.0221) (0.0121)

0.95 150 0.0176 -0.1080 -0.5007 2.5297 0.6063 0.1080 0.1631

(0.0008) (0.005) (0.021) (0.0116)

0.95 180 0.0192 -0.1167 -0.8260 2.4107 0.4380 0.1167 0.1646

(0.0008) (0.0048) (0.0296) (0.0164)

0.95 210 0.0234 -0.1395 -1.0172 2.3173 0.3619 0.1395 0.1673

(0.001) (0.0064) (0.0402) (0.0224)

0.95 240 0.0303 -0.1784 -1.2392 2.1651 0.2899 0.1784 0.1701

(0.0012) (0.007) (0.0444) (0.0251)

0.95 270 0.0393 -0.2279 -1.3885 2.0431 0.2497 0.2279 0.1723

(0.0012) (0.0071) (0.0429) (0.0244)

0.95 300 0.0524 -0.3017 -1.6067 1.8772 0.2010 0.3017 0.1737

(0.0015) (0.0086) (0.0652) (0.0372)

0.95 330 0.0665 -0.3803 -3.2002 0.8934 0.0409 0.3803 0.1749

(0.0019) (0.0108) (0.0868) (0.0497)

0.95 360 0.0779 -0.4419 -3.8876 0.4555 0.0206 0.4419 0.1762

(0.0017) (0.0099) (0.0914) (0.0525)

1 30 0.0227 -0.1684 -1.6696 1.4223 0.1883 0.1684 0.1351

(0.0004) (0.003) (0.0137) (0.0067)

1 60 0.0201 -0.1501 -1.7322 1.4418 0.1769 0.1501 0.1337

(0.0004) (0.0031) (0.0145) (0.0071)

1 90 0.0173 -0.1302 -1.5230 1.6140 0.2181 0.1302 0.1329

(0.0004) (0.0032) (0.0157) (0.0078)

1 120 0.0155 -0.1160 -1.1101 1.8989 0.3296 0.1160 0.1334

(0.0004) (0.0034) (0.0158) (0.0078)

1 150 0.0167 -0.1232 -1.3337 1.8496 0.2635 0.1232 0.1355

(0.0005) (0.0036) (0.0181) (0.0091)

1 180 0.0217 -0.1560 -1.7674 1.6524 0.1708 0.1560 0.1392

(0.0006) (0.0042) (0.0233) (0.0118)

1 210 0.0278 -0.1934 -1.3069 1.8868 0.2708 0.1934 0.1438

(0.0008) (0.0053) (0.0273) (0.014)

1 240 0.0367 -0.2477 -1.2037 1.9199 0.3002 0.2477 0.1481

(0.0009) (0.0059) (0.0305) (0.016)

1 270 0.0486 -0.3212 -1.6945 1.6221 0.1838 0.3212 0.1513

Continued on next page
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0009) (0.0058) (0.0376) (0.0199)

1 300 0.0627 -0.4090 -2.3717 1.2251 0.0935 0.4090 0.1534

(0.0013) (0.0089) (0.0602) (0.0322)

1 330 0.0782 -0.5050 -2.9800 0.8449 0.0509 0.5050 0.1549

(0.0012) (0.0081) (0.0488) (0.0261)

1 360 0.0901 -0.5749 -2.7221 0.9519 0.0658 0.5749 0.1567

(0.0013) (0.0087) (0.0457) (0.0246)

1.05 30 0.0172 -0.1470 -1.8952 1.2919 0.1503 0.1470 0.1168

(0.0003) (0.0026) (0.0146) (0.0068)

1.05 60 0.0160 -0.1387 -1.9085 1.3212 0.1483 0.1387 0.1154

(0.0003) (0.0025) (0.0157) (0.0072)

1.05 90 0.0148 -0.1293 -1.6738 1.4745 0.1877 0.1293 0.1146

(0.0003) (0.0031) (0.0402) (0.0183)

1.05 120 0.0146 -0.1270 -1.3701 1.6652 0.2541 0.1270 0.1149

(0.0003) (0.0031) (0.018) (0.0083)

1.05 150 0.0164 -0.1409 -1.5621 1.6144 0.2097 0.1409 0.1167

(0.0004) (0.0036) (0.0173) (0.008)

1.05 180 0.0198 -0.1653 -1.8879 1.4773 0.1514 0.1653 0.1197

(0.0005) (0.0039) (0.0216) (0.0101)

1.05 210 0.0226 -0.1832 -1.7384 1.5576 0.1758 0.1832 0.1235

(0.0005) (0.0042) (0.0204) (0.0097)

1.05 240 0.0253 -0.1980 -0.6961 2.0606 0.4987 0.1980 0.1276

(0.0007) (0.0053) (0.0244) (0.0118)

1.05 270 0.0359 -0.2742 -1.1465 1.8008 0.3178 0.2742 0.1310

(0.0007) (0.0054) (0.0214) (0.0105)

1.05 300 0.0470 -0.3521 -2.2169 1.2486 0.1090 0.3521 0.1334

(0.0009) (0.0065) (0.0269) (0.0133)

1.05 330 0.0584 -0.4311 -2.5035 1.0644 0.0818 0.4311 0.1354

(0.0009) (0.0068) (0.0269) (0.0134)

1.05 360 0.0626 -0.4561 -2.7335 0.9349 0.0650 0.4561 0.1372

(0.0009) (0.0065) (0.0196) (0.0098)

1.1 30 0.0158 -0.1379 -2.0234 1.2673 0.1322 0.1379 0.1145

(0.0003) (0.0027) (0.0171) (0.0078)

1.1 60 0.0143 -0.1283 -2.2748 1.1972 0.1028 0.1283 0.1116

Continued on next page
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0003) (0.0029) (0.0193) (0.0087)

1.1 90 0.0132 -0.1213 -2.1907 1.2747 0.1119 0.1213 0.1092

(0.0003) (0.0029) (0.0185) (0.0084)

1.1 120 0.0127 -0.1179 -1.6904 1.5373 0.1845 0.1179 0.1081

(0.0003) (0.0029) (0.0237) (0.0105)

1.1 150 0.0135 -0.1244 -1.4941 1.6562 0.2245 0.1244 0.1084

(0.0003) (0.003) (0.021) (0.0094)

1.1 180 0.0151 -0.1375 -1.7091 1.5725 0.1811 0.1375 0.1100

(0.0003) (0.0032) (0.0221) (0.01)

1.1 210 0.0170 -0.1516 -1.5441 1.6474 0.2136 0.1516 0.1123

(0.0005) (0.0043) (0.0325) (0.0148)

1.1 240 0.0190 -0.1652 -1.1754 1.8119 0.3089 0.1652 0.1150

(0.0005) (0.0048) (0.0326) (0.015)

1.1 270 0.0227 -0.1930 -0.9655 1.8963 0.3810 0.1930 0.1177

(0.0006) (0.0052) (0.0314) (0.0147)

1.1 300 0.0295 -0.2456 -1.8924 1.4417 0.1508 0.2456 0.1199

(0.0006) (0.0049) (0.0236) (0.011)

1.1 330 0.0371 -0.3039 -2.5958 1.0721 0.0746 0.3039 0.1219

(0.0007) (0.0056) (0.0233) (0.0111)

1.1 360 0.0429 -0.3472 -2.7337 0.9746 0.0650 0.3472 0.1235

(0.0008) (0.0063) (0.0211) (0.01)

1.15 30 0.0305 -0.2524 -2.6914 0.8392 0.0678 0.2524 0.1208

(0.0004) (0.0034) (0.0138) (0.0065)

1.15 60 0.0274 -0.2353 -3.4913 0.5354 0.0305 0.2353 0.1163

(0.0004) (0.0035) (0.0154) (0.007)

1.15 90 0.0230 -0.2057 -4.0315 0.3688 0.0178 0.2057 0.1120

(0.0004) (0.0036) (0.0194) (0.0088)

1.15 120 0.0178 -0.1637 -3.7239 0.6000 0.0241 0.1637 0.1086

(0.0003) (0.0032) (0.0194) (0.0087)

1.15 150 0.0134 -0.1253 -2.3582 1.2938 0.0946 0.1253 0.1070

(0.0003) (0.0031) (0.027) (0.0121)

1.15 180 0.0127 -0.1188 -2.4124 1.3091 0.0896 0.1188 0.1072

(0.0004) (0.0037) (0.025) (0.0111)

1.15 210 0.0138 -0.1275 -2.2238 1.3970 0.1082 0.1275 0.1084

Continued on next page
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Moneyness Time to Maturity a1 a2 c b2 b1 α β

(0.0004) (0.004) (0.0285) (0.0128)

1.15 240 0.0165 -0.1502 -2.1220 1.4180 0.1198 0.1502 0.1101

(0.0004) (0.0038) (0.0291) (0.0132)

1.15 270 0.0203 -0.1817 -1.9349 1.4720 0.1445 0.1817 0.1120

(0.0005) (0.0045) (0.0258) (0.0118)

1.15 300 0.0258 -0.2265 -2.2439 1.3061 0.1061 0.2265 0.1138

(0.0006) (0.0051) (0.0238) (0.011)

1.15 330 0.0316 -0.2734 -3.1491 0.8501 0.0429 0.2734 0.1156

(0.0006) (0.0048) (0.025) (0.0116)

1.15 360 0.0372 -0.3179 -2.7098 1.0255 0.0666 0.3179 0.1171

(0.0006) (0.0054) (0.0271) (0.0126)

1.2 30 0.0576 -0.4423 -2.9135 0.5267 0.0543 0.4423 0.1303

(0.0004) (0.0033) (0.0124) (0.0059)

1.2 60 0.0579 -0.4627 -3.1530 0.4523 0.0427 0.4627 0.1252

(0.0004) (0.0036) (0.0134) (0.0064)

1.2 90 0.0561 -0.4695 -3.3955 0.3868 0.0335 0.4695 0.1196

(0.0005) (0.0039) (0.016) (0.0076)

1.2 120 0.0511 -0.4473 -3.7670 0.2869 0.0231 0.4473 0.1142

(0.0006) (0.0052) (0.026) (0.0119)

1.2 150 0.0391 -0.3544 -3.5378 0.5034 0.0291 0.3544 0.1103

(0.0005) (0.005) (0.0298) (0.0135)

1.2 180 0.0295 -0.2720 -3.1929 0.7589 0.0411 0.2720 0.1086

(0.0006) (0.0055) (0.0313) (0.0141)

1.2 210 0.0258 -0.2380 -3.5275 0.6748 0.0294 0.2380 0.1085

(0.0005) (0.0049) (0.0271) (0.012)

1.2 240 0.0234 -0.2143 -3.9444 0.5349 0.0194 0.2143 0.1091

(0.0005) (0.0046) (0.0197) (0.0089)

1.2 270 0.0242 -0.2197 -4.2949 0.3824 0.0136 0.2197 0.1102

(0.0005) (0.0044) (0.0235) (0.0106)

1.2 300 0.0268 -0.2405 -3.6568 0.6608 0.0258 0.2405 0.1115

(0.0006) (0.0053) (0.0229) (0.0104)

1.2 330 0.0297 -0.2635 -3.2143 0.8437 0.0402 0.2635 0.1129

(0.0006) (0.0051) (0.0265) (0.0121)

1.2 360 0.0339 -0.2973 -3.5077 0.6762 0.0300 0.2973 0.1142

Continued on next page
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(0.0006) (0.0053) (0.0264) (0.0121)
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Chapter 4

Financial Stress Prediction: A Bayesian Approach

4.1 Introduction

This paper attempts to predict financial stress by identifying leading indicators under a Bayesian

variable selection framework. While large amount of the literature in this field focuses on financial

crisis, especially for banking crisis, this paper also includes non crisis periods. Since financial crisis

can be viewed as severe financial stress period, monitoring the real-time financial stress level as well as

predicting it provides more guidance to policy makers and private sectors than aiming at crisis periods

only.

So far most papers in this strand studying leading indicators of financial stress conclude that it

is hard to predict. Vasicek et al. (2016) identify leading indicators of financial stress, then use those

indicators as explanatory variables in both panel model for 25 OECD countries and in models at the

individual country level. Their findings suggest that it is hard to predict out-of-sample despite the

reasonably good in-sample performance. The similar conclusion is reached by Slingenberg and de Haan

(2011) as they conduct the analysis to 13 countries. Not only they find out it is hard to predict financial

stress, but also very few variables have predictive power to most countries. To improve the prediction

performance, I use weekly financial variables instead of quarterly macro variables that are used by

previous literature. These financial variables belong to five categories: interest rate, yield spread,

volatility, inflation and market return. Variable selection method is used to select more relevant ones

among potential 19 indicators and predictive likelihoods shows optimistic prediction results.

Among the literature predicting crisis referred as the Early Warning System (EWS), there is a great

amount uses Logit or Probit model (see Berg and Pattilo (1999), Bussiere and Fratzscher (2006) and

Fuertes and Kalotychou (2006)). Basically, a binary variable is defined as one if there is a crisis and

zero otherwise. The purpose of these papers is to predict the probability of the occurrence of financial

crisis. In this paper, both linear model and Probit model under normal error assumption and fat tail

assumption are used for analysis. Three financial stress indexes issued by Federal Reserve Banks are

used to identify the level data of financial stress. These indexes together with other papers on financial

uncertainty ( Bloom(2009) and Ng(2015) ) are used to identify binary variable. Linear model and

Probit model provide information for decision making of policy makers from different perspectives.
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Among literature working on leading indicators there are different model/variable selection ap-

proaches. The first approach is the classic model selection approach based on significance tests or

stepwise search methods (Forward, Backward Stepwise Procedures). It is based on selection criteria

such as R2, residual sum of squares (RSS), the Akaike Information Criterion (AIC) and the Bayes Infor-

mation Criterion (BIC). Also t-test can be used to check if the coefficient is significantly different from

zero. See Slingenberg and de Haan (2011). The second approach is called signal extraction approach.

Kaminsky, Lizondo and Reinhart (1998) is one of the pioneers proposing Early Warning System to pre-

dict currency crises. In their paper, the trend of several financial/banking variables which indicating

the healthiness of the banking industry are monitored. Whenever an indicator departs from a given

threshold level, a warning signal that a crisis might take place within the next 24 months is issued.

One of the most recent work belonging to this stand is Christensen and Li (2014). They extend the

method by constructing composite indicators and conclude that composite indicator outperforms the

others. The third category uses Bayesian approach. Vasicek et al.(2016) is one of the most recent works

employing Bayesian model averaging (BMA) to identify leading indicators of financial stress. In this

paper, I use stochastic search variable selection (SSVS) formulation of George and McCulloch (1993).

SSVS is developed to avoid the overwhelming burden of calculating the posterior probabilities of all

2p models encountered in BMA. It uses the Gibbs sampler to simulate a sample from the posterior

distribution and the beauty of SSVS is the fastness and efficiency. More details are described in Section

4.2.

Overall, this paper differentiates itself from other literature by focusing on predicting financial

stress and looking for leading indicator under Bayesian stochastic search variable selection framework.

The paper is organized as follows. Section 2.1 describes Bayesian Stochastic Search Variable Selec-

tion process under normal error term assumption, while Section 2.2 introduces formulation under fat

tail assumption. Section 3.1 provides data description. Section 3.2 identifies financial stress level and

binary variable representing the occurrence of financial stress. Section 3.3 discusses in-sample analysis.

Section 3.4 shows out-of-sample predicting results. Section 4 concludes.

4.2 Baysian Stochastic Search Variable Selection

The advantage of SSVS developed by George and McCulloch (1993) comparing to Bayesian model

averaging is that it avoids the overwhelming burden of calculating the posterior probabilities of all 2k

models given k potential indicators. The formulation can be found in George and McCulloch (1993)

and Koop et al. (2007). In this paper, Both normal assumption and fat tail assumption are considered

for the error term.
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4.2.1 Normal Error Assumption

Assume financial stress level follows the linear regression model as below:

y = Xβ + ε, ε
iid∼ N(0, σ2I) (4.1)

where X is a n×(k+1) matrix represents the time series of total k potential indicators. β is a (k+1)×1

vector and includes intercept. The assumed prior distributions are:

βj |γj ∼ (1− γj)N(0, τ2j ) + γjN(0, c2jτ
2
j ), j = 1, 2, ..., k (4.2)

β0 ∼ N(0, V0) (4.3)

σ2 ∼ IG(a, b) (4.4)

The purpose of Bayesian SSVS is to select informative indicators among all and the key mechanism

lies in equation (4.2). The prior distribution of βj is a mixture of two normal distributions that are

both centered at zero but with different variances: one is vary small while the other is vary big. γj is

a either zero or one. γj = 1 means the normal distribution with big variance is selected. It implies

that βj is most likely different from zero and xj should be selected. Following Koop et al. (2007), I

set τ2j = .0000001 and c2jτ
2
j = 9. The prior distribution of σ2 follows a Inverse-Gamma distribution

with shape parameter a = 3 and scale parameter b = 1. The prior distribution of β0 follows normal

distribution with mean 0 and and variance V0 = 1.

According to Koop et al. (2007), the posterior conditionals can be easily obtained as following:

β|γ, σ2, y ∼ N
([
X ′X/σ2 + V −1

β

]
X ′y/σ2, X ′y/σ2) , (4.5)

σ2|β, γ, y ∼ IG
(n

2
+ a,

[
b−1 + 0.5(y −Xβ)′(y −Xβ)

]−1
)
, (4.6)

γj |γ−j , β, σ2, y ∼ B

(
1,

pφ(βj ; 0, c2jτ
2
j )

pφ(βj ; 0, c2jτ
2
j ) + (1− p)φ(βj ; 0, τ2j )

)
. (4.7)

where, Vβ is a (k+ 1)× (k+ 1) diagonal matrix. Let Vβ(i, i) represent the ith element on the diagonal.

For i = 1, Vβ(i, i) = V0. For i = 2, 3, ..., k + 1, Vβ(i, i) = γic
2
i τ

2
i + (1 − γi)τ

2
i . Here the posterior

distribution of γj follows Binomial distribution and the hyperparameter p = 1/2 and φ represents

normal probability.

For Probit model, a binary variable is defined as:

z =

1, if y ≥ 0

0, if y < 0

Thus, the latent variable y can be drawn from truncated normal distribution,

y|β, z ∼

TN[0,∞)(Xβ, σ
2) if z = 1,

TN(∞,0)(Xβ, σ
2) if z = 0

To solve the identification problem in Probit model, I set σ = 1.
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4.2.2 Fat Tail Assumption

Now consider the fail tail assumption for the error term:

yi = β0 +

k∑
j=1

xjiβj + εi, εi|λi, σ2 iid∼ N(0, λiσ
2) (4.8)

with prior distribution of λi as:

λi
iid∼ IG

(
ν

2
,

2

ν

)
, i = 1, 2, ..., n (4.9)

By marginalizing over the mixing variable λi, εi ∼ t(0, σ2, ν). In other words, I define the student

t-distribution as a scale mixture of normal distributions. In this paper I assume ν = 5. Following the

notation in Koop et al. (2007), define Λ = diag {λi}.

With the same prior distributions for β and σ2, the posterior conditionals for this model are:

β|γ, σ2, {λi} , y ∼ N
([
X ′Λ−1X/σ2 + V −1

β (γ)
]
X ′Λ−1y/σ2, X ′Λ−1y/σ2) , (4.10)

σ2|β, {λi} , y ∼ IG
(n

2
+ a,

[
b−1 + 0.5(y −Xβ)′Λ−1(y −Xβ)

]−1
)
, (4.11)

λi|β, σ2, y
iid∼ IG

(
ν + 1

2
,

[
1

2

[
yi − xiβ

σ

]2
+
ν

2

]−1)
. (4.12)

For Probit model, I set σ = 1. And the latent variable y can be drawn from truncated normal

distribution,

yi|β, zi ∼

TN[0,∞)(Xiβ, λi) if zi = 1,

TN(∞,0)(Xiβ, λi) if zi = 0

Gibbs Sampler is used to draw from the posterior distributions. For in-sample analysis, I set the

Markov chain Monte Carlo (MCMC) length as 5,5000 with the first 5000 burn-in. For out-of-sample

prediction analysis, I set the MCMC length as 5,2000 with the first 2000 burn-in. The estimates are

calculated as the mean of the MCMC chain. The initial values of the parameters for each rolling window

are the estimates from previous rolling window.

4.3 Empirical Analysis

4.3.1 Data

Data is obtained from the website of Federal Reserve Bank of St. Louis and Haver database. These

are weekly data ranging from 2003-01-03 to 2016-05-20 with total sample size of 698. The potential

indicators are classified into five categories: interest rate, yield spread, volatility, inflation and return.

For interest rate, I include both level and first difference of the data. All the potential indicators are

financial variables. Please see Table 4.1 for the list of the variables.

4.3.2 Identify Financial Stress

Different financial stress indexes (FSI) are issued by Federal reserve banks to measure the financial

stress level. Although these indexes are constructed by using different methods and including different
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Table 4.1: Potential Indicators

Segment Variables

Interest Rate

level
1 effective federal funds rate
2 30-year treasury interest rate

first difference

3 effective federal funds rate
4 2-year treasury interest rate
5 10-year treasury interest rate
6 30-year treasury interest rate

Yield Spread level

7 10-year treasury interest rate - 2-year treasury interest rate
8 Merrill Lynch Asset Backed Master BBB-AA rated interest rate
9 10-year treasury - 3-month treasury
10 Merrill Lynch High Yield corporate master II index - 10-year treasury
11 Moody’s Seasoned Baa Corporate rated bond - 10 year treasury
12 3-month treasury Eurodollar (TED) spread
13 3-month AA Financial commercial paper - 3-month treasury
14 3-month LIBOR - OIS

Volatility level
15 VIX
16 Merrill Lynch 1 month Bond Market Volatility Index

Inflation level 17 10-year nominal treasury - TIPS

Return level
18 S&P 500 Index
19 J.P. Morgan Emerging Markets Bond Index

variables, they are good indicators of financial stress level. Manamperi (2013) provides a comparative

analysis of the financial stress indexes available for the U.S. and concludes that in general, these financial

stress indexes indicates a higher financial risk during the 2008 financial crisis. Kliesen et al. (2012)

surveys a number of financial stress indexes and concludes that they are highly correlated but not as

high as might be expected.

Three FSIs are used to identify the financial stress level. They are St. Louis Fed Financial Stress

Index (STLFSI), The Chicago Fed’s National Financial Conditions Index (NFCI) and Kansas City

Financial Stress Index (KCFSI). These three indexes are widely used in literature studying financial

stress or crisis and they are constructed by including variables belonging to money market, fixed income,

equity, foreign exchange and banking sectors. Federal reserve banks provide descriptions on FSIs in

terms of the relationship between the index value and the severity of financial stress. All three indexes

are standardized with mean 0 and standard deviation 1. If the value is below 0 it indicates below normal

financial stress and if value is above zero it indicates above normal financial stress. I take average of

three indexes and label it as y. When the averaged value is above 0, binary variable zfsi is identified

and assigned as 1. When it is below 0, there is no financial stress and zfsi = 0.

Figure 4.1 shows the movement of the FSIs across the whole period studied. There are two major

periods that FSI curves bounce around zero. The first one belongs to early 2000 recession and the other

is the European debt crisis period. The period with the spike reveals 07-09 crisis.

I also conduct the analysis based on Probit model. To define the binary data, the results from

Bloom(2009) and Ng(2015) are used along with three FSIs to identify the occurrence of financial stress.
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Figure 4.1: Financial Stress Indexes
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Both papers identify big macro uncertainty periods on history and the months are defined according to

the NBER Business Cycle Dating Committee. If the period is classified as macro uncertainty by either

paper, I assign zbloom = 1 or zNg = 1. I define binary variable z = 1 as long as one of the three: zfsi,

zbloom and zNg, is 1, otherwise z = 0. For the whole period studied, total number of z = 1 is 537 and

z = 0 is 161.

4.3.3 In-Sample Analysis

In-sample analysis shows the variable selection and estimates using the whole sample period. The

results are based on 1-week, 1-month, 3-month ahead predictions.

Table 4.2, 4.3, 4.4 and 4.5 show the variable selection and coefficient estimates with 1-week, 1-

month and 3-month lags for Linear and Probit model respectively. Variables are selected if γ̂ ≥ 0.5.

The result shows Different variables are selected according to different models. For Linear model under

normal error assumption, interest rates and market returns are less informative predicting financial

stress. Inflation is not selected for 1-month and 3-month prediction. For Linear model under student-t

assumption with 5 degree of freedom, variables belonging to all categories are selected. For Probit

model with normal assumption, inflation and market return variables are also selected along with yield

spread and volatility. Interest rate still provides litter information in predicting future. For Probit

model with student-t assumption, more variables are selected across all five categories. For 1-week

ahead prediction with linear model, the variance of the error term is very small which leads to positive
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log-likelihood. Also it shows that the bigger the prediction time gap, the bigger the variance of the

error term. It is easy to understand that it is more likely to get more accurate prediction for the data

in the near future than further.

Results are then evaluated using predictive likelihoods throughout the sample by calculating Eθ|y[p(ŷ|y, θ)]

under Bayesian framework. The probability can be calculated as Ncdf (ŷ > 0; σ̂2) or tcdf (ŷ > 0; σ̂2, v)

based on different assumptions of error term. Here Ncdf and tcdf represent the probability cumulative

functions of normal and student-t distributions. The results are provided in Figure 4.2, 4.3, 4.4 and 4.5.

When estimated value of financial stress level is close to 0, the estimated probability of the occurrence

of financial stress is close to 0.5. It happens when we suffer mild financial stress, or enter or exist several

financial stress period. The results are consistent with the observations.

Figure 4.6 and Figure 4.7 compare the estimated values of financial stress level with the true values.

The true value is the average of three indices: STLFSI, NFCI and KCFSI. All these figures suggest

that the nearer the predicting period the more precise the estimate is. The deviation is more bigger

during the 07-09 crisis period.

The in-sample prediction performances are also presented in two other ways. The first measure is the

Mean Squared Error (MSE). Table 4.6 shows the MSE under different scenarios. The MSE gets bigger

when the prediction time gap increases for both models. For 1-week and 1-month prediction, normal

assumption is slightly better. For 3-month prediction, student-t assumption performances better.

The second way is called signal approach. I define a binary variable Obs to be 1 if y > 0 and 0

otherwise. If estimates ŷ > 0 a financial stress signal S = 1 is assigned, if ŷ < 0, S = 0. Table 4.7

and 4.8 display the correct ratios under different scenarios and the results are promising. It shows all

models show good in-sample performance especially for 1-week prediction. As the prediction time gap

increases, the precision decreases.
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Table 4.2: In Sample Variable Selection: Linear Model

1-week 1-month 3-month 1-week 1-month 3-month
effective federal funds rate 0.69 0.10 0.68 0.98 0.94 0.45
30-year treasury interest rate 0.01 0.01 0.01 0.98 0.95 0.59
effective federal funds rate (first difference) 0.01 0.01 0.01 0.77 0.75 0.20
2-year treasury interest rate (first difference) 0.00 0.22 0.03 0.51 0.33 0.04
10-year treasury interest rate (first difference) 0.00 0.01 0.16 0.54 0.36 0.15
30-year treasury interest rate (first difference) 0.00 0.01 0.04 0.42 0.46 0.19
10-year treasury interest rate - 2-year treasury interest rate 0.00 0.05 0.04 0.14 0.24 0.27
Merrill Lynch Asset Backed Master BBB-AA rated interest rate 1.00 1.00 1.00 1.00 1.00 1.00
10-year treasury - 3-month treasury 0.26 0.11 0.12 0.21 0.09 0.45
Merrill Lynch High Yield corporate master II index - 10-year treasury 1.00 0.99 0.01 1.00 1.00 0.94
Moody's Seasoned Baa Corporate rated bond - 10 year treasury 0.01 0.01 0.06 0.51 0.12 0.08
3-month treasury Eurodollar (TED) spread 0.08 1.00 0.40 0.93 1.00 0.07
3-month AA Financial commercial paper - 3-month treasury 1.00 1.00 1.00 1.00 1.00 1.00
3-month LIBOR - OIS 1.00 1.00 0.15 1.00 1.00 0.10
VIX 1.00 1.00 0.10 1.00 1.00 1.00
Merrill Lynch 1 month Bond Market Volatility Index 1.00 0.00 0.04 1.00 1.00 0.88

Inflation 10-year nominal treasury - TIPS 0.69 0.00 0.01 1.00 1.00 0.07
S&P 500 Index 0.07 0.08 0.02 0.81 0.96 0.05
J.P. Morgan Emerging Markets Bond Index 0.02 0.01 0.46 1.00 1.00 0.82Return

Variables Linear Normal  Linear Student-t (5)

Interest Rate

Yield Spread

Volatility
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Table 4.3: In Sample Coefficient Estimates: Linear Model

1-week 1-month 3-month 1-week 1-month 3-month
Intercept

-0.22
( 0.01 )

-0.23
( 0.01 )

-0.23
( 0.02 )

-0.23
( 0.01 )

-0.26
( 0.01 )

-0.31
( 0.01 )

effective federal funds rate 
0.02

( 0.02 )
0.01

( 0.02 )
-0.08

( 0.07 )
0.07

( 0.03 )
0.10

( 0.05 )
0.02

( 0.06 )
30-year treasury interest rate

0.00
( 0.00 )

0.00
( 0.00 )

0.00
( 0.02 )

0.04
( 0.02 )

0.06
( 0.04 )

0.06
( 0.06 )

effective federal funds rate (first difference)
0.00

( 0.00 )
0.00

( 0.00 )
0.00

( 0.00 )
0.00

( 0.01 )
-0.01

( 0.01 )
-0.01

( 0.01 )
2-year treasury interest rate (first difference)

0.00
( 0.00 )

-0.01
( 0.02 )

0.00
( 0.01 )

0.00
( 0.01 )

0.00
( 0.01 )

0.00
( 0.00 )

10-year treasury interest rate (first difference)
0.00

( 0.00 )
0.00

( 0.00 )
-0.01

( 0.02 )
0.00

( 0.01 )
0.00

( 0.01 )
0.00

( 0.01 )
30-year treasury interest rate (first difference)

0.00
( 0.00 )

0.00
( 0.00 )

0.00
( 0.01 )

0.00
( 0.01 )

0.01
( 0.01 )

0.00
( 0.01 )

10-year treasury interest rate - 2-year treasury interest rate
0.00

( 0.00 )
0.00

( 0.01 )
0.00

( 0.01 )
0.00

( 0.01 )
-0.02

( 0.03 )
0.00

( 0.03 )
Merrill Lynch Asset Backed Master BBB-AA rated interest rate 

0.33
( 0.02 )

0.42
( 0.03 )

0.56
( 0.04 )

0.27
( 0.02 )

0.24
( 0.03 )

0.26
( 0.04 )

10-year treasury - 3-month treasury
-0.01

( 0.01 )
0.00

( 0.01 )
-0.01

( 0.04 )
0.00

( 0.02 )
0.00

( 0.02 )
-0.01

( 0.04 )
Merrill Lynch High Yield corporate master II index - 10-year treasury 

0.24
( 0.04 )

0.14
( 0.04 )

0.00
( 0.01 )

0.34
( 0.03 )

0.30
( 0.05 )

0.13
( 0.07 )

Moody's Seasoned Baa Corporate rated bond - 10 year treasury 
0.00

( 0.00 )
0.00

( 0.01 )
0.01

( 0.03 )
0.00

( 0.02 )
-0.01

( 0.02 )
0.00

( 0.02 )
3-month treasury Eurodollar (TED) spread 

-0.01
( 0.02 )

-0.21
( 0.08 )

-0.11
( 0.15 )

-0.02
( 0.04 )

-0.27
( 0.07 )

-0.01
( 0.04 )

3-month AA Financial commercial paper - 3-month treasury 
0.14

( 0.02 )
0.38

( 0.04 )
0.59

( 0.09 )
0.14

( 0.03 )
0.29

( 0.04 )
0.38

( 0.04 )
3-month LIBOR - OIS 

0.21
( 0.02 )

0.23
( 0.05 )

0.02
( 0.06 )

0.17
( 0.03 )

0.31
( 0.04 )

0.01
( 0.03 )

VIX 
0.20

( 0.02 )
0.17

( 0.03 )
0.01

( 0.03 )
0.18

( 0.01 )
0.16

( 0.02 )
0.13

( 0.03 )
Merrill Lynch 1 month Bond Market Volatility Index 

0.06
( 0.01 )

0.00
( 0.00 )

0.00
( 0.01 )

0.08
( 0.01 )

0.09
( 0.02 )

0.05
( 0.03 )

Inflation 10-year nominal treasury - TIPS 
0.03

( 0.02 )
0.00

( 0.00 )
0.00

( 0.00 )
0.05

( 0.01 )
0.04

( 0.01 )
0.00

( 0.01 )
S&P 500 Index

0.00
( 0.00 )

0.00
( 0.01 )

0.00
( 0.00 )

-0.01
( 0.01 )

-0.02
( 0.01 )

0.00
( 0.00 )

J.P. Morgan Emerging Markets Bond Index 
0.00

( 0.00 )
0.00

( 0.00 )
0.04

( 0.05 )
0.05

( 0.02 )
0.07

( 0.02 )
0.06

( 0.04 )
Variance of Error Term 0.02

( 0.00 )
0.08

( 0.00 )
0.21

( 0.01 )
0.01

( 0.00 )
0.02

( 0.00 )
0.05

( 0.00 )
LogL 544.63 124.66 -300.23 611.05 223.29 -366.54

Return

Variables Linear Normal  Linear Student-t (5)

Interest Rate

Yield Spread

Volatility
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Table 4.4: In Sample Variable Selection: Probit Model

1-week 1-month 3-month 1-week 1-month 3-month
effective federal funds rate 0.17 0.68 0.48 0.84 0.33 0.62
30-year treasury interest rate 0.33 1.00 1.00 0.80 1.00 1.00
effective federal funds rate (first difference) 0.10 0.05 0.06 0.82 0.30 0.30
2-year treasury interest rate (first difference) 0.11 0.07 0.07 0.52 0.19 0.29
10-year treasury interest rate (first difference) 0.13 0.13 0.16 0.35 0.16 0.21
30-year treasury interest rate (first difference) 0.15 0.27 0.23 0.74 0.32 0.57
10-year treasury interest rate - 2-year treasury interest rate 0.14 0.28 1.00 0.93 0.59 1.00
Merrill Lynch Asset Backed Master BBB-AA rated interest rate 1.00 0.95 1.00 1.00 0.84 1.00
10-year treasury - 3-month treasury 0.37 0.68 1.00 0.79 0.93 1.00
Merrill Lynch High Yield corporate master II index - 10-year treasury 0.82 0.77 0.96 0.95 0.98 0.96
Moody's Seasoned Baa Corporate rated bond - 10 year treasury 0.30 0.34 0.31 0.99 0.29 0.33
3-month treasury Eurodollar (TED) spread 0.69 0.22 1.00 0.52 0.47 0.98
3-month AA Financial commercial paper - 3-month treasury 0.74 0.42 0.15 1.00 0.58 0.73
3-month LIBOR - OIS 0.48 0.25 0.52 0.66 0.52 0.90
VIX 1.00 1.00 1.00 1.00 1.00 0.90
Merrill Lynch 1 month Bond Market Volatility Index 0.42 1.00 0.39 1.00 1.00 0.54

Inflation 10-year nominal treasury - TIPS 0.76 0.59 0.11 1.00 0.78 0.30
S&P 500 Index 0.16 0.05 0.08 0.52 0.15 0.17
J.P. Morgan Emerging Markets Bond Index 0.26 1.00 1.00 1.00 1.00 1.00Return

Variables Probit Normal Probit Student-t (5)

Interest Rate

Yield Spread

Volatility
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Table 4.5: In Sample Coefficient Estimates: Probit Model

1-week 1-month 3-month 1-week 1-month 3-month
Intercept

-1.60
( 0.38 )

-1.66
( 0.29 )

-1.93
( 0.41 )

-1.81
( 0.52 )

-1.92
( 0.32 )

-2.26
( 0.35 )

effective federal funds rate 
0.10

( 0.43 )
0.66

( 1.22 )
-1.69

( 1.97 )
2.24

( 2.23 )
0.59

( 1.25 )
-1.80

( 1.95 )
30-year treasury interest rate

0.04
( 0.66 )

2.48
( 0.96 )

5.37
( 1.14 )

1.49
( 1.68 )

3.55
( 1.08 )

5.89
( 1.19 )

effective federal funds rate (first difference)
0.04

( 0.18 )
0.00

( 0.05 )
0.00

( 0.07 )
0.15

( 0.51 )
0.00

( 0.17 )
-0.01

( 0.21 )
2-year treasury interest rate (first difference)

0.01
( 0.11 )

-0.01
( 0.07 )

0.01
( 0.07 )

0.18
( 0.35 )

-0.03
( 0.11 )

0.12
( 0.24 )

10-year treasury interest rate (first difference)
0.01

( 0.21 )
-0.03

( 0.11 )
-0.03

( 0.16 )
-0.04

( 0.43 )
-0.04

( 0.12 )
-0.05

( 0.18 )
30-year treasury interest rate (first difference)

-0.07
( 0.25 )

-0.08
( 0.15 )

-0.13
( 0.21 )

-0.52
( 0.48 )

-0.09
( 0.17 )

-0.20
( 0.23 )

10-year treasury interest rate - 2-year treasury interest rate
-0.01

( 0.36 )
0.57

( 1.13 )
2.94

( 0.97 )
0.98

( 2.05 )
1.10

( 1.23 )
3.52

( 1.00 )
Merrill Lynch Asset Backed Master BBB-AA rated interest rate 

3.29
( 0.94 )

1.46
( 0.85 )

2.04
( 0.74 )

6.33
( 1.55 )

1.59
( 1.04 )

2.73
( 0.99 )

10-year treasury - 3-month treasury
-0.23

( 0.47 )
-1.00

( 1.14 )
-4.23

( 1.35 )
-1.37

( 1.80 )
-1.90

( 1.21 )
-4.78

( 1.29 )
Merrill Lynch High Yield corporate master II index - 10-year treasury 

1.95
( 1.73 )

1.86
( 1.40 )

2.66
( 1.12 )

2.90
( 2.07 )

3.05
( 1.50 )

2.63
( 1.22 )

Moody's Seasoned Baa Corporate rated bond - 10 year treasury 
0.05

( 0.75 )
0.04

( 0.86 )
-0.45

( 0.84 )
4.02

( 1.76 )
-0.16

( 0.68 )
-0.35

( 0.79 )
3-month treasury Eurodollar (TED) spread 

0.36
( 1.56 )

0.06
( 0.61 )

3.04
( 2.29 )

0.21
( 1.37 )

-0.10
( 1.07 )

3.72
( 1.50 )

3-month AA Financial commercial paper - 3-month treasury 
2.11

( 1.78 )
0.40

( 0.71 )
0.80

( 1.16 )
4.70

( 1.56 )
0.74

( 1.12 )
1.04

( 1.25 )
3-month LIBOR - OIS 

0.18
( 0.95 )

0.14
( 0.48 )

-1.29
( 1.30 )

0.17
( 1.37 )

0.43
( 0.90 )

-2.05
( 1.12 )

VIX 
3.08

( 0.65 )
1.91

( 0.44 )
0.53

( 0.56 )
3.99

( 0.97 )
2.01

( 0.49 )
0.88

( 0.50 )
Merrill Lynch 1 month Bond Market Volatility Index 

0.58
( 0.88 )

1.31
( 0.42 )

-0.16
( 0.33 )

3.36
( 0.91 )

1.66
( 0.47 )

-0.41
( 0.50 )

Inflation 10-year nominal treasury - TIPS 
1.12

( 0.85 )
0.50

( 0.52 )
0.00

( 0.14 )
3.03

( 0.94 )
0.73

( 0.55 )
0.04

( 0.23 )
S&P 500 Index

0.03
( 0.11 )

0.01
( 0.06 )

0.00
( 0.03 )

0.05
( 0.26 )

0.00
( 0.06 )

0.03
( 0.10 )

J.P. Morgan Emerging Markets Bond Index 
0.28

( 0.71 )
3.09

( 0.73 )
5.72

( 1.03 )
3.24

( 1.30 )
4.08

( 0.90 )
6.52

( 1.14 )
LogL -27.13 -49.95 -546.88 -18.85 -61.3863 -205.13

Return

Variables Probit Normal Probit Student-t (5)

Interest Rate

Yield Spread

Volatility
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Figure 4.2: Probability of Occurrence of Financial Stress - Linear Model with Normal
Assumption
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Figure 4.3: Probability of Occurrence of Financial Stress - Linear Model with Student-t
Assumption
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Figure 4.4: Probability of Financial Stress - Probit Model with Normal Assumption

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0

0.5

1

1-week
Bloom
Ng

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0

0.5

1

1-month
Bloom
Ng

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0

0.5

1

3-month
Bloom
Ng



104

Figure 4.5: Probability of Financial Stress - Probit Model with Student-t Assumption
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Figure 4.6: Prediction vs True value - Linear Model with Normal Assumption
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Figure 4.7: Prediction vs True value - Linear Model with Student-t Assumption
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Table 4.6: Prediction Performance - Linear Model Mean Squared Error

Normal Student - t

1-week 0.0098 0.0100
1-month 0.0230 0.0298
3-month 0.1238 0.1077

Table 4.7: Prediction Performance - Financial Stress Signal - Linear Model

1-week
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 536 1 537 99.81 0.19 Obs = 0 536 1 537 99.81 0.19
Obs = 1 13 148 161 91.93 8.07 Obs = 1 11 150 161 93.17 6.83

1-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 537 0 537 100.00 0.00 Obs = 0 537 0 537 100.00 0.00
Obs = 1 28 133 161 82.61 17.39 Obs = 1 26 135 161 83.85 16.15

3-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 535 2 537 99.63 0.37 Obs = 0 537 0 537 100.00 0.00
Obs = 1 50 111 161 68.94 31.06 Obs = 1 52 109 161 67.70 32.30

Notes: (1) If S = 1, then a financial stress signal is issued.
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Table 4.8: Prediction Performance - Financial Stress Signal - Probit Model

1-week
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 531 6 537 98.88 1.12 Obs = 0 533 4 537 99.26 0.74
Obs = 1 6 155 161 96.27 3.73 Obs = 1 3 158 161 98.14 1.86

1-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 531 6 537 98.88 1.12 Obs = 0 527 10 537 98.14 1.86
Obs = 1 17 144 161 89.44 10.56 Obs = 1 18 143 161 88.82 11.18

3-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 526 11 537 97.95 2.05 Obs = 0 515 22 537 95.90 4.10
Obs = 1 47 114 161 70.81 29.19 Obs = 1 44 117 161 72.67 27.33

Notes: (1) If S = 1, then a financial stress signal is issued.

4.3.4 Out-of-Sample Prediction

The out-of-sample predictions are conducted under linear model by using 52-week rolling window based

on both normal error assumption and fat tail assumption. Probit model may have substantial bias when

the ratio of event occurrence is too small by using rolling window method. In this part, only linear model

is considered for analysis. The reason of using rolling window is that recent data is more informative

in predict near future. And excluding earlier period data can reduce the noise. The length of rolling

window is quite intuitive and here I use 52-week window which represents one year length.

• 1-week ahead prediction, start predicted date: 1/16/2004;
• 1-month ahead prediction, start predicted date: 2/27/2004;
• 3-month ahead prediction, start predicted date: 6/18/2004

Figure 4.8 and Figure 4.9 show the variable selection results for three prediction gaps under normal

and student-t distributions respectively. In each sub-figure, integers 1 to 19 on y axis represent the

label of 19 potential variables in Table 4.1. It is interesting to see that before the 07-09 crisis, there is

a period that none of the potential indicators is selected. The level of financial stress depends only on

the intercept in the linear model. More variables are selected during the 07-09 crisis period. And with

the impact of economic crisis weakened, less variables are selected.

Variable 3,4,5 and 6 belong to the interest rate (first difference) category and they are seldom

selected especially under 1-week and 1-month scenarios. During the financial stress periods, from 07-

09 crisis to European debt crisis period, most of the selected variables belong to yield spread, market

volatility, inflation and market return categories. Moreover the bigger the predicting time gap, the more

variables are selected as leading indicators for the prediction given a time point. It is also interesting

to see that variable 18 which is the log return of S&P 500 index is never selected.
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Figure 4.8: Variable Selection under Normal Assumption
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(b) 1-month prediction
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(c) 3-month prediction

Note: total 19 variables. 1 - effective federal funds rate; 2 - 30-year treasury interest rate; 3 -
effective federal funds rate (first difference); 4 - 2-year treasury interest rate (first difference); 5 -
10-year treasury interest rate (first difference); 6 - 30-year treasury interest rate (first difference);
7 - 10-year treasury interest rate - 2-year treasury interest rate; 8 - Merrill Lynch Asset Backed
Master BBB-AA rated interest rate; 9 - 10-year treasury - 3-month treasury; 10 - Merrill Lynch
High Yield corporate master II index - 10-year treasury; 11 - Moody’s Seasoned Baa Corporate
rated bond - 10 year treasury; 12 - 3-month treasury Eurodollar (TED) spread; 13 - 3-month
AA Financial commercial paper - 3-month treasury; 14 - 3-month LIBOR - OIS; 15 - VIX; 16
- Merrill Lynch 1 month Bond Market Volatility Index; 17 - 10-year nominal treasury - TIPS;
18 - S&P 500 Index (return); 19 - J.P. Morgan Emerging Markets Bond Index (return).
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Figure 4.9: Variable Selection under Student-t Assumption
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(a) 1-week prediction
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(b) 1-month prediction
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(c) 3-month prediction

Note: total 19 variables. 1 - effective federal funds rate; 2 - 30-year treasury interest rate; 3 -
effective federal funds rate (first difference); 4 - 2-year treasury interest rate (first difference); 5 -
10-year treasury interest rate (first difference); 6 - 30-year treasury interest rate (first difference);
7 - 10-year treasury interest rate - 2-year treasury interest rate; 8 - Merrill Lynch Asset Backed
Master BBB-AA rated interest rate; 9 - 10-year treasury - 3-month treasury; 10 - Merrill Lynch
High Yield corporate master II index - 10-year treasury; 11 - Moody’s Seasoned Baa Corporate
rated bond - 10 year treasury; 12 - 3-month treasury Eurodollar (TED) spread; 13 - 3-month
AA Financial commercial paper - 3-month treasury; 14 - 3-month LIBOR - OIS; 15 - VIX; 16
- Merrill Lynch 1 month Bond Market Volatility Index; 17 - 10-year nominal treasury - TIPS;
18 - S&P 500 Index (return); 19 - J.P. Morgan Emerging Markets Bond Index (return).
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Figure 4.10 and Figure 4.11 compare the estimated values of financial stress level with the true

values, and Figure 4.12 and Figure 4.13 show the absolute errors of estimates. The same as in-sample

prediction, all these figures suggest that the nearer the predicting period the more precise the estimate

is. The deviation is more bigger during the 07-09 crisis period.

Figure 4.10: Prediction vs True value - Normal Assumption
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Note: True = average of three indexes: STLFSI, NFCI and KCFSI

The probability of occurrence of financial stress are displayed in Figure 4.14 and 4.15. It is easy to

see that during 07-09 financial crisis period, the probability of occurrence of financial stress stay close

to 1. The overall results are consistent with the observations.

In this section the out-of-sample prediction performances are also displayed in two ways: MSE snd

signal approach. Table 4.9 shows the MSE under different scenarios. The MSE gets bigger when the

prediction time gap increases for both models. For 1-week prediction, normal assumption is slightly

better. For 1-month and 3-month prediction, student-t assumption performances better.



114

Figure 4.11: Prediction vs True value - Student-t Assumption

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
-5

0

5

10

True
Estimated

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
-5

0

5

10

15

True
Estimated

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
-10

0

10

20

True
Estimated

Note: True = average of three indexes: STLFSI, NFCI and KCFSI

Table 4.9: Prediction Performance - Mean Squared Error

Normal Student - t

1-week 0.0316 0.0419
1-month 0.4571 0.2509
3-month 2.6027 2.3559
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Figure 4.12: Absolute Value of Prediction Errors - Normal Assumption
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Figure 4.13: Absolute Value of Prediction Errors - Student-t Assumption
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Figure 4.14: Probability of Financial Stress - Normal Assumption
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Figure 4.15: Probability of Financial Stress - Student-t Assumption
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Table 4.10 displays the signal approach results under different scenarios and the results are promis-

ing. The correct ratios are quite high for 1-week prediction. As the prediction time gap increases, the

precision decreases. In general the normal assumption outperforms the fat tail assumption except for

Obs = 1 under 3-month case.

Table 4.10: Prediction Performance - Financial Stress Signal

1-week
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 492 4 496 99.19 0.81 Obs = 0 489 7 496 98.59 1.41
Obs = 1 17 132 149 88.59 11.41 Obs = 1 22 127 149 85.23 14.77

1-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 480 10 490 97.96 2.04 Obs = 0 477 13 490 97.35 2.65
Obs = 1 27 122 149 81.88 18.12 Obs = 1 34 115 149 77.18 22.82

3-month
Normal Student - t

S = 0 S = 1 Total % Correct % Incorrect S = 0 S = 1 Total % Correct % Incorrect
Obs = 0 435 39 474 91.77 8.23 Obs = 0 427 47 474 90.08 9.92
Obs = 1 45 104 149 69.80 30.20 Obs = 1 41 108 149 72.48 27.52

Notes: (1) If S = 1, the a financial stress signal is issued.

4.4 Conclusions

This paper uses a Bayesian variable selection framework to identify leading indicators of financial stress.

It contributes to emerging literature on financial stress and the stability of the whole financial system

and allows for the calculation of real-time financial stress level. Monitoring and predicting real-time

financial stress provides additional guidance to policy makers and the private sector.

The stochastic search variable selection (SSVS) developed in George and McCulloch (1993) is used

to find leading indicators. Financial stress indexes issued by Federal Reserve Banks are used to identify

the financial stress level. These stress indexes together with Bloom(2009) and Ng(2015) are used to

identify the occurrence of major financial stress period. Both linear model and Probit model under

normal error assumption and fat tail assumption are used for analysis. Ex-post and ex ante approaches

are used for analysis. The first (ex-post) approach allows for the identification of leading indicators from

a historical perspective. The second (ex ante) approach allows for the identification of financial stress

indicators on a real time basis by using rolling window. The results are then evaluated by predictive

likelihoods.

The results show that all five variable categories are informative in predicting financial stress. But

under normal error assumption less variables are selected compared to fat tail assumption especially
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for interest rate category. It also shows that none or very few potential indicators are selected when

the market is under normal financial stress level. More variables are selected during the 07-09 crisis

period. With the impact of economic crisis weakened, few variables are selected. It is also interesting

to see that the log return of S&P 500 index is less informative than expected in predicting financial

stress level.
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