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ABSTRACT OF THE DISSERTATION

New Models and Methods for Applied Statistics: Topics

in Computer Experiments and Time Series Analysis

By YIBO ZHAO

Dissertation Director:

Ying Hung

In applied statistics, people develop models to solve real world problems based on

data. However, the data is growing fast and become more and more massive and

complex. Conventional models are limited in the capability of dealing with the fast

growing data. This dissertation develops two new models in computer experiments and

time series analysis. The new models are developed based on the special features of

two real-world problems. The two datasets are from an IBM data thermal study and a

biological cell adhesion experiment.

For computer experiment, we address two important issues in Gaussian process (GP)

modeling. One is how to reduce the computational complexity in GP modeling and the

other is how to simultaneous perform variable selection and estimation for the mean

function of GP models. Estimation is computationally intensive for GP models because

it heavily involves manipulations of an n-by-n correlation matrix, where n is the sample
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size. Conventional penalized likelihood approaches are widely used for variable selec-

tion. However, the computational cost of the penalized likelihood estimation (PMLE)

or the corresponding one-step sparse estimation (OSE) can be prohibitively high as the

sample size becomes large, especially for GP models. To address both issues, this article

proposes an efficient subsample aggregating (subagging) approach with an experimental

design-based subsampling scheme. The proposed method is computationally cheaper,

yet it can be shown that the resulting subagging estimators achieve the same efficiency

as the original PMLE and OSE asymptotically. The finite-sample performance is ex-

amined through simulation studies. Application of the proposed methodology to a

data center thermal study reveals some interesting information, including identifying

an efficient cooling mechanism.

Motivated by an analysis of cell adhesion experiments, we introduce a new statistical

framework within which the unique features are incorporated and the molecular binding

mechanism can be studied. This framework is based upon an extension of Markov

switching autoregressive (MSAR) models, a regime-switching type of time series model

generalized from hidden Markov models. Standard MSAR models are developed for the

analysis of individual stochastic process. To handle multiple time series processes, we

introduce Markov switching autoregressive mixed (MSARM) model that simultaneously

models multiple time series processes collected from different experimental subjects as

in the longitudinal data setting. More than a simple extension, the MSARM model

posts statistical challenges in the theoretical developments as well as computational

efficiency in high-dimensional integration.
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Chapter 1

Efficient Gaussian Process Modeling Using Experimental

Design-based Subagging

1.1 Introduction

Gaussian process (GP) models, also known as kriging models, are widely used in many

fields, including geostatistics (Cressie (1993), Stein (1999)), machine learning (Smola

and Bartlett (2001), Snelson and Ghahramani (2006)), and computer experiment mod-

eling (Santner et al. (2003), Fang et al. (2006)). In this article, we focus on two issues

in GP modeling. One is the study of simultaneous variable selection and estimation of

GP models for the mean function, in particular, and the other is how to alleviate the

computational complexity in GP modeling.

Various examples of variable selection in GP models can be found in the litera-

ture, such as in geostatistics (Hoeting et al. (2006), Huang and Chen (2007), Chu et al.

(2011)) and computer experiments (Welch et al. (1992), Linkletter et al. (2006), Joseph

et al. (2008), Kaufman et al. (2011)). In this article, we mainly focus on identifying

active effects through the mean function. Several empirical studies report that, by a

proper selection of important variables in the mean function, the prediction accuracy of

GP models can be significantly improved, especially when there are some strong trends

(Joseph et al. (2008), Hung (2011), Kaufman et al. (2011)). Compared with non-

linear effects identified from the covariance function (Linkletter et al. (2006)), linear
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effects are relatively easy to interpret, and of scientific interest in many applications.

Conventional approaches based on penalized likelihood functions, such as the penal-

ized likelihood estimators (PMLEs) and the corresponding one-step sparse estimators

(OSEs), are conceptually attractive, but computationally difficult in practice, especially

with massive data observed on irregular grid. This is because estimation and variable

selection heavily involve manipulations of an n×n correlation matrix that require O(n3)

computations, where n is the sample size. The calculation is computationally intensive

and often intractable for massive data.

The computational issue is well recognized in the literature and various methods

are proposed, either changing the model to one that is computationally convenient or

approximating the likelihood for the original data. Examples of the former includes Rue

and Tjelmeland (2002), Rue and Held (2005), Cressie and Johannesson (2008), Banerjee

et al. (2008), Gramacy and Lee (2008), and Wikle (2010); approximation approaches

includes Nychka (2000), Smola and Bartlett (2001), Nychka et al. (2002), Stein et al.

(2004), Furrer et al. (2006), Snelson and Ghahramani (2006), Fuentes (2007), Kaufman

et al. (2008), and Gramacy and Apley (2015). However, these methods focus mainly

on estimation and prediction, not variable selection, and most of them are developed

for datasets collected from a regular grid under a low-dimensional setting. Recent

studies address the issues by imposing a sparsity constraint on the correlation matrix,

including covariance tapering and compactly supported correlation functions (Kaufman

et al. (2008, 2011), Chu et al. (2011), Nychka et al. (2015)). However, it has been

shown that this does not work well for purposes of parameter estimation (Stein (2013),

Liang et al. (2013)), which is crucial in selecting important variables. In addition, the

connection between the degree of sparsity and computation time is nontrivial.



3

In this paper, we provide an alternative framework that alleviates the computational

difficulties in estimation and variable selection by utilizing the idea of subsample aggre-

gating, also known as subagging (Büchlmann and Yu (2002)). This framework includes

a subagging estimator and a new subsampling scheme based on a special class of exper-

imental designs called Latin hypercube designs (LHDs), that have a one-dimensional

projection property. By borrowing the inherited one-dimensional projection property

of LHDs and a block structure, the new subsampling scheme not only provides an effi-

cient data reduction but also takes into account the spatial dependency in GP models.

The computational complexity of the proposed subagging estimation is dramatically

reduced, yet the subagging estimators achieve the same efficiency as the original PMLE

and OSE, asymptotically.

The remainder of the paper is organized as follows. In Section 2, the conventional

penalized likelihood approach is discussed. The new variable selection framework, in-

cluding the new subsampling scheme and the subagging estimators are introduced in

Section 3. Theoretical properties are derived in Section 4. In Section 5, finite-sample

performance of the proposed framework is investigated in simulation studies. A data

center example is illustrated in Section 6. Discussions are given in Section 7.

1.2 Variable selection in Gaussian process models

For a domain of interest Γ in Rd, we consider a Gaussian process {Y (x) : x ∈ Rd} such

that

Y (x) = xTβ + Z(x), (1.1)

where β is a vector of unknown mean function coefficients and Z(x) is a stationary

Gaussian process with mean 0 and covariance function σ2ψ. The covariance function
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is cov{Y (x+ h), Y (x)} = σ2ψ(h;θ), where θ is a vector of correlation parameters for

the correlation function ψ(h;θ), and ψ(h;θ) is a positive semidefinite function with

ψ(0;θ) = 1 and ψ(h;θ) = ψ(−h;θ).

Suppose n observations are collected, denoted by

Dn = {
(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)
} = {(x1, y1), . . . , (xn, yn)}.

Let yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , φ = (θT ,βT , σ2)T be the vector of all the

parameters, and Θ be the parameter space. Based on (1.1), the likelihood function can

be written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp{− 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)},

where Rn(θ) is an n × n correlation matrix with elements ψ(xi − xj ;θ)]. Thus the

log-likehood function, ignoring a constant, is

`(yn,Xn,φ) = − 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)

−1

2
|Rn(θ)| − n

2
log(σ2), (1.2)

where β, θ, and σ are the unknown parameters.

To achieve simultaneous variable selection and parameter estimation, we focus on

penalized likelihood approaches, which are increasingly popular in recent years. A

penalized log-likelihood function for GP models can be written as

`p(yn,Xn,φ) = `(yn,Xn,φ)− n
p∑
j=1

pλ(|βj |), (1.3)

where pλ(·) is a pre-specified penalty function with a tuning parameter λ. There are

various choices of penalty functions such as LASSO (Donoho and Johnstone (1994),

Tibshirani (1996)), the adaptive LASSO (Zou (2006)), and the minimax concave penalty
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(Zhang (2010)). In this article, we focus on the smoothly clipped absolute deviation

(SCAD) penalty (Fan and Li (2001)) defined by

pλ(|β|) =



λ|β| if |β| > λ,

λ2 + (a− 1)−1(aλ|β| − β2/2− aλ2 + λ2/2) ifλ < |β| ≤ aλ,

(a+ 1)λ2/2 if |β| > aλ,

for some a > 2. By maximizing (1.3), the penalized maximum likelihood estimators

(PLMEs) of φ can be obtained as φ̂n = arg maxφ `p(yn,Xn,φ).

To compute PMLEs under the SCAD penalty, Zou and Li (2008) develop a unified

algorithm to improve computational efficiency by locally linear approximation (LLA)

of the penalty function. They propose an one-step LLA estimation that approximates

the solution after just one iteration in a Newton-Raphson-type algorithm starting at

the maximum likelihood estimates (MLEs). Chu et al. (2011) extend the one-step LLA

estimation to approximate the PMLEs for the spatial linear models and the resulting

estimate is called the one-step sparse estimate (OSE).

Following the idea of Chu et al. (2011), the OSE of β in GP models, denoted by

β̂OSE , is obtained by maximizing

Q(β) = − 1

2σ̂2
(0)

(yn −Xnβ)TR−1
n (θ̂

(0)
)(yn −Xnβ)

−n
p∑
j=1

p′λ(|β̂(0)
j |)|βj |, (1.4)

where β̂
(0)

, θ̂
(0)

and σ̂2
(0)

are the MLEs obtained from (1.2). We also update θ and

σ2 by maximizing (1.4) evaluated at β̂OSE with respect to θ and σ2. The resulting

OSE of θ and σ2 is denoted by θ̂OSE and σ̂2
OSE . We fix the tuning parameter a =

3.7 as recommended by Fan and Li (2001). To determine λ, a Bayesian information

criterion(BIC) proposed by Chu et al. (2011) is incorporated.
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The implementation of the penalized likelihood approach, including the calculation

of PMLEs and OSEs is computationally demanding; it relies heavily on the calculation

of R−1
n (θ) and |Rn(θ)|, computationally intensive and often intractable due to numerical

issues. It is particularly difficult for massive data collected on irregular grids, because no

Kronecker product techniques can be utilized for computational simplification (Bayarri

et al. (2007, 2009), Rougier (2008)). A similar issue has also been recognized in

calculating the MLEs in GP models.

1.3 Variable selection for GP via subagging

1.3.1 A new block bootstrap subsampling scheme

Subagging, modified based upon bagging (bootstrap aggregating), is one of the most

effective and computationally efficient procedures to improve on unstable estimators

(Efron and Tibshirani (1993), Breiman (1996), Büchlmann and Yu (2002)). Although

originally proposed to reduce variance in estimations and predictions, the idea of sub-

sampling is attractive in many applications to achieve computational reduction. It is

particularly appealing to GP modeling because of its high computational demand in

estimating PMLEs and OSEs. However, direct application of subagging with random

bootstrap subsamples is not efficient in estimation and variable selection of GP because

the data are assumed to be dependent. This is not surprising because similar issues

occur in the conventional bootstrap when the data are dependent, such as in time se-

ries and spatial data, and various block bootstrap techniques are introduced (Künsch

(1989), Liu and Singh (1992), Lahiri (1995, 1999, 2003), Politis and Romano (1994)).

Therefore, as an analogous result to the conventional block bootstrap, a new subsample

scheme for dependent data based on blocks is called for.
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Figure 1.1: Two examples of LHDs

We introduce a block bootstrap subsampling method based on Latin hypercube de-

signs (LHDs). It is called LHD-based block bootstrap. LHD is a class of experimental

designs such that the projection of an LHD onto any dimension has exactly one obser-

vation for each level and therefore the resulting design can spread out more uniformly

over the space. An m-run LHD in a d-dimensional space, denoted by LHD(m, d) can be

easily constructed by permuting (0, 1, ...,m− 1) for each dimension. Given the sample

size, there are (m!)d−1 LHDs. Two randomly generated LHD(6,2) are illustrated in

Figure 1.1. It is clear that the projection onto either dimension has exactly one obser-

vation for each level. After decomposing the complete data into disjoint equally-spaced

hypercubes/blocks, a LHD-based block bootstrap subsample can be obtained by col-

lecting blocks according to the structure of a randomly generated LHD. One example

of a LHD-based block bootstrap subsample using the LHD in Figure 1.1(a) is given in

Figure 1.2, where the circles are the observations, gray areas are the LHD-based blocks,

and the red dots are the resulting subsamples.
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Figure 1.2: An example of LHD-based block bootstrap constructed from Figure 1.1(a)

The LHD-based block bootstrap has distinct advantages. The block structure takes

into account the spatial dependency and therefore improves the estimation accuracy for

correlation parameters in GP models. Because of the one-dimensional balance prop-

erties inherited from LHDs, the block bootstrap subsamples can be spread out more

uniformly over the complete data and the resulting subsamples can represent the com-

plete data effectively. As well, the LHD can result in variance reduction in estimation

compared with simple random samples (Mckay et al. (1979), Stein (1987)). There-

fore, the subagging estimates calculated by the proposed LHD-based subsamples are

expected to outperform those calculated by the naive simple random subsamples in

terms of estimation variance.

1.3.2 Variable selection using LHD-based block subagging

The procedure can be described in three steps:

Step 1: Divide each dimension of the interested region Γ ∈ [0, l]d into m equally

spaced intervals so that Γ consists of md disjoint hypercubes/blocks. Define each
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block by mapping i to a d-dimensional hypercube

Bn(i) = {x ∈ Rd : bij ≤ xj ≤ b(ij + 1) and j = 1, ..., d},

where i = (i1, ...id), ij ∈ (0, ...,m− 1), represents the index of each block and b =

l/m is the edge length of the hypercube. Let |Bn(i)| be the number of observations

in the ith hypercube/block. For simplicity, assume the data points are equally

distributed over the blocks, |Bn(i)| = n/md.

Step 2: Select m blocks according to a randomly generated LHD(m, d). Each

column of the LHD is a random permutation of {0, . . . ,m− 1}, denoted by πi =

(πi(1), . . . , πi(m))T for 1 ≤ i ≤ d. An m-run LHD is denoted by i∗j = (π1(j), . . . , πd(j)),

j = 1, . . . ,m, and the corresponding selected blocks are denoted by Bn(i∗1), . . . ,Bn(i∗m).

The bootstrapped subsamples, denoted by y∗1(x∗1), . . . , y∗N (x∗N ), are the observations

in the selected blocks, where N =
∑m

i=1 |Bn(i∗i )|. Based on the subsamples, φ̂
∗
N

and its OSE φ̂
∗
N,OSE are obtained by maximizing (1.3) and (1.4) respectively.

Step 3: Repeat Step 2 K times to obtain PMLEs φ̂
∗
N(j) and the corresponding

OSEs φ̂
∗
N,OSE(j), where j = 1, ...,K. The subagging estimators are defined by

φ̂N = 1
K

∑K
i=1 φ̂

∗
N(i) and φ̂N,OSE = 1

K

∑K
i=1 φ̂

∗
N,OSE(i).

Figure 2 is an example with experimental region Γ ∈ [0, 24]2, d = 2, l = 24. A

common practice is that the data are collected by normalizing the experimental region

to a unit cube. In such a case, we have l = 1. The circles represent the settings

in which the experiments are performed and the total sample size is n = 216. The

design, LHD(6, 2), implemented here is denoted by i∗1 = (0, 4), i∗2 = (1, 0), i∗3 = (2, 2),

i∗4 = (3, 5), i∗5 = (4, 1), i∗6 = (5, 3) and m = 6. According to this design, the LHD-based
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blocks are presented by the gray areas with b = 4 and |Bn(i)| = 6. The red dots are

the resulting LHD-based block subsamples with size N = 36.

Based on our procedure, the complexity is O(n3/m3(d−1)) for each subsample, which

is computationally cheaper than O(n3) using the complete data, especially for large d.

We assume data points are equally distributed over blocks in order to simplify the no-

tation in the proof; the results still hold as long as the number of observations in each

block is in the same order, |Bn(i∗i )| = O(n/md). For example, if the original data is

collected by an orthogonal array-based Latin hypercube design (Tang (1993)), common

in computer experiments, the proposed procedure can be successfully implemented.

Based on our empirical experience, as long as each bootstrap subsample contains a

small amount of empty blocks, we can still have an efficient representation of the orig-

inal data. Empty blocks often occur when the original design has only few levels for

some particular variables, such as qualitative variables. This issue can be addressed

by modifying the LHDs by space-filling designs for quantitative and qualitative factors

(Qian and Wu (2009), Deng et al. (2015)) and as a result, empty blocks can be avoided.

Given the total sample size n, we have 1 ≤ m ≤ n
1
d−1 , since each bootstrap subsample

has size N in the order of O(n/md−1). If N = n/md−1, then we have m ≤ n
1
d−1 to

ensure N ≥ 1. Clearly, m = 1 provides no computational reduction because the full

data is utilized. As m increases, the subsample size N decreases and a larger K is

affordable given the same computational constraints.

Instead of selecting subsamples based on all the variables, this procedure can be

modified to be based on a subset of variables. To do this, we can first select a subset

of variables with dimension d̃, where d̃ < d. This subset can be chosen randomly or

according to some prior knowledge. Then, replace LHD(m, d) in Step 2 by LHD(m, d̃)
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and select the subsamples only according to the d̃ variables. This is practically useful

when d is large because the size of each subsample, n/md−1, can be relatively small

increasing to n/md̃−1 by applying to subset variables. While, the proposed framework is

constructed based on rectangular or hypercubic regions, it can be extended to regions

with irregular shape by replacing the LHD in Step 2 by other space-filling designs

constructed for nonrectangular regions, e.g., Draguljić et al. (2012) and Hung et al.

(2012).

1.4 Theoretical properties

To understand the asymptotic properties of the subagging estimators, there are two

distinct frameworks: increasing domain (Cressie (1993), Mardia and Marshall (1984))

asymptotics, where more and more data are collected in increasing domains while the

sampling density stays constant, and fixed-domain asymptotics (Stein (1999), Liang et

al. (2013)), where data are collected by sampling more and more densely in a fixed

domain. The results in this research focus on increasing domain asymptotics. The

results under fixed-domain asymptotics are more difficult to derive in general and rely

on stronger assumptions, as discussed in the literature (Ying (1993), Zhang (2004)). It

is shown by Zhang and Zimmerman (2005) that, given quite different behavior under the

two frameworks in a general setting, their approximation quality performs about equally

well for the exponential correlation function under certain assumptions. Results given

here can then provide some insights about the subagging estimators in both frameworks.

In ongoing work, we are exploring fixed domain asymptotics. More discussions are given

in Section 7. Assumptions and the proofs are given in the Appendix and Supplemental

Material.
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We can show that the subagging estimator φ̂N converges to the original PMLE φ̂n

in probability. Given the underlying probability space (Ω,F , P ) of a Gaussian process,

a sample of size n with settings x1(ω), ...,xn(ω) and responses y(x)’s are observed from

a given realization ω ∈ Ω. Let (Λ,G) be a measurable space on the realization. For

each ω ∈ Ω, let P ∗N,ω be the probability measure induced by the m-run LHD-based

block bootstrap on (Λ,G). The proposed bootstrap is a method to generate a new

dataset on (Λ,G, P ∗N,ω) conditional on the n original observations. For any LHD-based

block bootstrapped statistic T̂ ∗N , we write T̂ ∗N → 0 if for any ε > 0 and any δ > 0,

limn→∞ P{P ∗N,ω(|T̂ ∗N > ε| > δ)} = 0.

Theorem 1.1. Under the assumptions (A.1)- (A.6), if m = o(n−1/d) and m → ∞,

then φ̂N − φ̂n → 0.

Next we study the distributional consistency of the subagging estimators. Assume

β0 = (βT10,β
T
20)T to be the true regression coefficients, where, without loss of gen-

erality, β10 is an s × 1 vector of nonzero regression coefficients and β20 = 0 is a

(p − s) × 1 zero vector. Let γ0 = (θ0, σ0) denote the vector of true covariance pa-

rameters, φ̂
∗
N = (β̂

∗
N,1, β̂

∗
N,2, γ̂

∗
N ), φ̂N = (β̂N,1, β̂N,2, γ̂N ), and φ̂n = (β̂n,1, β̂n,2, γ̂n).

When the OSE approach is applied, we take φ̂
∗
N,OSE = (β̂

∗
N,1,OSE , β̂

∗
N,2,OSE , γ̂

∗
N,OSE),

φ̂N = (β̂N,1,OSE , β̂N,2,OSE , γ̂N,OSE), and φ̂n,OSE = (β̂n,1,OSE , β̂n,2,OSE , γ̂n,OSE). Let

an = maxj{p′λn(|βj |) : βj 6= 0} and bn = maxj{p′′λn(|βj |) : βj 6= 0}. Let g(φ) = (p
′
λ(φ))

and G(φ) = diag(p
′′
λ(φ)). Particularly, g(β) = (p

′
λ(|β1|sgn(β1)), ...,p

′
λ(|βp|sgn(βp)))

and g(γ) = 0; G(β) = diag(p
′′
λ(|β1|), ..., p

′′
λ(|βp|)) and G(γ) = 0.

Theorem 1.2. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m→∞, then

(i) Sparsity: β̂N,2 = 0 with probability tending to 1.
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(ii) Asymptotic normality: for the mean function coefficients,

√
Kn/md−1(J(β10) + G(β10))(β̂N,1 − β̂n,1)→ N(0,J(β10));

for the correlation parameters,

√
Kn/md−1(γ̂N − γ̂n)→ N(0,J(γ0)−1).

In Theorem 1.3, it shows that when the OSE algorithm is applied, the resulting

subagging estimators are asymptotically consist to the original OSEs using the complete

data.

Theorem 1.3. Under assumptions (A.1)-(A.15), if m = o(n−1/d) and m→∞, then

(i) Sparsity: β̂N,2,OSE = 0 with probability tending to 1.

(ii) Asymptotic normality: for the mean function coefficients,

√
Kn/md−1(β̂N,1,OSE − β̂n,1,OSE)→ N(0,J(β10)−1);

for the correlation parameters,

√
Kn/md−1(γ̂N,OSE − γ̂n,OSE)→ N(0,J(γ−1

0 )).

1.5 Numerical studies

In this section, we report on two sets of simulations conducted to study the finite-

sample performance of the proposed method. One demonstrates the performance of

the subagging approach compared with the original approach using all the data. The

other illustrates the advantages of the proposed experimental design-based subsampling

scheme by comparison with simple random sampling. The performance was evaluated in
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two aspects: the accuracy of variable selection and the parameter estimation, including

the mean function coefficients and the correlation parameters using one-step sparse

estimation as described in (1.4). The accuracy of variable selection was measured by

two scores: the average number of the nonzero regression coefficients correctly identified

in the repeated simulations, denoted by AC: the average number of the zero regression

coefficients misspecified, denoted by AM. All the simulations were conducted by a

2.7GHz, 16G RAM workstation. Hereafter, we omit the subscript OSE for notational

convenience.

1.5.1 Subagging vs. the estimation using all data

Three sample sizes, n = 1000, n = 2000 and n = 3000, were considered and the data

were generated from a regular grid in a four-dimensional space, [0, 1]4. The proposed

method is particularly useful for data collected from irregular grids. The reason to gen-

erate the simulations from a regular grid in this simulation was that the original PMLE

calculation using full data can be further speeded up by Kronecker product techniques

and some matrix singularity can be avoided (Rougier (2008)). These techniques are

only applicable to data sets collected from a regular grid; a favorable comparison of the

proposed method would make an even stronger case for the proposed procedure.

Simulations were generated from a Gaussian process with the mean function coeffi-

cients β = (1, 0.5, 0, 0) and the correlation function

ψ(x1,x2) = exp(−
4∑
i=1

θi|x1i − x2i|)

where θ1 = θ2 = θ3 = θ4 = 1 and σ = 0.1. For each choice of sample size, 50 data sets

were simulated. For each simulated data set, 10 LHD-based block bootstrap samples

were collected with m = 4. Due to the computation time needed for the complete data,
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Table 1.1: Comparisons with all data

n = 1000 n = 2000 n = 3000
LHD AllData LHD AllData LHD AllData

θ1 1.91 (0.55) 1.14 (0.05) 1.38 (0.35) 1.02 (0.02) 1.10(0.10) 0.97(0.02)

θ2 1.94 (1.20) 1.08 (0.07) 1.16 (0.14) 1.00 (0.03) 1.17(0.08) 1.03(0.03)

θ3 1.70 (0.68) 1.03 (0.04) 1.14 (0.20) 0.92 (0.03) 1.15(0.07) 1.06(0.02)

θ4 1.77 (0.83) 1.04 (0.04) 1.37 (0.45) 1.02 (0.04) 1.10(0.03) 1.00(0.03)

β1 1.00(3.2× 10−3) 1.02(3.6× 10−3) 0.99(4.2× 10−3) 0.99(7.9× 10−3) 1.01(3.4× 10−3) 1.00(3.7× 10−3)

β2 0.46(1.7× 10−2) 0.43(3.6× 10−2) 0.51(3.3× 10−3) 0.50(6.1× 10−3) 0.49(5.5× 10−3) 0.50(3.7× 10−3)

AC/2 1 0.93 1 1 1 1

AM/2 0 0 0 0 0 0

time 243 464 990 2402 2524 8623

the tuning parameter λ = 0.1 was fixed for all simulations.

In Table 1.1, the parameter estimation and the computing time are reported. Stan-

dard deviations are given in parenthesis. The rows AC/2 and AM/2 represent the

correct identification rate and the variable misspecification rate, respectively. The re-

sults in Table 1 suggest that the estimated parameters using LHD-based subagging

are consistent with those obtained using complete data, as is the variable selection

performance. In terms of computing time, the proposed subagging is much faster to

compute compared with the conventional approach, especially when the sample size of

the complete data is large.

1.5.2 LHD-based block subsampling vs. random subsampling

An important feature of the proposed subsampling scheme is that it borrows the idea

of space-filling design to achieve an efficient data reduction. To demonstrate this, we

compared its performance, denoted by LHD, with two alternatives: simple random

sampling, denoted by SRS, and random blocks sampling, denoted by RBS, with the

same sample size. We first compared the performance of LHD with SRS in two different

settings of subsampling scheme: m = 4 and m = 6.

The data were generated from a six-dimensional space, [0, 1]6 with sample size
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n = 3600. We consider the same correlation function as before with the mean func-

tion coefficients β = (1, 0.5, 0.3, 0, 0, 0), three non-zero coefficients with different signal

strength and three zero coefficients. Results are summarized based on 100 simulations

and 20 LHD-based block bootstrap samples collected for each simulation. To focus

on the capability of selecting active factors, the proposed subsampling was performed

on the first three variables and the resulting sample sizes for m = 4 and m = 6 were

approximately 225 and 100, respectively.

In Table 1.2, the estimated parameters, the correct identification rates, and the

variable misspecification rates are reported. In terms of parameter estimation, LHD

performs similarly to SRS in estimating the mean function coefficients. For estimat-

ing the correlation parameters, LHD outperforms SRS with a much smaller estimation

variance, especially when the subsample size is smaller (m = 6). In general, it appears

that the proposed subsampling based on LHDs provides an effective variance reduction

in parameter estimation, which is consistent with the theoretical justifications in ex-

perimental design literature (Mckay et al. (1979), Stein (1987)). In terms of variable

selection, the correct identification rate for the LHD-based subsampling is 21% higher

than SRS when m = 4 and 13% higher when m = 6. Both methods perform equally well

with zero misspecification rate. To further assess the variable selection accuracy, the

frequencies of individual variables identified from 100 simulations are reported in the

last three rows of the table: Fre(β1), Fre(β2) and Fre(β3). The identification frequen-

cies for β3 decrease as expected due to its weak signal. But the proposed subsampling

can still identify such a weak signal with at least 66% higher frequency compared with

simple random subsamples.
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Table 1.2: Comparisons with simple random subsampling

m = 4 m = 6
LHD SRS LHD SRS

θ1 1.91 (0.60) 1.89 (4.11) 2.63 (1.63) 2.61 (9.93)

θ2 2.24 (1.71) 1.90 (3.73) 2.64 (2.01) 2.95 (10.56)

θ3 1.96 (0.79) 1.99 (2.66) 2.49 (1.14) 3.18 (10.97)

θ4 1.93 (0.58) 1.92 (4.11) 2.69 (1.74) 2.90 (12.78)

θ5 1.78 (0.35) 1.72 (1.91) 2.58 (0.84) 2.50 (12.55)

θ6 1.89 (0.48) 1.94 (3.84) 2.74 (1.78) 1.80 (8.65)

β1 1.01(1.5× 10−3) 0.99(3.3× 10−3) 1.03(1.6× 10−3) 0.99(1.5× 10−3)

β2 0.52(3.2× 10−3) 0.52(2.9× 10−3) 0.53(4.4× 10−3) 0.55(6.7× 10−3)

β3 0.14(1.2× 10−2) 0.10(2.1× 10−2) 0.15(1.1× 10−2) 0.15(2.5× 10−2)

AC/3 0.98 0.81 1 0.87

AM/3 0 0 0 0

Fre(β1) 1 1 1 1

Fre(β2) 1 1 1 1

Fre(β3) 0.93 0.40 1 0.60

1.5.3 Comparison with random blocks subsampling

In the next simulation, the proposed sampling scheme was compared with RBS in which

blocks are selected randomly without the one-dimensional projection property. The

data were generated from a 4-dimensional space with n = 2000. We took the same corre-

lation function as before with the mean function coefficients set to be β = (1, 0.5, 0.1, 0):

three non-zero coefficients with different signal strength and one zero coefficient. Results

are summarized in Table 1.3 based on 100 simulations and K = 20. The results of SRS

with the same subsample size are also listed for comparison. In general, LHD outper-

forms the other two sampling and RBS performs slightly better than SRS. Compared

with RBS, the proposed method has a higher frequency of identifying the nonactive

variable: 0.95 vs. 0.85. Moreover, LHD has less bias and a smaller variance in pa-

rameter estimation, empirically demonstrating the advantage of the one-dimensional

balance property of LHD.
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Table 1.3: Comparisons with simple random sampling of blocks

m=4 θ1 θ2 θ3 θ4

LHD 1.21(0.26) 1.29(0.38) 1.27(0.32) 1.34(0.17)
RBS 1.44(0.30) 1.50(0.34) 1.43(0.37) 1.50(0.33)
SRS 1.77(0.88) 1.59(0.38) 1.55(0.72) 1.53(1.34)

β1 β2 β3 AC/3 Freq(β4 = 0)

LHD 1.00(1.9× 10−6) 0.50(2.3× 10−6) 0.09(1.8× 10−6) 1.0 0.95
RBS 1.00(7.5× 10−6) 0.51(3.0× 10−6) 0.08(3.1× 10−6) 1.0 0.85
SRS 1.00(3.7× 10−6) 0.51(1.1× 10−6) 0.09(1.2× 10−6) 1.0 0.63

1.6 Data center thermal management

A data center is a computing infrastructure facility that houses large amounts of infor-

mation technology equipment used to process, store, and transmit digital information.

Data center facilities constantly generate large amounts of heat to the room, which must

be maintained at an acceptable temperature for reliable operation of the equipment. A

significant fraction of the total power consumption in a data center is for heat removal,

and determining the most efficient cooling mechanism has become a major challenge.

Since the thermal process in a data center is complex and depends on many factors,

a crucial step is to model the thermal distribution at different experimental settings

and identify important factors that have significant impacts on the thermal distribution

(Hung et al. (2012)).

For a data center thermal study, physical experiments are not always feasible because

some settings are highly dangerous and expensive to perform. Therefore, simulations

based on computational fluid dynamics (CFD) are widely used. Such simulations using

complex mathematical models are often called computer experiments (Santner et al.

(2003), Fang et al. (2006)). In this example, CFD simulations were conducted at

IBM T. J. Watson Research Center based on an actual data center layout. Detailed

discussions about the CFD simulations can be found in (Lopez and Hamann (2011)).



19

There were 27,000 temperature outputs generated from the CFD simulator based on an

irregular grid over an 9-dimensional space. The nine variables are listed in Table 1.4,

including four computer room air conditioning (CRAC) units with different flow rates

(x1, ..., x4), the overall room temperature setting (x5), the perforated floor tiles with

different percentage of open areas (x6), and spatial location in the data center (x7 to

x9).

Gaussian process models are widely used for the analysis of computer experiments

because they provides a flexible interpolator for the deterministic simulation outputs

(Santner et al. (2003)). However, in this example, it is computationally prohibitive to

build a GP model based on the complete CFD data. So we implemented the proposed

LHD-based subagging approach with m = 3 for the first seven variables.

The fitted GP model is reported in the last two columns of Table 4, where β̂ rep-

resents the estimated mean function coefficients and θ̂ represents the correlation pa-

rameters estimated using the exponential covariance function. From the fitted model,

it appears that seven out of the nine variables have significant effects on the mean

function. The main effects plot based on the fitted GP model is given in Figure 2.1.

It also appears that the two variables, x5 and x6, which are identified as nonactive

have relatively small impacts on cooling. This result provides important information

regarding the efficiency of different cooling methods, because the variables are associ-

ated with two cooling mechanisms, a conventional cooling approach and a chilled water

based cooling system. Among the active variables, the height (x9) has a relatively large

positive effect, which agrees with the general understanding of thermal dynamics that

temperature increases significantly with height in a data center. The results also indi-

cate that, among the four CRAC units in different locations of a data center, the first
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Figure 1.3: Main effect plot

two CRAC units have significant effects on reducing the room temperature. This can

help engineer locations of the CRAC units more effectively and improve the efficiency

of the cooling mechanism.

Table 1.4: Analysis for the data center example

Variable β̂ θ̂

x1 CRAC unit 1 flow rate -7.5 5.3
x2 CRAC unit 2 flow rate -13.1 1.3
x3 CRAC unit 3 flow rate -2.7 0.3
x4 CRAC unit 4 flow rate -7.1 13.2
x5 Room temperature setting 0 0.9
x6 Tile open area percentage 0 0.6
x7 Location in x-axis -11.3 21.44
x8 Location in y-axis 2.1 9.5
x9 Height 17.8 0.8

1.7 Discussion

Future work will be explored in several directions. Extensions of the proposed proce-

dure to optimal designs with better space-filling properties are appealing. For example,
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it is known that randomly generated LHDs can contain some structure. To further

enhance desirable space-filling properties, various modifications are proposed. Numeri-

cal comparisons and theoretical developments of the generalization to different types of

optimal space-filling designs will be studied. An interesting and important issue of the

LHD-based block bootstrap is to determine the optimal block size. This topic has been

discussed for conventional block bootstrap methods (Nordman et al. (2007)), but the

solutions therein are not directly applicable to GP models. We plan to study the opti-

mal block size for our procedure based on a new criterion defined for GP. Theoretical

development under fixed-domain asymptotics will be explored by extending the results

of Ying (1993) and Hung (2011), and subagging predictors will also be developed. As

pointed out by the referees, another interesting extension of the proposed work is to

perform variable selection not only in the mean function but also in the correlation

function. We are currently developing an extension to address this issue so that iden-

tification of linear effects in the mean function and nonlinear effects in the covariance

function can be both achieved.

1.8 Technical proofs

1.8.1 Assumptions

(A.1) n
md
Cov{(ȳi − µ)2, (ȳj − µ)2} = O(1), i = (i1, . . . , id) 6= j = (j1, . . . , jd).

(A.2) |τ2
n| = O(1).

(A.3) limn→∞ supθ λmax(En(θ)) = 0 when the block space b = l/m→∞.

(A.4)∀ φ1, φ2 ∈ Θ, |qs(·,φ1)−qs(·,φ2)| ≤ Ls|φ1−φ2|a.s.P, where Ls is Lipschitz

constant and supn{n−1
∑n

s=1ELs} = O(1).
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(A.5)Θ is compact.

(A.6)The functions qs(ω,φ) and rn(ω,φ) are such that qs(·,φ) and rn(·,φ) are

measurable for all φ ∈ Θ, a compact subset of Rp. In addition, qs(ω, ·) : Θ −→ R

and rn(ω, ·) : Θ −→ R are continuous on Θ a.s.-P , s = 1, · · · , n.

(A.7) Qn(ω, ·) : Θ→ R is continuously differentiable of order 2 on Θ a.s. P .

(A.8) There exists a sequence Jn(φ) : Θ→ Rp×p such that∇2Qn(·,φ)−Jn(φ)
P−→

0 as n→∞ uniformly on Θ.

(A.9) limn→∞ J
−1
n (φ0) = 0.

(A.10) Q∗N (λ, ω, ·) : Θ → R are continuously differentiable of order 2 on Θ a.s.

P . The function ∇2Qn(ω,φ) is such that ∇2Qn(·,φ) is measurable for all φ ∈ Θ

and ∇2Qn(ω, ·) : Θ→ R is continuous on Θ a.s.-P .

(A.11) ∀ φ1, φ2 ∈ Θ,|∇2Qn(·,φ1)−∇2Qn(·,φ2)| ≤Ms|φ1 − φ2|a.s.P, where Ms

is Lipschitz constant and supn{n−1
∑n

s=1EMs} = O(1).

(A.12) an = O(n−
1
2 ) and bn → 0 as n→∞

(A.13) There exit positive constants c1 and c2 such that when β1, β2 > c1λn,

|p′′λn(β1)− p′′λn(β2)| ≤ c2|β1 − β2|.

(A.14) λn → 0, n
1
2λn →∞ as n→∞.

(A.15) lim infn→∞ lim infβ→0+ λ
−1
n p′λn(β) > 0.

Assumption (A.3) controls the correlation between bootstrapped blocks. (A.4) and

(A.5) are required in order to achieve uniform convergency of the bootstrapped likeli-

hood function. (A.6) ensures the existence of the estimators. (A.7)-(A.9) are regularity
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conditions for standard MLE consistency in GP models, analogous to the conditions

in Mardia and Marshall (1984). (A.10) ensures the existence of the covariance matrix.

(A.11) is the global Lipschitz condition for ∇2Qn(ω, ·) which guarantees the conver-

gence of the covariance matrix calculated based on the LHD-based block bootstrap.

(A.12)-(A.15) are mild regularity conditions regarding the penalty function.

1.8.2 Lemmas

Lemma 1.1. LHD-based block bootstrap mean is unbiased, i.e.,

E∗N,ω(ȳ∗N ) = ȳn.

Proof of Lemma 1.1: Since the data points are equally distributed over all the blocks,

we have E∗N,ω(ȳ∗N ) = m−d
∑

i1,...,id
ȳi1,...,id = ȳn.2

Lemma 1.2. Let ȳi = 1
Bn(i)

∑
xs∈Bn(i) ys, ∀i = (i1, . . . , id). Assuming (A.1), (A.2)

and m = o(n1/d), we have

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − τ2
n

P−→ 0,

where τ2
n = 1

n

∑n
s,t=1Cov(Ys(xs), Yt(xt)).

Proof of Lemma 1.2: Let An = n
m2d

∑
i1,...,id

(ȳi1,...,id − µ)2. We can show that

Cov(An, An) = 0 and E(An) = τ2
n.

Cov(An, An) = Cov(
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2,
n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2)

=
1

n2

∑
i

∑
xs1

,xs2
,xt1

,xt2
∈Bn(i)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

+
1

n2

∑
i 6=j

∑
xs1

,xs2
∈Bn(i)

∑
xt1

,xt2
∈Bn(j)

Cov{(ys1 − µ)(ys2 − µ), (yt1 − µ)(yt2 − µ)}

By expanding two terms above separately, we have Cov(An, An) = O( 1
n + md

n )→ 0 as
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m = o(n1/d). In addition, we have

E(An)− τ2
n =

1

n

∑
i 6=j

∑
xs∈Bn(i),xt∈Bn(j)

σ2ψ(y(xs), y(xt)) = o(1)

Thus, An − τ2
n

P−→ 0. 2

Lemma 1.3. Assume (A.1)- (A.2), then

nτ∗N
2/md−1 − τ2

n
P−→ 0,

where τ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N ).

Proof of Lemma 1.3: Based on the definition of nτ∗N
2/md−1, we have

nτ∗N
2/md−1 = n

md
Cov∗N,ω(ȳi∗1 , ȳi∗1) + 2n(m−1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2).

For the first term on the right, we have

n

md
Cov∗N,ω(ȳi∗1 , ȳi∗1) =

n

m2d

∑
i1,...,id

(ȳi1,...,id − µ)2 − n

md
(ȳn − µ)2 = An −Bn.

By Lemma 1.2, we have An − τ2
n

P−→ 0. For Bn = n
md

(ȳn − µ)2, by the central limit

theorem for ȳn, we have Bn
P−→ 0. Next, it suffices to show that n(m−1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2)

converges to 0 in probability under P . The following double summation
∑

i1,...,jd,j1,...,jd

are taken over i = (i1, . . . , id) and j = (j1, . . . , jd) such that Bn(i) and Bn(j) are not

equal and are selected together.

n(m− 1)

md
Cov∗N,ω(ȳi∗1 , ȳi∗2) =

n(m− 1)

m2d

1

md − 1− d(m− 1)

∑
i 6=j

(ȳi − µ)(ȳj − µ)

+
n(m− 1)

md
[1− 2md

m{md − 1− d(m− 1)}
](ȳn − µ)2

= Cn +Dn.

Similar to An and Bn, we can show that Cn
P−→ 0 and Dn

P−→ 0. The result follows

immediately. 2
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Lemma 1.4. Under (A.1)-(A.3), for each φ ∈ Θ,

lim
n→∞

P

[
P ∗N,ω

(
|N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑
s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ
)
> ξ

]
= 0.

Proof of Lemma 1.4: Rewrite the bootstrapped likelihood function as I1 + I2 + I3,

where I1 = N−1
∑N

s=1{q∗s(·, ω,φ)−E∗q∗s(·, ω,φ)},

I2 = {N−1
∑N

s=1E
∗q∗s(·, ω,φ)−n−1

∑n
s=1 qs(ω,φ)}, I3 = N−1r∗N (·, ω,φ)−n−1rn(ω,φ).

By Lemma 1.3, I2 ≡ 0. For I3, it can be shown that n−1rn(ω,φ) → 0 in P and

N−1r∗N (·, ω,φ) → 0, prob-P ∗N,ω prob-P . For notation simplicity, we omit θ in the

following discussion. The expectation and variance of n−1rn(ω,φ) are:

|E{n−1rn(ω,φ)}|

≤ 1

2nσ2(1 + g)
λmax(En)λmax(D−1

n ) + | log{1 + λnmax(En)|D−1
n }|

= o(1)

and

V ar(n−1rn(ω,φ)) ≤ 1

4(1 + g)2σ4n2
V ar{

n∑
i=1

(
n∑
j=1

uijεj)
2}

≤ cn
4(1 + g)2σ4n2

n∑
i=1

n∑
j=1

V ar(ε2
j ) = o(1)

where εj is the ith entry of D−1
n (yn − Xnβ) and ui = (uij) is the ith row of Un;

cn = maxi{
∑n

j=1 u
2
ij}.

In addition, as λmax(E∗N ) ≤ λmax(En) and λmax(D∗N
−1) ≤ λmax(D−1

n ), we have

1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1E∗ND
∗
N
−1(y∗N −X∗Nβ)

≤ 1

2σ2
λmax(En)λmax(D−1

n )‖y∗N −X∗Nβ‖22.
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According to Lemma 1.6 below, we have N−1‖y∗N −X
∗
Nβ‖22 − n−1‖yn −Xnβ‖22 → 0

prob-P ∗N,ω prob-P . Similarly, we can bound log |IN +U∗N
TD∗N

−1U∗N |. As λmax(En)→ 0,

we have 1
N r
∗
N (·, ω,φ)→ 0, prob-P ∗N,ω prob-P .

So when n is sufficiently large, we only need to show that limn→∞ P
[
P ∗N,ω(|I1| >

δ) > ξ
]

= 0. By Chebyshev’s inequality,

P ∗N,ω(|I1| > δ) ≤ 1

δ2
V ar∗N,ω(q̄∗N (·, ω,φ)).

By Lemma 1.1, r−1V ar∗N,ω(q̄∗N (·, ω,φ)) = Op(1), together with the fact that N =

n/md−1 ,

P
[
P ∗N,ω(|I1| > δ) > ξ

]
≤ P

[ n

md−1

1

δ2
V ar∗N,ω(q̄∗N (·, ω,φ)) > ξ

n

md−1

]
= O(m2d−2/n2)→ 0.

2

The next lemma further extends Lemma 1.4 to the uniform weak law of large num-

bers for the LHD-based block bootstrap likelihood functions.

Lemma 1.5. (Uniform Weak Law of Large Numbers) Under (A.1)-(A.5), ∀ δ, ξ > 0,

lim
n→∞

P

[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s (·, ω,φ) +N−1r∗N (·, ω,φ)

−n−1
n∑

s=1

qs(ω,φ)− n−1rn(ω,φ)| > δ) > ξ

]
= 0.

Proof of Lemma 1.5: By Lemma 1.4, |n−1rn(ω,φ)−N−1r∗N (·, ω,φ)| can be arbitrarily

small as n is large enough uniformly over Θ. We only need to show that

lim
n→∞

P
[
P ∗N,ω(sup

φ∈Θ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)| > δ) > ξ
]

= 0.

Given ε > 0 that will be selected later, let {η(φj , ε), j = 1, . . . ,K} be a finite cover of
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Θ, where η(φi, ε) = {φ ∈ Θ : |φ− φj | < ε}. Then

sup
φ
|N−1

N∑
s=1

q∗s(·, ω,φ)− n−1
n∑
s=1

qs(ω,φ)|

=
K

max
j=1

sup
φ∈η(φj ,ε)

|q̄∗N (·, ω,φ)− q̄n(ω,φ)|.

It follows that ∀ δ > 0 with fixed ω,

PN,ω
(

sup
φ∈Θ
|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ

)
≤

K∑
j=1

PN,ω
(

sup
φ∈η(φj ,ε)

|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ
)
.

For ∀ φ ∈ η(φj , ε), by Global Lipschitz condition,

|q̄∗N (·, ω,φ)− q̄n(ω,φ)| ≤ |q̄∗N (·, ω,φj)− q̄n(ω,φi)|+N−1
N∑
s=1

L∗sε+ n−1
n∑
s=1

Lsε,

where L∗s is the bootstrapped Lispchitz coefficient.

By Markov inequality and the fact that supn{n−1
∑n

s=1ELs} = O(1), we have

P (n−1
∑n

s=1 Ls > δ/3) ≤ 3ε∆/δ ≤ ξ/3, where ∆ is a large constant. If we choose

ε < ξδ/(9∆), we have

P
[
P ∗N,ω( sup

φ∈η(φj ,ε)
|q̄∗N (·, ω,φ)− q̄n(ω,φ)| > δ) > ξ

]
≤ P

[
P ∗N,ω(|q̄∗N (·, ω,φj)− q̄n(ω,φj)| > δ) > ξ/3

]
+P
[
P ∗N,ω(N−1

N∑
s=1

L∗sε > δ/3) > ξ/3
]

+ P [n−1
n∑
s=1

Lsε > δ/3]

= I1 + I2 + I3.

According to Lemma 1.4, I1 ≤ ξ/3 when n is large enough. By Markov’s inequality,

P ∗N,ω(N−1
N∑
s=1

L∗sε > δ/3) ≤ N−1
N∑
s=1

E∗L∗s/(δ/3ε) = n−1
n∑
s=1

Ls/(δ/3ε).

The last equality is because of Lemma 1.1. Thus, I2 < ξ/3 as well as I3. 2
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1.8.3 Consistency of the LHD-based block bootstrap mean

Before studying the asymptotic performance of MLEs, we first focus on understanding

properties of the LHD-based block bootstrap mean, which is an important foundation

to the theoretical development of φ̂
∗
N later.

The LHD-based block bootstrap can be formulated mathematically as follows. Given

the underlying probability space (Ω,F , P ) of a Gaussian process, a sample of size n

with settings x1(ω), ...,xn(ω) and responses y(x)’s are observed from a given realiza-

tion ω ∈ Ω. Let (Λ,G) be a measurable space on the realization. For each ω ∈ Ω, denote

P ∗N,ω as the probability measure induced by the m-run LHD-based block bootstrap on

(Λ,G). The proposed bootstrap is a method to generate new dataset on (Λ,G, P ∗N,ω)

conditional on the n original observations. Let τt : Λ → {1, ..., n} denote a random

index generated by the LHD-based block bootstrap. So, τt is the tth index in the in-

tersect index of observations and {Bn(i∗1), ...,Bn(i∗m)}, where (i∗1, ..., i
∗
m) is a randomly

generated m-run LHD. Therefore, for (λ, ω) ∈ Λ×Ω, we have the tth bootstrap sample:

x∗t (λ, ω) ≡ xτt(λ)(ω).

Suppose {Y (xt), t ∈ R} follows a GP with mean µ. Given n observations, the

sample estimation of mean µ is

ȳn =
1

n

n∑
s=1

ys,

and the LHD-based block bootstrap mean with N samples is given by

ȳ∗N =
1

N

N∑
s=1

y∗s .

With a slight abuse of notation, we replace the notation of random variable Y by its

realization y unless otherwise specified. The following lemma shows the asymptotic

consistency of the LHD-based block bootstrap mean.
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Lemma 1.6. Under (A.1)-(A.2), if m→∞ and m = o(n1/d), then

sup
x
|P ∗N,ω(

√
n/md−1(ȳ∗N − ȳn)/τn ≤ x)− P (

√
n(ȳn − µ)/τn ≤ x)| P−→ 0,

when n −→∞.

Note that E(·) and Cov(·, ·) denote the expectation and variance under P while

E∗N,ω(·) and Cov∗N,ω(·, ·) denote the expectation and variance under P ∗N,ω.

Proof of Lemma 1.6: It suffices to show that (1) E∗N,ω(ȳ∗N ) = ȳn; (2) nτ∗N
2/md−1 −

τ2
n

P−→ 0; and (3) supx |P ∗N,ω((ȳ∗N − E
∗
N,ω(ȳ∗N ))/τ∗N ≤ x) − Φ(x)| P−→ 0, where Φ(· )

denotes standard normal distribution function and τ∗N
2 = Cov∗N,ω(ȳ∗N , ȳ

∗
N ).

Lemmas 1.1 and 1.3 imply the results in (1) and (2). Note that ȳ∗N = 1
m

∑m
j=1 ȳi∗j

and (ȳi∗1 , . . . , ȳi∗m) follows Latin Hypercube sampling distribution. According to Loh

(1996), we have the Berry-Essen type of bound for Latin Hypercube sampling

sup
x
|P ∗N,ω((ȳ∗N − ȳn)/τ∗N ≤ x)− Φ(x)| ≤ c∗m−1/2,

where c∗ is a constant that depends only on d, given E∗N,ω‖ȳi∗1‖
3 < ∞. So we only

need to show that E∗N,ω‖ȳi∗1‖
3 is bounded uniformly in probability under P . Since

E∗N,ω‖ȳi1‖3 = 1
md

∑
i ȳ

3
i and according to Minkowski’s inequality, it follows that

1

md

∑
i

E{ȳ3
i } ≤

1

md

∑
i

1

|Bn(i)|3
{
∑

xs∈Bn(i)

E(ys)}3 <∞.

2

1.8.4 Proof of Theorem 1.1

To investigate the asymptotic properties of the estimators from LHD-based block boot-

strap, we decompose the likelihood function into blocks. For each block, denote yi =

(ys(xs),xs ∈ Bn(i)), Xi = (xs,xs ∈ Bn(i))T , Ri,j(θ)=
[
ψ(y(xs), y(xt);θ), xs ∈
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Bn(i),xt ∈ Bn(j)
]

and zi = R
−1/2
i,i (θ)(yi −Xiβ). Then, we can rewrite the penal-

ized log-likelihood function n−1`(Xn,yn,φ) as

Qn(Xn,yn,φ) = −(2nσ2)−1
∑n

s=1 z
2
s − (2n)−1

∑n
s=1 log(λs)

−(2n)−1
∑n

s=1 log(σ2) + n−1rn(Xn,yn,φ)

−
∑p

s=1 pλ(|βs|)

= n−1
∑n

s=1 qs(ω,φ) + n−1rn(ω,φ)−
∑p

s=1 pλ(|βs|)

(1.5)

where {λs, s = 1, . . . , n} = {eigenvalues of |Ri,i(θ)|, i = (i1, . . . , id)} with (i1, . . . , id)

in lexicographical order and eigenvalues from the largest to the smallest. Note that

rn(ω,φ) = `(Xn,yn,φ) −
∑n

s=1 qs(zs,φ) contains all terms involving the off block-

diagonal terms. Define Dn(θ) = diag(Ri,i(θ)) and En(θ) = Rn(θ)−Dn(θ). Assuming

that En(θ) = Un(θ)UTn (θ), we have

rn(ω,φ) =
1

2σ2(1 + g)
(yn −Xnβ)TD−1

n (θ)En(θ)D−1
n (θ)(yn −Xnβ)

+
1

2
log |In + UTn (θ)D−1

n (θ)Un(θ)|,

where g = trace(En(θ)D−1
n (θ)).

The MLE is obtained by φ̂n = arg maxφQn(Xn,yn,φ). Analogue to the decom-

position for Qn(Xn,yn,φ), the log-likelihood function for LHD-based block bootstrap

samples can be written as

Q∗N (X∗N ,y
∗
N ,φ) = N−1

N∑
s=1

q∗s(·, ω,φ) +N−1r∗N (·, ω,φ)

−
p∑
s=1

pλ(|βs|) (1.6)
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where r∗N (·, ω,φ) contains all terms involving the off block-diagonal terms with boot-

strapped samples. Specifically,

r∗N (·, ω,φ)

=
1

2σ2(1 + g∗)
(y∗N −X∗Nβ)TD∗N

−1(θ)E∗N (θ)D∗N
−1(θ)(y∗N −X∗Nβ)

+
1

2
log |IN + U∗N

T (θ)D∗N
−1(θ)U∗N (θ)|,

where D∗N (θ) = diag(Ri∗j ,i∗j (θ), j = 1, . . . ,m) and E∗N (θ) = R∗N (θ) − D∗N (θ) with

E∗N (θ) = U∗N (θ)U∗N
T (θ); g∗ = trace(E∗N (θ)D∗N

−1(θ)). The bootstrapped version of

φ̂n is φ̂
∗
N = arg maxφQ

∗
N (X∗N ,y

∗
N ,φ). Theoretical properties of the LHD-based block

bootstrap likelihood function (1.6) are established in lemmas 4 and 5, which leads

to a proof of convergence properties of the bootstrap estimator φ̂
∗
N . Lemma 1.4 first

established the pointwise weak law of large numbers for the LHD-based block bootstrap

likelihood functions. Lemma 1.5 further extends Lemma 1.4 to the uniform weak law

of large numbers for the LHD-based block bootstrap likelihood functions.

Proof of Theorem 1.1: Based on Lemma 5, we have

lim
n→∞

P [P ∗N,w(sup
φ∈Θ
|Qn −Q∗N | > δ) > ξ] = 0,

whereQn andQ∗N are given in (1.5) and (1.6). With the full preparation of the likelihood

convergence developed in Lemmas 1.4 and 1.5, the convergence of bootstrap parameter

estimation follows immediately given the existence of φ̂n and φ̂
∗
N .

Denote q̄∗N (·, ω,φ) = N−1
∑N

i=1 q
∗
i (·, ω,φ) and q̄n(ω,φ) = n−1

∑n
i=1 qi(ω,φ). By

(A.6), q∗s(·, ω, ·) : Λ × Θ → R and r∗N (·, ω, ·) : Λ × Θ → R are measurable-G for each

φ ∈ Θ. In addition, q∗s(λ, ω, ·) and r∗N (λ, ω, ·) are continuous on Θ for all λ. Thus, we

have φ̂
∗
N (·, ω) exists as a measurable-G function by Jennrich (1969).
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Following the procedure in Goncalves and White (2004), for any subsequence {n′},

given that φ̂n′ is identifiable and unique, there exists a further subsequence {n′′} such

that φ̂n′′ is identifiably unique with respect to {Qn′′} for all ω ∈ F in some F ∈ F

with P (F ) = 1. By condition (A.6), there exists G ∈ F with P (G) = 1 such that for

all ω ∈ G, {Q∗N ′′(·, ω,φ)} (N ′′ is corresponding bootstrapped sample size of n′′) is a

sequence of random function on (Λ,G, P ∗N,ω) continuous on Θ for all λ ∈ Λ. Hence,

by White (1996), for fixed ω ∈ G, there exists φ̂
∗
N ′′(·, ω) : Λ → Θ measurable-G and

φ̂
∗
N ′′(·, ω) = arg maxφQ

∗
N ′′(·, ω,φ). By the uniform weak law of large numbers for

Q∗N (X∗N ,y
∗
N ,φ) obtained from Lemma 1.5, we have Q∗N ′′(·, ω,φ) − Qn′′(ω,φ) → 0 as

n′′ → ∞ prob − P ∗N,ω prob − P uniformly on Θ, where we write Q̂∗N → 0 prob −

P ∗N,ω, prob − P if, for any ε > 0 and δ > 0, limn→∞ P{P ∗N,ω(|Q̂∗N > ε| > δ)} = 0

and omit prob− P ∗N,ω, prob− P in the text for notation simplicity. Hence, there exists

a further subsequence {n′′′} such that Q∗N ′′′(·, ω,φ) − Qn′′′(ω,φ) → 0 as n′′ → ∞

prob−P ∗N,ω prob−P for all ω in some H ∈ F with P (H) = 1. Choose ω ∈ F ∩G∩H,

by White (1996), we have φ̂
∗
N ′′′ − φ̂n′′′ → 0 as n′′′ → ∞ prob − P ∗N,ω prob − P . Since

this is true for any subsequence {n′}, we have P (F ∩ G ∩H) = 1. Thus, φ̂
∗
N − φ̂n →

0 prob− P ∗N,ω, prob− P . Then φ̂N = 1
K

∑K
i=1 φ̂

∗
N (i)− φ̂n → 0 prob− P ∗N,ω, prob− P .

2

1.8.5 Proof of Theorem 1.2

Proof. Define B = V ar{n−1/2
∑n

s=1∇qs(·, ω,φ0)}. We first show that√
n/md−1B−1/2∇Q∗N (·, ω, φ̂n) → N(0, I). Denote h̄∗N (φ) = N−1

∑N
s=1∇q∗s(z∗s ,φ) and
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h̄n(φ) = n−1
∑n

s=1∇qs(zs,φ). We have

√
n/md−1[h̄∗N (φ̂n)− h̄n(φ̂n)] =

√
n/md−1[h̄∗N (φ̂n)− h̄∗N (φ0)]

+
√
n/md−1[h̄∗N (φ0)− h̄n(φ0)]

+
√
n/md−1[h̄n(φ0)− h̄n(φ̂n)]

= J1 + J2 + J3.

Since h̄n and h̄∗N are functions whose secondary derivative are continuous, J1 + J3 → 0

as φ̂n−φ0 → 0 by Theorem 3.1 in Chu (2011). Moreover, the two terms in J2 are both

evaluated at φ0 which is a fixed value, then by Lemma 6, we have B−1/2J2 → N(0, I).

By condition (A.10) and follow a similar proof as Lemma 1.5, we have

∇2Q∗N (·, ω,φ)−∇2Qn(ω,φ)→ 0 prob− P ∗N,ω, prob− P.

Let Ĥn(ω) = ∇2Qn(ω, φ̂n). According to White (1996), given the result φ̂
∗
N − φ̂n → 0

prob− P ∗N,ω, prob− P and assumption (A.8), we have

√
N(φ̂

∗
N − φ̂n) = −Ĥ−1

n (ω)
√
N∇Q∗N (·, ω, φ̂n) + oP ∗N,ω(1)

= −Hn(φ0)−1(ω)
√
N∇Q∗N (·ω, φ̂n) + oP ∗N,ω(1).

Given the fact that

√
n/md−1B−1/2∇Q∗N (·, ω, φ̂n)→ N(0, I) prob− P ∗N,ω, prob− P.

we have

B−1/2Hn(φ0)
√
N(φ̂

∗
N − φ̂n)→ N(0, I).

For β10, B and H can be written as J(β10) and J(β10) + G(β10). For β̂
∗
N,1, we have

√
N [J(β10) + G(β10)]{β̂∗N,1 − β̂n,1} → N(0, J(β10)).
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For sub-bagging estimator β̂N,1 =
∑K

i=1 β̂
∗
N,1(i), we have

√
KN [J(β10) + G(β10)]{β̂N,1 − β̂n,1} → N(0, J(β10)),

then the result follows.

1.8.6 Proof of Theorem 1.3

Using the same technique before, we decompose the log-likelihood by blocks and rewrite

the likelihood of β based on the OSE approach as follows:

Qn(β) = n−1
n∑
s=1

qs(ω,β, θ̂
(0)

n , σ̂2
n

(0)
) + n−1rn(ω,β, θ̂

(0)

n σ̂2
n

(0)
)

−
p∑
j=1

p′λ(|β̂(0)
j |)|βj |.

The likelihood based on subsampled data can be written as:

Q∗N (β) = N−1
N∑
s=1

q∗s(ω,β, θ̂
∗(0)

N , σ̂2
N

∗(0)
) +N−1r∗N (ω,β, θ̂

∗(0)

N , σ̂2
N

∗(0)
)

−
p∑
j=1

p′λ(β̂
∗(0)
j |)|βj |.

By the fact that φ̂
∗
N − φ̂n → 0 and the results in Lemma 2, Lemma 3 and Lemma 6 still

hold, we have φ̂
∗
N,OSE − φ̂n,OSE → 0. Then follows the same technique in the proof of

Theorem 2, the result follows.
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Chapter 2

Markov Switching Autoregressive Models for the Analysis

of Cell Adhesion

2.1 Introduction

This research is motivated by the statistical analysis of cell adhesion experiments, which

are biomechanical experiments that study protein interactions at the level of single

molecules (Mehta et al. 1999). Cell adhesion plays an important role in many phys-

iological and pathological processes. In this research, we focus on an important type

of cell adhesion experiment called force-clamp assay (Marshall et al., 2003). The goal

is to understand the cell adhesion mechanism through the study of TCR-pMHC bond

lifetime, which is crucial in triggering T cell signaling.

A force-clamp assay is conducted using a biomembrane force probe (BFP) (Chen

et al. 2008) illustrated in Figure 2.1. The BFP uses a micropipette-aspirated human

red blood cell (RBC) with a probe bead attached to its apex as a force transducer

(Figure 2.1A, left). The RBC was aligned against a T cell held by an apposing pipette

(right). The probe bead was coated with pMHC (Figure 2.1B, left) to interact with T

cell receptor (TCR) (Figure 2.1B, right). TCR-pMHC bond lifetimes were measured

by the force-clamp assay in repetitive cycles. In each cycle, the T cell (Figure 2.1A,

right) was driven to contact the probe bead to prompt bond formation. Contact was

brief (0.1 s) to minimize multibond formation. Via T cell retraction, a tensile force on
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Figure 2.1: BFP schematic and functionalization

the TCR-pMHC bond was ramped (at 1,000 pN/s) to and clamped at a preset level

until bond dissociation. Bond lifetime was measured as the force-clamp period (marked

by red in Figure 2.2).

To build a statistical model for the analysis of repeated bond lifetime measurements,

we need to take into account three unique features in force-clamp assays. First, there

are multiple repeated assays collected from different pairs of cells. The same biological

mechanism is shared within the same pair of cells and some variations exist among

different pairs of cells. This is similar to the longitudinal studies where correlations

among the repeated measurements arise from some shared unobserved variables within

the same subject. Second, the molecular bond formation, which is of our major inter-

est, is not directly observable. The presence of a molecular bond is detected indirectly

through the measurements of bond lifetime because the interaction force will resist

surface separation until the bond ruptures. Governed by the binding status, the bond

lifetime measurements can be assumed to be random variables following different dis-

tributions because molecular dissociation occurs as diffusive escape from an energy well

(bound state) by thermally agitated Brownian motion. In general, when the underlying

binding occurs, the bond lifetime measurements are higher than the situations without
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Figure 2.2: BFP schematic and functionalization
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binding. This is because the bond formation is equivalent to adding a molecular spring

in parallel to the force transducer spring to stiffen the system. Therefore, the force-

clamp period (i.e., defined as bond lifetime) is longer in order to separate the cells as

well as the receptor-ligand bond. Third, there are some memory effects in the repeated

bond lifetime measurements. It was discovered that cells appear to have the ability to

remember the previous adhesion events and such a memory has an impact on the future

adhesion behaviors. Zarnitsyna et al. (2007) and Hung et al. (2008) demonstrated that

in some biological systems the occurrence of binding in the immediate past assay could

either increase or decrease the likelihood for the next assay to result in a binding. In

the repeated force-clamp assays, such a memory effect can affect the binding frequency

as well as the bond lifetime measurements. Quantification of the memory effects is

biologically important and it is the focus of this study.

We introduce a new statistical framework within which the unique features are

incorporated and the molecular binding mechanism can be studied. This framework

is based upon an extension of Markov switching autoregressive models (MSAR), a

regime-switching type of time series model generalized from hidden Markov models.

MSAR has been extensively studied and proven to be useful in various applications

involved time series, including econometrics, and speech recognition (references Ben’s

paper). However, standard MSAR models are developed for the analysis of individual

stochastic process, which is not sufficient for simultaneously modeling multiple time

series processes collected from different experimental subjects as in the longitudinal

data setting. To handle multiple time series processes, we introduce Markov switching

autoregressive mixed (MSARM) models which borrow strength across different subjects

by incorporating random effects into the model. The MSARM model uses hidden states
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to represent the unobservable binding status, binding or no binding. The unobservable

states are not assumed to be independent, but rather to have a Markovian structure so

that the cell memory effects can be captured. Given the hidden states, rupture forces

are assumed to be normally distributed with different autoregressive mean structures

that capture the stiffness and memory effects associated with different binding status.

More than a simple extension, the MSARM model posts statistical challenges in

the theoretical developments as well as computational efficiency in high-dimensional

integration. Theoretical studies are limited to HMMs in which single stochastic pro-

cess is considered (Bickel et al. 1998). Extensions from HMM to multiple processes

in a longitudinal setting are discussed by Altman (2007), but theoretical properties

for the proposed models are not addressed. To the best of our knowledge, there is

no theoretical study available for multiple stochastic processes with autoregressive and

regime-switching structure. Theoretical generalization from HMM is not straightfor-

ward because of the multiple stochastic processes, random effects, and a more flexible

but complex correlation structure resulting from the autoregressive model. On the

other hand, estimation of MSARM is computationally intensive because of the high-

dimensional integration involved in the random effects. An MCEM algorithm is intro-

duced by Altman (2007) for the estimation of hidden Markov mixed model. However,

the algorithm is still of concern when the number of random effects increases. To over-

come this difficulty, we introduce a new Gibbs sampling scheme so that the M-step

has a closed form and therefore it is easy to compute. We also proved the asymptotic

normality of the MLE based on our model. The proof illustrates how to analyze the

likelihood based on multiple stochastic processes with random effects.

The advantages of MSARM are numerous and the application is beyond cell biology.
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First, modeling multiple processes simultaneously permits the estimation of population-

level effects, as well as more efficient estimation of parameters that are common to all

processes. Second, these models are relatively easy to interpret. Finally, MHMMs

permit greater flexibility in modeling correlation structure because they relax the as-

sumption that the observations are independent given the hidden states.

2.2 Markov Switching Autoregressive Mixed Models

2.2.1 Model Description

Let yit be the tth observation collected from the ith experimental units/cells and xit be

the corresponding hidden state, where i = 1, ...,m and t = 1, ..., ni. Denote the total

number of observations by N =
∑m

i=1 ni. Assume there are K hidden states, where K

is known, and the change of states can be described by a stationary Markov chain with

transition probability pkl = P (xt+1 = l|xt = k) and stationary probability πk, where

k, l ∈ {1, ...,K}. A Markov switching autoregressive mixed (MSARM) model can be

written as:

yit|(xit = k) = αk +

rk∑
j=1

yi,t−jβ
(k)
j + ui + e

(k)
it , (2.1)

where k ∈ {1, ...,K} and ui follows N(0, σ2
u). For hidden state k, the autoregressive

structure with order rk is captured by
∑rk

j=1 yi,t−jβ
(k)
j with unknown coefficients β

(k)
j .

The random errors are assumed to be mutually independent and their variance are

assumed to be different according to their hidden states, i.e., e
(k)
it follows N(0, σ2

k). Let
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θ denote the parameters, then the likelihood is

f(θ; y)

=

∫
u

∑
x

f(y|x,u, θ)f(x; θ)f(u; θ)du

=

∫
u

∑
x

{
m∏
i=1

ni∏
t=1

f(yit|xit,u, θ, yi,t−1)}{
m∏
i=1

πxi1

ni∏
t=2

pxi,t−1,xit}f(u; θ)du (2.2)

The random effects ui are assumed to capture the variations among the multiple pro-

cesses, which is common in longitudinal settings. In practice, model (2.1) can be easily

extended to incorporate more than one random effects.

This model includes some existing models as special cases. When m = 1, this model

leads to a conventional Markov switching model. By incorporating random effects,

this model can capture the unobserved heterogeneity among the processes. When the

autoregressive terms are removed, i.e., β
(k)
j = 0, it leads to one of the hidden mixed

Markov models introduced by Altman (2007).

2.2.2 Theoretical Properties

MSARMs are extensions of HMMs. Although asymptotic properties of the MLEs

are extensively developed for HMMs (references), generalization to MSARMs are not

straightforward due to three reasons. First, the likelihood function involved integration

of random effects and therefore is more complicated. Second, the correlation structure

is more complex because the response yt depends on both its hidden state xt and some

previous responses yt−r, ..., yt−1. Third, the proposed model involves multi-stochastic

processes, whereas the HMMs focus on the setting with single stochastic process.

For notation simplicity, we assume ni = n for all i = 1, ...,m and rewrite the model
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in vector form as follows

y|(k) = U0γk + Uu + ek, (2.3)

where γk = (αk, β
(k)
1 , ..., β

(k)
r )′ with the corresponding historical data denoted by U0, U

is an n ×m matrix of known constants(design matrix for a random effect), it consists

only of zeros and ones and there is exactly one 1 in each row and at least one 1 in each

column. u is an m × 1 random vector. Let G = UU ′, and G0 = IN . The random

vectors u and ek are independent, with ek ∼ N(0, σ2
kIN ) and ui ∼ N(0, σ2

uIm). Matrix

U0 has full rank (1 + r). Based on (3.1), it follows that y|(k) ∼ N(U0γk,Σk), where

Σk = Gσ2
u + σ2

kI. Thus, based on the vector form of the model, the Log-likelihood can

be written as

L(θ) =
∑
x

[−1

2
N log 2π − 1

2
log |Σx| −

1

2
(y− U0γx)′Σ−1

x (y− U0γx)]P (x) (2.4)

where the P (x) =
∏m
i=1 πxi1

∏ni
t=2 pxi,t−1,xit , is the density of any sequence of the hidden

states. There are two sets of parameters including θ1 = (pkl, γk, σk) and θ2 = (σui),

where k, l = 1, ...,K, and i = 1, ..., p1 The true parameters are denoted by θ0 = (θ10, θ20).

Then we have the main results as follows:

Theorem 2.1. Assume that (A1)-(A7) hold,
√
N [θ̂1 − θ10]

√
m[θ̂2 − θ20]

→ N(0, I−1
0 ),

where Im,n is the Fisher information matrix

Im,n =

 Cov(N−
1
2
∂L
∂θ1

) Cov(N−
1
2
∂L
∂θ1

,m−
1
2
∂L
∂θ2

)

Cov(N−
1
2
∂L
∂θ1

,m−
1
2
∂L
∂θ2

) Cov(m−
1
2
∂L
∂θ2

)


and

lim
m,n→∞

Im,n =

 I11 I12

I21 I22

 = I0.
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This theorem shows the asymptotic properties of the parameters. For the estimator

of the parameters except the variance component (θ̂1), the convergence rate is
√
N . For

the estimator of the parameters for the variance component (θ̂2)), the convergence rate

is
√
m.

2.3 Monte Carlo Algorithm

In order to illustrate our method better and avoid complexity in notation, we assume

that there is only 1 random effect in the model. When the number of random effect is

greater than 1, the corresponding algorithm can be derived without any difficulties.

In the case where there are a few random effects, the numerical method works well.

Here Gaussian quadrature methods approximates the integral well and Quasi-Newton

method can be used to maximize the approximated likelihood. When the number

of random effects become large, numerical results are not feasible. Here we use the

traditional EM algorithm to do estimation. The complete likelihood is

L(θ; y,x,u)

= log f(y|x,u, θ) + log f(x|u, θ) + log f(u; θ)

=

m∑
i=1

ni∑
t=1

log f(yit|xit,u, θ, yi,t−1) +

m∑
i=1

log πzi1 +

m∑
i=1

ni∑
t=2

log pxi,t−1,xit + log f(u; θ)

(2.5)

2.3.1 MCEM proposed by Altman

In this part, we introduced the method proposed by Altman(2007) E-step:

E[L(θ; y,x,u)|y, θp]

=

∫
u

∑
x

L(θ; y,x,u)f(x,u|y, θp)du (2.6)
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Note that:

f(x,u|y, θp)

=
f(y|x,u, θp)f(x|u, θp)f(u; θp)

f(y; θp)

=
f(y|x,u, θp)f(x|u, θp)f(u; θp)∫

u

∑
x f(y|x,u, θp)f(x|u, θp)f(u; θp)du

(2.7)

Therefore, if one generates samples u1, ...,uB from f(u|θp), then we can obtain the

approximation:

E[L(θ; y,x,u)|y, θp]

≈ 1

B

B∑
j=1

∑
x

L(θ; y,x,uj)hj(x) (2.8)

where

hj(x) =
f(y|x,uj , θp)f(x|uj , θp)∑B

k=1

∑
x f(y|x,uk, θp)f(x|uk, θp)

. (2.9)

This sampling step is intuitive, but the term hj(x) is computationally intensive to

calculate. This is because
∑

x f(y|x,uk, θp) requires evaluation over all combinations

of x. For the M-step, the parameters involved in the likelihood can are estimated

separately.

2.3.2 New Monte Carlo EM algorithm

Here we propose a new sampling method. In the E-step, instead of sampling u from

f(u|θp), we propose f(u|y, θp), which can alleviate the computing in the E-step. More-

over, since we have a particular form of the likelihood, we have the explicit form of the

updates in M-step, which reduce the calculation and illustrate the underlying mecha-

nism.
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E-step:

E[L(θ; y,x,u)|y, θp]

=

∫
u

∑
x

L(θ; y,x,u)f(x,u|y, θp)du

=

∫
u

∑
x

L(θ; y,x,u)f(x|u,y, θp)f(u|y, θp)du (2.10)

Sample u1, ...,uB from f(u|y, θp), then we can obtain the approximation:

E[L(θ; y,x,u)|y, θp] ≈ 1

B

B∑
j=1

E[L(θ; y,x,uj)|y, θp] (2.11)

To sample u1, ...,uB from f(u|y, θp), write down the conditional density function as

follows:

f(u|y, θp) =
f(y|u, θp)f(u|θp)

f(y|θp)

=

∑
x f(y|x,u, θp)f(x|u, θp)f(u|θp)

f(y|θp)

=

∑
x f(y|x,u, θp)f(u|θp)f(x|θp)

f(y|θp)

∼
∑
x

f(y|x,u, θp)f(u|θp)f(x|θp) (2.12)

The third equation is because the random effect and the hidden state are independent,

f(x|u, θp) = f(x|θp).

Step 1 :Sample x from f(x|θp), then sample u from

f̃(u) ∼ f(y|x,u, θp)f(u|θp) ∼ exp{−
m∑
i=1

ni∑
t=1

(yit − βxityi,t−1 − αxit − ui)2

2σ2
xit

} exp{−
m∑
i=1

u2
i

2σ2
u

}

∼N(diag(µi), diag(σ2
i )) (2.13)

where µi =

∑ni
t=1

yit−βxityi,t−1−αxit
σ2xit∑ni

t=1 1/σ2
xit

+1/σ2
u

, and σ2
i = (

∑ni
t=1 1/σ2

xit + 1/σ2
u)−1

Step 2 : Repeat step 1 B times, then we got samples u1,u2, ...,uB from f(u|y, θp).
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Then, E-step is as follows:

E[L(θ; y,x,u)|y, θp]

=

∫
u

∑
x

L(θ; y,x,u)f(x|u,y, θp)f(u|y, θp)du

=
1

B

B∑
j=1

∑
x

L(θ; y,x,u)f(x|uj ,y, θp) (2.14)

Where f(x|uj ,y, θp) can be calculated by forward and backward algorithm.

M-step:

For the M-step, note that, typically, the parameters can be updated separately. In other

words, the expressions E[
∑m

i=1

∑ni
t=1 log f(yit|xit,u, θ, yi,t−1)|y, θp], E[

∑m
i=1 log πzi1 |y, θp],

E[
∑m

i=1

∑ni
t=2 log pxi,t−1,xit |y, θp], and E[log f(u; θ)|y, θp] can usually be maximized sep-

arately, improving the efficiency of the procedure.

E[
m∑
i=1

ni∑
t=1

log f(yit|xit,u, θ, yi,t−1)|y, θp]

=
1

B

B∑
j=1

∑
x

m∑
i=1

ni∑
t=1

log f(yit|xit,uj , θ, yi,t−1)f(x|y,uj , θp)

=
1

B

B∑
j=1

∑
x

m∑
i=1

ni∑
t=1

[− log(σxit)−
(yit − βxityi,t−1 − αxit − u

j
it)

2

2σ2
xit

]f(x|y,uj , θp) (2.15)

Let qit(k) = p(xit=k|y,θp,uj)∑m
i=1

∑ni
t=1 p(xit=k|y,θp,uj)

. The above function can be viewed as the weighted

Least Square likelihood with response yit−uit and covariates yi,t−1. The corresponding

weight is qit. Thus the updates for β′s and α′s can be easily derived.

E[

m∑
i=1

log πzi1 |y, θp] =
1

B

B∑
j=1

∑
x

m∑
i=1

log πzi1f(x|y,uj , θp) (2.16)

we have:

π̂k = 1
B

1
m

∑B
j=1

∑m
i=1 p(xi1 = k|y,uj , θp)

E[

m∑
i=1

ni∑
t=2

log pxi,t−1,xit |y, θp] =
1

B

B∑
j=1

∑
x

m∑
i=1

ni∑
t=2

log pxi,t−1,xitf(x|y,uj , θp) (2.17)
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we have:

p̂k,l =
∑B
j=1

∑m
i=1

∑ni
t=2 p(xi,t−1=k,xit=l|y,uj ,θp)∑B

j=1

∑K
l=1

∑m
i=1

∑ni
t=2 p(xi,t−1=k,xit=l|y,uj ,θp)

E[log f(u; θ)|y, θp] (2.18)

Note that we sample u from f(u|y, θp), thus σ̂2
u is the sample variance of uj , for

j = 1, ..., B, that is

σ̂2
u =

1

B

B∑
j=1

m∑
i=1

(uji )
2 (2.19)

Forward and backward algorithm:

For i = 1, ...,m, let α
(i)
k (t) = p(yi1, ..., yit, xt = k|uji ) and β

(i)
k (t) = p(yi,t+1, ..., yini |xt =

k, uji ) for 1 ≤ t ≤ ni − 1. set β
(i)
k (ni) = 1. Then we have:

α
(i)
k (1) = πkp(yi1, xi1 = k|uji ) for 1 ≤ k ≤ K, 1 ≤ i ≤ m

α
(i)
k (t) = p(yit|xit = kuji )

∑k
l=1 α

(i)
l (t− 1)pl,k for 1 < t ≤ ni, 1 ≤ k ≤ K, 1 ≤ i ≤ m

β
(i)
k (ni) = 1 for 1 ≤ k ≤ K, 1 ≤ i ≤ m

β
(i)
k (t) =

∑k
l=1 pk,lp(yi,t+1|xi+1 = l, uji )β

(i)
l (t+1) for 1 ≤ t < ni, 1 ≤ k ≤ K, 1 ≤ i ≤ m

then we have:

p(xit = k|y,uj , θp) =
α

(i)
k (t)β

(i)
k (t)∑K

k=1 α
(i)
k (t)β

(i)
k (t)

(2.20)

p(xi,t−1 = k, xit = l|y,uj , θp) =
α

(i)
k (t− 1)pk,lp(yi,t+1|θp, xt+1 = l)β

(i)
l (t+ 1)∑K

k=1 α
(i)
k (t− 1)β

(i)
k (t− 1)

(2.21)

2.4 Simulation

In this section, we present the simulation study of the MSARM models. Here is the

simulation setting, for i = 1, ...,m, t = 1, ..., n:

yit =


1 + 0.1yi,t−1 + e

(1)
it + ui under state 1

3 + 0.2yi,t−1 + e
(2)
it + ui under state 2
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We generated 20 sequences with same length 100, which means m=20 and n=100. The

transition probability matrix is (p11, p12, p13, p14) = (0.9, 0.1, 0.2, 0.8). The intercepts

are 0.1 and 0.2, and the coefficients are 1 and 3, under state 1 and 2 respectively, which

means α1 = 1, α2 = 3, β
(1)
1 = 0.1 and β

(2)
1 = 0.2. e

(1)
it are the i.i.d random error under

state 1, follows the normal distribution with mean 0 and variance 0.2. e
(2)
it are the i.i.d

random error under state 2, follows the same distribution. ui are the random effect

among sequences, follows the normal distribution with mean 0 and variance 1.

Remarks:

• Due to the application to real data, we prefer to simulate a similar data set, thus

in our simulation there are 1 AR effect(r = 1), two underlying states(K=2). In

general our method can be applied to different settings.

• The variance of random error and random effect are set to be 0.2 and 1 respec-

tively, which is for comparison purpose. The results will show that our model can

capture the variation both within the sequence and among the sequences very

well.

• In the MCEM procedure, when apply the Monte Carlo method, the number of

samples, B, required to approximate the E-step accurately is an important prac-

tical consideration. Here we set B=500, and the simulation results are good when

comparing to the true values. More accurate results can be achieved by increasing

the value of B, but it may bring the computing burden. In application, people

can try the E-step several times, thus the approximate value of B can be chosen

by the reflected variation of the value in E-step. Also note that the value of B

depends on the number of random effects. When the number of the random effect
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become large, which means a high dimension integral need to be approximated,

thus a much larger value of B is necessary.

• Initial values are crucial in the estimation of conventional HMM, and also in our

model, which due to large number of parameters and unknown hidden states.

Then how to find the global maximum for the log-likelihood instead of the local

maximum is very important. Here the approach is that first based on the data,

we get the summary statistics(such as mean and variance) from the data, then

we try different values in the estimated regions, and choose the estimators with

largest log-likelihood. Typically it’s not necessary to try different initial values

for all the parameters. For the transition matrix, the true values are between 0

and 1, so the initial value for the transition probability parameters are just set to

(0.5,0.5,0.5,0.5). The AR effect is usually between -1 and 1, so we can either try

different initial values in [−1, 1], or just set them to be 0. In our simulation, we

first set the initial values of the transition probability parameters all to be 0.5.

The initial values of the σ2
1, σ2

2 and the variance of random effect σ2
u are all set

to be 0.5. The initial value of the coefficients β
(1)
1 and β

(2)
1 are set to be 0. The

intercept α1 and α2 are tried different values in region (-5,5), based on the mean

of the data.

The simulation results are shown in Table 2.1. The true values of the parameters

are shown in column 2. First we generated 20 sequences with 100 observations in each

sequence(n = 100 and m = 20), repeated 100 times to find the mean and standard devi-

ations of the estimators. The simulation is performed in R with seeds set from 1 to 100.

The estimators and the corresponding with standard deviations are shown in column
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3. From the results, we can see that the estimations of the transition probability pa-

rameters are very good. For the AR effects, the results seem a little bit overestimation.

Also the estimators of the variance under both states are a little bit overestimated. We

think that this overestimation maybe due to the small size of the observations. Thus

we increase the number of observations in each sequence from 100 to 500(n=500), and

all other settings are remained the same. The results are shown in column 4. From

the results, we can see that after increasing the number of observations, all estimators

perform well with small variance.

Table 2.1: Simulation study

Parameters True Value n = 100 m = 20 n = 500 m = 20

p11 0.9 0.899(0.009) 0.901(0.004)
p12 0.1 0.101(0.009) 0.099(0.004)
p21 0.2 0.204(0.017) 0.199(0.008)
p22 0.8 0.796(0.017) 0.801(0.008)

β
(1)
1 0.1 0.075(0.059) 0.082(0.027)
α1 1 1.152(0.115) 1.025(0.098)
σ1 0.447 0.561(0.022) 0.478(0.006)

β
(2)
1 0.2 0.165(0.053) 0.182(0.023)
α2 3 3.103(0.172) 3.035(0.114)
σ2 0.447 0.555(0.023) 0.472(0.007)
σu 1 1.087(0.209) 1.033(0.181)

2.5 Application

We applied the MSARM to study the molecular binding mechanism based on the cell

adhesion data. There are 18 pairs of cells, and for each pair, the force clamp assays

are conducted. For the force clamp assays of each pair of the cells, several force-clamp

periods (i.e., defined as bond lifetime) are measured in a certain period of time. The

original data contains 18 time series with bond lifetimes as responses. As mentioned, the
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data have three unique features. First, there are multiple repeated assays collected from

different pairs of cells. The same biological mechanism is shared within the same pair

of cells and some variations exist among different pairs of cells. Second, the molecular

bond formation, which is of our major interest, is not directly observable. Third, there

are some memory effects in the repeated bond lifetime measurements. It was discovered

that cells appear to have the ability to remember the previous adhesion events and such

a memory has an impact on the future adhesion behaviors.

Those bond lifetimes become the responses in the MSARM. And for each measured

bond lifetime, it has an underlying hidden state, which is defined as bonded or not

bonded. Table 2.2 shows the numerical results based on the 18 time series. The first

four rows of the table shows the transition probabilities. State 1 represents not bonded

and state 2 represents bonded. The probability from state bonded to bonded is 0.313

(p22 = 0.313). It shows the memory effect that cells appear to have the ability to

remember the previous adhesion events and such a memory has an impact on the

future adhesion behaviors. In this biological systems the occurrence of binding in the

immediate past assay could decrease the likelihood for the next assay to result in a

binding. The 5-7 rows and 8-10 rows show the estimation of the parameters under

state not bonded and bonded respectively. β1 = −0.002 shows that the bond lifetime

under state not bonded is not affected by the previous one. β2 = 0.083 shows that the

bond lifetime under state bonded is affected by the previous one. Based on α1 and α2,

the bond lifetime under the two states are quite different. The variance of the bond

lifetime under bonded state is much larger. By applying the MSARM, we discovered

the memory effects and provided useful information of the molecular biding mechanism

under the two states.
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Table 2.2: MSARM results based on the 18 pairs of cells time series

Parameters estimator

p11 0.942
p12 0.058
p21 0.687
p22 0.313
β1 -0.002
α1 0.157
σ1 0.877
β2 0.083
α2 5.809
σ2 4.012
σu 0.834

2.6 Appendix

2.6.1 Assumptions

(A.1) The transition probability matrix is ergodic, that is, irreducible and aperiodic.

(A.2) For all underlying state k, k=1,...,K, for any observation y and random effect u,

gθ(y|a) =
∫
p(y|u, x = k)f(u)du has 2 continuous derivatives in in neighborhood

|θ − θ0| < δ.

(A.3) Write θ1 = (θ11, ..., θ1d). There exists a δ > 0 such that

(i) for all 1 ≤ i ≤ d and all k,

E0[ sup
|θ−θ0|<δ

| ∂
∂θ1i

log gθ(y1|k)|] <∞ (2.22)

(ii) for all 1 ≤ i, j,≤ d and all k,

E0[ sup
|θ−θ0|<δ

| ∂2

∂θ1i∂θ1j
log gθ(y1|k)|] <∞ (2.23)
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(iii) for j = 1, 2, all 1 ≤ il ≤ d, l = 1, ..., j, and all k,

∫
sup

|θ−θ0|<δ
| ∂j

∂θ1i1 · ∂θ1ij

gθ(y|k)|vdy <∞ (2.24)

(A.4) There exists a δ > 0 such that with

ρ0(y) = sup
|θ−θ0|<δ

| max
1≤a,b≤K

gθ(y|a)

gθ(y|b)
| (2.25)

P0(ρ0(y1) =∞|x1 = a) < 1 for all a.

(A.5) θ0 is an interior point of Θ.

(A.6) The maximum-likelihood estimator is strongly consistent.

2.6.2 Technical proofs

First, we will derive some the asymptotic properties when m = 1. The technique is

the same as Bickel(1998), first we extend the bivariate process {(xk, yk)} to a doubly

infinite stationary sequence {(xk, yk)}k=∞
k=−∞. Then by a martingale convergence theorem

by Levy, pθ(y1|y0
−n) → pθ(y1|y0

−∞). We use similar notations as Bickel(1998), writing

λθ(a, b) = ∂ log pab
∂θ1

, γθ(y|a) = ∂ log f(y|x=a)
∂θ1

=
∂ log

∫
p(y|u,x=a)f(u)du

∂θ1
, and τθ(a) = D log πa.

gθ(y|a) = p(y|a) =
∫
p(y|u, x = a)f(u)du. Thus by (4) and (5) in Bickel(1998),

D log pθ0(y1|y0, ..., y−n)

=
0∑

k=−n
E[γ(yk|xk, y) + λ(xk, xk+1)|y1

−n]

−
0∑

k=−n
E[γ(yk|xk, y) + λ(xk, xk+1)|y0

−n]

+ E[γ(y1|x1)|y1
n] + E[τ(x−n)|y1

−n]− E[τ(x−n)|y0
−n] (2.26)
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The the likelihood with random effect have the same expansion as Bickels(1998), with

no more assumptions added.

Theorem 2.2. Under assumptions (A.1)-(A.6), N−1/2 ∂L(θ0)
∂θ1

→ N(0, I11) as n→∞.

Proof. Let Li denote the likelihood of the i-th cell. We will first prove that n−1/2 ∂Li(θ0)
∂θ1

→

N(0, Ai) as n→∞. where Ai is the limit of the covariance matrix of n−1/2 ∂Li(θ0)
∂θ1

.

For each sequence i, let ξk =
∂ log pθ0 (yk|yk−1,...,y1)

∂θ1
, so that ∂Li(θ0)

∂θ1
=
∑n

k=1 ξk, and let

ηk =

k−1∑
i=−∞

E0[γ0(yi|xi) + λ0(xi, xi+1)|yk−∞]

−
k−1∑
i=−∞

E0[γ0(yi|xi) + λ0(xi, xi+1)|yk−1
−∞ ]

E0[γ0(yk|xk)|yk−∞] (2.27)

Based on the assumptions (A.1)-(A.6), we have the same results as Lemma 3-6 in

Bickle(1998), without any more conditions, so that ηk is a stationary and ergodic mar-

tingale increment sequence. Its covariance matrix is Ai. By the central limit theorem

for martingales, we obtain

n−1/2
n∑
k=1

ηk → N(0, Ai) (2.28)

By Lemma 6 in Bickel(1998), we have

‖n−1/2
n∑
k=1

ξk − n−1/2
n∑
k=1

ηk‖ ≤ n−1/2
n∑
k=1

‖ξk − ηk‖ → 0. (2.29)

Then we have n−1/2 ∂Li(θ0)
∂θ1

→ N(0, Ai) as n → ∞. Thus, for all i = 1, 2, ..., N ,

n−1/2 ∂Li(θ0)
∂θ1

→ N(0, Ai), as n→∞. Then

N−1/2∂L(θ0)

∂θ1
= N−1/2

m∑
i=1

∂Li(θ0)

∂θ1
→ m−

1
2N(0,

m∑
i=1

Ai)→ N(0, I11) (2.30)
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Theorem 2.3. Under assumptions (A.1)-(A.6), and let θ∗n be any stochastic process

such that θ∗ → θ as n→∞. Then N−1 ∂
2L(θ∗)
∂θ1∂θT1

→ I11

Proof. Let Li denote the likelihood of the i-th cell. Then apply the same technique, we

have n−1 ∂
2Li(θ

∗)
∂θ1∂θT1

→ Ai. Then

N−1∂
2L(θ∗)

∂θ1∂θT1
= N−1

m∑
i=1

∂2Li(θ
∗)

∂θ1∂θT1
→ 1

m

m∑
i=1

Ai → I11 (2.31)

Theorem 2.4. Under assumptions (A.7)-(A.8), let θ∗ be any stochastic process such

that θ∗ → θ as m → ∞. Then m−1/2 ∂L(θ0)
∂θ2

→ N(0, I22) and N−1 ∂
2L(θ∗)
∂θ2∂θT2

→ I22, as

m→∞.

Proof. Based on the matrix form of the likelihood,

∂L

∂σi
=
∑
x

[−tr(Σ−1
x Gi) + (y− U0γx)′Σ−1

x GiΣ
−1
x (y− U0γx)]P (x)/2 (2.32)

∂2L

∂σi∂σj
=
∑
x

[−tr(Σ−1
x GiΣ

−1
x Gj)− 2(y− U0γx)′Σ−1

x GiΣ
−1
x GjΣ

−1
x (y− U0γx)/2]P (x)/2

(2.33)

By the fact of Weiss(1971,1973) and Theorem 3.1 in Miller(1977), ∂L(θ0)
∂θ2

→ N(0, I22).

Also

|∂
2L(θ∗)

∂φi∂φj
/m− [I22]ij | → 0 φi = (θ2)i, φj = (θ2)j

|∂
2L(θ∗)

∂φi∂φj
/
√
N − [I12]ij | → 0 φi = (θ1)i, φj = (θ2)j

|∂
2L(θ∗)

∂φi∂φj
/
√
N − [I21]ij | → 0 φi = (θ2)i, φj = (θ1)j (2.34)

Proof of Theorem 2.1
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Proof. First, by the results from Theorem 2.2 and Theorem 2.4, N−
1
2
∂L(θ0)
∂θ1

m−
1
2
∂L(θ0)
∂θ2

→ N(0, I−1
0 )

By Taylor expansion,

0 =
∂L(θ̂)

∂θ
=
∂L(θ0)

∂θ
(θ̂ − θ) +

∂2L(θ∗)

∂θ∂θT
(θ∗ − θ) (2.35)

Then by the result from Theorem 2.3 and Theorem 2.4, the result follows immediately.
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