
GROUP-ORIENTED SECRET SHARING

USING SHAMIR’S ALGORITHM

by

KALYAN KOUSHIK ALAPATI

A thesis submitted to the

Graduate School-Camden

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of Master of Science

Graduate Program in Scientific Computing

Written under the direction of

Dr. Jean Camille Birget

And approved by

Dr. Jean Camille Birget

Dr. Sunil Shende

Dr. Suneetha Ramaswami

Camden, New Jersey

January 2018

ii

THESIS ABSTRACT

Group-Oriented Secret Sharing

using Shamir’s Algorithm

by KALYAN KOUSHIK ALAPATI

Thesis Director:

Dr. Jean Camille Birget

In the current state of highly distributed and hybrid-cloud systems environment, managing

and securing enterprise or government systems/data requires effective access control

techniques and protocols. Currently, individual and independent logins using single or

multi-factor passwords are widely used across the industry, but they are highly vulnerable

to hacking, phishing and various password stealth techniques.

For securing highly sensitive IT assets, comprehensive data management and governance

programs include group-oriented login or authorization procedures, wherein a group of

individuals or processes (as opposed to a single individual) provide their

credentials/passwords or keys to gain access to the sensitive resource.

To implement the group-oriented login, a widely acclaimed cryptographic technique,

Secret Sharing, offers an elegant and secure solution. In this technique, the secret

(password) is divided into multiple shares in such a way that a threshold number of shares

are essential to reconstruct the secret (password). Shamir’s Secret Sharing uses this

cryptographic technique, and the Secret Share splitting and reconstruction are based on a

polynomial over a finite field. The goal of this thesis is to study and evaluate this technique

with reference to threshold based group-login by various examples.

iii

Acknowledgments

I would like to express my sincere appreciation to Dr. Jean Camille Birget for his guidance

in my thesis work without whom this thesis would not have been possible.

iv

 TABLE OF CONTENTS

Chapter 1 : Introduction ... 1

Chapter 2 : Secret Sharing .. 3

2.1 Shamir’s Secret Sharing ... 3

2.1.1 Splitting the Secret ... 4

2.1.2 Reconstructing the Secret .. 6

2.2 Secret Sharing – Vulnerabilities, Fixes and Alternatives ... 9

Chapter 3 : Secret Sharing – Practical Applications .. 11

3.1 Group Authentication using Secret Sharing .. 11

3.2 Group Authorization using Secret Sharing .. 13

3.3 Group Administration and Password Management ... 16

Chapter 4 : Application Details ... 20

4.1 Application... 21

4.2 Flow-Chart ... 25

4.3 JAVA Modules .. 26

Chapter 5 : Test Cases & Results ... 29

5.1 Test Case - Experiment #1 ... 29

5.2 Test Case - Experiment #2 ... 30

Chapter 6 : Conclusion .. 32

References .. 33

Appendix 1 .. 34

Appendix 2 .. 60

1

Chapter 1 : Introduction

In the current digital era, collection of information for efficiency and productivity gains

has become an essential and integral part of every government, business, education and

research organization. Information security and assurance have become even more critical

in maintaining integrity of the information, safe guarding and providing access to the

rightful owners. Organizations practice comprehensive safeguarding policies ranging from

auditing, job rotation and separation of responsibilities to protect the data center and

networks from undesirable acts either by a malicious or inexperienced employee acting

alone.

For example, multi-party authorization process is used extensively across the industry to

safeguard and protect telecommunications networks, data centers and industrial control

systems. In this process, a second (or additional) authorized user approval is needed before

the action actually takes place. While the implementations vary radically from system to

system, at its core, the authorization process involves a group of individual users

authorizing access to a resource. While the authorization is handled by this process, the

resource authentication (login) is still a single unit and known to one party, which makes

it highly vulnerable to various hacking techniques.

A simpler and more elegant solution can be implemented using Adi Shamir’s Secret

Sharing[1] cryptographic technique, using which the resource authentication (login) is split

into multiple shares across a given group in such a way that the secret (login) can be

reconstructed only when a predefined (threshold) number of shares are available from the

group. When this technique is property implemented, either an individual share or shares

2

less than the threshold number of shares are of no use on their own and will not be able to

reconstruct the secret (password).

Chapter 2 of this thesis explains the theory of Shamir’s Secret Sharing scheme, its

vulnerabilities, fixes proposed by various researchers and alternative schemes. Chapter 3

describes typical examples of group authorization, Chapter 4 provides the details of the

flow charts and Java application developed to illustrate and study the limitations of

Shamir’s Scheme. Chapters 5 and 6 provide the compilation of the test cases, results and

conclusions. Details of all the application Java modules, classes and the code used for

conducting the studies in this thesis are provided in Appendix 1, and details of the CPU

and JAVA SDK versions are listed in Appendix 2.

3

Chapter 2 : Secret Sharing

Suppose two friends rent a locker to securely store their valuables and there is only one

key to access the locker. Now arises the question of trust: what if the friends do not really

trust each other and are afraid that other might access the locker and take everything? There

needs to be a solution to ensure that their valuables are secure.

An easy way to solve this issue is to design the locker in such a way that at least two keys

are needed to access its contents. Now each person is given a key. If any one of the friends

wants to access the locker, the other person must also provide his key and this solves the

problem of trust. This explains the basic concept of secret sharing.

In cryptography, secret sharing is a method of distributing a secret among a group of

participants each of which is allocated a share. The secret can be reconstructed only when

a certain specified number of shares are combined.

2.1 Shamir’s Secret Sharing

Shamir's secret sharing scheme is a threshold scheme which is based on polynomial

interpolation. It has two parameters: t, the threshold and n, the number of

participants/players. The main idea of the scheme is that t points are sufficient to define a

polynomial of degree 𝑡 − 1, for example 2 points are sufficient to define a line, 3 points

can define a parabola and so on. Similarly, using this scheme, a dealer D splits a secret s

into shares and distributes them to 𝑛 players such that at least 𝑡 shares are needed to

reconstruct the secret 𝑠 and any fewer than 𝑡 players cannot learn anything about the secret.

Such a scheme is termed as (𝑡, 𝑛) threshold scheme.

4

2.1.1 Splitting the Secret

According to the Shamir's secret sharing scheme, a dealer D distributes a secret s among n

players {𝑃1, 𝑃2, 𝑃3, … . . , 𝑃𝑛} such that at least t players are required to reconstruct the secret

and t should be less than or equal to 𝑛 i.e. 1 ≤ 𝑡 ≤ 𝑛.

To split the secret into shares the dealer D creates a polynomial 𝑓(𝑥) of degree 𝑡 − 1 and

a constant term 𝑎0.

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ . +𝑎𝑡−1𝑥𝑡−1 (𝑚𝑜𝑑 𝑝)

where 𝑝 is a prime number selected based on the level of security needed for the secret,

and the constant term 𝑎0 is the secret 𝑠. Higher values of p result in greater security, and

the secret s is always less than the prime number p, and typically more than n.

Randomly choose the 𝑡 − 1 integer values 𝑎1, 𝑎2, … . , 𝑎𝑡−1 such that 𝑎𝑖 ∈ [0, 𝑝) for all i.

Then the dealer D chooses n random distinct evaluation points 𝑥𝑖 ≠ 0 and secretly

distributes to each player 𝑃𝑖 the share

𝑆ℎ𝑎𝑟𝑒𝑖(𝑠) = (𝑥𝑖 , 𝑓(𝑥𝑖))

Figure 2.1 below provides the process details of group creation, prime number selection,

secret generation, Shamir’s Secret split, and the secret share distribution by dealer D.

5

Figure 2.1 Shamir's Secret Sharing – Secret Generation & Share Distribution

6

2.1.2 Reconstructing the Secret

Goal here is to reconstruct the secret by considering any subset of t shares out of n shares.

We will mark the subsets to be

 (𝑥0, 𝑓(𝑥𝑖0
)) , (𝑥1, 𝑓(𝑥𝑖1

)) , (𝑥2, 𝑓(𝑥𝑖2
)) , … … , (𝑥𝑡−1, 𝑓(𝑥𝑖𝑡−1

)).

Lagrange interpolation is used to compute the unique polynomial 𝑓(𝑥) of degree ≤ 𝑡 − 1

from the 𝑡 shares. In this process, the known data points (𝑥0, 𝑓(𝑥0)), (𝑥1, 𝑓(𝑥1)),

…,(𝑥𝑡−1, 𝑓(𝑥𝑡−1)) with all 𝑥𝑖 different, are used to re-construct the unique polynomial

𝑓(𝑥) that passes exactly through these data points.

Using Lagrange Interpolation formula, the polynomial 𝑓(𝑥) can be written in the form

𝑓(𝑥) = ∑ 𝑓(𝑥𝑖) ∗

𝑡−1

𝑖=0

𝐿𝑖(𝑥),

where 𝐿𝑖(𝑥) is the Lagrange Polynomial.

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑡−1

𝑗=0 𝑗≠𝑖

.

𝐿𝑖(𝑥) has value 1 at 𝑥𝑖, and 0 at every other 𝑥𝑗.

The reconstructed unique polynomial 𝑓(𝑥) is

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ . +𝑎𝑡−1𝑥𝑡−1

The constant term 𝑎0 in the reconstructed unique polynomial 𝑓(𝑥) is the original secret 𝑠.

Figure 2.2 below provides the process details of collecting the secret shares, calculation of

Lagrange Polynomial, the unique polynomial corresponding to the original secret, and

finding the original secret.

7

Figure 2.2 Shamir's Secret Sharing – Secret Reconstruction

Algorithm 1 below lists the pseudo-code for key functions of the Shamir’s Scheme.

• SECRET-SPLIT Method: (refer Figure 2.1) Builds the unique polynomial and

generates the secret shares.

• SECRET-RECONSTRUCT Method: (refer Figure 2.2) calculates the Lagrange

Polynomial and reconstructs the unique polynomial and derives the secret.

• LAGRANGE-INTERPOLATION Method: (refer Figure 2.2) uses Lagrange

interpolation formula to build Lagrange Polynomial.

8

Algorithm 1: Shamir’s Secret Sharing Scheme

START

1. n positive integer (group size), t positive integer (threshold value)

2. p bigint() /*prime number*/

3. m positive integer /*minimum number for the secret (typically > n)*/

4. s bigint /*random number between m and p (m > s < p)*/

5. shares [n] [2] bigint /*a 2d array to store the calculated shares*/

6. tshares [t] [2] bigint /*a 2d array to store t shares for reconstruction*/

/* Functions */

7. SECRET-SPLIT (n, t, s, p)

8. SECRET-RECONSTRUCT (tshares [], p, t)

SECRET-SPLIT (n, t, s, p)

1. for i 0 to t-1 do

2. coeff [i] random number from 1 to p

3. end for

4. for x 1 to n do

5. share s

6. for expo 0 to t-1 do

7. share (share+ (coeff [expo]*(xexpo %p)) %p) %p

8. end for

9. shares [x-1][0] = x, shares[x-1][1] = share

10. end for

11. return shares

SECRET-RECONSTRUCT (tshares [], p, t)

1. if length(tshares []) < t then

2. print reconstruction not possible

3. else

4. for i 0 to length (tshares []) do

5. xarray [i] tshares[i][0]

6. yarray [i] tshares [i][1]

7. end for

8. LAGRANGE-INTERPOLATION (xarray [], yarray [], p)

9. print secret

10. end if

LAGRANGE-INTERPOLATION (xarray [], yarray [], p)

1. secret 0, sum 0

2. for i 0 to length (yarray []) do

9

3. product yarray [i]

4. for j 0 to length (yarray []) do

5. if i != j then

6. product product * (x – xarray [i]) / (xarray [i] - xarray [j])

7. end if

8. end for

9. sum sum + product

10. end for

11. secret sum

12. return secret

END

The group management, share distribution and collection features necessary for

implementing Shamir’s Scheme are explained in Chapter 3.

2.2 Secret Sharing – Vulnerabilities, Fixes and Alternatives

Over the years, many fixes have been proposed to address the exploitable vulnerabilities

in Shamir’s technique, and some proposed alternatives, enhancements to strengthen the

secret sharing algorithm.

For example Tompa and Woll [3] demonstrated the vulnerability of Shamir’s scheme when

shares are distributed to one or more dishonest shareholders, and the shares are revealed

asynchronously. Tompa and Woll suggested a small modification to address the issue, and

the fix involves the distributor of the shares to sign each share with unforgeable signature[7]

prior to the distribution of the shares. This process retains the security and efficiency of

Shamir’s scheme, but addresses the issue of cheating amongst the shareholders.

Tartary and Wang[6] addressed the problem of communications eavesdropping when the

secret shares are transmitted over insecure networks either during distribution or

reconstruction of the shares. The proposed fix involves a computationally secure approach

10

which would modify the threshold dynamically based on the capabilities of the

eavesdropper (hacker).

Further, Rabin[8] introduced information dispersal scheme that would cut down the size of

each secret share, making it space optimal. However, this scheme assumes that the

shareholders are honest. To address this issue, Krawczyk[4] proposed a solution that

combines the information dispersal with secure encryption of the secret shares.

11

Chapter 3 : Secret Sharing – Practical Applications

Shamir’s Secret Sharing scheme provides elegant solutions to many situations, and few

applications incorporating Shamir’s scheme (group authentication and group

authorization) are discussed below.

For the sake of clarity, here is a quick description of the terms Authentication and

Authorization used in this thesis.

Authentication (also referred to as login) is the process of verifying the identity of an

individual or a resource using a trusted authority. Or, simply stated, it is the process of

verifying that "you are who you say you are". Authorization is the process of verifying that

the identified individual (or resource) is allowed to do what that individual is trying to do.

Section 3.1 below provides the details of group authentication using Secret Sharing,

wherein members of a group authenticate each other simultaneously.

And, Section 3.2 provides details of group authorization, wherein a subset of group

members (threshold group) already authenticated by another authority, authorize an action

of data retrieval, by pooling their secret shares together to reconstruct login credentials of

the sensitive data cluster, which in turn are used by a proxy server to login to the cluster,

and perform the required data retrieval action.

3.1 Group Authentication using Secret Sharing

In general, the user password based, public or private key based authentication schemes

belong to one-to-one category of authentication protocol. In this protocol, to establish

identity, the user (prover) interacts with the verification authority (verifier), and

communicates the required credentials. Current day network applications are much more

12

complex, and the communications go beyond one-to-one (unicast) and one-to-many

(multicast)[9].

Note: In the next few paragraphs of this section 3.1, I will be citing an example and a novel

idea proposed by L. Harn[9], which stands out as a relevant example for group

authentication. However, this technique is not used either in the program development or

other discussions in this thesis.

L. Harn[9] proposed group authentication specifically designed for group-oriented

applications that need simultaneous authentication of multiple users. The proposed group

authentication schemes (t,m,n; where t is the threshold of the proposed scheme, m is the

number of users participating in a group-oriented application, and n is the total number of

group members; 𝑡 ≤ 𝑚 ≤ 𝑛), are based on Shamir’s Secret Sharing scheme (t, n) using

polynomial operations in finite space, and another scheme proposes the use of tokens

obtained from the Group Manager (GM). In group authentication process, the GM initially

registers all group members, and at that time uses Shamir’s Secret Sharing Scheme to issue

secret shares (tokens) to each group member. Subsequently, the group members interact

together to authenticate each other without GM’s assistance. The proposed Group

Authentication Scheme (GAS) protocol is non-interactive, and the basic scheme works

only for synchronous communications, and the advanced scheme caters to asynchronous

communications.

In this scheme, the threshold value t is a very important parameter that directly relates to

the security level required for the group authentication. The (t, n) based Secret Sharing

scheme can provide safeguard against the collusion of up to t - 1 inside attackers, who

might collude to derive the unique polynomial f (x), and forge any number of valid secret

shares (tokens). As part of the group administration, GM will be issuing a new token only

13

when a new member joins the group. When a member leaves the group, the GM assumes

that member’s token is compromised, and indicates the member’s departure from the group

to the remaining group members. In this process, GM keeps a clear count of the members

departing the group, and when that number reaches the threshold value for the group (t),

GM will generate and issue new tokens to all the members remaining in the group.

With limited communication overhead, this scheme is very efficient and every participant

needs to broadcast a value (secret share/key) to all other participants only once, and every

participant needs to compute the polynomial operations once. In contrast, the conventional

user authentication techniques authenticate one user at a time, whereas the GAS scheme

authenticates all users at once.

3.2 Group Authorization using Secret Sharing

Shamir’s Secret Sharing scheme also provides elegant solutions to situations demanding

group authorization and separation of responsibilities, wherein login credentials required

to access to a sensitive resource need to be secured, but storing the credentials either at a

single location (server, cloud, database etc.) or sharing with any single individual results

in a security compromise.

For example, joint venture projects working on sensitive product designs usually involve

either multiple divisions in the enterprise or may span across multiple organizations. Login

access to the server hosting the product designs, cannot be either stored in a single location

or shared with an individual (system or database administrators, project managers etc.).

Splitting the server login credentials (ID or Password or Digital Key etc.) using the Secret

Sharing scheme and distributing the secret shares across the authorized group of

individuals constituted from each division, provides a secure and effective solution.

14

Consider a group of engineers (belonging to various companies) supporting a shared

network cluster bridging communications across the world, and no one engineer can be

given login credentials to the network cluster. Secret Sharing technique can provide an

effective solution in this situation without exposing and compromising on the security of

the network cluster login credentials.

Given below in Figure 3.1, is a typical implementation of Secret Sharing scheme to

safeguard login credentials of a sensitive data cluster storing information from various

business units in an enterprise with worldwide operations. For obvious security reasons,

the login credentials (SECRET) can neither be stored nor shared with database or network

administrators. The login credentials can be used transiently either on-demand or when

needed. As indicated in the diagram, the Secret Sharing scheme for this case provides a

simple, effective and elegant solution.

15

16

3.3 Group Administration and Password Management

Group administration and Password management are integral part of any application that

incorporates Shamir’s Secret Sharing scheme discussed in the sections above.

Dealer Authority (DA) provides the group administration tasks: group creation,

membership management, distribution of secret shares to the group, collection of shares

from the threshold group, and group destruction.

Password Authority (PA) generates the secret for the required level of security, and

provides the handshake to the system requesting the password. Further, after reconstructing

the password using Shamir’s Scheme, and prior to sending the password, PA also verifies

the hash value of the password originally calculated and stored for the group.

Figure 3.2 describes the process flow details for

▪ DEALER - Group Creation Process: G1, G2, G3, G4

▪ PA Secret Generation, DEALER Secret Share Distribution Process: S1, S2, S3, S4, S5

▪ DEALER Secret Share Collection, and Re-Construction Process: R1, R2, R3, R4, R5

▪ DEALER – Group Destruction Process: D1, D2

The above processes work in conjunction with Shamir’s secret-Split and secret-

Reconstruction processes described in detail in Chapter 2 (Figure 2.1 and Figure 2.2).

It is important to note that in the proposed application, neither the password nor the secret

shares are stored anywhere in the system, and only the users know their own individual

shares. This happens to be the primary benefit of Shamir’s Secret Sharing scheme.

17

18

Details of the pseudo code functions for the Dealer Authority and Password Authority are

given in Algorithm 2 below;

▪ Dealer Authority: GROUP-CREATION(), GROUP-DESTRUCTION(),

SHARE-DISTRIBUTION() and SHARE-COLLECTION ()

▪ Password Authority: GENERATE-SECRET ()

Algorithm 2: Dealer Authority and Password Authority

START

1. dealer receives request from users

2. switch()

3. case GC

4. GROUP-CREATION ()

5. dealer requests the password management authority for a

secret

6. GENERATE-SECRET ()

7. dealer stores p, hash values in the database

8. SECRET-SPLIT (t, n, p, s)

9. dealer destroys the secret s

10. SHARE-DISTRIBUTE(shares)

11. case AR

12. SHARE-COLLECTION ()

13. dealer receives token

14. if token == 1 then

15. dealer sends authorization to users

16. else

17. dealer rejects authorization to users

18. case RG

19. GROUP-DESTRUCTION ()

20. end switch

END

GROUP-CREATION ()

1. create group with the list of members & their authentication credentials

19

2. issue a groupID

3. select the threshold value t

4. store groupID and group members details in database

5. distribute groupID to the members

GENERATE-SECRET ()

1. select a minimum value for the secret m

2. select a prime number p of size (m ≤ p ≤ 2256)

3. generate a random value between m and p

4. assign the random value to secret s

5. create hash value for the secret

6. return p, hash, s to the dealer

SECRET-SPLIT (t, n, p, s)

1. calculates shares

2. delete s

3. return shares to the dealer

SHARE-DISTRIBUTE (shares)

1. dealer distributes shares to the group members

2. delete shares and s

SHARE-COLLECTION ()

1. collect shares from members

2. SECRET-RECONSTRUCT(shares)

3. return token (1 or 0) to dealer

SECRET-RECONSTRUCT (shares)

1. reconstruct the secret s

2. VERIFY-VALUES(s)

3. return token (1 or 0)

20

VERIFY-VALUES (s)

1. creates hash value for the reconstructed secret s

2. verifies the created hash value with the stored hash in the database

3. return token (1 or 0)

GROUP-DESTRUCTION ()

1. purge from database groupID, group memberships, hash, p

*The application developed as part of this thesis work uses server memory instead of the

database to store all group credentials, hash value etc.

Algorithm 3: User

START

1. switch()

2. case GC

3. user sends request to the dealer for creation of the group

4. user receives groupID from the dealer

5. user receives a secret share from the dealer

6. case AR

7. user sends authorization request to the dealer

8. user receives request for the secret share from the dealer

9. user sends the secret share to the dealer

10. user receives response from the dealer

11. if the response is positive then

12. user is granted authorization

13. else

14. user is denied authorization

15. case RG

16. user sends request to the dealer for removal of the group

17. end switch

END

21

Chapter 4 : Application Details

4.1 Application

In this thesis I have developed a multithreaded client / server application. On the server

side, when the SecretServer.JAVA module is executed, the server starts, a socket is

created and the server starts listening for client connections on port number 1111. On the

client side, when the Clients.JAVA module is executed, a frame pops out with a text field

for the client to provide IP address of the server and the UserID of the client. If the provided

details are correct, the server accepts the connection, a thread is created and assigned to the

client. In this multithreaded environment whenever a client is connected, a new thread is

created and assigned to the client. After the thread assignment, the client is provided with

four choices as explained below.

1. IN (Initialization of the process) – To create a group which participates in the secret

sharing process.

2. SS (Secret Share generation request) – When the client gives this response, the server

prompts for the group details. If the details provided are correct, then the secret sharing

process is initiated.

3. AR (Authorization Request) – When the client chooses this response, the server

prompts for the details of the members who are going to participate in the secret

reconstruction process. This procedure is followed for every client to ensure that all the

clients present in the group have agreed for the process.

4. TG (Terminate Group) – When the client chooses this response, the server prompts for

the group details. If the provided details are correct, the server disconnects with all the

clients present in that group and deletes their details.

22

The SServer.JAVA module is where the shares generation and secret reconstruction

process are performed. When the SS response is chosen, the secretSplit () method is called.

In this method the secret is generated using a pre-defined prime as basis. After the secret

is generated, the shares are calculated and are distributed among the clients present in the

group using the recivShare () method. When the AR response is chosen, and when all the

shares are received by the server, these shares are received using sendShare () method.

After all the shares are received, secretReconstruct () method is called. This method uses

Lagrange interpolation to reconstruct the secret, if the reconstructed secret is correct ‘1’ is

returned to the client, else ‘0’ is returned.

Pseudo code details of the Secret Server Module and the Client Module are given below in

Algorithm 3 and Algorithm 4 respectively.

Refer to Appendix 1 for full listing of the JAVA modules (code) developed as part of this

thesis work.

Algorithm 4: Secret Server Module

START

1. port 1111

2. open Server socket

3. bind socket to the declared port

4. start listening for Client connections

5. receive request from Client

6. assign thread to the connected Client

7. open an input stream and output stream

8. get ClientID from the Client

9. if ClientID is correct then

10. add Client to the Client’s List

11. send message “select an option: IN or SS or AR or TG” to Client

for response

12. get response IN or SS or AR or TG from Client

23

13. switch(response)

14. case IN

15. prompt Client for n and t

16. prompt Client for the group details

17. send message to Client “Group Created”

18. case SS

19. prompt Client for the group details

20. if group details are correct then

21. instantiate the SSERVER Object

22. call secretSplit(n,t)

23. send Clients their Shares

24. case AR

25. prompt Client for n and t

26. prompt Client for the group details

27. if group details are correct then

28. prompt Client for their Share

29. else

30. send message “Invalid details…try again”

31. receive at least t Shares from Clients

32. call secretReconstruct(t)

33. receive value from secretReconstruct(t)

34. if value == 1 then

35. send message to Clients “secret

reconstruction successful”

36. else

37. send message to Clients “secret

reconstruction unsuccessful…..try again”

38. case TG

39. prompt Client for the group details

40. if group details are correct then

41. send message to Clients “group removed”

42. delete group details

43. close Server socket

44. if Client exits

45. remove Client from Client’s List

END

24

Algorithm 5: Client Module (executed by USER)

START

1. open Client socket

2. open frame

3. prompt the Client for Server’s IP Address

4. if Server’s IP Address is correct then

5. prompt the Client for ClientID

6. if ClientID is correct then

7. open a frame with text field and message field

8. else

9. prompt the Client for valid ClientID

10. else

11. prompt the Client for Server’s IP Address

12. if server message STARTS with “MESSAGE:” then

13. display message in message field

14. click on close button

15. close frame

END

25

4.2 Flow-Chart

Given below is the flow chart of both client and server modules of the Java program

developed to study and illustrate Shamir’s secret sharing algorithm.

Figure 4.1 Flowchart of Client & Server modules

26

The SServer module below splits the secret into multiple shares.

Figure 4.2 Flowchart of Secret sharing process

4.3 JAVA Modules

Given below is a sample java module function secretSplit(), which splits the secret into

corresponding shares based on a given number of participants n, threshold value t, and the

participant group number gnum. In this method the generated secret is split into shares

using the parameters provided, and the pre-defined prime number. After the shares are

generated the hash value of the secret is calculated and stored in a variable named ‘hvalue’,

later the secret variable is made 0.

27

Figure 4.3 secretSplit() method

The method secretReconstruct() accepts the threshold number t, and the group number

gnum as the parameters, and in this method the secret is reconstructed using the shares

provided and the pre-defined prime number using Lagrange interpolation. After the secret

28

is reconstructed, it’s hash value is compared with the already stored hash value during the

shares generation. If the compared values are equal 1 is returned which sends a message

saying, “reconstruction is successful”, else 0 is returned by sending a message “wrong

shares…please try again”.

Figure 4.4 secretReconstruction() method

29

Chapter 5 : Test Cases & Results

5.1 Test Case - Experiment #1

The following numerical test cases were used to illustrate the length variance of the secret

and the corresponding calculated length of the shares. In other words, the data type of the

secret varies from Integer (int) to BigInteger (BigInt class), and the corresponding

calculated share size (number of digits) is tabulated. In all the cases, the calculated share

size is either very close or equal to the size of the secret itself.

SECRET # of

Shares
Threshold

Share
Size

Basis (Prime) Data Type # of digits

1 12347 int 5 digits 20 11 4-5 digits

2 8765437 int 7 digits 15 7 7 digits

3 987654323 int 9 digits 12 3 9 digits

4 98765441 int 8 digits 10 4 8 digits

5
2147483629

int 10 digits 10 2 10 digits
(<2^31-1)

6
2147483659

long 10 digits 10 8 8 digits
(>2^31-1)

7 18 digits long 18 digits 3 2 18 digits

8 18 digits long 18 digits 20 15
16-18
digits

9 19 digits long 19 digits 8 4 19 digits

10
19 digits

long 19 digits 4 2 19 digits
(<2^63-1)

11 19 digits BigInt class 19 digits 20 15 19 digits

12 38 digits BigInt class 37 digits 15 10 37 digits

13 49 digits BigInt class 48 digits 7 7 48 digits

14 61 digits BigInt class 61 digits 10 8 61 digits

15 78 digits BigInt class 76 digits 10 6 76 digits

TABLE 1

Note: Here are the lengths of the data types as per the System/JAVA compiler used in

developing the program. Additional system details are listed in Appendix 2.

Data Type Byte Length # of Maximum Number limit

int 4 bytes 231-1
long 8 bytes 263-1

BigInt class Internal array 2,147,483,647 digits (or 231 – 1 digits)

30

5.2 Test Case - Experiment #2

The following table (Table 2) captures the time taken for the generating the secret shares

and corresponding reconstruction of the secret shares for different lengths of the secret

considered for testing (prime number is taken as the secret). In this experiment, the prime

number length ranges from 1 digit to 1million digits, and the calculation time is captured

in milliseconds (ms).

TABLE 2

Note: For prime numbers with lengths above 1000 digits, Mersenne prime numbers were

generated using the formula cited above.

Figure 5.1 is a graph plotted with # of digits of prime number on x-axis and the share

generation time, secret reconstruction time (milliseconds) on the y-axis. The graph clearly

indicates an increase in secret share generation time as the length of the secret (# of digits)

increases. Further, the graph also shows a dramatic increase in the corresponding secret

of digits
Generation

Time (ms)
of Shares

Generation

Time (ms)

Reconstructio

n Time (ms)

1 1 4 6 0 0

2 10 5 6 0 0

3 100 75 6 15 0

4 1000 772 6 16 31

5 1332 M4423 6 31 47

6 13395 M44497 6 266 469

7 227832 M756839 6 3754 103363

8 909526 M3021377 6 15069 1560307

Mersenne Prime Number M n = 2
n
 − 1

Prime Number Secret Shares

Password Length (Prime # of digits)

(vs)

Secret Share Generation, Reconstruction CPU time

31

reconstruction time, which would adversely impact the response time and would be a

serious limiting factor for any practical implementation of the algorithm.

For secret lengths below 1 KB the share generation and reconstruction times are

approximately 16 to 31 milliseconds, which are within acceptable limits for most realtime

implementations in enterprise data centers.

Figure 5.1 Plotted graph from the results of experiment #2 (# of digits vs share
generation, reconstruction time (ms))

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

OF
DIGITS

1 10 100 1000 1332 13395 227832 909526

0 0 0
15 16 31 266

3754

15069

0 0 0

0 31 47 469

103363

1560307
PRIME Number : # of digits

(vs)
Secret Share Generation, Reconstruction Time (ms)

32

Chapter 6 : Conclusion

In conclusion, Shamir's Secret Sharing scheme offers a strong fundamental basis for group-

oriented login (passwords, secret keys, PIN #’s etc.) algorithm, and can effectively secure

highly sensitive information assets.

As indicated by the results in Chapter 4, during the analysis, I noticed that as the width of

the secret increases, for all practical purposes, the vulnerability to brute force attacks are

eliminated, but the algorithm takes more time (CPU cycles) during secret splitting and the

reconstruction process.

Further, as discussed above the enhancements to Shamir’s scheme suggested by Tompa[3],

Tartary and Wang[6], Rabin[2] and Krawczyk[4] addresses various vulnerabilities, while

retaining the security and efficiency of the original scheme.

33

References

1. Adi Shamir, 'How to share a secret', Communications of the ACM, vol.22, no.11,
November 1979

2. M.Rabin, 'Randomized Byzantine generals', Proc. 24th IEEE Symposium
Foundation Computer Science, November 1983

3. Martin Tompa, 'How to Share a Secret with Cheaters', IBM Thomas J. Watson
Research Center, 1988

4. Hugo Krawczyk, 'Secret Sharing Made Short', IBM Thomas J. Watson Research
Center, 1993

5. Miao Fuyou, Fan Yuanyuan,Wang Xingfu,Yan Xiong and Moaman Badawy, ‘A
(t,m,n)-Group Oriented Secret Sharing Scheme’, Chinese Journal of Electronics,
2010

6. Christophe Tartary, Huaxiong Wang, 'Dynamic Threshold and Cheater Resistance
for Shamir Secret Sharing Scheme', Proceedings of the 2nd SKLOIS Conference on
Information Security and Cryptology (INSCRYPT 2006), Lecture Notes in Computer
Science, Springer - Verlag, vol. 4318, pp 103 - 117, 2006

7. S.Goldwasser, S.Micali, and R.Rivest, ‘A “paradoxical solution” to the signature
problem’, Proceedings of 25th IEEE Symp. Foundations of Computer Science, Oct.
1984

8. M.Rabin, ‘Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance’, Journal of ACM, vol.36, issue.2, Apr.1989

9. Lein Harn, ‘Group Authentication’, IEEE Transactions on Computers, vol. 62, no. 9,
Sep.2013

10. Lein Harn, Changlu Lin, ‘An Efficient Group Authentication for Group
Communications’, International Journal of Network Security & Its Applications
(IJNSA), Vol.5, No.3, May.2013

34

Appendix 1

Application Java modules and the code.

SServer.JAVA

class SServer

{

 static int maxNumSh=1000, shar=2, maxThre=300;

 //maxThre indicates the max shares used in reconstruction, maxNumSh

is max shares generated

 private static BigInteger[][] shares = new

BigInteger[maxNumSh][shar];

 //Array to store the share number and the generated share

 private static BigInteger[] share = new BigInteger[maxThre];

 //Array to store the collected shares

 private static final BigInteger prime = new

BigInteger("11579208923731619542357098500868790785326998466564056403945

7584007913129640233");

 //prime number which is greater than 2^256

 private static BigInteger secret, temp, hvalue;

 //hvalue is to store the calculated hash value of the secret

 /*Method to generate random integers between 1 and the declared

prime number using Random() function*/

 public static BigInteger rndBigInt(BigInteger max)

 {

35

 Random rnd = new Random();

 do

 {

 BigInteger i = new BigInteger(max.bitLength(), rnd);

 if (i.compareTo(BigInteger.ZERO)>0 && i.compareTo(max) < 0)

 return i;

 } while (true);

 }

 /*Method to split the secret divided is generated using rndBigInt

method and depending on particNum and threshold the shares are

calculated and the secret is set to 0 after its hash value is

calculated*/

 public static void secretSplit(int particNum, int threshold, int

groupNum)

 {

 System.out.println("Prime Number: " + prime);

 final SecureRandom random = new SecureRandom();

 secret = rndBigInt(prime);

 final BigInteger[] coeff = new BigInteger[particNum];

 coeff[0] = secret;

 for (int i = 1; i < particNum; i++)

 {

36

 coeff[i] = rndBigInt(prime);

 }

 for (int x = 1; x <= threshold; x++)

 {

 temp = secret;

 for (int exp = 1; exp < particNum; exp++)

 {

 temp =

(temp.add(coeff[exp].multiply((BigInteger.valueOf(x).pow(exp)).mod(prim

e))).mod(prime)).mod(prime);

 }

 shares[x-1][1] = temp;

 shares[x-1][0] = BigInteger.valueOf(x);

 System.out.println("Share " + shares[x-1][1]);

 }

 hvalue = BigInteger.valueOf(secret.hashCode());

 secret = BigInteger.ZERO;

 temp = BigInteger.ZERO;

 }

37

 /*In this method the secret is constructed using the received

threshold value and the shares, after the secret is reconstructed a

hash value is generated and compared with the calculated hash value of

the secret in the secret spliting method*/

 public static int secretReconstruct(int threshold, int groupNum)

 {

 int k;

 for(int formula = 0; formula < threshold; formula++)

 {

 BigInteger numer = BigInteger.ONE;

 BigInteger denom = BigInteger.ONE;

 System.out.println("Number of shares is: "+threshold);

 for(int count = 0; count < threshold; count++)

 {

 if(formula == count)

 continue;

 BigInteger sposition = shares[formula][0];

 BigInteger nposition = shares[count][0];

 numer = numer.multiply(nposition.negate()).mod(prime);

 denom =

denom.multiply((sposition.subtract(nposition))).mod(prime);

38

 }

 System.out.println("The share is"+ share[formula]);

 BigInteger tmp = share[formula].multiply(numer) .

multiply(denom.modInverse(prime));

 secret = prime.add(secret).add(tmp) . mod(prime);

 }

 System.out.println("The secret is: " + secret + "\n");

 if(hvalue.compareTo(BigInteger.valueOf(secret.hashCode()))==0)

 k=1;

 else

 k=0;

 return k;

 }

 /*Method to store the received shares from the clients that are

required to reconstruct the secret*/

 public static void sendShare(int j, BigInteger sh)

 {

 share[j]=sh;

 }

 /*Method to send the calculated shares to the clients after the

secret is generated and split*/

39

 public static BigInteger recivShare(int j)

 {

 return shares[j][1];

 }

}

40

SecretServer.JAVA

public class SecretServer

{

 private static final int PORT = 1111;

 private static int clientCount=0, n, t,recGrpCount=0, cs=0;

 private static int suc=0, unsuc=0,g, groupCount=0, genSecCount=0;

 static int maxNumGrp=30, maxGrpMem=30;

 //maxNumGrp is max number of groups that can be handled

 //maxGrpMem is max members that can be handled in each group

 private static BigInteger[][] shares = new

BigInteger[maxNumGrp][maxGrpMem];

 //Array to hold the generated shares that are distributed among the

members of a group

 private static BigInteger[] share = new BigInteger[maxGrpMem];

 //Array to collect the shares from members to reconstruct the secret

 static String[][] gnames = new String[maxNumGrp][maxGrpMem];

 //Array to store the names of the clients and their respective group

number

 static String[][] pnames = new String[maxNumGrp][maxGrpMem];

41

 //Array to store the names of the clients who are trying to access

the system and their respective group number

 static int[] ct = new int[maxNumGrp];

 static int[] j = new int[maxNumGrp];

 static int time = 300000;

 //int variable

 static int[][] nt = new int[maxNumGrp][2];

 //Array to hold the number of participants and the threshold for the

respective groups

 static SServer[] ss = new SServer[maxNumGrp];

 //An object array where each object is assigned to each group for

the secret sharing process

 private static HashSet<String> names = new HashSet<String>();

 private static HashSet<PrintWriter> writers = new

HashSet<PrintWriter>();

 public static void main(String[] args) throws Exception

 {

 System.out.println("The server is running.");

42

 ServerSocket listener = new ServerSocket(PORT);

 try

 {

 while (true)

 {

 new Handler(listener.accept()).start();

 }

 }

 finally

 {

 listener.close();

 }

 }

 /*Method to display the details of the clients connected and the

groups created and other functions*/

 private static void displayStatus()

 {

 int i=0,j=0;

 System.out.println("Groups created: "+groupCount);

 System.out.println("Total clients connected: "+clientCount);

 while(i<30) //for(int i=0;i<30;i++)

 {

 System.out.println("The group number is:"+i+" clients in the

group are:");

 while(j<30) //for(int j=0;j<30;j++)

 {

 if(gnames[i][j]!= null)

43

 {

 System.out.print(gnames[i][j]);

 }

 else

 {

 i++;

 break;

 }

 }

 }

 System.out.println("Total secrets generated:"+genSecCount);

 System.out.println("Total groups who reconstructed the

secret:"+recGrpCount);

 System.out.println("Successful reconstructions:"+suc);

 System.out.println("Unsuccessful reconstructions:"+unsuc);

 }

 /*Method to check if a particular client is present in the group

that is mentioned by him*/

 private static int checkGroup(int particNum, int threshold, String

particName, int groupNum)

 {

 int num=0;

 for(int i=0;i<particNum;i++)

 {

 if(nt[groupNum][0]==particNum && nt[groupNum][1]==threshold)

 {

 if(particName.compareToIgnoreCase(gnames[groupNum][i])==0)

 num=1;

44

 }

 }

 return num;

 }

 /*Method to intialize and start the process of secret sharing if the

group number provided and the members of that particular group are

connected to the server, and the calculated shares are distributed

among the group members*/

 public static void inSProcess(int groupNum)

 {

 int i=0,count=0,l=0;

 for(PrintWriter writer: writers)

 {

 if(names.contains(gnames[groupNum][i++]))

 {

 count++;

 }

 }

 if(count==nt[groupNum][0])

 {

 ss[groupNum].secretSplit(nt[groupNum][1], nt[groupNum][0],

groupNum);

 genSecCount++;

 }

 for(PrintWriter writer: writers)

 {

 if(names.contains(gnames[groupNum][l]))

45

 {

 writer.println("SHARE:Your share

is"+ss[groupNum].recivShare(l));

 l++;

 }

 }

 }

 /*A thread handler class to handle the connected clients as

individual threads and provides options to create a group, initialize

the sharing process, reconstructing the secret and giving access to

records and terminated the process for a particular group*/

 private static class Handler extends Thread

 {

 private String name;

 private Socket socket;

 private BufferedReader in;

 private PrintWriter out;

 public Handler(Socket socket)

 {

 this.socket = socket;

 }

 public void run()

 {

 try

 {

 in = new BufferedReader(new InputStreamReader(

46

 socket.getInputStream()));

 out = new PrintWriter(socket.getOutputStream(), true);

 while (true)

 {

 out.println("ID");

 name = in.readLine();

 if(name=="admin")

 {

 displayStatus();

 }

 if ((!names.contains(name)))

 {

 names.add(name);

 clientCount++;

 break;

 }

 }

 writers.add(out);

 while(true)

 {

 out.println("MESSAGE:Please enter IN to Initialize the

process,");

 out.print("MESSAGE:SS to start Secret Sharing

process,");

 out.print("MESSAGE:AR to Access the system,");

 out.print("MESSAGE:TP to Terminate the process");

 String input = in.readLine();

 System.out.println("Command received");

 switch(toUpperCase(input))

47

 {

 case "IN":

 out.println("MESSAGE:Please specify the group

number");

 String gn = in.readLine();

 g = Integer.parseInt(gn);

 if(gnames[g][0]==null)

 {

 out.println("MESSAGE: Please specify the # of

participants and the threshold");

 String np = in.readLine();

 nt[g][0] = Integer.parseInt(np);

 String tp = in.readLine();

 nt[g][1] = Integer.parseInt(tp);

 out.println("MESSAGE:Please provide the names

of the participiants");

 for(int i=0;i<nt[g][0];i++)

 {

 String pname = in.readLine();

 gnames[g][i] = pname;

 }

 out.println("MESSAGE: Group created.");

 groupCount++;

 }

 else

 {

 out.println("MESSAGE:Please specify the number

of participants");

 String p = in.readLine();

48

 int pn = Integer.parseInt(p);

 out.println("MESSAGE:Please provide the

threshold");

 String pt = in.readLine();

 int ptt = Integer.parseInt(pt);

 if(pn==nt[g][0] && ptt==nt[g][1])

 {

 out.println("MESSAGE:Please provide the

names of the participiants");

 for(int i=0;i<pn;i++)

 {

 String nam = in.readLine();

 if(checkGroup(pn,ptt,nam,g)==1)

 {

 continue;

 }

 else

 {

 out.println("MESSAGE: Invalid group.

Please check the group number again.");

 break;

 }

 }

 out.println("MESSAGE: Group created.");

 }

 else

 System.out.println("Invalid group count");

 }

 break;

49

 case "SS":

 out.println("MESSAGE:Please provide the group

number:");

 String n = in.readLine();

 t = Integer.parseInt(n);

 inSProcess(t);

 break;

 case "AR":

 socket.setSoTimeout(time);

 out.println("MESSAGE: Please provide the group

number:");

 String ga = in.readLine();

 int gb = Integer.parseInt(ga);

 while(true)

 {

 try

 {

 if(gnames[gb][0]!=null)

 {

 if(pnames[gb][0]==null)

 {

 j[gb]=0;

 out.println("MESSAGE: Please provide

the count of the group and their details.");

 String gc = in.readLine();

 cs = Integer.parseInt(gc);

50

 System.out.println("the count of the

group is:" +cs);

 if((cs>=nt[gb][1]) && (cs<=nt[gb][0]))

 {

 for(int i=0;i<cs;i++)

 {

 String groupnames =

in.readLine();

 pnames[gb][i]=groupnames;

 }

 out.println("MESSAGE:Please provide

your share:");

 String sj = in.readLine();

 BigInteger ha;

 ha = new BigInteger(sj);

 shares[gb][j[gb]]= ha;

 ss[gb].sendShare(j[gb],ha);

 j[gb]++;

 recGrpCount++;

 }

 else

 {

 out.println("MESSAGE: Invalid

threshold. Please try again... ");

 }

 }

 else

 {

 for(int i=0;i<cs;i++)

51

 {

 if(pnames[gb][i].contains(name))

 {

 out.println("MESSAGE: Please

provide your share:");

 String sh = in.readLine();

 BigInteger h = new

BigInteger(sh);

 ct[gb]=j[gb];

 shares[gb][j[gb]] = h;

ss[gb].sendShare(j[gb],shares[gb][j[gb]]);

 j[gb]++;

 System.out.println("the given

share is:"+shares[gb][i]);

 }

 }

 }

 }

 else

 {

 out.println("MESSAGE:Group not yet

created....Please check again");

 break;

 }

 for(int i=0;i<cs;i++)

 {

 System.out.println(pnames[gb][i]);

 }

52

 if(ct[gb]>=nt[gb][1])

 {

 int i=0;

if(ss[gb].secretReconstruct(ct[gb],gb)==1)

 {

 suc++;

 for (PrintWriter writer : writers)

 {

if(pnames[gb][i].contains(gnames[gb][i]))

 {

 writer.println("MESSAGE:Secret

successfully reconstructed");

 i++;

 }

 }

 }

 else

 {

 unsuc++;

 for (PrintWriter writer : writers)

 {

if(pnames[gb][i].contains(gnames[gb][i]))

 {

writer.println("MESSAGE:reconstruction failed. Try again...");

 i++;

53

 }

 }

 }

 break;

 }

 }

 catch(SocketTimeoutException e)

 {

 for (PrintWriter writer : writers)

 {

 writer.println("MESSAGE:Session timedout.

Try again... ");

 socket.setSoTimeout(0);

 }

 break;

 }

 break;

 }

 case "TP":

 out.println("MESSAGE: Please provide the group

number:");

 String gc = in.readLine();

 int gd = Integer.parseInt(gc);

 int l=0;

 for (PrintWriter writer : writers)

 {

 if(names.contains(gnames[gd][l++]))

 {

54

 writer.println("MESSAGE:The process is

terminated and group is deleted");

 socket.close();

 }

 }

 for(int i=0;i<nt[gd][0];i++)

 gnames[gd][i] = null;

 nt[gd][0]=0;

 nt[gd][1]=0;

 break;

 default:

 System.out.println("Invalid command");

 break;

 }

 }

 }

 catch (IOException e)

 {

 System.out.println(e);

 }

 finally

 {

 if (name != null)

 {

 names.remove(name);

 }

 if (out != null)

55

 {

 writers.remove(out);

 }

 try

 {

 socket.close();

 }

 catch (IOException e)

 {

 }

 }

 }

 }

}

56

Clients.JAVA

public class Clients {

 BufferedReader in;

 PrintWriter out;

 JFrame frame = new JFrame("Client");

 JTextField textField = new JTextField(100);

 JTextArea messageArea = new JTextArea(8, 40);

 /*

 Constructs the client by laying out the GUI and registering a

 listener with the textfield so that pressing Return in the

 listener sends the textfield contents to the server. Note

 however that the textfield is initially NOT editable, and

 only becomes editable AFTER the client receives the NAMEACCEPTED

 message from the server.

 */

 public Clients()

 {

 textField.setEditable(true);

 messageArea.setEditable(false);

 frame.getContentPane().add(textField, "North");

 frame.getContentPane().add(new JScrollPane(messageArea),

"Center");

 frame.pack();

 textField.addActionListener(new ActionListener()

 {

57

 /*

 Responds to pressing the enter key in the textfield by

sending

 the contents of the text field to the server.Then clear

 the text area in preparation for the next message.

 */

 public void actionPerformed(ActionEvent e)

 {

 out.println(textField.getText());

 textField.setText("");

 }

 }

);

 }

 /*Prompt for and return the address of the server.*/

 private String getServerAddress()

 {

 return JOptionPane.showInputDialog(

 frame,

 "Enter IP Address of the Server:",

 JOptionPane.QUESTION_MESSAGE);

 }

 /*Prompt for and return the desired screen name.*/

 private String getName()

 {

 return JOptionPane.showInputDialog(

 frame,

58

 "Enter your Id:",

 JOptionPane.PLAIN_MESSAGE);

 }

 /*Connects to the server then enters the processing loop.*/

 private void run() throws IOException

 {

 // Make connection and initialize streams

 String serverAddress = getServerAddress();

 Socket socket = new Socket(serverAddress, 1111);

 in = new BufferedReader(new InputStreamReader(

 socket.getInputStream()));

 out = new PrintWriter(socket.getOutputStream(), true);

 // Process all messages from server, according to the protocol.

 while (true)

 {

 String line = in.readLine();

 if (line.startsWith("ID"))

 {

 out.println(getName());

 }

 else if (line.startsWith("MESSAGE"))

 {

 messageArea.append(line.substring(8) + "\n");

 }

 else if (line.startsWith("SHARE"))

 {

59

 messageArea.append(line.substring(6) + "\n");

 }

 }

 }

 /*Runs the client as an application with a closeable frame.*/

 public static void main(String[] args) throws Exception

 {

 Clients client = new Clients();

 client.frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 client.frame.setVisible(true);

 client.run();

 }

}

60

Appendix 2

Details of the PC, OS and Java Version used for the compilation and runtime

of both the client and server modules are given below.

• Processor : Intel Core i7

• RAM : 8.00 GB

• Operating System : Windows 10 (64-Bit)

• Compiler : NetBeansIDE 8.2

• Java Runtime : Java SE Runtime Environment 1.8.x

