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The Security of the RSA cryptosystem depends on the difficulty of   the prime  
 
factors of large integers. Here we explore some of the factorization techniques 
 
currently available in cryptography. After giving an overview of cryptography we  
 
discuss some of the factorization techniques like Fermat’s factoring, Pollards p-1  
 
method and continued fraction method. We then explore the theory of binary  
 
quadratic forms and its applications to factorization. 
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Cryptography, is the Methodology of concealing the contents of messages. The  

Modern scientific study of cryptography is sometimes referred to as Cryptology. 

Plaintext is the original message in readable form. Cipher text is the encrypted  

message. For example the following plaintext Enemy falling back- Breakthrough  

imminent Lucius is encrypted as follows 

EnemyfallingbackbreakthroughimminentLucius   - Plaintext 

Jsjrdkfqqwslgfhpgwifpymwtzlmnrrnsjsyqzhnzx    - Ciphertext 

 

By using a Caeser cipher where each letter is shifted 5 letters up in the alphabet.  

When you are at the end of the alphabet you wrap around 

for example y  z a b c d     y is encrypted as  d. 

 

A simple substitution Cipher is any permutation of the alphabet. A Caesar Cipher  

is a particular form of simple substitution Cipher. There are 26! simple  

substitution Ciphers. 

 

The following is the scenario in which we discuss problems in Cryptography. 

Alice wants to send a secret message to Bob. Eve is trying to intercept the  

message and read the messages 

                                         Alice  -----------------   Bob 

                                                  ↑ 

                                            Eve ( Evesdropper) 

If Alice wants to send a message to Bob using a simple substitution cipher and  

Eve intercepts one of the messages and does not know the key. To make an  

exhaustive search she has to check 26! ~ 1026   possibilities and using the fastest  

computer available it will take her more than 1013  years which is more than the  

estimated age of the universe. An exhaustive search is infeasible. 
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Although the number of possible substitution ciphers are quite large decrypting a  

cipher text built on a simple substitution cipher is not that difficult, if she makes a  

statistical analysis of the frequency of the various letters in the Cipher text .For  

example if the letter C is the most occurring letter in the cipher text followed by S  

according to the statistical distribution of letters in Common English text C should  

correspond to E and S should correspond to t etc., and she can recover the  

plaintext after some effort. 

 

Mathematical Preliminaries 

N denotes the set of natural numbers   { 1,2,3,4,5,6,7,8,9, ….} 

Z denotes the set of integers                { -5,-4,-3,-2,-1,0,1,2,3  }        

a divides b           ( a | b) 

If ∃  k ∈ Z such that  b = ak 

example   3|12,   6|18,  7|14 

Facts     If    a | b      b | c        a | c 

                    a | b   b | a   ⇒    a = ±  b 

                    a | b    a | c  Then  a |  b ±  c 

 

The Greatest Common divisor of the integers a and b denoted (a, b) is the  

largest among all the common divisors of a and b 

e.g., (12, 18) = 6 

(748, 2024)  = 44 

 

The division Algorithm:   

Let a, b be positive integers ∃ integer q and r such that  

 a= bq + r     0 ≤ r < b        [The usual quotient and remainder] 

The Euclidean Algorithm for finding the G.C.D of a and b 
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Apply division algorithm 

 a = bq1 + r1                0 ≤ r1 < b     

  b = r1q2 + r2             0 ≤ r2 < r1     

  r1 = r2q3 + r3 
            0 ≤ r3 < r2     

  . 

  . 

  . 

  r k-2  =  r k-1  q k + r k       0 ≤ rk < r k-1    

 r k-1  = r k     q  K + 1 

 

The last non zero remainder rk is the g.c.d (a,b) 

Reason:  b > r1 > r2 ……………. 

The sequence decreases and finally you should reach 0. 

The last non zero remainder rK is the G.C.D of a and b 

(a,b) = (b, r1) = (r1, r2). = (rk-1, rk) =   rk 

The number of steps is at most 2 log 2 b + 1 

Example 

(2024, 748)  = 44 

2024 =   748(2) + 528 

748   =   528(1) + 220 

528 =   220(2) + 88 

220 = 88(2) +   44   → GCD 

88 =   44(2) 

 

From last equation 44 = 220 – 88(2). Working backward replacing for 88 we find 

2044 can be expressed as  

2024(-7) + 740 (19) = 44 

In general (a,b)  = ax +  by. 
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For some integers x and y. 

If (a,b)  = 1 (i.e. a, b  relatively prime)  

Then ∃ integers x and y such that ax+ by = 1 

 

Modular Arithmetic 

We say a Ξ b (mod m)   a, b, m   integers  

If m | a – b 

e.g 10 Ξ 2 (mod 4) since 4 | 10 -2 = 8 

15 Ξ 3(mod 6) since 6 | 15 – 3 = 12 

 

Some Facts (Results) 

If   a Ξ b (mod m)  

      c Ξ d ( mod m ) then 

1)   a ± c Ξ  b ± d  ( mod m ) 

  ac Ξ  bd ( mod m ) 

2) If (a, m)  = 1 ∃  an integer b such that ab  Ξ 1 (mod m) 

 

In fact, a, 2a, 3a …….... (m – 1) a leave the remainders 1, 2 …. (m -1)  in  

 

Some  order. Therefore, ∃ b such that    ab Ξ 1 (mod m) b is called inverse  

 

of a   

 

i.e., b = a -1 (mod m) 

 

Example:   (2, 5) = 1 

 

 b = 3 is the solution to 2b Ξ 1 (mod 5) 

 

3 = 2 -1 (mod 5) 

 

(4, 15) = 1   4 =   4 -1 (mod 15) 

Since 4 (4) Ξ 1 (mod 15)   

 

We write Z/ m Z = {0, 1, 2, 3………… (m -1) } 



 
5 

 

 
 

 

 

Remainders on division by m 

 

Fp = {0, 1, 2, 3 ….. p-1} 

 

F p* = {1, 2, 3 …………. p -1} 

 

(Z/mZ) * = {a ∈ Z/mZ   | (a, m) =1} 

 

       = {a ∈ Z/mZ   | a   has inverse mod m} 

 

(Z/mZ) * is called the group of units mod m 

 
e.g., (Z /24 Z) * = {1, 5, 7, 11, 13, 17, 19, 23} 

 

          (Z/ 7 Z) * =   {1, 2, 3, 4, 5, 6} 

 

Φ (m) = # {a   : 0 ≤ a < m (a, m) = 1} 

 

Φ (24) = 8 

 

For a prime p, Φ(p) = p – 1.  If the letters of the alphabet are assigned the  

 

values 0, 1, 2, 3…. 25 

 

A Shift cipher (or Caesar Cipher) is described by  

 

encryption c Ξ p+ k mod 26 

 

Decryption p Ξ c - k mod 26 for a fixed k ≥ 0 

 

Often in Cryptography we are required to compute g A mod N for a large  

 

value of  N (consisting of hundreds of digits) where g is a non-zero integer  

 

and A is large exponent. 

 

A naïve way is to compute 

 

g Ξ g1 mod N 

 

g2 Ξ  g2  Ξ  g g1  mod N 
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g3 Ξ  g3  Ξ  g g2  mod N 

 

Infeasible if A is very large we have a faster algorithm called the fast  

 

powering algorithm to do this more efficiently. We write A in base 2 (i.e.,  

 

as sum of powers of 2)   

 

e.g we  want to compute  3 218  mod 1000  

 

we have 218 =   2 +  23 +  24 +  26 + 27 

 

3218  =      32 ×  323  ×  324 ×  326 × 327 

 

It is relatively easy to compute 3,  32,  322  , 323 , 324   …. 

 

Since each is the square of the preceding we form the table 

 

            i 0 1 2 3 4 5 6 7 

 321  Mod 1000 3 9 81 561 721 841 281 961 

 

             3 218    Ξ 9.561.721.281.961 mod 1000           

                           Ξ 489 (mod 1000) 

 Much faster than the naïve approach (Totally 11 multiplications) 

 

Fundamental Theorem of Arithmetic 

Any integer a ≥    2 can be written a = p1
α

1  p2
α

2 … pk
α

k      

p1 p2 .. pk distinct primes α i  ∈ N   i  = 1,2,3 .. k 

Called the   prime factor decomposition. The decomposition is unique up to the 

order of  

the primes. 

Let a ∈ Z/ pZ = {0, 1, 2…. (p-1) } 

p prime  a ≠   0  ∃ b  ≠ 0 ∈  Z/ pZ 

Such that ab Ξ 1 (mod p) Since (a, p) = 1 

To compute a -1 we simply find u, v such that 
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a U +  P  V = 1 ( by the EA)   

Then a U Ξ 1 mod p  

           a -1 = U mod p 

computing inverses in ( Z/pZ) *  = Fp *  is easy 

 

Primitive Roots 

Fermat’s Little Theorem 

Let p be a prime and (a,p) = 1 then a p-1 Ξ 1 mod p 

e.g (3, 5) = 1    5 prime 

3 5-1 = 34 Ξ 1 (mod 5)   since 81 – 1 = 80 Ξ 0 mod 5) 

e.g. p = 15485863 is prime 215485862   Ξ  1 ( mod 15485863) without any  

computation we know this. 

By Fermat’s Theorem if g ∈ {1, 2 (p -1)} g p-1 Ξ 1 (mod p)  

If p-1 is the lowest such power (i.e., g x ≢ 1 (mod p) for 0 < x < p-1) 

g is called a primitive root mod p. In this case {1, g, g2 ….. g p-2} = FP * 

Result 

If p is a prime of ∃ a primitive root mod p, In fact p has Φ (p-1) primitive roots. 

(Φ is Euler’s totient function) 

 

Symmetric Ciphers    

A Cipher in which Bob and Alice have equal knowledge and capabilities. 

Encoding Schemes 

It is convenient to view plaintexts, keys and cipher texts as numbers and to write  

those numbers in binary form  Using the ASCII (American Standard Code for  

Information exchange) 

The Phrase “Bed bug” is encoded as 

B                     e                 d           spacing               b             u             g            . 

66                  101              100             32              98          117          103        46 
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01000010   01100101 01100100 001000000 01100010 0110101 01100111  

001011 

 

Where each number is converted into a string of 8 bits. In this way the whole  

plaintext is converted into a sequence of 0’s and 1’s. We divide the plaintext into  

blocks of bits of size B and do encryption one block at a time. In this way need to  

concentrate only on bits of  block size B. 

 

m b-1  m b-2 … m 0  —>  converted to the corresponding number in binary form 

                                         m b-1 2 B + m b-2 2 B-2  +  mo  <  2 B 

in this way we have M  the set of all plaintext messages 

M = {m:  0 ≤ m < 2 B m} 

K = {k:  0 ≤ k < 2 B K} 

C = {c:  0 ≤ c < 2 B C} 

K is the set of all keys         C is   the set of all cipher texts 

Encryption and decryption is done one block at a time. Bk, Bm, Bc need not be  

equal. 

 

 

Let P be a prime (large). How large should the key size be so that Bob and Alice  

can safely exchange messages without worrying about Eve intercepting and  

decrypting them? 

 

If Bk is chosen such that Bk ≥ 80 an exhaustive search for the key is considered  

infeasible. In some cases where meet in the middle collision attacks are available  

Bk should be chosen ≥ 160. 

Example 

Let 2159   < p < 2 160 where p is a prime. 
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Let K = M = C = {1, 2 … (p -1)} = Fp * 

Alice and Bob select a key k, 1 ≤ k < p 

The encryption is done by the function  

                ek (m) = c Ξ k m mod p 

decryption by 

              dk (c)  = k 1c mod  p 

k1 is inverse of k mod p 

             dk (c)  = k 1c ≡ k1km ≡ m mod  p 

Computing k1 from k is easy if we know k. 

Eve has a hard time guessing k because of the size of the key space K. Even if  

she intercepts a message and obtains a cipher text it is still difficult to get hold of  

K. 

 

Symmetric Ciphers assume Bob and Alice meet beforehand to agree on a secret  

key K. What if they don’t have this opportunity and every communication  

between them monitored by Eve? This is possible by the Daffie Hellmann key  

exchange which relies on the difficulty of solving the discrete logarithm problem  

which is to solve 

                                     g x  Ξ  h mod p 

for x given g, h and p.  p  a large prime and g a primitive root mod p. 

 

 

Asymmetric  Ciphers 

As usual we have 

K = {the space of Keys} 

M = the space of plaintext messages 

C = the space of Cipher text messages 

A Key K = (   K priv,        K pub) 
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                        ↓                     ↓ 

                Private Key       Public key 

for each Kpub  there is an encryption function    ekpub  :   M  —>  C 

and for each kpriv there is a decryption function dkpriv : C  —>  M 

such that dkpriv ( ekpub (m) ) = m  for every m ∈ M 

Note that Alice can send Bob kpub over an insecure communication channel  

without worrying about Eve decrypting it because it is difficult for Eve to decrypt  

without knowing the function dkpriv even if she knows kpub. 

 

 

The RSA System 

Some Preliminary results. let p, q be distinct primes 

Let g = (p -1, q -1) 

Then a (p-1) (q-1) / g ≡ 1 (mod pq) 

For every a such that (a, pq) =1 

In particular a ( p -1, q -1 )  ≡ 1 (mod pq) if (a,pq) = 1 

The Diffie-Hellman Key exchange and El-Gamal PKC rely on the difficulty of  

solving 

ax = b mod P 

a, b, p know p a large prime X unknown. 

The RSA relies on the difficulty of solving x e ≡ C (mod N) 

N, C, e are known quantities X unknown. i.e., it relies on the difficulty of taking eth  

roots mod N. If N is a prime then taking eth roots is comparatively easy by the  

following proposition. 

 

Propositions: Let p be a prime and let e ≥ 1 be an integer such that (e, p -1) = 1 

∴ ∃ d such that de Ξ 1 (mod p -1) then X e Ξ c (mod p) has unique solution  

X Ξ c d (mod p) 
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Since it is easy to compute d it is easy to solve the above congruence. 

 

If N = pq a product of 2 primes then it is again easy to solve the congruence. 

If we know p and q but difficult if we do not know the factorization of N = pq 

By a similar proposition as above we have proposition. Let p, q be distinct primes  

Let e ≥ 1 and N = pq and (e, (p-1) (q-1) ) = 1 

Let d be an integer such that de = 1(mod (p-1) (q-1)) then xe Ξ c (mod N) has the  

unique solution X Ξ c d mod N 

 

Example: 

Solve: X 17389 Ξ 43927 (mod 64349) 

                              ↓               ↓ 

                              C               N 

N = 64349 = 229.281 product of 2 primes. First step solve 

          17839 d Ξ 1 (mod 228.280) 

i.e      17839 d  Ξ  1 ( mod 63840) 

Solution is d = 53509(mod 63840)   x Ξ c d Ξ 4392753509  Ξ 14458( mod 64349) 

Is the solution to X 17389 Ξ 43927 (mod 64349) 

                                             -------------------- 

 

Alice Challenges to solve X 9843 Ξ 134872 (mod (30069476293)) 

e = 9843 c =134872 N = 30069496293 

N is not a prime since 2 N-1 Ξ 18152503636 ≢ 1 mod N  

It happens N is a product of 2 primes. If Eve does not know the factors she has  

hard time solving the congruence. She accepts defeat. Alice informs Eve 

30069476293 = 104729.287117 

With this new knowledge Alice’s challenges becomes easy  

Eve Solve 9483 d Ξ 1 (mod 104728.287116) 
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i.e computes d Ξ18472798299 ( mod 30069084448) and computes the solution 

X Ξ 13487218472798299  Ξ 2547028026 (mod 30069476293) 

 

RSA Public Key System 

                     BOB                           ALICE 

Bob chooses secret primes p,q 
chooses encryption key e such 
that ( e, (p-1) (q-1)) = 1  publishes  
N, e 

 

 Alice chooses plaintext m uses 
Bobs public key (N,e) to compute C 
Ξ me mod N sends cipher text C to 
Bob 

Bob solves the congruence de Ξ 1 
(mod (p-1) (q-1)) computes m1 Ξ c 
d mod N then m1 = the plain text m 

 

 

Example -   RSA Key Creation 

Bob chooses two secret primes p =1223 q = 1987 

Bob computes the public modulus N =  pq  = 2430101 

Bob chooses a public encryption exponent e = 948047 such) that 

(e, (p-1) (q-1) ) = (948047, 2426892) = 1 

 

 

 

RSA Encryption 

Alice converts her plain text into an integer m = 1070777 1 ≤ m < N 

Alice computes C Ξ m e Ξ 1070777 948047 (mod 2430101)  

C Ξ 1473513 (mod 2430101) Alice sends C to Bob. 

RSA decryption 

Bob knows (p-1) (q-1) = 1222.1986 =2426892 

He solves de Ξ 1 (mod (p-1) (q-1)) i.e., 948047d Ξ 1 (mod 2426892) and finds  
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d = 1051235. Then bob computes c d mod N  

i.e. 1473513 1051235 Ξ 1070777 (mod 243010) 

The value he computes is Alice’s message m = 1070777. 

In the above example the modulus n is small and Eve will not take much time to  

factor  

in a computer. However, if p,q are chosen large Eve will have a tough time  

finding m because of her difficulty of factoring N when N has hundreds of digits. 

 

Having understood the importance of factorization in the RSA Cryptosystem. We  

now concentrate on the factorization techniques currently. We concentrate on  

only 3 techniques 1) Fermat factoring 2) Pollards p -1method and 3)the  

continued fraction method. 

 

 

Fermat Factoring 

 

First we define the integer factoring problem (IFP)   Given an integer n ∈ N  

to find primes 

pi I = 1, 2 … k such that n= P1α1  P2 α2   …. Pk α k   P1< p2 < …. Pk 

α i  ∈ N   1 2  4… K 

A simpler problem is the problem of splitting which is to find two factors r,s of n 

such that n = rs  1 < r ≤ s   Since RSA modulus is a product of 2 primes both IFP  

and splitting are same in the case of RSA 

 

Fermat Factoring 

Suppose n = rs     n, odd and r< s 

Then r ≤ √ n now n = rs = (r+ s /2) 2 – (r – s/2) 2 = a2 – b2 

a2 – n= b2    a = r + s /2 > √n 
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This is true if r + s > 2 √n 

If r2+ 2rs + s2 ≥ 4 n     If r2 + s2 > 2 n = 2rs which is true 

This suggest that we try 

X 2 – n   X = [√n] + 1, [√n] + 2…… n -1/2   till we get a square 

i.e. Suppose a 2 – n = b2  then n = a2 – b2  = ( a+ b )  ( a – b) and we have  

factored n 

We are essentially looking for solutions of x2 Ξy 2 mod n, If x ≠ ± y (modn), (x ± y,  

n) will give non trivial factors of n. The running time can be shown to be a 0(n ½) 

Example 

We factor N = 25217 by looking for an integer b making N + b2   a proper square. 

25217 +  12 =   25218 

25217  +  22  =  25221 

25217  + 3 2 =   25226 

25217  + 42  =  25233 

25217  + 5 2 =   25242 

25217  +  62  =  25253 

25217  + 7 2 =   25266 

 25217  +  82  =  25281  =  159 2 

25217   =   159 2  - 8 2  =  167.151 

Sometimes N + b 2 does not become a square for a succession of Values. 

If N is large it is unlikely that a randomly chosen b will make N +b2 a perfect  

square. Then instead of N we look at a multiple of N, kN. 

If kN = a2-b2 = (a + b) (a – b) 

There is a good chance N will have a nontrivial factor with each of a+ b or a – b  

then it is easy to find the factor by finding ( a ± b, N ) 

 

Example 

N = 2032999 
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N + b2 is not a square for b = 1, 2 … 100 we now look at 3 N + b2 (2N + b2 cannot  

be a square) 

3.203299 + 12 = 609898  not a square 

3.203299 + 22 = 609901  not a square 

3.203299 + 32 = 609906  not a square 

3.203299 + 42 = 609913  not a square 

3.203299 + 52 = 609922  not a square 

3.203299 + 62 = 609933  not a square 

3.203299 + 72 = 609946  not a square 

3.203299 + 82 = 609961  =  7812 

 

3.203299 = 7812 -82 = 789.773  

We compute (203299, 789) = 263 (203299, 773) = 773 

We find 203299 = 263 × 773 263, 773 are primes and this is the full factorization  

of N 

                                               --------------------- 

 

 

 

Pollards p -1 Method 

 

Pollards p-1 method demonstrates that there are insecure RSA moduli which at  

first glance appear secure. We are presented with N = pq and want to find p,q.  

Suppose by luck or hard work or  some other method we find an integer L.  Such  

that  p-1 | L but q – 1 does not divide L 

Then L = i (p-1) 

L = K (q -1 ) +j      0 < j  < q -1  

For a randomly chosen a,   aL = ai(p-1)  Ξ 1 mod p ( Fermat’s title theorem) 
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aL Ξ a j mod q   since j ≠ 0  It is  unlikely  a j    Ξ 1 mod q therefore P | a L – 1 

q does not divide by a L – 1 with high probability. But this is good for we can  

recover p  by computing (a L – 1, N ) [ Note we  use q does not divide a L – 1 ] For  

otherwise  (a L – 1,N) =N How can we find such L ? If p -1 has small prime factors  

then p-1|n! for not too  large values of N.So here is the idea for each n = 2,3 ..   

compute (a n1-1, N) 

 

We take a = 2 in practice  IF G.C.D=1 we go to next step If somewhere GCD = N  

we are unlucky.  May be some other a will work. Otherwise we have a nontrivial  

factor of N.  a n1 -1  is quite large e.g  2 100! – 1 is a number greater than the  

number of elementary particles in the universe. Luckily we don’t need 2 100! – 

1(modN) all we need is  2 100! -1 mod N. So we don’t need to work with numbers  

> N. Secondly we do need to compute n! 

 

Assume we computed a n! mod N  a ( n + 1 )!  mod N = ( a n! ) n+1 mod N so we   

have to raise  to the power n + 1 the previous step an d the fast powering  

algorithm does it easily a n! mod N can be computed in 2n log 2 n steps. It is  

possible to compute a n! mod N for reasonably large values of n. We use pollards  

p-1 method to factor N = 13927189 starting with ( 2 9! – 1, N)   

29! – 1 Ξ 13867883 (mod 13927189) (29! – 1, 13927189) = 1 

210! – 1 Ξ 5129508 (mod N)   (210!-1,N) = (5129508, N ) = 1 

211! – 1 Ξ 4905233 (mod N)   (211!-1,N) =  1 

212! – 1 Ξ 6680550 (mod N)   (212!-1,N) =  1 

213! – 1 Ξ 6161077  (mod N)   (213!-1,N) =  1 

214! – 1 Ξ 879290 (mod N)   (214!-1,13927189) =  (879290, 13927189) = 3823 

We have a non-trivial factor of N =13927189 3823 is a prime Since the other  

factor of 13927189 / 3823 = 3643 which also prime 13927189 = 3823 * 3643  
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The Continued Fraction Method 

Finite Continued Fractions 

An expression of the form    α  = q0    + 1 

                                                           q1   + 1 
                                                                    q2 

                                                             . 
                                                                         + 1 
                                                                           qk 
where qi ∈ R    qi > 0  for  i > 0     k ∈ Z 

k  a non- negative integer is called a continued fraction. 

This is also written as   q0  +   1        1             1 
                                                q1 +     q2 +       q K 

                                or   ( q0 ;  q1, q2 ………………….q K) 
 
Example    10001     =      (4; 1, 3, 3, 2) 
                  210 

 

If qi ∈ Z then the continued fraction is called a finite simple continued fraction. 

Every rational number can be expressed as a finite simple continued fraction. 

 

 

Convergents 

 

Let  α =  (q0 ; q1, q2 … q L) L ∈ N  be  a finite continued fraction. 

Let ck = (q0 ; q1, q2 … q k)  k ≤ L   k ∈ Z Ck is called the kth convergent of α  

Ck  =  Ak / Bk  where   Ak and BK are given by 

A -2= 0  A-1 = 1 Ak=qk  A k-1 + Ak -2 

B -2= 0  B-1 = 1 Bk=qk  B k-1 + Bk -2 

Ck   = Ak    =    qk A k-1   +  A k-2 
           Bk                  qk B k-1   +  B k-2 

 

If  Ck is the kth convergent  c1 > c3 > c5 > C 2k-1 > C 2k> C 2k-2 > C2> C0  

For k ∈N  If q0  q1 …. qn…. is an infinite sequence of integers  qi> 0  for j > 0 
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Let Ck = ( q0; q1 ….qk)  

 

If   Lt ck   = α     k —>  ∞  then  α= ( q0, q1, q2 …  qk… ) ,  Infinite simple continued  

fractions represent  irrationals. Two distinct infinite continued functions represent   

2 distinct irrationals. 

 

Let α0  be irrational  

Let q0 = [α0]   

 qi = [αi]     

αi  + 1 =  1/( αi  -  qi) 

q0 = [α0]      

 α1 = 1 / ( α0  -  q0)   

 q1 = [αi]      

α2 =  1 / ( α1  -  q1)   

q2 = [α2]     

α  =  ( q0; q1, q2 …  ) 

Example    let  α0 =   1 +√29 
                                     2 
[α0] = 3 = q0 

 

α1  =  1/ α0 - q0   =  1/ ( (1 + √29 / 2)  - 3 )  =  1 / (√ 29 – 5 /2)   
 
= (2 / √ 29 - 5 )  = (√ 29 +5/2)    = 5 + (√ 29 – 5/2) 
 
[α1 ] = 5 = q1      α2 =  1/ (α1 – q1)  = 1 /(√ 29 – 5/2) =  2 /(√ 29 – 5)  = α1, 

 

Therefore,  1 +  (√ 29 /2)  =  ( 3 ; 5,5,5,5……..) 
 
                                                                        
Periodic Simple Continued Fractions   α  = ( q0; q1,q2, qk-1,qk,  qK+1,…  qL+k-1  qk   
 
qK+1   
 
….qL+k-1 ,  qk,  qK+1,….  qL+k-1 ..  ) 
 
The smallest k for which   qk, q K+ 1… q L + k-1 repeats itself is called the period  
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length of  

 α  e.g = 1 + √ 29  / 2 = ( 3; 5, 5,5,5… ) 

 

 

Quadratic Irrationals 

 

α is a quadratic irrational if it is irrational and a root of  ax2 + bx + c= 0  a, b, c, ∈ z 

e.g 1 + (√ 29 /2) is a root of x2 – X -7 = 0 a quadratic irrational. 

A quadratic irrational is of the form   α = (P + √ D) / Q    P, D, Q integers D > 0  

not a perfect square  Q ≢ 0   Q | D -  P2 

-  

Algorithm for quadratic Irrational 

Let  α0  =  P 0  + √D / Q 0  ,  P0, q0 ∈  Z       Q 0 |  D – P 0 2     Q0 ≠ 0   be a  

quadratic irrational 

Let qi  = [αi ]   αj = Pj + √ D) / Q j    

Pj + 1 =  q j Qj  –  Pj                   Q j + 1 =  D – P J + 1 2 / Qj  

Then α =   (q0; q1, q2 …………… ) 

 

The Continued Fraction factoring Method 

Let  n ∈N not a perfect square Let Cj = Aj/ Bj be the jth convergent in the  

continued fraction expansion of √n  Then  A j-1 2  - n B j – 1 2  =  (-1) j   Qj    ( j≥ 1 )   

where Aj  Bj Q j were defined earlier. If for some j (even),   Qj happens to be a  

perfect square 

Then  A j-1 2  - n B j – 1 2  = m2      ∴  n | A j -1 
2- m2    ∴  n | (A j -1 + m)   (A j -1 - m)    

If ( A j -1 ± m, n ) > 1 then we have a  non-trivial factor of n. In other words 

if A j -1 ± m ≠ 0  

or 1 we get a non-trivial factor by finding (A j -1 ± m , n ) 

Example 
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Let n = 1501, √n = P 0+ √1501 / Q 0     P 0 = 0   Q 0 = 1 

The Algorithm for the continued fraction expansion of √1501gives  

 q0 = [√1501] = 38 

A0 = 38   

B0 = 1  

 P1 = q0  Q0 – P0  = 38  

Q1 =  (1501 – 38 2 /1 ) =  57 

q1 = [α1] =  [38 + √1501/ 57  ] = 1 

(q0  q1)  = 38 + 1/1  = 39  A1 = 39   B1= 1 

We construct the table 

j 0 1 2 3 4 

Pj 0 38 19 21 32 

Qj 1 57 20 53 9 

qj 38 1 2 1 7 

Aj 38 39 116 115  

Bj 1 1 3 4  

Q4 = 3 2 =  9  = m2      j = 4  

n = n | A j-1 2 –m2 i.e.  n | 1552 -3 2 

i.e   n |  158.152   150 |  158.152  (1501, 158)  = 79   (1501, 152)  = 19 

1501 = 79 X 19 

We have factored 1501 = 79 X 19 where 79, 19 are primes. 
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