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 Genome sequencing is becoming an indispensable part of biological research. 

Mutations identified in genomic sequence contribute to explanations of disease, 

phenotypic variation, and evolutionary adaptation. Increasing reliance on next generation 

sequencing (NGS) data necessitates efficient and accurate means of genome analysis. 

 We developed two algorithms, GROM-RD and GROM, to address current issues 

of mutation calling in NGS data. GROM-RD analyzes multiple biases in read coverage to 

improve copy number variation (CNV) detection in NGS data. GROM-RD takes a two-

tiered approach to complex and repetitive segments, while incorporating excessive 

coverage masking, GC weighting, GS bias normalization, dinucleotide repeat bias 

normalization, and a sliding-window break-point calculator. Current NGS projects 

produce massive amounts of data, often on multiple samples; with several approaches 

designed specifically for each variant, use of multiple algorithms is necessary. GROM 

provides comprehensive genome analysis into a single algorithm, identifying single 

nucleotide polymorphisms (SNPs), indels, CNVs, and structural variants (SV), with 

superior sensitivity and precision while reducing the time cost up to 72 fold. 
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 Comparative genomics studies typically limit their focus to SNVs, such as in 

previous comparisons of woolly mammoth and another comparison of eastern gorilla. We 

extended these analyses to identify SVs and indels. Our analysis found mammoth-

specific variants suggesting adaptations to Arctic conditions, including variants 

associated with metabolism, immunity, circadian rhythms, and structural features. In 

gorilla populations, variants were identified that associate with physical features used to 

distinguish between the two subspecies. Within the gorilla subspecies was also found 

unique genetic evidence related to disease and abnormality, evidence of dwindling 

populations. 

 Untested and ad hoc methods of mutation calling are often used in ancient DNA 

(aDNA) studies. While aDNA NGS analysis is highly susceptible to aDNA degradation, 

many studies utilize standard mutation calling algorithms, not taking into account unique 

aDNA challenges of excessive contamination, degradation, or environmental damage. 

We present ARIADNA, a novel approach based on machine learning techniques, using 

specific aDNA characteristics as features, to yield improved mutation calls. In our 

comparisons of variant callers across several ancient genomes, ARIADNA consistently 

detected higher-quality variants, while reducing the false positive rate compared to other 

approaches. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Next Generation Sequencing and Copy Number Variation 

 

 Rapid advances in DNA sequencing technologies are producing unprecedented 

amounts of data at a continually falling cost. This new found accessibility to whole 

genome sequencing combined with the development of computational tools are 

transforming the landscape of biological research. Next generation sequencing (NGS) is a 

powerful tool for the discovery of genetic causes in phenotypic variation, disease, and 

evolutionary adaptation (Xue et al. 2015, Prüfer et al. 2014, Lynch et al. 2015, 

Palkopoulou et al. 2015, Lazaridis et al. 2014, Abecasis et al. 2010, Berger et al., 2011, 

Campbell et al., 2010, Stephens et al., 2009, Stefansson et al., 2009, Marshall et al., 

2008). A torrent of new sequencing projects not limited to thousands of human genomes, 

plant and animal species, has produced enormous amounts of data requiring efficient and 

accurate analysis.    

 The most ubiquitous variant in NGS data is the single nucleotide polymorphism 

(SNP). SNPs are prevalent in every genome, potentially the simplest to detect, and are 

responsible for a multitude of variation and disease. Yet genome structural variants 

(SVs), including; copy number variants (CNVs), insertions, inversions, and 

translocations, account for more differences between human genomes (Baker, 2012) in 

terms of the number of nucleotides and potentially have a greater impact on phenotypic 

variation compared to SNPs (Korbel et al., 2007).  
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 A multitude of methods have been developed to detect SVs in NGS data. Paired-

read methods identify clusters of discordant (aberrant insert size or orientation) read 

pairs. Split-read methods remap otherwise unplaced reads through division of the reads. 

Read depth (RD) methods identify CNVs by measuring variance in read coverage. De- 

novo methods assemble reads into contigs, accounting for differences against the 

reference.  

 Yet detection is complicated by GC bias inherent in NGS technologies, as read 

coverage varying with regional GC content. This problem is especially persistent in RD 

analysis methods. Existing RD methods reduce GC bias by GC bin mean normalization 

(Abyzov et al. 2011, Yoon et al. 2009), polynomial fitting (Boeva et al. 2011), and 

LOESS regression (Miller et al. 2011). However, these methods do not consider the 

differences in read depth variance that coincides with GC content, even after GC bias 

correction. Complex and repetitive regions are also challenging for CNV detection 

methods. Regions near telomeres and centromeres are known to be SV hotspots (Mills et 

al., 2011) and sequencing bias has been frequently observed in repeat regions (Ross et al., 

2013). To overcome these challenges, we developed GROM-RD, an algorithm that 

analyzes multiple biases in read coverage to find CNVs in NGS data. 

 

1.2 Comprehensive Mutation Calling in Next Generation Sequence Data 

 

 With the rapid decline of NGS cost and increasing throughput, large scale 

genomics projects are becoming more feasible and prevalent. One of the first such 

projects, the 1000 Genomes Project (Abecasis et al. 2010) was launched in 2008 with the 
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goal of producing and analyzing whole genome sequencing for 1,000 genomes. This is 

now being followed by Human Longevity, Inc.’s 10,000 publicly available WGS 

genomes (Telenti et al 2016), the United Kingdom’s 100,000 Genomes Project 

(Genomics England 2017), and even larger sequencing projects involving 1,000,000 

participants in the United States with the Precision Medicine Initiative (NIH All of Us 

Reseach Program 2017) and Million Veteran Program (USVA Million Veteran Program 

2017), and China’s own million genomes project (Cyranoski et al 2017). Such projects 

produce massive amounts of data, straining computational resources and requiring much 

faster analytical methods than currently available (Stephens et al 2015). 

 Comprehensive analysis of genomic differences in these studies requires the 

detection of a wide range of variants, including SNVs, indels, CNVs and SVs; including 

deletions, duplications, insertions, inversions, and translocations. While methods have 

been developed for each type of variant, a typical WGS analysis work flow requires 

running multiple algorithms for complete analysis. This is wasteful of computational 

resources and drastically increases the time required for WGS analysis. We therefore 

developed, Genome Rearrangement Omni-Mapper (GROM), a novel comprehensive 

method of variant detection, combining mismatch, split-read, read pair, and read depth 

WGS evidence to detect all variant types in a single process. 

 We applied both GROM-RD and GROM to perform a comparative analysis of 

variants in several published genomes, including those of woolly mammoths, elephants 

and two gorilla populations.   
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1.3 Woolly Mammoth and Asian Elephant 

 

 The woolly mammoth (Mammuthus primigenius) is an ancient species of 

megafauna that inhabited the upper Arctic regions of the globe until the demise of the 

most recent population about 3500 years ago. The last known population was a small 

group located in the far north of the globe on Wrangel Island (Palkopoulou et al. 2015, 

Vartanyan et al. 2008). Though the woolly mammoth did not persist, its sister species, the 

Asian elephant, has successfully carried on to the present date. Woolly mammoths lived 

in a cold, dry steppe-tundra where average winter temperatures ranged from -30°C to -

50°C, much different from the tropical and subtropical environments of modern African 

and Asian elephants (MacDonald et al. 2012). Mammoths had many anatomical 

adaptations for success in its harsh environment, such as thick fur, small ears, and small 

tails (compared with modern elephants), and a thick layer of fat under the skin to reduce 

heat loss and possibly serve as a heat source or fat reservoir for the winter (Fisher et al. 

2012, Hill et al. 2009, Repin et al. 2004). Despite being studied extensively anatomically, 

little is known about the genetic divergence and evolution between woolly mammoth and 

Asian elephant.  
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Figure 1. The locations of woolly mammoth samples studied. 

 

 Until recently, whole genome sequence availability of woolly mammoth 

specimens has been sparse and typically of low quality, a common challenge for ancient 

genomes; therefore, few comparative genetic studies have been performed. These studies 

have been limited in sample size as well as breadth of mutation type. In 2008, the first 

whole genome sequencing (<1×) of a woolly mammoth was published (Miller et al 

2008). However, only recently have high coverage WGS datasets become available from 

two studies that identified SNVs unique to woolly mammoths to infer the genetic basis of 

adaptations to the Arctic (Lynch et al. 2015) and to analyze species diversity prior to 

extinction (Palkopoulou et al 2015). We analyzed the patterns of variation across the 

genomes of these four mammoths and compared them to the available elephant genomes. 

Using GROM-RD and GROM, we systematically identified variants, ranging from single 
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nucleotide changes and short indels to deletions and amplifications of regions 

encompassing gene fragments and complete genes. 

 

1.4 Eastern Gorilla 

 

 Gorilla gorilla are a great ape species that populate a wide range of the central 

African continent. The eastern populations consist of the closely related subspecies, 

eastern lowland gorilla, Gorilla graueri, and the mountain gorilla, Gorilla beringei. 

Though all gorillas are currently threatened, the eastern species are of specific interest 

due to their low numbers. Mountain gorillas are estimated to have a total population of 

approximately 800 individuals (Gray et al. 2013) while eastern lowland are estimated to 

have a population size of about 3,800 (Plumptre et al. 2016). Conservation efforts have 

prevented further decline of gorilla populations, however already diminished population 

sizes may reduce genetic diversity and affect long term survival of the species (Xue et al. 

2015).  
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Figure 2. Locations of gorilla subspecies populations used in this study. Figure modified 

from Xue et al. 2015. 

 

 Though the eastern lowland gorilla and the mountain gorilla are closely related 

and geographically separated by a relatively small distance, they have distinct habitats 

and the populations are not reported to intermix. As well as being geographically distinct, 

both groups have distinct physical characteristics that are used to discern between the 

subspecies: The eastern lowland gorilla is reported to have shorter hair, a larger nose, and 

a greater incidence of age-related balding. The mountain gorilla is larger in size and 

heftier, though with shorter arms than the eastern lowland relatives. The mountain gorilla 

also has a larger and more prominent jaw and teeth (Fossey 1983, Pilbrow 2010, Schultz 

1934, Stanford 2001).  Previous work by Xue et al. focused on the analysis of SNVs. We 

analyzed whole genome sequence for 12 gorillas from these two subspecies, seven 
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mountain gorillas and five eastern lowland gorillas, expanding the comparative analysis 

of these two gorilla populations to include such structural variation. 

 

1.5 Ancient Genome Sequence Analysis 

 

 Prior to the development of next generation sequencing (NGS) methods for 

aDNA sequencing, comparative analysis relied on the physical analysis of remains. The 

combination of increased quality from NGS technology as well as new methodology for 

reliable extraction and library preparation of ancient DNA samples has led to an influx of 

genomic studies of extinct species (Prüfer 2014, Parks 2015, Rizzi 2012, Gansauge 2014, 

Prüfer 2010). Early studies adopted mitochondrial genome sequence analysis 

representing a leap forward in evolutionary research. Until now, many such aDNA 

studies have been mostly limited to mitochondrial and small genome regions (Krings 

1997, Krings 1999, Noro 1998, Krause 2006, Green 2006), given the problems with 

extraction of usable DNA in sufficient quantity (Rasmussen 2010, Rizzi 2012, Green 

2009, Prüfer 2010). Recent advances have enabled amplifying enough nuclear DNA to 

allow for complete genome sequencing of ancient samples, although also leading to 

potentially compounding effects on coverage, quality, and contamination (Rasmussen 

2010, Malmstrom 2005, Rizzi 2012, Gansauge 2014). Accuracy in these studies is 

especially important for comparative and evolutionary analysis against living species 

(Prüfer 2014, Lynch 2015, Palkopoulou 2015, Lazaridis 2014, Rasmussen 2010, 

Schuenemann 2017). Experimental and computational methods were developed to 

mitigate complications of aDNA sequencing including contamination from microbes and 
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human handling, fragmentation, depurination, and deamination (Rasmussen 2010, 

Sawyer 2012, Noonan 2005, Hoss 1996, Briggs 2007, Brotherton 2007, Paabo 1989, 

Paabo 2004, Hofreiter 2001, Malmstrom 2005, Rizzi 2012, Green 2009).  

  Such methods often rely on detecting degradation of aDNA due to extensive 

exposure to the environment and the physical handling of samples over time (Rasmussen 

2010, Noonan 2005, Hoss 1996), which is used to differentiate between sample and noise 

(Sawyer 2012, Briggs 2007, Brotherton 2007, Paabo 1989, Gansauge 2014). Filtering out 

contamination of contemporary DNA from aDNA samples uses short read lengths, as 

aDNA is often highly fractured; thus long read lengths are comparatively rare and likely a 

contemporary contaminant (Parks 2015, Sawyer 2012, Paabo 2004, Green 2009, Paabo 

1989). Other features can be used for reducing error in aDNA studies, such as 

substitutions arising from depurination events frequently occurring before strand breaks 

(Briggs 2007), or deamination events often found at the ends of fragments (Briggs 2007, 

Brotherton 2007). Compensation for these nucleotide change events is frequently made 

by masking such substitutions if they occur towards the end of reads (Lynch 2015, Parks 

2015).  

 Although these methods have been shown to decrease the bias caused by aDNA 

damage and contamination (Sawyer 2012, Rizzi 2012, Gansauge 2014), there is yet to be 

a consensus method to address the issue of mutation calling. Typical approaches are often 

ad hoc extensions of existing algorithms, such as GATK (McKenna et al. 2010). 

However, there is little similarity among these extensions in the filtering of read depth, 

quality, masking locations, or mapping characteristics (Prüfer 2014, Lynch 2015, 

Palkopoulou 2015, Lazaridis 2014, Rogers 2016, Parks 2015). For example, recent 
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publications on the sequencing of various woolly mammoth and ancient human whole 

genomes have all utilized differing methods in the quality control of sequencing reads 

despite working with similar datasets (Rogers 2016). Additionally, a study in neandertal 

genomes has demonstrated that the use of GATK on even highly processed sequence data 

potentially yields inaccurate results (Prüfer 2017). 

 Due to the variation of quality and quantity of usable DNA in ancient samples, 

and divergent methods to extract the maximum amount of information, there can be large 

discrepancies in aDNA findings and interpretations (Lynch 2015, Palkopoulou 2015, 

Lazaridis 2014, Rogers 2016, Rasmussen 2010, Parks 2015). Many of the currently 

employed variant calling algorithms are utilized with limited validation of results or proof 

of efficacy due to the constraints of aDNA sample availability.  

 Here, we introduce ARIADNA, a novel approach using machine learning for 

detecting SNV variants in ancient DNA samples. In essence, it uses our fast GROM 

genome scanning engine (Smith 2017) to find all potential SNVs (PSNVs) found as 

deviations between sample and reference genomes and then utilizes a boosted regression 

tree algorithm for training and classification of potential mutation sites. The unique 

features of the corresponding sites are used by our algorithm to determine the difference 

between bona fide mutations in aDNA and noise due to aDNA degradation or 

contamination. We compared ARIADNA results on (i) woolly mammoth genomes with 

the most commonly employed mutation caller, GATK, and (ii) the Altai neandertal 

genome with output from Prüfer in 2014 and 2017. Our comparisons demonstrate that 

ARIADNA provides the most accurate and comprehensive mutation call sets in these 

ancient genomes. 
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Chapter 2: GROM-RD: resolving genomic biases to improve read depth detection of 

copy number variants 

Smith, Sean D., Joseph K. Kawash, and Andrey Grigoriev. "GROM-RD: Resolving 

genomic biases to improve read depth detection of copy number variants." PeerJ 3 

(2015): e836. 

 

 We developed GROM-RD, an algorithm for identifying copy number variation in 

next generation sequencing data. GROM-RD has several unique features that are not 

incorporated in other algorithms such as; excessive coverage mapping, quantile 

normalization of GC bias, dinucleotide repeat bias normalization, and a variable sized 

sliding window for the identification of break points. Utilizing these unique approaches 

to NGS analysis of read depth, GROM-RD outperformed CNVnator and RDXplorer with 

improved CNV detection and breakpoint accuracy.  

 

 My contributions to GROM-RD include the development of the excessive 

coverage masking module, which improved deletion and duplication sensitivity in low 

coverage datasets by 6% and 7% respectively, and in high coverage datasets by 4% and 

15% respectively. In addition I extensively tested the algorithm in its entirety, and 

verified its performance on the datasets used in publication. I wrote the section of the 

paper on excessive coverage masking and assisted with the writing of the results section. 
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GROM-RD: resolving genomic biases to improve read depth detection 

of copy number variants 

 

Introduction 

 Copy number variants (CNVs) have been linked to several diseases including 

cancer (Berger et al., 2011; Campbell et al., 2010; Stephens et al., 2009), schizophrenia 

(Stefansson et al., 2009), and autism (Marshall et al., 2008). Compared to single 

nucleotide polymorphisms (SNPs), structural variants (or SVs, which include CNVs, 

insertions, inversions, and translocations) account for more differences between human 

genomes (Baker, 2012) in terms of the number of nucleotides and potentially have a 

greater impact on phenotypic variation (Korbel et al., 2007). Modern sequencing 

technologies, often identified as next-generation sequencing (NGS), have enabled higher 

resolution of CNVs compared to older methods such as array comparative genome 

hybridization (aCGH) and fosmid paired-end sequencing (Korbel et al., 2007). NGS 

produces sequenced reads, either single- or paired-end, that are mapped to a reference 

genome. Several strategies have been developed to detect SVs. Paired-read (PR) methods 

search for clusters of discordant (aberrant insert size or orientation) read pairs. Split-read 

methods map previously unmapped reads by splitting the reads. Read depth (RD) 

methods identify CNVs by detecting regions of low or high read coverage. De novo 

methods assemble reads into contigs, particularly useful for detecting insertions. Each 

detection strategy has advantages and disadvantages, and they complement each other by 

detecting SVs not found or not detectable using the other strategies. For example, RD 

does not depend on paired reads for finding SVs and is able to detect CNVs with mutated 
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or rough breakpoints that may not be detectable with paired or split reads, but RD is 

unable to detect insertions, translocations, and inversions. 

 Several whole genome sequencing (WGS) RD methods, CNV-seq (Xie & Tammi, 

2009), SegSeq (Chiang et al., 2009), rSW-seq (Kim et al., 2010), CNAseg (Ivakhno et al., 

2010), and CNAnorm (Gusnanto et al., 2012), require a control sample. Other WGS RD 

methods, such as JointSLM (Magi et al., 2011) and cn.MOPS (Klambauer et al., 2012), 

require multiple samples. Often multiple samples or a suitable control are not available. 

Whole exome sequencing (WES) RD methods, including ExomeCNV (Sathirapongsasuti 

et al., 2011), CONTRA (Li et al., 2012), EXCAVATOR (Magi et al., 2013), CoNIFER 

(Krumm et al., 2012), and XHMM (Fromer et al., 2012) are limited to detection in coding 

regions of the genome (Sims et al., 2014). WGS RD methods that do not require a control 

include FREEC (Boeva et al., 2011), ReadDepth (Miller et al., 2011), CNVnator (Abyzov 

et al., 2011), and RDXplorer (Yoon et al., 2009). 

 Detecting CNVs is complicated by GC bias of NGS technologies, whereby read 

coverage varies depending on the GC content of the genome region. Existing RD 

methods reduce GC bias by GC bin mean normalization (CNVnator and RDXplorer), 

polynomial fitting (FREEC), and LOESS regression (ReadDepth). However, these 

methods do not consider differences in read depth variance with GC content, which may 

exist after GC bias correction. Complex and repetitive regions are challenging for all 

CNV detection methods including RD. Complex regions near telomeres and centromeres 

are known to be SV hotspots (Mills et al., 2011) and sequencing bias has been observed 

in repeat regions (Ross et al., 2013). However, RD methods have not been tailored for the 
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difficulties of complex and repetitive regions. Additionally, RD methods suffer from low 

breakpoint resolution. 

 We have developed GROM-RD, a control-free WGS RD algorithm with several 

improvements and novel features compared to existing RD algorithms, such as excessive 

coverage masking, GC bias mean and variance normalization, GC weighting, 

dinucleotide repeat bias detection and adjustment, and a size-varying sliding window 

CNV search. These features address weaknesses in existing RD methods and biases in 

genomic sequencing that limit CNV sensitivity, specificity, and breakpoint accuracy, as 

evidenced by comparison of our algorithm to two most commonly used control-free 

WGS RD tools, RDXplorer (Yoon et al., 2009) and CNVnator (Abyzov et al., 2011). 

GROM-RD showed improved predictive capabilities and breakpoint resolution for 

CNVs, as well as excellent scalability for different NGS datasets, both simulated and real. 

 

Methods 

 GROM-RD outputs a union set from two pipelines that differ based on the 

inclusion or exclusion of a pre-filtering step, excessive coverage masking (Fig. 3). Each 

step from Fig. 3 will be described in the following subsections. 
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Figure 3: GROM-RD pipeline summary. 

Two iterations of the pipeline are combined into a union set of CNV predictions. For the 

first iteration (step 1 included), CNV detection in stable regions is improved by masking 

regions of excessive coverage. Without masking (step 1 excluded), CNVs are detected in 

complex and repetitive regions that are characterized by excessive coverage. 

 

 

Excessive coverage masking 

 Abnormal read coverage has been reported in centromere and telomere regions 

(Rausch et al., 2012). Similarly, we observed excessive read coverage in certain regions, 

particularly near centromeres (data not shown). This might be due to complex and 

repetitive segments, which are common in the human genome and can complicate CNV 

detection. Such high read coverage may result in false positives and also reduce CNV 

sensitivity in less complex regions. GROM-RD uses a two-pipeline approach to detect 

CNVs in complex and repetitive segments and improve sensitivity in less complicated 

regions. In the first pipeline, we mask clusters of blocks (10,000 base segments) with 

high read coverage (default: >2× chromosome average) and run GROM-RD on the 

masked genome. A cluster is defined as a section of the genome where >25% of the 
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blocks have high read coverage and a minimum of four blocks have high read coverage. 

High coverage regions have been shown to have a high concentration of SVs (Mills et al., 

2011). Thus, in the second pipeline, we run GROM-RD on the unmasked genome. 

GROM-RD outputs a union set of predicted CNVs from the two pipelines. Many false 

positives may be produced from spikes in read coverage, particularly for the unmasked 

genome. Thus during later steps in the pipeline, read coverage greater than twice the 

chromosome average is adjusted (described in ‘GC bias normalization’). 

 

GC weighting 

 Variation in the GC content of genome regions affects read coverage produced by 

NGS platforms. A post-sequencing approach used by many RD algorithms, such as 

CNVnator and RDXplorer, is to bin genome regions by GC content and adjust the 

average read depth of each bin to the average read depth of the genome, referred to as GC 

bias normalization. Here we discuss the first step of this approach, calculating GC 

content of genome regions. RD algorithms often divide a chromosome into regions, 

referred to as windows, of a fixed size and estimate read depth in each window by 

counting reads within the window. GC content for a window is calculated from the 

proportion of reference sequence G and C bases within the window. Previous studies 

(Aird et al., 2011; Benjamini & Speed, 2012; Bentley et al., 2008) have identified PCR 

bias as the main contributor to GC bias in NGS. Thus, reference bases outside a window 

may affect read coverage within a window, especially for long reads and paired-end 

reads. Benjamini & Speed (2012) showed a higher correlation between GC content and 

read depth when considering the GC content of the entire PCR-replicated DNA fragment 



17 

 

 

 

rather than the sequenced segment. Based on these observations, we developed a novel 

GC weighting method to consider all bases within an average insert size. To maximize 

sensitivity, we do not calculate GC weighting for a window of bases; instead, GC 

weighting is calculated for each base i as hi = ∑wjaj/∑wj, where j is a base that may affect 

read depth for base i, wj is the weight of base j and is equivalent to the sum of average 

inserts with unique starting locations and that overlap base j and base i, and aj is 1 if base 

j is a G or C and 0 otherwise. For single-end reads, the insert size is equivalent to read 

length. 

 

GC bias normalization 

 As referred to previously, “GC bias” in this context denotes variation in read 

coverage produced by NGS platforms as a result of variation in the GC content of 

genome regions. Many RD algorithms, such as CNVnator and RDXplorer, bin genome 

regions (windows) by GC content and adjust the average read depth of each bin to the 

average read depth of the genome: 

(1) ri,norm = ri m/mGC 

where ri,norm is the read coverage of a window after normalization, ri is the read coverage 

of window i prior to normalization, m is the global mean read coverage of all windows in 

the genome, and mGC is the mean read coverage of all windows with similar GC content 

(Yoon et al., 2009). Although this method normalizes the read depth means across the 

GC bins, we found differences in variance after GC bias correction (Fig. 4). From this 

observation, we expect methods using this approach to over-predict CNVs when a GC 

region has high variance and under-predict CNVs when a GC region has low variance. 
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Figure 4: Standard deviation after GC bias normalization. 

Data produced from chromosome 19 of NA12878 (Illumina high coverage paired-end 

read dataset aligned with BWA to human reference hg18) (DePristo et al., 2011) using 

100-base non-overlapping windows. Reads were assigned to a window if the read center 

was within the window. After correcting for GC bias using a common approach, the 

standard deviation varies with GC content. This negatively impacts further analysis by 

CNV detection algorithms. 

 

 

 We use a quantile normalization approach to correct for variance across bins of 

GC weighted bases (Lin et al., 2004). For this approach, we rank bases in each bin based 

on read depth and calculate a rank proportion pi for each base i using: 

 

  

 

where Ri is the read depth rank for base i and n is a count of bases with a particular GC 

weighting. When Ri is 0 (for 2Ri ≤ n) or n − Ri is 0 (for 2Ri > n), the numerator in Eq. (2) 
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is set to 0.5. Subsequently, pi is converted to standard deviation units, xi, using a pre-

computed normal distribution table. Note when n is identical for all GC bins and there are 

no read depth ties within a GC bin, each bin distribution will have identical statistical 

properties, including mean and variance, after quantile normalization. Statistical 

properties of quantile normalized distributions may vary across GC bins when n varies, 

however this effect is negligible when n is large. GROM-RD requires a GC bin to have at 

least 100 bases. GROM-RD does not produce a normalized read depth as in Eq. (1) 

because it is not necessary for further analysis. Instead, read depth in standard deviation 

units is used. As mentioned previously in ‘Excessive coverage masking,’ to reduce false 

positives, read coverage greater than twice the chromosome average is adjusted by 

averaging the rank of the observed read coverage and the rank of read coverage 

equivalent to twice the chromosome average read coverage. CNVs may occur in low 

mapping quality regions; however, read coverage distributions tend to differ between low 

mapping quality and high mapping quality regions. To compensate for variation of read 

coverage distributions with mapping quality, GROM-RD calculates the average mapping 

quality for each window and creates separate distributions for low mapping quality 

(default: <5) and high mapping quality windows. The nature of the read depth 

distribution for NGS data has not been clearly defined. A rank-based approach does not 

assume a specific distribution and is less affected by outliers when compared to 

parametric methods. 
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Dinucleotide repeat bias normalization 

 Repeat bias has been observed with NGS technologies (Ross et al., 2013). We 

found similar repeat biases in our investigations. Additionally, these biases may vary with 

sequencing technology and genomes. For instance, we observed decreased coverage for 

AT repeats in human (Fig. 5) but not for other genomes (data not shown). We found that 

dinucleotide repeats as short as 20 bases affected coverage. GROM-RD detects 

dinucleotide repeat biases and uses a quantile normalization method in the respective 

genomic regions. Dinucleotide repeats with average read coverage that is more than 1.5 

standard deviations above or below the genome average read coverage, are considered 

biased. For a biased dinucleotide repeat, we use a quantile normalization approach similar 

to our GC bias normalization, except Ri is the read depth rank of occurrence i of a 

particular dinucleotide repeat. From this we obtain read depth in standard deviation units 

for each biased dinucleotide repeat occurrence. As we move further from a repeat, 

GROM-RD creates separate sample distributions in 10 base increments to adjust for the 

decreasing influence of repeat bias. Thus, we bin bases by distance from the repeat, in 

contrast to binning by GC weighting as described in ‘GC weighting.’ Repeat bias 

normalization is applied within a distance of half-insert size from biased dinucleotide 

repeats. For genomic regions with dinucleote repeat bias, dinucleotide repeat bias 

normalization replaces GC bias normalization. To our knowledge, GROM-RD is the first 

RD method to specifically adjust for repeat bias. 
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Figure 5: Example of dinucleotide repeat bias in a human genome. 

AT repeats had lower coverage compared to other dinucleotide repeats for human 

genome NA12878 (Illumina high-coverage paired-end read dataset aligned with BWA to 

human reference hg18) (DePristo et al., 2011). Dinucleotide repeats less than 20 bases 

were filtered. Dinucleotide combinations with less than 50 occurrences in the genome are 

not shown. 

 

Sliding window CNV search 

 RD methods typically suffer from reduced breakpoint resolution compared to 

other methods, such as split-read. One reason for low resolution is fixed-size, non-

overlapping windows. We employ sliding windows that sequentially increase in one-base 

increments to improve breakpoint resolution. Fixed-size, non-overlapping windows also 

reduce sensitivity when CNVs start or end near the center of a non-overlapping window. 

Using sliding windows, GROM-RD is equally sensitive to CNVs regardless of start or 

end points. Additionally, by creating distributions for incremental window sizes, GROM-

RD improves sensitivity on a range of CNV sizes. 
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As described in the previous sections, GROM-RD normalizes GC bias or, if 

necessary, dinucleotide repeat bias for each base. However, we do not expect to find one 

base deletions or duplications; instead, GROM-RD combines normalized bases into 

windows by averaging standard deviation units of all bases in a window. Since the means 

and variances of the bases have been normalized with respect to GC bias or dinucleotide 

repeat bias, GC and dinucleotide bias are not associated with the windows. 

 For each window size, we sample a set of windows from the dataset and obtain a 

read depth mean and standard deviation. Then, we identify base positions with abnormal 

read coverage ≥1.3rave,h for duplications or ≤0.70rave,h for deletions (for diploids) as 

potential breakpoints, where rave,h is the average read depth for bases with h weighted GC 

content. If at least half of the bases have abnormal coverage for a minimum window size, 

wl,min (default = 100) beginning at a potential breakpoint j, we calculate a z-score, z, 

based on a sample distribution of read depths for wl,min and the read depth of a window i 

having size wl,min and beginning at j. 

 Several parameters affect calling CNVs as outlined below (and they can 

potentially be modified by a user). A CNV is called if z < α, (default: α = 1 × 10−6). We 

increase the window size in one-base increments and recalculate z to either extend or 

detect a CNV until a maximum window size wl,max (default = 10,000) is reached. If no 

CNV has been detected, we move to the next potential breakpoint and repeat our 

statistical testing. Attempts to extend or detect a CNV will end before reaching wl,max if 

less than half the bases have abnormal read coverage (≥1.3 or ≤0.70rave,h for diploids). If a 

CNV was found and wl,max has been reached, we try to extend the CNV by sliding a 

window of size wl,max and recalculating z. Attempts to extend a CNV continue until 
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thresholds related to read coverage and distance from the CNV end breakpoint have been 

reached. A flowchart for the sliding window CNV search is provided in Fig. 6. 

 

 
Figure 6: Flowchart for sliding window CNV search. 

For clarity, some conditions for ending a CNV search have been omitted.  

 

Results 

 

Datasets 

 To test GROM-RD’s performance, we used both simulated (with known SVs) and 

experimental (with a large number of validated SVs) datasets for a human genome (Table 

1). We first compared our approach with two commonly used RD algorithms, CNVnator 

and RDXplorer, on a simulated dataset. We used RSVSim (Bartenhagen & Dugas, 2013) 

to simulate 10,000 deletions and duplications ranging from 500 to 10,000 bases using the 
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most recent human reference genome (hg19). RSVSim assumed a beta distribution to 

create a distribution of CNV sizes based on SVs from the Database of Genomic Variants 

with lengths between 500 and 10,000 bases, resulting in a decreasing frequency of CNVs 

with increasing size. Deletions were heterozygous (1 copy number) and duplications 

ranged from 3 to 10 copy numbers. RSVSim biased SVs to certain types of repeat regions 

and corresponding mechanisms of formation, such as non-allelic homologous 

recombination, based on several studies (Chen et al., 2008; Lam et al., 2010; Mills et al., 

2011; Ou et al., 2011; Pang et al., 2013). We then used pIRS (Hu et al., 2012) to simulate 

100-base Illumina paired-end reads with 500 base inserts and read coverage above ten. 

pIRS is designed to simulate Illumina base-calling error profiles and GC bias. The 

simulated reads were mapped to human reference genome hg19 using BWA (Li & 

Durbin, 2009). 

 

 

 Table 1: 

Summary of simulated and gold standard datasets. 

 

 We also compared CNVnator, RDXplorer, and GROM-RD on two human 

datasets (both from NA12878). To better assess algorithm performance with current 

sequencing technologies (longer reads, lower error rates, etc.), we used the more recent 

sequence datasets of low coverage NA12878 produced as part of the main project 

alignments for the 1000 Genomes Project (Abecasis et al., 2012) and high coverage 
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NA12878 produced at the Broad Institute and released to the 1000 Genomes Project 

(DePristo et al., 2011). Both datasets contain Illumina paired-end reads. We tested 

algorithm performance using a large set of experimentally validated and high confidence 

SVs produced during the pilot phase of the 1000 Genome Project and commonly referred 

to as the “gold standard” (Mills et al., 2011). We will use the term “gold standard” to 

refer to the above set of validated SVs and the sequence datasets. 

 

Simulation results 

 CNVnator, RDXplorer, and GROM-RD prediction results for the simulated 

dataset are shown in Fig. 7. At least 10% reciprocal overlap between a predicted CNV 

and a simulated CNV was required for a true positive. Default parameters were used for 

all algorithms, except for the window (bin) size for CNVnator. We estimated the optimal 

window size for CNVnator (230 bases) by curve fitting the window size and read 

coverage combinations (resulting in bin size = 2205x
−0.941

, where x is the read depth) 

recommended by the program’s authors (Abyzov et al., 2011). The default window size 

for RDXplorer and GROM-RD is 100 bases. For GROM-RD, we found a 100 base-

window to be suitable for all datasets tested. 
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Figure 7: Sensitivity and FDR for simulated dataset. 

GROM-RD had the highest sensitivity and lowest FDR for duplications. GROM-RD’s 

sensitivity was lower than RDXplorer’s sensitivity for deletions, but GROM-RD had a 

much lower FDR. Ten thousand deletions and duplications were simulated from human 

reference hg19 using RSVSim. CNVs were biased to repeat regions. One hundred-base 

paired-end Illumina reads with 500 base inserts were simulated at 11x coverage using 

pIRS and mapped to hg19 using BWA. 

 

 For the simulated dataset, GROM-RD had the highest sensitivity and lowest false 

discovery rate (FDR, or the proportion of predictions that were false positives) for 

duplications. For deletions, our method also had the lowest FDR and second-best 

sensitivity after RDXplorer, which showed a very high FDR (0.75) when compared to 

GROM-RD (0.02). When the FDR is very high, it may be more informative to consider 

the false positive counts. RDXplorer had 13,457 false positives compared to only 61 false 

positives for GROM-RD. All methods had lower sensitivity and a higher FDR for 

deletions than duplications, which may be due to the fact that 3 to 10 copy number 

changes for duplications should be easier to detect than halved RD deletions. 
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Gold standard results 

 Prediction results for the gold standard datasets are shown in Table 2. True 

positives indicate at least 10 or 50% reciprocal overlap between a predicted CNV and the 

gold standard. CNV predictions not overlapping the gold standard were labeled “Other.” 

Default parameters were used for all algorithms, except for the window size for 

CNVnator. Using the previously described curve fitting for CNVnator, we estimated 450 

and 100 base windows for the low and high coverage (NA12878) datasets, respectively. 

 

 

Table 2:  

CNV prediction results for gold standard datasets. 

Results indicate 10%/50% reciprocal overlap between predicted CNV and gold standard. 

CNV predictions not meeting overlap criteria were classified as “Other.”  

 

 

 Again, GROM-RD had the highest sensitivity for deletions and duplications in the 

low coverage dataset and duplications in the high coverage dataset. However, CNVnator 

found 39 more true deletions than GROM-RD in the high coverage dataset with 10% 

reciprocal overlap or 38 with 50% overlap. 

 In Table 3, we compared algorithm performance with CNV size (500–10,000 and 

>10,000 bases) for the gold standard datasets. True positives indicate 10% reciprocal 
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overlap. GROM-RD had the highest sensitivity for all comparisons except for short (500–

10k) high coverage NA12878 CNVs. The paucity of supporting evidence makes 

detecting deletions in low coverage datasets difficult for any method (Fig. 8). However, 

GROM-RD excelled at detecting deletions in the low coverage dataset, correctly calling 

more than twice and five times as many deletions as CNVnator and RDXplorer, 

respectively. Regarding the contribution of individual steps of our pipeline, we note that 

implementation of the dinucleotide repeat bias adjustment reduced GROM-RD’s deletion 

predictions in low and high coverage NA12878 by 4 and 48%, respectively, while losing 

only one true positive prediction. Using quantile normalization for GC bias improved 

deletion and duplication sensitivity by 768 and 933%, respectively, for low coverage 

NA12878 and 15 and 73% for high coverage NA12878. Additionally, when employing 

the two-pipeline approach for excessive coverage masking, deletion and duplication 

sensitivity increased 6 and 7%, respectively, for the low coverage gold standard dataset 

and 4 and 15% for the high coverage gold standard dataset. 
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 Figure 8: Example of deletion in chromosome 1 of NA12878 (detected only by 

GROM-RD in the low coverage dataset). 

Histogram at the top reflects read coverage across the region. Grey pointed rectangles 

connected by lines represent paired reads. Gold standard validation (108402984–

108405403) and GROM-RD’s prediction (108402966–108405569) are represented by the 

black and blue double-arrowed lines, respectively. CNVnator and RDXplorer did not 

predict the deletion. We note that deletions in low coverage datasets are difficult for any 

method to detect as evidenced by only one discordant read pair (red pointed rectangles 

connected by red line) supporting the deletion making detection unlikely by a PR method. 

Example is shown using human reference hg19 in IGV viewer (Robinson et al., 2011). 

 

 

 
 

Table 3: 

Comparison of algorithm performance for different CNV sizes. 

Results shown for short (500–10,000 bases) / long (>10,000 bases) CNVs. True positives 

indicate 10% reciprocal overlap. CNV predictions not meeting overlap criteria were 

classified as “Other.”  

 



30 

 

 

 

Breakpoint accuracy 

 Breakpoint accuracy is one of the traditional weaknesses of the RD methods and 

improvements in this area can help in narrowing down CNV borders and facilitate 

subsequent validation experiments. CNVnator, RDXplorer, and GROM-RD breakpoint 

accuracy on the simulated and NA12878 gold standard datasets is summarized in Table 4. 

GROM-RD had the lowest deletion and duplication breakpoint error for all datasets, 

except duplications for low coverage NA12878 where RDXplorer had lower breakpoint 

error (11823 bases) compared to GROM-RD (22555). We note that RDXplorer had only 

seven true positive duplication calls for low coverage NA12878, limiting the reliability of 

the breakpoint error estimation. We observed larger breakpoint error for the NA12878 

gold standard datasets relative to the simulation dataset. This was partly due to the 

simulation study not having large CNVs (>10k) which had larger breakpoint error 

compared to short (500–10k) CNVs in the gold standard datasets. Additionally, 

breakpoints have complexities (such as microhomology of sequence around breakpoints, 

repeat sequences, etc.) that are not well understood and simulated. 

 

 

 

Table 4:  

Mean breakpoint error for simulated and gold standard datasets. 

Lowest error for each measurement is bolded. GROM-RD had the lowest deletion (Del) 

and duplication (Dup) breakpoint error for all datasets.  
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Algorithm metrics 

 Run times for the algorithms on the gold standard datasets are provided in Table 

5. We tested all three programs on a single CPU (Intel Xeon E31270, 3.4 GHz) on a 

Linux workstation with 16 GB RAM memory. Standard BAM files were used as input. In 

contrast to other tools, GROM-RD’s run time is relatively insensitive to read coverage 

with a 15-fold increase in coverage resulting in only a 33% increase in run time. GROM-

RD is written in C, uses standard BAM files as input, is able to utilize paired or single 

reads, and is available at http://grigoriev.rutgers.edu/software/. 

 

 

Table 5:  

Run times (in minutes) on gold standard datasets. 

 

Discussion 

 We developed a novel RD approach for detecting CNVs in NGS data. Many RD 

algorithms, such as CNVnator and RDXplorer, correct GC bias by binning genome 

regions based on GC content and normalizing the read depth mean of each bin to the 

global average. However, read depth variance tends to vary with GC content after 

normalizing the means (Fig. 4). GROM-RD normalizes variance by using a quantile 

normalization approach to convert read depth to standard deviation units. As a result, our 

method produces fewer false positives overall. GROM-RD, CNVnator, and RDXplorer 

http://grigoriev.rutgers.edu/software/
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were tested on a simulated and two gold standard datasets. GROM-RD performed well on 

the simulated data having the highest sensitivity and lowest FDR. Although RDXplorer 

had a somewhat higher sensitivity for deletions compared to GROM-RD, it came at the 

expense of extreme overprediction: RDXplorer had a very high FDR resulting in 13,457 

false positives compared to only 61 false positives for GROM-RD. GROM-RD had the 

highest sensitivity for deletions and duplications on the low coverage gold standard 

dataset and for duplications on the high coverage gold standard dataset. For deletions in 

the high coverage dataset, GROM-RD had comparable sensitivity (0.71) to CNVnator 

(0.79). GROM-RD excelled at detecting deletions in the low coverage NA12878 dataset, 

correctly calling more than twice and five times as many deletions as CNVnator and 

RDXplorer, respectively. When comparing performance by CNV size, GROM-RD had 

the highest sensitivity for all comparisons except for short (500–10k) high coverage 

NA12878 CNVs, where GROM-RD had comparable sensitivity (0.68) to CNVnator 

(0.78). GROM-RD’s dinucleotide repeat bias normalization reduced GROM-RD’s 

deletion predictions by 4 and 48% on the low and high coverage datasets, respectively, 

while losing only one true positive, suggesting an improvement in specificity. As 

expected, duplication predictions were not affected by dinucleotide repeat bias 

normalization. Using quantile normalization for GC bias normalization improved deletion 

and duplication sensitivity by 768 and 933%, respectively, for low coverage and 15 and 

73%, respectively, for high coverage NA12878. Compared to one pipeline with no 

excessive coverage masking, our two pipeline approach with excessive coverage masking 

increased deletion and duplication sensitivity 6 and 7%, respectively, for the low 
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coverage gold standard dataset and 4 and 15% for the high coverage gold standard 

dataset. 

 Often RD algorithms analyze read depth in non-overlapping windows with a fixed 

size. A read is placed in a window if the read’s center (CNVnator) or start (RDXplorer) 

occurs in the window. Fixed-size, non-overlapping windows result in low breakpoint 

resolution. GROM-RD utilizes sliding windows with sizes varying in one-base 

increments to improve breakpoint accuracy. For all datasets except duplications for low 

coverage NA12878, GROM-RD had the lowest deletion and duplication breakpoint error, 

thus improving this common weakness of RD methods.\ 

 RD algorithms are complementary to and have some advantages compared to 

other CNV detection methods. For instance, RD algorithms may be able to detect CNVs 

with rough breakpoints and duplications with few uniquely mapped reads that paired- and 

split-read methods may have difficulty detecting. We observed a number of such cases 

for validated CNVs in the low coverage NA12878 dataset, with just one discordant read 

pair spanning a deletion (Fig. 8) or even with no support from discordant paired reads at 

all. However, RD methods frequently have low breakpoint resolution. Our results 

suggested that GROM-RD was able to improve RD sensitivity, specificity, and 

breakpoint accuracy compared to CNVnator and RDXplorer, the two most frequently 

used RD algorithms. Additionally, GROM-RD had a short run time that was relatively 

insensitive to read coverage indicating excellent scalability of the method for different 

datasets. 
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Chapter 3: Lightning-fast genome variant detection with GROM 

Smith, Sean D., Joseph K. Kawash, and Andrey Grigoriev. "Lightning-fast genome 

variant detection with GROM." GigaScience 6, no. 10 (2017): 1-7. 

 

 GROM was developed as a comprehensive and extremely efficient variant 

detection algorithm for next generation sequencing data. This need had become 

increasingly apparent to us with the abundance of large scale NGS studies coming to 

fruition. GROM utilizes multiple forms of evidence for variant detection including 

mismatch, split read, read pair and read depth genome sequence information in a single 

algorithm through a single pass of the BAM file. GROM identifies all variants, including 

SNVs, CNVs, SV, and indels.  GROM outperformed other methods on several 

benchmarking data sets in sensitivity, specificity, as well as speed; reducing 

computational time for variant detection from 41% of a typical pipeline to < 1%.  

 

 My contribution to GROM includes the extensive testing and setting of optimal 

values for all parameters. I also verified all call types made by GROM in several testing 

datasets, writing code to correct issues and improve performance (such as identifying 

regions with multiple types of overlapping variants, and adjusting call parameters in these 

regions) that were later incorporated into the algorithm. I also wrote the code converting 

GROM output to various formats such as vcf, as well as code that is used for comparative 

genomics, to identify shared and unique mutations in populations. In addition I wrote the 

section of results on variant discovery in NA12878, including Fig. 13, and assisted in 

writing the results section of the paper.  
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Lightning-fast genome variant detection with GROM 

 

Introduction 

 The 1000 Genomes Project (Genomes Project Consortium 2010) was launched in 

2008 with the goal of producing and analyzing whole genome sequencing (WGS) for 

1000 genomes. By 2016 decreasing costs and increasing sequencing throughput had led 

to an exponential increase in the size and scope of WGS projects from Human Longevity, 

Inc.’s 10 000 publicly available WGS genomes (Telenti et al. 2016) to the United 

Kingdom’s 100 000 Genomes Project (Genomics England 2017) to even larger, though 

less-clearly defined, sequencing projects involving 1 000 000 participants proposed in the 

United States (Precision Medicine Initiative ( National Institutes of Health 2017)  and 

Million Veteran Program (U.S. Department of Veterans Affairs 2017)) and China 

(Cyranoski 2016). Such projects produce massive amounts of data, straining 

computational resources and requiring much faster methods than current capabilities 

(Stephens et al. 2015). 

 Comprehensive analysis of genomic differences requires detection of a wide 

range of variants, including single nucleotide variations (SNVs), indels (insertions and 

deletions <50 bases), and larger copy number variants (CNVs) and structural variants 

(SVs), which include deletions, duplications, insertions, inversions, and translocations. 

Methods have been developed for each type of variant; subsequently, a typical WGS 

analysis workflow requires running multiple algorithms. A recent pipeline, SpeedSeq 

(Chiang et al. 2015), focused on reducing the computational resources needed for WGS 

analysis, though it still employed 4 variant detection algorithms. This can be wasteful of 
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computational resources due to repetitive input/output and analysis of the same read 

sequences by several algorithms. 

 We present our method, Genome Rearrangement Omni-Mapper (GROM), a novel 

comprehensive method of variant detection, combining mismatch, split-read, read pair, 

and read depth WGS evidence. GROM boasts lightning-speed runtimes an order of 

magnitude faster than state-of-the-art variant detection pipelines. While drastically 

reducing computational time, GROM detects SNVs, indels, SVs, and CNVs in a single 

algorithm and provides superior overall variant detection compared with commonly 

employed algorithms. 

 

Algorithm 

 Differences in variant types (Fig. 9) have resulted in separate algorithms designed 

for a limited range of variants. GROM achieves fast, comprehensive variant analysis via 

a compact workflow (Fig. 10), efficiently analyzing and gathering information at each 

reference base in 1 pass through a BAM file. Base information includes average mapping 

and base qualities, overlapping discordant pairs, unmapped mate reads, and split-reads, 

and read depth. Discordant pairs are identified based on abnormal read orientation or 

abnormal insert size. GROM determines abnormal insert size based on a sample of 10 

million paired reads. Since insert size distributions tend to have right skewness, GROM 

calculates the median insert size and uses a rank-based method to determine abnormal 

insert size thresholds corresponding to 3 standard deviations from the median under a 

normal distribution (after outliers more than 5× the median insert size have been filtered). 

Each read with a split mapping, indel, discordant mate, or unmapped mate contributes 
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breakpoint evidence to each potential reference base breakpoint. For simple cases such as 

a 2-base deletion within a read, there is 1 potential reference base start breakpoint and 1 

potential reference base end breakpoint. Other cases may have less precise breakpoints, 

such as a read from a discordant deletion pair (abnormally large insert size). In this case, 

the exact breakpoint is unknown and a potential breakpoint is recorded for each reference 

base consistent with forming a concordant pair in the sample, where a concordant pair 

corresponds to insert sizes ≥imin and ≤imax, where imin and imax represent the minimum and 

maximum insert size thresholds, respectively (Fig. 11). Using the deletion example in 

Fig. 11, a breakpoint distant from both reads would necessitate an insert size that is too 

large to be consistent with a concordant pair (and the source DNA fragment), and thus 

would not be a potential breakpoint. When soft-clipping (≥5 bases) or a split-read (each 

mapped split ≥20 bases) occurs in the potential breakpoint region, the reference base 

immediately adjacent to the soft-clipping or split-read is recorded as a potential 

breakpoint and other potential breakpoints are recorded with half-weighting. This enables 

base resolution of breakpoints while limiting a single aberrant read mapping from 

misidentifying the true breakpoint. 
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Figure 9. 

Examples of variants detected by GROM. GROM detects a comprehensive range of 

variants (SNVs, indels, deletions, insertions, inversions, and duplications). GROM also 

detects translocations spanning more than 1 chromosome (not shown). 

 

 

 

 

 

 

Figure 10.  

GROM workflow. GROM simultaneously collects data for each reference base and 

identifies candidate breakpoints and SNVs in 1 pass through a BAM file. After each 

chromosome, SNVs are filtered; start and end breakpoints are matched and filtered for 

each indel and SV type (excluding translocations), and CNVs are identified (using read 

depth). 
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Figure 11. 

Example of SV evidence and potential breakpoints. GROM considers multiple input 

features at each reference base position to statistically determine the likelihood of an 

SNV, indel, SV, or CNV. Inputs in this example (discordant pairs, split-reads, and 

unmapped mate reads) are primarily used for SV detection. Discordant deletion pairs 

identified by insert size exceeding imax. For discordant pairs, potential start and end 

breakpoints are recorded for each reference base capable of forming a concordant pair in 

the sample. Lr indicates read length. 

  

 Base by base of the reference, breakpoint evidence is stored for each distinct indel 

or SV. In some cases, it is difficult to distinguish variants. For instance, 2 heterozygous 

deletions may overlap and have similar start and end breakpoints and similar lengths. 

Thus, for each potential breakpoint, we cluster read evidence by variant type and length. 

Such clustering can be a computationally intensive task. We use the following efficient 

method. 

 We define a cluster or breakpoint cluster as a specific reference base location with 

a set of reads supporting a breakpoint at that location for a specific indel or SV type 

(deletion, duplication, etc.) of a certain length. A read from a discordant pair provides 

imprecise breakpoints and thus may be a member of multiple clusters, 1 cluster per 
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reference location. A read is placed into an existing breakpoint cluster if the read and 

cluster support the same indel or SV type and the variant lengths are close, i.e.,   

 

|Lbc − Ldisc|≤ (imax − imin + imedian−2Lr)(1 + 1/xbc), 

(1) 

 

where Lbc is the mean indel or SV length for the breakpoint cluster, Ldisc is the length of 

the indel or SV pertaining to the candidate read, Lr is the read length, xbc is the number of 

previously recorded reads supporting the breakpoint cluster, and imax, imin, and imedian 

are the maximum, minimum, and median concordant pair lengths, respectively. If a 

candidate read does not fit in any existing breakpoint clusters, a new cluster is created. If 

a candidate read fits in more than 1 breakpoint cluster at the same reference position, the 

breakpoint cluster with the most reads is chosen. This method is efficient and has the 

benefit of a read being considered in multiple clusters. 

 Additionally, the number of previously recorded reads influences whether a read 

is added to a breakpoint cluster because we expect our estimated (averaged) variant 

length to be closer to the true SV length as supporting reads are incorporated into the SV 

length average. For example, in Equation (1), let insert size statistics be such that imax 

− imin + imedian − 2Lr = 500, let an SV be a deletion of 1200 bases, and let our first 

discordant pair indicate an SV of length Ldisc = 1700. One read is a poor estimate of the 

true SV length. Thus, in our example, the second read's SV length may differ from the 

first read's SV length by 1000 bases, |1700 – Ldisc| ≤ 1000. However, as the number of 

supporting reads increase, we expect the average SV length (Lbc) to converge to the true 
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SV length of 1200, at which point we will not add the read as evidence unless its 

estimated SV length (Ldisc) is within 500 bases of the true SV length, |1200 – Ldisc| ≤ 

500*(1 + ε), where ε ≪ 1. 

 For each reference base, a mismapping probability, pbc, is calculated for each 

possible SNV, indel, and SV. pbc is the binomial probability of at least xbc reads 

supporting the breakpoint cluster given nbc read depth and a mapping quality threshold 

m. Thus, pbc indicates the likelihood that all of the supporting reads are mismappings. 

Read depth includes all mapped reads, unsequenced segments between concordant pairs, 

and potential breakpoints, and thus is an estimate of physical coverage. Physical coverage 

provides a more comprehensive representation of genome coverage than read coverage. It 

also helps GROM define deletion and duplication breakpoints when soft-clipping is 

unavailable as a decrease in coverage will affect breakpoint probability estimates. The 

mapping quality threshold m indicates the probability of a read mismapping, p = 

10
−m/10

. Thus, pbc is given as   

pbc= Pr (X≥x)= 1 − ∑k = 0x−1(nk)p
k
q

n−k
, 

(2) 

where q = 1- p. To reduce computational time, binomial probability tables are 

precomputed and stored as data files. GROM will compute additional probability data 

files if the default mapping quality threshold (m = 20) is adjusted. 
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 Potential indel and SV breakpoints are retained for further analysis. After 

processing reads for a chromosome (or the whole genome for translocations), GROM 

identifies indels and SVs with matching start and end breakpoints. Matching SV  

breakpoints must meet the following criteria:   

 

|BS+LS−Be|≤ c×(imax−imin), 

(3) 

  

|Be−Le−Bs|≤c×(imax−imin), 

(4) 

where c = 3/8, Bs and Be are the start and end breakpoints, respectively, and Ls and Le are 

the average variant length of reads supporting the start or end breakpoints, respectively. 

Matching translocation breakpoints follow the same concept modified due to the start and 

end breakpoints occurring on different chromosomes,   

|MS−Be|≤ c×(imax−imin), 

(5) 

  

|Me−Bs|≤c×(imax−imin), 

(6) 

where c = 3/8, Bs and Be are the start and end breakpoints, respectively, and Ms and Me 

are the average mate read reference locations of reads supporting the start or end 

breakpoints, respectively. 
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 Mixed libraries/BAM files, e.g., with insert size distributions appreciably 

different as to affect Equations (3–6) for matching breakpoints, or libraries containing 

paired-end with mate-pair data, require separate runs of GROM. Also, GROM can 

analyze exome or RNA sequencing reads with detection limited to SNVs and indels. 

 GROM will also work for libraries of non-paired reads using (in addition to 

finding SNVs and SVs within reads) our earlier method for finding copy number variants 

(CNVs), GROM-RD (Smith et al. 2015). GROM-RD also performs well compared with 

the standard tools such as CNVnator (Abyzov et al 2011). GROM and GROM-RD have 

the same foundation of collecting information for each reference base, but GROM-RD 

detects CNVs based on read depth, where low or high coverage is evidence of a deletion 

or duplication, respectively. This method is complementary to the core GROM approach 

described above. 

 GROM is able to simultaneously perform duplicate filtering; its duplicate filter is 

conceptually similar to Picard's MarkDuplicates (Broad Institute Pi- 

card Releases 2017) and SAMtools rmdup (Li et al. 2009), which have been shown to 

have similar performance. Duplicate filtering may improve predictive accuracy relative to 

no filtering (Ebbert et al. 2016). GROM provides an option to include such filtering, if 

necessary. GROM filters read pairs with identical orientation and external mapping 

coordinates, retaining the pair with highest mapping quality. Unlike SAMtools, GROM 

and Picard's MarkDuplicates are able to filter duplicates with reads mapping to different 

chromosomes and adjust external coordinates based on soft-clipping (Ebbert et al. 2016). 

For the sake of speed optimization and 1-pass analysis, soft-clipping is not considered for 

a read's mate. 
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Results 

 We compared GROM’s performance to 4 commonly used algorithms, GATK 

HaplotypeCaller (GATK-HC) (Despristo et al. 2011), SAMtools (Li et al. 2009), 

LUMPY (Layer et al. 2014), and Manta (Chen et al. 2016) using 2 extensively validated 

human WGS data sets, 51× NA12878 “platinum” genome (Eberle et al. 2017) and 68× 

HX1, a recent Chinese genome (Shi et al. 2016). GATK-HC, considered a gold standard 

in SNV/indel detection, has been shown to outperform state-of-the-art algorithms (Yi et 

al. 2014), and SAMtools is present in most pipelines. Because GROM integrates multiple 

lines of evidence, we also specifically compared it with a similar SV tool in the SpeedSeq 

pipeline (SpeedSeq, RRID:SCR_000469), LUMPY, shown to outperform other 

algorithms (Layer et al 2014), such as DELLY (DELLY, RRID:SCR_004603) (Rausch et 

al. 2012), Pindel (Pindel, RRID:SCR_000560) (Ye et al. 2009), and GASVPro 

(GASVPro, RRID:SCR_005259) (Sindi et al. 2012). As part of a 10 000 genome 

sequencing study, presently the largest human WGS variant study, a comparison of 7 SV 

detection algorithms (BreakDancer (Chen et al. 2009), DELLY (Rausch et al 2012), 

GenomeSTRiP (Handsaker et al. 2015), LUMPY (Layer et al. 2014), Manta (Chen et al. 

2016), MatchClip2 (Wu et al. 2013), and Pindel (Ye et al. 2009), showed that Manta 

performed the best for SV detection (Telenti et al. 2016). We evaluated SNV and indel 

detection with the Illumina Platinum pedigree-validated benchmark sets (Eberle et al. 

2017). GROM exhibited the highest SNV and insertion indel sensitivity and precision 

and the highest deletion indel sensitivity when compared with GATK-HC and SAMtools 

for the NA12878 genome (Supplementary Table S1). SVs are notoriously difficult to 

reliably detect (Telenti et al. 2016). Thus, we extensively analyzed GROM’s performance 
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using 4 benchmark sets for NA12878: Database of Genomic Variants Gold Standard 

(DGV-GS, deletions and duplications) (Macdonald et al 2014), Mills Gold Standard 

(Mills-GS; deletions, duplications, and insertions) (Mills et al. 2011), Genome in a Bottle 

(GIAB, deletions and insertions) (Zook et al. 2014); and Pendleton PacBio (deletions and 

inversions) (Pendleton et al. 2015). And we utilized 3 deletion and duplication 

benchmark sets for HX1: DGV-GS, Shi PacBio (Shi et al. 2016), and Shi IrysChip (Shi et 

al. 2016) (see the Methods section for a more complete description of 

benchmark/validation sets). A summary of the deletion and duplication comparison with 

LUMPY and Manta indicated superior deletion and duplication detection (Supplementary 

Table S2), with GROM being the highest in 10 of 14 deletion (Supplementary Table S3) 

and 7 of 10 duplication (Supplemental Table S4) metrics (sensitivity and precision) 

across the benchmark data sets. Additionally, GROM was highest in all inversion 

(Supplemental Table S5) and insertion (Supplemental Table S6) metrics. GROM also 

detected 545 and 472 translocation events in NA12878 and HX1, respectively. However, 

these events were not included in the benchmarking due to the lack of validated 

translocation data sets for either genome. 

 With dropping sequencing costs and growing data throughput, it is imperative to 

reduce the computational costs of big data analysis. GROM was 1.7× (NA12878) and 

2.1× (HX1) faster than the next fastest algorithm, Manta (Supplementary Table S7). 

Since typical analyses involve running separate algorithms for SNV/indel and SV 

detection, we compared a simple 24-thread parallelized GROM version (allocating a 

thread per 1/24 of the genome) with the fastest and best-performing 2-algorithm 

workflow (GATK-HC/Manta). Strikingly, GROM ranged from 24× (HX1, no duplicate 
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filtering) to 72× (NA12878 with duplicate filtering) faster than a combination of 22-

thread GATK-HC/2-thread Manta (Supplementary Table S8), drastically reducing variant 

detection and duplicate filtering from 41% to <1% of a typical WGS analysis pipeline 

(Fig. 12). For 1000 genomes on a 24-thread server, it may literally save years of 

computation. 

 

 
 

Figure 12. 

Total WGS pipeline timing on NA12878. GROM reduces WGS analysis time by 

drastically cutting run time for variant detection (green). It enables further speedup in 

preprocessing (red) by simultaneously performing an optional step, duplicate filtering. 

For visibility in the bar chart, GROM’s variant detection run time was artificially 

increased 3-fold. 

 

 Comparing the variants predicted by different tools, we identified 33 validated 

NA12878 SVs detected by GROM (but unreported by LUMPY and Manta) that 

overlapped genes and ranked them using the number of independent validations 

(Supplementary Table S9). A variant was considered validated if it occurred in at least 1 
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of the NA12878 benchmarks corresponding to the SV type (DGV-GS, Mills-GS, GIAB, 

Pendleton PacBio for deletions; DGV-SV, Mills-GS for duplications; Mills-GS, GIAB 

for insertions; and Pendleton PacBio for inversions). 

 Among these variants, we noted 4 deletions with significant health-related impact 

for NA12878: RHD, GSTM1, IFI16, and UGT2B17 (Fig. 13). GROM predicted a 

deletion spanning the entire RHD gene, 1 of 2 genes responsible for Rh blood group 

antigens (Wagner et al. 2009). Decreased copy numbers or null genotype of GSTM1 have 

been associated with hepatotoxicity (Singh et al. 2017) and higher risk of many cancers 

including lung cancer (Yang et al. 2015), gastric cancer (Lao et al. 2014), and bladder 

cancer (Norskov et al. 2011). UGT2B17 copy number variation has been associated with 

changes in bone mineral density and risk of osteoporosis (Yang et al. 2008). IFI16 is 

involved in viral defense (Orzalli et al. 2013) and p53-mediated apoptosis (Aglipay et al. 

2003, Johnstone et al. 200). 
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Figure 13. 

Example of genes overlapped by validated GROM-specific SVs. In the example are 4 of 

33 genes overlapped by validated SVs that were identified by GROM and unreported by 

LUMPY and Manta. Biological significance listed below gene. 

 

 Additionally, GROM provides an option to include duplicate filtering. This leads 

to minor accuracy gains in a number of cases (see example in Supplementary Table S10) 

and achieves additional speedup (Supplementary Table S8). Lastly, we have summarized 

GROM’s relative performance in Table 6. 

 

Table 6.  

Performance based on sensitivity and precision rankings (1 = highest, 3 = lowest) 

averaged across benchmarks for NA12878 and HX1. Bold text indicates the best-

performing algorithm in each category. A dash sign indicates that an algorithm does not 

detect variant type. 

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/gigascience/6/10/10.1093_gigascience_gix091/1/gix091_giga-d-17-00105_original-submission.pdf?Expires=1513020559&Signature=bZb~e57BNG0n~BvDFD~eXriW57E6oEry44gYa1LEm9SpU-pYR5oJ82X7~j0yY9U4UK~AIeGnM9il2V~S57-tMjoN3fE5wIa9oIGrIE~fWawJlOvWCjSGyLZNNm-IfZv4uM2qhStsccz9rVtVjSQIvx6Xiub6zTEgVLlCJZdeSgdg5~yLkgmnG22tsg0za~2HWmKpxotXI6nbCq5BMCKXlGZ2OkgGQ-LwWllRsmtUWp238bI8nnS--MroenGvFSyTdE2GWSJZGHjaY~b1kYQf~SUlwiYEtU4bmB1hFQfaKStBILnjAeqrgBa0EMuodV1Ljhn7NrnbUqs4~WQbfqxNBQ__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/gigascience/6/10/10.1093_gigascience_gix091/1/gix091_giga-d-17-00105_original-submission.pdf?Expires=1513020559&Signature=bZb~e57BNG0n~BvDFD~eXriW57E6oEry44gYa1LEm9SpU-pYR5oJ82X7~j0yY9U4UK~AIeGnM9il2V~S57-tMjoN3fE5wIa9oIGrIE~fWawJlOvWCjSGyLZNNm-IfZv4uM2qhStsccz9rVtVjSQIvx6Xiub6zTEgVLlCJZdeSgdg5~yLkgmnG22tsg0za~2HWmKpxotXI6nbCq5BMCKXlGZ2OkgGQ-LwWllRsmtUWp238bI8nnS--MroenGvFSyTdE2GWSJZGHjaY~b1kYQf~SUlwiYEtU4bmB1hFQfaKStBILnjAeqrgBa0EMuodV1Ljhn7NrnbUqs4~WQbfqxNBQ__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
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Methods 

 All timings were performed on an Intel Xeon E5–2690 v. 3 processor, 2.60 GHz, 

with 24 threads and 128 GB RAM. 

 Rankings in Table 6 and Supplementary Table S2 were based on average ranking 

across benchmarks (1-highest to 3-lowest). Ranking for each benchmark was based on 

sensitivity and precision values in Supplementary Tables S3–S6. For instance, GROM 

had the highest value for 10, second highest for 2, and lowest for 2 of the 14 deletion 

sensitivity and precision benchmarks (average benchmark rank, 1.4) Subsequently, the 

algorithms were ranked after sorting by their average benchmark ranking, resulting in 

deletion rankings of GROM, 1; LUMPY, 2; and Manta, 3 (as shown in Table 6). 

 Unlike most SV variant callers, GROM is able to analyze data sets with single or 

paired reads. However, all SV tests included only paired reads since most of the other 

callers operate on those. 

 While state-of-the-art detection methods for SNVs and indels have been deemed 

adequate for the clinical setting, SV detection is notably more difficult (Telenti et al. 

2016). Additionally, synthetic data sets have suffered from oversimplifications and 

misleading conclusions (Telenti et al. 2016). Thus, we extensively analyzed GROM’s SV 

detection performance using 4 validation benchmark sets for NA12878: 

    Database of Genomic Variants Gold Standard (deletions and duplications) (Macdonald 

et al. 2014) in Supplementary Tables S2–S4; 

 

    Mills Gold Standard (deletions, duplications, and insertions) (Mills et al. 2011) in 

Supplementary Tables S2–S5; 
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    Genome in a Bottle (deletions and insertions) (Zook et al. 2014) in Supplementary 

Tables S2, S3, S5; and 

 

    Pendleton PacBio (deletions and inversions) (Pendleton et al. 2015) in Supplementary 

Tables S2, S3, S6. 

 

 Additionally, we utilized 3 deletion and duplication benchmark sets for HX1: 

DGV-GS (as above), Shi PacBio, and Shi IrysChip (Shi et al. 2016) in Supplementary 

Tables S2–S4. For NA12878 DGV-GS benchmarks, all deletions and duplications with 

the “NA12878” tag were extracted from the DGV-GS. The HX1 DGV-GS benchmarks 

were created by extracting deletions and duplications with the “Asian” tag. To obtain a 

benchmark set of common Asian variants, deletions and duplications with fewer than 200 

“Asian”-tagged samples were filtered. 

 To limit potential biases, we selected benchmarks covering a range of 

technologies, including Illumina, PacBio, and IrysChip, and inclusive of multiple variant 

detection algorithms (Illumina platinum pedigree-validated, DGV-GS, Mills-GS, and 

GIAB). Indels were defined as deletions and insertions <50 bases, whereas SVs were ≥50 

bases. To identify true positives, indel benchmarking required variant call breakpoints 

within 2 bases of the benchmark. Insertion SV calls within 10 bases of the benchmark 

were considered true. All other SV benchmarking required a 50% (10% for IrysChip due 

to low resolution) reciprocal overlap of a variant call and the benchmark. Some false 

positives may potentially be true positives not represented in the benchmark. To limit 
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false positives due to unrepresented calls, for each SV type (excluding insertions where 

the length is often unknown), we ignored SV calls smaller or larger than a particular 

benchmark's shortest or longest SV, respectively. 

 NA12878 and HX1 Illumina platinum fasta files were mapped to human 

references hg19 and GRCh38, respectively, using BWA mem (Li et al. 2009), version 

0.7.15, with the -M parameter to mark shorter read splits as secondary. Duplicate filtering 

comparisons were performed using default parameters for SAMtools (Li et al. 2009), 

version 1.3.1, and Sambamba (Tarasov et al. 2015), version 0.6.4. GATK version 3.6.0 

HaplotypeCaller (GATK, RRID:SCR_001876) (Depristo et al. 2011), SAMtools 

(SAMTOOLS, RRID:SCR_002105) (Li etl al. 2009), LUMPY (LUMPY, 

RRID:SCR_003253; version 0.2.11) (Layer et al. 2014), and Manta (version 1.0.1) (Chen 

et al. 2016) were run with default parameters. 

 

Conclusion 

 Our extensive performance analysis indicates that GROM achieves superior 

variant detection and is significantly faster than current state-of-the-art methods by 

incorporating comprehensive variant detection (SNV, indel, SV, CNV), duplicate 

filtering, and multi-threading in 1 algorithm. GROM’s superior variant detection makes it 

valuable for WGS analysis projects of all sizes, and its “lightning”-fast speed is 

especially critical for keeping pace with increasingly higher sequencing throughput and 

larger data projects. 
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Availability of data and materials 

 NA12878 raw short-read Illumina platinum WGS data, as well as pedigree-

validated SNVs and indels, supporting the results in this study are available from the 

Database of Genotypes and Phenotypes under accession number phs001224.v1.p1 

(National Center for Biotechnology Information, 2017). HX1 raw short-read Illumina 

WGS data supporting the results in this study are available from the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA), study PRJNA301527 

(National Center for Biotechnology Information, 2017). DGV-GS-validated SVs 

supporting the results in this study are available from the Database of Genomic Variants 

website (Database of Genomic Variants, 2017) . Mills-GS-validated SVs supporting the 

results in this study are available as Supplementary Table S5 in the associated paper 

(Mills et al. 2011). GIAB validation data supporting the results in this study are available 

from NCBI at separate locations for deletions (v. 3.3.1) (Zook et al. 2016) and insertions 

(Wang et al. 2017). Pendleton PacBio–validated deletions and inversions supporting the 

results in this study are available as Supplementary Tables S5 and S6, respectively, in the 

associated paper (Pendleton et al. 2015). Shi PacBio– and Shi IrysChip–validated SVs 

supporting the results in this study are available from the corresponding author’s website 

(Wang et al. 2017). Human reference genomes hg19 and GRCh38 are available from the 

Broad Institute (Broad Institute, 2017) and UCSC (UCSC, 2017), respectively. Snapshots 

of the GROM project code are available via the Open Science Framework (Smith et al. 

2017) and the GigaScience database, GigaDB (Smith et al. 2017). 
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Chapter 4: Evolutionary adaptation revealed by comparative genome analysis of 

woolly mammoths and elephants 

Smith, Sean D., Joseph K. Kawash, Spyros Karaiskos, Ian Biluck, and Andrey Grigoriev. 

"Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths 

and elephants." DNA Research (2017): dsx007. 

 

 Comparative genomics studies typically limit their focus to single nucleotide 

variants (SNVs) and that was the case for previous comparisons of woolly mammoth 

genomes. However, structural variants (SVs) account for more differences between 

human genomes (Baker, 2012) in terms of the number of nucleotides and potentially have 

a greater impact on phenotypic variation (Korbel et al., 2007). Using GROM, we 

extended the analysis identifying SVs and indels, as well as SNVs.   This led to the 

discovery of multiple mammoth-specific deletions and duplications affecting exons or 

even complete genes that were not previously reported. We found many unique genetic 

changes in woolly mammoths that suggest adaptations to life in harsh Arctic conditions, 

including variants in cold adaptation, circadian rhythms, and anatomy and physiology. 

 

 My contributions to this paper includes the code to perform comparative analysis 

between woolly mammoth and Asian elephant genomes as well as code to identify 

variants that are present in the exon regions of genes. In addition, I identified variants in 

genes for several sections of the paper, including cold adaptation (APOB, TRPM8, and 

GPR83), circadian rhythms (ARNTL, CRTC1, KDM5A, and KMT2A), and physical 
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differences (ZDHHC23 and CCDC94). I also wrote the sections of the paper related to 

these topics, as well as assisted in the writing of the paper in its entirety.  
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Evolutionary adaptation revealed by comparative genome analysis of 

woolly mammoths and elephants 

 

Introduction 

 The woolly mammoth (Mammuthus primigenius) was the last surviving species 

of the mammuthus genus with the last known population on Wrangel Island about 4,000 

years ago (Palkopoulou et al. 2015, Vartanyan et al. 2008). Woolly mammoth is one of 

the most studied extinct species, although much is still unknown, e.g. why they became 

extinct, how they evolved, and how they differ from elephants, their closest living 

relatives. Perhaps the most common theories for the cause of their extinction are a 

warming climate, hunting by humans, or both. Woolly mammoths lived in a cold, dry 

steppe-tundra where average winter temperatures ranged from -30°C to -50°C, much 

different from the tropical and subtropical environments of modern African and Asian 

elephants (MacDonald et al. 2012). Mammoths had many anatomical adaptations 

minimizing heat loss in its harsh environment, such as thick fur, small ears, and small 

tails (compared with modern elephants), and a thick layer of fat under the skin to reduce 

heat loss and possibly serve as a heat source or fat reservoir for the winter(Fisher et al. 

2012, Hill et al. 2007, Repin et al. 2004). Mitochondrial analysis has suggested there 

were three clades (I–III) with clade I surviving ∼30,000 years after the extinction of 

clades II and III despite sharing overlapping territory with clade II in Northeastern 

Siberia and possibly clade III in Europe (Palkopoulou et al. 2013). 

 In 2008, the first whole genome sequencing (WGS) (<1×) of a woolly mammoth 

was published (Miller et al. 2008). However, only recently have high coverage WGS 



56 

 

 

 

datasets become available from two studies that identified SNVs unique to woolly 

mammoths to infer the genetic basis of adaptations to the Arctic (Lynch et al. 2015) and 

to analyse species diversity prior to extinction (Palkopoulou et al. 2015). Our combined 

dataset included mammoths M4 and M25 from the Lynch study, and mammoths Wrangel 

and Oimyakon from the Palkopoulou study. We used the combined dataset, as well as 

four Asian elephant WGS datasets, (Lynch et al. 2015, Dastjerdi et al 2014) to analyse 

structural variants (SVs), copy number variants (CNVs) and indels, as well as SNVs, to 

further investigate genetic adaptations and diversity. Combining datasets also enabled a 

comparison of clades, as each study had one clade I (M4, Wrangel) and one clade II 

(M25, Oimyakon) mammoth. All mammoths remains originated from northern Siberia 

(M4, ∼20,000 years ago; M25, ∼60,000 years ago; Oimyakon, ∼44,800 years ago) or 

Wrangel Island, off the coast of northern Siberia (Wrangel, ∼4,300 years ago), although 

the exact location is unknown for M4 (Palkopoulou et al. 2017, Lynch et al. 2015, Gilbert 

et al. 2008). 

 In this paper, we analysed the patterns of variation across the genomes of these 

four mammoths and compared them to the available elephant genomes. Using algorithms 

from our GROM (Genome Rearrangement Omni-Mapper) suite; GROM-RD (Smith et al. 

2015) and GROM (Smith et al. 2017), we systematically identified variants, ranging from 

single nucleotide changes and short indels to deletions and amplifications of regions 

encompassing gene fragments and complete genes. These variants reveal the signs of 

evolutionary adaptation of mammoths to the harsh and cold environment. We identified 

changes in many parts of the genome, including genes associated with metabolism, 

circadian rhythms, immunity and skeletal/body shape. Taken together, they describe a 
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rich evolutionary history of the woolly mammoth species and may shed light on causes of 

their extinction. 

 

Materials and methods 

 

WGS data 

 WGS fasta files for woolly mammoths M4 and M25 and Asian Elephants Asha, 

Parvathy, and Uno were downloaded from the Sequence Read Archive (SRA), 

http://www.ncbi.nlm.nih.gov/sra (9 February 2017, date last accessed) (project accession 

number: PRJNA281811). WGS fasta files for the Wrangel and Oimyakon mammoths 

were downloaded from the European Nucleotide Archive (ENA), 

http://www.ebi.ac.uk/ena (9 February 2017, date last accessed) (accession number: 

ERP008929). WGS fasta files for the Asian elephant Emelia were downloaded from 

ENA (accession: ERP004241). WGS fasta files were mapped to the African reference 

genome loxAfr3, downloaded from UCSC (https://genome.ucsc.edu, 

http://hgdownload.soe.ucsc.edu/goldenPath/loxAfr3/bigZips/ (9 February 2017, date last 

accessed)), using BWA MEM, (Li et al. 2009) version 0.7.4, with default parameters. 

Duplicates were removed using SAMtools, (Li et al. 2009) version 0.1.19. 

 

Variant detection and analysis 

 We limited analysis to supercontigs/scaffolds ≥1,000,000 bases. Visual inspection 

of the mapped files using IGV (Robinson et al. 2011) indicated an increase in low 

mapping quality reads and highly variable coverages for smaller (<1,000,000) 
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supercontigs. For GROM-RD, (Smith et al. 2015) this threshold was set to 5,000,000 

bases to provide adequate sampling and increase specificity when utilizing read depth 

methods. GROM-RD identifies regions of abnormal coverage that are unlikely to occur 

by chance based on analysis of read depth variance with nucleotide composition and 

mapping quality across the genome. This reduces false positives in potentially biased, 

highly variable ancient DNA datasets. GROM-RD measures read-depth variance for 

various window sizes (100–10,000 bases). A benefit of this approach is limiting spikes in 

false positives with decreasing CNV length. CNVs were detected using GROM-RD with 

default parameters. Homozygous deletions (GROM-RD copy number estimate <0.5) and 

duplications (copy number estimate >3.5) found in all woolly mammoths (80% reciprocal 

CNV overlap) were analysed using GROM-RD and filtered if the GROM-RD copy 

number estimate was <1.5 (deletions) or >2.5 (duplications) in any of the Asian 

elephants. Indels and SNVs were detected using our variant calling framework GROM 

(Smith et al. 2017). Additionally, GROM-RD calls were filtered if CNVnator (run with 

default parameters) detected the CNV in any Asian elephant (20% reciprocal overlap) or 

did not detect the CNV in all mammoths (50% reciprocal overlap). A simplified 

SNV/indel caller module in GROM was implemented to replicate, with a few differences, 

the SNV detection method used in a previous mammoth study (Lynch et al. 2015). Indels 

and SNVs predicted as being heterozygous (<80%, indels, or <90%, SNVs, of 

overlapping reads contained the variant) or supported by <4 reads with mapping 

quality ≥ 20 in any of the mammoths, or with at least one variant-supporting read (no 

mapping quality threshold) in any of the Asian elephants were filtered. We also required 

each Asian elephant to have at least 4× coverage at the indel or SNV site predicted in 
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mammoth. These requirements were reciprocated when calling elephant-specific variants. 

Fixed, derived CNVs, indels, and SNVs were then uploaded to VEP (Variant Effect 

Predictor, www.ensembl.org) to identify variants potentially affecting genes. GO term 

and KO phenotypes obtained from the Gene Ontology Consortium (geneontology.org), 

and MGI (www.informatics.jax.org). GO term, KEGG pathway, and KO phenotype 

enrichment for woolly mammoth fixed, derived amino acid substitutions was analysed 

using PANTHER (http://pantherdb.org/ (9 February 2017, date last accessed)) (Thomas 

et al. 2003), WebGestalt (http://www.webgestalt.org/ (9 February 2017, date last 

accessed)) (Zhang et al. 2005), and Vlad (http://proto.informatics.jax.org/prototypes/vlad/ 

(9 February 2017, date last accessed)), respectively. Using a set of SNVs (four variant-

supporting reads, mapping quality ≥20, allele frequency ≥0.4) found in at least one 

mammoth or Asian elephant, FST estimates were calculated, as described in a prior 

publication (Weir et al. 1984), with VCFtools (Danecek et al. 2011), version 0.1.12, using 

the –weir-fst-pop function with a 100,000 base window size (–fst-window-size) and 

10,000 base sliding window (–fst-window-step). Protein multiple sequence alignments 

produced using T-Coffee (Notredame et al. 2000) for protein sequences shorter than the 

recommend limit of 2,500 amino acids or MUSCLE (Edgar 2004) for longer protein 

sequences. 

 

CNVs 

 As noted in Lynch et al. (2015) mammoths and Asian elephants diverged after 

branching from African elephants (reference genome), thus fixed CNVs in mammoths are 

considered derived. Using an intersection of GROM-RD (Smith et al. 2015) and 
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CNVnator (Abyzov et al. 2011) calls, we found 56 fixed, derived mammoth CNVs, 

including 55 deletions and one amplification. According to VEP (ensembl.org), three 

deletions with putative loss of function and one amplification with potential gain of 

function occurred in the exons of protein-coding genes, and two deletions affected RNA 

genes (Table 7).  

 

 

 
Table 7 

Fixed, derived woolly mammoth CNVs 

 

 Perhaps the most famous CNV in the elephant genome is the TP53 gene 

(Abegglen et al. 2015). However, analysis with GROM-RD and visual inspection with 

IGV did not reveal any copy number change relative to elephants in the corresponding 

genome regions of woolly mammoths. 

 One deletion occurred in an exon of CD44. The CD44 gene is expressed in 

multiple tissues including the central nervous system, lung, epidermis, liver, and pancreas 

(Sneath et al. 1998). Its product is involved in multiple functions, including cellular 

adhesion, hyaluronate degradation, lymphocyte activation, lymph node homing, 

angiogenesis, and the release of cytokines (Sneath et al. 1998). CD44 contributes to the 

maintenance of stem cell features, such as apoptosis resistance (Zoller 2015). 

Intriguingly, the deleted exon is the first of the ten so-called variable exons of CD44, 
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whose splicing and histone mark deposition has been shown to be modulated by 

Argonaute proteins and strongly affected in Ago2-/- mouse embryonic fibroblasts 

(Ameyar-Zazoua et al. 2012), thus its loss may affect the functionality and tissue 

distribution of CD44 isoforms. Among a multitude of CD44 GO terms and knockout 

(KO) mammalian phenotypes listed in Supplementary Table S1, there are two phenotypes 

of special interest to woolly mammoths, increased diameter of the tibia and short tibia. 

Mammoth limb bones were much greater in diameter than the limb bones of modern day 

elephants (Haynes 1993). Additionally, the hind leg to fore leg ratio was smaller in 

mammoths compared with elephants (Haynes 1993), with their body size and stature 

decreasing towards the end of the last glacial advance in the Pleistocene (Haynes 1993). 

On the basis of a small sample, the tibia to femur ratio of mammoths (0.57 ± 0.04, n = 5) 

was less than the tibia to femur ratio of African elephants (0.60 ± 0.02, n = 5) (Brennan-

Laun et al 2014).  

 One may argue that deletions detected with an alignment of reads against an 

evolutionary distant reference may represent false positives arising due to rapid evolution 

and low sequence similarity in the respective regions. Even if that was true, this argument 

does not change the relevance of our logic on the possible effects on the exon of CD44, 

since any significant sequence alteration would also modify the function of the region in 

woolly mammoths, compared with African and Asian elephants. Further, the large sizes 

of the detected deletions (Table 7) suggest extreme changes, not seen in other genes. 

Other deletions were observed outside of the coding regions and are thus also outside the 

scope of the study and do not affect our conclusions. 
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 We detected a fixed, derived woolly mammoth amplification encompassing the 

RNase L gene (scaffold_16:17939571-17966869, forward strand), including ∼20,000 

bases upstream. GROM-RD predicted five (Wrangel, Oimyakon), six (M25), or nine 

(M4) copies of RNase L (6.6 copies, stdev 0.8) in the mammoths. Figure 14 shows 

normalized coverages and the location of RNase L within the CNV. RNase L has several 

critical roles including antiviral response, adipocyte differentiation, tumorigenesis, cell 

proliferation, innate immune response, and apoptosis (Brennan-Laun et al. 2014). 

Antiviral response involves endonucleolytic cleavage of single-stranded foreign RNAs, 

ribosomal RNAs, and mRNAs by activated RNase L (Brennan-Laun et al. 2014, Fabre et 

al 2012, Salehzada et al. 2009). 

 

Figure 14.  

RNase L amplification unique to woolly mammoths. Additional 10,000 bases shown 

upstream and downstream of duplication. Read coverage normalized (y axis 

maximum = 6× average genome read depth). Top four tracks show mammoths (Wrangel, 

Oimyakon, M4, M25). Bottom four tracks show Asian elephants (Emelia, Asha, 

Parvathy, Uno). Box indicates region containing RNase L exons. 

 

 Additionally, we identified nine derived SNVs predicted to occur in 3–9 of the 

RNase L copies and with no evidence in any of the Asian elephant samples. Six of these 

were non-synonymous (Table 8) and may reflect adaptation in woolly mammoths. We 

used T-Coffee (Notredame et al. 2000) to align the RNase L protein sequence for 
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mammoth with the protein sequence of 16 other species, including human, mouse, and 

cold-adapted species polar bear, alpine marmot, and walrus (Supplementary Fig. S1). A 

more concise alignment of human and African elephant RNase L protein sequence is 

shown in Fig. 15. Substitution S34I is adjacent to residue G35 (Supplementary Fig. S1), 

which is involved in 2–5A interaction (Huang et al. 2014), needed for dimerization of 

RNase L and activation of its antiviral activity. V34 was most prevalent with S34 

occurring in African and Asian elephants, T34 in dolphin, and I34 in mammoth, Alpine 

marmot, and platypus. T322A is close to several residues involved in self-domain 

dimerization (Y310, S312, R316, and L319)(Huang et al. 2014) and 2-5A sensing (Y308, 

Y310) (Han et al. 2014). V322 was predominant with I322 occurring in Anole lizard, 

T322 in African and Asian elephants, and A322 in mammoth, cow, sheep, armadillo, 

dolphin, and platypus. Of interest, woolly mammoth substitution R675K was identified as 

a ribonuclease active site in pigs by Huang et al. (2014), who has shown that mutant 

pK672A (mammoth 675) results in a defective RNase L. In this position, K occurs in all 

of the aligned species except African and Asian elephants, which have R, and in a 

previous alignment by Huang, R occurs in chicken (Huang et al. 2014). Both R and K 

occur in the mammoth. Together with the significant amplification of the locus in the 

mammoth genomes, these variants likely reflect adaptation processes related to RNase L 

functionality and specificity.  
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Table 8. 

Amino acid variants in mammoth RNase L 
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Figure 15.  

African elephant RNase L alignment to human RNase L. Wolly mammoth residue in 

bold text are shown next to the corresponding elephant and human residues (boxed). 

Residues of interest near or coinciding with woolly mammoth amino acid substitutions 

marked above with the following signs: $ (2-5A interaction site), # (self-domain 

dimerization), or * (ribonuclease active site). RNases L cleavage site H683 (hH672) is 

marked with a plus sign (+). 

 

 RNase L is able to selectively target specific cellular RNA (Brennan-Laun et al. 

2014) and is involved in antiviral activity against numerous virus families (Ezelle et al. 
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2016). RNase L activation in virus-infected cells was shown to trigger the NLRP3 

inflammasome (Chakrabarti et al. 2015), the latter being implicated in the host response 

to many different types of RNA and DNA viruses, including herpesviridae (Nour et al. 

2011). Notably, elephant endotheliotropic herpesviruses (EEHV) can cause a highly fatal 

hemorrhagic disease when transmitted to young Asian elephants: two available genomes 

of Asian elephants were obtained postmortem from the animals affected by this disease 

(Dastjerdi et al. 2014). The EEHV genotypes found in African elephants appear to be 

generally less virulent (Richman et al. 2014). 

 Arctic conditions may be of additional significance with regard to the antiviral 

action of this protein. Temperature-dependent transmission of rotavirus (family 

Reoviridae) has been shown in humans, with a 13 percent decrease in infections per 1°C 

increase in temperature above 5°C (Atchison et al. 2010). In river water in Japan, the 

peak reovirus level was found in winter during the cold weather months (Tani et al. 

1995). Influenza virus was found to favor cold and dry conditions for transmission in 

guinea pigs (Lowen et al. 2007). Macaques infected with SRV-4, family Retroviridae, 

had less SRV-4 antibodies in cold weather (Zao et al. 2011). Mammoths lived in cold dry 

steppe tundra, and likely in close matriarch-led groups similar to modern elephants, 

possibly increasing pressure for the species to evolve defenses against viruses adapted to 

their environment. Not surprisingly, RNase L KO mammalian phenotypes included 

increased susceptibility to viral infection, as well as abnormal thymus morphology, 

enlarged thymus, and thymus hyperplasia (Supplementary Table S1). 

 Given the close arrangement of the SNVs near the ribonuclease active site, we 

further analysed their co-occurrence in the individual reads (Fig. 16). For all mammoths, 
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non-synonymous A allele (R675K, aGg/aAg, scaffold 16:17,965,935) always co-occurred 

with synonymous A allele (H683, scaffold_16:17,965,951) for reads containing both 

nucleotide locations (Fig. 16). The patterns of co-occurrence of the non-synonymous C 

allele (K688N, scaffold_16:17,965,975) with the A alleles at 17,965,935 and 17,965,951 

appeared to be linked with the clade structure. The nine RNase L copies of M4 showed 

almost equal occurrence of GGG (same as the African elephant reference) or AAC (all 

three nucleotides substituted compared with the reference) haplotypes at these three 

positions. Another clade I member, Wrangel, showed prevalence of AAC and GGC in the 

reads containing the three SNV locations, while GGC haplotype was strongly preferred in 

the clade II genomes.  
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Figure 16.  

Occurrences of woolly mammoth SNV combinations in reads for RNase L domain 

variants. Read counts for Wrangel, M4, Oimyakon, and M25 are left of reads. Read 

counts in parentheses indicate addition of inferred counts based on the observation that 

SNVs for residues 675 and 680 always co-occur. Most frequent haplotypes highlighted in 

gray. Residue number above reads. SNV combinations with no occurrences are not 

shown. 

 

 

 

SNVs 

 We found 836,806 (606,176 intergenic; 224,483 intronic; 6,147 exonic) fixed, 

derived woolly mammoth SNVs, including 2,283 fixed, derived amino acid substitutions 

in 1,888 protein-coding genes, four protein-coding genes with a start loss and 18 protein-

coding genes with pre-mature stop codons (Supplementary Material S1). We note that 

Lynch et al. (2015) has used similar criteria (see Materials and methods) to find a higher 

total of fixed, derived woolly mammoth SNVs (1.4 million compared with 0.8 million). 
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This was expected considering our study had more samples (four woolly mammoths, four 

Asian elephants) compared with the Lynch study (two woolly mammoths, three Asian 

elephants), likely decreasing false positives. However, Lynch et al. had fewer fixed, 

derived woolly mammoth amino acid substitutions (2,020 compared with 2,283). Several 

factors may have contributed to the discrepancy. For instance, we did not hard-mask 

potential cytosine deamination sites or filter short reads, and instead used a higher 

mapping quality threshold (>20) compared with Lynch et al.’s threshold (>0). Ancient 

DNA is known to have miscodings of C to T and G to A (Briggs et al. 2007). However, 

Briggs et al. (2007) has suggested that with sufficient coverage nucleotide 

misincorporations should not prevent a reliable Neandertal or mammoth genome 

sequence from being determined. We reasoned that our potentially less stringent 

thresholds (to increase sensitivity) would be adequate considering we analysed four 

mammoth samples, each with ≥10× coverage, and filtered SNVs using four Asian 

elephants (see Supplementary Table S2 for coverages). We tested for ancient DNA biases 

by comparing fixed, non-synonymous variants in woolly mammoths (2,283), Asian 

elephants (2,634), and the Lynch study woolly mammoths (2,020). We found that rates 

(as a fraction of all substitutions) for fixed, non-synonymous variants in the mammoths 

were similar for substitutions corresponding to the most common potential miscodings, 

C → T (0.216, present study; 0.211, Lynch study) and G → A (0.227, present study; 

0.209, Lynch study) (Table 9), and thus our variant collection was unlikely to have been 

biased by these miscodings compared with the variants in the Lynch study. The rates in 

mammoths were only moderately higher than those in Asian elephants (Table 9). 
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Table 9. 

Nucleotide substitution comparisons 

 

 In agreement with an earlier analysis of KEGG pathways and KO phenotypes 

(Lynch et al. 2015), we analysed fixed, derived woolly mammoth amino acid 

substitutions and found amongst 58 enriched KEGG pathways complement and 

coagulation cascades (P = 5.5 × 10−9, adjP = 4.2 × 10−7), fat digestion and absorption 

(P = 0.0038, adjP = 0.021), and circadian rhythm – mammal (P = 0.034, adjP = 0.092) 

enrichment, and our GO term analysis revealed 284 enrichments including lipid 

metabolic process (P = 9.5 × 10−4) and homeostatic process (P = 3.2 × 10−4) 

(Supplementary Material S1). Additionally, we were interested in identifying genes under 

positive selection. Given our limited sample population, we identified genes with 

maximum FST values (top 5%) (Zhou et al. 2016). We found 544 of 2,283 (24%) 

mammoth substitutions, affecting 446 of 1,888 (24%) protein-coding genes, were in the 

top 5% of FST values (Supplementary Material S1). Rather than repeat previous 

observations by Lynch et al. (which we also detected), we report a few interesting 

findings from our analysis, expanding the list of likely selected variants fixed across the 

mammoth genomes. 
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 We found three fixed, derived non-synonymous woolly mammoth variants 

(R381K, A424V, I2640V) in APOB (0.99 FST rank). Multiple alignment, using 

MUSCLE (Edger 2004), of the APOB protein sequence for mammoth and 15 other 

species indicated the V substitution at mammoth residue position 424 was shared with the 

cold-adapted walrus, the cold-blooded Anole lizard, and platypus (Supplementary Fig. 

S2). Residue I was pre-dominant at mammoth residue position 2,640 except for a V 

substitution in mammoth, the cold-adapted Alpine marmot, and the cold-blooded Anole 

lizard. APOB codes an apolipoprotein for chylomicrons and LDL particles. High levels 

of the APOB protein have been linked to atherosclerotic plaques (McQueen et al. 2008). 

In a comparison of polar bears and brown bears, a recent study (Liu et al. 2014) noted 

nine non-synonymous APOB mutations in polar bears and suggested that a carnivorous 

diet of pre-dominantly fatty acids induced adaptive changes in APOB. Mammoths likely 

had a plant-based diet similar to modern elephants (Schwartz-Narbonne et al. 2015). 

Lower ApoB/ApoA1 plasma levels have been noted in cold-adapted human swimmers 

(Lensa et al. 2015). In carp, cold adaptation included up-regulation of six apolipoprotein 

genes including APOB (Gracey et al. 2004). We also found three non-synonymous 

variants in TRPM8, a protein that was briefly noted in Lynch et al. and is responsible for 

sensitivity to noxious cold. TRPM8 transmembrane domain S2 influences menthol 

binding and mutation Y745H (mouse) results in a loss of sensitivity to menthol (Montell 

2006). In mammoth, mutations were R368H (h364), G710S (h706), and C711S (h707). 

On the basis of multiple protein sequence alignment, using T-Coffee, with 16 other 

organisms, mammoth was the only organism with a substitution of the consensus amino 
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acid at these locations (Supplementary Fig. S3). G710S and C711S occur in S1 (residues 

697–716). 

 

 

Figure 17. Variation in seasonal light hours at latitudes woolly mammoth samples 

were located.  

 

 Modifications to genes responsible for circadian rhythms have also been 

identified uniquely in the woolly mammoth. As previously reported by Lynch et al. 

(2015), woolly mammoth had a fixed, non-synonymous variant in PER2. We also found 

previously unreported fixed, non-synonymous woolly mammoth variants in several 

important clock genes: ARNTL (BMAL1) of 0.25 FST rank, CRTC1 (1.0 FST rank), 
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KDM5A (0.86 FST rank), and KMT2A (1.0 FST rank). The ARNTL gene is of particular 

importance as a core circadian oscillator in mammals. ARNTL controls not only the 

innate 24-h cycle of the organism, but also the transcription of several circadian 

dependent genes. BMAL1 KO mice have been shown to lose core circadian control, and 

therefore become arrhythmic (Lowrey et al. 2011). Although loss of control may not be 

beneficial, a weakening of this core oscillator could potentially aid the mammoth in 

adjusting its behaviour and compensating for the large differences of daylight 

experienced in summer compared with winter (Fig 17.). Another important molecular 

component of the circadian clock, CRTC1, has a substitution identified in woolly 

mammoths. This protein is an important member of the signaling pathway for light 

response and setting the circadian clock of an organism (Jagannath et al. 2013). 

Alterations of this gene can possibly help to force the innate 24-h cycle of an organisms 

to adapt to the continually variable light–dark cycle of its environment (Jagannath et al. 

2014). This may have enabled the mammoth to more easily entrain to light and elicit a 

varied wake response throughout the changing seasons. KDM5A acts on the transcription 

of the BMAL1/CLOCK complex and works to dampen circadian oscillators (Katada et 

al. 2010). KMT2A also plays an essential role in altering the chromatin state of circadian 

controlled genes (Katada et al 2010). These adaptations are possibly due to the increased 

latitude that woolly mammoths inhabited, forcing a more flexible circadian clock as 

seasonal changes introduced an extremely varied cycle of light and darkness through the 

course of the year. Another highly mutated gene was NCKAP5 (0.98 FST rank). The 

function of NCKAP5 is unknown, but SNPs in NCKAP5 have been linked to 

hypersomnia (Khor et al. 2013). 
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 KEGG analysis indicated enrichment of ‘pathways in cancer’ (P = 9.6 × 10−5, 

adjP = 0.0021), which lead us to investigate several cancer-related genes that had multiple 

non-synonymous variants. BRCA1 (0.98 FST rank), BRCA2 (0.52 FST rank), and 

PARP14 (0.84 FST rank) had three, seven, and seven non-synonymous variants, 

respectively. Although BRCA1 and BRCA2 have vital functions, rapid evolution of 

BRCA1 and BRCA2 has been observed in mammals (Lou et al. 2014). Citing that ‘nearly 

all known cases of recurrent positive selection in primate genomes involve genes in one 

of three categories: (i) immunity, (ii) environmental perception (such as odorant and taste 

receptors), or (iii) sexual selection and mate choice’ (Lou et al. 2014,  Clark et al. 2003, 

Vallender et al. 2004), Lou et al. proposed that rapid BRCA1 and BRCA2 evolution is 

due to adaptation to viruses. A recent study hypothesized that PARP14 is involved in 

host–virus defense due to the gene’s strong positive selection in primates (Daugherty et 

al. 2014). This may also explain the high number of fixed, derived woolly mammoth non-

synonymous variants we found in PARP14, also involved in DNA repair. Although 

speculative, possible changes in the repair pathways in mammoth genomes in response to 

viruses might lend further support to our observation of active development of antiviral 

mechanisms via amplification of RNase L. 

 We also investigated the 18 genes with pre-mature stop codons, eight having gene 

symbols. Genes with pre-mature stop codons had mutations associated with ancient DNA 

bias (C → T, G → A) in 14 of 18 (78%) cases, considerably higher than the rate observed 

in Asian elephants (36%). However, one gene with a stop gain, ABCC11 (1.0 FST rank), 

had four non-synonymous variants, of which two occurred downstream of the stop gain, 

W703* (Table 10). ABCC11 has been shown to determine wet or dry ear wax (Yoshiura 
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et al. 2006) in human populations, with the ear wax single nucleotide polymorphism, 

rs17822931-G/A (G180R), shown to be absent in African populations and increase in 

prevalence with absolute latitude (Ohashi et al. 20111). Ohashi et al. also indicated that 

rs17822931-A resulted in loss of function. ABCC11 also has roles involving bile acids, 

conjugated steroids, and cyclic nucleotides (Chen et al. 2005, Guo et al. 2003). 

 

Table 10. Fixed, derived non-synonymous woolly mammoth variants in ABCC11 

 

 Mitochondrial phylogenetic analysis has suggested two primary clades of woolly 

mammoth, clades I and II, that are thought to have evolved in isolation on opposite sides 

of the Bering Strait (Palkopoulou et al. 2013). Our dataset contained two mammoths from 

each major clade, clade I (Wrangel and M4) and clade II (Oimyakon and M25). Clade II 

disappeared ∼30,000–40,000 years prior to the extinction of clade I. We investigated the 

differences between the genomes of clades I and II and found four fixed, derived clade I 

CNVs, three deletions and one duplication, none of which occurred in exonic regions. 

Similarly, there were two fixed, derived clade II CNVs, both duplications, but neither 

occurred in exons. We found 57 fixed, derived clade I indels (11 insertions and 46 

deletions), and 65 fixed, derived clade II indels (24 insertions and 41 deletions), none of 

which occurred in exons. For SNVs, we found 1,215 fixed, derived clade I variants, of 

which 279 and five occurred in introns and exons, respectively. Four were non-

synonymous variants in protein-coding genes (Table 11). Clade II had 584 fixed SNVs, 
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125 and three occurred in introns and exons, respectively. Two non-synonymous clade II 

variants occurred in protein-coding genes (Table 11).  

Table 11. Fixed, derived non-synonymous clade variants 

 

 Clade I genes with fixed, derived amino acid substitutions included ZDHHC23, 

SULT6B1, and SPTBN5. Of most interest, SULT6B1 is a sulfotransferase that utilizes 3-

phospho-5-adenylyl sulphate (PAPS) to catalyze the sulphate conjugation of thyroxine 

and is involved in the metabolism of thyroxine (Takahashi et al. 2009). Unlike other 

SULTs, SULT6B1 is uniquely specific for thyroxine, suggesting a role in regulation of 

thyroxine (Takahashi et al. 2009). Thyroxine (T4) is a thyroid hormone involved in 

growth, development, differentiation, and basal metabolic homeostasis, as well as the 

regulation of protein, fat, and carbohydrate metabolism (Bates et al. 1988, Boelen 2009, 

Pucci et al. 2000). Also, it is involved in facultative thermogenesis (heat production in 

response to cold or overeating) (Silva 2001). Administering thyroid hormones results in a 

severe drop in body temperature (Doyle et al. 2007). 

 Clade II had a fixed, derived amino acid substitution in CCDC94. CCDC94 

knockdown in zebrafish increased sensitivity of ionizing radiation-induced apoptosis and 

CCDC94 protects cells from ionizing radiation-induced apoptosis by repressing 

expression of p53 mRNA (Sorrells et al. 2012). 
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 GO terms and KO mammalian phenotypes for genes with fixed, derived non-

synonymous clade I and II variants are summarized in Supplementary Tables S3 and S4, 

respectively. Interestingly, fixed, derived non-synonymous clade I variant ZDHHC23 and 

clade II variant CCDC94 had KO phenotypes ‘increased caudal vertebrae number’ and 

‘decreased caudal vertebrae number’, respectively. At the time of writing, it was 

unknown to us if clade I and clade II differed in their number of tail bones. The caudal 

vertebrae number of woolly mammoths has been estimated to be 21 but has not been 

‘confidently established’ (Haynes 1993) as few complete skeletons have been found. 

Modern elephants have (Brennan-Laun et al. 2014, Fabre et al. 2012, Salehzada et al. 

2009, Huang et al. 2014, Han et al. 2014, Ezelle et al. 2016) 28-33 caudal bones (Haynes 

1993). Woolly mammoth shorter tail adaptation likely reduced heat loss and frostbite 

(Campbell et al. 2010). 

 

Indels 

 We found 20,576 fixed, derived woolly mammoth indels, 2,413 insertions and 

18,163 deletions. Of these, 597 insertion indels and 5,174 deletion indels overlapped 

introns. Exons were found to harbor four insertion and 16 deletion indels (Table 12). All 

fixed, derived woolly mammoth indels were <3 bases in length resulting in frameshifts 

and were classified as high impact variants by VEP (ensembl.org). A number of protein-

coding gene regions disrupted by an indel showed interesting functions, potentially 

relevant to woolly mammoth adaptation. Supplementary Table S5 lists GO terms and KO 

phenotypes for fixed, derived woolly mammoth indels affecting exonic regions. WWC1 

functions as a tumor suppressor regulating Hippo signaling (Xiao et al. 2011, Yu et al. 
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2010) and has GO term ‘negative regulation of organ growth’. In agreement with SNV 

analysis in the present study and by Lynch et al. (2015), we found an abundance of fixed, 

derived woolly mammoth variants in genes involved with lipid metabolism, possibly an 

adaptation for storing fat (e.g., ETNK1, lipid metabolic process).  

 

Table 12. Fixed, derived woolly mammoth indels occurring in exons 

 

 Of particular interest, GPR83 is a member of the G protein-coupled receptor 

subfamily (Oh et al. 2006) that includes several receptors linked to the regulation of 

metabolism.GPR83 is expressed in the hypothalamus and regulated by nutrient 

availability (Muller et al. 2013). GPR83 knock-out mice have shown a significant 

increase in food intake compared with wild-type mice but appeared to be protected from 

obesity and glucose intolerance and have normal insulin sensitivity, regardless of diet 

type (Muller et al. 2013). Another study found that GPR83 knockdown mice had 

increased levels of weight gain compared with wild-type mice, despite consuming an 

identical amount of food. Additionally, the knockdown of GPR38 promoted a decrease in 
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core body temperature during the daily activity period (Dubins et al. 2012). Increases in 

weight gain and lower core body temperatures have shown to be advantageous to mice 

when presented with lower ambient environmental temperatures. Mice that had 

developed these traits were shown to have a stable metabolic rate and more easily 

maintained core body temperatures in ambient cold temperatures compared with their 

wild-type counterparts (Kaplan et al. 1974). These studies suggest a possible role for 

modification or loss-of-function of GPR83 transcripts in the survival of mammoths 

considering the harsh environment of their habitat. 

 Another affected gene, RALGPS2, had one mammalian KO phenotype, 

‘increased rib number’. In mammals, the number of cervical vertebrae is highly 

conserved at seven. Approximately 90 percent of humans with a cervical rib die before 

reaching reproductive age (Galis et al. 2006), due to a strong association with multiple 

major congenital abnormalities. However, a recent study (Reumer et al. 2014) found 

abnormal cervical rib numbers in Late Pleistocene mammoths (33%), a rate 10 times 

higher than in extant elephants (3.6%), which appears consistent with our finding. The 

abnormal numbers were due to large cervical ribs on the seventh vertebra and mammoth 

cervical ribs were relatively large compared with cervical ribs in humans (Reumer et al. 

2014). 

 Several genes with fixed, derived woolly mammoth indels had mammalian KO 

phenotypes related to decreased body size: decreased birth body size (GPR83), decreased 

body length (ARHGEF28), and decreased body weight (NOL8), and as noted earlier, 

CD44 KO was linked to short tibias. Towards the end of their existence mammoths 

decreased in size (Haynes et al 1993). All samples in this study were near the end of the 
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mammoths existence, from 60,000 years ago or more recent. The cause of the extinction 

of woolly mammoths is unknown but is often regarded to be due to a warming climate 

and hunting by humans. We note that several genes with fixed, derived woolly mammoth 

indels had detrimental reproductive KO phenotypes, such as NOL8 (pre-weaning 

lethality), SBNO2 (pre-weaning lethality), and PAX2 (postnatal lethality and perinatal 

lethality). ARHGEF28 had the mammalian KO phenotype ‘reproductive system’. 

Additionally, we found that all genes with fixed, derived woolly mammoth indels (and 

with a gene symbol) occurred in one or more recent screens of gene essentiality (Table 

13).  

 

Table 13. Essentiality of genes fixed, derived woolly mammoth indels occuring in 

protein-coding regions.  
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Discussion 

 We performed systematic detection of variants, ranging from single nucleotide 

changes and short indels to deletions and amplifications of regions encompassing gene 

fragments and complete genes in four woolly mammoth genomes, comparing them to the 

elephant genomes. Extending the findings of previous SNV-only analyses, we found 

many unique woolly mammoth genetic variants involved in processes relevant to living 

in a harsh, cold environment, such as lipid metabolism and thermogenesis. We also 

observed changes in the core circadian oscillator genes that may have occurred as woolly 

mammoths adapted to the extremely varied cycle of light and darkness through the course 

of the year in the Arctic. Further, we noticed many immunity-related variants, most 

strikingly the copy number amplification of RNase L, important in antiviral response. 

Immunity tends to evolve rapidly and woolly mammoth genomes display signs of 

adaptation to the differences in environmental threats they faced compared with their 

tropical/subtropical elephant counterparts. The haplotype patterns in RNase L gene 

described above show similarities in clade II but differences in clade I, likely reflecting 

the history of development of multiple defense mechanisms, which appear to be absent 

(or reduced) in the modern elephants. Do multiple RNase L paralogs and multiple non-

synonymous changes in the repair pathways indicate that mammoths faced much deadlier 

viral threats? Were those threats further exacerbated by the cold Arctic conditions? Was 

this possibly linked to the ultimate demise of mammoths? 

 African elephants have been shown to have at least 20 copies of the tumor 

suppressor TP53, possibly explaining their low cancer mortality despite their large size 

and long life span (Abegglen et al. 2015). Such TP53 locus amplification is also present 
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in woolly mammoth genomes making RNase L their second largest CNV. It is worth 

noting that RNase L may also play a role in tumor suppression (Chakrabarti et al. 2011) 

and has been linked to prostate cancer (Meyer et al. 2010). 

 Recently, other avenues of analysis of ancient DNA have been proposed, related 

to CpG methylation and corresponding epigenetic patterns (as summarized in a recent 

review (Morozova et al. 2016)). Sampling based on methylated binding domains (MBD) 

has been performed in a number of organisms, including two other woolly mammoths 

(Seguin-Orlando et al. 2015). We analysed these MDB mammoth samples but found the 

genome coverage to be too fragmentary (as estimated by total SNP counts from all MDB- 

and MBD+ samples <0.3% of SNPs in a typical mammoth genome and by nearly 

negligible overlap with a union of SNPs from our study) to draw any meaningful 

conclusions. 

 And as for the differences between clades I and II, although only a few are 

reported here, some variants may represent continuing evolution of adaptations to a cold 

environment. Fixed non-synonymous variants in clade I (ZDHHC23) and clade II 

(CCDC94) have been shown to affect the number of tail bones and clade I non-

synonymous variant SULT6B1 plays a role in thyroid hormone regulation. Since clade II 

disappeared during the last glacial period prior to rising temperatures, these variants 

might have contributed to the longer survival of clade I mammoths. 

 Taken together, these observations point to a rich population history of these 

iconic animals extending beyond the description based on three clades. 
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Chapter 5: Insight into current genetic health of eastern gorilla species with 

structural variant analysis  

 

  Gorilla beringei are endangered great apes with dwindling populations, and 

drastically differing population sizes between two gorilla subspecies, G. b. beringei and 

G. b. graueri. Many studies of genetic health and diversity in endangered populations are 

limited to SNV analysis, such as the previous work in gorilla by Xue et al. (2015). We 

performed analysis of structural variation in these two gorilla subspecies to identify 

additional possible genetic causes of divergent physical characteristics and disease 

phenotypes. We found subspecies unique genetic evidence related to physical 

characteristics as well as disease and abnormality. 

 

 As a first author of this work, my contributions included the analysis of the gorilla 

genomes using GROM, with help from S. Smith, and the comparison of variants found 

between the subspecies. Additionally, I identified all variants within gene exons, 

performed the enrichment analysis utilizing g:Profiler, and frequency plotting within 

subspecies. All variant examples within the paper were identified by me and I wrote the 

paper in its entirety with help from S. Smith and A. Grigoriev who reviewed the data and 

edited the paper, and M. Ozbas who assisted writing the section on cardiovascular health.  
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5.1 Analysis of gorilla populations 

 

 We analyzed whole genome sequence (WGS) for 12 gorillas from two gorilla 

subspecies, eastern lowland gorilla, Gorilla graueri, and the mountain gorilla, Gorilla 

beringei.  Seven mountain gorillas and five eastern lowland gorillas were used in this 

study. Previous work by Xue et al. (2015) focused on the analysis of SNVs. However, 

structural variants (or SVs, which include copy number variants, insertions, and 

inversions) potentially account for more differences between genomes in terms of 

number of nucleotides, as shown in previous human studies (Baker 2012). Therefore we 

expanded the comparative analysis of these two gorilla populations to include such 

structural variation.  

 We classified mutations as either subspecies unique (no evidence of mutation in 

reciprocal species) or subspecies shared (mutation potentially occurred in any individual). 

This allowed us to further analyze mutation enrichments that could be part of the 

potential causation for the observed phenotypic differences between the subspecies. 

Furthermore, we checked for enrichment of mutations that crossed genes associated with 

disease phenotypes, an important concern for gorillas dealing with a high amount of 

population loss.  

 A comprehensive list of mutations (Table 14) was detected using GROM. We 

report on the significance of CNVs, SVs, and indels in the sampled gorilla populations as 

well as highlight several interesting findings of affected genes in exonic regions. This 

includes mutations that are prevalent in the sampled gorilla populations that have been 

previously unreported and associate with known expressed phenotypes.  
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Variant Eastern Lowland Mountain 

Deletion 31,316 (2,556) 29,015 (2,617) 

Duplication 4,882 (235) 4,969 (554) 

Inversion 6,088 (387) 5,874 (552) 

Indel (deletion) 584,952 (112,360) 614,611 (140,864) 

Indel (insertion) 506,954 (93,706) 527,239 (123,081) 

SNV 8,365,879 (706,399) 8,639,860 (875,385) 

 

Table 14. Total (average) number of each type of variant found in each gorilla 

subspecies. 

 

5.2 Structural variant enrichment 

 

 We found that the eastern gorilla populations have significant enrichment of SV-

affected genes that associate with digit development and formation, as well as the specific 

phenotype of syndactyly. Several reported cases have been made of gorillas being born 

with toe or finger syndactyly (Cooper et al. 2017, Fossey 1983, Mudakikwa et al. 2001, 

Routh et al. 1997). This adverse phenotype is often prevalent when population size is 

significantly limited and is indicative of increased inbreeding (Xue et al. 2015). 

Additionally, the mountain gorilla population shows specific enrichment for toe 

syndactyly. This mutation is mirrored by findings in the field, where mountain gorilla 

seems to be particularly susceptible to this abnormality (Cooper et al. 2017, Mudakikwa 

et al. 2001). In total we found within the sampled populations SVs crossing 48 different 

named genes that associate with the syndactyly phenotype.  
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 A significant amount of SV enrichment was found in genes associated with 

physical characteristics, many of which define the two subspecies. This includes 

subspecies specific mutations in genes that affect body structure such as stature, 

specifically a shorter thorax and heavier midsection, as well as clavicle development. 

These phenotype associations could potentially explain the difference in torso size and 

arm length between the subspecies. There were 21 different named genes that intersected 

a SV and associated with body structure development. There was also an enrichment of 

subspecies mutations for development of facial shape, with mutations crossing 45 

associated named genes. Some interesting developmental phenotypes that associated with 

these genes included the choanae, as well as a pronounced mandible and spacing of teeth. 

These facial enrichments reflect what has been described as key distinguishing traits that 

separate the closely related eastern lowland gorilla from the mountain gorilla (Schultz 

1934, Stanford 2001, Varsha 2010).  

 

5.3 Analysis of mutations within coding genes 

 

 A particularly interesting SV was a heterozygous deletion that crossed several 

exons in the gene KCNU1 (Figure 18). This gene is believed to be critically responsible 

for the development of healthy sperm and therefore male fertility. Studies in knockout 

mice have demonstrated that the gene KCNU1 is critical for male fertility (Santi et al. 

2010). This could be a potentially important connection to a previous study by Beck 

(1982) who surveyed several captive gorilla populations and found that only 21% of adult 

males were able to sire offspring. The heterozygous mutation in KCNU1 spans 7 exons. 
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It should also be noted that our algorithm, GROM, also found a homozygous deletion, 

within the larger heterozygous deletion.  

 

Figure 18. A visual representation of the deletion that is present within the KCNU1 

gene. 

 

 Additional indel mutations have been found in other genes associated with 

fertility. This includes a heterozygous indel in PLTP that is unique to mountain gorillas. 

A deficiency of the plasma phospholipid transfer protein in a mice study was associated 

with reduced sperm motility as well as impairment of fertility in males (Drounieaud et al. 

2006). This could contribute to the low motile or “poor quality” sperm in various studies 

of gorilla sperm evaluation (Seager et al. 1982, Schaeffer et al. 1992). In particular, it was 

reported that female mountain gorillas received less sperm during copulation (Watts 

1990). Similarly we found indels in ESR1 and NRIP1 of the eastern lowland population. 

Both ESR1 and NRIP1 have been indicated in a multi-locus analysis to contribute to 

human male infertility (Galan et al. 2005).  

 PLTP also plays an important role in transferring phospholipids and cholesterol 

from triglyceride-rich lipoproteins into high-density lipoprotein (HDL) (Jiang et al. 

1999). Mutations in PLTP are linked to an increased risk of high HDL cholesterol and a 

higher risk for cardiac diseases and atherosclerosis (Vergeer et al. 2010, Jiang et al. 

2012). Studies with PLTP knockout mice characterized low high-density levels causing 

less absorbance of cholesterol (Liu et al. 2007, Jiang et al. 2012). Several unique 
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mutations were identified in the ABC transporter for both gorilla populations, specifically 

ABCG1, ABCA5, and ABCA12. All three genes play critical roles in cholesterol 

regulation, accumulation, and efflux (Ye et al. 2010, Fu et al. 2013, Yvan-Charvet et al. 

2010). While ABCA12, ABCG1 and ABCA1 deficiencies correlate to the development 

of atherosclerosis (Yvan-Charvet et al. 2007, Fu et al. 2013). 

 Mountain gorillas in captivity were found to have a lower prevalence of heart 

disease than eastern lowland gorilla (Cooper et al., 2017). A cholesterol concentration 

survey by Schmidt et al. (2006) depicted non-significantly varying cholesterol levels 

between samples from free-ranging eastern gorillas and free-ranging western lowland 

gorillas. Even with near equal levels of cholesterol only about 3% of mountain gorilla 

deaths were cardiovascular disease-related while eastern lowland gorillas have a higher 

death prevalence along with higher documented incidences of myocardial fibrosis and 

arteriosclerosis than in an isolated eastern gorilla population (Cooper et al. 2017).  

 

Figure 19. Sub-species specific indels related to vision disease phenotypes. 
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 A subspecies specific indel of particular interest was identified in the coding 

region of P3H2 (Fig. 19), causing a frameshift mutation in a gene associated with cataract 

formation. This indel is specific to the mountain gorilla population. There have been 

reports of gorillas in captivity developing cataracts as juveniles or loss of vision at a 

younger age than expected. This early cataract formation is believed to be due to a 

genetic predisposition as both gorillas had the same father (de Faber et al. 2004). 

Additional indels were found in MERTK (Fig. 19), which also associates with vision 

degradation due to cataracts. 

 

5.4 Mutation frequency in gorilla populations 

 

 An important characteristic present in declining populations is the decrease of 

genetic diversity and therefore increased frequency of mutations shared within the 

population. We report the number of unique and overlapping copy number and indel 

mutations in each of the populations studied here. Due to the sample sizes of eastern 

lowland gorilla and mountain gorilla being unequal, we downsampled the mountain 

gorilla population to five individuals through all possible iterations for this comparison. 
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Figure 20. The frequency of duplications, deletions and indels that cross genes in the 

sampled gorilla populations. Bars represent standard error of all iterations of down 

sampling to equal population sizes. X-axis is the number of individuals sharing a 

mutation. Y-axis is the count of mutations. A) Deletions and duplications that cross gene 

exons. B) Indel deletion and insertions within exons. 

 

 We found that the number of unique deletions and duplications present in the 

exons of genes is equal in the two populations studied. However, there are significant 

increases in the number of shared mutations in the smaller mountain gorilla population 

compared to the larger eastern lowland population for both types of CNV (Figure 20). 

This is to be expected however as it has been previously reported that the mountain 

gorilla population has gone through a significant reduction and has a high rate of 

inbreeding (Xue et al. 2015). A similar pattern can be observed in indels as well, where 

the mountain gorilla population is harboring an increased number of deletion indel 

mutations across every category compared to that of the eastern lowland population. 

Nearly the same is true for indel insertions, except for mutations that are shared in every 

sampled individual.  
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 In our extensive SV analysis of genomes from the populations of eastern lowland 

gorillas and mountain gorillas, we found an enrichment of phenotypes that associate with 

identifiable subspecies-specific physical characteristics. Additionally, several individual 

SVs were identified that are reportedly linked with disease states that are oft reported in 

various gorilla populations. As evidenced in other populations in decline or of limited 

breeding diversity, we also found there are an increasing number of SVs and indels that 

are shared among the smaller mountain gorilla population compared to that of the larger 

eastern lowland gorilla. 
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Chapter 6: ARIADNA: Machine Learning Methods for Ancient DNA variant 

discovery 

 

 In the absence of validated datasets, ancient DNA (aDNA) studies often rely on 

standard methods of mutation calling, optimized for high-quality contemporary DNA not 

exposed to excessive contamination, time, or environmental damage. Despite showing 

extreme sensitivity to aDNA quality, these methods have been used in many published 

studies, sometimes with additions of arbitrary filters or modifications that attempt to 

overcome aDNA degradation and contamination problems. The general lack of best 

practices for aDNA mutation calling may lead to inaccurate results. To resolve these 

problems, we present ARIADNA (ARtificial Intelligence for Ancient DNA), a novel 

approach based on machine learning techniques, using specific aDNA characteristics as 

features to yield improved mutation calls. In our comparisons of variant callers across 

several ancient genomes ARIADNA consistently detected higher-quality genome variants 

with fast runtimes, while reducing the false positive rate compared to other approaches. 

  

As a first author of this work, I developed and designed the ARIADNA algorithm 

myself, with help from S. Smith in modifying GROM for this specific purpose. The 

application and testing of performance in woolly mammoth and Altai neandertal genomes 

was also performed by myself, with help from S. Smith and A. Grigoriev in experimental 

design and review. I also wrote the paper and generated all figures, with help in review 

and revisions from S. Smith and A. Grigoriev.  
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6.1 Variant discovery in ancient genomes 

 

 We developed methodology specifically designed to work with ancient DNA 

samples and provide more accurate and comprehensive mutation calls than non-adapted 

methods. This  method utilizes a machine learning algorithm for the classification of 

potential mutation sites from BAM files. The unique features of the corresponding sites 

are used by our algorithm to determine the difference between a mutation in aDNA 

compared to noise due to aDNA degradation or contamination. We provide a comparison 

of our ARIADNA results in woolly mammoth with the most commonly employed 

mutation caller, GATK, as well as the Altai Neanderthal genome with output from Prüfer 

et al. in 2014 and 2017. 

 

 

Table 15. Features provided by GROM at each potential mutation site for use in the ML 

classification algorithm.  
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6.2 Performance of ARIADNA in woolly mammoth 

 

 We used a modified version of GROM (Smith et al. 2017) to scan the mammoth 

genomes for any evidence of difference with African elephant the reference genome. This 

yielded an average of 140bp/PSNV locations, between 18 million and 23 million 

locations per genome. Of these, 15 million PSNVs shared some evidence in all woolly 

mammoth genomes, and 6.6 million sites were unique to single woolly mammoth 

genomes (the remaining PSNVs were shared between 2-3 mammoths and not used for 

training). Because validation of these unique mutation sites is difficult using NGS of 

aDNA, our approach of capturing all deviation from reference in PSNVs would intercept 

a greater proportion of noise for use as FP events in the training set. Although it is certain 

that some true mutations were picked up in the false positive set, we reasoned that the 

effects of this mis-classification of events are diminished due to the high frequency of 

true FP events. Additionally, the validation of TPs across four genomes should alleviate 

problems with mis-classification during application of the trained model. Mutation events 

shared between either two or three of the woolly mammoth samples are ignored for the 

purpose of training to eliminate excessive uncertainty.  
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Figure 21. The design of the machine learning method for training and 

implementation.  

 

 We utilized two woolly mammoth genomes from separate studies out of four total 

mammoths available, for the purpose of training our ML model, a specimen from 

Wrangel Island and an M4 sample (one of the two noisy and potentially contaminated 

candidates). Two million shared and one million unique PSNVs from each of the two 

woolly mammoths in our training set were selected at random for training the ML model, 

resulting in four million training sites total. For the test set we used the two additional 

woolly mammoths from each study, Oimyakon and M25 (The second noisy woolly 

mammoth sample), and examined the results from the first largest contig (contig_0). The 

data from these two genomes is not used in any way as part of the training set in order to 
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keep from over-fitting, or learning the unique characteristics of all available SNVs. In 

contig_0, the Oimyakon and M25 samples contained 799,849 and 960,816 PSNVs, 

respectively. Our algorithm utilized a feature set (Fig. 21) from the GROM genome 

scanner and the boosted regression tree ML module implemented using scikit learn 

(Pedregosa et al. 2011). This gave the ML portion of our algorithm 45 different features 

to utilize (Table 15). The parameters of the boosted regression trees algorithm in scikit 

learn were set to 200 trees in the construction of the classifier, and a learning rate of 0.01.  

 ARIADNA identified 607,354 and 599,847 mutations in contig_0 of the 

Oimyakon and M25 woolly mammoth samples respectively. Of these, 569,556 

(Oimyakon) and 587,621 (M25) identified mutation sites are shared between all four 

woolly mammoths. An additional 32,050 (Oimyakon) and 87,130 (M25) mutation sites 

identified are shared in at least one other woolly mammoth. Only a small number of 

mutations identified in either woolly mammoth sample are unique, 5,748 (Oimyakon) 

and 12,226 (M25), making up 1.0% (Oimyakon) and 2.0% (M25) of all mutation calls. 

 To compare our results with commonly used methods, we also employed the 

GATK HaplotypeCaller (DePristo et al. 2011) on all available woolly mammoth 

genomes. Comparatively, GATK made more calls than ARIADNA methods. In the 

Oimyakon sample GATK made 825,955 calls, a 36% increase over our ML methods. In 

the M25 sample, 1,214,870 calls are made by GATK, a 102% increase over our ML 

methods. However, the most drastic increase is in the number of calls made by GATK 

that had no evidence of a variant in any other woolly mammoth. For Oimyakon this was 

47,663 mutations and 280,049 mutations for M25. This comprised 5.8% and 23.1% of the 

calls GATK made in their respective genomes, a striking discrepancy, suggesting that 
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GATK over-predicted mutations at a very high rate in ancient genomes. This would be 

especially true in data sets with a high level of noise, and therefore a large number of 

false positive calls exist in methodology that utilizes this GATK algorithm. Identical 

over-prediction behavior of GATK has also been noted in a recent study on Neandertals 

by Prüfer et al. (2017), despite the comparatively high quality of NGS data in the 

Neandertal.  

 Another indication of over-prediction can be observed in the large difference in 

the counts of nucleotide change type between ARIADNA and GATK for the two 

mammoth genomes. ARIADNA call sets were robust; we observed very little change in 

counts or proportion of nucleotide substitution types in either Oimyakon or M25 

mammoths (Fig. 22B, D). Conversely, GATK predicted large discrepancies (>2.5-fold) in 

such counts between the woolly mammoth genomes (Fig. 22D). 

 We found that in the Oimyakon samples, nearly 94% of the mutations identified 

using ARIADNA methods were shared in all four woolly mammoth samples, compared 

to 81% called by GATK. This was even more starkly contrasted in the noisier M25 

dataset, where the ARIADNA algorithm made common calls with all woolly mammoths 

at a rate of 83%, while GATK called these same mutations at a rate of 55%. Calls shared 

between two or three woolly mammoths in Oimyakon made up 13% and 5% of the calls 

in GATK and ARIADNA respectively. In M25, these calls were made at a rate of 22% 

(GATK) and 15% (ARIADNA). More surprisingly, in this noisy dataset the use of 

GATK resulted in 23% of total calls being unique to M25. When analysed with GATK, 

there was a large increase in rate for unique calls from less than 6% to 23% in Oimyakon. 

The difference in the rate of unique calls between Oimyakon and M25 using ARIADNA 
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methods was only 1.1%. Such robustness in predicted mutation rate strongly suggests that 

ARIADNA likely produced a more reliable call set in aDNA than that of GATK. The 

mutation rate between the two genomes using ARIADNA was 214bp/SNV in Oimyakon 

and 216bp/SNV in M25. The mutation rate provided by GATK was 157bp/SNV in 

Oimyakon and 107bp/SNV in M25.  

 

 

Figure 22. Performance of ARIADNA and GATK on the woolly mammoth genomes. 

Proportion of shared calls among all calls (A) and total numbers of shared calls (C) are 

plotted for ARIADNA (solid) and GATK (check pattern) on contig_0 of the woolly 

mammoth genomes. Spectra of nucleotide changes are also shown as proportions (B) and 

total numbers (D) are plotted for ARIADNA (solid) and GATK (check pattern) on 

contig_0 of the woolly mammoth genomes. Oimyakon sample is represented in blue and 

M25 in red.  
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Figure 23. Improvements in calling variants with ARIADNA. Read depth and share of 

reads supporting SNV are shown for 20,000 randomly sampled calls from Oimyakon 

genome using GATK (A) and ARIADNA (B), and from M25 genome using GATK (C) 

and ARIADNA (D). The point size corresponds to the count of calls that were sampled at 

that coordinate on the plot.  
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Figure 24. Scatter plots of 1,000 random calls as predicted from GATK (left) and 

ARIADNA (right) in M25. All calls (A and B), unique calls (C and D), calls that show no 

evidence in Asian elephant (E and F). Orange points have less than 25% of reads 

supporting the call.  

 

 We further tested the quality of calls produced by GATK and ARIADNA by 

comparing the distributions of reads supporting called SNVs. In the M25 woolly 

mammoth ARIADNA SNVs showed generally higher read support (Fig. 24A) vs. those 

of GATK (Fig. 24B). In contrast, there was little difference in the read support for SNVs 

in the Oimyakon sample (Fig 25). We observed an increased rate of calling for low 

supported reads in GATK that became more divergent from ARIADNA in unique calls 
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(Fig. 24 C,D), and calls that did not have evidence of variants in Asian elephant (Fig. 24 

E,F). Thus, ARIADNA was able to filter out many heterozygous SNVs with biased read 

support in noisy datasets. 

 

Figure 25. Scatter plots of 1,000 random calls as predicted from GATK (left) and 

ARIADNA (right) in Oimyakon. All calls (A and B), unique calls (C and D), calls that 

show no evidence in Asian elephant (E and F). Orange points have less than 25% of reads 

supporting the call.  
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Table 16. High and low evidence calls made by different algorithms.  

 

 Following an approach used to establish the high noise levels in the mammoth 

NGS data (Rogers et al. 2016), we tested the quality of calls produced by GATK and 

ARIADNA by comparing the share of reads supporting called SNVs in 20,000 randomly 

sampled calls of Oimyakon and M25 samples. In both cases GATK produced more calls 

with lower read support and from lower coverage regions than ARIADNA (Fig. 23). 

While this difference was small in the Oimyakon sample (Fig. 23A, B), it was quite 

substantial in the noisy M25 sample, where ARIADNA SNVs showed generally higher 

read support versus those of GATK (Fig. 23C, D). We found that in the M25 mammoth, 

nearly 22% of the calls made by GATK were of lower quality, i.e., had either <30% of 

reads supporting the call or originated from regions covered by <1/3 of the median 

number of reads (Table 16). In contrast, ARIADNA was able to filter out many 

heterozygous SNVs with biased read support in noisy aDNA data.  

 

 

 

M25 Woolly Mammoth All Calls High Evidence Low Evidence Percent of Low Evidence Calls

GATK 1214873 951754 263119 21.66

ARIADNA 599847 596199 3648 0.61

Altai Neandertal

snpAD 216469 206433 10036 4.64

GATK 379115 334491 44624 11.77

ARIADNA 272990 270943 2047 0.75
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6.3 Performance of ARIADNA in Altai Neandertal 

 

 We then tested if our model could be applied to other genomes. We used the same 

ML decision tree that was constructed with the woolly mammoth training set to analyse 

the Altai Neandertal. As a first benchmark, we used the results of Prüfer at all (2014), 

who have compared GATK calls on Altai Neandertal to two 1,000 Genomes Project 

populations (European and East Asian)(Prüfer et al. 2017). As a second benchmark, we 

used the call set produced by Prüfer et al. using snpAD (Neandertal 2017). 
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Figure 26. Performance of GATK, snpAD and ARIADNA on the Altai Neandertal 

genome (chromosome 1). Spectra of nucleotide changes (proportions-A, total numbers-

B) in variant call sets are plotted for GATK (dark blue) Prüfer 2014, snpAD (light blue) 

Prüfer 2017, European individuals (dark grey), East Asian individuals (light grey) and 

ARIADNA (red). 

 

 Compared to these benchmarks of 379,115 GATK calls and 216,469 snpAD calls, 

ARIADNA made 272,990 calls, much closer to the number of mutations found in the two 

modern populations, 279,007 (European) and 283,776 (East Asian). This observation for 

all nucleotide changes also held true for each nucleotide change type, where ARIADNA 

consistently produced call sets that were most similar to the European and East Asian 

populations (Fig 26 B) 
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Figure 27. Overlap between calls made by GATK, snpAD, and ARIADNA on 

chromosome 1 of the Altai neandertal.  

 

 Our results are consistent with the earlier observations hat GATK, being sensitive 

to aDNA noise and degradation, tends to over-predict the aDNA mutations, producing 

more variants than any other methodology (Prüfer et al. 2017). On the other hand, the 

approach utilizing snpAD  (Prüfer et al. 2017), seems to overcompensate in stringency 

and therefore to under-predict SNVs, reducing the amount of variation to less than what 

is otherwise found in the modern human population. In contrast, ARIADNA reported 

nucleotide substitution frequencies that are most similar to the modern human variation 

(Fig 26B).  
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Figure 28. Scatter plots of 1,000 randomly selected calls that are made from GATK, 

snpAD, and ARIADNA on chromosome 1 of the Altai neandertal.  

 

 To further compare calls made by ARIADNA, snpAD, and GATK, we analysed 

the mutations of the Altai neandertal genome in essential genes identified by OGEE 

(Chen et al. 2011) and catalogued potential affects according to VEP (McLaren et al. 

2016) (Table 17). GATK made the greatest number of calls within coding regions of 

essential genes, 610, including the greatest number of missense mutations, 386, stop loss, 

19, and stop gains, 19. Comparatively, ARIADNA made fewer calls in essential genes, 

392, as well as fewer missense mutations, 248. snpAD made the fewest calls in essential 
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genes, 316, and fewer missense calls than ARIADNA, 201. ARIADNA made one more 

stop loss call than snpAD, 14, and both ARIADNA and snpAD made 9 stop gain calls. 

Enumerating all potentially deleterious mutations (missense, stop gain, start lost, and stop 

lost) in essential genes, GATK makes the greatest number of these calls, 424, while 

ARIADNA makes 271 and snpAD makes 223.  

 

 

 

 

 

 

Table 17. Effects of nucleotide changes in essential genes of Altai neandertal.  

 

  Prüfer et al. 2017 asserted that the inaccuracy of GATK is exemplified in 

chromosome 21 of the Altai neandertal, where there is a large inbred region from 

17081807bp to 35881807bp. Here it was shown that GATK made an excessive number 

of heterozygous calls within the inbred region compared to snpAD. We compared the 

output of all three callers within the same region, using the provided vcf from Prüfer 

using GATK and snpAD (Table 18). As expected we found GATK made a far greater 

number of heterozygous calls than ARIADNA or snpAD both in total number, and 

proportion. However, ARIADNA made fewer heterozygous calls than snpAD, both in 

total number and proportionally, in this same inbred region, despite making a greater 

number of calls than snpAD overall. Additionally, outside of this inbred region, 

Variants in Essential Genes

ARIADNA snpAD GATK

Stop lost 14 13 19

Start lost 0 0 0

Synonymous variant 116 91 178

Missense variant 248 201 386

Stop retained variant 4 2 5

Stop gained 9 9 19

Incomplete terminal codon variant 0 0 1

Coding sequence variant 1 0 2
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ARIADNA identified a greater number of heterozygous calls, both in total count and 

proportionally, than snpAD. 

 

 

 

  

 

 

Table 18. Homozygous and heterozygous calls made within and outside of an inbred 

region of chromosome 21 of the Altai neandertal.  

 

GATK made the greatest number of SNV calls not made in any of the other 

algorithms tested here, 77,902, far ahead of snpAD, 3,374, or ARIADNA, 1,810 (Fig 27). 

This was an expected result due to the reports of GATK being excessively sensitive, 

including noisy calls in its predictions (Prüfer et al. 2017). Neither ARIADNA nor 

snpAD made any common calls that were not identified by GATK. In order to identify 

trends of the predicted SNPs for each caller, we sub-sampled 1,000 calls from each set 

(Fig 28).  Similar to the behavior in the woolly mammoth datasets, GATK had the 

highest proportion of calls made with lower coverage and lower read support, nearly 12% 

(Table 16), further indicating its sensitivity to aDNA noise, degradation, or 

contamination. Surprisingly, despite the least number of total calls made by snpAD, 4.6% 

also had low read coverage and low numbers of supporting reads, while ARIADNA 

produced the least number of such low quality calls, 0.8% (Table 16). ARIADNA made 

ARIADNA GATK snpAD

total calls on chromosome 21 59545 82557 41955

heterozygous calls outside inbred region 6550 21495 3489

homozygous calls outside inbred region 23071 25937 16618

heterozygous calls inside inbred region 424 3577 701

homozygous calls inside inbred region 29500 31548 21147

Calls made inside and outside of the
 Inbred region of Altai neandertal
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most of its unique calls with a moderate amount of read support, suggesting that it is 

better at the identification of heterozygous calls than snpAD, without the inclusion of 

false positives of GATK.  

 A combination of GROM and ARIADNA is also much faster than GATK. In a 

direct comparison (Smith et al. 2017), GROM was 12-25 times faster than GATK on a 

single thread and more than 70 times faster on 24 threads. Using the output from GROM, 

ARIADNA classifier run took between 5.5 mins (Oimyakon genome) and 14.5 mins 

(Neandertal genome) on a single thread, compared to >60 hours of GATK runtime. A 

one-time ARIADNA training run took 4 hours to generate a model.  

 ARIADNA utilizes a comprehensive feature set, incorporating several features 

that are often used in ad-hoc methods (Table 15). This includes identifying the position 

of the SNV within reads, base quality and mapping quality, nucleotide mismatch counts, 

and nucleotide change. We have also included novel features, such as accounting for 

nearby SNVs, adjacent nucleotides, and repeat regions, to better define difficult mapping 

regions or mutation hot-spots. The incorporation of several features as well as a decision 

tree ML model allows a dynamic level of filtering to compensate for changing NGS 

quality and read availability that is difficult to do with more static algorithms. 

 In summary, ARIADNA yielded consistent proportions of shared and unique 

mutations in the two woolly mammoth data sets compared to GATK. The frequency of 

nucleotide substitutions was also more stable using ARIADNA on the two woolly 

mammoth genomes than that of GATK. Utilizing modern human variation from 1,000 

Genomes Project to compare results in the Altai Neandertal, we also found that the SNV 

calls made by ARIADNA were more consistent and potentially more relevant than of 
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either GATK or snpAD. Our testing suggests that ARIADNA approach is superior for 

variant detection in ancient samples and has the capability to build models that can be 

utilized across a range of species.  
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Chapter 7: Discussion & Future Directions 

 

 The elucidation of genetic causes for disease, phenotypic variation, and 

evolutionary adaptation have been made increasingly possible on an ever increasing scale 

through the advancement of NGS technologies and associated analysis methodologies. 

Genome sequencing has become an invaluable tool in the broader study of biology, and 

with it the amount of data is outpacing researchers’ ability to thoroughly analyze these 

data sets in sufficient detail.  

 Therefore we have developed tools for the researcher to rely on, increasing the 

accuracy and efficiency with which NGS can be analyzed and interpreted. This includes 

an algorithm for CNV detection utilizing read depth methods and a second high-

throughput comprehensive algorithm that is able to identify all variant types with 

astounding efficiency while maintaining a high level of accuracy and sensitivity.  

 We have demonstrated the utility of these algorithms through applying them in 

two different comparative studies. The first, a comparison of extinct woolly mammoth 

genomes to that of the modern elephant. We elucidated previously unfound variation in 

genes responsible for adaptation in the woolly mammoth’s unique environment. 

Furthermore we applied our algorithms to two populations of threatened gorilla 

subspecies. While previous studies focused on only a small fraction of the available 

mutation types, in this case SNPs, we found that by incorporating all types of genetic 

variants, a broader picture can be painted that more comprehensively points to genetic 

causes of disease, speciation, and possible genetic decline in these gorillas.  



112 

 

 

 

 Work in both the development of variant calling methods as well as ancient 

genomes has introduced me to a specific niche of genome analysis with a unique set of 

problems. With the increasing prevalence of genome sequencing in contemporary 

organisms, there has also been in influx of comparative studies of ancient and modern 

genomes. However the analysis methods of these extinct species still lags behind that of 

its modern counterparts. The analysis of these ancient genomes is no less important, yet 

despite the additional hurdles that are infrequently accounted for in current methods, little 

has been done to alleviate these problems. These studies must deal with a comparatively 

unprecedented levels of degradation and contamination that leaves variant calling a 

struggle. We were able to apply out methodology of efficient and accurate variant 

identification to these data sets, and with additional analysis through machine learning, 

develop an algorithm specifically designed for variant identification in ancient genomes. 

Because out methodology is constructed specifically to deal with ancient genomes and its 

associated features and challenges, we find it to be more accurate and consistent in 

calling variants compared to any available methods.  

 

7.1 Read depth methods of CNV detection 

 

 GROM-RD is a novel approach to detect CNVs in NGS data. Our methods of bias 

correction are more effective than previously developed algorithms. GROM-RD produces 

fewer false positives calls while maintaining a high level of sensitivity in both high and 

low coverage data sets. In addition our method of sliding window detection improved 

break point accuracy compared to other available methods.  
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 Although RD analysis is a specific methodology over the broader scope of 

genome variant detection, it is still an important tool in variant discovery that is 

potentially frequently overlooked.  CNV detection plays an important role in the 

explanation for phenotypic variation and evolution, accounting for roughly 4 million base 

pairs of variation between individuals (Mills et al 2011). CNV are potentially linked with 

varied gene regulation and expression levels between individuals (Stranger et al. 2007, 

McCarroll et al. 2006, Kleinjan et al. 2005, Somerville at al. 2005). Differences can arise 

from duplications or deletion of entire gene and regulatory regions. Differences have 

been accountable for several disease susceptibilities including; HIV (Gonzalex et al. 

2005) , cancer (Berger et al. 2022, Stephens et al, 2009), and neurological disorders 

(Stefansson et al. 2009, Marshall et al. 2008) and evolutionary adaptation (Perry et al. 

2007). Neurological disorders in particular have been linked to CNV in entire genes, 

potentially altering gene expression, while SNVs in these same genes do not sufficiently 

explain phenotypic variance (Bucan et al. 2009, Glessner et al. 2009, Nord et al 2011). 

RD methods are particularly useful in detecting CNVs with ambiguous breakpoints or 

low coverage where paired read and split read methods frequently struggle. 

 Our RD method provided improve sensitivity and specificity as well as break 

point accuracy, while being relatively tolerant of genome wide coverage levels. It has 

proven to be a valuable tool for comprehensive analysis of NGS data in both our woolly 

mammoth and eastern gorilla comparative studies.  
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7.2 Comprehensive variant detection 

 

 GROM was developed as a single, efficient, and comprehensive mutation calling 

algorithm to address the modern needs of NGS analysis. As NGS studies become 

increasingly popular, and NGS throughput continues to advance, bioinformatic tools are 

needed to keep up with demands. Previous methodology for complete genome analysis 

required the use of multiple tools to identify all possible genome variants. This is an 

inefficient use of computational resources and burdensome for the researchers. Our 

algorithm identifies SNVs, SVs, indels, and CNVs in a single run. Utilizing multiple 

detection methods including mismatch, split read, read pair, and read depth evidence also 

allows GROM to perform detection of all variant types with superior sensitivity and 

specificity in addition to the incredible reduction of time cost that would otherwise be 

associated with such a comprehensive NGS analysis.  

 GROM is an essential tool to match pace up with modern NGS studies. The data 

utilized in projects is continuously increasing. No longer is it sufficient to analyze small 

sections of the genome or single mutation type analysis for the identification of causative 

mutations. It is increasingly evident that phenotypic variation and disease states cannot be 

explained by single gene mutations or even complex interactions of SNPs alone 

(Weischenfeldt et al 2013, Visscher 2008). This is exemplified by Visscher, where over 

50 nucleotide variants were found to influence human height, yet these variants only 

explained roughly 5% of the variance. To address this, many population studies have 

expanded their analysis to include CNVs and SVs (McCarroll et al. 2008, Kidd et al. 

2008, Sudmant et al. 2015). As SVs account for a greater amount of variation within a 
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genome than single nucleotide changes (Weischenfeldt et al 2013) they can potentially 

account for a large amount of phenotypic difference that is otherwise currently 

unexplained in previous studies. 

 Additionally, comparative and population level studies are greatly expanding, 

covering no longer tens or hundreds, but thousands and now millions of genomes. 

Current research has expanded beyond the 1,000 Genomes Project, as the UK looks to the 

100,000 genomes project, the US Million Veterans Genome Program, and China’s own 

Million Genomes project. 

 Algorithms such as GROM are requisite for the efficient collection of accurate 

variant information for interpretation. We have begun to prove the utility of this method 

through various collaborative studies that analyze a large number of genome samples, 

one such collaboration is the analysis of 3,000 rice genomes with the International Rice 

Research Institute.  

 

7.3 Woolly mammoth evolutionary adaptation 

 

 Our first utilization of GROM for genome analysis was a comparative study 

between four woolly mammoth genomes and four Asian elephants. Previous studies had 

been performed on these data sets, but were limited in their analysis to SNVs. The 

application of our algorithm led to a much more comprehensive survey of potential 

causative genome variation for woolly mammoth adaptation to its arctic habitat. We 

identified several variants within the genome that were not previously discovered through 

SNV analysis alone. Variation was found in genes associated with lipid metabolism and 
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thermogenesis, two important changes for life in the colder climates that woolly 

mammoth faced. Also observed were large changes in immunity related variants, and a 

large copy number amplification of RNase L and TP53. We also found several circadian 

oscillator genes that may have been selected for as mammoth high latitude necessitated 

adaptation to extremely varied day/night cycles throughout the course of the year. 

 

7.4 Sub-species genetic health in eastern gorilla populations 

 

 The second comparative analysis we performed with GROM was between two 

eastern gorilla subspecies. Eastern lowland gorillas and especially mountain gorillas are 

facing significant population loss, and several disease phenotypes are being observed that 

put their genetic health into question. In addition, these two subspecies are closely related 

both in location and evolutionary distance. Our analysis revealed several variants that 

associate with phenotypes that differentiate the two subspecies that have not been 

previously accounted for in the genome. This includes mutations in genes that associate 

with body structure and size as well as facial structure. As expected with a a population 

facing such decline, we also found several mutations in genes that led to an enrichment 

for disease phenotypes. This included enrichment in genes associated with syndactyly, 

infertility, and vision impairment. Interestingly, our SV and indel analysis showed an 

equal number of unique mutations in the two populations. However the mountain gorilla 

harbored several more shared variants than that of the eastern lowland gorilla. This is 

further evidence of a declining breeding population than what can be found through 

associated disease phenotypes.  
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7.5 Variant discovery in ancient genomes 

 

 The usage of modern variant calling tools on woolly mammoth genomes gave 

first hand insight into the unique problems that are faced with variant calling in ancient 

genomes. These genomes have high frequencies of decomposition, fragmentation, 

environmentally induced substitutions, and contamination that is not frequently 

encountered in contemporary NGS studies. An increasing number of WGS is being 

performed on ancient genomes as DNA extraction and sequencing methods develop. Yet 

the difficulty in variant calling persists as the quality of the available DNA cannot be 

changed. At the time there was no available tool for variant identification in these ancient 

NGS samples, and therefore the tools for contemporary analysis had to be adapted. This 

proved exceedingly difficult as many of these tools took the inherent noise and 

fragmentation of the data to be interpreted as variation. Compounding this problem were 

research groups devising their own methods toward variant detection making validation 

of accuracy and reproducibility difficult. To this end we developed an SNV caller 

specifically designed to work with ancient genomes. To overcome these challenges we 

employed a machine learning method, boosted regression trees, to account for the 

variation and potential interactions of variant features more effectively and efficiently 

than the ad-hoc compensatory methods currently in use. The resulting algorithm proved 

to be much better suited for work in ancient genomes than even the best post-adopted 

methods on highly processed data. The mammoth data sets were specifically chosen for 

design and testing as there was a great deal of variation in the DNA sequence quality of 
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the genomes. Previous methods faced a large discrepancy in call rate between these 

genomes as they were not able to effectively compensate for the inherent noise and 

degradation. GATK, the most commonly used mutation calling algorithm was especially 

susceptible to this variation in NGS data of ancient genomes, and made several SNP calls 

with rather limited supporting evidence. Our method that was employed in ARIADNA 

effectively eliminated this variation between genome call rates. Additionally, when tested 

in Neanderthal samples, ARIADNA provided a mutation call rate that most closely 

mirrored that of the variance found in the human population. 

 

7.6 Future directions 

 

 All of the data sets that were used in these studies were publicly available, yet 

much was left on the table for analysis, discovery, and interpretation. Currently more 

NGS data is being produced than can be effectively analyzed. This leaves a huge swath of 

discovery in genome variation yet to be reported on. With our efficient means of variant 

discovery we expect that comparative analysis will become more comprehensive, 

elucidating genetic explanations for previously observed but unaccounted phenotypes.  

 The study of ancient genomes is especially exciting, as the previous hurdle to 

their study was the extraction and sequencing of DNA. With our newly developed 

ARIADNA mutation caller, we hope to continue our study of comparative genomics in 

ancient genomes and expand our variant call methods to lower coverage datasets. 
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Chapter 8: Materials & methods 

 

8.1  Gorilla genome samples 

 

 Details of samples collected and sequencing are provided in Xue et al. Briefly, 12 

gorillas (7 mountain and 5 eastern lowland) were selected for WGS. An average of 26x 

coverage was produced on an Illumina HiSeq 2000 sequencer using standard library 

preparation. We downloaded fastq files from SRA project PRJEB3220 provided in Xue 

et al. and mapped the data to the western lowland gorilla reference sequence gorGor3.1 

(http://www.ensembl.org/Gorilla_gorilla) using BWA-MEM v0.7.4 (Li, 2013) with 

default parameters.   

 

8.2 Genome variant detection in gorilla populations 

 

 Several methods are available to detect SVs. Read depth methods are useful for 

detection of copy number variants (CNVs), which comprise deletions and duplications.  

Paired-read and split-read methods are able to detect deletions and duplications, as well 

as insertions and inversions. This limitation of SV detection by a singular method 

necessitates utilizing a combination of approaches to increase sensitivity and breadth of 

analysis. We used a read depth method, GROM-RD (Smith 2015), and a paired-read, 

split-read integrated approach GROM (Smith et al. 2017). We identified all structural 

variants <1 MB in size for every individual. GROM settings included a minimum of 3 
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high quality (mapping quality ≥ 20 and for SNVs, base quality ≥ 20) reads (SNVs, indels) 

or read pairs (SVs) supporting the variation. 

 

We analyzed complete lineage-specific variation, wherein a mutation was identified in 

every individual of a gorilla subspecies and no support of the variant was present in any 

individual of the reciprocal subspecies. Also identified were non-ubiquitous lineage-

specific variants, where any members of the subspecies carried the mutation, with no 

evidence supporting the variant in any individual of the other gorilla subspecies. A 

reciprocal overlap of >50% of variant length was required for common variants. We 

focused specifically on affected gorilla genes and thus only considered variants 

overlapping gene regions.  

 

8.3 Mutation Enrichment in gorilla genomes 

 

 Phenotypic enrichment analysis was performed using g:Profiler (Reimand et al. 

2007) with default parameters unless noted below. Sets for both complete lineage-

specific variation and non-ubiquitous lineage-specific variation were entered into 

g:Cocoa (Reimand et al. 2016) for comparison of enrichment analysis between the two 

subspecies. Our statistical domain size was limited to known genes for gorilla and 

enrichment profiles from Human Phenotype Ontology, as we were interested in the 

observable effects these mutations would potentially have.  
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8.4 ARIADNA algorithm development 

 

 The backbone of our method consists of a machine learning algorithm tailored for 

aDNA mutation calling by utilizing unique features found in aDNA samples. Specifically 

we implement the use of boosted regression tree models for our methodology (Friedman 

2001). In summary, boosted regression trees works through building a succession of 

additive decision trees to best classify known data (training set). The algorithm assigns 

thresholds within the trees using the characteristics of given true positive (TP) and false 

positive (FP) calls from the training set. Through a series of these trees, prediction 

deviance from known truth is continually reduced. Our feature set is provided by 

modification of the comprehensive mutation caller GROM (Smith et al. 2017), to act as a 

genome scanner and output feature information at potential mutation locations. These 

features include common measures such as read depth, SNV base count, read and base 

quality as well as features that are unique to aDNA, such as distance from read end, C to 

T substitutions and neighbouring mutation rates  (Table 15). Once this series of trees is 

built from the training data, a model is constructed and classification of further data 

(known, for testing, or unknown, for implementation) can take place (Figure 21). Here, a 

hold back set of known mutations is used to test performance. For our purposes, these 

known values not used in training become the testing set. 
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8.5 ARIADNA woolly mammoth genomes 

 

 We tested our machine learning method on four woolly mammoth samples M4, 

M25, Wrangel Island and Oimyakon (Lynch et al. 2015, Palkopoulou et al. 2015). These 

samples originated from two different studies, with the former being suspected of 

experiencing high levels of problems associated with aDNA sequencing (Rogers et al. 

2016). WGS fastq files for woolly mammoths M4 and M25 were downloaded from the 

Sequence Read Archive (SRA), http://www.ncbi.nlm.nih.gov/sra (project accession 

number: PRJNA281811). WGS fastq files for the Wrangel and Oimyakon woolly 

mammoths were downloaded from the European Nucleotide Archive (ENA), 

http://www.ebi.ac.uk/ena (accession number: ERP008929). WGS fastq files were mapped 

to the African Elephant reference genome loxAfr3, downloaded from UCSC 

(https://genome.ucsc.edu, http://hgdownload.soe.ucsc.edu/goldenPath/loxAfr3/bigZips/), 

using BWA MEM, version 0.7.4, with default parameters. Duplicates were removed 

using SAMtools (Li et al. 2009), version 0.1.19. We limited analysis to 

supercontigs/scaffolds ≥1,000,000 bases. PSNVs were detected using GROM (Smith et 

al. 2017), customized to include output of additional features from Table 15.  

 

 WGS fastq files Asian Elephants Asha, Parvathy, and Uno were downloaded from 

the Sequence Read Archive (SRA), http://www.ncbi.nlm.nih.gov/sra (project accession 

number: PRJNA281811). WGS fastq files for the Asian elephant Emelia were 

downloaded from ENA (accession: ERP004241). WGS fastq files were mapped to the 

African reference genome loxAfr3 and aligned in the same way as the woolly mammoth. 
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8.6 ARIADNA woolly mammoth variant identification and construction of training 

and testing sets 

 

 For the development of our training and testing sets, potential mutation locations 

shared between all woolly mammoth genomes are considered TP locations (we did not 

take zygosity into account when designing our data sets). Conversely, potential mutation 

locations that only occurred in a single individual are deemed FP. The shared potential 

mutation events that occurred in all woolly mammoth samples served as validation that 

the mutation did not occur as a result of contamination, degradation, or sequencing 

artefact. Additionally, the use of woolly mammoth training samples for this study (as 

compared to Neandertal or ancient human) reduced the risk of misrepresented calls due to 

either misalignment or contamination of closely related samples (Wall et al. 2007, Green 

2009).  

 We used a modified version of GROM to scan the mammoth genomes for any 

evidence of difference with the reference genome. This yielded an average of 

140bp/PSNV locations, between 18 million and 23 million locations per genome. Of 

these, 15 million PSNVs shared some evidence in all woolly mammoth genomes, and 6.6 

million sites were unique to single woolly mammoth genomes (the remaining PSNVs 

were shared between 2-3 mammoths and not used for training). Because validation of 

these unique mutation sites is difficult using NGS of aDNA, our approach of capturing all 

deviation from reference in PSNVs would intercept a greater proportion of noise for use 

as FP events in the training set. Although it is certain that some true mutations were 
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picked up in the false positive set, the effects of this mis-classification of events are 

diminished due to the high frequency of true FP events. Additionally, the validation of 

TPs across four genomes should alleviate problems with mis-classification during 

application of the trained model. Mutation events shared between either two or three of 

the woolly mammoth samples are ignored for the purpose of training to eliminate 

excessive uncertainty.  

 We utilized two woolly mammoth genomes from separate studies for the purpose 

of training our ML model, a specimen from Wrangel Island and an M4 sample (a noisy 

and potentially contaminated candidate). One million shared and one million unique 

PSNVs from each of the two woolly mammoths in our training set were selected at 

random for training the ML model, resulting in four million training sites total. For the 

test set we used the two additional woolly mammoths from each study, Oimyakon and 

M25, and examined the results from the first largest contig (contig_0). The data from 

these two genomes is not used in any way as part of the training set in order to keep from 

over-fitting, or learning the unique characteristics of all available SNVs. In contig_0, the 

Oimyakon and M25 samples contained 799,849 and 960,816 PSNVs, respectively. Our 

algorithm utilized a feature set (Fig. 11) from the GROM genome scanner and the 

boosted regression tree ML module implemented using scikit learn (Pedregosa et al. 

2011). This gave the ML portion of our algorithm 45 different features to utilize (Table 

15). The parameters of the boosted regression trees algorithm in scikit learn were set to 

200 trees in the construction of the classifier, and a learning rate of 0.01.  
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8.7 ARIADNA Altai neandertal and contemporary genomes 

 

 Additional testing was performed on the Altai Neandertal chromosome 1 from 

Prüfer 2014, using BAM files hosted at Max Planck Institute for Evolutionary 

Anthropology (http://cdna.eva.mpg.de/neandertal/altai/). Calls and feature information 

were produced by GROM. The VCF files produced by GATK (Prüfer et al. 2014), and 

snpAD (Prüfer et al. 2017), from the respective Prüfer publications were used for 

comparison. These were downloaded from the hosted neandertal files at Max Planck 

Institute for Evolutionary Anthropology (for the 2014 dataset: 

http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/, for the 2017 dataset: 

http://cdna.eva.mpg.de/neandertal/Vindija/VCF/) To better observe mutation rates and 

nucleotide change frequencies, further comparisons were made from 20 random genomes 

of the 1,000 Genomes Project (1000 Genomes Project Consortium 2015); ten individuals 

from the European population group, and ten individuals from the East Asian population 

group. These two groups are believed to be the contemporary populations that are most 

related to the Neandertals. Here mutation information was provided through the 1,000 

Genomes VCF (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). 

 To identify variants affecting essential genes, a list of human essential genes was 

downloaded from the Online GEne Essentiality database 

(http://ogee.medgenius.info/browse/). Only genes listed as “essential” were used in the 

analysis. Variants in essential genes were uploaded to the Ensembl Variant Effect 

Predictor (https://www.ensembl.org/vep) to categorize impact. The inbred region of the 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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neandertal genome analysed (chromosome 21:17081807-35881807) was identified by 

Prüfer et al. 2017 (30). 
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