Staff View
Computational methods of variant calling and their applications

Descriptive

TitleInfo
Title
Computational methods of variant calling and their applications
Name (type = personal)
NamePart (type = family)
Kawash
NamePart (type = given)
Joseph Kenneth
NamePart (type = date)
1986-
DisplayForm
Joseph Kenneth Kawash
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Grigoriev
NamePart (type = given)
Andrey
DisplayForm
Andrey Grigoriev
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Klein
NamePart (type = given)
Eric
DisplayForm
Eric Klein
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Nam
NamePart (type = given)
Jongmin
DisplayForm
Jongmin Nam
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Bhattacharya
NamePart (type = given)
Debashish
DisplayForm
Debashish Bhattacharya
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = personal)
NamePart (type = family)
Serebriiskii
NamePart (type = given)
Ilya
DisplayForm
Ilya Serebriiskii
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Camden Graduate School
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2018
DateOther (qualifier = exact); (type = degree)
2018-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2018
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract
Genome sequencing is becoming an indispensable part of biological research. Mutations identified in genomic sequence contribute to explanations of disease, phenotypic variation, and evolutionary adaptation. Increasing reliance on next generation sequencing (NGS) data necessitates efficient and accurate means of genome analysis. We developed two algorithms, GROM-RD and GROM, to address current issues of mutation calling in NGS data. GROM-RD analyzes multiple biases in read coverage to improve copy number variation (CNV) detection in NGS data. GROM-RD takes a two-tiered approach to complex and repetitive segments, while incorporating excessive coverage masking, GC weighting, GS bias normalization, dinucleotide repeat bias normalization, and a sliding-window break-point calculator. Current NGS projects produce massive amounts of data, often on multiple samples; with several approaches designed specifically for each variant, use of multiple algorithms is necessary. GROM provides comprehensive genome analysis into a single algorithm, identifying single nucleotide polymorphisms (SNPs), indels, CNVs, and structural variants (SV), with superior sensitivity and precision while reducing the time cost up to 72 fold. Comparative genomics studies typically limit their focus to SNVs, such as in previous comparisons of woolly mammoth and another comparison of eastern gorilla. We extended these analyses to identify SVs and indels. Our analysis found mammoth-specific variants suggesting adaptations to Arctic conditions, including variants associated with metabolism, immunity, circadian rhythms, and structural features. In gorilla populations, variants were identified that associate with physical features used to distinguish between the two subspecies. Within the gorilla subspecies was also found unique genetic evidence related to disease and abnormality, evidence of dwindling populations. Untested and ad hoc methods of mutation calling are often used in ancient DNA (aDNA) studies. While aDNA NGS analysis is highly susceptible to aDNA degradation, many studies utilize standard mutation calling algorithms, not taking into account unique aDNA challenges of excessive contamination, degradation, or environmental damage. We present ARIADNA, a novel approach based on machine learning techniques, using specific aDNA characteristics as features, to yield improved mutation calls. In our comparisons of variant callers across several ancient genomes, ARIADNA consistently detected higher-quality variants, while reducing the false positive rate compared to other approaches.
Subject (authority = RUETD)
Topic
Computational and Integrative Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8636
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (vii, 152 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Gene mapping
Note (type = statement of responsibility)
by Joseph Kenneth Kawash
RelatedItem (type = host)
TitleInfo
Title
Camden Graduate School Electronic Theses and Dissertations
Identifier (type = local)
rucore10005600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T31Z47MJ
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kawash
GivenName
Joseph
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-01-08 12:28:59
AssociatedEntity
Name
Joseph Kawash
Role
Copyright holder
Affiliation
Rutgers University. Camden Graduate School
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2018-08-02
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after August 2nd, 2018.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
ApplicationName
Microsoft® Office Word 2007
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-01-10T19:59:01
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-01-10T19:59:01
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024