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Abstract

Forms of Homogeneous Spherical Varieties

By Junqi Wang

Dissertation Director: Professor Yiannis Sakellaridis

Let G be a connected reductive algebraic group, spherical G-varieties are gener-

alizations of symmetric G-spaces bearing nice properties on their compactifications.

Over an algebraically closed field of characteristic 0, spherical varieties are classified

by the Luna-Vust theory (spherical embeddings) together with combinatorial objects

called the Luna data (homogeneous spherical varieties). A homogeneous spherical G-

variety X can be determined, up to isomorphisms, by its corresponding Luna datum

Λ(G,X).

In the first part of this work, Galois cohomology is used to study the spherical

varieties over a general field k of characteristic 0, called k-forms of spherical varieties.

We start from a homogeneous spherical G-variety X defined over k, with quasi-split

G, then it is proven that there is a one-to-one correspondence between the set of k-

forms (G′, X ′) with a group G′ which is quasi-split over k, up to k-isomorphisms, and

the (continuous) cocycle classes in the first Galois cohomology of the automorphism

group of the Luna datum, H1(k,Aut(Λ(G,X))).

As an application, in the second part, the Luna data satisfying the transitivity

of the automorphism group action on the set of spherical roots are classified. With

the transitivity condition, the k-forms corresponding to the sets of the first Galois

cohomology of the automorphism group of these Luna data contains all the spherical

varieties over k which is of k-rank 1, according to the main theorem in the first part.
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Chapter 1

Introduction

1.1 Spherical Varieties

Let Ω be an algebraically closed field, and let G be a connected algebraic group over

Ω.

In a work of De Concini and Procesi [DCP83], a special equivariant compactifica-

tion of symmetric homogeneous spaces G/NG(G
θ) is studied. Here G is semisimple

and Gθ is the subgroup of fixed elements in G by an involution θ : G −→ G.

This compactification has several nice properties, which are later used to define a

certain kind of G-varieties:

Definition 1.1.1. Let G be semisimple, a G-variety X is called wonderful if it is

smooth, complete, with an open G-orbit whose complement in X is
r

i=1

Di, the union

of r smooth prime G-divisors with normal crossings and non-empty intersections.

In the same year, Luna and Vust in [LV83] developed a general theory of equiv-

ariant compactifications of homogeneous G-varieties. They also found certain good

properties in the situations where the homogeneous variety contains an open Borel

orbit, which explains the behavior of symmetric cases. Then such a condition is called
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“sphericity”:

Definition 1.1.2. Let k be a field, and let G be a geometrically connected (a variety

Y over k is geometrically connected if its base change Yk̄ is connected) reductive

algebraic group over k. A geometrically connected G-variety X is called spherical if

Xk̄ = X ×Speck Speck̄, the base change to the algebraic closure k̄ of k, is a spherical

Gk̄-variety, that is, Xk̄ is normal and there is a Zariski open (dense) Borel orbit in

Xk̄ for a Borel subgroup of Gk̄.

Moreover, there are several other equivalent definitions of a spherical G-variety,

by conditions such as finiteness of the set of Borel orbits in X, multiplicity-freeness

of k[X] as a representation of G when X is affine , etc.

And later the following theorem is shown by Luna revealing the relation between

these two classes of G-varieties:

Theorem 1.1.3 ([Lun96]). A wonderful G-variety is spherical.

Further relations between them are shown in the classification theory of spherical

varieties.

1.2 Classification of Spherical Varieties

That X contains an open Borel orbit implies that the G-orbit containing the open

Borel orbit is also open. Thus the task can be divided into two parts: the homogeneous

spherical varieties H\G (with right G-action) for some “spherical subgroup” H, and

the embeddings of H\G into X.

1.2.1 Luna-Vust Theory

In [LV83], the work of Luna and Vust also contains the classification of spherical

embeddings over algebraically closed field Ω (of arbitrary characteristic). This is
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known as the Luna-Vust theory.

As the original paper also contains a lot of results not related to spherical embed-

dings, most of the following results about Luna-Vust theory are from Knop’s survey

[Kno91].

Definition 1.2.1. Let G be a connected reductive group defined over Ω, and let B be

a Borel subgroup of G. Let X be a normal G-variety together with a G-equivariant

open embedding H\G ↩→ X.

• For a G-variety Z, define D(Z) := {B-stable prime divisors of Z},

• V(Z) := {G-stable valuations on Ω(Z)×}, and V stands for V(H\G),

• Let Y be a G-orbit in X, DY (X) := {D ∈ D(X) : Y ⊆ D},

• FY (X) := {(D ∩ (H\G)) ∈ D(H\G) : D ∈ DY (X) is not G-stable},

• Let X (B) be the weight lattice of B, and

Ξ := {χf ∈ X (B) : χf is associated to B-semiinvariant function f ∈ Ω(H\G)(B)},

• By [LV83, 7.4 Proposition], by evaluating v ∈ V on Ξ, there is an injection

ρ̂ : V −→ Q.

• There is a map ρ : D(H\G) −→ Q given in the following way. For every

D ∈ D(H\G), there is a valuation vD on Ω(H\G)×. Being evaluated on Ξ, the

valuation vD produces ρ(D).

• BY (X) := {ρ̂(vD) : for some G-stable D ∈ DY (X) with the induced valuation

vD ∈ V},

• CY (X) ⊆ Q a cone generated by ρ(FY (X)) and BY (X).

A spherical embedding X is called simple if there is only one closed G-orbit in X.

Let Y be this orbit, then denote FY (X), BY (X), and CY (X) by F(X), B(X), and

C(X), respectively.
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Given a cone C ⊆ Q, let C∨ = {α ∈ Q∨ : α(v) ≥ 0 for all v ∈ C} be the dual cone,

then a face of C is a cone C ′ ⊆ Q of the form C ′ = C ∩{v ∈ Q : α(v) = 0 for some α ∈

C∨}, and the relative interior C◦ of C is C with all proper faces removed.

Definition 1.2.2. A colored cone is a pair (C,F) where C ⊆ Q and F ⊆ D(H\G),

satisfying: C is generated by ρ(F) and finitely many elements in ρ̂(V), and C◦∩ρ̂(V) ̸=

∅, where C◦ is the relative interior of C. A colored cone is called strictly convex if

C is strictly convex and 0 /∈ ρ(F).

Theorem 1.2.3 ([LV83, 8.10, Proposition]). The map X →→ (C(X),F(X)) is a bi-

jection between isomorphism classes of simple embeddings and strictly convex colored

cones.

In general, the spherical embeddings are classified by colored fans.

Definition 1.2.4. Given a colored cone (C,F), a face of (C,F) is a pair (C0,F0),

where C0 is a face of C, C◦
0 ∩ ρ̂(V) ̸= ∅ and F0 = F ∩ ρ−1(C0).

Definition 1.2.5. A colored fan is a nonempty finite set F of colored cones, satis-

fying the conditions: Every face of (C,F) ∈ F belongs to F, and for every v ∈ ρ̂(V)

there is at most one (C,F) ∈ F with v ∈ C◦.

For a spherical embedding X, let F(X) := {(CY (X),FY (X)) : Y ⊆ X is a G-orbit}.

Theorem 1.2.6 ([Kno91, 3.3, Theorem]). The map X →→ F(X) induces a bijection

between isomorphism classes of embeddings and strictly convex colored fans.

For a general field k of characteristic 0, as it is perfect, ksep = k̄, this makes it

possible to apply the theory of Galois actions to Luna-Vust theory over the algebraic

closure.
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Let Γ = Gal(k̄/k) be the absolute Galois group. For a spherical embedding

H\G ↩→ X, defined over k, up to an k isomorphism, this corresponds to the equivari-

ant embedding (H\G)k̄ ↩→ Xk̄ with a Γ-action, that is, for any γ ∈ Γ, the following

diagram commutes.

Gk̄ ×Xk̄ Xk̄

Gk̄ × (H\G)k̄ (H\G)k̄

Gk̄ ×Xk̄ Xk̄

Gk̄ × (H\G)k̄ (H\G)k̄ (1.1)

The vertical arrows are isomorphisms induced by γ ∈ Γ.

A Γ-action on an embedding Xk̄ induces an action on the colored fan F(Xk̄). Under

γ ∈ Γ, a Gk̄-orbit is mapped to a Gk̄-orbit, leading to a match on colored cones in

the colored fans, and for each colored cone, γ induces a bijection on the generators

of CY to CγY , and this eventually induces an automorphism of F(Xk̄). Conversely, by

[Kno91, 4.1, Theorem], an automorphism of F(Xk̄) induced by γ ∈ Γ can be extended

to an automorphism of the spherical embedding Xk̄. Thus a Γ-action on the colored

fan F(Xk̄) induces a Γ-action on the spherical embedding Xk̄. Conversely, we say

that a spherical embedding X over k̄ admits a k-form X if X is a G-variety, with a

spherical embedding (H\G)k̄ ↩→ Xk̄ and Xk̄ is Gk̄-isomorphic to X, and we have,

Theorem 1.2.7 ( [Hur11, Proposition 2.20, 2.21, Theorem 2.23, 2.26]). A spherical

embedding X defined over k̄ admits a k-form X if and only if

1. the colored fan F(X) is Γ-stable, i.e., (σ(C), σ(F)) ∈ F(X) for all σ ∈ Γ and
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(C,F) ∈ F(X),

2. for every (C,F) ∈ F(X), the colored fan consisting of (σ(C), σ(F))σ∈Γ and their

faces is quasi-projective. A colored fan F is called quasi-projective if there exists

a collection (l(C,F))(C,F)∈F of linear forms on Q satisfying

• ∀(C,F) ∈ F, ∀(C ′,F ′) ∈ F, l(C,F) = l(C′,F ′) over C ∩ C′.

• ∀(C,F) ∈ F, ∀x ∈ C◦ ∩ ρ̂(V), ∀(C ′,F ′) ∈ F− (C,F), l(C,F)(x) > l(C′,F ′)(x).

1.2.2 Homogeneous Spherical Varieties

There is a complete classification of homogeneous spherical varieties over algebraically

closed fields of characteristic 0. Let Ω be such a field, the classification is based on

Akhiezer’s work [Akh83] in classifying of rank 1 wonderful varieties over Ω.

In [Lun01], Luna conjectured that there is a bijection between the set of Ω-

isomorphism classes of homogeneous spherical G-varieties and the combinatorial data

called Luna data (originally called augmented spherical system, see Definition 2.2.2),

known as Luna Conjecture. The conjecture is proven under the contributions of Bravi,

Cupid-Foutou, Losev, Luna and Pezzini in [Lun01, BP05, Bra07, Los09, BCF10,

BP14, BP16], which can be concluded as in Theorem 2.3.3.

This is where this work begins. We go further for a general field k of characteristic

0, and study the k-forms of a spherical pair (G,X).

Similar questions are investigated by Akhiezer and Cupit-Foutou in their works

[ACF14], [Akh15], [CF15], and quite recently the work of Borovoi and Gagliardi

[BG17].
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1.3 Outline

In the rest of the discussions, the fields are always of characteristic 0, but for simplicity

in notations, in some chapters we assume the base field is algebraically closed.

The classification mentioned in Section 1.2.2 is briefly reviewed in Chapter 2,

where Luna datum is defined and the theorem of classification is stated.

Before applying Galois cohomology for possible Galois actions on spherical pairs,

the groups of automorphisms are studied in Chapter 3. There the base field Ω is

algebraically closed. Several relative automorphism groups are defined (in Section

3.1) and the relations between these groups are investigated (Proposition 3.2.3). With

the condition of spherical closedness (Definition 3.3.6), the sequence above becomes

split.

The results above are applied in Chapter 4. In this chapter the spherical pairs are

defined over k, a field of characteristic 0 and not necessarily algebraically closed. Let

Γ be the absolute Galois group, non-abelian Galois cohomology theory is applied to

the automorphism groups in order to look for k-forms. The first result is that when

H1(k, ·) is applied to Aut(Gk̄, Xk̄), the k-forms of the spherical pair (G,X) over k can

be mapped bijectively to H1(k,Aut(Gk̄, Xk̄)), up to k-isomorphisms. Furthermore, in

the case where (Gk̄, Xk̄) is spherically closed, there is a connection between k-forms

(G,X) where G is quasi-split with the first Galois cohomology of the automorphism

group of the combinatorial data classifying homogeneous spherical varieties. Then we

can eventually show in Theorem 4.2.4 that this correspondence is a bijection.

Theorem 4.2.4. Let G be a connected reductive group defined over k, and G is quasi-

split. Let X be a spherically closed homogeneous spherical G-variety, then there is a bi-

jection between the set of k-forms (G′, X ′) with quasi-split G′, and H1(k,Aut(Λ(Gk̄,Xk̄)
)).

The k-form (G′, X ′) is unique up to k-isomorphisms.
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Several examples are investigated by showing explicitly the correspondence be-

tween k-forms with quasi-split group and the class of 1-cocycles in H1(k,Aut(Λ(Gk̄,Xk̄)
)).

Finally, in Chapter 5, a special case of Aut(Λ) is studied, for some abstractly

defined Λ with a group Aut(Λ) acting on Σ transitively. This condition implies

that any prime relative rank 1 quasi-split k-form (G,X) (with k structure such that

there is only one Galois orbit on ΣX) has its Luna datum in the list. After some

reduction steps (Section 5.4), such a list of the spherical systems of adjoint type is

given (Theorem 5.5.1).

1.4 Notations

Throughout the rest of the chapters, all fields are of characteristic 0. Two base fields

are considered: Ω is always algebraically closed, and k is general and has algebraic

closure k̄. Once assigned, the base field is used consistently for the whole chapter.

G denotes a connected reductive algebraic group over the base field. And X is

the corresponding homogeneous (spherical) G-variety. Group actions are supposed to

be right actions, thus the quotient is in terms of H\G, to distinguish, the difference

between two sets U and V is denoted by U − V instead of U\V . And the cardinality

of a set U is denoted by #U . For any algebraic group S, we use X (S) or X ∗
S to

denote the group of characters of S. The pairing between weights X ∗ and coroots X∗

(and also their combinations) of G is denoted by ⟨α∨, σ⟩ where α∨ the coroot of α

satisfying ⟨α∨, α⟩ = 2, σ can be a linear combination of roots.
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Chapter 2

Luna Data and Classification of

Spherical Varieties

In this part, the groups and varieties are defined over an algebraically closed field Ω

of characteristic 0.

2.1 Universal Cartan Group

Definition 2.1.1. Let G be a reductive algebraic group over Ω, the universal Car-

tan group is defined to be a torus A over Ω, such that for any chosen Borel subgroup

B, there is an isomorphism iB : B/N −→ A, where N is the unipotent subgroup of

B, satisfying the following property: for any other Borel subgroup B′ and the unique

morphism φ : B/N −→ B′/N ′ induced by the conjugation by an element g ∈ G (a

different choice of g induces the same isomorphism of the quotient), the following

diagram commutes
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B/N A

B′/N ′.

iB

φ
iB′

Recall the root datum defined for the pair (G, T ), where T is a maximal torus in

G.

Definition 2.1.2. Given a reductive group G and a maximal torus T ⊆ G, the root

datum of the pair (G, T ) is the quadruple Ψ = (X ∗
T ,ΦT , (X∗)T ,Φ

∨
T ), where

• X ∗
T = X ∗(T ) = Hom(T,Gm) is the free abelian group of characters of T ,

• ΦT ⊆ X ∗
T is the root system consisting of the nontrivial characters which appear

as eigencharacters in the adjoint representation of T in the Lie algebra g,

• (X∗)T = X∗(T ) = Hom(Gm, T ) is the dual of X ∗
T , the free abelian group of one

parameter subgroups of T ,

• Φ∨
T ⊆ (X∗)T is the root system consisting of the unique homomorphisms α∨ :

Gm −→ T corresponding to α ∈ Φ in the following way: let Tα = (kerα)◦, the

identity component of the kernel of α, and let Gα = (ZG(Tα))
′ be the derived

subgroup of the centralizer of Tα; Gα is a semi-simple group of rank 1 with

maximal torus a subgroup of T (thus isomorphic to SL2 or PSL2), and thus α∨

is defined to be the unique homomorphism Gm −→ Gα such that T = (Im α∨)Tα

and ⟨α∨, α⟩ = 2.

Furthermore, a choice of Borel subgroup B ⊆ G containing the chosen maximal torus

T induces a set of positive roots Φ+ ⊆ Φ together with a set of positive simple roots

S ⊆ Φ+.

And an isomorphism between two root data Ψ1 −→ Ψ2 is a quadruple of iso-

morphisms carrying (X ∗
1 ,Φ1, (X∗)1,Φ

∨
1 ) to (X ∗

2 ,Φ2, (X∗)2,Φ
∨
2 ) in a compatible way,
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precisely, an isomorphism ξ : X ∗
1 −→ X ∗

2 with Φ2 = ξ(Φ1), and the dual of its inverse

(ξ−1)∨ : (X∗)1 −→ (X∗)2 with Φ∨
2 = (ξ−1)∨(Φ∨

1 ).

Then we redefine the root datum on universal Cartan of a reductive group G.

Let B be a Borel subgroup of G and T ⊆ B be a maximal torus, there is an unique

isomorphism η(B,T ) : T −→ A factoring through B. Let η(B,T ) = iB ◦ ι where ι : T −→

B is the inclusion. Consider that T ∩N = {e} where e is the identity element in G.

Definition 2.1.3. Let A be the universal Cartan of G, choose T and B as above. Let

X ∗
A := X ∗(A), and (X∗)A := X∗(A). Then there are isomorphisms η∗ : X ∗

T −→ X ∗
A and

η∗ : (X∗)T −→ (X∗)A induced by the isomorphism η = η(B,T ). Let ΦA := η∗(ΦT ) and

Φ∨
A := η∗(Φ

∨
T ), then ΨA := (X ∗

A,ΦA, (X∗)A,Φ
∨
A) is a root datum, and η♭(B,T ) : ΨT −→

ΨA is an isomorphism of root data.

Furthermore, the image of the set of positive roots under η∗ can be defined as

positive simple roots SA := η∗(S).

To prove it is well defined, it suffices to show:

Proposition 2.1.4. Let B, B′ be two Borel subgroups of G, and T ⊆ B, T ′ ⊆ B′ be

two maximal tori, respectively. Then the following diagrams commute.

ΨT ΨA

ΨT ′

η♭(B,T )

φ♭

η♭(B′,T ′)

ST SA

ST ′ .

η♭(B,T )

φ♭

η♭(B′,T ′)

(2.1)

Proof. The root datum ΨA contains covariant and contravariant objects. Therefore,

the objects are investigated separately.

First consider the following diagram about the lattice of characters X ∗. There

is an element g ∈ G such that Int(g)(T ) = g−1Tg = T ′ and Int(g)(B) = B′ (Borel
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subgroups are conjugate, so are maximal tori). A different choice of such g induces

the same homomorphism T −→ T ′. (A different g′ = bg, b ∈ B, and furthermore,

b ∈ T ).

T

Gm A

T ′

Int(g)

η−1

(η′)−1

χ

χ′

This graph shows the relation (2.1) for the lattice of characters. As the diagram

commutes, the two characters of A defined through T and T ′ are identical. That is,

for χ = χ′ ◦ Int(g), η−1 ◦χ = (η′)−1 ◦χ′. And it does the same for the root system Φ.

A similar argument is valid also for cocharacters and the dual root systems.

Given an isomorphism of reductive groups h : G −→ G′, with the corresponding

isomorphism of their universal Cartan hA : A −→ A′, there is an induced isomorphism

h∗ : ΨA −→ ΨA′ , note that ΨA is defined for G and ΨA′ is defined for G′. And with a

Borel subgroup B ⊆ G chosen, let B′ = h(B), then there is a bijection h∗ : S −→ S ′

between the corresponding sets of positive simple roots.

Definition 2.1.5. Let G be a reductive algebraic group, and X be a spherical G-

variety. Let B ⊆ G be a Borel subgroup, and N ⊆ B its unipotent radical, X̊B be the

open B-orbit, and RX := X̊B/N . Then the universal Cartan group A of G acts on

RX via the isomorphism to B/N . Moreover, this action factors through the quotient

AX ≃ Bx\B/N of A, called the universal Cartan group of the spherical variety

X. The rank r of AX is called the (absolute) rank of the spherical variety X.

In the definition, a different choice of Bx does not affect AX , since the quotient

defined by Bx′ is conjugate to AX by an element of A, and A is abelian.
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2.2 Luna Datum

First we define spherical datum abstractly over a root datum Ψ (this is called an

augmented spherical system in [Lun01]) together with a set of positive simple roots

S.

Definition 2.2.1. Let Ψ be a root datum where the root system Φ is reduced (the

only scalar multiples of a root α ∈ Φ that belong to Φ are α itself and −α), with a

choice of the set S of the positive simple roots. The set of (Ψ, S)-spherical roots of

adjoint type, denoted by Σad(S), is the set of σ ∈ NS such that:

• either σ = α + β where α, β ∈ S are orthogonal (σ is said to be of type aa),

• or σ and its support set supp(σ) = {α ∈ S : σ =

α∈S

nαα, nα ̸= 0} is in the

following table:

type of support σ type of σ

A1 α a

A1 2α 2a

An, n ≥ 2
n

i=1

αi a(n)

Bn, n ≥ 2
n

i=1

αi b(n)

Bn, n ≥ 2 2
n

i=1

αi 2b(n)

B3 α1 + 2α2 + 3α3 b

Cn, n ≥ 3 α1 +


2
n−1
i=2

αi


+ αn c(n)

Dn, n ≥ 3


2
n−2
i=1

αi


+ αn−1 + αn d(n)

F4 α1 + 2α2 + 3α3 + 2α4 f

G2 2α1 + α2 g

G2 4α1 + 2α2 2g

G2 α1 + α2 g′
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We give alias to some spherical roots which may have more than 1 origins: d(2) = aa,

b(1) = a(1), 2b = 2a, and c(2) = b(2).

Let Σ(S) be the set of σ ∈ 1

2
NS, such that:

• either σ ∈ Σad(S),

• or 2σ ∈ Σad(S), σ ∈ X ∗, and 2σ is of type aa, b or d(n) where n ≥ 3. The

non-adjoint type spherical roots are called to be of type
1

2
aa =

1

2
d(2),

1

2
b or

1

2
d(n), respectively.

Definition 2.2.2. Given a root datum Ψ = (X ∗,Φ,X∗,Φ
∨) of reductive algebraic

group G with a set of positive roots S, a spherical datum associated to Ψ is a

quintuple (Sp,Σ,A ,Ξ, ρ) such that Sp ⊆ S, Σ is a linearly independent set of B-

weights which is a subset of Σ(S), Ξ is a free abelian subgroup of X ∗ containing Σ,

A is a finite set, and ρ : A −→ Ξ∨ is a map, satisfying the following axioms:

(A1) ∀ D ∈ A , ρ(D)(α) ≤ 1 for every α ∈ Σ, equality holds if and only if α ∈ S ∩Σ.

(A2) ∀ α ∈ S ∩ Σ, A (α) := {D ∈ A |ρ(D)(α) = 1} = {D+
α , D

−
α }, and ρ(D+

α ) +

ρ(D−
α ) = α∨.

(A3) A = ∪α∈S∩ΣA (α).

(Σ1) If 2α ∈ Σ∩ 2S, then
1

2
⟨α∨, β⟩ is a non-positive integer, ∀β ∈ Σ\{2α}. Further-

more, α ̸∈ Ξ and
1

2
⟨α∨, β⟩ is an integer for all β ∈ Ξ.

(Σ2) If α, β ∈ S are orthogonal and α+β belongs to Σ or 2Σ, then ⟨α∨, γ⟩ = ⟨β∨, γ⟩,

∀γ ∈ Ξ.

(S1) For all α ∈ Σ, there is a wonderful G variety X of rank 1 with Sp
X = Sp, and

ΣX = {α}.

(S2) ∀α ∈ Sp and β ∈ Ξ, ⟨α∨, β⟩ = 0.
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A spherical datum is denoted by L . The rank of L is the rank of Ξ as a Z-module.

The triplet (Ψ, S,L ) is called a Luna datum, denoted by Λ.

Remark. 1. This definition uses Definition 2.2.1. The list there is a full list is

obtained from the classification of the spherical varieties over Ω of rank 1. The

classification is given in [Akh83], and the list (including the non-adjoint part)

can be found in [Was96, Table 1].

2. According to [BP16, 1.4.1, Definition], a map ρ : ∆ −→ Ξ∨ can be defined

compatible with the map ρ. Let D ∈ ∆(α) for some α ∈ S, and let σ ∈ Ξ,

ρ(D)(σ) =


ρ(D)(σ) if D ∈ A ,

1
2
⟨α∨, σ⟩ if α ∈ S ∩ 1

2
Σ,

⟨α∨, σ⟩ otherwise.

This map is the same one as that mentioned in the last chapter.

Definition 2.2.3. Given Luna data Λ = (Ψ, S,L ) and Λ′ = (Ψ′, S ′,L ′), Λ and Λ′

are isomorphic if

• there is an isomorphism iR : Ψ −→ Ψ′ consisting of i∗ : X ∗ −→ (X ∗)′ and

i∗ : X∗ −→ X∗
′ , satisfying that i∗(Ξ) = Ξ′, i∗(Σ) = Σ′ and i∗(Sp) = (Sp)′,

• there is a bijection iA : A −→ A ′, such that ρ′ ◦ iA = i∗ ◦ ρ, i.e., the following

diagram commutes.

A Ξ∨

A ′ (Ξ′)∨

ρ

ρ′
iA i∗|Ξ

And the morphism i = (iR, iA) is called an isomorphism from Λ to Λ′.

The following definition gives the construction of a spherical datum from a given
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spherical G-variety X, or say, from a spherical pair (G,X).

Definition 2.2.4. Given a reductive group G and a spherical G-variety X, let B be

a Borel subgroup, N ⊆ B its unipotent radical, and X̊B be the open B-orbit. Let

AX be the universal Cartan of X, and let S be the set of positive simple roots of G

with respect to B, define

• ΞX := X ∗(AX),

• ∆X the set of B-stable prime divisors in X which are not G-stable, such divi-

sor D is called a color. Furthermore, for a positive simple root α ∈ S, define

∆X(α) = {D ∈ ∆X : DPα ̸= D,Pα is the parabolic subgroup determined by B and α},

and for S ′ ⊆ S, ∆X(S
′) =


α∈S′

∆X(α),

• let PX be the maximal parabolic subgroup of G preserving X̊B, and let Sp
X ⊆ S

be the positive simple roots of the Levi subgroup of PX . By [BP14], this set is

actually the set of α ∈ S, such that ∆X(α) = ∅,

• AX = ∆X(S ∩ ΣX),

• ρ◦X : ∆X −→ (ΞX)
∗ consists of D →→ vD|ΞX

, where vD is the valuation of Ω(X)∗

induced by the color D ∈ ∆X , and let ρX = ρ◦X |AX
,

• let V(X) be the cone of G-stable valuations of Ω(X)∗, and V(X)Ξ be the cone

of the valuations restricted on Ξ∗
X , and let V(X)∨ = {x ∈ ΞX ⊗ Q : ⟨x, v⟩ ≤

0,∀v ∈ V(X)} be the negative dual cone of V(X)Ξ. The minimal set of simple

elements in ΞX which spans V− is called the set of spherical roots is denoted

ΣX .

The quintuple LX := (Sp
X ,ΣX ,AX ,ΞX , ρX) is called the spherical datum of the spher-

ical G-variety X with respect to the choice of Borel subgroup B. It is indeed a

spherical datum according to [Lun01].

Remark. By definition, ∆X(α) contains at most 2 elements, and S ∩ ΣX = {α ∈ S :

#∆X(α) = 2}, Sp
X = {α ∈ S : ∆X(α) = ∅}.
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Given a spherical G-variety X, and two Borel subgroups B and B′, there is a

canonical isomorphism iB′,B : L(X,B) −→ L(X,B′) between the spherical data defined

for B and B′,respectively. Hence, up to an isomorphism, the spherical datum (thus

further the Luna datum) is defined independently of the choice of a Borel subgroup.

Definition 2.2.5. Let (G,X) and (G′, X ′) be two spherical pairs, an isomorphism

m : (G,X) −→ (G′, X ′) is an isomorphism of group actions, i.e., it is a pair (mG,mX),

where mG : G −→ G′ is an isomorphism of groups, and mX : X −→ X ′ is an

isomorphism of varieties, which makes the following diagram commute:

G×X X

G′ ×X ′ X ′

(mG,mX) mX

Given an isomorphism of spherical pairs m = (mG,mX) : (G,X) −→ (G′, X ′),

there is an induced isomorphism m∗ : Λ(G,X) −→ Λ(G′,X′) of their Luna data. The

isomorphism of corresponding root data and that of the sets of positive simple roots

are determined by the isomorphism of groups, according to the theory of algebraic

groups. To construct the isomorphism of spherical data, first take a Borel subgroup

B ⊆ G, with image B′ = mG(B) a Borel subgroup of G′. Consider that the universal

Cartan AX is isomorphic to the double quotient Bx\B/N for some x ∈ X̊B, and

for the universal Cartan AX′ = Bx′\B′/N ′, choose N ′ = mG(N), x′ = mX(x), and

Bx′ = StabB′(mX(x)). It turns out that Bx′ = mG(Bx) because of the compatibility

of mG and mX , where for b ∈ Bx, mG(b).mX(x) = mX(b.x) = mX(x). Hence the

isomorphism AX −→ AX′ is induced by mG|B.

Note that the existence of the induced isomorphism does not mean that spherical

datum is functorial, as it works only for isomorphisms.
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2.3 Classification over Ω

The following theorem gives the classification of homogeneous spherical G-varieties

based on the spherical data.

Theorem 2.3.1 ([Los09, Lun01, BP16]). Let L be a spherical datum over (Ψ, S)

where Ψ and S are the root datum and a set of positive simple roots of a reductive

algebraic group G. Then there is a homogeneous spherical G-variety X together with a

isomorphism λX : LX −→ L , and for any other such spherical G-variety X ′ and the

corresponding λX′ : LX′ −→ L , there is a G-equivariant isomorphism ϕ : X −→ X ′,

such that the following diagram commutes:

LX L

LX′

λX

ϕ∗
λX′

(2.2)

where ϕ∗ is the induced isomorphism of spherical data by ϕ.

Proof. This is a collection of the main results of [Los09], [Lun01], and [BP16].

The diagram 2.3 can be obtained from [Los09, 1, theorem], which shows the exis-

tence of a G-equivariant morphism between X1 and X2 from an isomorphism between

the corresponding Luna data. For the existence of a spherical variety corresponding

to a spherical datum, [Lun01] provides a reduction to the same result for wonderful

varieties, and proves the type A cases. [BP16] follows the same strategy and com-

pletes the proof by figuring out all unknown cases after considering the previous works

(see [BP16, 2.6, Section] for more details) according to the classification of primitive

spherical systems given by [Bra13].

The isomorphism ϕ mentioned in Theorem 2.3.1 is not unique for X and X ′.
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Proposition 2.3.2. Let AutG(X) be the group of G-equivariant automorphisms of

X, and A♯
X := {ι ∈ AutG(X) : ι preserves all B-stable divisors of X}. For each

ι ∈ A♯
X , the induced automorphism ι∗ of LX according to the previous theorem is

the identity morphism idLX
. Therefore, the isomorphsm of spherical varieties in the

previous theorem, given an isomorphism of the corresponding spherical systems, is

unique up to A♯
X .

Proof. A♯
X acts trivially on G, thus it acts trivially on ΨG and SG. By the definition of

LX (Definition 2.2.4), the elements in Sp
X , ΣX and ΞX are fixed by AutG(X) (because

they can be considered as linear combinations of positive simple roots, which are fixed

by AutG(X)). Thus A♯
X acts trivially on AX , which induces that the A♯

X-action on

ρX is also trivial.

Remark. An element ι ∈ A♯
X pre-composed with a choice of ϕ determines all the

choices of G-isomorphisms X −→ X ′ making diagram 2.2 commute.

Theorem 2.3.3. Let Λ = (Ψ, S,L ) be a Luna datum. Then there exists a ho-

mogeneous spherical pair (G,X) together with an isomorphism µ : Λ(G,X) −→ Λ.

Moreover, for any other such pair (G′, X ′) with µ′, there is an isomorphism of spher-

ical pairs m = (mG,mX) : (G,X) −→ (G′, X ′) such that the induced isomorphism

m∗ : Λ(G,X) −→ Λ(G′,X′) makes the following diagram commute:

Λ(G,X) Λ

Λ(G′,X′)

µ

m∗
µ′

(2.3)

Proof. This is a generalization of Theorem 2.3.1.
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According to the theory of reductive groups, the group G can be constructed when

the root datum is given, and then Theorem 2.3.1 can be applied to find the spherical

pair (G,X).

Furthermore, an isomorphism mG : G → G′ can be given for any other spherical

pair (G′, X ′) whose Luna datum is isomorphic to Λ, which makes X ′ a spherical G-

variety (G acts on X through the isomorphism to G′), thus Theorem 2.3.1 implies

an isomorphism (idG,mX) : (G,X) −→ (G,X ′) satisfying diagram 2.3 for spherical

pairs (G,X) and (G,X ′). Finally, composed with (mG, idX), the isomorphism m =

(mG,mX) is obtained. And the following diagrams commute.

(G,X) Λ(G,X) Λ

(G,X ′) (G′, X ′) Λ(G,X′) Λ(G′,X′)

(idG,mX)

(mG, idX)

µ

(idG,mX)∗

(mG, idX)∗

µ◦

µ′
m∗

m

(2.4)

Remark. There are various choices of m : (G,X) −→ (G′, X ′) making the diagram

2.3 commute. These isomorphisms can be identified with automorphisms of (G,X)

which induce The group of such isomorphisms is denoted by SX , and more details

will be discussed in next chapter.
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Chapter 3

Automorphisms of Spherical Varieties

Let k be a field of characteristic 0, G be a connected reductive algebraic group defined

over k, and X be a homogeneous spherical G-variety over k. Denote the Galois group

Gal(k̄/k) by Γ.

Starting from a spherical G-variety X defined over k, which is, a pair of k-forms

(G,X) where G is quasi-split(G has a Borel subgroup B defined over k), and X(k) ̸=

∅, the target is to find out any other possible k-forms X ′ of X which is spherical

under the same k-form of the group G.

By [Ser97], the k-forms of a k-variety X are classified by the first Galois cohomol-

ogy of its automorphisms H1(Γ,Aut(Xk̄)).

Before going into the details of first Galois cohomology, it is necessary to investi-

gate the automorphisms of spherical Gk̄-varieties, and from now on, unless specified,

the base change Gk̄ is denoted by G, and similarly Xk̄ by X.

3.1 Definitions

Let G be a reductive algebraic group over k̄, X be a homogeneous spherical G-variety,

as stated above.
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Definition 3.1.1. An automorphism of a spherical pair (G,X) is an isomorphism

of spherical pair (G,X) to itself.

Recall that the isomorphisms between spherical pairs are defined in Definition

2.2.5.

Definition 3.1.2. An automorphism σ ∈ Aut(G,X) is called inner if it is of the

form (g0, x) →→ (g−1g0g, xg) for some g ∈ G. The group of inner automorphisms of

(G,X) are denoted by Inn(G,X).

By the definitions above, there is an injection: Inn(G,X) −→ Aut(G,X), thus

Definition 3.1.3. The cokernel of the injection Inn(G,X) −→ Aut(G,X) is called

the group of outer automorphisms, denoted by Out(G,X).

Hence the following sequence is exact:

1 Inn(G,X) Aut(G,X) Out(G,X) 1

Consider the automorphism group of G, an automorphism σ ∈ Aut(G,X) induces

σG ∈ Aut(G). Moreover, if σ is an inner automorphism, then the corresponding σG

takes any group element to its g-conjugation for some group element g ∈ G, hence

σG ∈ Inn(G). From diagram chasing, there is a map Out(G,X) −→ Out(G) such

that the following diagram commutes:

1 Inn(G,X) Aut(G,X) Out(G,X) 1

1 Inn(G) Aut(G) Out(G) 1

pi pa po
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Consider that ker pi = Z(G)/StabZ(G)(x) for an x ∈ X (a different choice x′ makes

it Z(G)/StabZ(G)(x
′), however StabZ(G)(x

′) = g−1(StabZ(G)(x))g for some g ∈ G,

which is just StabZ(G)(x)). And ker pa = AutG(X), the group of automorphisms of

(G,X) whose restriction on G is identity.

In particular, when X = H\G is a homogeneous spherical G-variety, with H

the stabilizer of a point, AutG(X) ≃ NG(H)/H. For any point x ∈ X, represented

in terms of Hg with g ∈ G, nH ∈ AutG(X) acts by nH.Hg = nHg = H(ng).

Furthermore, the stabilizer of x under this action is trivial.

1 1

1 ker pi AutG(X)

1 Inn(G,X) Aut(G,X) Out(G,X) 1

1 Inn(G) Aut(G) Out(G) 1

pi pa po

(3.1)

The diagram above is exact.

3.2 Automorphisms of Luna Data

According to Definition 2.2.2 and Definition 2.2.3, an automorphism of a Luna datum

Λ = (Ψ, S,L ) is determined by σ = (σX ∗ , σA ), an isomorphism of the pair (X ∗,A )

such that σX ∗ preserves Φ, S, Sp, Σ, Ξ as subsets, and σA satisfies that σA (A (α)) =

A (σX ∗(α)), and σX ∗ ◦ ρ ◦ σ−1
A = ρ. And all the axioms in the definition of Λ remain

valid in the image of the automorphism.
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For each automorphism σ ∈ Aut(G,X), there is a corresponding automorphism

of the universal Cartan group σC : A −→ A which implies an automorphism on the

Luna data of X. Hence there is a morphism α : Aut(G,X) −→ Aut(Λ(G,X)). In fact,

for any σ ∈ Aut(G,X), there is an inner automorphism τ ∈ Inn(G,X) such that τ ◦σ

preserves the chosen Borel subgroup B and maximal torus T . Then the automorphism

of Λ(G,X) induced by σ is defined by the automorphism induced by τ ◦σ. If a different

inner automorphism τ ′ is chosen which also preserves the chosen B and T , then

τ−1 ◦ τ ′ = Int(b) for some b ∈ B, which acts trivially on ΨG, SG and fixes all the

colors (as they are B-stable). Hence, the morphism α : Aut(G,X) −→ Aut(Λ(G,X))

is well defined explicitly in this way.

The morphism α is an epimorphism (surjective) according to Theorem 2.3.3. Let

η be an automorphism of Λ(G,X), where Λ(G,X) is the Luna datum of (G,X), the

theorem shows that there is an isomorphism (G,X) −→ (G,X) inducing η, hence,

Proposition 3.2.1. α : Aut(G,X) −→ Aut(Λ) is surjective.

Proposition 3.2.2. The kernel of α is ker(α) = SX = A♯
X ×Z(G) Inn(G,X) (recall

that SX is first mentioned in the remark after Theorem 2.3.3), where Z(G) ⊆ G →

Inn(G,X) and Z(G) maps into A♯
X through a quotient. Thus the following sequence

is exact,

1 A♯
X ×Z(G) Inn(G,X) Aut(G,X) Aut(Λ(G,X)) 1

(3.2)

Proof. A♯
X is defined in Proposition 2.3.2. A♯

X acts trivially on both G and the set

AX , hence A♯
X ⊆ kerα. An inner automorphism ι ∈ Inn(G,X) acts on ΨG through an

inner automorphism of G, thus the action is trivial by the theory of reductive groups.

Moreover, by previous discussions, ι acts on LX the ι by ι ◦ τ with τ ∈ Inn(G,X)
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to fix a Borel subgroup, thus acts trivially on all colors. Therefore, Inn(G,X) acts

trivially on Λ(G,X).

Then for any automorphism σ ∈ ker(α), there is a σ ∈ Inn(G,X) such that

σs = σi ◦σ acts trivially on G and σs ∈ ker(α) as well. Hence σs ∈ AutG(X). Also, σs

acts trivially on AX , so σs ∈ A♯
X . That is, any element in ker(α) is the composition

of an element in A♯
X with an inner automorphism of the pair (G,X), and vice versa.

Finally, the intersection of A♯
X and Inn(G,X) is isomorphic to StabZ(G)(x).

There is a morphism SX −→ Inn(G) through Inn(G,X). And by definition of

automorphisms of Luna data, there is a morphism Aut(G,X) −→ Aut(ΨG). Thus

there is diagram similar to diagram 3.1,

Proposition 3.2.3. Let AutρX (AX) be the subgroup of Aut(Λ(G,X)) consisting of

the automorphisms whose actions on ΨG, SG, Sp
X , ΣX , and ΞX are trivial (thus the

only nontrivial parts are the action on AX , permitting elements whose image under ρ

coincides. The following diagram commutes and all the rows and columns are exact.

1 1 1

1 A♯
X AutG(X) AutρX (AX) 1

1 SX Aut(G,X) Aut(Λ(G,X)) 1

1 Inn(G) Aut(G) Aut(ΨG) 1
s

(3.3)

The bottom short exact sequence splits, with the splitting morphism s.

Proof. From diagram 3.1 and the discussions above, the second and the third rows
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are exact and the there is a morphism between the short exact sequences. Moreover,

the splitting morphism of the third row is from the theory of reductive groups. Then

it is sufficient to show that A♯
X and AutρX (AX) are the corresponding kernels. The

rest exactness and commutativity comes from the Snake lemma.

SX −→ Inn(G) factors through Inn(G,X), thus the kernel is ZZ(G)(x)×Z(G)A♯
X =

A♯
X .

For Aut(Λ(G,X)) −→ Aut(ΨG), as the kernel acts trivially on ΨG, it also acts

trivially on Sp
X , ΣX , ΞX and ρX . Hence the kernel consists automorphisms of AX

while fixing ρX . (It is nontrivial since there can be colors with the same valuation.)

Furthermore, consider the case that a Borel subgroup B and a pinning Pin (also

known as épinglage) is given. A pinning is a system of isomorphisms {uα : α ∈ SG}

where uα : Ga −→ Uα is an isomorphism, for each positive simple root α, from the ad-

ditive group Ga to the unipotent subgroup Uα corresponding to α. An automorphism

of Luna datum Λ(G,X) induces an automorphism of ΨG. And an automorphism of ΨG

induces a unique automorphism of the corresponding G, with Borel subgroup B and

pinning Pin fixed. Thus any B-orbit remains to be a B-orbit. Hence the unique open

B-orbit X̊B is fixed. Let Aut(G,B,X, X̊B,Pin) denote the set of automorphisms of

(G,X) fixing a Borel subgroup B (thus the open B-orbit X̊B is automatically fixed),

and a pinning Pin, then there is a homomorphism

α′ : Aut(G,B,X, X̊B,Pin) −→ Aut(Λ(G,X)).

Proposition 3.2.4. With given B, X̊B and Pin, the homomorphism α′ is surjective

and with a kernel kerα′ = A♯
X , i.e., the following sequence is exact.

0 A♯
X Aut(G,B,X, X̊B,Pin) Aut(Λ(G,X)) 0

(3.4)
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Proof. First consider the exact sequence 3.2, the homomorphism α : Aut(G,X) −→

Aut(Λ(G,X)) is surjective, then each fiber of α admits an action of Inn(G,X). Hence

there is an automorphism of (G,X) fixing the chosen B and Pin, thus it is an element

of Aut(G,B,X, X̊B,Pin). ker(α′) = ker(α) ∩Aut(G,B,X, X̊B,Pin), hence ker(α′) =

A♯ as ξ ∈ Inn(G,X) does not preserve B or Pin unless ξ is the image of Z(G).

Corollary 3.2.5. If A♯
X is trivial, then Aut(G,B,X, X̊B,Pin) is isomorphic to Aut(Λ(G,X)).

That is, there is a canonical lifting of any ξ ∈ Aut(Λ(G,X)) to Aut(G,B,X, X̊B,Pin).

3.3 Spherical Closedness

Definition 3.3.1. A spherical system is a spherical datum L = (Sp,Σ,A ,Ξ, ρ)

where Ξ = ⟨Σ⟩Z is generated by the set of spherical roots Σ as a Z-module. A

spherical system is determined by (Sp,Σ,A , ρ) and denoted by S .

Remark. Since Ξ = ⟨Σ⟩Z, the map ρ is determined by the Cartan pairing. Spherical

systems are used to classify wonderful varieties (the homogeneous spherical varieties

having a wonderful compactification).

An automorphism of S as a Luna datum is considered to be an automorphism of

the spherical system S .

According to Theorem 1.2 in [Kno96], let X be a homogeneous spherical G-variety,

there is a canonical inclusion Hom(ΞX/⟨ΣX⟩Z, k̄∗) ↩→ AutG(X), in the sense that for

each t ∈ Hom(ΞX/⟨ΣX⟩Z, k̄∗), the corresponding G-automorphism ϕt of X acts on

each element fχ ∈ Ω(X)(B) with eigencharacter χ ∈ ΞX by ϕt(fχ) = t(χ)fχ. Let T

denote Hom(ΞX/⟨ΣX⟩Z, k̄∗) as a subgroup of AutG(X).

Proposition 3.3.2. T ⊆ A♯
X .

Proof. According to [PB87, 5.2, Corollaire], AutG(X) is diagonalizable. Moreover,
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[Kno96, 5.5, Theorem] shows that AutG(X) is a subgroup of Hom(ΞX , k
×), thus

X (AutG(X)) can be considered as a quotient of ΞX .

As T and A♯
X are subgroups of AutG(X), there are homomorphisms πT : ΞX �

X (T) and πA♯ : ΞX � X (A♯
X). By definition of T, kerπT = ⟨ΣX⟩Z. And by [Kno96,

7.5, Theorem], there is a root system ∆♯
X ⊆ ΞX , such that A♯

X =


α∈∆♯
X

kerAX
α. Thus

kerπA♯ = ⟨∆♯
X⟩Z as characters of universal Cartan AX whose restriction on A♯

X is

trivial.

As ∆♯
X is a root system on the lattice ⟨ΣX⟩Z, ⟨∆

♯
X⟩Z ⊆ ⟨ΣX⟩Z. Therefore, T ⊆

A♯
X .

Proposition 3.3.3. Let Y := A′\X, where A′ ⊆ A♯
X , then A♯

Y = A′\A♯
X .

Proof. Let H = StabG(x) be the stabilizer of x ∈ X, by [Kno96, 7.4, Corollary],

A♯
X = H\H♯ for some H♯ ⊆ NG(H) which acts trivially on X (H). And let A′ = H\H ′

with H ′ ⊆ H♯, then it suffices to show that (H ′)♯ = H♯.

Let H0 = [H,H], denote D := H0\H, D′ := H0\H ′ and D♯ := H0\H♯. First we

show D♯ is diagonalizable, and so is D′ ⊆ D♯.

Let D0 be the connected component of D containing identity, and H1 ⊆ H be its

preimage. [H : H1] is finite, so H1 is spherical. H♯ ⊆ NG(H1), then D0\D♯ = H1\H♯

is diagonalizable.

D♯ is linear, thus can be embedded into some GLN . Let L = Z (D0), it is a

Levi subgroup as D0 is a torus. L is a Levi subgroup, and in particular a connected

reductive subgroup, containing D♯, and D0 ⊆ Z(L). As D0\D♯ is diagonalizable, the

image of D♯ in L/Z (L) is diagonalizable (contained in a maximal torus). Therefore,

D♯ is contained in a maximal torus of L. Thus D♯ is diagonalizable, and so is D′.

Then, let R′ := X (H ′) = X (D′) and R := X (H) = X (D), R is a quotient of R′.

By definition, (H ′)♯ acts trivially on R′, and also acts trivially on R. Hence (H ′)♯

preserves H = {h ∈ H ′ : χ(h) = 1,∀χ ∈ ker(R′ → R)}. Therefore, by [Kno96,
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7.4, Corollary], as (H ′)♯ acts trivially on X (H), (H ′)♯ = H♯, thus A♯
Y = H ′\H♯ =

A′\A♯
X .

The following corollary shows a special case.

Corollary 3.3.4. For Z := X/A♯
X , A♯

Z = {1}.

Corollary 3.3.5. Let Z be X/A♯
X , same as that in the previous corollary, then ΞZ =

⟨ΣZ⟩Z.

Consider TZ ⊆ A♯
Z , hence TZ = ΞZ/⟨ΣZ⟩Z = {1}.

Definition 3.3.6. A spherical G-variety X is called spherically closed if A♯
X is

trivial. The spherical G-variety Z = X/A♯
X is called the spherical closure of X.

Proposition 3.3.7. Λ(G,Z) is a spherical system, and Aut(G,B,Z, Z̊B,Pin) is iso-

morphic to Aut(Λ(G,Z)), that is, for any automorphism of Λ(G,Z), there is a canonical

automorphism of the spherical pair (G,Z) stabilizing B, Z̊B and Pin.

The first statement is directly from Corollary 3.3.5, then consider Proposition 3.3.3

and 3.2.4, as A♯
Z is trivial, Aut(G,B,Z, Z̊B,Pin) −→ Aut(Λ(G,Z)) is an isomorphism,

and Λ(G,Z) is in fact a spherical system.
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Chapter 4

k-Forms of Spherical Varieties

Let k be a field of characteristic 0, and k̄ be its algebraic closure (also its separable

closure as k is a perfect field), with Galois group Γ.

In this chapter, the k-forms of spherical varieties will be discussed. With the

condition that G is a quasi-split reductive group over k, the k-forms of spherically

closed homogeneous spherical G-varieties can be described by combinatorial data.

4.1 Galois Cohomology

This section is devoted to recalling the definitions and basic properties of Galois

cohomology:

Definition 4.1.1. Given a group H (not necessarily abelian) with a left group action

by Γ, the zeroth group cohomology of Γ with coefficients in H is the subgroup of

fixed elements {h ∈ H|γ(h) = h,∀γ ∈ Γ}, denoted by H0(Γ,H) := HΓ. And the first

group cohomology of Γ with coefficients in H is the set of equvialence classes of

the cocycles C1 = {f : Γ −→ H | f(γ1γ2) = f(γ1)[γ1.(f(γ2))] } under the equivalence

relation that f ∼ g if there exists c ∈ H such that f(γ) = c−1g(γ)(γ.c), denoted by

H1(Γ,H) := C1/ ∼. If Γ and H are topological groups, and Γ acts continuously, then
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the first continuous group cohomology H1
c(Γ,H) are equivalent classes of continuous

cocycles in C1
c = {f ∈ C1 : f is continuous}.

Definition 4.1.2. Let Γ be the Galois group Gal(k̄/k), and H be a group with a

continuous Γ-action on it. Then define the i-th Galois cohomology Hi(k,H) (i = 0

or 1) to be the continuous group cohomology Hi
c(Γ,H), respectively, with the given

Γ-action.

Lemma 4.1.3. Given a variety X defined over k, and Xk̄ = X ×Spec(k) Spec(k̄) its

base change to k̄. Then the Galois group Γ acts on Xk̄, hence acts on Aut(Xk̄).

For γ ∈ Γ, the action of γ on Xk̄ is given by the universal property of fiber

products, shown in the following diagram:

Xk̄ Xk̄

X Spec(k̄) Spec(k̄)

Spec(k)

γ

γ

And this action induces a Γ-action on Autk̄(Xk̄) by conjugation, i.e., (γ.f)(x) =

γ(f(γ−1x)) where f ∈ Autk̄(Xk̄) and γ ∈ Γ. And without special emphases, Aut(Xk̄)

will be used to represent Autk̄(Xk̄), the k̄-morphisms of Xk̄.

Definition 4.1.4. Given an algebraic variety X defined over k, a variety Y over k is

called a k-form of X if Xk̄ is isomorphic to Yk̄ as k̄-varieties.

It is known that the k-forms of a variety X over k can be classified by the first

Galois cohomology of Aut(Xk̄), as stated in the following theorem.
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Theorem 4.1.5. Given a variety X defined over k, there is a bijection between

H1(k,Aut(Xk̄)) and the set of k-forms of X up to k-isomorphisms, and X is mapped

to the canonical point in H1(k,Aut(Xk̄)). Here X and X ′ are equivalent if there is

a k-isomorphism m : X −→ X ′ and the k̄-isomorphism is the lifting of m via the

universal property of the base change.

Proof. For any k-form X ′ of X, the isomorphism Xk̄ −→ X ′
k̄

implies a Galois action

on Xk̄ and on Aut(Xk̄). Let µ′ : Γ −→ Aut(Xk̄) be the induced action from X ′, and

µ the original action of Γ on Xk̄.(Thus µ and µ′ are group homomorphisms.)

Let f(γ) = µ′(γ)µ(γ−1), then

f(γ1γ2) = µ′(γ1γ2)µ((γ1γ2)
−1)

= µ′(γ1)µ
′(γ2)µ(γ

−1
2 )µ(γ−1

1 )

= µ′(γ1)µ(γ
−1
1 )µ(γ1)µ

′(γ2)µ(γ
−1
2 )µ(γ−1

1 )

= f(γ1)µ(γ1)f(γ2)µ(γ
−1
1 )

= f(γ1)[γ1.f(γ2)].

Hence f is a cocycle according to Definition 4.1.1.

For two k-forms X1 and X2 of X, if they are k-isomorphic to each other, that

is, there is a morphism m : X1 −→ X2 over k, and the induced isomorphism m̄ :

(X1)k̄ −→ (X2)k̄ brings the Γ action on (X1)k̄ to that on (X2)k̄. That is, let µi :

Γ −→ Aut((Xi)k̄) for i = 1, 2, then µ1(γ) = m̄−1µ2(γ)m̄. Let µ̃i = m−1
i µimi be the

induced Galois action on Xk̄, where mi : Xk̄ −→ (Xi)k̄ is the k̄-isomorphism for each
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(Xi)k̄, and let fi(γ) = µ̃i(γ)µ(γ
−1). Then

f2(γ) = µ̃i(γ)µ(γ
−1)

= m−1
2 µ2(γ)m2µ(γ

−1)

= m−1
2 m̄−1µ1(γ)m̄m2µ(γ

−1)

= m−1
2 m̄−1m1µ̃1(γ)m

−1
1 m̄m2µ(γ

−1)

= [(m−1
1 m̄m2)

−1µ̃1(γ)µ(γ
−1)][µ(γ)(m−1

1 m̄m2)µ(γ
−1)]

= (m−1
1 m̄m2)

−1f1(γ)[γ.((m
−1
1 m̄m2))].

Therefore, f1 ∼ f2 as cocycles, thus [f1] = [f2] in H1(k,Aut(Xk̄)).

On the other hand, let f ∈ C1, and µ the Γ-action on Xk̄ as above, then fµ :

Γ −→ Aut(Xk̄) is a homomorphism by the previous calculation, thus it is a Γ action

on Xk̄. Hence the variety fixed by Γ X ′ is a k-form of X.

For two maps f1 and f2 equivalent by c ∈ Aut(Xk̄), f2µ = c−1f2(γ.c)µ = c−1(f2µ)c

provides two γ actions which are conjugate to each other, hence the k-forms they

provide are k-isomorphic to each other.

4.2 Forms of Spherical Varieties

Definition 4.2.1. A k-form of the spherical pair (G,X) is a k-form of the action

morphism G×X −→ X, i.e., a pair (G′, X ′) where the reductive algebraic group G′

over k acts on the variety X ′ over k, such that there exist k̄-isomorphisms tG : Gk̄ −→
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G′
k̄

and tX : Xk̄ −→ X ′
k̄

making the following diagram commutes:

Gk̄ ×Xk̄ Xk̄

G′
k̄
×X ′

k̄
X ′

k̄

tG × tX tX

The conditions above can be considered as the condition of an k̄-isomorphism between

the actions.

Theorem 4.2.2. Given a spherical pair (G,X) defined over k, then the k-forms of

a spherical pair (G,X) are classified by H1(k,Aut(Gk̄, Xk̄)) up to k-isomorphisms.

This is a direct conclusion of Theorem 4.1.5.

Further, the forms corresponding to the Galois actions on the Luna data will be

investigated.

We start from the following diagram induced from 3.3.

Lemma 4.2.3. Given a spherical pair (G,X) defined over k, by applying the coho-

mology long exact sequence to the diagram 3.3, the following diagram can be obtained.

Aut
ρXk̄ (AXk̄

)Γ H1(k,A♯
Xk̄

) H1(k,AutGk̄(Xk̄)) H1(k,Aut
ρXk̄ (AXk̄

))

Aut(ΛXk̄
)Γ H1(k,SXk̄

) H1(k,Aut(Gk̄, Xk̄)) H1(k,Aut(Λ(Gk̄,Xk̄)
))

Aut(ΨGk̄
)Γ H1(k, Inn(Gk̄)) H1(k,Aut(Gk̄)) H1(k,Aut(ΨGk̄

)) 1

α

(4.1)

This diagram depends on the choice of the k-form (G,X).

Remark. Since non-abelian first group cohomogolies are considered are considered as
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pointed sets, the exactness of a sequence

A B C

at B is defined in the sense that the fiber containing the base point b ∈ B is the

image of A. Thus the previous diagram depends on the choice of original spherical

pair (G,X) defined over k.

This diagram can be further expanded to left, but only this part will be used.

Proof. For each row in Diagram 4.1, consider that the “long exact sequence” in the

non-abelian Galois cohomology case which just involves H0(k, ∗) and H1(k, ∗), thus

the row sequences are exact. Similarly, each column sequence is exact. However,

as the original columns in Diagram 4.1 are not short exact, the exactness for each

column in the above diagram only holds at the middle point.

Furthermore, in the last row there is a split morphism of the epimorphism (surjec-

tive map) H1(k,Aut(Gk̄)) −→ H1(k,Aut(ΨGk̄
)), this is from the theory of reductive

algebraic groups over k. Details can be found in [Ser97] and [Spr79].

The diagram commutes since the base diagram 3.1 commutes.

In the rest of the discussion, only the k-form of a particular kind of homogeneous

spherical varieties will be discussed.

Recall that a connected reductive group G over k is called split if it has a maximal

torus which is split over k.

G is called a quasi-split reductive group over k if there is a Borel subgroup B ⊆ G

defined over k.

Theorem 4.2.4. Let G be a connected reductive group defined over k, and G is quasi-

split. Let X be a spherically closed homogeneous spherical G-variety, then there is a bi-
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jection between the set of k-forms (G′, X ′) with quasi-split G′, and H1(k,Aut(Λ(Gk̄,Xk̄)
)).

The k-form (G′, X ′) is unique up to k-isomorphisms.

By Proposition 3.3.2, T is trivial, so ΣXk̄
spans ΞXk̄

, thus the spherical datum of

Xk̄ is in fact a spherical system.

Proof. By Definition 3.3.6, A♯
Xk̄

is trivial, thus the first column of the diagram 3.3

1 A♯
Xk̄

SXk̄
Inn(Gk̄) 1

implies that SXk̄
is isomorphic to Inn(Gk̄). The homomorphism Inn(Gk̄) −→ SXk̄

maps Int(g0), the inner automorphism of Gk̄ by g0 ∈ Gk̄, to the inner automorphism

of (Gk̄, Xk̄) given by (g, x) →→ (g−1
0 gg0, xg0).

Then the sequence 3.2 becomes

1 Inn(Gk̄) Aut(Gk̄, Xk̄) Aut(Λ(Gk̄,Xk̄)
) 1.

π

(4.2)

Thus there is an exact sequence of cohomologies(as pointed sets):

0 (Inn(Gk̄))
Γ (Aut(Gk̄, Xk̄))

Γ (Aut(Λ(Gk̄,Xk̄)
))Γ

H1(k, Inn(Gk̄)) H1(k,Aut(Gk̄, Xk̄)) H1(k,Aut(Λ(Gk̄,Xk̄)
)).δ H1(π)

(4.3)

By Proposition 3.2.4, m : Aut(Gk̄, Bk̄, Xk̄, (X̊k̄)Bk̄
,Pin) −→ Aut(Λ(Gk̄,Xk̄)

) is an

isomorphism. As i : Aut(Gk̄, Bk̄, Xk̄, (X̊k̄)Bk̄
,Pin) ↩→ Aut(Gk̄, Xk̄) is an inclusion,

there is a homomorphism u = i ◦m−1 : Aut(Λ(Gk̄,Xk̄)
) −→ Aut(Gk̄, Xk̄), which makes

the sequence 4.2 right split.

For each class of cocycles [s] ∈ H1(k,Aut(Λ(Gk̄,Xk̄)
)), H1(u)([s]) corresponds to
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the k-isomorphism class of a k-form (G[s], X [s]) of (G,X). The induced Γ action on

(G
[s]

k̄
, X

[s]

k̄
) preserves B[s]

k̄
, (X̊ [s]

k̄
)
B

[s]

k̄

, and Pin. Thus G[s] admits a Borel subgroup B[s]

defined over k, which makes G[s] quasi-split.

To show the uniqueness, let (G1, X1) and (G2, X2) be two k-forms of (G,X) with

G1 and G2 quasi-split, and lives on the same fiber (H1(π))−1([s]). Without loss of

generality, let (G1, X1) be the k-form given by the class H1(u)([s]).

In the following discussion in this proof, denote (G1, X1) by (G,X) (now G is just

quasi-split, not the same form in the statement of the theorem, which is split) and

(G2, X2) by (G′, X ′). Then from the exactness of the sequence

H1(k, Inn(Gk̄)) H1(k,Aut(Gk̄, Xk̄)) H1(k,Aut(Λ(Gk̄,Xk̄)
)),

H1(ι) H1(π)

(G′, X ′) lives on the fiber of H1(π) over the base point of H1(k,Aut(Λ(Gk̄,Xk̄)
)), thus in

the image of H1(ι). Let [ξ] ∈ H1(k, Inn(Gk̄)) twisting G to G′, via the k̄-isomorphism

m : (G′
k̄
, X ′

k̄
) −→ (Gk̄, Xk̄).

As G and G′ are both quasi-split, let B and B′ be their Borel subgroups over

k. m(B′
k̄
) is a Borel subgroup in Gk̄, thus conjugate to Bk̄. So there is an inner

automorphism of Gk̄ (conjugating by some element g ∈ Gk̄) post-composed to m by

which induces a k̄-isomorphism mapping B′
k̄

to Bk̄. However, twisting by such an

inner automorphism gives a cocycle which is equivalent as before. Hence without loss

of generality, m(B′
k̄
) = Bk̄.

So [ξ] is valued in NGk̄/Z(Gk̄)
(Bk̄/Z(Gk̄)) = Bk̄/Z(Gk̄). Thus to show the unique-

ness, it suffices to show that H1(k,Bk̄/Z(Gk̄)) = 1.

Let U = Ru(B/Z(G)) ≃ Ru(B) be the unipotent radical of B (also of B/Z(G))

over k, and let T = (B/Z(G))/U which is a k-torus. U is k-split, and admits

a sequence of normal subgroups Ui such thatU0 = U , Un = {e} for some n, and
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Ui/Ui+1 ≃ Ga. Thus H1(k, Uk̄) is trivial ([Ser97, Chapter III, Proposition 6]), and it

is sufficient to show H1(k, T ) is trivial.

The quotient torus T is ResR/kGm, the restriction of scalar (a.k.a. Weil restric-

tion) of (Gm)/R to k for a finite étale k-algebra R. Then by Hilbert’s theorem

90, H1(k,ResR/kGm) = {1}, which induces the uniqueness of the choice of k-form

(G[s], X [s]) for [s] ∈ H1(Aut(k,Λ(Gk̄,Xk̄)
)) where G[s] is quasi-split.

A♯
Xk̄

admits a Γ-action inherited from that on AutGk̄(Xk̄), which makes it possible

to define A♯
X over k. Moreover, the Γ-action on A♯

Xk̄
is compatible with that on Xk̄,

thus A♯
X acts on X.

Corollary 4.2.5. Given a homogeneous spherical pair (G,X), the spherical closure

Z := X/A♯
X of X can be defined over k, thus the k-forms (G′, Z ′) of (G,Z) is given

by Theorem 4.2.4.

4.3 Examples

Let k be a field of characterisitc 0. In this section, three examples will be calculated.

Given a split k-form (G,X), the other k-forms (G′, X ′) with quasi-split G′, up to

k-isomorphisms, are assigned to each cocycle class in H1(k,Aut(ΛGk̄,Xk̄
)), with Γ acts

on Aut(ΛGk̄,Xk̄
) trivially (as G is split), and write this action as a left action. Some

of the corresponding Luna data will be mentioned in the next chapter.

The Galois cohomology can be calculated by the following result on group coho-

mology.

Proposition 4.3.1. Let Γ be a group, and A be a group with a trivial Γ-action, then

H1(Γ, A) = Hom(Γ, A)/A-conj.
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Particularly, if A is abelian, H1(Γ, A) = Hom(Γ, A).

Proof. Let f be a 1-cocycle, then f(γ1 ◦ γ2) = f(γ1) · γ1(f(γ2)) = f(γ1) · f(γ2) as Γ

acts on A trivially. Thus the set of 1-cocycles is Hom(Γ, A).

By definition, two cocycles f and g are equivalent if there is an element a ∈ A

such that f(γ) = a−1 · g(γ) · (γa) = a−1 · g(γ) · a.

4.3.1 The First Example

Let G = SL2, and X = P1 × P1 − (P1)diag, G acts on X diagonally (on the two P1

components separately). The generic stabilizer is T , the split maximal torus.

The Luna datum corresponds to Casea-A-1.. The automorphism group is Aut(Λ) =

Z/2Z.

Proposition 4.3.2. The first Galois cohomology H1(k,Z/2Z) with trivial Galois ac-

tion on Z/2Z is the pointed set

{k} ∪ {E : quadratic extensions of k},

with the base point k.

Proof. By Proposition 4.3.1, a cocycle class is a homomorphism f : Γ −→ Z/2Z =

{1, ξ}.

If the image of f is {1}, then ker(f) = Γ, the fixed field of k̄ by Γ is k. It is the

base point since a trivial homomorphism induces the same action as the original one

on Z/2Z.

Otherwise, f is surjective. So ker(f) ⊆ Γ is a subgroup of index 2, and any such

subgroup has a fiexed field E of k̄ which is a quadratic extension of k.

The base point k ∈ H1(k,Aut(Λ)) corresponds to the split form of (G,X) where

we started with.
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For a quadratic extension E of k, denote the corresponding spherical pair over k by

(G′, X ′), the induced Galois group acts through the automorphism group Z/2Z, which

means that the pair (G′, X ′) is split over E. Let the Galois group Gal(E/k) = {1, σ}.

Since Aut(ΨSL2) is trivial, there is only one quasi-split k-form, which is SL2 itself,

up to k-isomorphisms.

Since (G′, X ′) is isomorphic to (G,X) over E, X ′
E ≃ XE = P1

E × P1
E − (P1

E)
diag,

with Gal(E/k)-action given by σ.(x, y) = ((σx), (σy)).J = ((σy), (σx)) where x, y ∈ P1
E,

and x ̸= y. The variety is ResE/k(P1
E)− P1

k.

The generic stabilizer H ′ is a maximal torus T ′. Let ([x : 1], [σx : 1]) be a point in

X ′, with x ∈ E. Furthermore, we require (σx) = −x. The k-points of G′ in the form

of matrices are

g =

 a b

c d


with ad − bc = 1, a, b, c, d ∈ k. Then ([x : 1], [−x : 1]).g = ([x : 1], [−x : 1]) implies

that

([ax+ c : bx+ d], [−ax+ c : −bx+ d]) = ([x : 1], [−x : 1]),

thus
ax+ c

bx+ d
= x, the other one

−ax+ c

−bx+ d
= −x is directly its image under σ, so it is

enough to conclude bx2−(a−d)x−c = 0. Since x /∈ k, b ̸= 0. So a−d = bTrE/k(x) = 0

and c = −bNE/k(x). With the condition ad − bc = 1, we have a2 + b2NE/k(x) = 1.

Therefore, for point ([x : 1], [−x : 1]) ∈ X ′, its stabilizer H ′ is a (non-split) torus of

the form 
 a b

−bNE/k(x) a

 : a2 + b2NE/k(x) = 1

 .
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4.3.2 Group as a Spherical Variety

Let G0 be a split geometrically connected reductive algebraic group defined over

k, let G = G0 × G0, and X = G0/Z(G0) as a variety. The action of G on X,

given a point [x0] ∈ X where x0 ∈ G0, satisfies that [x0].(g1, g2) = [g−1
1 xg2], then

H = (G0)
diag ×Z(G0).

In this example, only those group G0 with trivial Aut(ΨG0), thus Aut(Λ) = Z/2Z.

So the first Galois cohomology is given by Proposition 4.3.2. Actually, those G0 with

extra symmetries will fail to have this group as Aut(Λ). There are still such k-forms

constructed below, but those will fail to be all of the possible k-forms in this case.

For the base point k in H1(k,Z/2Z), the k-form corresponding to it is still the

split form, (G,X) itself.

For the other points, let E be a quadratic extension of k, which is a non-base

point in H1(k,Z/2Z). Let Gal(E/k) = {1, σ}, then the (G′, X ′) is split over E, and

Gal(E/k) acts on G′
E in the way that σ.(g1, g2) = (σg2,

σg1), (again, the Galois action

on (GE, XE) defining (G,X) is denoted by (σx), that defining (G′, X ′) is denoted by

σ.x,) thus the k-form G′ = ResE/k(G0,E). This is the only quasi-split k-form which

is split over E. Because G0 does not provide any quasi-split k-form other than itself

(Aut(ΨG0) is trivial).

Thus the action of Gal(E/k) on X ′
E which is compatible with that on GE is, σ.x =

σx−1 . This defines X ′ over k, whose k-points are x ∈ P (G0) satisfying x = (σx−1).

For the generic stabilizer H ′, choose [x] to be identity class Z(G0) in X ′, an element

(g, σg ) ∈ H ′ satisfies that [x].(g, σg ) = [g−1x (σg)], hence g−1 · (σg) ∈ Z(G0,E), thus

H ′ = G0,k × ResE/k(Z(G0,E)).

Particularly, if G0 is taken to be SL2, then its corresponding Luna datum is shown

in case aa-A-1..
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4.3.3 A Non-Abelian Automorphism Group

Let G = SL2 × SL2 × SL2, and H = (SL2)
diag. Then X is isomorphic to SL2 × SL2

with G action given in the form (x1, x2).(g1, g2, g3) = (g−1
3 x1g1, g

−1
3 x2g2).

This example corresponds to the casea-A-3., the automorphism group is Aut(Λ) =

S3.

Proposition 4.3.3. The first Galois cohomology H1(k, S3) with trivial Galois action

is the pointed set

{k} ∪ {E : extensions of k that is quadratic, cubic, or with Galois group S3}.

The base point is k.

Proof. Let Γ denote the Galois group, a homomorphism f : Γ −→ S3 induces an

isomorphism between Γ/ker(f) −→ Im(f).

If the image of f is trivial, then ker(f) = Γ, the fixed field of ker(f) is k, which is

the base point in H1(k, S3).

The automorphism group of S3 is isomorphic to the group of inner automorphisms

of S3.

For each homomorphism f : Γ −→ S3, a homomorphism g is equivalent to f

as a cocycle when f = a−1ga for some a ∈ S3, acoording to the definition. So

ker(f) = ker(g). Conversely, for any f and g homomorphisms from Γ to S3, with

ker(f) = ker(g), then Im(f) is isomorphic to Im(g), thus there is an automorphism

of S3 (thus it is an inner automorphism) mapping Im(f) to Im(g). Therefore, f and

g are equivalent as cocycles in H1(k, S3).

Consider that the image Im(f) can only be of order 2, 3, and 6. Thus the cor-

responding kernels determine the field extensions of type quadratic, cubic and with

Galois group S3, respectively.
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The form corresponding to k: In this case, (G′, X ′) = (G,X). This is the split

form, given at the beginning of this example.

The form corresponding to a quadratic extension E: By the previous propo-

sition, we may choose the cocycle f such that the image of f in S3 is Γ2 = {(1), (12)},

with Gal(E/k) = {1, σ}, and f(σ) = (12). The form (G′, X ′) is split over E. Thus

Γ2 acts on G′
E by σ.(g1, g2, g3) = (σg2 ,

σg1 ,
σg3 ). Then G′ = ResE/k(SL2,E)× SL2,k.

Let G′
E acts on X ′

E by (x1, x2).(g1, g2, g3) = (g−1
3 x1g1, g

−1
3 x2g2), then the Γ2 action

on X ′
E is σ.(x1, x2) = (σx2 ,

σx1 ). So X ′ = ResE/k(SL2,E).

The generic stabilizer, therefore, is H ′ = SL2,k, embedded as (1, g) ∈ G′ =

ResE/k(SL2,E)× SL2,k.

The form corresponding to a cubic extension E: Choose a cocycle f whose

image is Γ3 = {(1), (123), (132)} ⊆ S3, with Gal(E/k) = {1, σ, σ2}, and f(σ) = (123).

(Actually, f(σ) = (132) only gives another equivalent cocycle. So, without loss of

generality, f(σ) = (123) can be chosen.) The form (G′, X ′) is split over E and quasi-

split over k.

The group G′ = ResE/k(SL2,E) determined by the Γ3 action on G′
E, where in terms

of a generator σ σ.(g1, g2, g3) = (σg2 ,
σx3 ,

σx1 ).

X ′ is given by the following discussion. Since [x1, x2, x3] = (x−1
3 x1, x

−1
3 x2), and

σ. [x1, x2, x3] = [σx2 ,
σx3 ,

σx1 ], so σ.(x1, x2) = ((σx−1
1

σx2 ), ((
σx−1

1 )), thus Galois

stable condition is x2 = σx−1
1 , and x1 = (σx−1

1 )(σ
2
x−1
1 ), which means X ′ = {x ∈

SL2,E : x(σx1)(
σ2
x1) = I}, where I is the identity element in SL2,E.

Choose x = I, let (x, σx−1 ) = (I, I), then the stabilizer H ′ is given by the

condition that, for (g, σ2
g , σg ), the following condition holds, ((σg−1g), (σg−1)·(σ2

g)) =

(I, I), thus g = σg , which means H ′ = SL2,k.
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The form corresponding to an extension E with Galois group S3: Let f be

a cocycle corresponding to E, with Γ6 = Gal(E/k) generated by {a, b}, and without

loss of generality, we may let f(a) = (12), f(b) = (13).

The action of Γ on G′
E can be given by a.(g1, g2, g3) = ((ag2), (

ag1), (
ag3)) and

b.(g1, g2, g3) = ((bg3), (
bg2), (

bg1)). Thus we have the condition g2 = ag1 , g3 = bg1 ,

and g3 =
ag3 , g2 = ag2 .

Let g3 ∈ SL2(E), such that (ag3) = g3, let g1 = (bg3), and g2 = (ag1) = (abg3),

then (bg2) = (babg3) = (babag3) = (abg3) = g2. So denote the fixed field of {1, a} by Ea,

G′(k) ≃ SL2(Ea), and G′ = ResE/k(SL2,Ea). And choosing any other subfield of E of

index 2 will just produce a k-isomorphic group.

For the variety X ′, the Galois group Γ6 acts on X ′
E by a.(x1, x2) = ((ax2), (

ax1)),

and b.(x1, x2) = ((bx−1
1 ), (bx−1

1 ·b x2)). The second identity can be obtained by

choosing a representative in X ′
E = H ′

E\G′
E, let [y1 : y2 : y3] represent (x1, x2) =

(y−1
3 y1, y

−1
3 y2), then b.[y1 : y2 : y3] = [(by3) : (

by2) : (
by1)] = ((by−1

1 ·b y3), (by−1
1 ·b y2)) =

((bx−1
1 ), (bx−1

1 ·b x2)). These two conditions imply the following conditions character-

izing X ′: (x1, x2) ∈ X ′
E ≃ SL2,E × SL2,E such that x2 = (ax1), and x1 · (bx1) = I,

x1 · (bax1) · (babax1) = I. (Recall that {1, ba, baba} is the index-2 subgroup of Γ6.)

At last, let H ′ be the stabilizer of (I, I) ∈ X ′ in G′. Then let ((bg), (abg), g) ∈ H ′,

then it satisfies that (g−1(bg), g−1(bg)) = (I, I), thus g = (bg) = (ag). So H ′ = SL2,k,

embedded in G′ = ResEa/k(SL2) as a subgroup.
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Chapter 5

Spherical Systems with the

Transitivity Condition

This chapter is devoted to a full classification of spherical systems whose group of

automorphisms acts transitively on the set of spherical roots.

5.1 Motivation

From Theorem 4.2.4, for a given spherically closed spherical pair (G,X) over k, with

G quasi-split, the forms (G′, X ′) of (G,X) with quasi-split group G′ can be obtained

from studying H1(k,Aut(Λ(G,X))).

In this application, only a baby model is considered.

Definition 5.1.1. Let k be a field of characteristic 0 with absolute Galois group Γ.

Given a spherical pair (G,X) over k, the k-rank of (G,X) is the rank of (ΞX)
Γ as a

Z-module.

Proposition 5.1.2. Let (G,X) be a spherically closed spherical pair defined over k,

then the k-rank of (G,X) is the number of Γ-orbits in ΣX .
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Consider that for spherically closed (G,X), ΞX = ⟨ΣX⟩Z, thus the sum of the

spherical roots in an Γ-orbit lies in (ΞX)
Γ. Conversely, any Γ-invariant element in ΞX

corresponds to finitely many Γ-orbits in ΣX written in terms of a linear combination

of spherical roots.

The Galois group Γ acts on Λ through Aut(Λ), then all the spherically closed

spherical pairs of k-rank 1 have Luna data with the following property:

• The automorphism group Aut(Λ) acts transitively on the set Σ of spherical

roots.

This property is called the transitivity property.

5.2 More on Spherical Systems

As defined in Definition 3.3.1, a spherical system is a Luna datum with Ξ = ⟨Σ⟩Z,

thus in this chapter, a spherical system S is said to consist of Ψ and (Sp,Σ,A , ρ).

5.2.1 Properties

Let Ψ be a root datum, and S be the set of positive simple roots.

Definition 5.2.1. A spherical system S associated to (Ψ, S) is called of adjoint

type if for every spherical root σ ∈ Σ, written in the form σ =

α∈S

nαα, the coefficients

nα are all integral. Equivalently, this is to say Σ ⊆ Σad(S) (see Definition 2.2.1).

Definition 5.2.2. Let S be a spherical system associated to (Ψ, S), and let σ ∈ Σ

be a spherical root. σ can be written as a linear combination of positive simple

roots, σ =

α∈S

nαα, then the support of σ is the set of α with nα ̸= 0, denoted by

supp(α). Let Σ′ ⊆ Σ be a set of spherical roots, then the support of Σ′ is supp(Σ′) =
σ∈Σ′

supp(σ). A spherical Φ-system S is called cuspidal if the supp(Σ) = S.
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Definition 5.2.3. Let S = (Sp,Σ,A , ρ) be a spherical system associated to (Ψ, S),

let S ′ ⊆ S be a set of positive simple roots, and Ψ′ be a sub-root datum of Ψ, and

Ψ′ contains S ′ as the set of positive simple roots, the localization of S to S ′ is

a spherical system S ′ = ((Sp)′,Σ′,A ′, ρ′) where (Sp)′ = Sp ∩ S ′, Σ′ = {σ ∈ Σ :

supp(σ) ⊆ S ′}, A ′ =


α∈Σ′∩S′
∆(α), and ρ′ is the restriction of ρ on A ′.

Definition 5.2.4. Let S = (Sp,Σ,A , ρ) be a spherical system associated to (Ψ, S),

let (Ψ′, S ′) be a (based) root datum containing (Ψ, S), then the induction of S to

(Ψ′, S ′) is the spherical system S ′ = ((Sp)′,Σ′,A ′, ρ′) associated to (Ψ′, S ′), where

A ′ = A , ρ′ = ρ, and (Sp)′ = Sp, Σ′ = Σ are just the same set as before but considered

as subsets of S and NS, respectively.

Definition 5.2.5. Let S be a spherical Ψ-system, if either the Dynkin diagram

of Ψ is connected, or for each pair of distinct connected components of the Dynkin

diagram with positive simple roots S1 and S2, there is a color D ∈ ∆(α1) ∩ ∆(α2),

where α1 ∈ S1 and α2 ∈ S2.

Definition 5.2.6. A spherical system S is called prime if it is cuspidal, connected,

and of adjoint type.

5.2.2 Luna Diagrams

A Luna diagram is a visualization of a spherical system (thus, there is a one-to-

one correpsondence between Luna diagrams and spherical systems), which is the

Dynkin diagram of the corresponding root datum together with some decorations.

The decorations contains the information of colors, thus uniquely determine the set

of spherical roots and the Cartan pairing.

The following table (Table 5.1) provides a list of spherical roots of adjoint type

in Luna diagrams together with their supports (hence on only part of the underlying

Dynkin diagram).
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In Luna diagrams, circles and shaded circles are attached to each prime simple

root (black vertices in the base Dynkin diagram), representing the colors lying in

∆(α) for each root α. Colors are in 3 “genres” based on its PGL2-model. For each

color D ∈ ∆(α) as a prime divisor of X, let Pα ⊇ B be the parabolic subgroup

corresponding to α, and Nα the radical of Pα, then X̊BPα/Nα is a homogeneous

spherical G̃ = PGL2-variety, thus one of the following four cases: T\G̃ with maximal

torus T , N (T )\G̃, U\G̃ with a unipotent group U and G̃\G̃. In the 4 cases, the

positive simple roots and the corresponding colors are called of genre T , N , U , and

G, respectively (also called genre a, 2a, b and p). In Luna diagrams, colors of genre U

are drawn surrounding the root, centered at the vertex representing the root. Colors

of genre N are drawn below the root. And colors of genre T are drawn above and

below the root, where the above one representing D+
α satisfying ρ(D+

α )(σ) ∈ {−1, 0, 1}

for every spherical root σ. And an angle sign (< or >) is attached to D+
α for each

spherical root σ not orthogonal to α if ρ(D+
α )(σ) = −1. Some colors may belong

to ∆(α) for more than one root α, thus there is one circle drawn for each root,

and all these circles representing the same color are connected by solid lines. Other

decorations such as numbers above a color or wavy lines connecting roots are used to

denote different types of spherical roots.

The set Sp is the set of all positive simple roots (vertices in the graph) which has

no color (shaded or not shaded circles) attached above, below or surrounding it. And

the set A is the set of all colors attached to the positive simple roots to which 2 colors

are attached. Those circles connected by lines are considered as one color. So in the

following detailed discussions, Sp, A and ρ will be mentioned only if necessary.
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Table 5.1: Spherical Roots of Adjoint Type in Luna Diagrams

Type Luna Diagram Spherical Root

a α

2a 2α

aa α + α′

a(n) α1 + α2 + · · ·+ αn, n ≥ 2

b(n) α1 + α2 + · · ·+ αn, n ≥ 2

2b(n)
2

2α1 + 2α2 + · · ·+ 2αn, n ≥ 2

b α1 + 2α2 + 3α3

c(n)1 α1 + (
n−1
i=2

2αi) + αn, n ≥ 3

d(n) (
n−2
i=1

2αi) + αn−1 + αn, n ≥ 3

f α1 + 2α2 + 3α3 + 2α4

g 2α1 + α2

2g
2

4α1 + 2α2

g′ α1 + α2

1 The dashed circle around α1 means that there can be a genre U

color attached to α1, making it the same spherical root but of a

different spherical system.
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5.3 Properties of Transitivity

The transitive action of Aut(S ) suggests some properties, which helps in the classi-

fication.

Lemma 5.3.1. Let S be a spherical Φ-system with Aut(S ) acting on Σ transitively,

then all the spherical roots σ ∈ Σ belong to the same type in Table 5.1.

Under an automorphism of the spherical system, a spherical root is mapped to a

spherical root of the same type.

Consequently, the classification can be divided into several different cases based

on the types of spherical roots.

Lemma 5.3.2. Let S be a spherical Φ-system, there is a group homomorphism

η : Aut(S ) −→ Aut(Φ)

with ker(η) ≃


α∈Σ∩S
Aut(∆(α)), where an automorphism of ∆(α) respects the Cartan

pairing.

Proof. By the definition of automorphisms of a spherical system, the group Aut(S )

acts on Φ, and is compatible with Σ and ∆, that is, ∀ξ ∈ Aut(S ), and any spherical

root a spherical root σ =
n

i=1

ciαi, ξ acts linearly, i.e., ξ(σ) =
n

i=1

ciξ(αi) and ξ(D) ∈

∆(ξ(α)) for any positive simple root α and any color D ∈ ∆(α). Hence ker(η) acts

on Sp and Σ trivially, and acts on A through


α∈Σ∩S
Aut(∆(α)). Consider that for

each ξA ∈


α∈Σ∩S
Aut(∆(α)), there is a ξ ∈ Aut(S ) where ξ acts on Φ trivially and

on A by ξA, then ker(η) ≃


α∈Σ∩S
Aut(∆(α)).

Proposition 5.3.3. The kernel of η acts on Σ trivially.

The kernel ker(η) fixes each positive simple root, so it also fixes each spherical

root.
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Corollary 5.3.4. Let S be a spherical Φ-system. If ∀α ∈ S, #∆(α) < 2, then the

morphism η is injective.

In this case, ker(η) is trivial.

5.4 Reductions

5.4.1 Adjoint Type

From the classification of spherical varieties of rank 1 (see [Akh83]), outside the set of

the spherical roots of adjoint type, the spherical roots can only be half of the spherical

roots of type aa, b, and d(n), n ≥ 3 from Table 5.1. Concretely, they are of the form
1

2
α+

1

2
α′, where α is orthogonal to α′ of the same length,

1

2
α1+α2+

3

2
α3, supported

in a root datum of type B, and (
n−2
i=1

αi) +
1

2
αn−1 +

1

2
αn, for n ≥ 3, supported in a

root system of type D.

Thus based on Lemma 5.3.1, for a spherical Φ-system S of non-adjoint type with

Aut(S ) acting transitively on Σ, Σ contains only one type of spherical roots. Define

S ′ = (Sp,Σ′,A ) by assigning Σ′ = {2σ : σ ∈ Σ}. S ′ is a spherical Φ-system of

adjoint type, and Aut(S ′) = Aut(S ) acts transitively on Σ′.

This construction also helps to find general cases from the cases of adjoint type.

5.4.2 Cuspidality

For an arbitrary spherical Φ-spherical system S , let S ′ = supp(Σ), and let S ′ be the

localization of S to S ′. From the construction, they have the same set of spherical

roots, Σ′ = Σ. If Aut(S ) acts transitively on Σ, then Aut(S ′) acts transitively

on Σ′. This is because an automorphism of S preserves supp(Σ) and induces an

automorphism of S ′, that is, Aut(S ) is a subgroup of Aut(S ′).
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Conversely, for a cuspidal spherical Φ-system S with Aut(S ) acting transitively

on Σ, any induction S ′ of S to a root system Φ′ remains to have Aut(S ′) acting

transitively on Σ′ = Σ if AutΣ(Φ′) = {m ∈ Aut(Φ′) : m preserves Σ} acts transitively

on Σ.

5.4.3 Connectedness

Let the spherical systems mentioned in this section be cuspidal.

Let S be a spherical system with Aut(S ) acting transitively on Σ. Let Si be

a connected component of S , then Si with Aut(Si) = StabAut(S )(Si)-action is a

connected spherical system. By transitivity, any two such components Si and Sj

are conjugate by a group element γ ∈ Γ. And Γi acts transitively on Σi, the set of

spherical roots in Si.

Thus any spherical system S with Aut(S ) acting transitively on Σ consists

of finitely many copies of a connected spherical system having the same property.

And Aut(S ) = Aut(Si) ≀ Sn, the wreath product of Aut(Si) by Sn, where Si is a

connected component of S , and n denotes the number of connected components in

S .

5.5 Prime Cases

Thanks to the previous reductions, to finish the classification, it is sufficient to provide

the full list of prime spherical systems with automorphism group acting transitively

on set of spherical roots.

Theorem 5.5.1. A prime spherical system S of adjoint type with the transitivity

condition is either a spherical system of rank 1, or one of the spherical systems listed

in Table 5.2. The table also includes the geometric realizations over an algebraically
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closed field Ω with char(Ω) = 0.

The geometric realizations are from [Akh83, Was96, Lun01, BP05, Bra07], the

generic stabilizers are H = Z(G)H♭, with H♭ listed in the tables.
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Table 5.2: Spherical Systems with Nontrivial Transitive Action on Spherical Roots by Automorphisms

Index Φ S Aut(S ) G H♭

a-A-2.
(A1)

n

n ≥ 2

Sp = ∅,

Σ = {α1, . . . , αn},

A = {D+, D−
1 , . . . , D

−
n }.

Sn (SL2)
n

n
i=1

 a xi

a−1


with

n
i=1

xi = 0.

a-A-3. (A1)
3

Sp = ∅,

Σ = {α1, α2, α3},

A = {D12, D13, D23}

S3 (SL2)
3 (SL2)

diag

a-A-4.
This case is given by the correspondence introduced in Proposition 5.5.12.

The remark after it reveals the geometric realization.

2a-A-2. A2

Sp = ∅,

Σ = {2α1, 2α2},

A = ∅.

Z/2Z SL3 SO3

aa-A-2. (A2)
2

Sp = ∅,

Σ = {α1 + α′
1, α2 + α′

2},

A = ∅.

(Z/2Z)2 (SL3)
2 (SL3)

diag
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Table 5.2: Continued

Index Φ S Aut(S ) G H♭

a(n)-A-2. A2n

Sp = {α2, . . . αn−1,

αn+2, . . . α2n−1},

Σ = {
n

i=1 αi,
2n

i=n+1 αi},

A = ∅.

Z/2Z SL2n+1


c1A1 0 0

0 ∗ 0

∗ 0 c2A2


Ai ∈ SLn, ci ∈ Gm

a(n)-A-3. A3

Sp = ∅,

Σ = {α1 + α2, α2 + α3},

A = ∅.

Z/2Z SL4


c 0 0

M1 A 0

∗ M2 c−1


A ∈ SL2, ci ∈ Gm

M1 +M t
2 = 0

a(n)-D-1. Dn

Sp = {α2, . . . , αn−2},

Σ = {
n−1

i=1 αi, αn +
n−2

i=1 αi},

A = ∅.

Z/2Z Spin2n



cA 0 0 0

M 1 0 0

−M 0 1 0

∗ ∗ ∗ ∗


for A ∈ SLn−1, ci ∈ Gm
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Table 5.2: Continued

Index Φ S Aut(S ) G H♭

a(n)-D-2. D4

Sp = ∅,

Σ = {α1 + α2, α2 + α3, α2 + α4},

A = ∅.

S3 Spin8



c2 0 0 0 0 0

M1 cA 0 0 0 0

∗ M2 1 0 0 0

∗ M3 0 ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

0 ∗ ∗ ∗ ∗ ∗


for A ∈ Sp2, c ∈ Gm,

M t
1 +M2 +M3 = 0.

a(n)-D-3. D4

Sp = {α2},

Σ = {α1 + α2 + α3,

α1 + α2 + α4,

α3 + α2 + α4},

A = ∅.

S3 Spin8 G2
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Table 5.2: Continued

Index Φ S Aut(S ) G H♭

d(n)-E. E6

Sp = {α2, α3, α4, α5},

Σ = {2α1 + 2α2 + 2α3 + α4

+α5, 2α6 + 2α5

+2α3 + α2 + α4},

A = ∅.

Z/2Z E6 F4

d(3)-A-2. A5

Sp = {α1, α3, α5},

Σ = {α1 + 2α2 + α3,

α3 + 2α4 + α5},

A = ∅.

Z/2Z SL6 Sp6

Remark. The following table (Table 5.3) provides the automorphism groups of the spherical systems of rank 1.
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Table 5.3: Spherical Systems of Rank 1

Index Φ S Aut(S ) G H♭

Rank 1 with Nontrivial Automorphism Group

a-A-1. A1

Sp = ∅,

Σ = {α},

A = {D+, D−}.

Z/2Z SL2

T

(Maximal Torus)

aa-A-1. (A1)
2

Sp = ∅,

Σ = {α1 + α2},

A = ∅.

Z/2Z (SL2)
2 SL2

a(n)-A-1. An

Sp = {α2, . . . αn−1},

Σ = {
n

i=1 αi},

A = ∅.

Z/2Z SLn+1 GLn

d(n)-D. Dn

Sp = {α2, . . . , αn},

Σ = {(
n−2

i=1 2αi) + αn−1 + αn},

A = ∅.

Z/2Z Spin2n Spin2n−1
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Table 5.3: Continued

Index Φ S Aut(S ) G H♭

d(3)-A-1. A3

Sp = {α1, α3},

Σ = {α1 + 2α2 + α3},

A = ∅.

Z/2Z SL4 Sp4

Rank 1 with Trivial Automorphism Group

2a-A-1. A1

Sp = ∅,

Σ = {2α1},

A = ∅.

1 SL2 N (T)

b-B. Bn

Sp = {α1, α2},

Σ = {α1 + 2α2 + 3α3},

A = ∅.

1 Spin7 G2

b(n)-B. Bn

Sp = {α2, . . . , αn},

Σ = {
n

i=1 αi},

A = ∅.

1 Spin2n+1 Spin2n
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Table 5.3: Continued

Index Φ S Aut(S ) G H♭

2b(n)-B. Bn

Sp = {α2, . . . , αn},

Σ = {
n

i=1 αi},

A = ∅.

1 Spin2n+1 N (Spin2n)

c(n)-C-1. Cn

Sp = {α1, α3, . . . , αn},

Σ = {α1 + (
n−1

i=2 2αi) + αn},

A = ∅.

1 Sp2n SL2 × Sp2n−2

c(n)-C-2. Cn

Sp = {α3, . . . , αn},

Σ = {α1 + (
n−1

i=2 2αi) + αn},

A = ∅.

1 Sp2n

B × Sp2n−2, where B

is the Borel subgroup of SL2.

f-F. F4

Sp = {α1, α2, α3},

Σ = {α1 + 2α2 + 3α3 + 2α4},

A = ∅.

1 F4 Spin9

g-G. G2

Sp = {α2},

Σ = {2α1 + α2},

A = ∅.

1 G2 SL3
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Table 5.3: Continued

Index Φ S Aut(S ) G H♭

2g-G. G2

Sp = {α2},

Σ = {4α1 + 2α2},

A = ∅.

1 G2 N (SL3)

g’-G. G2

Sp = ∅,

Σ = {α1 + α2},

A = ∅.

1 G2

L = Gm × SL2

u = K ⊕K2
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By 5.3.1, there is only one type of spherical roots in such spherical varieties, thus

a discussion on each possible type of spherical roots proves this theorem.

Lemma 5.5.2. Let S be a prime spherical Φ-system with Aut(S ) acting transitively

on Σ, if σ is not of type a or aa, for any σ ∈ Σ, then the Φ has a connected Dynkin

diagram.

Proof. Suppose Φ has a Dynkin diagram with more than 1 connected components,

then there is a color D ∈ ∆, such that D ∈ ∆(α1) ∩ ∆(α2) for αi ∈ S belonging

to two different connected components in the Dynkin diagram. Recall that by the

definition of spherical systems, this happens only in the case that either αi ∈ Σ, or

α1 ⊥ α2 with α1 + α2 ∈ Σ.

Therefore, unless all spherical roots are of type a or aa, the underlying Dynkin

diagram is connected.

The cases of type a and aa will be discussed at the end.

5.5.1 Type f, g and 2g

These three spherical roots can only live on their corresponding Dynkin diagrams (F4

or G2). And by Lemma 5.5.2, the Dynkin diagram is connected. Then by Lemma

5.3.4, the automorphism group of each spherical system is trivial.

Hence the spherical systems S with Aut(S ) acting transitively on Σ, that have

spherical roots of types f , g or 2g, are:

f-F. Σ = {α1 + 2α2 + 3α3 + 2α4}.

(5.1)

g-G. Σ = {2α1 + α2}.

(5.2)



CHAPTER 5. SPHERICAL SYSTEMS 63

Remark. This spherical system is not spherically closed based on [BP14]. But it has

a spherical closure shown below.

2g-G. Σ = {4α1 + 2α2}.
2

(5.3)

g’-G. Σ = {α1 + α2}.

(5.4)

And Aut(S ) = {1} for all the three cases above.

5.5.2 Type d(n), n > 3

The spherical root of type d(n) for n > 3 has a positive simple root αn−2 such that

there are 3 positive simple roots (different from αn−2 itself) which are not orthogonal

to it. Hence the underlying root system Φ is Dn with n > 3 or E6, E7, E8.

Among these root systems, Aut(D4) ≃ S3, Aut(Dn) ≃ Aut(E6) ≃ Z/2Z for n > 4,

and Aut(Φ) = {1} for the rest of them.

Over root system Dn (n ≥ 4): There is only 1 spherical root of type d(n). Oth-

erwise if there are two spherical roots σ1 of type d(n1) and σ2 of type d(n2), with

n1 ≥ n2, then both supp(σ1) and supp(σ2) contain {αn−2, αn−3, αn−1, αn}, where αn−3,

αn−1, and αn are the three positive simple roots non-orthogonal to αn−2. Since S is

cuspidal, supp(σ1) = S. Then supp(σ1) ⊇ supp(σ2). Consider that one of the positive

simple root α ∈ supp(σ2) has a nonempty ∆(α), so α /∈ Sp. Then Sp = S − {α1, αk}

for some 1 < k ≤ n. This violates the axiom (S1), since all rank 1 wonderful varieties

with spherical root σ of type d(n) has a Sp containing a corresponding αk (it may

have a different name but in the same position relatively to σ). Therefore, Dm admits

no more than 1 spherical roots of type d(n).

d(n)-D. Φ = Dn, n ≥ 4, with Σ = {2
n−2
i=1

αi + αn−1 + αn}. Aut(S ) = {1, ξ},
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where ξ is the automorphism of S induced by the automorphism of Dn which switches

αn−1 and αn, and fixes other positive simple roots. So ξ acts trivially on Σ. From

now on, the ξ will be used to denote both the automorphism of Φ and the induced

automorphism of S .

(5.5)

For the cases Φ is of type E: Future discussions will follow the labelling of En

shown below:
α1 α2 α3 α5 αn

α4 (5.6)

Consider that the support of one spherical root of type d(n) fails to cover S(En) for

n = 6, 7, 8, so there are at least two spherical roots of the same type d(n). Again,

for one of the spherical roots, to make the root α in its support that ∆(α) ̸= ∅ out

of the support of all other spherical roots, there can only be 2 spherical roots, with

their colors lying at α1 and αn, the two positive simple roots lying at the end of two

“long” legs of the Dynkin diagram. But it is only in E6 that these two spherical roots

are of the same type.

d(n)-E. Φ = E6, Σ = {2α1 + 2α2 + 2α3 + α4 + α5, 2α6 + 2α5 + 2α3 + α2 + α4}.

The automorphism group Aut(S ) = {1, ξ}, where ξ exchanges α1 with α6, α2 with

α5, and leaves the others fixed. So ξ swaps the two spherical roots, and Aut(S ) acts

on Σ transitively.

(5.7)
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5.5.3 Type d(3)

Recall that type d(3) spherical roots have support of type D3 ≃ A3, with the corre-

sponding Luna diagram:

Over root systems of type An: here n ≥ 3, and #Aut(An) = 2, so there are at

most 2 spherical roots of type d(3).

d(3)-A-1. First, with only one spherical root of type d(3), the only cuspidal

spherical system is over root system A3, with Σ = {α1 + 2α2 + α3}. Let ξ be the

automorphism of A3 swapping α1 with α3 and leaves α2 fixed. It fixes Σ and is the

only nontrivial automorphism of A3. So Aut(S ) = {1, ξ}, acting on Σ trivially.

(5.8)

d(3)-A-2. Then the case with #Σ = 2, the root system is Φ = A5, and Σ =

{α1 + 2α2 + α3, α3 + 2α4 + α5}. (It cannot be A6 since in that case α3 ∈ Sp fails to

be orthogonal to α4 + 2α5 + α6, violates (S2).) Σ = {αn+1 + 2αn+2 + αn+3}. The

nontrivial automorphism ξ of A5 carrying αi to α6−i switches the two spherical roots,

so Aut(S ) = {1, ξ}.

To build cuspidal spherical systems, all the positive simple roots should be of the

same length, so the underlying root system cannot be Bn, Cn, F4, or G2.

For D4, two or more spherical roots of type d(3) canot live on D4. Suppose there are

two such roots, without loss of generality, let them be α1+2α2+α3 and α1+2α2+α4,

then ⟨α∨
4 , α1 + 2α2 + α3⟩ = −2 ̸= 0, which violates the Axiom (S2).

For Dn with n > 4 (D3 is considered of type A), to obtain cuspidality, there are
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at least 2 spherical roots, and one of which is αn−2 + 2αn−1 + αn. But the nontrivial

automorphism of Dn fixes all the spherical roots, as it switches αn−1 with αn and fixes

all the others. So there are no spherical varieties of type D with spherical roots of

type D3, whose automorphism group acts transitively on the set of spherical roots.

Finally, for root system En, based on the labelling given in Figure 5.6, in order

to make the spherical system cuspidal, two of the spherical roots should be σ1 =

α1 + 2α2 + α3, and σ2 be either α4 + 2α3 + α2 or α4 + 2α3 + α5. However, in both of

these two cases, there is a color associated to α3, thus α3 is not in Sp, which causes

a contradiction to axiom (S1). So there are no type E cases.

5.5.4 Type c(n), b, b(n) and 2b(n)

This family is similar to the cases of type f, g and 2g. The required lengths of

positive simple roots make the underlying root systems just be their supports. And

as Aut(Bn) = Aut(Cn) = {1}, the automorphism groups Aut(S ) = {1} for all of

them.

Here is the list:

c(n)-C-1. Here n ≥ 3, and Σ = {α1 + (
n−1
i=2

2αi) + αn}.

(5.9)

c(n)-C-2. Here n ≥ 3, and Σ = {α1 + (
n−1
i=2

2αi) + αn}.

(5.10)

These two spherical systems are different since the latter one has Sp
c(n)-1 = {α3, α4, . . . , αn}
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while the former one has Sp
c(n)-2 = {α1, α3, α4, . . . , αn}.

b-B. Σ = {α1 + 2α2 + 3α3}.

(5.11)

b(n)-B. Here n ≥ 2, and Σ = {
n

i=1

αi}.

(5.12)

However, this is not spherically closed based on [BP14], with A♯ ≃ Z/2Z. And its

spherical closure is the following one.

2b(n)-B. Here n ≥ 2, and Σ = {
n

i=1

2αi}.

2

(5.13)

5.5.5 Type a(n)

The support of a spherical root of type a(n) is a set of positive simple roots with the

same length, so it cannot survive on cuspidal spherical systems with Bn, Cn, F4, or

G2 as underlying root system. So spherical systems over root systems An, Dn, and En

will be studied.

Over root system An: Here n ≥ 2, for A1 does not admit any spherical root of

type a(n). Considering #Aut(An) = 2, there are at most 2 spherical roots of type

a(n).

a(n)-A-1. n ≥ 2. Σ = {
n

i=1 αi}. This is the only case with one spherical root of

type a(n). And Aut(S ) = {1, ξ} with ξ induced by the nontrivial automorphism of

An. Aut(S ) acts trivially on Σ.

(5.14)
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There are two different situations with 2 spherical roots.

a(n)-A-2. Here n ≥ 2. Σ = {
n

i=1 αi,
2n

i=n+1 αi}. This is the cuspidal spherical

system with 2 spherical roots of type a(n) with maximal rank. Aut(S ) = {1, ξ},

where ξ acts on Φ as the one above, so it permutes the two spherical roots.

n n (5.15)

a(n)-A-3. Over Φ = A3, there is one situation that the support of two spherical

roots intersects. Σ = {α1 + α2, α2 + α3}. Similarly, Aut(S ) = {1, ξ} where ξ acts

on Φ by exchanging α1 with α3 and fixing α2. So the action of Aut(S ) on Σ by

exchanging the two spherical roots.

(5.16)

There are no further cases over root systems of type A, according to the following

lemma about the intersecting support of spherical roots of type a(n).

Lemma 5.5.3. Let σ1, σ2 be distinct spherical roots of type a(n), supp(σ1)∩supp(σ2)

is nonempty if and only if n ≥ 2, and σ1 = αi−n+2 + αi−n+3 + · · · + αi + αk, σ2 =

αi−n+2 + αi−n+3 + · · · + αi + αl where αk and αl are different positive simple roots

where ⟨α∨
i , αk⟩ = ⟨α∨

i , αl⟩ = −1.

Proof. Let I = supp(σ1) ∩ supp(σ2), where σ1, σ2 are of type a(n) with the same

n ≥ 2 (for n = 1, nontrivial intersection of the support implies that the spherical

roots are identical). According to Axiom (S1), let α ∈ I, if ∆(α) = 1, α is located in

one of the two “ends” of supp(σi) for i = 1, 2; otherwise if ∆(α) = 1, α is not at the

end in both supports.

If the intersection I is of size 1, we show the only case is 1(n)-A-3.. First, we

show the only positive simple root α ∈ I satisfies ∆(α) = 1. Otherwise, α has no
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color corresponding to it, thus the 4 roots in supp(σ1) and supp(σ2) are distinct (the

intersection I does not contain any of them). Thus α has 4 distinct positive simple

roots not orthogonal to it except itself, which does not happen to root systems. And

if n > 2, there is a nonempty Sp and then there is a root β ∈ supp(σ1) ∩ Sp which

fails to be orthogonal to I, so β is not orthogonal to σ2, hence violates axiom (S2).

Therefore, only two spherical roots of type a(2) can have a intersection of size 1 on

their supports. This is a(n)-A-3..

If #I > 1, the σ1 and σ2 share only one color. (If the other color is shared, the two

spherical roots are identical. And if no color is shared, there should be 4 “ends”, roots

with only one positive simple root non-orthogonal to it except itself, in the Dynkin

diagram.) And the intersection contains Sp. First, I ∩ Sp ̸= ∅ as I contains only

one positive simple root with color and has at least one more element. Second, if Sp

is not a subset of I, then there is a positive simple root α ∈ Sp ∩ (supp(σ1)\I) and

not orthogonal to every element in I. Then α /∈ supp(σ2), and ⟨α∨, σ2⟩ < 0, which

violates axiom (S2).

Therefore Φ = Dn+1. The only situation of type A is when n = 2, D3 = A3, as

there are at most 2 spherical roots over root systems of type A.

Over root system Dn: Here n ≥ 4. The n < 4 situations are considered as of type

A. And one single spherical root of type a(n) is not enough to cover S(Dn) since there

are 3 “ends”, but there are only 2 in support of σ of type a(n). The first case is a

spherical system with 2 spherical roots.

a(n)-D-1. Φ = Dn+1, and Σ = {
n−1

i=1 αi, αn +
n−2

i=1 αi}. Based on Lemma 5.5.3,

this is the only case with two spherical roots. Here Aut(S ) = {1, ξ}, where ξ is

induced by the automorphism of Dn+1 swapping αn−1 with αn and leaving other
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positive simple roots fixed. ξ acts on Σ by exchanging the two spherical roots.

(5.17)

If there are more than 2 spherical roots, the base root system is D4, as #Aut(Dm) =

2 for m > 4. The spherical roots can only be of type a(2) or a(3).

a(n)-D-2. Σ = {α1+α2, α2+α3, α2+α4}. And Aut(S ) ≃ Aut(D4) ≃ S3, it acts

on Σ by permutation.

(5.18)

With spherical roots of type a(2), this is the only cuspidal case, as there are only 3

edges in the Dynkin diagram, each can carry one spherical root of type a(2).

a(n)-D-3. Σ = {α1 + α2 + α3, α1 + α2 + α4, α2 + α3 + α4}. And Aut(S ) ≃

Aut(D4) ≃ S3, it acts on Σ by permutation.

(5.19)

With #Σ ≥ 3, this is the only one with spherical roots of type a(3). And D3 does

not admit more than 3 spherical roots of type a(3).

Over root system En: According to the same reason that En also has 3 ends on it,

so there should be at least 2 spherical roots in the system. Considering #Aut(E6) = 2

and #Aut(En) = 1 for others, Φ cannot be E7 or E8. Let Φ = E6, to make the spherical

system cuspital and to satisfy the transitivity condition, one may obtain the following
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diagram

NOT a spherical system

with “spherical roots” σ1 = α1 + α2 + α3 + α4 and σ2 = α4 + α3 + α5 + α6 (following

the labelling in Graph 5.6). However, a simple check that ⟨α∨
2 , σ2⟩ = −1 shows that

the axiom (S2) fails to hold. Therefore, there are no such spherical systems over E6.

5.5.6 Type 2a

Φ still has a connected Dynkin diagram. As #supp(σ) = 1 for σ of type 2a, the

cuspidality implies that Σ = 2S = {2α : α ∈ S}.

Lemma 5.5.4. Let S be a connected cuspidal spherical Φ-system with all its spherical

roots of type a (or 2a) and a transitive Aut(S )-action on Σ, then Φ is (A1)
n or (A2)

n

for some n ≥ 1.

Proof. As Aut(S ) acts transitively on Σ = S, (or Σ = 2S) all positive simple roots

are of the same length. Hence Φ can be only of types A, D, or E. In each of those root

systems, there is a positive simple root α “at the end”, i.e., there is no more than one

other positive simple root being non-orthogonal to it. Hence all the positive simple

roots are at the end, so the connected root systems can only be A1 or A2. For the

non-connected situations, together with the transitivity, Φ can only be (A1)
n or (A2)

n

for some n ≥ 1.

As each color belongs to ∆(α) for only one α, the connected spherical system

implies that the Dynkin diagram is connected. (See Lemma 5.5.2.) Hence Φ = A1 or
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A2.

2a-A-1. Φ = A1, Σ = {2α}. And Aut(S ) = {1}.

(5.20)

2a-A-2. Φ = A2, Σ = {2α1, 2α2}. And Aut(S ) = {1, ξ} ≃ Aut(S). ξ acts on Σ

by exchanging the two spherical roots.

(5.21)

5.5.7 Type aa

Let σ ∈ Σ be a spherical root of type aa, then σ = α + α′ where α and α′ are of the

same length. The condition that Aut(S ) acts transitively on Σ implies that all the

elements in S are of the same length, and each of them is an “end” of the root system

(each has only one non-orthogonal root but itself). Therefore, Φ is (A1)
n or (A2)

n.

If Φ = (A1)
n, then n = 2, otherwise the spherical system is not connected.

aa-A-1. Φ = (A1)
2. Σ = {α + α′}. Aut(S ) = Z/2Z, the nontrivial element acts on

S by exchanging α and α′, then fixes the spherical root α + α′.

(5.22)

Moreover, let σ1 = α1 +α′
1 and σ2 = α2 +α, based on the axiom (Σ2), ⟨α∨

1 , σ2⟩ =

⟨(α′
1)

∨, σ2⟩ = −1, α = α′
2. Hence the only possible root system is (A2)

2, shown below.

If Φ = (A3)
n, we show n = 2. Otherwise, if n = 1, the only two positive simple

roots are not orthogonal, A3 alone does not admit a type aa spherical root. If n ≥ 3,

choose spherical root α1 + α′
1, let α2 belongs to supp(σ2), by Axiom (Σ2), ⟨α∨

1 , σ2⟩ =

⟨(α1)
′∨, σ2⟩ = −1, thus σ2 = α2 + α′

2, but in this case the spherical system fails to be
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connected for n ≥ 3.

aa-A-2. Φ = (A2)
2. Σ = {α1 + α′

1, α2 + α′
2}. And Aut(S ) = (Z/2Z)2. two

generators acts on S by exchanging αi with α′
i for each i, and exchanging α1 with α′

1,

α2 with α′
2, respectively.

(5.23)

5.5.8 Type a

In this case, all the spherical roots are of the form α ∈ S, i.e., S = Σ.

By Lemma 5.5.4, the underlying root system Φ = (A1)
n or (A2)

n for some n ≥ 1.

First, for Φ = (A1)
n,

Proposition 5.5.5. A connected cuspidal spherical (A1)
n-system S with transitive

Aut(S ) action on Σ belongs to one of the following classes: a-A-1., a-A-2., or

a-A-3.

a-A-1. Φ = A1. Σ = {α1}, A = {D+
1 , D

−
1 }. With ρ(D+

1 )(α1) = ρ(D−
1 )(α1) = 1.

Aut(S ) ≃ Z/2Z. Aut(S ) = {1, ξ}, where ξ swaps D+
1 and D−

1 .

(5.24)

a-A-2. Φ = (A1)
n, n ≥ 2. Σ = {α1, . . . , αn}, A = {D+, D−

1 , D
−
2 , . . . , D

−
n }, where

∆(αi) = {D+, D−
i } for all αi ∈ Σ. Then ρ(D+)(αi) = 1 for all 1 ≤ i ≤ n, and

ρ(D−
i )(αi) = 1, ρ(D−

i )(αj) = −1 for all 1 ≤ i ≤ n and i ̸= j. Aut(S ) ≃ Sn.

(5.25)

a-A-3. Φ = (A1)
3. Σ = {α1, α2, α3}, A = {D12, D13, D23}, where ∆(α1) =
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{D12, D13}, ∆(α2) = {D12, D23}, ∆(α3) = {D13, D23}. Aut(S ) ≃ Z/2Z.

(5.26)

Proof of Proposition 5.5.5. As in the cases where Φ = (A1)
n, all the spherical roots

are equivalent under the transitive action of Aut(S ), without loss of generality, spher-

ical root α1 and ∆(α1) are chosen to be the starting point of the discussion (in fact,

any other positive simple root can be chosen).

First, if no colors in ∆(α1) belong to ∆(σ) for any other spherical root σ, then

the spherical system fails to be connected. Hence no spherical roots other than α1

exist, so by cuspidality, Φ = A1. This is the case a-A-1.

If there is only one color D+
1 ∈ ∆(α1) belonging to some other ∆(σ), then it also

belongs to ∆(σ′) for all the other spherical roots σ′, to make the spherical system

connected. Denote this color by D+, the Axiom (A1) implies that ρ(D+)(σ) = 1 for

any spherical root σ, and the valuations induced by other colors are determined by

Axiom (A2). This is the case shown in a-A-2.

If both colors D+
1 and D−

1 belong to some other set of colors corresponding to

other spherical roots, it will not happen that ∆(α1) = ∆(α2), as D+
1 = D+

2 implies

that ρ(D+
1 ) = (1, 1, . . . ) ∈ Ξ∨, hence ρ(D−

1 ) = (1,−1, . . . ) and ρ(D−
2 ) = (−1, 1, . . . ),

which means D−
1 ̸= D−

2 .

So let D+
1 = D+

2 and D−
1 = D−

3 , then D−
2 = D+

3 by the following discussion.

By the assumption, ρ(D+
2 )(α1) = 1, by Axiom (A2), ρ(D−

2 )(α1) = −1. Similarly,

ρ(D+
1 )(α2) = 1, then ρ(D−

1 )(α2) = −1. Recall that D−
1 = D−

3 , ρ(D+
3 )(α2) = 1.

The valuation determined by D+
2 can be calculated similarly. Let Ξ3 ⊆ Ξ be the

sublattice generated by α1, α2 and α3, then the restriction of ρ(D) (D is any of the

colors mentioned above) on Ξ∨
3 are:
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• ρ(D+
1 ) = (1, 1,−1),

• ρ(D−
1 ) = (1,−1, 1),

• ρ(D−
2 ) = (−1, 1, 1),

• ρ(D+
3 ) = (−1, 1, 1).

By Axiom (A1), D+
3 ∈ ∆(α2) and D−

2 ∈ ∆(α3), then it can only be D−
2 = D+

3 .

It is easy to check that the triplet (Sp,Σ,A ) where Sp = ∅, Σ = {α1, α2, α3} and

A = {D+
1 = D+

2 , D
−
1 = D−

3 , D
−
2 = D+

3 } is a spherical system, which is the case

a-A-3. listed above.

However, with this structure, no more spherical roots can be attached. Suppose

there is one more spherical root α4 of type a in the spherical system. By connect-

edness, there is an identification between a color in ∆(α4) and one of the three col-

ors mentioned above. Without loss of generality, assume D+
4 = D+

1 = D+
2 , then

ρ(D+
4 ) = (1, 1,−1, 1) restricted on Ξ∨

4 where Ξ4 ⊆ Ξ is the sublattice generated by

α1, α2, α3 and α4, and ρ(D−
4 ) = (−1,−1, 1, 1) by Axiom (A2). This suggests that

the color D−
4 is identified to a color in ∆(α3), but D−

4 is a color neither in ∆(α1) nor

∆(α2). But D+
3 ∈ ∆(α2) and D−

3 ∈ ∆(α1), there is no choice for the identification of

D−
4 . Hence a-A-3. is the only possible spherical system in this class.

Then only the cases that Φ = (A2)
n are left to be investigated. Let the positive

simple roots be αi,j where i ∈ {1, 2, . . . , n} denotes the index of the A2 component

and j ∈ {1, 2} denotes the index of the root in the A2 component.

Let Φ = (A2)
n, denote by Sa

A2
the set of isomorphism classes of connected cuspidal

spherical Φ-systems S with spherical roots of type a and Aut(S ) acting transitively

on Σ.

To investigate the set Sa
A2

, the following concept will be used.

Definition 5.5.6. Given a graph G = (V,E), where V is the set of vertices, E is the

set of edges. Let G0 = (V0, E0) be the graph of isolated edges such that E0 ≃ E, where
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V0 = {vie : e ∈ E0, i = 0, 1} and e ∈ E0 connects v0e and v1e . A formation of G is a

morphism of graphs fG : G0 −→ G which is a bijection on E0 −→ E. An isomorphism

between formations of G is an isomorphism between the morphisms fG : G0 → G and

f ′
G : G ′

0 → G, i.e., an isomorphism ξ0 : G0 → G ′
0 together with an automorphism ξ of

G such that the following diagram commutes,

G0 G ′
0

G G

ξ0

ξ
fG f ′

G

An automorphism of fG is an isomorphism from fG to itself. The set of automorphisms

of a formation is denoted by Aut(fG).

Lemma 5.5.7. For a connected graph G, any two formations fG and f ′
G are isomor-

phic to each other (as morphisms of graphs). Therefore, the two groups Aut(fG) and

Aut(f ′
G) are isomorphic.

Proof. Let G0 = (V0, E0) and G ′
0 = (V ′

0 , E
′
0) denote the graphs corresponding to

the formations fG and f ′
G, respectively. An isomorphism between fG and f ′

G can be

constructed in the following way.

Denote the isomorphism to be constructed (µ, id), where µ : G0 −→ G ′
0 be an

isomorphism of graphs (to be constructed), and id : G −→ G be the identity morphism

of G. The definition of formations induces a bijection between E0 and E ′
0 through

E, the set of edges of G. For those e0 ∈ G0 such that fG(e0) is not a loop, let

e′0 ∈ E ′
0 be the corresponding edge by the bijection E0 −→ E ′

0, then v0e = fG(v
0
e0
)

is different from the vertex v1e = fG(v
1
e0
). Also, v0e = f ′

G(v
0
e′0
), and v1e = f ′

G(v
1
e′0
). Let

µ(v0e0) = v0e′0
, and µ(v1e0) = v1e′0

, then the images of all vertices connected by such

e0’s are given. Otherwise, for those e0 such that e = fG(e0) is a loop, choose any



CHAPTER 5. SPHERICAL SYSTEMS 77

bijection between {v0e0 , v
1
e0
} and {v0e′0 , v

1
e′0
} as µ restricted on {v0e0 , v

1
e0
}. Thus µ is an

isomorphism between G0 and G ′
0.

The induced map (µ, id) : fG −→ f ′
G is an isomorphism of graph formations

because the construction of µ guarantees that all every edge and vertex in G0 and

their µ-images in G ′
0 match after being passed to G by the corresponding formations.

Furthermore, the conjugation by (µ, id) on automorphisms of fG is an isomorphism

between Aut(fG) and Aut(f ′
G).

Lemma 5.5.8. There is a forgetful map Aut(fG) −→ Aut(G) by choosing the un-

derlying automorphism of G in an automorphism of fG. This map admits a splitting

Aut(G) −→ Aut(fG).

Proof. The forgetful map comes from “forgetting” the formation structure in an au-

tomorphism of fG, that is, for an automorphism (ξ0, ξ) of fG, its image in Aut(G) is

chosen to be ξ.

For the splitting morphism, it is sufficient to construct (ξ0, ξ) ∈ Aut(fG) from an

automorphism m ∈ Aut(G) with ξ = m.

Given a formation fG, for each m ∈ Aut(G), the image µ = (µ|G0 , µ|G) = (ξ0, ξ) ∈

Aut(fG) of m under the splitting morphism should satisfy the following conditions:

1. ξ = m,

2. ξ0|E = (fG|E0)
−1 ◦m|E ◦ (fG|E),

3. ξ0({v0e , v1e}) = {v0ξ0(e), v
1
ξ0(e)

} for each e ∈ E0,

4. ξ0(f
−1
G (v)) = f−1

G (m(v)) for each v ∈ V .

There is always such an automorphism of fG satisfying these conditions. For each v0 ∈

V0 and the edge e0 ∈ E0 connecting v0, the cardinality of the set {v0e0 , v
1
e0
}∩f−1

G (fG(v0))

is either 2 (if fG(e0) is a loop in G) or 1 (otherwise), and its image under ξ0, given

by the conditions 3 and 4, is of the same cardinality by the definition of Aut(G). If
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the cardinality is 1, there is only one choice of the image of v0; and if it is 2, the

two choices can give two different elements in Aut(fG). For each fG(e0) which is a

loop, the choice needed to make is to choose an element from the set of bijections

Isom({v0e0 , v
1
e0
}, {v0ξ0(e0), v

1
ξ0(e0)

}). After fixing all the choices above, the morphism ξ0

is uniquely determined together with conditions 1 to 4 listed above. Thus (ξ0, ξ) is

the image of m under the splitting morphism.

Remark. The splitting lemma does not apply in the category of groups, so the ex-

istence of the right splitting does not induce that Aut(G) is a direct summand of

Aut(fG).

Definition 5.5.9. Let G be the set of connected graphs G = (V,E), such that for a

formation fG : G0 −→ G where G0 = (V0, E0), Aut(fG) acts transitively on the set V0.

Remark. Note that the condition above holds for every formation of G if it holds for

one.

The following proposition shows a different condition on Aut(G) to verify whether

a graph is in the set G.

Proposition 5.5.10. Let G = (V,E) be a graph, G ∈ G if and only if Aut(G) acts

transitively on E, and there exists an edge e ∈ E connecting to vertices v1, v2, such

that µ(v1) = v2 and µ(v2) = v1 for some µ ∈ Aut(G).

Proof. To show necessity, for a graph G ∈ G, with a formation fG satisfying that

Aut(fG) acts transitively on V0. By definition, an automorphism of fG induces an

automorphism of G. For an edge e ∈ E, consider the preimage of e under fG, and

denote that edge also by e ∈ E0. Let v0e , v1e be two vertices in V0 that e connects,

then the image of {v0e , v1e} under an automorphism of fG is a set {v0e′ , v1e′} for another

edge e′ ∈ E0 (to preserve the structure of the formation). Thus the transitivity of

Aut(fG) on V0 induces the transitivity of that on E0, hence Aut(G) acts transitively
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on E. The condition that Aut(fG) acts on V0 transitively shows that Aut(G) acts on

V transitively. Thus the second condition is satisfied.

Then, to show sufficiency, let G be a graph satisfying the condition mentioned

in the proposition. If #V = 1, G is an n-rose, where n = #E, the automorphism

group Aut(fG) consisting of permutations of E, and for each edge e ∈ E0, which

connects {v0e , v1e}, there is an automorphism of fG swapping the two vertices. Thus

Aut(fG) = (Z/2Z) ≀ (Aut(G)) = (Z/2Z) ≀ (Sn) where Sn is the symmetric group on E,

and it acts on V0 transitively.

When #V > 1, there is no loop (edges connecting only one vertex) in G, otherwise

every edge is a loop, and according to connectedness, the graph is just a rose. The

first condition induces that Aut(fG) acts transitively on E0 transitively. The second

condition implies that for each e ∈ E0 connecting v0e and v1e , there is an automorphism

of fG swapping the two vertices. Thus the transitivity on E0 implies the transitivity

of the action of Aut(fG) on V0.

Corollary 5.5.11. For a graph G = (V,E) ∈ G, the automorphism of a formation

fG of G is

Aut(fG) =

 (Z/2Z) ≀ (Sn) if #V = 1, and n = #E,

Aut(G) otherwise.

Proof. If there is a loop in G ∈ G, then every edge is a loop by Proposition 5.5.10 ,

thus #V = 1. Also if #V = 1, every edge is a loop. So in this case, for every edge

e ∈ E, there is a Z/2Z symmetry in Aut(fG) for every edge. Thus the subgroup of

Aut(fG) which acts on G trivially is (Z/2Z)n. And Aut(G) = Sn acts on (Z/2Z)n

by ξ(ae) = aξ−1(e) where ξ ∈ Aut(G), and ae is nontrivial only on e-th component of

(Z/2Z)n. Thus Aut(fG) = (Z/2Z) ≀ (Sn).

Otherwise, the subgroup of Aut(fG) which acts on G trivially is the trivial group,
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thus Aut(fG) = Aut(G).

a-A-4.

Proposition 5.5.12. There is a bijection i : Sa
A2

−→ G, that with G = i(S ),

Aut(S ) ≃ Aut(fG) for a formation fG of G, where

i: Given S , such that [S ] ∈ Sa
A2

, i(S ) = (V,E) where V = {D+ : ρ(D+)(σ) ≥

0,∀σ ∈ Σ}, and E = {lα1,α2 : lα1,α2 connects vertices D1 and D2 ∈ V, where Di ∈

∆(αi), ⟨α∨
1 , α2⟩ < 0}.

i−1: Given G = (V,E) ∈ G, for any formation of G, fG : G0 −→ G, let n = #E,

and Φ = (A2)
n with positive simple roots identified to V0 of G0. Then S = (Sp,Σ,A ),

where Sp = ∅, Σ = V0 = S, and A = {D+
v : v ∈ V }∪ {D−

σ : σ ∈ Σ}. For each α ∈ S,

∆(α) = {D+
fG(α)

, D−
α }, and the valuations are:

ρ(D+
v )(σ) =

 1 if v ∈ ∆(σ),

0 otherwise.

ρ(D−
α )(σ) =



1 if σ = α,

0 if ⟨α∨, σ⟩ = 0 and ∆(α) ∩∆(σ) = ∅,

−2 if ⟨α∨, σ⟩ = −1 and ∆(α) ∩∆(σ) ̸= ∅,

−1 otherwise.

Here are several examples:

Example 5.5.13. Φ = A2. Sp = ∅, Σ = {α1, α2}, and A = {D+
1 , D

−
1 , D

+
2 , D

−
2 }, where

∆(αi) = {D+
i , D

−
i }.

(5.27)

It corresponds to the formation of the following graph G
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And the automorphism group is Aut(S ) ≃ Z/2Z.

Example 5.5.14. Φ = (A2)
n. Sp = ∅, Σ = {αi,j : i = 1, 2, . . . , n, and j = 1, 2},

A = {D+} ∪ {D−
i,j : i = 1, 2, . . . , n, and j = 1, 2}, where ∆(αi,j) = {D+, D−

i,j}.

The map ρ is given by the images of A under it, expressed in pairs of numbers,

given by being paired with α1 and α2, respectively: ρ(D+
1 ) = (1, 0), ρ(D+

2 ) = (0, 1),

ρ(D−
1 ) = (1,−1), and ρ(D−

2 ) = (−1, 1).

(5.28)

It corresponds to a formation of G, where G is an n-rose:

The automorphism group is Aut(S ) ≃ (Z/2Z)≀Sn = (Z/2Z)noSn, with Sn permutes

on A2-components and each Z/2Z acts on the corresponding component.

Example 5.5.15. Φ = (A2)
n. Sp = ∅, Σ = {αi,j : i = 1, 2, . . . , n, and j = 1, 2},

A = {D+
12, D

+
23, . . . , D

+
n1} ∪ {D−

i,j : i = 1, 2, . . . , n, and j = 1, 2}, where ∆(αi,1) =

{D+
i−1,i, D

−
i,1} and ∆(αi,2) = {D+

i,i+1, D
−
i,1}.

(5.29)
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It corresponds to a formation of the polygon with n-edges:

The group of automorphisms is Aut(S ) = Dn, the dihedral group acting on a n-gon.

Example 5.5.16. Let Φ = (A2)
6. The spherical system consists of Sp = ∅, Σ =

{αi,j : i = 1, 2, . . . , 6, and j = 1, 2}, A = {D+
126, D

+
145, D

+
235, D

+
346} ∪ {D−

ij : i =

1, 2, . . . , 6, and j = 1, 2}.

D+
126

D+
346

D+
235

D+
145

(5.30)

It corresponds to the formation of the complete graph with 4 vertices:

The group of automorphisms is Aut(S ) = S4, permuting the 4 positive-decorated

colors.

Remark (Geometric Realizations). When the spherical system is not as in Exam-

ple 5.5.13, the spherical varieties corresponding to the spherical (A2)
n-system S is
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determined by G = (SL3)
n and generic stabilizer H = Z(G) · (A · U) where

U =
n

i=1


1

xi,1 1

∗ xi,2 1


satisfies the following conditions: for each D+ ∈ A such that ρ(D+)(α) ≥ 0, ∀α ∈ Σ

(i.e., D+ is in V ), 
D+∈∆(αi,j)

xi,j = 0.

And

A =


a

1

a−1


acting diagonally on each component.

And for the spherical system in Example 5.5.13, G = SL3 and

H =


∗

0 ∗

∗ 0 ∗

 .

Proof of Proposition 5.5.12. Similar to the discussion for Φ = (A1)
n cases, the spher-

ical Φ-systems with Φ = (A2)
n are discussed case by case according to the number

ν of colors in ∆(σ) for spherical root σ which also belongs to ∆(σ′) for some other

spherical root, which can only be 0, 1 or 2.

Case 1: If ν = 0, then the positive simple roots in the spherical system is connected

only when the underlying Dynkin diagram is connected, hence Φ = A2, and no colors

in the spherical system belong to more than one ∆(α). On the graph formation side,
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this spherical system corresponds to the graph G with V = {v1, v2}, E = {e} where

e connects v1 and v2. With the condition ν = 0, which means there are no vertices

shared by a pair of distinct edges, there is at most 1 edge, hence G is the only possible

graph in this case. And G0 = G, Aut(S ) ≃ Aut(fG) ≃ {1, σ} with σ exchanging α1

with α2. This is shown in Example 5.5.13. Also, it is easy to see that the images of

colors under ρ are exactly the ones given in the proposition. And it is the only one

in its isomorphism class, if the “positive” labels of colors are given to the ones with

greater ρ-values in each ∆(α). Consider the fact that this case is the only G ∈ G

that there is no edges in G which is adjacent to any edge through a vertex. As G

requires any graph in it to be connected, then such a graph can only have one edge

and exactly two vertices connected to it. And for the rest of the discussion, it may be

assumed that all edges in G are adjacent to some other edge (can be itself) through

a vertex.

Case 2: ν = 1. This case contains the rest of the valid spherical systems and

graphs. So we may assume that the spherical varieties mentioned below are not of

the form in Example 5.5.13, and graphs does not contain the corresponding one.

It is necessary to check that the maps i and i−1 (it will be shown that it is the

inverse of i) given in the proposition are maps between Sa
A2

and G, then the facts

that i ◦ i−1 = idG and i−1 ◦ i = idSa
A2

can show i−1 is the “true” inverse. At last, the

automorphism groups will be discussed.

As ν = 1, every positive color D+
α also belongs to ∆(α′) for some other α′ ∈ S,

and the corresponding D−
α belongs to ∆(α) only. Then for any spherical system S

with [S ] ∈ Sa
A2

, let G be its image under i. The connectedness of S means that

the edges in G (components of the underlying Dynkin diagram) are connected by the

colors (common vertices between edges). Thus G is connected. Moreover, let G0 be

the underlying Dynkin diagram of S , the map of graphs fS : G0 −→ G induced by



CHAPTER 5. SPHERICAL SYSTEMS 85

the Luna diagram is a graph formation of G, and the transitivity condition shows

that G ∈ G.

Conversely, a similar discussion shows that for each G ∈ G, if S = i−1(G) is a

spherical system, then the isomorphism class [S ] ∈ Sa
A2

. To show S is a spherical

system, it suffices to check the Axioms (A1), (A2) and (A3), since (S1) is implied by

the type a condition, and other axioms are not applicable. (A1) is implied directly

from the assignment of the Cartan pairing. (A3) is from the construction of A and

∆(α) for each α. For (A2), let v ∈ ∆(α),

(ρ(D+
v ) + ρ(D−

α ))(σ) =



1 + 1 = 2 if σ = α,

0 + 0 = 0 if ⟨α∨, σ⟩ = 0 and ∆(α) ∩∆(σ) = ∅,

1 + (−2) = −1 if ⟨α∨, σ⟩ = −1 and ∆(α) ∩∆(σ) ̸= ∅,

1 + (−1) = 0 if ⟨α∨, σ⟩ = 0 and ∆(α) ∩∆(σ) ̸= ∅,

0 + (−1) = −1 if ⟨α∨, σ⟩ = −1 and ∆(α) ∩∆(σ) = ∅.

Hence, ρ(D+
v ) + ρ(D−

α ) = α∨, i.e., (A2) holds.

Then for the compositions, it is easy to see that i◦ i−1(G) produces G. Conversely,

if a formation is chosen to be the fS defined above, i−1 ◦ i is an identity on spherical

systems in Sa
A2

. Otherwise, if another formation f of i(S ) is chosen, the isomorphism

between f and fS (Lemma 5.5.7) implies an isomorphism between the spherical

systems produced by i−1, however, they still live in the same isomorphism class.

For the automorphisms, as ν = 1, each vertex attached to an edge in G0 belongs

to only one image under the formation map. In this procedure V0 = Σ, the action of

Aut(S ) on Σ is considered as the same action on V0. By the previous construction,

Aut(S ) acts on the formation, hence Aut(S ) ⊆ Aut(fG). On the other direction,

Aut(fG) acts on Σ and Sp , then it defines the action on A by ξf (D
+
v ) = D+

ξf (v)
and

ξf (D
−
α ) = D−

ξ0(α)
, for ξf = (ξ0, ξ) ∈ Aut(fG). So Aut(S ) ⊇ Aut(fG), hence they are
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isomorphic.

Case 3: ν = 2. There are no spherical systems satisfying ν = 2. Suppose there

exists one. Let ∆(α1,1) = {D+
1,1, D

−
1,1}, D+

1,1 ∈ ∆(σ1), and D−
1,1 ∈ ∆(σ2) where

σi ̸= α1,1 (there can be more than one possible such σis, just choose one of them in

the discussion). And let the colors D−
1 and D+

2 satisfy the conditions that ∆(σ1) =

{D+
1,1, D

−
1 }, and ∆(σ2) = {D−

1,1, D
+
2 }. In the following discussion, σ1 and σ2 can be

exchanged, so without loss of generality, σ1 is chosen instead of “one of the σi’s”.

There are 4 situations for σ1 and σ2 to be considered:

1. σ1 = σ2. This violates the axiom (A2) as ρ(D+
1,1)(σ1) = ρ(D−

1,1)(σ1) = 1.

2. σ1 = α1,2, i.e., ⟨α∨
1,1, σ1⟩ = −1. ρ(D+

1,1)(α1,2) = 1, hence ρ(D−
1,1)(α1,2) = −2. To

make ρ(D−
1,1) + ρ(D+

2 ) = σ∨
2 , ρ(D+

2 )(α1,2) = 2 which violates the axiom (A1).

3. ⟨σ∨
1 , σ2⟩ = −1. In this case, let σ1 = α2,1, and σ2 = α2,2. (ρ(D+

1,1)+ρ(D−
1,1))(α1,2) =

−1, hence ρ(D±
1,1)(α1,2) = 0 or −1. Choose ρ(D+

1,1)(α1,2) = 0 (the other case is

equivalent to a swap of D±
1,1), then ρ(D−

1,1)(α1,2) = −1, and ρ(D+
2 )(α1,2) = 1.

Part of the valuations are given in the following table:

α1,1 α1,2 α2,1 α2,2

ρ(D+
1,1) 1 0 1 −1

ρ(D−
1,1) 1 −1 −1 1

ρ(D−
1 ) −1 0 1 0

ρ(D+
2 ) −1 1 0 1

ρ(D−
1,2) 0 1 0 −1

However, by the assumption of case 3, D−
1 ∈ ∆(σ3) for some σ3 other than

the 4 spherical roots mentioned in the table. Considering ρ(D−
1 )(σ3) = 1,

then ρ(D+
1,1)(σ3) = −1, and ρ(D−

1,1)(σ3) = 1, hence D+
3 = D−

1,1. Furthermore,

ρ(D+
2 )(σ3) = −1 and ρ(D−

1,2)(σ3) = 1. But D−
1,2 can not be identified with D−

1,1
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or D−
1 . This violates the axiom (A1).

4. ⟨σ∨
1 , α1,1⟩ = ⟨α∨

1,1, σ2⟩ = ⟨σ∨
1 , σ2⟩ = 0. From the discussion of a-A-3., the color

D−
1 is identical to D+

2 , and the valuations are:

α1,1 σ1 σ2

ρ(D+
1,1) 1 1 −1

ρ(D−
1,1) 1 −1 1

ρ(D−
1 ) = ρ(D+

2 ) −1 1 1

Without loss of generality, let ρ(D+
1,1)(α1,2) = 0, then ρ(D−

1,1)(α1,2) = −1, and

ρ(D+
2 )(α1,2) = 1. Hence D+

2 ∈ ∆(α1,2). Let ∆(α1,2) = {D+
2 , D

′}, then ρ(D′)(α1,1) =

1. This goes back to the situation 2 above.

Therefore, case 3 does not provide any possible spherical systems.

Thus Theorem 5.5.1 is proven.
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