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Designing foods by modifying their form is becoming a plausible strategy to 

control how foods behave and are digested in the gastrointestinal (GI) tract. Given the 

global persistence of the type II diabetes and obesity, there is a great need for dietary 

interventions that target postprandial glucose levels and rate of lipolysis. A well-

established structure-function relationship is found between increased viscosity and rate 

and extent of macronutrient hydrolysis. Nonetheless, the mechanisms underlying such 

relationships within specific food commodities as a function of GI viscosity are not yet 

well identified, especially in light of the confinements in the currently available methods 

for monitoring GI luminal viscosity. 

A critical review was compiled to summarize the main characteristics of 

molecular rotors (MR)s, a class of optical probes that are sensitive to microviscosity, 

their current applications in biological research and their current and potential 

applications as sensors of physical properties in food science and engineering. MRs were 
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integrated with TNO Intestinal Model-1 (TIM-1) in a novel method to facilitate detection 

of in situ changes in luminal viscosity during in vitro GI digestion, respectively. This 

method was verified using maize starch samples that varied in their amylose-to-

amylopectin ratio, and is applicable when microviscosity is representative of bulk 

viscosity. 

We were able to correlate food form, and digestion kinetics in several food 

matrices. Carbohydrate digestion kinetics and in vitro gastric viscosity of three 

commercially available oat products, instant oats (IO), steel cut oats (SC), and oat bran 

(OB), were assessed.  Findings included: rate of starch digestion in IO > OB > SC; IO 

and OB viscosities were highest at the onset of digestion and decreased with time, 

whereas SC onset viscosity was lowest and increased with time. IO- and SC-based meals 

were modified by addition of a thickening agent, milk protein concentrate (MPC), at 

concentrations: 0 g, 5 g, and 10 g. Oat-based meals containing 5 g or 10 g MPC yielded 

significantly less total bioaccessible sugar, a more rapid rate of starch digestion, and 

higher gastric viscosity compared with those containing 0 g MPC. Physico-chemical 

properties of human breast milk were compared to four SimilacTM infant formulas, and 

correlated with in vitro free fatty acid bioaccessibility. Breast milk samples were 

distinctly unique from the infant formulas: having lower viscosities as a function of pH 

(pH 6.5 to 3.0), a lag period during lipid digestion, and a higher rate of lipolysis. These 

findings suggest that modification of food form and formulation alters macronutrient 

bioaccessibility and luminal viscosity. 
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1 INTRODUCTION 

Diet-related non-communicable chronic diseases are forecasted to make up two-

thirds of the total global burden of disease in 2020 [1], with a greater incidence in 

younger aged groups [1]. Such statistics have generated current scientific and industrial 

emphasis towards dietary mediation of chronic diseases. While traditional measures 

assess nutrient composition of a meal to determine its physiological contribution; 

significant amounts of scientific evidence suggest the substantial role of the nutrient 

physicochemical properties on its total physiological impact. Such circumstances may 

lead to inadvertent physiological responses, which may prove harmful in foods designed 

for specific consumers, such as diabetic and/or obese. 

One vivid example of such a phenomenon is the commercially available oat-based 

products, which are generally perceived to be glycemia-decreasing meals despite their 

wide range of glycemic indices, ranging between 40 and 88, for various processed whole 

oat grains [2]. This inconsistency is due to oats being commercially available in several 

forms, ranging from raw grain to ready-to-eat cereals and cooked oat porridge [2]. The 

diverse processing techniques to which the oat grains are exposed has been shown to 

modify the major physiologically-functional component of oats, which is soluble fiber β-

glucan; as a result, β-glucan quality (e.g., solubility and molecular weight) [3-5], quantity 

[6], and starch integrity (e.g., gelatinization) are all modified [7-10]. Such physico-

chemical changes affect the ability of β-glucan in oats to bind water and form a water-

entrapping non-starch polysaccharide viscous network in the gastrointestinal (GI) tract 

[11, 12], which has been associated with a decrease in postprandial glucose response. The 

inverse relationship between meal viscosity and postprandial plasma levels is now widely 
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accepted [13]. Measurements of changes in luminal viscosity during GI transit time for 

different oat products are very scarce, with the majority of studies using static in vitro 

digestion methods. Such modifications are critical, given the estimated 366 million 

diabetics accounted for worldwide in 2011 and the alarming prediction of a 50.7% 

increase by the year 2030 [14]. Manifestation of a large and rapid spike in blood glucose 

is a well-known risk-factor of type II diabetes [15]. The metabolic response to dietary 

starch is a function of the rate of its hydrolysis/digestion [16, 17]. Therefore, slowing 

starch digestion in the small intestine offers opportunities for lowering of the postprandial 

glycemic response [18], critical for the management of type II diabetes. 

Equivalent to the magnitude of the global type II diabetes pandemic, exists the 

pervasive occurrence of obesity amongst type II diabetics. An alarming one-third of the 

United States adult population has been categorized as obese by The Center of Disease 

Control and Prevention [19]. Worthy of special concern is the childhood obesity 

epidemic, which has been identified to contribute to an earlier onset of type II diabetes 

amongst adolescents [20]. Interestingly, the prevalence of childhood obesity is lower in 

breast-fed infants compared to formula fed infants [21-23]. Numerous hypotheses have 

associated the method of feeding (bottle versus at the breast) [24, 25], the hormones and 

adipokines in breast milk [26-32], amongst many others to this mechanism. Regrettably, 

the mechanism responsible for this correlation is not understood [24].  

In an attempt to facilitate investigations of the effect of food physico-chemical 

properties on macronutrient digestibility, we integrated TNO Intestinal Model-1 (TIM-1), 

spectrophotometry, and molecular rotors (MR) to facilitate simultaneous measurements 

of real-time luminal viscosity changes and digestion kinetics, in vitro. The TIM-1 is an 
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advanced artificial digestive system that mimics the human stomach and small intestine, 

and is unique for its dynamic computer controlled system. “Molecular rotor” refers to 

molecules consisting of two or more segments that easily rotate relative to each other 

[33]. We exploited the sensitivity of MRs to increased molecular crowding within the 

TIM-1 apparatus to achieve continuous monitoring of in vitro luminal chyme viscosity. 

The digestate samples collected from TIM-1 facilitated estimation of digestion kinetics, 

which included total bioaccessibility and rate of hydrolysis (α-amylase or lipase). The 

investigated physico-chemical properties were determined using fluorescence spectra and 

MR, in addition to other techniques, and included: GI viscosity, available starch and β-

glucan, extent of starch gelatinization, and particle size distribution. The major findings 

presented in this dissertation were a product of correlations between the attained 

parameters of digestion kinetics and physico-chemical properties, as a function of (A) 

changes in amylose-to-amylopectin ratio in maize starch; (B) changes in the integrity and 

quantity of both β-glucan and starch, due to differences in the production methods 

involved in oat processing; (C) addition of a thickening agent, milk protein concentrate 

(MPC) to oat-based meals; and (E) differences in droplet size and distribution of fat 

globules in SimilacTM infant formulas as compared to human breast milk. These findings 

provide a better understanding of relationships between food form and formulation, 

which may be useful in the design of food products with pre-determined physiological 

impact, intended for patients with specific diet-related chronic diseases. 
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2 LITERATURE REVIEW 

2.1 Dietary Carbohydrates 

2.1.1 Introduction 

Carbohydrates exist in numerous forms, varying in their chemical properties: type 

of sugars, type of bonds linking the sugar monomers, and degree of polymerization [34]. 

Such differences determine whether or not carbohydrates are glycemic, in other words 

whether or not they are available for absorption in the small intestine [34, 35]. 

Consequently, physico-chemical properties of carbohydrates influence their contribution 

to postprandial glycemic response. While the glucose molecule is an available 

carbohydrate, dietary starch must first be hydrolyzed via the action of α-amylase to 

generate smaller units that are then available for absorption by the intestinal epithelium. 

Non-glycemic carbohydrates include non-starch polysaccharides, i.e. dietary fiber (DF) 

[34, 35], which can resist small intestinal digestion, and are fermented in the colon. Non-

glycemic carbohydrates are unique in their ability to modify the physical and chemical 

properties of the luminal chyme [34, 35], ultimately altering macronutrient digestibility.  

Postprandial glycemic response is a topic that gained great momentum in the 

fields of nutrition, medicine and food science, especially in light of the predicted rapid 

(~50%) increase in the number of diabetics worldwide between years 2011 and 2030 

[14]. Postprandial glycemia refers to the concentration of glucose in the blood after 

consumption of a meal, which is largely affected by the rate at which glucose is absorbed 

[36]. A lower glycemic response is considered healthy for both diabetic and non-diabetic 
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individuals [37]. Nonetheless, the rate of absorption is largely dependent on the rate at 

which glucose becomes bioaccessible (available for absorption, after cleavage from the 

carbohydrate polysaccharide). The overall food matrix and its physico-chemical 

properties influence such parameters, and are also influenced by varying processing 

techniques [34, 35]. Reducing the rate and extent of small intestinal starch digestion is 

now accepted as a mechanism to lower glycemic response and to increase starch 

resistance to digestion, respectively [18]. It is therefore of great importance to understand 

the structural architecture of starch and physico-chemical factors that may manipulate its 

digestion kinetics. 

2.1.2 Starch Structure 

Starch makes up the major source of dietary carbohydrates in the human diet [38]. 

The chemical structure of starch is widely accepted [39-41] to be composed of D-glucose 

monomers covalently linked into long polymers.  The covalent linkages may result in the 

formation of amylose, a linear α[1à4] linked glucan, or amylopectin, a branched glucan 

with an α[1à4] linked glucan backbone and α[1à6] linked glucan branches (Figure 2.1). 

Amylopectin are 100 times larger molecules than amylose, with molecular mass of ~ 109 

Da and make up ~ 70 – 80% of the total weight of the native starch granule [39-41]. 

Molecular structure has a tremendous influence on the physiological functionality of 

starch. A thorough understanding of this relationship is critical in optimizing industrial 

applications and consequent prediction of biophysical properties. 
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Figure 2.1: α-1,4- and α-1,6- glucans connect glucose monomers to form starch [42].  

Starch granules are characterized by their semi-crystallinity [43]. The regions in 

starch where the α[1à4] linked glucans intertwine results in the formation of double 

helices (Figure 2.2), that together result in the formation of  parallel crystalline regions 

[44-47]. On the other hand, α[1à6] linked glucans at which amylopectin branching 

points are initiated contributes to formation of amorphous regions that lack high level of 

order [44-47]. These distinct regions are called lamellae and are arranged to form growth 

rings (distinct layers) radiating from the hilum (center) of the grain [43]. The semi-

crystalline nature of the starch granule renders it anisotropic, which is the refraction of 

light at different angles dependent on the orientation of the crystalline lattice with respect 

to the angle of the incident light. Direction of polarized light onto an anisotropic material 

(in this case the starch) contributes to its birefringence property, which is the splitting of 

the light beam into two beams and their refraction perpendicular to each other. The 

second polarizer within the polarized light microscope then allows passage of only one of 

these split beams (which is parallel to it) and exhibition of a white image representing the 

sample against a black background (Figure 2.3) [48]. Further, the radial arrangement of 

the starch molecules that forms the starch granule is depicted in the form of a dark cross 

centered on the hilum, also termed Maltese cross (Figure 2.3) [48-51], the relevance of 

birefringence will be explained in the “Processing of Starchy Foods- Gelatinization” 

section below.  
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Figure 2.2: Left to right: starch strands are arranged parallel to each other to form 
a left-handed double helical structure. Multiple helices result in regions of 
branching and regions of linear polymer in the form of a hierarchical structure, 
thus forming amorphous and crystalline lamella, respectively.  Accordingly, the 
final starch granule consists of alternating growth rings of explicitly crystalline and 
explicitly amorphous lamella (regions) [42].  

 

Figure 2.3: Maltese cross of starch granules under polarized-light microscope [49]. 

2.1.3 Starch Digestion 

Starch digestion, also known as amylosis, involves the breakage of α-1,4-glucan 

linkages in the starch polymer chains via α-amylase enzyme [18]. α-Amylase is 

endogenous in the human gastrointestinal (GI) tract and is secreted from two glands: the 

salivary glands, into the oral cavity and the pancreas [52] into the duodenum of the small 

intestine [53]. Salivary α-amylase is responsible for starch hydrolysis in the oral cavity 

[54]. The significance of salivary α-amylase in starch hydrolysis is debatable and may be 

a function of the duration of oral mastication time and starch source [55]. Pancreatic α-
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amylase is responsible for starch hydrolysis in the small intestine [54], and is responsible 

for the majority of the total amylosis [56, 57].  

α-Amylase enzyme diffuses to the starch granule-water interface where it is 

adsorbed, thus starting the starch-degradation process [58]. The starch polymer (25 µm) 

is approximately 3000 times larger than α-amylase (2-3 nm) [59]. Thus, the starch 

substrate provides a large surface area for α-amylase [38]. Catalysis is dependent on the 

occupation of the active site on α-amylase. Human salivary, human pancreatic and 

porcine pancreatic α-amylase enzyme are structurally similar [60-62]. Experimental 

simulation of human carbohydrate digestion typically uses porcine α-amylase. Both 

human [63] and porcine [64] pancreatic α-amylase binding sites (i.e., the point of 

attachment to the glucose polymer), consists of 5 subsites [64]. Accordingly, starch binds 

with its first glucose unit to the first or second subsites and results in the cleavage of the 

glycosidic bond between the first and second, or second and third glucose units [63, 64]. 

In other words, α-amylase specifically cleaves α-1,4-linkages [65] and excludes the 

terminal glucose and branching α-1,6-linkages. This process yields maltose, maltotriose, 

and dextrins [66, 67]. Along the brush border of the small intestine are enterocytes that 

contain various enzymes responsible for digestion of the dextrins, maltose and maltoriose 

[66, 68].  

There are two phenomena that hinder or attenuate the rate of starch hydrolyzing 

α-amylase enzyme: first, limiting the binding between the enzyme and starch substrate, 

which is the rate-limiting stage; and second, structural features as well as meal 

manipulation (e.g. cooking or processing) may result in disruption of the starch granule 
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integrity [15]. A thorough understanding of these phenomena will be useful in 

manipulating starch-based foods to inhibit/slow-down their carbohydrate digestibility.  

2.1.4 α -Amylase-Starch Access/Binding Limitations 

Food architecture is one parameter that may influence access of the enzymes to 

starch. Water-soluble fibers (SF) reduce the rate and extent of starch digestion via their 

ability to increase digesta viscosity. Fibers that contribute to viscosity increase transit 

time in the GI tract and delay gastric emptying [69]. The viscosity increase associated 

with SFs results in increasing viscosity of the digesta in the GI tract, impeding motion 

and access of enzymes to the starch, consequently reducing α-amylase activity on starch 

[70-72]. Further, increasing viscosity hinders diffusion of the α-amylase hydrolysis 

byproducts to the luminal brush border and renders absorption less effective [70-72]. A 

number of randomized studies suggest positive contributions of fibers on controlling 

postprandial glycemia [73-78]. SF is a type of DF, also known as non-starch 

polysaccharides (NSP), that are resistant to digestion in the human small intestine and 

undergo some level of fermentation in the colon [74, 79]. β-glucans have gained interest 

in the industry due to the authorization granted by US Food and Drug Administration to 

use health claims relating to diets high in oat bran and oats (≥ 3 g/day), which are high in 

β-glucans [80-82].  

2.1.4.1 β-Glucans  

(1à3, 1à4)-β-D-glucans are glucan polymer chains linked via β-linkages [83, 

84] that are found in the cell walls of cereal grains [37]. β-linkages render the molecules 

resistant to digestion [85] and result in the formation of linear structures connected at the 

1,3 and 1,4 positions [37] (Figure 2.4). The random coiled polysaccharide is not 
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influenced by pH changes due to their uncharged nature [13]. Ability of SFs, inclusive of 

β-glucan, to increase digesta viscosity within the GI tract is believed to be the major 

factor responsible for its health benefits, which include reducing postprandial glycemia 

[86-92] and prolonging the sensation of satiety. Oats are rich (3-7% [4, 93, 94]) in β-

glucans, which are concentrated in the endosperm and aleurone layer and have a 

molecular weight ranging between 0.065-3X106 g/mol [95]. 

 

Figure 2.4: β-Glucan linear structure [96]. 

The mechanism by which β-Glucans modulate postprandial glucose levels is not 

fully understood. The most widely accepted postulation refers to the viscosity-increasing 

or thickening property of SFs, inclusive of β-Glucans. Wood et al. demonstrate an 

inverse relationship between viscosity of a 50 g glucose solution (altered via modification 

of β-glucan (oat gum) molecular weight and dose) and postprandial plasma levels. 

Plasma glucose and insulin levels were 79-90% inversely correlated to log viscosity of 

the meal [13]. The linear and unbranched nature of β-glucans [13, 97], in combination 

with its high molecular weight, provides a high intrinsic viscosity [98, 99]. This allows 

the polymer coil to overlap and entangle [13, 97], increasing viscosity of the solution at 

low concentrations (0.2-0.3% w/v) [98, 99]. The ability of β-glucans to resist digestion by 
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the human GI enzymes, where 88.5% of ingested β-Glucans were recovered in the human 

ileal efflux [100, 101], allows for retention of viscosity throughout the small intestine. 

One factor that influences viscosity is the concentration of SF [97, 102, 103].  

Increasing fiber concentrations yield an increase in viscosity to approximately the power 

of four [99]. Oat bran porridge and cream of wheat, with 10g of added β-glucan 

significantly reduced postprandial plasma glucose levels compared to the control cream 

of wheat in both non-diabetic and type II diabetic subjects [104]. The critical role of β-

glucan dose on glycemic response attenuation has been observed [105-107]. Meals 

containing 50 g available carbohydrates with varying β-glucan composition: β-glucan 

cereal (7.3 g), β-glucan bar (6.2 g), commercially available oat bran cereal (3.7 g), and 

white bran (0 g) contributed to an inverse correlation between postprandial blood glucose 

levels and β-glucan concentration [108]. A 4 unit reduction in the glycemic index was 

observed per gram of β-glucan consumed in a 50 g carbohydrate meal [108]. Beverages 

containing 5 g oat β-glucan consumed for a 5-week period reduced postprandial glucose 

concentrations in comparison to a control beverage. However, the reduction was not 

significantly different from a 10 g oat β-glucan beverage [109]. In another work, diabetic 

patients that were fed a 12.5 g glycemic carbohydrate load in three forms: oat bran flour, 

oat bran crisp, and glucose load [110]. The meals varied in β-glucan content: 9.4 g, 3.0 g 

and 0 g, respectively. The area under the plasma glucose curve showed a statistically 

significant two-fold decrease for oat bran flour, as compared to commercially available 

NATUREAL® oat bran crisp. The authors attribute this trend to the higher β-glucan in the 

bran flour. In addition, the oat bran resulted in a reduction, and flatter curve, in the 

subjects’ postprandial glycemia when compared to the glucose load [110]. Three 
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breakfast cereals that were controlled to contain 4, 6 and 8.6 g β-glucan via addition of 

different amounts of oat bran concentrate, were fed to type II diabetes subjects [105]. 

While the meals resulted in an attenuation in plasma glucose compared to a control, a 

distinct inverse relationship existed between plasma glucose peak or area under glucose 

curve and the β-glucan concentration and log viscosity of β-glucan [105]. Breads 

containing barley β-glucan doses, ranging between 0.1 and 6.3 %, resulted in a linear 

dose-dependent relationship attenuation in postprandial glycemic levels [111]. Muesli 

meals containing 4 g oat β-glucan yielded an significant reduction in postprandial 

glycemic response in healthy subjects as compared to a control meal without muesli and 

β-glucan [112]; this value appeared to serve as a critical cut-off, below which decreases 

in postprandial glucose response were insignificant [112, 113]. 

2.1.4.2 Effect of Starch-Structure on Amylosis 

Direct contact between the starch substrate and α-amylase is critical to the 

amylosis process. Since the starch polymer predominately contains α-1,4-glucans chains,  

with a comparatively limited number of α-1,6-glucans, almost all glycosidic linkages are 

susceptible to catalysis by α-amylase enzyme [15]. However, the rate of catalysis is 

governed by various structural and compositional factors, such as ratio of 

amylose:amylopectin and degree of crystallinity. A tightly packed crystalline structure 

deters hydrolysis in comparison to a more loosely packed structure. In addition, granule 

structural features are also susceptible to changes due to processing techniques typically 

applied to starchy-products, such as cooking and milling, which in turn influences the 

extent of exposure of the starch glucan polymer to the α-amylase enzyme [15]. It is 
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therefore important to acknowledge physical characteristics when manipulating the 

product architecture to yield the desired physiological impact.  

2.1.5 Processing of Starchy Foods - Gelatinization 

Most starches are consumed after exposure to a hydrothermal process. Heating to 

> 60 °C results in the absorption of water into the starch granule causing an order-

disorder transition, where the semi-crystalline nature of the granule is lost. This process is 

known as gelatinization (Figure 2.5) [114]. During gelatinization, hydrogen bonds are 

broken within the starch polymer and this disrupts the crystalline structure. The exposed 

hydroxyl groups of the starch polymer are bound to the surrounding water via hydrogen 

bonding, which results in swelling of the starch granules [115] to several times its 

original volume [40, 116-118]. The swelling process is accompanied by the pasting 

phenomenon, where a rapid increase in viscosity occurs because of the leaching of 

amylose into the solution [117, 118].  

 

Figure 2.5: Schematic of changes in starch microstructure during the process of 
gelatinization [119]. 

Concurrent to loss of crystallinity during gelatinization is a loss in the 

aforementioned birefringence [116]. Upon hydrothermal processing, the loss in the 

crystalline structure results in disruption of the molecular organization and a consequent 

loss in the Maltese cross contour [49]. The point at which all birefringence (~ 95 or 98%) 

is lost is known as the birefringence end point temperature (BEPT) [116], and is 
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associated with complete gelatinization of the starch granules and complete loss in 

crystallinity [51].  

Both the loss of structural order in the granule and leakage of amylose increases 

their susceptibility to α-amylase hydrolysis by facilitating interaction with α-amylase 

[120, 121]. The water absorption and swelling of starch granules involves disruption of 

the intra- and inter-molecular hydrogen bonds within the starch polymer, which facilitates 

access of the enzymes to the starch polymer [122].  The rate of digestion of waxy rice 

starch was found to be proportional to the degree of its gelatinization [122]. The authors 

attribute this to the complete disruption of the swollen starch granules in ‘fully 

gelatinized starch samples’ due to excess heating [122], this consequently increases 

accessibility of the hydrolyzing enzyme to the substrate. In comparison, the lack of 

complete disruption of the swollen starch granules in ‘partially gelatinized starch’ results 

in retention of the physical barrier against enzymatic accessibility to the substrate. 

Numerous authors have found relationships between gelatinization and the rate of starch 

digestion [123-125].  

The correlation between the extent of gelatinization and rate of digestion renders 

it imperative to acknowledge the influence of different commercial processing techniques 

on gelatinization. Such variances are exemplified in the processing techniques used in 

cereal production. Steaming and rolling results in partial gelatinization of starch in thin 

flakes of instant oat [10] and cooking in boiling water (3 minutes) almost completely 

gelatinized the starch (deduced from loss of birefringence) [126]. Once the thickness of 

the rolled oats was increased (old fashioned oats), the extent of gelatinization during 

cooking (for the same duration) was decreased [10]. The authors attribute this difference 
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to a thicker particle size and a slower rate of water penetration [126]. Flaked amaranth 

starch was more readily hydrolyzed than cooked amaranth starch (boiled for 10 min), in 

vitro, due to an increase in gelatinization in the former [127].  

2.1.6 Amylose: Amylopectin Ratio 

Amylose (Figure 2.6) and amylopectin (Figure 2.7) are the two molecules that 

comprise starch.  They are present at variable ratios depending on their source. Amylose 

makes up around 15-30% of normal starch, 35-70% of high amylose starch, and 0-5% of 

waxy starch [128]. Although both starches are polymers of glucose, they vary in their 

molecular weight and extent and length of their branches. Amylose (Figure 2.6) is a 

linear polymer with a minimal number of long branches, and a molecular weight of 

around 105 - 106 Da. Amylopectin (Figure 2.6), on the other hand has a larger molecular 

weight of around 107 - 108 Da and is characterized for its large number of short branches 

[129].  

 

Figure 2.6: Molecular structure of amylose [130]. 

 

Figure 2.7: Molecular structure of Amylopectin [130]. 

An inverse relationship was found between amylose content and starch 

digestibility [129, 131-137]. Four cultivars of rice, each with differing amylose 
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concentrations, showed a decrease in starch hydrolysis with increasing amylose 

composition [138]. Barley flour-based bread showed reduced starch hydrolysis with 

increasing amylose content [139]. High-amylose maize Latin American flat bread 

(Arepas) showed a reduced extent of in vitro and in vivo (in rats) starch digestion as 

compared to the regular maize counterpart [140, 141]. Starch amylose-to-amylopectin 

ratio was found to be influential on post-gelatinization meal viscosity. A positive 

correlation exists between amylopectin content and peak starch viscosity, which is 

attributed to a higher molecular weight of the polymer chains [142] and a more rapid 

hydration and swelling due to a more ordered/crystalline microstructure [143, 144]. 

Concurrently, as the amylose content increased both onset of swelling and subsequent 

gelatinization are delayed [145, 146], also decreasing peak viscosity [147, 148].  

2.1.7 Soluble Fiber 

We have discussed earlier the influence of SFs in attenuating starch digestion via 

its effect of digesta rheological behavior. Also, SFs may play a role in reducing 

adsorption of α-amylase onto the starch surface by creating a barrier surrounding the 

starch that is resistant to enzyme penetration [149, 150]. Guar gum in bread and pasta has 

been shown to encapsulate starch granules, thus acting as a barrier between α-amylase 

and starch, where the extent of the reduction in glucose release was proportional to 

quantity of fiber [151, 152]. This physical barrier may also trap the nutrients and hinder 

their ability to reach the intestinal brush border for absorption. Further, SFs compete with 

starch for hydration, thus reducing the water activity of the solution, and consequent 

reduction in starch granule swelling, gelatinization, rupture, and amylose leaching [153-

156] and consequently reducing susceptibility of the starch granule to hydrolysis.  
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2.1.8 Conclusions 

Starchy foods provide the major source of glucose in the human diet. Therefore it 

is critical to investigate possible mechanisms to control their physiological response. 

Such modifications in food processing may prove useful for both the diabetic and non-

diabetic consumer. Starch structure and conformation, as well α-amylase-starch access 

and binding are crucial parameters that influence carbohydrate amylosis. Controlling SF 

content, determining extent of starch gelatinization, and their collective influence on 

viscosity is one strategy to attenuate starch digestion kinetics. Such investigations are 

critical in light of the rapid increase in global occurrence of type II diabetes.  
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2.2 Human Gastrointestinal Digestion and In Vitro Digestion 

Simulation Models 

2.2.1 Introduction 

The complexity of the human gastrointestinal (GI) tract and the overall digestion 

process renders in vivo experiments cumbersome, costly, and restricted by ethical 

considerations [157]. In vitro digestion models provide a suitable alternative when they 

closely mimic human digestion and its physiological conditions [157]. In vitro digestion 

models must accurately simulate the mechanical reduction of food particle size and rate 

and extent of hydrolysis by enzymes [157]. In order for an in vitro model to represent 

changes in the GI tract, it must be able to mimic pH changes, transit times within each of 

the GI comprtments, and enzymatic conditions [157]. There are numerous systems used 

to model the GI tract. Some models are static and designed to serve specific applications; 

however, most of these systems seldom reproduce the dynamic nature of in vivo 

digestion. Typically, gastric emptying, continuous changes in pH, and secretion flow 

rates are not accounted for nor included [157]. In addition, these models usually involve 

use of a magnetic stirrer or shaking bath to simulate chyme mixing, i.e. Twin-Simulator 

of the Human Intestinal Microbial Ecosystem (TWIN-SHIME), and this does not portray 

the characteristic mechanical forces of digestion [158]. More complex, dynamic systems 

include the various compartments to simulate the GI tract. Many of these systems focus 

on mimicking one or a few of the different compartments of the GI tract, i.e. the Dynamic 

Gastric Model [159, 160] or the Human Gastric Simulator [161], both of which represent 

the gastric compartment only. Therefore, such systems do not give insight of the entire 
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digestion process.  One of the few available options in in vitro digestion simulation 

systems that is both dynamic and multi-compartmentalized in nature is the TNO 

Intestinal Model-1 (TIM-1) [162]. The major pathway of human GI digestion will be 

summarized, followed by a thorough description of TIM-1 system, which is the digestive 

simulation system used in all experiments implemented in this dissertation, as well as its 

compartments and caveats.  

2.2.2 In Vivo Human Gastrointestinal Digestive System 

Digestion of a meal is initiated in the oral cavity via mastication. Salivary glands 

secrete saliva into the mouth [53] for the purpose of lubrication and initiation of 

carbohydrate digestion via salivary α-amylase [163]. The mechanically and 

enzymatically degraded bolus is transported to the gastric compartment via peristalsis. 

The bolus undergoes mixing with gastric juice in the gastric compartment that is 

facilitated by the churning activity of gastric muscles [164]. Gastric juice contains HCl 

that contributes to a progressive decrease in the gastric environment and bolus pH from ~ 

6.5 to ~ 1.5. Gastric juice also contains lipase and pepsin enzymes to initiate digestion of 

protein and lipids. The produced semi-liquid form is now called the chyme [164]. 

Peristalsis is then responsible for forcefully exerting small gushes of the chyme through 

the pyloric sphincter into the small intestine [53]. The rate of gastric emptying into the 

small intestine is a critical factor of chyme digestion and is governed by food structure 

and composition [165, 166].  

The small intestine is approximately 20 feet (6 meters) in length and 

approximately 1 inch (2.5 cm) in diameter, in the average adult and is made up of three 

segments: duodenum, jejunum and ileum [167, 168], with the duodenum being the 
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shortest of the three compartments. Sodium bicarbonate (NaHCO3) is secreted into the 

duodenum to neutralize the highly acidic chyme, thus providing an optimal pH range for 

enzymatic activity in the small intestine. Pancreatic juice is secreted from the pancreas 

into the duodenum and consists of the pancreatic enzymes (proteases, α-amylases and 

lipases), which are responsible for the majority of the digestion of proteins, carbohydrates 

and lipids [53, 167]. The liver generates bile, which is secreted through the gall bladder to 

emulsify fats into smaller droplets [53].  Transit through the small intestine is a result of 

segmentation motion, which thrusts the digesta down the small intestine and also allows 

for mixing of the digesta with the digestive enzymes [163, 169]. This segmentation 

motion, combined with the complex nature of the inner lining of the small intestinal 

walls, together provide a large surface area for absorption of both nutrients and water 

[157, 170]. Chyme that has travelled through the small intestine and was not absorbed 

enters the large intestine or colon. The colon is responsible for: absorption of water and 

electrolytes, re-absorption of bile, fermentation of polysaccharides and proteins via the 

inhabitant microbiota, as well as generation and excretion of feces [171]. 

2.2.3 TNO-Intestinal Model (TIM-1) 

TIM-1 is a multi-compartmental and dynamic, computer-controlled system [162] 

that was developed at TNO Nutrition and Food Research (Zeist, The Netherlands) [172]. 

TIM-1 mimics the upper part of the human GI tract (stomach and small intestine) and 

very closely simulates its numerous dynamic physiological processes. TIM-1 regulates 

pH curves, maintains a 37 °C temperature, secretes gastric and pancreatic secretions in 

physiological rates and amounts, applies suitable mixing and physiologically 

representative transit times [173, 174]. In addition, the system facilitates collection of 
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samples at any time during digestion directly from the compartments or after filtration 

[173]. Similar to other in vitro techniques, the TIM-1 permits accuracy and 

reproducibility, as compared to in vivo analysis [175].  

2.2.3.1 TIM-1 Compartments and Principles 

 

Figure 2.8: TIM-1. A. Gastric compartment; B. pyloric sphincter; C. duodenal 
compartment; D. peristaltic valve; E. jejunal compartment; F. peristaltic valve; G. 
ileal compartment; H. ileal-cecal valve; I. gastric secretion; J. duodenal secretion; 
K. bicarbonate secretion; L. pre-filter; M. filtration system; N. filtrate with bio-
accessible fraction; O. hollow fiber system (cross section); P. pH electrodes; Q. level 
sensors; R. temperature sensors; S. pressure sensor [176]. 

          TIM-1 is composed of four consecutive compartments that function as the GI: 

gastric cavity (Figure 2.8a), duodenum (Figure 2.8c), jejunum (Figure 2.8e), and ileum 

(Figure 2.8g) [162, 176]. As shown in Figure 2.8, each of these compartments is 

composed of an outer glass wall (blue color) filled with water (creating a water-jacket) 

and an inner flexible silicone wall (yellow in gastric compartment and red in intestinal 

compartments). Rotary pumps and a computer program are responsible for altering the 

water pressure in the water jackets and creating alternating compression / relaxation 



	   22	  

	  

motion of the flexible walls, mimicking physiological peristalsis on the compartment 

contents [162, 176]. The temperature is controlled to remain at 37 °C by means of heating 

water into the glass jackets. Figure 2.8b, d, f and h represent the peristaltic valves that 

separate the compartments, and are controlled by pressure from a connected nitrogen 

tank. Applying pressure to these valves almost completely closes the valves and prevents 

passage of any chyme; the contrary allows full passage of the chyme. Each of these 

valves has 3 sub-valves within; accordingly, within one valve for a single compartment, 

when one sub-valve opens, the other two close, this prevents backflow. In order to attain 

peristaltic motion, the valves are computer-controlled to open and close in a pre-set 

sequence and timing, accordingly controlling the volume being delivered with every 

peristaltic cycle [162, 176]. Figure 2.8q is the level sensor at each compartment that 

controls the volume within to retain a pre-determined level by allowing secretion of 

corresponding buffer into the compartment.  A pH electrode is placed in each 

compartment (Figure 2.8p), which monitors pH and maintains a pre-determined 

computer-controlled and physiologically relevant pH curve via secreting 1M HCl (into 

the gastric compartment) or NaHCO3 (into the intestinal compartments). All secretions 

including enzymes, bile, and pancreatic secretions are computer controlled [162, 176]. 

The overall conditions pre-set in the computer program dynamically change with 

digestion time in a physiologically relevant manner. Peristalsis, pH curves, enzymatic 

secretions, gastric emptying and transit times, removal of digestates are all based on 

human in vivo data and may all be modified to mimic different types of human subjects 

(i.e. infant, adult, elderly) in either the fed or the fasted states [177]. The jejunal and ileal 

compartments are connected to a hollow fiber (Figure 2.8m) filtration device that allows 
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passage of digestate molecules below  ~ 50 nm [178] and collects them in an external 

beaker (Figure 2.8n) for analysis. The material that leaves the ileal efflux (Figure 2.8h) 

represents the portion that enters the colon [162, 176].   

2.2.3.2 TIM-1 Caveats 

The first compartment of the TIM-1 is the gastric compartment. TIM-1 lacks 

simulation of human mastication; application of this step is therefore the responsibility of 

the researcher to ensure that reduction in particle size of the meal prior to placing the 

sample in the TIM-1 is similar to that performed in vivo (in human oral cavity). Also, 

similar to all in vitro digestion models, the TIM-1 lacks a feedback system that allows 

individual changes in the dynamic nature of the digestion as per the individual and unique 

digested meal. This is of major importance with regards to the pre-determined rate of 

gastric emptying in TIM-1, which would allow passage of particulates into the small 

intestine in a uniform manner. On the contrary, in vivo gastric emptying is dependent on 

numerous factors: increased liquid viscosity decreases gastric emptying [179, 180]; 

addition of soluble fibers delays gastric emptying (pectin [181], such as guar gum [182, 

183] and locust bean [184, 185]);  food consumed at body temperature exits the gastric 

compartment at a faster rate than colder or warmer foods [186]. Smaller particles have a 

shorter gastric transit than larger particles [187-189], and liquids and solids have different 

gastric emptying mechanisms [190]. The researcher must keep the predetermined, 

uniform, and automated gastric emptying rate into consideration when analyzing 

bioaccessibility patterns and other related physico-chemical properties.  

A critical part of experimental research is the accurate labeling or categorization 

of the attained sample or results. Accordingly, the question arises: is the collected sample 



	   24	  

	  

representative of the bioavailable nutrients? In other words, are the attained nutrients in 

the collected samples representative of those nutrients that have been absorbed and are 

now available to perform physiological functions [191]? Or is the collected sample 

representative of the bioaccessible nutrients? In other words are the collected products of 

digestion available to be absorbed in the future [176]? For this purpose, it must be noted 

that water and nutrient absorption involves simple and facilitated forms of diffusion, as 

well as active transport [157]. However, the hollow fiber filters attached to the jejunum 

and ileum compartments allow particles below a specific size to pass for collection in the 

sample intended for analysis. Accordingly, since the TIM-1 does not measure any 

advanced transport properties across the ‘intestinal membrane’ it is appropriate to label 

digestates as bioaccessible and not bioavailable. Attained digested nutrient samples may 

be representative of the bioavailable nutrients only when the analyzed nutrient is 

characterized with transport through the intestinal brush border that is not a rate-limiting 

step [176].  

2.2.3.3 Correlation between In Vivo Gastrointestinal Digestion and In Vitro TIM-1  

TIM-1 has been used in a large number of experimental works in numerous fields, 

such as: microbiology [192], pharmacology [172, 193], nutrition and food science [194, 

195]. However, validity of any data collected from TIM-1 is dependent on the extent of 

correlation with in vivo data. Accordingly, the FDA has put in place an in vitro and in 

vivo correlation (IVIVC) system that allocates a ‘level’ of correlation based on ability of 

the in vitro test to provide accurate data when compared to the corresponding in vivo data 

[196], levels include A, B, and C.  Level A correlation suggests a point-to-point 

correlation between in vivo and in vitro data, yielding a straight line with a slope that 
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equals to 1. Dissolution of acetaminophen tablets using TIM-1 showed a level A in 

vitro/in vivo correlation, with correlation coefficients of 0.9128 in the fasted state and 

0.9984 in the fed state [193]. Partially hydrolyzed guar gum showed a dose-dependent 

negative correlation with fat and cholesterol bioaccessibility in TIM-1 [197], in-line with 

in vivo findings by Kondo et al. [198]. An attempt in increasing bioaccessibility of 

tangeretin, a major polymethoxyflavone known for its ability to reduce risk of 

development of degenerative diseases, was performed by altering its oral delivery 

characteristics [199]. Being a hydrophobic compound, tangeretin was formulated in a 

lipid-based viscoelastic lecithin emulsion in medium chain triglycerides. The work 

compared bioaccessibility of the viscoelastic emulsion to tangeretin in a suspension of 

medium chain triglycerides. The influence of this processing technique on the 

bioaccessibility of tangeretin was tested both in vitro using TIM-1 and in vivo from blood 

samples of orally gavaged mice. TIM-1 results showed a 2.6 fold increase in the 

bioaccessibility of tangeretin in the viscoelastic emulsion form compared to the medium 

chain triglyceride suspension form. The in vivo experimentation with mice showed that 

the emulsion oral delivery system resulted in a 2.3 fold increase in the bioavailable 

plasma tangeretin concentration compared to the medium chain triglyceride suspension 

system. These results suggest that the TIM-1 provides a good prediction of in vivo 

physiological responses [199]. Verwei et al. [195] made use of the TIM-1, in 

combination with human colon carcinoma (Caco-2) cells to develop a kinetic model 

describing folate kinetics to predict blood folate concentrations in humans. In the same 

work, human subjects were fed folate-fortified pasteurized milk, folate-fortified UHT 

milk, or unfortified milk for duration of 4 weeks. The in-silico model developed from 
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TIM-1/Caco-2 in vitro results was able to accurately predict the increase in blood folate 

concentrations after the fortified meals, and also accurately predict the decrease in folate 

concentrations after unfortified meal consumption [195]. In a similar work by the same 

first author [200], UHT and pasteurized milk were found to be appropriate food matrices 

for the delivery of supplemental folate, illustrated by a high (60-70%) bioaccessibility 

[200]. These values coincide with in vivo human [201] and rat [202] studies that 

suggested dietary folate bioaccessibility to range between 40 and 70% of the ingested 

amounts.  

2.2.4 Conclusions 

In vitro GI simulation models are desirable alternatives to labor-intensive, costly 

and ethically constrained in vivo digestion experiments. The TIM-1, unlike other in vitro 

simulation models, is able to mimic (via a pre-determined computer controlled system) 

various physiological properties such as peristalsis, pH and pH changes over time, as well 

as removal of digestion products. Accordingly, the TIM-1 is considered the closest 

system currently available to the in vivo “gold standard”. Numerous studies have shown 

good correlation between TIM-1 results and in vivo data, suggesting the system is reliable 

in predicting in vivo parameters. 
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2.3 Potential Applications of Luminescent Molecular Rotors in Food 

Science and Engineering 

This section of the Literature Review is published in Critical Reviews in Food 

Science and Nutrition: (DOI 10.1080/10408398.2017.1278583, Published on-line June 

2017), and co-authored with Dr. Maria G. Corradini, Dr. Michael A. Rogers and Dr. 

Richard D. Ludescher. 

2.3.1 Abstract 

Fluorescent molecular rotors are compounds whose emission is modulated by 

segmental mobility; photoexcitation generates a locally excited (LE), planar state that can 

relax either by radiative decay (emission of a photon) or by formation of a twisted 

intramolecular charge transfer (TICT) state that can relax non-radiatively due to internal 

rotation. If the local environment around the probe allows for rapid internal rotation in 

the excited state, fast non-radiative decay can either effectively quench the fluorescence 

or generate a second, red-shifted emission band. Conversely, any environmental 

restriction to twisting in the excited state due to free volume, crowding or viscosity, slows 

rotational relaxation and promotes fluorescence emission from the LE state. The 

environmental sensitivity of molecular rotors has been exploited extensively in biological 

applications to sense microviscosity in biofluids, the stability and physical state of 

biomembranes, and conformational changes in macromolecules. The application of 

molecular rotors in food research, however, has been only marginally explored. In this 

review we summarize the main characteristics of molecular rotors, their current 
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applications in biological research and their current and potential applications as sensors 

of physical properties in food science and engineering. 

2.3.2 Glossary 

Bathochromic shift, red shift: A change in the wavelength of an absorption or emission 

band towards a longer wavelength with a lower frequency. 

Fluorescence: Emission from a photoexcited singlet state where the transition from the 

excited state to the ground state involves emission of light with lifetimes ranging from 10-

12 to 10-7 s. 

Fluorescence lifetime: The characteristic time a molecule remains in the excited state 

before relaxing to its ground state. Fluorescence lifetime is independent of probe 

concentration while fluorescence intensity is proportional to probe concentration. 

Fluorescence lifetime imaging microscopy (FLIM): A technique for measuring the 

distribution of fluorescence lifetimes in a microscopic image. It provides information on 

both the spatial distribution of fluorescent molecules as well their local 

microenvironment. 

Fluorophore: A chemical (usually aromatic) compound that can emit fluorescence upon 

photoexcitation; a fluorescent molecule. 

Free Rotor Effect: The ability of a molecular rotor to undergo internal (segmental) 

rotation that is associated with non-radiative relaxation of the excited singlet state. 

Hypsochromic shift, blue shift: A change in the wavelength of an absorption or 

emission band towards a shorter wavelength with higher frequency. 
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Intramolecular Charge Transfer (ICT) state: The state adopted by a molecular rotor 

upon relaxation of the initially photoexcited state; it involves intramolecular transfer of 

an electron from a donor group to an acceptor group.  

Local Excited (LE) state: The planar state of a molecular rotor formed upon direct 

photoexcitation; it can relax directly back to the ground state with photon emission 

(radiative decay) or undergo charge transfer to form an ICT state. 

Luminescent Molecular Rotor (MR): A molecule that consists of two (or more) 

segments that can rotate relative to one another (can undergo intramolecular twisting). 

The rate of twisting, which depends on the free volume, molecular crowding, or viscosity 

of the local environment, modulates the distribution of the LE and TICT states. 

Relaxation is primarily radiative from the LE and non-radiative from the TICT state. 

Non-radiative decay rate: The rate of release of excited state energy into thermal energy 

(i.e., the rate of vibrational relaxation) to return to the ground state. This process does not 

involve photon emission and is the main mode of de-excitation of the TICT state. 

Quantum yield: A measure of the radiative yield from the photoexcited state; equal to 

the ratio of the number of emitted photons to the number of absorbed photons.  

Phosphorescence: Emission from a triplet state, formed by intersystem crossing from a 

photoexcited singlet state, where the transition from the excited state to the ground state 

involves emission of light with lifetimes ranging from about 10-4 to 10 s. 

Radiative decay rate: The rate of release of excited state energy via radiative emission 

to return to the ground state. This process involves photon emission and occurs during 

de-excitation from the LE state. 
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Ratiometric sensor: A molecule (probe) engineered to consist of a segment, e.g., a 

luminescent molecular rotor, with specific environmental sensitivity coupled to a 

reference fluorophore without environmental sensitivity that is able to report on the probe 

concentration; the use of a ratiometric sensor can correct for the effect of probe 

concentration. 

Resonance energy transfer (RET): Non-radiative energy transfer between two 

fluorophores. A excited donor (D) fluorophore may transfer energy to an acceptor (A) 

fluorophore through non-radiative dipole–dipole coupling. RET efficiency is inversely 

proportional to the sixth power of the distance between D and A and directly proportional 

to the spectral overlap of D emission and A absorbance. 

Stokes shift: The difference in wavelength between the band maxima of the absorption 

and emission spectra.  

Twisted Intramolecular Charge Transfer (TICT) state: The non-planar (twisted) 

configuration of a molecular rotor, usually with lower excited-state energy; relaxation to 

the ground state from the TICT state is predominantly non-radiative.  

Radiative decay rate: rate of release of excited state energy via photon emission to 

return to the ground state. This process occurs during de-excitation from the LE state. 
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2.3.3 Abbreviations 

BODIPY: Boron-dipyrromethene 

CCJV: 9-(2-Cyano-2-hydroxy carbonyl)-vinyl julolidine 

CPVDA: p-[(2-Cyano-2-propanedio ester) vinyl] dimethylaniline 

DMABN: 4,4-Dimethylaminobenzonitrile 

DCVJ: 9-(Dicyanovinyl)-julolidine  

DASPI: (Dimethylamino)-styryl-1-methylpyridinium iodide 

GRAS: Generally Recognized as Safe 

MR: Molecular rotor 

SY: Sunset yellow 

TEG: Triethyleneglycol ester 

2.3.4 Introduction 

Luminescence spectroscopy due to its convenience and versatility is commonly 

used to study the molecular properties and functionality of proteins, lipid membranes, and 

nucleic acids in the biological sciences[203-207]. The environmental sensitivity of 

organic chromophores to the physical and chemical properties of their local surroundings, 

such as pH, ionic strength, polarity, hydrogen bonding, or matrix mobility [208, 209], 

make these fluorophores excellent in situ or even in vivo molecular sensors causing 

minimal or no perturbation to the system. In recent years, the use of spectroscopic 

techniques in food applications has significantly increased, due, in part, to several factors: 

a) the identification of suitable Generally Recognized as Safe (GRAS) fluorophores [204, 

205], b) instrumental improvements, and c) advances in chemometric methods that 

facilitate data acquisition, interpretation and implementation of spectrophotometric 
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techniques in food matrices [210, 211]. However, in our opinion, luminescence 

spectroscopy as a tool to study food structure and food properties is still significantly 

underutilized. This work reviews current and potential applications of a specific class of 

optical probes, known as luminescent molecular rotors, in the food sciences. Luminescent 

molecular rotors exhibit a remarkable sensitivity to molecular crowding, free volume, and 

viscosity and consequently have been proposed as effective intrinsic sensors of quality 

attributes, particularly of physical properties, in foods [204, 205, 212, 213].  

Manufactured foods are complex and often multi-phased [214] systems whilst 

others such as fruits and vegetables are consumed raw or minimally processed. 

Regardless, many foods are presented to the consumer after extensive modification, 

resulting in the development of unique microstructural characteristics. Accordingly, a 

thorough understanding of the influence of microstructure and composition on 

organoleptic and physicochemical properties of the foods is crucial to sustain product 

quality and shelf life [215]. Luminescence techniques based on the use of 

environmentally sensitive fluorescent probes that function as molecular rotors (MRs) can 

serve as versatile tools for such a purpose due to their ability to report on various physical 

properties of their surrounding environment in a noninvasive and non-disruptive way. 

Luminescent MRs exhibit internal segmental mobility in the excited state that can quench 

fluorescence. The basis for their environmental sensitivity is hindrance of intramolecular 

rotation [216]; therefore, interactions of a MR with an interface, a membrane, or a protein, 

or exposure to variable degrees of molecular crowding will increase the fluorescence 

emission intensity, quantum yield and lifetime.  A molecular rotor may be embedded into 

a static system, i.e., a food or a cell, and report on properties such as micro (and bulk) 
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viscosity. Alternatively, MRs can be operationalized into a dynamic industrial setting to 

monitor changes throughout the processing line and/or to obtain measurements of quality 

attributes over time at a specific point. Fluorescence lifetime imaging microscopy (FLIM) 

of MRs can also be used to map the spatial distribution of viscosity in cellular 

environments [217, 218] and model systems [219, 220]. An overview of the basic 

operational principles of fluorescent MRs and their current applications in the biological 

sciences will be presented first, followed by a discussion of the current and potential uses 

of this class of luminescent probes in food science and engineering.  

2.3.5 Fluorescent Molecular Rotors 

Table 2.1: Classification, examples, structure and photophysical properties of the 
major groups of MRs identified to this date. 

Type Examples Typical Structure Excitation 
Wavelength 
(nm) 

Emission 
Wavelength 
(nm) 

Ref. 

Benzonitrile-
based 
fluorophores 

DMABN 

 

290 342 / 460 * [221] 

Benzylidene 
malononitriles 

DCVJ 

 

489 505 [221, 222] 

Stilbenes p-DASPI 

 

430 625 [223] 

Triarylmethane 
dyes 

Crystal 
Violet, 
Fast 
Green 

 

590 
470 /600 

630 
515 /660 

[221] 

Azo dyes Allura 
Red, 
Citrus 
Red 

 

520 
520 

590 
610 

[224, 225] 

Benzothiazole Thioflavin 
T 

 

420 485 [226] 

*Dual fluorescence bands 
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An ideal MR has the following attributes: a) a large Stokes shift (the difference in 

wavelength between the excitation and emission spectra) that results in good 

differentiation of excitation and emission spectra, b) high sensitivity to structural rigidity 

of the surrounding media, c) high brightness [16], and d) no coupling of the response to 

structural rigidity with sensitivity to other physical and chemical properties such as 

polarity. Table 2.1 illustrates some of the major groups of molecular rotors that have been 

identified and studied.  

2.3.5.1 Mode of Action  

 
Figure 2.9: Schematic diagram of molecular rotor structure that adopts an “electron 
donor-π-electron acceptor” (A); ‘D’ represents electron donor segment, ‘A’ 
represents electron acceptor segment; the two segments are connected via a π-
conjugation unit. Adapted from Haidekker and Theodorakis [231]. 

 
Figure 2.10: Jablonski diagram for single (A), and dual band (B) MRs. 
Photoexcitation promotes a MR from ground state (S0) to the excited state (S1). The 
series of parallel lines represent vibrational states. (A) In a single band MR, S1 may 
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relax by photon emission from the LE state (red arrow) or by non-radiative decay 
from the TICT state (curved line).  (B) In a dual band MR, S1 may relax by photon 
emission from either the LE or the TICT states (red and blue arrows, respectively).  

Molecular rotors (MRs), molecules that can undergo an intramolecular segmental 

rotational (twisting) motion following photoexcitation [227], typically consist of an 

electron donor and an electron acceptor group connected by a conjugated network of 

alternating  pi (π) and sigma (σ) bonds (Figure 2.9). Photoexcitation forms a locally 

excited (LE) intramolecular charge transfer state (ICT) in which an electron is internally 

transferred from the electron donor to the acceptor [228]. Because of their conjugated 

system of π orbitals, molecular rotors have a planar ground state configuration. While the 

initial ICT state formed on photoexcitation is also planar, electrostatic forces resulting 

from the charge separation induce twisting of the sub-groups on the molecule relative to 

one another; the resulting non-planar configuration, the twisted intramolecular charge 

transfer (TICT) state, has a lower excited state energy. Relaxation from the TICT state 

involves either radiative decay of a photon, giving rise to a bathochromic shift in the 

emission band, or non-radiative decay via energy dissipating vibrational motions [229, 

230] (Figure 2.10). The rate of formation of the TICT state from the LE charge transfer 

state is dependent on the microenvironment of the matrix, that is, on the free volume 

around the MR. Molecular crowding, or high medium microviscosity, sterically restricts 

the formation of the TICT state, thus favoring persistence of the locally excited ICT state; 

relaxation from the LE state involves direct photon emission, known as fluorescence. The 

energy gap between the newly formed TICT state and the ground state plays an important 

role in the subsequent relaxation behavior of the TICT state [212]. If the TICT-ground 

state energy gap is small, the TICT state relaxes directly to the ground state by fast non-
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radiative decay; in this case, there is only a single emission band reflecting radiative 

decay from the LE state [212] (Figure 2.10A). If the energy gap is sufficiently large, the 

TICT state can relax by radiative emission, resulting in a second emission band that is 

red-shifted from the LE fluorescence band [212] (Figure 2.10B). Such dual band 

emission [216] is exemplified by 4,4-dimethylaminobenzonitrile (DMABN), which 

belongs to the class of benzonitrile molecular rotors  [221]. In either class of MRs, 

emission from the locally excited ICT state is sensitive to the physical state of the local 

environment: any increase in molecular crowding/microviscosity increases the 

probability of emission from the LE state and thus increases the intensity of the LE 

emission band. 

2.3.5.2 Sensitivity to Free Volume (and Molecular Crowding)  

The free volume around the MR thus modulates the rate of formation of the TICT 

state and thus the fluorescence intensity of the LE state [232]: LE emission intensity is 

low in fluid and high in rigid conditions. Since solution viscosity, which reflects 

molecular crowding and free volume [233], is easy to modify and measure, the 

environmental sensitivity of MRs has been mainly evaluated and expressed as sensitivity 

to solution viscosity.  

Loutfy and Arnold’s [238] earliest work, which studied the relationship between 

viscosity and fluorescence quantum yield in a wide range of solvents, suggests that, in 

low viscosity solvents, hydrodynamics can clearly drive the free rotor effect of MRs. 

However, in higher viscosity solvents, hydrodynamic predictions are insufficient; instead, 

free-volume is the primary influence on the segmental relaxation of the probe. They also 

observed an increase in MR lifetime with solvent viscosity, from liquid ethyl-acetate, a 
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relatively lower viscosity solvent (11 picoseconds), to viscous glycerol, a relatively 

medium viscosity solvent (500 ps), to rigid glasses, a relatively higher viscosity matrix 

(3600 ps). Accordingly, they proposed that the relaxation from the excited state is 

dependent on the solvent viscosity. A proportional relationship has been established 

between solvent viscosity and fluorescent quantum yield the Förster-Hoffmann equation 

[238] describes the following power law relationship between the fluorescent quantum 

yield, ΦF, and the viscosity (η) of the solution: 

 

 
logΦF =C + x logη   (2.1) 

where C is a dye-dependent constant and x is a constant related to dye-solvent 

interactions. Since fluorescence emission intensity and quantum yield are proportional, 

the relationship between the measured fluorescence intensity (IF) and viscosity can be 

reworked from Equation 2.1 and is often expressed by the following power law model 

[216]: 

 IF =αη
x   (2.2) 

where α is usually considered a measure of the probe’s brightness and x a measure of its 

sensitivity to local viscosity. The sensitivity of novel MRs to viscosity is quantified by 

the parameter x and is compared to reported values of commonly used MRs. It should be 

noted that the highest theoretical value for x is considered to be 0.66 [234]. Sensitivity 

values of novel and commonly used MRs in glycerol-based solutions have been reported 

in the range of 0.25 to 0.6. Table 2.2 provides selected examples of the values of 

parameters x and α for several known and recently reported MRs. (See supplementary 

materials for a complete list of sensitivity parameters for MRs.) 
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Table 2.2: Reported values for parameters ‘x’ and ‘α’ (Equation 2.2) for selected 
MRs. 

Molecular Rotor Structure  x: 
Viscosity 
Sensitivity 

α: 
Brightness 

Reference 

 
CCVJ 

 

 
0.54 

 
147 

 
[234] 

 
 
Azo Dye 
(Azorubine) 

 

 
 
 
0.38 

 
 
 
- 

 
 
 
[235] 

CCVJ derivative 
(addition of 
ethylene glycol) 

 

 
0.61 

 
- 

 
[236] 

Dimethyl 2-(4-
(dimethylamino)
benzylidene) 
malonate  

 
0.52 

 
17 

 
[234] 

 
Nucleoside 
(pyrimidine – 
furan) 

 

 
 
0.40 

 
 
- 

 
 
[237] 
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2.3.5.3 Sensitivity to Polarity 

Solvent polarity generally does not influence the quantum yield of MRs; instead, 

polarity shifts the emission peak wavelength [239] or broadens the spectrum [230]. 

Haidekker et al. [221] investigated the effect of polarity and microviscosity on the 

fluorescence emission of 9-(Dicyanovinyl)-julolidine (DCVJ), 9-(2-Cyano-2-hydroxy 

carbonyl)-vinyl julolidine-triethyleneglycol ester (CCVJ-TEG), and DMABN. The 

photophysical properties DCVJ and CCVJ-TEG are independent of polarity but are 

highly sensitive to changes in viscosity [221] while DMABN is an exception as polarity 

modulates both the Stokes shift and emission intensity. Since the MR is composed of an 

electron donor (often containing oxygen or nitrogen) conjugated to an electron acceptor 

(for example, nitrile) [234], the presence of a weaker electron donor (e.g., methoxy, 

phenyl, or naphthyl group) causes a hypsochromic shift in both excitation and emission 

peak locations. Additionally, replacing the electron acceptor group with a methyl ester or 

phenyl sulfonyl group increases the quantum yield, which has been attributed to the 

dipole moment of the molecule [234]. A recent study on DCVJ and CCVJ revealed a 

significant difference between viscosity sensitivity of these fluorophores in polar protic 

and polar aprotic solvents [240]; the differences were attributed to the ability of the 

solvent to form hydrogen bonds. It is thus evident that the nature of the medium under 

study must be taken into consideration when selecting a fluorophore as a viscosity sensor. 

2.3.5.4 Structure-Property Relationships 

The seminal work by Loutfy and Law [239] on MRs investigated the 

photophysical properties and conformational changes of intramolecular charge transfer in 

p-N,N-dialkylaminobenzylidenemalononitriles. They concluded that as the 
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conformational rigidity of the electron donor, i.e., the NR2, group increases, the quantum 

yield also increases due to a reduction in the free rotor effect. These authors also 

suggested that a MR with a smaller NR2 group exhibits a lower quantum yield since this 

group will require less free volume to move than bulkier moieties. The influence of the 

molecular footprint of the rotor on the quantum yield (fluorescence intensity) and 

viscosity sensitivity was also studied by incorporating substituents on naphthalene-based 

[234, 241], phenyl-based [234], and boron -dipyrromethene (BODIPY) MR probes [242]. 

The addition of substituents usually resulted in increases in quantum yield or 

fluorescence intensity and reduced viscosity sensitivity. This phenomenon is explained 

by the location of the donor and acceptor groups; when the groups are placed in close 

proximity, their rotational ability decreases and the energy level of the TICT state 

increases, resulting in fluorescence without significant passage through the TICT state; 

consequently, these substituted MRs exhibit higher fluorescence intensity and less 

viscosity sensitivity [234, 241, 243]. Increased viscosity sensitivity was only reported 

when the substituents were attached at remote sites on the BODIPY fluorophore, which 

did not modify the space available for rotation [242]. Sutharsan et al. [234] also reported 

that a modification of the π-conjugation system can increase the electron density between 

the electron donor and acceptor groups, which increases the quantum yield; however, 

steric hindrances could limit this increase. 

Sinkeldam et al. [237] elucidated the role of aryl-aryl bonds in the fluorescence of 

MRs based on the response of structurally modified nucleosides to changes in viscosity. 

In this study, pyrimidine was attached in different ways to aromatic moieties of different 

sizes. Attachment of the pyrimidine to furan or thiophene rings by a single rotatable bond 
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resulted in similar viscosity sensitivity. By replacing the single bond between the two 

aromatic ring structures with a conjugating ethynyl bond, the emission intensity was 

reduced. Fusing the pyrimidine to a thiophene heterocycle completely inhibited emission 

in response to viscosity changes [237] due to elimination of the rotatable linkage.  

Further changes in the structure of the MR have been introduced in order to 

increase functionality and performance. Traditional rotors, e.g., DCVJ, normally exhibit 

short excitation and emission wavelengths and small Stokes shifts. Typically, a larger 

Stokes shift is desirable in fluorescence measurements, to allow greater differentiation 

between the excitation and emission peaks; a significant overlap of the two spectra 

hinders detection of maximum fluorescence. To overcome this drawback, a thiophene 

unit was added to aryl–dicyanovinyl fluorescent MRs, which resulted in larger Stokes 

shifts and red-shifted emission, facilitating differentiation of the MR emission from that 

of the background [244]. Self-calibrating MRs composed of an internal reference, a 

viscosity-independent dye, attached to a viscosity sensitive unit have been synthesized 

(Figure 2.11A) [245-247]. These ratiometric probes exhibit two emission bands whose 

intensity ratio can provide a concentration-independent self-calibrating measurement of 

the viscosity. In these ratiometric rotors, the emission spectrum of the reference dye 

(viscosity-independent moiety) overlaps the excitation spectrum of the MR probe 

(viscosity dependent moiety) so that resonance energy transfer (RET) can occur from 

reference to MR (Figure 2.11b); a single excitation wavelength thus excites both 

reference fluorescence directly and MR fluorescence by RET. Haidekker et al. [245-247] 

developed a ratiometric viscosity sensor by covalently attaching coumarin-based 

reference dyes to thiophene or aniline based MRs. Conjugated porphyrin dimers [248] 
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and a pentamethine cyanine dye substituted with an aldehyde group at its meso position 

[249] have also been used to obtain fluorescent ratiometric viscosity measurements.  

 

Figure 2.11: (A) Schematic diagram of a ratiometric probe with viscosity sensitivity. 
(B) Examples of fluorescence emission data (from left): ratiometric MR emission 
spectra, MR emission spectra alone, and viscosity sensitivity of ratiometric dyes; 
reproduced with permission from Dakanali, Do [245]. 

Readers are referred to the review of Uzhinov et al. [250] for further details on the 

influence of chemical structure on the photophysical properties of various MRs and to 

Haidekker and Theodorakis [212] for an in-depth review of these photophysical 

properties. 

2.3.6 Applications of Fluorescent Molecular Rotors in Biological Sciences 

MRs have found numerous applications in the biological sciences [218, 249, 251-

256] and specifically in molecular biology due to the need of sensors with the ability to 

report on physical properties such as cytoplasm viscosity or membrane fluidity without 

perturbing normal system functions. Since spectroscopy of MRs is minimally invasive, it 

allows for the direct investigation of dynamic properties of proteins, cellular organelles, 
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membranes, and the cytoplasm within living cells and tissues. This section summarizes 

some of the most salient reported applications of MRs in biological systems. 

2.3.6.1 Biofluids and Intracellular Viscosity 

Blood plasma viscosity can be used for early diagnosis of disease [257]. 

Haidekker et al. [258] and Akers et al. [259] correlated plasma viscosity and fluorescence 

emission intensity of julolidine-based MRs. The latter work compared fluorescence-based 

viscosity assessment to a conventional mechanical method (cone-plate rheometry) in 

terms of methodology and precision. The results show slightly greater scatter when blood 

viscosity was determined by cone-and-plate rheometry (< 7.6%) compared to 

fluorescence spectroscopy using MRs (< 6%), suggesting that non-mechanical sensing 

can be, at least, equally effective and reliable as mechanical-based methods. 

The microviscosity in the cellular cytoplasm is of critical importance to optimal 

cell functioning due to its effect on processes such as protein folding and other 

biochemical reactions [260, 261]. The meso-substituted BODIPY [255] and meso-

substituted 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacene [251] MRs have been used to 

report on microviscosity in live SK-OV-3 human carcinoma cells. A ratiometric viscosity 

sensitive probe synthesized by Dakanali et al. [245] selectively localizes in the cytoplasm 

and remains in the aqueous phase. Fluorescence lifetime imaging microscopy (FLIM) is 

used to map the spatial distribution of MR lifetimes (which are independent of dye 

concentration) that can be correlated with medium viscosity; it is thus possible to map 

viscosity distribution across heterogeneous cellular environments. A scheme of a FLIM 

set up using MRs is presented in Figure 2.12. The use of fluorescence microscopy 

enables spatial and time-based tracking of properties of interest [218, 262]. Intracellular 
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viscosity in living HeLa cells was estimated with FLIM using a meso-substituted 

BODIPY-C12 MR as a probe[263]; Figure 2.13 illustrates the correlation between longer 

fluorescence lifetime and higher medium viscosity for this probe.  

The same technique was used to measure viscosities within the compartments of a 

primitive cell model consisting of a coacervate core (mimicking a reaction center) coated 

by oleic acid (mimicking a cell membrane) using Kiton Red and BODIPY-C10, 

respectively [264, 265]. Fluorescence lifetimes were also found to be organelle-specific 

within cells and have been used to estimate viscosity values [266]. Another MR, a 

conjugated porphyrin dimer, was exploited for its unique ability to function as both a 

photosensitizer that induces cell death upon its irradiation, and a reporter of the resultant 

dynamic changes in intracellular viscosity [253]. Photoinduced cell death resulted in an 

increase in fluorescence intensity, illustrating the expected intracellular viscosity increase 

(~300 cP). This rotor is thus able to report on real-time changes in membrane rigidity as a 

function of irradiation as well as the longevity of the treated cell. 
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Figure 2.12: Schematic diagram of FLIM to obtain a high-resolution viscosity map 
of a biological sample. (A) High-resolution fluorescence images are obtained using a 
confocal scanning microscope. A pulsed laser beam (purple line) is directed towards 
a dichromic mirror that reflects the light onto a biological sample that has been 
stained with MR. (B) Sample perceived as multiple pixelated regions; (C) Emission 
from a single pixel at a time is selectively allowed to pass to the detector through a 
rotating pin-hole structure while light emitted from other pixels is blocked. (D) A 
time correlated single photon counting (TCSPC) unit quantifies the duration of the 
emission; (F) Specific lifetimes (τ) are allocated to each individual pixel. (E) MR 
decay pathways are microviscosity dependent; increased viscosity (η) hinders 
rotation (single rotation arrow); longer fluorescence lifetime (τ1); lower viscosity 
facilitates rotation; shorter fluorescence lifetime (τ3). (F-H) Software is used to 
compile all τ values into a viscosity map using a false color scale.  
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Figure 2.13: Time resolved fluorescence of BODIPY-C10 in methanol-glycerol 
mixtures of varying viscosity. Reprinted with permission from Thompson, Herling 
[263]. 

 

2.3.6.2 Macroscopic Membrane Properties 

Diffusion, packing and permeability are dependent on cell membrane properties 

such as viscosity and fluidity [267]. The functionality of membrane-bound receptors and 

enzymes, for example, depends on the membrane viscosity [268, 269] and alterations in 

membrane properties were found to adversely affect enzyme functionality, active-

transport and facilitated diffusion across the membrane, as well as binding of receptors 

[270]. Numerous health disorders have also been associated with cell membrane viscosity 

changes, including cardiovascular diseases [271], cell malignancy [272], hypertension 

[273], hypercholesterolemia [274], diabetes [275], and Alzheimer’s disease [276]. Nipper 

et al. [277] investigated changes in the viscosity of a liposome model membrane using a 
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membrane-entrapped farnesol ester of MR (2-carboxy-2-cyanovinyl)-julolidine, FCVJ. 

This rotor was found to be sensitive to changes in the membrane viscosity upon addition 

of viscosity-increasing (e.g., cholesterol) and viscosity–decreasing (e.g., longer chain 

alcohols) agents.  

Lipid membranes and liposomes undergo a temperature-dependent phase change, 

assuming a gel state below the phase transition temperature and a liquid crystalline state 

above that temperature [278]. The use of MRs has been explored to distinguish between 

liquid-ordered (Lo) and liquid disordered (Ld) phase domains in cell membranes; Lo 

domains have a relatively higher viscosity than Ld domains and play a role in regulating 

membrane trafficking and signal transduction [279, 280]. An auramine-based MR, 

conjugated to a cholesteryl group that acts as an anchor into a bilayer lipid membrane 

was used with epifluorescence microscopy to report on the spatial distribution of lipid 

membrane viscosity. The images of individual gel-state and liquid-crystalline state 

liposomes showed regions of bright and weaker green emission, respectively. Similarly, a 

synthesized membrane with phase-separated Lo and Ld domains showed both high and 

low-emitting regions, which have been allocated to Lo and Ld domains based on the 

viscosity-dependent fluorescence intensity of the auramine MR probe (Figure 2.14) 

[281]. Lo and Ld membrane domains were also investigated using meso-substituted 

BODIPY–C10 and –C12 aliphatic chains [220] by correlating time-resolved fluorescence 

decays with temperature-dependent phase state changes in the lipid bilayers. The rotor 

proved an effective identifier of the two different order regions based on fluorescence 

lifetimes.  
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Figure 2.14: FLIM image of an auramine-based MR conjugated to a cholesteryl 
group embedded into a bilayer lipid membrane. (A) The MR probe is able to 
distinguish between the gel (bright emission = higher viscosity) and liquid-
crystalline (weak emission = lower viscosity) phases of the liposome bilayer 
membrane. (B) The MR probe can also distinguish between domains in a 
synthesized giant liposome containing both Lo (more viscous and brighter) and Ld 
(less viscous and darker region). Reproduced with permission from Yasuhara, 
Sasaki [281]. 

2.3.6.3 Protein Aggregation, Degradation and Conformational Changes  

The abnormal aggregation of proteins or polypeptides into amyloid fibrils [282] 

has been associated with numerous diseases such as neurological disorders, type II 

diabetes and systemic amyloidosis [283]. MRs have been used to identify the presence 

and formation of amyloids [226, 263] and the effect that therapeutic strategies might have 

on their stability [227]. For example, Cy3 MR was used to quantify the steric hindrance 

to the MR at the various stages of amyloid fibril formation, which allowed for 

comparison of the different amyloid fibrils that resulted from different protein aggregates 

[264]. A variety of amyloid binding molecules with inherent fluorescent properties have 

been developed. Among them, thioflavin T derived MRs [226] and novel probes 

produced by π-conjugation of a diakyl amino group with a 2-cyanoacrylate unit [284] 

have potential as new diagnostic tools for investigation of amyloid-based diseases. 
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Additionally, conjugates of MRs and protein ligands have been proposed to track in real-

time the degradation of proteins in living cells; upon ligand binding to the target protein, 

molecular crowding limits the segmental motion of the MR increasing emission intensity; 

this intensity decreases upon protein degradation [285]. 

2.3.6.4 Other Applications 

Small fluorescent MRs have also been used to report on the viscoelastic properties 

of microbubbles. The fluorophores bind to the surface of the microbubbles and their 

fluorescence emission and lifetime are modulated by the local free volume [286]; spatial 

variations of the fluorescent signal can be correlated to stability and functionality. 

Expanding the applications of microbubbles into ultrasound imaging and drug delivery 

[287] requires understanding how composition and fabrication methods affect their 

surface properties.  

These extensive applications of MRs in biological systems provide a roadmap to 

extend their use to food systems. In the following section we discuss current research 

using MRs to investigate food properties as well as potential novel applications of these 

versatile probes. 

2.3.7 Potential Applications of Molecular Rotors in Food Science and Engineering 

The versatility of MRs offers the potential of direct optical measurement of 

physical properties related to food quality and stability. Based on the applications 

discussed above, MR probes can specifically contribute to understanding interactions 

between food components and the effect of microstructure on food properties, reporting 

on, for example, polymerization processes, protein degradation, colloidal stability, and 

phase states and transitions [212, 224, 250]. It should be noted, however, that the limited 
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solubility, price, and especially toxicity of many conventional MRs limit their application 

in foods. To overcome this drawback, Corradini and Ludescher [204] have proposed 

searching for molecular rotors among the many fluorescent molecules found in foods, in 

order to identify and characterize a library of GRAS probes as intrinsic luminescent 

sensors of food quality, safety and stability. 

2.3.7.1 Micro and Bulk Viscosity of Liquid and Semi-Solid Foods and Food Models 

Edible azo and aryl methane dyes, including the synthetic food colors Allura Red, 

Azorubine, Sunset Yellow, Tartrazine, Citrus Red, Fast Green, and Brilliant Blue, are 

essentially non-fluorescent in fluid solution but become fluorescent in viscous solutions 

[204, 205, 224]. Studies of mono-azo dyes in glycerol/water solutions at constant 

temperature and in glycerol as a function of temperature indicate that its fluorescence 

intensity follows a power law behavior (Equation 2.2) over variations in viscosity ranging 

from 1-104 mPa s. Value of 0.35-0.45 for the viscosity sensitivity parameter (x in 

Equation 2.2) in these systems provides strong evidence that mono azo dyes and by 

implication other similar food dyes, behaves as a molecular rotor (Table 2.2). 

Kashi et al. [224] measured the effect of increasing viscosity on the fluorescence 

intensity of several food dyes in aqueous model systems of identical viscosity (90 mPa s) 

containing either glycerol, glucose, sucrose or hydrocolloids (Figure 2.15-left). They 

observed that the sensitivity to bulk viscosity was somewhat lower in the methyl 

cellulose (MC) and much lower in the carboxymethylcellulose (CMC) solutions. The 

authors speculated that the lower sensitivity to viscosity was due to extensive hydration 

and less molecular crowding around the MR in the polymeric hydrocolloid solutions. 

They used pyranine as a fluorescent sensor of molecular crowding based on its ability to 
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report on the amount of water in its surroundings (Figure 2.15-right) [288]; this probe 

exhibits dual emission bands that reflect either protonated (peak ~435 nm) or 

unprotonated (peak ~510 nm) pyranine; the extent of deprotonation is increased by 

available water (by available sites for the proton). The intensity of the unprotonated 

pyranine band varied in a complementary manner to the effect of viscosity on the azo dye 

emission intensity: those solutions in which the azo dye exhibited high intensity (those 

containing high concentrations of glycerol, glucose or sucrose) exhibited low intensity of 

the unprotonated pyranine band, and thus limited hydration, while those hydrocolloid 

solutions with lower mono azo dye intensity exhibited high band intensity, and thus 

extensive hydration of the probe. Although these results explain the lack of sensitivity of 

azo dyes to viscosity modulate by CMC, they do not fully account for the greater effect 

of methyl cellulose on azo dye intensity. The authors hypothesized that differences in the 

sensitivity of the dye to bulk viscosity in hydrocolloid solutions may reflect the 

hydrodynamic size, the structure, or the intrinsic rigidity of the hydrocolloid polymer or 

with interactions between the probe and the polymer.  The use of MRs as sensors of bulk 

viscosity was also reported by Akers et al. [289] who make use of CCVJ in aqueous 

colloidal solutions of dextran and hydroxyethyl starch and by Dragan et al. [290] who 

designed two novel MRs, PicoGreen and SYBR Green, and tested them in collagen 

solutions. These MRs effectively responded to the bulk viscosity of these solutions of 

macromolecules. It is important to note that molecular rotors report on the properties of 

solutions at the molecular level and their potential use as sensors of bulk viscosity should 

be verified for hydrocolloids and for specific foods on a case by case basis. 
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Figure 2.15: Normalized fluorescence intensity of the GRAS MR Azorubine (left) 
and pyranine (right) in solutions of different composition and equal viscosity (90 
mPa s); MC: methyl cellulose, CMC: carboxymethyl cellulose. The two emission 
bands of pyranine are due to protonated (~435 nm peak) and unprotonated (~510 
nm peak) probe.  Reprinted with permission from Kashi, Waxman [224]. 

A lipophilic azo dye, Citrus Red 2, which is also approved in food applications, 

was used to monitor the micro-viscosity of oil confined in colloidal fat crystal networks 

[225]. The fluorescence intensity of the dye remained constant when the degree of oil 

confinement, expressed in terms of the box-counting fractal dimension of the network, 

was below 1.89 (Figure 2.16). Box-counting fractal dimension, which provides a measure 

of the microstructural characteristics of the crystalline network, is determined from 

analysis of microscopic images of the fat crystal network [291]. The fluorescence 

intensity of the MR increased dramatically above a fractal dimension of 1.98 as the 

degree of confinement increased, that is, as the molecular crowding increased. In these 

systems, the bulk viscosity, which is dominated by the formation of a solid crystalline 

network, does not reflect the actual viscosity of the continuous oil phase; instead the 
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micro-viscosity monitored by the fluorescence intensity of the embedded MR better 

describes the physical state of the fluid phase.  

 
Figure 2.16: Normalized fluorescence intensity of Citrus Red as a function of the 
fractal dimension of the (A) medium chain and (B) unsaturated triglyceride 
crystalline networks. Reprinted with permission from Du, Kim [225]. 

These studies provide insights and experimental opportunities applicable to the 

food industry. They highlight the often limited correspondence between micro and bulk 

viscosity found in polymer (hydrocolloid) systems while supporting the potential of MRs 

as non-mechanical sensors of both micro and bulk viscosity. The identification of non-

toxic, non-invasive, and potentially automated non-mechanical sensors of bulk viscosity 

can have a significant impact on in-line measurements of physical properties of foods. In 

addition, they also enable completely novel applications such as measurements of 

viscosity in vitro during the process of digestion in model systems or even in vivo in 

living organisms.  
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Figure 2.17: (A) Schematic diagram illustrating the coupling of a luminescence 
spectrometer with the TIM-1 gastrointestinal model system; red dots indicate 
locations at which (B) a fiber optic can be placed to obtain spectrofluorometric 
measurements. (C) Schematic diagram of the fiber optic accessory. Note the use of 
an adapter (dotted line) to allow repeatable positioning of the fiber optic accessory 
at (D) 45° angle to reduce light scattering. 

A potential coupling of fluorescence spectroscopy with a dynamic gastrointestinal 

model such as the TNO intestinal model (TIM-1), an in vitro system that mimics the 

stomach and small intestinal compartments (duodenum, jejunum, and ileum) of the 

human gastrointestinal tract, is illustrated in Figure 2.17. This proposed method 

incorporates a MR probe into the gastrointestinal solutions and uses spectrophotometry 

with fiber optics to measure probe fluorescence intensity during in situ digestion. Such an 

application could elucidate how postprandial macronutrient digestion, chyme viscosity, 

and potentially satiety are affected by initial meal viscosity, among other research 

questions.  
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2.3.7.2 Colloidal Properties and Dynamics 

The fluorescence intensity and lifetime increases 10-100-fold compared to fluid 

solution when MRs are embedded in micro-organized environments such as micelles, 

liposomes, or inclusion complexes (e.g., cyclodextrins) [216, 250]. Although there are no 

published reports on the use of MRs in food colloids, the advances made in a variety of 

non-food systems exemplify their potential to monitor physical properties and kinetics of 

formation of colloidal food systems.  

Several MRs have been used to monitor the formation of colloidal structures. 

Thioflavin T shows a progressive increase in fluorescence intensity with increase in 

surfactant concentration up to the critical micelle concentration [292]; local 

environmental constraints associated with MR binding to surfactant micelles were 

deemed responsible for the increase in intensity. The lifetime of a synthetic MR, dubbed 

AzeNaph1, has been used to monitor the self-assembly of amphiphilic co-polymers into 

nanostructures; increased solvation of the nanostructures resulted in confinement of the 

micelle core as indicated by a significant increase in the lifetime of the embedded MR 

[293]. The fluorescence intensity of a GRAS probe Sunset Yellow FCF (SY; FD&C 

yellow #6) was used to evaluate formation of surfactant micelles [294]. Self-aggregation 

of SY in solution resulted in hindered rotation and an enhancement of fluorescence 

emission intensity; this fluorescence intensity decreased as the dye partitioned within the 

hydrophobic core of the micelles. 

Conventional MRs, including DCVJ, CCVJ, and Thioflavin T, have proved 

effective in following the self-assembly of dipeptide molecular gelators. The fluorescence 

intensity increased with fibril formation during gelation and was also sensitive to changes 
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in structure after fibril assembly [295]. Miguel et al. [296] developed a MR based on the 

foldamer concept that was used to determine the microviscosity of an organogel formed 

by a urea-based organogelator and toluene. The end point of miniemulsion 

polymerization for an in-line process was detected using fluorescence of 1,1-dicyano-4-

(4′-dimethylaminophenyl)-1,3-butadiene) [297]; although the initial polymerization steps 

did not affect the photophysical properties of this MR, at monomer conversions above 

50%, the fluorescence intensity showed progressive increases. MRs such as merocyanine 

dye also have shown potential in mapping hydrophobic regions in micellar systems [298].  

Protein Aggregation, Folding, and Interactions 

MR binding to proteins has been shown to restrict intramolecular rotation of the 

probe, increasing its quantum yield, fluorescence intensity and lifetime. Further 

restriction of movement can be attained by conformational changes and interactions 

between the proteins or with other components [250]. The stability of proteins in 

parenteral nutrition products is enhanced by the addition of surfactants such as 

polysorbate 80, which prevents protein aggregation during the shelf life of the product. 

Identifying the susceptibility of these preparations to aggregation under different 

environmental conditions (especially variations in temperature) is crucial to ensure their 

adequacy and safety. The ability of CCVJ and DCVJ rotors to detect changes in 

aggregation in protein formulations that contain polysorbate was confirmed using steady-

state and time-resolved fluorescence spectroscopy; thermally-induced protein aggregation 

resulted in increased fluorescence intensity and longer lifetimes [299]. Differential 

scanning fluorimetry of CCVJ was used to detect the temperature of protein aggregation 

in the presence of surfactants in a high throughput screening assay [300]. And Iio et al. 
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[301] used a DCVJ derivative to monitor the polymerization of G-actin into F-actin and 

to study F-actin filament polymorphism.  

Due to the high affinity of proteins for MRs it is possible to envision numerous 

applications of MR-based fluorescence spectroscopy to monitor the structure, dynamics 

and functionality of food proteins including denaturation and gelation processes, stability 

to environmental perturbations, and interactions with proteins and other food 

components.  

2.3.7.3 Phase Transitions 

Given the centrality of phase transitions in modulating the physicochemical 

properties of ingredients, the ability of MRs to report on phase transitions can be of 

significant importance to the food industry. MRs formed of polydiphenylacetylenes 

(PDPAs) coupled with long alkyl chains were found to be sensitive to the crystallization 

of paraffin [302]. High rigidity of the solid state hinders intramolecular rotation and 

increases fluorescence intensity. Paraffins with embedded MRs were used to impregnate 

wax paper and develop thermo-responsive fluorescent sensor systems. ROBOD, an 

unconstrained boron dipyrromethene dye, was used to investigate pressure-induced 

changes in 1,2-dichloroethane including glass formation in the presence of an inert 

polymer [303]; the high viscosity of the glassy state was found to restrict twisting of the 

rotor and increase fluorescence emission.  Progressive vapor uptake by a polymer film 

results in the presumptive plasticization of the polymeric matrix; the resulting decrease in 

matrix rigidity was detected by a decrease in the fluorescence intensity of a julolidine-

derived MR dissolved in the film [304, 305]. This application of MRs can be of particular 
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importance in monitoring the stability and integrity of synthetic packaging and edible 

films either in the laboratory or even more importantly in the final packaged product. 

2.3.7.4 Sensors for Flow  

Another relevant application of MRs, one proposed by Haidekker and 

Theodorakis [231], is their use as flow sensors. Such applications provide opportunities 

for in-line detection of fluid flow during continuous liquid food or juice pasteurization 

and in sterilization and dehydration processes where predictions of flow rates and 

behavior are imperative for effective processing [306].  CCVJ, a julolidine based MR, 

was able to report on changes in flow as a function of shear stress with a dependence on 

viscosity and velocity [231]. Mustafic et al. [307] imaged the flow patterns in an ethylene 

glycol solution under four different flow chamber geometries using CCVJ and p-[(2-

cyano-2-propanedio ester) vinyl] dimethylaniline (CPVDA) MRs. The images were 

obtained with LED illumination using a digital camera and were compared with the 

results of flow modeling using computational fluid dynamics.  As anticipated by 

Haidekker and Theodorakis [231], Mustafic et al. identified flow as the driver of the 

fluorescence intensity increase; however, a complete understanding of the mechanism 

controlling the sensitivity of MRs to flow has yet to be unraveled. Nonetheless, flow rates 

as low as 0.1 mm/s were detected in this work, presenting new opportunities for real-time 

investigations of fluid flow during food processing. 

2.3.8 Conclusions 

This review has highlighted the ability of MRs to monitor a range of physical 

properties of foods including bulk and micro viscosity of hydrophilic and hydrophobic 

liquids and semi solids, the aggregation and colloidal properties of molecules and 
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macromolecules, the phase behavior and phase transitions of hydrophobic molecules, and 

fluid flow.  These applications can involve measurements of bulk solutions on the 

macroscopic scale using a spectrometer or measurements on much smaller scales using a 

fluorescence microscope. MR-based fluorescence spectroscopy as an analytical technique 

in food systems presents distinct advantages: it is noninvasive, site specific, rapid, 

sensitive, versatile, and easy to use. The development of a library of edible MRs for use 

in food applications can enhance the use of this methodology in foods and facilitate the 

continuous monitoring of the physical properties of food products.   
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3 Research Objectives 

It is of critical importance to understand the possible mechanisms which alter 

form and formulation of food commodities and how they influence their physico-

chemical properties and consequent physiological impact. For this purpose, the global 

objective of this dissertation was:  

To investigate the effect of food physico-chemical properties on macronutrient 

digestibility through characterizing digestion kinetics and luminal viscosity trends. 

 

This global objective was achieved via addressing the following sub-objectives: 

A) To compile a critical review that summarizes and discusses the main 

characteristics of molecular rotors (MR), their current applications in biological 

research, and current and potential applications as sensors of physical properties 

in food science and engineering.  

 

B) To present a method that integrates TIM-1, spectrophotometry and MR 

technologies to report on changes in in vitro gastrointestinal (GI) luminal 

viscosity.  

i. To evaluate the suitability of the use of fast green (FG) as a molecular 

rotor (MR) in TIM-1 system by characterizing the influence of possible 

interaction between FG and the various TIM-1 solutions (bile, gastric 

enzymes, pH, and electrolyte solutions).  

ii. To verify the suitability of FG to characterize changes in maize starch 
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chyme viscosity as a function of different amylose-to-amylopectin ratios 

(AM:AP) by correlating between rheological viscosity and the 

corresponding fluorescence intensity. 

iii. To estimate the extent of maize starch gelatinization after application of 

the cooking method by measuring the loss in birefringence under polarized 

light microscopy.  

iv. To assess method aptitude to accurately reflect on changes in in situ 

luminal viscosity of maize starch samples during in vitro TIM-1 digestion.  

C) To investigate the relationships between physico-chemical properties of oat-based 

meals on in situ luminal viscosity and digestion kinetics during in vitro digestion 

as function of form and formulation. 

i. To assess the influence of different methods used in commercial 

processing of oats on their physico-chemical properties and biophysics of 

digestion, by comparing three commercially available oat-based products: 

instant oats, steel cut oats, and oat bran. 

ii. To determine the contributions of milk protein concentrate (MPC) to the 

luminal viscosity trends and parameters of digestion kinetics of instant 

oat-based and steel cut oat-based meals. 

D) To investigate the effect of the physico-chemical properties of human breast milk 

and infant formula on bioaccessibility of free fatty acids. 
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4 The Influence of Amylose-to-Amylopectin Ratios on In-

Vitro Gastrointestinal Viscosity  

This chapter was co-authored with Derrick Fondaco, Joe Zuccaro, Maria G. 

Corradini, Richard D. Ludescher, and Michael A. Rogers. 

4.1 Abstract 

 
The TNO Intestinal Model-1 (TIM-1) and a luminescence spectroscopic technique 

with molecular rotors were coupled to facilitate detection of in situ changes in luminal 

viscosity during in vitro gastrointestinal (GI) digestion. TIM-1 was used to simulate GI 

digestion of three maize starch samples that varied in their amylose-to-amylopectin ratio 

(AM:AP): native, high amylose (AM) and high amylopectin (AP). The fluorescence 

intensity (FI) of Fast Green (FG), a molecular rotor was recorded and used to monitor and 

record  trends occurring in each of the TIM-1 gastric and small intestine compartments. 

FI of FG were not affected by the concentration of secretion fluids nor the pH of TIM-1 

compartments, and the FI was directly proportional to the viscosity imparted by the 

starch. This allowed for direct measurements of digesta viscosity during the simulated 

digestion in situ. The fluorescence intensity measurements suggest that the initial 

consistency of AP > native > high AM. TIM-1 gastric FI was highest for high AM > high 

AP > native maize starches. Birefringence loss was lowest for high AM (~ 44%) and 

similar for native (~ 98%) and high AP (~99%) maize starches. We conclude the validity 

of the proposed method to facilitate measurement of luminal viscosity, in vitro, when the 

food matrix microviscosity is representative of bulk viscosity. Discrepancy between 
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micro- and bulk viscosities as well as the presence of numerous and large particulates in 

the digesta may contribute to increased FI, that may be inaccurately interpreted as high 

viscosity. Providing a method for monitoring GI digesta viscosity is critical due to its 

well-accepted influence on rate and extent of nutrient digestion and absorption as well as 

sensation of satiety.  

4.2 Introduction 

Digesta viscosity is an important physical characteristic with a wide range of 

impacts on physiological response. Increased gastric digesta viscosity (1) increases 

distention in the stomach cavity and contributes to increased sensation of satiety [308-

311]; (2) slows down rates of gastric emptying [312]; (3) impedes motion and access of 

enzymes to the substrate, consequently reducing nutrient hydrolysis [70-72]; and (4) 

hinders diffusion of the hydrolysis by-products to the luminal brush border and renders 

absorption less effective [70-72]. A thorough understanding of alterations to digesta 

viscosity that occur during transit throughout the gastrointestinal (GI) lumen is critical for 

better understanding of structure-function relationships [313]. Unfortunately, insight on 

changes in digesta viscosity during digestion typically involves resorting to bench top 

rheometer equipment that requires extraction of the sample from the digestive system (in 

vivo through ileostomy and/or in vitro) at different digestion intervals. In addition, shear 

rates in the GI tract have not been analyzed due to complexity of the digestive system and 

variability in shear rates at different locations of the luminal cavity [314]. For example, a 

shear rate range of 10 – 100 s-1 was proposed to represent shear along the entire GI tract 

previously [315]; while another research group suggests a shear rate range of 0.1-10 s-1 in 

the small intestine [316]. Other methods used to report on digesta viscosity include 
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gamma scintigraphy, ultrasound and echo-planar magnetic resonance imaging (EPI), but 

are exclusively/typically applied in vivo [312]. With human in vivo experiments being 

characteristically cumbersome, costly, and restricted by ethical considerations [157]; in 

vitro digestion models provide a suitable alternative if able to closely mimic human 

digestion and its physiological conditions [157]. There is therefore a need for a non-

invasive method for reporting in situ luminal viscosity changes throughout GI transit. 

This work describes and verifies a methodology we previously proposed [317] to 

potentially facilitate reporting on real-time changes in luminal digesta viscosity using two 

integrated technologies: TNO Intestinal Model-1 (TIM-1) and luminescence spectroscopy 

with viscosity sensitive probes, i.e. molecular rotors (MR) (Figure 4.1). TIM-1 is an 

advanced artificial digestion simulation system that mimics the human stomach and small 

intestine. In comparison to other in vitro techniques, this dynamic computer-controlled 

system is unique in its ability to regulate pH, temperature, gastric and intestinal emptying, 

transit time, and GI secretions [162, 318] allowing it to closely mimic the physiological 

conditions occurring in the human GI tract as a function of digestion time.  

Luminescent MRs are optical chromophores that may be used as intrinsic 

luminescent probes to assess viscosity [319]. The term “molecular rotor” refers to a 

molecule that consists of two (or more) segments that have the ability to rotate relative to 

one another (intramolecular twisting). The rate of intramolecular twisting depends on the 

free-volume (or molecular crowding) of surrounding environment. Photoexcitation of 

fluorescent MR can result in twisted intramolecular charge transfer (TICT). Deactivation 

from the TICT state occurs predominantly through a nonradiative pathway. Alternatively, 

a return to the ground state from the local excited state can occur through a radiative 
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decay process that results in emission of photons. Since the rate of TICT state formation 

is lower in more viscous environments, these two competing decay pathways determine 

the sensitivity of the probe to the micro-viscosity of the surrounding environment [213, 

320, 321]. Consequently, any change in the medium rigidity, such as an increase in local 

(and bulk) viscosity [322], hinders formation of a TICT state and increases FI.  

 

Figure 4.1: Schematic diagram illustrating the coupling of a luminescence 
spectrophotometer with the TIM-1 GI model system. (A) TIM-1 GI model system; 
red dots indicate locations at which (B) a fiber optic can be placed to obtain 
spectrofluorometric measurements. (C) Schematic diagram of the fiber optic 
accessory. Note the use of an adapter (dotted line) to allow repeatable positioning of 
the fiber optic accessory at (D) 45° angle to reduce light scattering. [317]  

Starch viscosity is greatly influenced by the ratio of its two α-glucans constituents 

[323]: linear amylose (AM) and branched amylopectin (AP) [130, 324]. Amongst its 

numerous functional properties [325], starches form a viscous paste if heated above a 

certain critical temperature, the gelatinization temperature. Gelatinization involves water 

diffusion and uptake by the starch granule, swelling, leaching of AM [117, 118], and 

ultimately increased viscosity. Maize starch samples with different amylose-to-
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amylopectin ratios (AM:AP), native, high AP and high AM, are digested, in vitro, to 

assess the ability of the proposed method, in which TIM-1 and MR are coupled, on 

accurately reporting on changes in luminal viscosity due to differences in their amylose-

to-amylopectin ratio (AM:AP). Fast Green FCF (FG) is the selected MR; it is a triaryl 

methane dye, and is Generally Recognized as Safe (GRAS). Selection of FG was based 

on its: hydrophilic nature, sensitivity to local viscosity, large Stokes shift (excitation and 

emission wavelengths of 580 nm and 610-750 nm, respectively), and differentiation from 

the background (excitation at ~580 nm does not excite the other molecules that are 

present). Method applicability was first verified by investigating possible interactions 

between FG and TIM-1 solutions. Correlations between rheological viscosity and FI by 

FG in the gelatinized maize starch samples are then determined to investigate suitability 

of probe to report in changes in matrix viscosity. Gastric and small intestine FI values are 

recorded, at predetermined time intervals, throughout digestion in TIM-1 to provide real-

time luminal viscosity trends. Method efficiency is then validated against the extent of 

loss in birefringence within polarized light micrographs. 

4.3 Materials and Methods 

4.3.1 Influence of TIM-1 Environmental Conditions on Photophysical Response by 

FG and Contribution to FG peak 

4.3.1.1 Sample Preparation 

4.3.1.1.1 Bile Solutions 

Fresh porcine bile was collected from a slaughterhouse (Farm-to-Pharm, NJ, 

USA), where multiple collections of bile were pooled into a single batch, divided into 
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single-use quantities, and then stored at -20°C for later use. Bile was thawed on the day 

of the experiment and filtered using Miracloth (Merck KGaA, Darmstadt, Germany) prior 

to incorporation into the experimental solutions. Bile was mixed with water to generate 

solutions ranging from 0 to 2% concentrations at 0.2 % increments.  

4.3.1.1.2 Gastric Enzymes - Lipase and Pepsin- Solutions 

Gastric enzyme solutions were prepared in duplicate to contain a mixture of lipase 

(F-AP15, Amano Enzyme Inc., Nagoya, Japan) and pepsin (P7012, Sigma-Aldrich, MO, 

USA) at 1:1 ratios to make solutions of 0.1 to 0.5 mg gastric enzyme/ml at 0.1 mg/ml 

increments. This range was selected to incorporate and slightly exceed the 

physiologically relevant concentration, which are used in TIM-1 (0.2 mg lipase and 0.2 

mg pepsin per ml). Samples were prepared with and without (control) 10 µM FG.  

4.3.1.1.3 Small Intestinal Electrolyte Solutions (SIES) 

Small intestinal electrolyte solution (SIES: 5 g/l NaCl, 0.6 g/l KCl, and 0.25 g/l 

CaCl2) was prepared in water to make solutions ranging from 10 to 70% at 15% 

increments, in duplicate.  

4.3.1.1.4 pH  

The pH of the Fast Green solution was adjusted using NaOH and HCl solution 

(0.1 M), the pH of the samples was monitored using a benchtop pHmeter (Orion™ Star 

A211, Thermo Fisher Scientific, Waltham, MA). The dilution due to the addition of the 

acid or base solution was recorded and the concentration of FG was corrected, if 

necessary. The concentration of FG of all the samples was corroborated based on the 
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absorbance of the samples at 580 nm determined using a UVVis spectrophotometer (Cary 

60, Agilent, Santa Clara, CA). 

4.3.1.2 Measurements  

 All concentrations for the abovementioned solutions were prepared in glass vials 

as a control (without FG) and with 10 µM FG. Fluorescence spectra were collected using 

a Cary Eclipse spectrofluorimeter (Agilent Technologies, Santa Clara, CA) equipped with 

a fiber optic coupler over the range of 610 to 750 nm, with excitation at 580 nm. 

Excitation and emission slits were set at 5 nm and 20 nm, respectively. Background 

spectra were deducted from the corresponding FG-containing sample spectra. Each point 

was normalized using the maximum FI of the corresponding overall dataset. 

4.3.2 Maize Starch Food System- Materials and Sample Preparation  

Three maize starch samples (Table 4.1), which varied in AM:AP, were acquired 

from Ingredion (Bridgewater, NJ, USA). Fast Green FCF (FG) was purchased from 

Sigma-Aldrich (St. Louis, MO).  

Table 4.1: The commercial name, description and AM:AP for each maize starch 
sample. 

Commercial Name Description AM:AP 
Melojel (Native) Native/unmodified maize starch ~ 25-27% AM : 73-75% AP 
Amioca (High AP) High AP maize starch ~  0 AM: 100% AP 
Hylon VII (High AM) High AM maize starch ~70% AM : 30% AP 

 

Sample preparation was controlled to provide 15% starch in the final sample, as is 

characteristic of most frequently consumed starch products (e.g. mashed potatoes and 

pasta). 45 g of the maize starch sample was mixed with 105 g of water, 95 g gastric 

electrolyte solution (6.2 g/L NaCl, 2.2 g/L KCl, and 0.3 g/L calcium chloride di-hydrate), 
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and 40 µM FG in a glass beaker, and covered with aluminum foil. An FG concentration 

study (data not shown) was performed to determine the ideal FG concentration and to 

avoid occurrence of  inner filter effect, which would be detrimental to recorded 

fluorescence intensity (FI). The mixture was placed in a hot water bath at 100 °C for 11 

minutes. This water bath temperature was above the gelation temperature (~ 62-72 °C 

[326]) for both Melojel (Native) and Amioca (High AP) samples. Samples were removed 

after 2.5 minutes and 5.5 minutes of heating initiation, to be stirred for a 30 seconds 

duration and then returned to the water bath to complete the 11 minutes total heating 

duration. After 11 minutes, samples were removed and its contents were mixed. The 

mixture beaker was covered with aluminum foil and placed in a cold water bath until it 

reached ~ 36 - 37.5 °C, mimicking human biological temperature, and then analyzed 

immediately to avoid starch retrogradation.  

4.3.3 Birefringence Loss in Maize Starch Food Systems to Determine Extent of 

Gelatinization 

Samples were prepared as described above and the heating process was omitted in 

control samples. Samples for microscopy were prepared for heated and control samples 

using a drop of samples or a thin layer of the starch samples, which were covered with 

another glass slide. Birefringence of the starch samples were captured using polarized 

light and an imaging station (Linkham, Surrey, England) equipped with a Qimaging 2560 

x 1920 pixel CCD camera (Qimaging, Surrey, BC, Canada) and a 10x Olympus lens 

(0.25 N.A.) (Olympus, Tokyo, Japan). Real-time viewing and image capturing was 

performed using Qimaging MicroPublisher 5.0 software (Qimaging, Surrey, BC, Canada) 

with resolution of 320 x 240 for Melojel (Native) and Amioca (High AP) and a lower 
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resolution of 160 x 120 for Hylon (High AM). A total of five micrographs were captured 

for each imaged sample and the birefringent area was quantified using ImageJ (NIH, 

Bethesda, Maryland). An average percent value was determined for each of the imaged 

samples and reported as percent birefringent area. Birefringence data allows depiction of 

the degree of gelatinization of the samples as a result of the heating process in the form of 

loss in birefringence.  

4.3.4 Influence of the Viscosity of Maize Starch Food Systems on the Photophysical 

Response by FG 

Rheological testing of starch samples was performed to verify the sensitivity of 

FG to changes in viscosity. Starch samples were prepared following the sample 

preparation procedure indicated in ‘Sample Preparation’ section. Samples were then 

sequentially diluted using water that contains 40 µM FG to prepare solutions of 7, 10, 12, 

15, 17, 20 % starch in water. A Discovery Hybrid Rheometer (TA Instruments, DE, 

USA) equipped with cone and plate 60 mm geometry was used to determine the 

rheological properties of the sample. The flow curve at 37 °C and 5 points per decade 

were recorded within a shear rate range of 0.1 – 100 s-1. The recorded viscosity at 30 s-1 

was used for data analysis and correlations between FI and both starch concentration as 

well as viscosity were conducted.   
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4.3.5 Luminescence Spectroscopy Coupled with TIM-1 to Monitor Luminal Viscosity 

of Maize Starch Food Systems 

4.3.5.1 TIM-1 Experimental Meal 

To mimic the initial gastric conditions, 100 g of prepared starch samples were 

mixed with 5 g gastric secretion fluid, 95 g gastric electrolyte solution (see TIM-1 

Simulated Digestion section for formulation) and 50 g water. The meal was fed into the 

TIM-1 (TNO Triskelion, Zeist, The Netherlands) gastric compartment along with 50 g 

water for a total experimental meal weight of 300 g.  

4.3.5.2 TIM-1 Simulated Digestion 

 The TIM-1 digestion system (Zeist, The Netherlands) was used to mimic 

digestion in the adult human stomach, duodenum, jejunum, and ileum. The ileal secretion 

fluid consisted of small intestinal electrolyte solution (SIES; 5 g/l NaCl, 0.6 g/l KCl, and 

0.25 g/l CaCl2). Jejunal fluid consisted of SIES containing 10% fresh porcine bile. A 7% 

pancreatin solution was prepared with Pancrex V powder (Paines & Byrne, UK). Gastric 

secretion fluid consisted of 600 U/ml pepsin (P7012, Sigma-Aldrich, MO, USA) and 40 

U/ml lipase (F-AP15, Amano Enzyme Inc., Nagoya, Japan) in a gastric electrolyte 

solution (4.8 g/l NaCl, 2.2 g/l KCl, 0.22 g/l CaCl2, 1.0 g/l NaHCO3). The pancreatin and 

gastric fluid solutions were placed on ice immediately after preparation. The fresh 

porcine bile solution (10%) was prepared with bile collected from a slaughterhouse 

(Farm-to-Pharm, NJ, USA), where multiple collections of bile were pooled into a single 

batch, divided into single-use quantities, and then stored at -20°C for later use. Bile was 

thawed on the day of the experiment and filtered using Miracloth (Merck KGaA, 

Darmstadt, Germany) prior to incorporation into the experimental solutions. 
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Hydrochloric acid (1 M HCl) and sodium bicarbonate (1 M NaHCO3) were added to the 

TIM-1 system to control pH levels throughout the digestion experiments. NaHCO3 was 

used to maintain pH values in the duodenal, jejunal, and ileal compartments at 5.9, 6.5, 

and 7.4, respectively. HCl was added to the gastric compartment to follow a 

predetermined pH pattern over time (Table 4.2). To mimic human physiological 

conditions, solutions were attached to the TIM-1 to facilitate continuous automated flow 

into the corresponding compartments. Gastric emptying also mimicked human conditions 

(i.e., gastric emptying half-time of 80 min). 

Table 4.2: TIM-1 stomach pH decreased over time during the 1.5-hour digestion 
period to mimic human adult fed-state GI conditions. 

Digestion Time (min) Predetermined pH value 

0 5.5 
30 4.5 
60 3.0 
90 2.0 

 

The TIM-1 compartments were filled with the corresponding start residues to 

mimic in vivo conditions. The duodenal start residue (60 g total) consisted of 15 g SIES, 

15 g pancreatin solution (7%), 30 g fresh porcine bile, and 2 mg trypsin (Sigma, T4665-

5G). Jejunal start residue (160 g total) consisted of 40 g SIES, 40 g pancreatin solution 

(7%), and 80 g fresh porcine bile. Ileal start residue (180 g total) consisted of 180 g SIES. 

After heating the system to the physiological temperature (37°C), the experimental meal 

(300 g; see TIM-1 Experimental Meal section) was immediately fed into the gastric 

compartment, and the digestion process is initiated. Digestion lasted for 90 minutes (1.5 

hours). The jejunum and ileum compartments are each connected to filtration units 

(M20S-300-01P, MiniKros® filter modules, Spectrum Labs, Breda, The Netherlands) to 
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remove the digestate fraction. TIM-1 Experiments were performed in quadruplicate for 

each type of maize starch sample. See Coupling of a Luminescence Spectrophotometer 

with the TIM-1 Gastrointestinal Model System to Report on Gastrointestinal Viscosity 

Changes section for detailed description of real time FI measurements on TIM-1.  

4.3.5.3 Coupling of a Luminescence Spectrophotometer with the TIM-1 Gastrointestinal 

Model System to Report on Gastrointestinal Viscosity Changes  

FI is a concentration-dependent photophysical property [317]. Therefore, a 

constant FG concentration (throughout an individual experiment and across all 

experiments) is critical for accurate and reliable correlations between viscosity and FI. 

TIM-1 GI digestion involves continuous secretion of solutions into each of the GI 

compartments, which would ultimately dilute the FG concentration in the fed meal. 

Therefore, FG was added at a final concentration of 40 µM to all TIM-1 secretions and 

the fed meal to ensure a constant FG concentration throughout. Experiments were 

performed in quadruplicate for each sample; three of which contained the above-

mentioned FG concentration. The fourth run served as a blank/control, and therefore no 

FG was added. 

A Cary Eclipse spectrophotometer (Agilent Technologies, Santa Clara, CA) 

(Figure 4.1B) equipped with a fiber optic coupler (Figure 4.1C) was used to measure FI 

changes during TIM-1 (Figure 4.1A) digestion. The yellow and brown regions in TIM-1 

(Figure 4.1A) represent the meal digesta, while the blue regions are the water jackets 

responsible for heating the digesta to a physiological temperature. Within each of the four 

TIM-1 compartments (stomach, duodenum, jejunum, and ileum) there is a single glass 

region that is not surrounded by the water jacket (red-dots in Figure 4.1A). The fiber 
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optic was placed against each of these glass regions (red-dots in Figure 4.1A) to obtain 

spectrofluorometric measurements. These regions provide a clear view of the sample, and 

facilitate excitation of FG-MR within the digesta and detection of the emitted photons. 

Note the use of an adapter (dotted line in Figure 4.1C) to allow repeatable positioning of 

the fiber optic accessory at an identical 45° angle to reduce light scattering (Figure 4.1D). 

The TIM-1 and fiber optic were completely covered by a blackout blind to ensure that 

ambient lighting did not influence the spectroscopic measurements.  

The fluorescence spectra were collected over the range of 610 nm to 750 nm, with 

excitation at 580 nm. Excitation and emission slits were set at 10 nm and 20 nm, 

respectively. The photomultiplier detector voltage was set at high. Measurements were 

collected every 5 minutes throughout the digestion period from the four TIM-1 

compartments (gastric, duodenum, jejunum, and ileum). An additional measurement at 

2.5 minutes of digestion was taken for the stomach/gastric compartment for all samples, 

to report more precisely on the initial change in viscosity. FI from the fourth TIM-1 run 

for each starch sample (carried out without FG) was subtracted from the FI of runs with 

FG, to subtract background FI unrelated to viscosity. To compare samples, all values 

were normalized relative to the maximum FI for Amioca (High AP). 

4.4 Results and Discussion 

4.4.1 Influence of TIM-1 Environmental Conditions on Photophysical Response by 

FG and Contribution to FG peak 

 Preliminary testing was performed using multiple solutions that represent the 

TIM-1 environment (Figure 4.2). To confirm whether or not the photophysical response 

of FG is affected by other environmental conditions in TIM-1 besides viscosity, we 
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recorded FI by FG as a function of changing concentration of SIES solutions (Figure 

4.2a) and changing pH value (Figure 4.2b) (within physiologically relevant gastric pH 

range (1.5 to 6) (Table 4.2)). One-way ANOVA (p<0.05) and Tukey’s Multiple 

Comparison tests suggest changes in both SIES concentration and pH (within the tested 

range) appear to have no significant influence on FI by FG. MRs have been repeatedly 

utilized in examinations involving detection of protein aggregation [226, 263, 285, 319] 

because MR and proteins readily interact.  To assess the potential interaction between FG 

and gastric enzymes (Figure 4.2c), we recorded FI by FG as a function of changing 

concentration of pepsin and lipase mixture solutions (Figure 4.2d); differences in FI were 

insignificant. To determine if bile contributes to FI peak by FG and whether or not it can 

be differentiated from it, we recorded FI by FG as a function of changing bile 

concentration. Possible contribution of bilin chromophores of bile on FI peak was 

negated in Figures 4.2c and 4.2d. 
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Figure 4.2: Maximum normalized FI of FG-MR as a function of changing the 
concentrations of SIES concentration (a), pH level (b), gastric enzyme concentration 
(c), and bile concentration (d). One-way ANOVA (p<0.05) with a Tukey’s Multiple 
Comparison Test was performed for each parameter. Identical letters within each 
individual graph imply no significant differences (p > 0.05). 

4.4.2 Birefringence Loss in Maize Starch Food Systems to Determine Extent of 

Gelatinization 

Starch suspensions, irrespective of their concentration and AM:AP, have low 

viscosities at ambient temperatures. Starch granules are characterized by their radial 

arrangement and semi-crystallinity [43], and are therefore anisotropic in nature. This is 

reflected by their birefringence property [48] in the form of a Maltese cross when viewed 

under polarized light [48-51]. Processing/cooking of starches typically involves 

hydrothermal processing. If heated above a certain critical temperature, the gelatinization 

temperature, an order-disorder phase transition occurs [114], resulting in the formation of 
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a starch paste. Gelatinization involves water diffusion and uptake by the starch granule, 

swelling, leaching of AM [117, 118], and ultimately increased viscosity. The increased 

paste viscosity during gelatinization coincides with disruption of molecular organization, 

dissociation of the crystalline double helices, disruption of Maltese cross contour, and 

loss of the aforementioned birefringence [49, 114, 116]. Sample birefringence was 

therefore captured before (Figures 4.3a-c) and after heating to 100 °C (Figures 4.3d-f), as 

per the sample preparation method. The attained micrographs provide insight on the 

extent of gelatinization of the samples that are being fed into TIM-1. Birefringence before 

and after heating was compared and a birefringence loss (BL) (%) value was quantified. 

The point at which all birefringence (~ 95 or 98%) is lost is known as the birefringence 

end point temperature (BEPT) [116], and is associated with complete gelatinization of the 

starch granules and complete loss in crystallinity [51]. BL for Hylon (High AM) is only ~ 

45% (Figure 4.3f), indicating minimal gelatinization and loss in granule crystallinity after 

the applied heating procedure. Product information provided by supplier indicates 

elevated gelatinization temperature of 154 °C to 171 °C for Hylon. It may be deduced 

that the temperature used in sample preparation (100 °C) does not suffice for 

ideal/complete Hylon (High AM) gelatinization, in agreement with BL data (Figure 4.3f). 

High amylose maize starches are characterized by a phospholipid composition [327]. 

Lipids intertwine with linear amylose chains, forming an AM-lipid complex. Although 

lipids make up a very small fraction (0.15 to 0.55%) of the AM-lipid complexes [130, 

328] they can significantly decrease granular swelling and leaching of AM and delay 

gelatinization temperature [327, 328]. Implications of partial gelatinization of Hylon 

include diffusion of the water-soluble FG into the intact or partially intact semi-
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crystalline granules in which starch-starch associations remain dominant. The increased 

density in the granule amorphous regions may hinder FG rotation and translate into 

increased FI emission. BL value for both Melojel (Native) and Amioca (High AP) 

(Figures 4.3d and 4.3e) exceed the BEPT criteria, suggesting that the majority of the 

starch granules are gelatinized. Recorded gelatinization temperatures for waxy (High AP) 

and native maize starches range from (~ 69.5 °C to ~ 82 °C) [142, 327], attribute to their 

insignificant composition of phosphorus and lipids and thus lack of formation of 

complexes with lipids, as agreed upon by numerous authors [148, 327, 329]. In 

consequence, granular damage is expected, accompanied with leaching of amylose, and 

consequent formation of a three-dimensional polysaccharide network in which the newly 

exposed hydroxyl groups of the starch polymers form Hydrogen bonds with the 

surrounding water molecules. In this case, minimal restrictions of FG due to granular 

confinement are expected. Therefore, the applied heating method exceeds the required 

critical temperature and ensures sufficient starch gelatinization in these samples.  
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Figure 4.3: Polarized light micrographs of Melojel (Native) (a,d), Amioca (High AP) 
(b,e), and Hylon (High AM) (c,f), prior to heating (top row) and after heating 
(bottom row). The numbers presented in d-f represent BL (%) after heating. 

4.4.3 Method Verification – Viscosity of Maize Starch Food Systems  

To confirm suitability of FG to characterize chyme viscosity of the starch matrix, 

starch pastes were prepared for each of the samples and sequentially diluted to mimic the 

viscosity changes (dilution) that would occur during digestion. FI and rheological 

viscosity (data not shown) measurements of each dilution were measured independently. 

The recorded maximum FI was correlated with the corresponding maximum rheological 

viscosity (Figure 4.4), yielding a strong relationship (R2 = 0.994 - 0.999). Strangely, 

Hylon (High AM) (Figure 4.4c), with the highest FI, appears to have the lowest 

rheological viscosity (0 to ~ 90 mPa s). Conversely, Amioca (High AP) and Melojel 

(Native), with lower FI, yield relatively much higher rheological viscosities (0 to ~ 

15,000 and 30,000 mPa s, respectively). This observation will be revisited in the 

remainder of the discussion for a possible explanation (see Effect of Starch AM: AP ratio 

on TIM-1 Luminal Viscosity). The plots in Figure 4.4 can assist in quantifying FG 
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sensitivity to changes in viscosity in the tested starch pastes when fitted using the Förster 

and Hoffman equation [330] (Eq. 4.1),  

 I(ν ) =α •υχ  (4.1)  

where, I(ν) is the FI, α is proportional to the ‘brightness’ of the probe , ν is viscosity, and 

x is a viscosity sensitivity parameter. The viscosity sensitivity parameter ‘x’ is affected 

by both the solvent as well as the MR. Parameter ‘x’ will therefore vary in different 

matrices as a function of: the interaction between the solvent and MR at the molecular-

level, the quantum yield of the system and its bulk viscosity [330]. The values of 

parameters ‘x’ as well as ‘α’ for FG in the tested maize starch matrices are shown in 

Table 4.3, and are similar to the values reported for effective and commonly used MRs in 

equivalent media (e.g.: 0.53 for DCVJ, [330] and 0.38 for Azorubine (an Azo Dye) 

[235]). Table 4.3 suggests similar sensitivity of the FG probe to changes in viscosity in 

all the tested maize starch matrices. Accordingly, FG is a suitable and sensitive probe to 

report on viscosity changes in the tested starch food matrix. However, there is a vivid 

variation in the brightness parameter ‘α’ (Table 4.3), with the Hylon maize starch sample 

having a much higher brightness value as compared to both Melojel and Amioca. This 

suggests a much higher signal from the Hylon sample, and that the intact or partially 

intact semi-crystalline nature of the granules will influence the measurements (the 

increased density in the granule amorphous regions would hinder FG rotation and 

translate into increased FI emission). These assumptions are supported by, and explain, 

the Hylon sample  having the highest FI and lowest rheological viscosity (Figure 4.4c). 

Additionally, the relationships between FI and apparent viscosity reported in Table 4.3 

can assist in obtaining the apparent viscosity from the in line FI measurements (in TIM-1) 
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(Figure 4.6). It is important to note that MR report on the properties of solutions at the 

molecular level and their potential use as sensors of bulk viscosity is limited to specific 

matrices/systems in which the micro- and macro- viscosities are identical [317]. As such, 

the FI and viscosity are used interchangeably hereafter.  

 

Figure 4.4: Maximum FI as a function of apparent viscosity (mPa s) for various 
dilutions of heated starch samples, a) Melojel (Native), b) Amioca (High AP), c) 
Hylon (High AM), after subtracting background FI. 

Table 4.3: Parameters of the Förster and Hoffman equation obtained for the FI vs. 
apparent viscosity relationships of each starch (shown in Figure 4.4) 

Starch Brightness, α  Sensitivity value, x 

Melojel (Native) 3.18 0.36 
Amioca (High AP) 1.61 0.40 
Hylon (High AM) 40.3 0.37 

 

4.4.4 Effect of Starch AM: AP ratio on TIM-1 Luminal Viscosity 

FG and TIM-1 are used as per the method illustrated in Figure 4.1 to record real-

time FI during in vitro digestion, at pre-determined time intervals. The method aims to 

permit recording real-time changes during in vitro GI digestion for different AM:AP in 

heated maize starch. The three maize starch pastes were each individually digested in 

TIM-1, and recorded FI were corrected by subtracting the FI of the blank (Figure 4.5). 

Additionally, the relationships between FI and apparent viscosity reported in Table 4.3 

were used to obtain the apparent viscosity from the fluorescence intensity measurements 

b a c R2=0.994	   R2=0.999	   R2=0.995	  
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(Figure 4.6). The changes in maximum FI and apparent viscosity as a function of 

digestion time point were characterized using an exponential equation (Eq. 4.2):  

 I(t)orµapp = IYres +Ymaxe
−kt  (4.2)  

where Yres is the residual observed FI or apparent viscosity of the sample, Ymax is the 

maximum intensity or apparent viscosity observed and k is the rate of change in FI or 

apparent viscosity. Fitted parameters from Eq. 4.2 for the apparent viscosity changes are 

presented in Table 4.4.  

Figure 4.5: Fluorescence intensity recorded at TIM-1 gastric compartment for a) 
Melojel (Native), b) Amioca (High AP), c) Hylon (High AM) as a function of 
digestion time.  

Figure 4.6: Apparent viscosity at TIM-1 gastric compartment for a) Melojel 
(Native), b) Amioca (High AP), c) Hylon (High AM) as a function of digestion time. 
Notice that the apparent viscosity for Hylon is reported in mPa s instead of Pa s. 

Table 4.4: Parameters of Eq. 4.2 used to fit apparent viscosity values as a function of 
time for the three starch samples. 

Parameters Melojel 
 

(Native) 

Amioca 
(High AP) 

Hylon 
(High AM) 

Residual FI ‘Yres’ (Pa s) 7.7 16.6 0.04 
Max FI ‘Ymax’ (Pa s) 30 92 0.04 
Rate of Change ‘k’ (min-1) 0.06 0.036 0.08 

b a c 

b a c 
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Waxy maize starches (High AP) have higher maximum viscosity in comparison to 

native and High AM maize starch [142, 327]. AP is the principal starch molecule 

responsible for increased starch paste viscosity [331, 332]. The larger molecular weight 

and extensive branching of AP facilitates a greater water retention capacity, as well as 

rate and extent of granule swelling; which are reflected by comparatively higher peak 

viscosity [148, 333, 334]. The almost complete BL (Figures 4.3d and 4.3e) implies 

largely swollen, ruptured granules and leaching of AM content into inter-granular space 

[335, 336]. AM leaching is considered a pre-requisite for rapid granule swelling, 

solubility, and formation of a three-dimensional network that increases the starch paste 

viscosity [329, 335]. The water-soluble nature of FG insinuates its dispersion throughout 

the newly generated viscous paste. Consequently, FG segmental rotation is restricted to a 

level that is proportional to the micro- viscosity, and is reflected in a proportionally 

increased FI. Accordingly, we deduce that the measured FI provide a reasonable 

approximation of the Melojel (Native) and Amioca (High AP) digesta bulk viscosity 

during in vitro TIM-1 digestion.  The apparent viscosity estimations provide additional 

evidence to this statement. It should be noted that the samples that have undergone 

rheological testing are similar though not identical to the samples in the gastric 

compartment. Therefore, differences between fluorescence intensity and apparent 

viscosity might be attributed to sample composition. The slope of viscosity decay (k) of 

Amioca (High AP) is smaller than Melojel (Native) (Table 4.4), in other words, higher 

digesta viscosity is retained for a longer period of time during digestion. Starch 

hydrolysis/digestion occurs in the small intestine via pancreatic α-amylase enzyme [54, 
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56, 57] and therefore plays no role in the observed reduction in gastric chyme viscosity 

[18, 53]. Increased water retention capacity, larger molecular weight, extensive 

branching, and large number of exposed hydroxyl groups after gelatinization, increased 

level of ruptured granules may play a role in the observed parameters. The rapid drop in 

viscosity observed for Melojel (Native) and Amioca (High AP) is accountable to the 

increased intragastric dilution in response to increased gastric meal viscosity within in 

vivo systems; however, such a phenomenon is not applicable to the pre-determined 

gastric secretion rates characteristics of TIM-1 in vitro system [165]. A limited number of 

scientific works exist on starch gastric viscosity, and therefore, no relevant previous 

reportings on maize starch luminal viscosity are available for comparison, as per our 

knowledge. Other factors affect starch paste behavior [142]: AP and/or AM molecular 

weight, degree of branching of AP [142], phosphorus and lipid content, and size of 

granules [334], degree of perfection of the crystalline structure and starch polymorphism  

[148, 334], starch granule size[337], granule architecture and purity [334].  

Increased AM content is associated with a delayed onset of swelling and 

gelatinization [145, 146], and decreased peak viscosity [147, 148]. The linear AM chains 

are prone to intertwining with long branches of AP molecules as well as phospholipids, 

thus physically restricting starch granule swelling and expansion [148, 327]. As a result, 

the granule is physically of sturdier integrity [338] and has a much elevated gelatinization 

temperature of 154 °C to 171 °C, as per supplier. It may be deduced that the temperature 

used in sample preparation (100 °C) does not suffice for ideal/complete Hylon (High 

AM) gelatinization, in agreement with BL data (Figure 4.3f). In contradiction, the 

experimental gastric FI for Hylon (High AM) (Figure 4.5c) suggests Hylon (High AM) 
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yields the highest gastric viscosity. The discrepancy between experimental FI and BL 

may be a plausible artifact of the photon emission mechanism by MR. This may be 

explained by the explicit sensitivity of MR to steric hindrance by molecular crowding in 

its direct microenvironment, rather than the macro-environment of the matrix. Starch 

pastes typically retain intact granules, partially swollen granules, and granule fragments 

[339] at an extent that is dependent on the degree of their gelatinization. Limited loss in 

birefringence (BL ~45%) in the heated Hylon (High AM) meals suggests retention of 

intact or partially swollen starch granules. Such a finding may lead to several hypotheses 

that may contribute to high FI values that are not representative of the actual digesta 

viscosity:  

A) The water-soluble nature of FG allows it to diffuse into the intact starch 

granules. The particulate density within the granule may hinder FG rotation 

and translate into increased FI emission; 

B) The fiber optic is placed at the central glass region of the gastric compartment 

(Figure 4.1A, red dot) for FI measurement collection. This region tends to be 

concentrated with particulates, especially during contraction of the water 

jackets, due to its constrained nature. Accordingly, intact and partially swollen 

granules tend to be present in this region at a greater concentration than the 

remainder of the compartment, which results in increased FI detection by the 

fiber optic. 

The values of apparent viscosity obtained using the rheological measurements, 

provide a more appropriate interpretation of the FI data for Hylon (High AM) . We 

therefore deduce that FG in combination with TIM-1 is not suitable for measuring the 
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viscosity of Hylon (High AM) samples or for comparing samples with different degree of 

gelatinization.  The (1) discrepancy between micro- and bulk viscosities and the (2) 

particulate nature of the paste that causes whole or partial starch granules to accumulate 

at the point of measurement collection results in FI data that is not representative of the 

actual matrix viscosity 

4.5 Conclusions 

A newly developed method is presented herein to facilitate recording real-time 

luminal viscosity in an in-vitro digestion system via the use of three integrated 

technologies: TNO Intestinal Model-1 (TIM-1) and luminescence spectrophotometry 

with viscosity sensitive probes (MR). FG is capable of reporting real-time changes in 

luminal viscosity, in vitro, in systems where microviscosity is representative of bulk 

viscosity. Method limitations: The proposed method is not suitable for systems where 

microviscosity is not representative of overall matrix viscosity. The resultant emitted FI 

may be inaccurately interpreted to correspond to elevated total viscosity by an untrained 

analyzer.  

This method provides opportunities for better understanding of digesta viscosity 

trends and consequent interpretation of structure-function relationships [313]. Meal 

viscosity has been correlated with a greater sensation of satiety, and reduced hunger and 

appetite [312, 340]. Correlations between rate and extent of nutrient hydrolysis and 

luminal viscosity are well accepted [16-18]. The importance of such possible correlations 

is especially critical in light of the global obesity and diabetes pandemic [14, 19, 20], thus 

creating an urgent need for dietary intervention and provision of functional foods that 

improve health. The applicability of the proposed method was tested in three maize 
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starches: Melojel (Native), Amioca (High AP), and Hylon (High AM). The effect of 

AM:AP  and extent of gelatinization on GI viscosity was observed. AM:AP of starch 

governs the final functionality and physiological response of individual starches. For 

example, waxy (high AP) starches are typically utilized as thickener, stabilizers and 

emulsifiers [41], while high AM starches are used as film coatings for various foods. 

These physical modifications have physiological impacts that determine postprandial 

glycaemia and level of resistant starch of the food matrix [139]. Exploitation of such 

properties may contribute to opportunities for dietary mediation of chronic diseases by 

foods with pre-determined and targeted health benefits [313]. 
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5 In vitro Measurements of Luminal Viscosity and 

Glucose/Maltose Bioaccessibility for Oat Bran, Instant 

Oats, and Steel Cut Oats 

This chapter is published in Food Hydrocolloids: (DOI 

10.1016/j.foodhyd.2017.04.015, September 2017, Volume 70, Pages 293-303), and co-

authored with Derrick Fondaco, Karen Ben-Elazar, Shirley Ben-Elazar, Yim Yan Fan, 

Maria G. Corradini, Richard D. Ludescher, Douglas Bolster, Gary Carder, Yi Fang Chu, 

Yongsoo Chung, Prabhakar Kasturi, Jodee Johnson, and Michael A. Rogers. 

5.1 Abstract 

Three commercially available oat products—instant oats, steel cut oats, and oat 

bran—were studied using the TNO Intestinal Model-1 (TIM-1) coupled with 

fluorescence spectroscopy and molecular rotors to evaluate carbohydrate digestion and in 

vitro gastric viscosity as a function of time. A proportional relationship between total 

bioaccessible sugars and the concentration of available carbohydrates was observed for 

the different oat-based foods. The rate of starch digestion was greatest for instant oats and 

lowest for steel cut oats. β-glucan, starch, and total carbohydrate concentrations were 

proportional to the initial gastric viscosity. Overall, gastric viscosity differed considerably 

between samples. Instant oat and oat bran viscosities were highest at the onset of 

digestion and decreased with time, whereas the viscosity of steel cut oats at the onset of 

digestion was the lowest viscosity observed, increasing with time. These findings suggest 
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that modification of food form and formulation during processing alters sugar 

bioaccessibility and luminal viscosity. 

5.2 Introduction 

 Oats attenuate the postprandial glycemic response [37, 108, 341-344] because 

they contain the soluble fiber (1à3)(1à4) β-D-glucan [80-82]. This attenuation is 

attributed to an increase in luminal viscosity [345, 346]. However, variability in the 

attenuation of the postprandial glycemic response exists because oats are commercially 

available in several forms, ranging from raw grain to ready-to-eat cereals and cooked oat 

porridge [2]. Processing of the whole oats changes the physical/structural [347] and 

chemical characteristics. Many researchers have demonstrated that commercial 

processing methods modify β-glucan quality (e.g., solubility and molecular weight) [3-5], 

β-glucan quantity [6], and starch integrity (e.g., gelatinization) [7-10]. A recent 

systematic review by Tosh and Chu [2] shows a wide range of glycemic indices, ranging 

between 40 and 88, for differently processed whole oat grains. Nonetheless, the 

mechanisms underlying the variability in physiological response for commercially 

available oat products are not yet well understood.  

 The thickening ability of soluble fiber and the associated decrease in postprandial 

glucose response is attributed to the ability of oats to bind water and form a water-

entrapping non-starch polysaccharide network in the gastrointestinal tract (GIT) [11, 12]. 

The physicochemical properties of β-glucan also play a crucial role in blood glucose 

attenuation [348], and research suggests that factors other than increased luminal 

viscosity play a role in postprandial glucose levels after the consumption of fiber-

containing meals [349, 350]. A relationship between the viscosity of the ingested meal 
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and satiety is now fairly well accepted [308-311], due to resultant increased distention in 

the stomach cavity with increasing chyme volume. It is of critical importance to 

understand the mechanisms that correlate physical alterations in oat form to 

physicochemical properties and physiological impact. For this purpose, oat digestion 

kinetics and luminal viscosity changes must be determined for different oat-based 

products. 

 Few published studies have described luminal fluid viscosity during GIT transit 

for different oat products. Most of the available studies used static in vitro digestion 

methods, which do not account for the complexity of digestion. Optical chromophores, 

such as synthetic colors, exhibit molecular rotor behavior and can be used as intrinsic 

luminescent probes to assess viscosity[319]. The term “molecular rotor” refers to 

molecules consisting of two or more segments that easily rotate relative to each other 

[33]. Photoexcitation of fluorescent molecular rotors can result in twisted intramolecular 

charge transfer (TICT). Deactivation from the TICT state occurs predominantly through a 

nonradiative pathway. Alternatively, a return to the ground state from the local excited 

state can occur through a radiative decay process that results in emission of photons. 

Since the rate of TICT state formation is lower in more viscous environments, these two 

competing decay pathways determine the sensitivity of the probe to the micro-viscosity 

of the surrounding environment [213, 320, 321]. Consequently, any change in the 

medium rigidity, such as an increase in local (and bulk) viscosity [322], hinders 

formation of a TICT state and increases fluorescence emission intensity. This work 

involves the first application of molecular rotors paired with a simulated digestion TNO 

Intestinal Model-1 (TIM-1) to assess ‘real-time’ luminal viscosity throughout the 
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simulated gastric environment. The TIM-1 is an advanced artificial digestive system that 

mimics the human stomach and small intestine. In comparison to other in vitro 

techniques, this dynamic computer-controlled system is unique in its ability to regulate 

pH, temperature, gastric and intestinal emptying, transit time, and gastrointestinal 

secretions [318].  

 In the present work we investigated the physicochemical properties of three 

different commercially available oat-based products: instant oats, steel cut oats, and oat 

bran. The TIM-1 system was used to evaluate starch digestion. Coupled with 

fluorescence spectroscopy and optical chromophores, the TIM-1 system shows changes 

in luminal viscosity in vitro. Total sugar release profiles were described for each of the 

tested oat-based meals, and a shifted logistic model was used to estimate the rate of sugar 

release as a function of time. Fluorescence measurements suggest distinctly different 

trends in viscosity within the gastric compartment for the tested samples.   

5.3 Methods 

5.3.1 Materials and Sample Preparation 

 The three tested oat products (instant oats, steel cut oats and oat bran) were 

supplied by Quaker Oats (PepsiCo, Inc., IL, USA). The composition of the tested oat 

products are presented in Table 5.1, as per values provided by supplier. Supplier attained 

the presented values as per the following method: each oat product was pooled from 

numerous production batches; official reference methods were used to determine 

percentages of moisture, ash, protein, fat, soluble and insoluble (AOAC 991.43) dietary 

fiber in the samples; these values were deducted from total weight to estimate the total 
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carbohydrates (%); AOAC methods 995.16 and 996.11 were used to quantify β-glucan 

and starch composition. 

Table 5.1: Composition of the tested oat products. 

Oat Type Soluble 
Fiber (%) 

β-glucan 
(%) 

Insoluble 
Fiber (%) 

Starch 
(%) 

Total  
Carbohydrates (%) 

Instant 4.5 3.97 5.2 54.0 62.8 
Steel Cut 4.2 3.45 5.1 54.7 64.4 
Oat Bran 6.6 6.28 8.1 44.0 55.7 
* All results are presented on as-is/wet-basis. The 2 × %RSD (i.e. at 95% confidence 
interval) for these tests are 12% (soluble fiber and insoluble fiber), 6% (β-glucan), 4% 
(starch), and 12 % (total carbohydrate). 
* Values and standard deviations have been provided by supplier.  

Table 5.2: Meal preparation: mixture composition, heating duration, cooling 
duration, and heating unit. 

Oat Type Oats (g) Water (g) Heating Duration Cooling 
Duration 

Heating 
Unit 

Instant 45 190 65 sec 2 min Microwave 
Oat Bran 45 230 50 sec & 40 sec* 2 min Microwave 
Steel Cut 45 335 25 min ** 2 min Stove top 

* Oats were stirred between the two heating periods. 
** Oats was stirred occasionally during cooking. 
 

Sample preparation was designed to use a typical serving size (45 g) of each oat 

product and the water was adjusted according to the preparation instructions of the 

commercial product that was then prepared immediately prior to analysis (Table 5.2). 

Instant oats and oat bran were mixed with water in a 1-quart Pyrex cup and heated in a 

microwave oven (NN-SD987SA, 1250 watts, Panasonic Corp., Osaka, Japan) on high 

power for the time indicated in Table 5.2. The oat bran was heated in two stages and 

stirred between the two heating periods for more uniform cooking. To prepare the steel 

cut oats, water was brought to a boil in a medium saucepan on an oven-stove top at high 

heat, and the oats were stirred into the boiling water. The heat was then reduced to a 

simmer, and the oats were cooked on low heat with occasional stirring. All cooked 
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samples were well-mixed and cooled for 2 min before preparation of the experimental 

meal (see Experimental Meals section). 

5.3.2 Experimental Meals 

 The prepared oat-based meals were masticated immediately after cooling to avoid 

starch retrogradation. Mastication was performed by a single volunteer using a chew-and-

spit method (10 chews) to provide salivary α-amylase and reduce particle size. To mimic 

initial gastric conditions, the chewed sample (100 g) was immediately mixed with 5 g 

gastric secretion fluid, 95 g gastric electrolyte solution, and 50 g water. The sample was 

then promptly fed into the TIM-1 gastric compartment, followed by a 50 g water rinse for 

a total experimental meal weight of 300 g, which is the upper limit of TIM-1 capacity.  

 The total available carbohydrates, starch, and β-glucan percentages of each 

prepared oat product were compared to evaluate their possible impact on the measured 

parameters (Table 5.3). These values were estimated based on (1) total carbohydrates (%) 

available in each type of oat (Table 5.1); (2) total amount of oats used during sample 

preparation (Table 5.2); (3) total amount of water lost during sample preparation (post-

cooking weight deducted from pre-cooking meal weight); (4) amount of cooked sample 

that was chewed and fed into TIM-1 (100 g); and (5) cleavage of glycosidic linkages of 

starch to yield glucose or maltose (a 10/9 conversion factor was used) [351].  

Table 5.3: Estimated total available carbohydrates, β-glucan, and starch of each oat 
product fed to the TIM-1.  

Oat Type Total 
Carbohydrates (%) 

β-glucan (%) Starch (%) 
 

Instant 13.21 ± 1.6 0.84 ± 0.05 12.62 ± 0.05 
Steel Cut 14.00 ± 1.7 0.75 ± 0.05 13.21 ± 0.05 
Oat Bran 11.53 ± 1.4 1.30 ± 0.08 10.12 ± 0.04 

* Standard deviations have been calculated as per deviations in composition, shown in 
Table 5.1.  
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5.3.3 Molecular Weight of β-glucan 

Instant oat- and steel cut oat- based meals were prepared as per cooking methods 

mentioned above. Samples were then freeze-dried (LABCONCO FreeZone 2.5) and then 

ground to < 500 µm particle size. 1% (weight/volume) β-glucan samples underwent in 

vitro digestion by being placed in 25 ml of pH 6.9 buffer containing 75 units of α-

amylase (Megazyme E-BLAAM100) and 7.5 units of protease (Megazyme E-

BSPRT100) for duration of 2 hours at controlled temperature of 37°C. Following, digesta 

was filtered through 0.45 µm pore size nylon filter (WhatmanTM, GE Healthcare Life 

Sciences). Size exclusion chromatography post column derivatization fluorescence & 

refractive index detection (SEC-PCD-FL-RI, 1200 Infinity series, Aligent)  was used to 

analyze peak molecular weight of the samples. Two columns (Column 1: Shodex OH 

pak, SB-G, 10 µm, 8.0 mm ID X 300 mm L P/N F6429106, Column 2: Waters 

Ultrahydrogel Linear, 10 µm, 7.8 ID, 300 mm L, P/N WAT011545) coupled in tandem 

after a  guard column (Shodex OH pak, SB-G, 10 µm, 6.0 mm ID W X 50 mm L P/N 

F6709430) were used for β-glucan chromatographic separation with column temperature 

at 40 °C. Fluorescence detector was set up at Ex 390 nm, Em 435 nm and RI detector was 

set-up at 35 °C. Agilent Chemstation (Agilent) was used to collect and process the data. 

5.3.4 TIM-1 Simulated Digestion 

 The TIM-1 digestion system (Zeist, The Netherlands) was used to mimic 

digestion in the adult human stomach, duodenum, jejunum, and ileum. The ileal secretion 

fluid consisted of small intestinal electrolyte solution (SIES; 5 g/l NaCl, 0.6 g/l KCl, and 

0.25 g/l CaCl2). Jejunal fluid consisted of SIES containing 10% fresh porcine bile. A 7% 
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pancreatin solution was prepared with Pancrex V powder (α-amylase activity= 25,000 

units/g, lipase activity = 25,000 units/g, and protease activity= 1,400 units/g), which was 

obtained from Paines & Byrne, UK. Gastric secretion fluid consisted of 600 U/ml pepsin 

(P7012, Sigma-Aldrich, MO, USA) and 40 U/ml lipase (F-AP15, Amano Enzyme Inc., 

Nagoya, Japan) in a gastric electrolyte solution (4.8 g/l NaCl, 2.2 g/l KCl, 0.22 g/l CaCl2, 

1.0 g/l NaHCO3). The pancreatin and gastric fluid solutions were placed on ice 

immediately after preparation. The fresh porcine bile solution (10%) was prepared with 

bile collected from a slaughterhouse (Farm-to-Pharm, NJ, USA), where multiple 

collections of bile were pooled into a single batch, divided into single-use quantities, and 

then stored at -20°C for later use. Bile was thawed on the day of the experiment and 

filtered using Miracloth (Merck KGaA, Darmstadt, Germany) prior to incorporation into 

the experimental solutions. Hydrochloric acid (1 M HCl) and sodium bicarbonate (1 M 

NaHCO3) were added to the TIM-1 system to control pH levels throughout the digestion 

experiments. NaHCO3 was used to maintain pH values in the duodenal, jejunal, and ileal 

compartments at 5.9, 6.5, and 7.4, respectively. HCl was added to the gastric 

compartment to follow a predetermined pH pattern over time (Table 5.4). To mimic 

human physiological conditions, solutions were attached to the TIM-1 to facilitate 

continuous automated flow into the corresponding compartments. Gastric emptying also 

mimicked human conditions (i.e., gastric emptying half-time of 80 min).  

The TIM-1 compartments were filled with the corresponding start residues to 

mimic in vivo conditions. The duodenal start residue (60 g total) consisted of 15 g SIES, 

15 g pancreatin solution (7%), 30 g fresh porcine bile, and 2 mg trypsin (Sigma, T4665-

5G). Jejunal start residue (160 g total) consisted of 40 g SIES, 40 g pancreatin solution  
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Table 5.4: TIM-1 stomach pH decreased over time during the 7-hour digestion 
period to mimic human adult fed-state gastrointestinal conditions.  

Digestion Time (min) Predetermined pH value 
0 5.5 
30 4.5 
60 3.0 
120 2.0 
210 1.7 
360 1.7 
420 1.7 
 
(7%), and 80 g fresh porcine bile. Ileal start residue (180 g total) consisted of 180 g SIES. 

After heating the system to the physiological temperature (37°C), the experimental meal 

(300 g; see Experimental Meal section) was immediately fed into the gastric 

compartment, and the digestion process is initiated. Digestion lasted for 7 hours to 

simulate average fed-state physiological conditions of an adult after ingestion of an oat-

based meal. The jejunum and ileum compartments are each connected to filtration units 

(M20S-300-01P, MiniKros® filter modules, Spectrum Labs, Breda, The Netherlands) to 

remove the digestate fraction. During the experiment, samples were obtained from the 

duodenum and jejunum filtrates and ileum efflux at 30-min intervals to measure sugar 

bioaccessibility. These samples were collected in a vial immersed in ice and transferred 

to the high-performance liquid chromatography (HPLC) system for analysis the same 

day. Experiments were performed in triplicate for each oat-based meal. The viscosity-

sensitive luminescent probe Fast Green FCF (FG; Sigma-Aldrich, ON, USA) (see 

Luminescence Spectroscopy coupled with TIM-1 section for details) was added to each of 

the sample solutions, rinses, and secretion solutions (final concentration 40 µM). A fourth 

run, in which FG was not added to the solutions, served as a control for luminescence 

measurements (see Luminescence Spectroscopy coupled with TIM-1 section for details).  
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5.3.5 Luminescence Spectroscopy Coupled with TIM-1  

 The TIM-1 system was coupled with a Cary Eclipse spectrofluorimeter (Agilent 

Technologies, Santa Clara, CA) equipped with a fiber optic coupler to measure in situ 

fluorescence emission. The TIM-1 and fiber optic probe were placed under a blackout 

blind to ensure that ambient lighting did not influence the spectroscopic measurements. 

The fiber optic was placed against the glass surface at a 45° angle, using an adaptor, to 

reduce backscatter from the glass surface. Based on the results of preliminary studies, FG 

was selected as a probe because the emission spectra were not affected by naturally 

occurring fluorophores in the meal or secretion fluids. FG was added at a final 

concentration of 40 µM to all TIM-1 secretions and the meal being fed into the TIM-1 to 

ensure a constant concentration of the probe throughout the 7-hour TIM-1 trials, allowing 

for a more simplified data analysis where no dilution of FG occurs. The fluorescence 

spectra were collected over the range of 610 to 750 nm, with excitation at 580 nm. 

Excitation and emission slits were set at 5 nm and 20 nm, respectively. The 

photomultiplier detector voltage was set at high. Measurements were taken every 10 min 

during the first 60 min, every 15 min from 60 to 180 min, and then every 30 min from 

180 to 420 min. To compare samples, all values were normalized relative to the 

maximum fluorescence intensity for instant oats. Fluorescence from the fourth TIM-1 run 

for each oat-based meal (carried out without FG) was subtracted from the fluorescence of 

runs with FG, to subtract background fluorescence unrelated to viscosity.  

5.3.6 Probe Sensitivity Verification using Steady-state Rheology  

 Rheological testing was performed to verify the sensitivity of FG to changes in 

viscosity. Oat product samples prepared for the TIM-1 trials were sequentially diluted to 
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obtain six solutions with oats:water ratios of 1:0, 1:0.5, 1:1, 1:2, and 1:3. FG was added 

to each of the solutions (final concentration 40 µM) to correlate fluorescence intensity 

with rheological measurements in a wide range of viscosities. Fluorescence was 

measured with the method used to determine luminal viscosity. Simultaneously, a 

Discovery Hybrid Rheometer (TA Instruments, DE, USA) equipped with a 25-mm 

sandblasted parallel plate was used to determine rheological properties. A flow curve was 

obtained at 37°C, controlled by the Peltier plate, and recorded within a shear rate range of 

0.1–400 s-1.  

5.3.7 HPLC Analysis of Sugars 

 The filtrates and ileum efflux collected from the TIM-1 runs were analyzed using 

an HPLC system (Alliance Separation Module e2695, Waters Corp., MA, USA) 

equipped with a 2424 Evaporative Light Scattering Detector (Waters Corp. MA, USA) 

for each collection time point. A SupelscosilTM LC-NH2 5-µm column (25 cm × 4.6 mm) 

(Sigma-Aldrich, PA, USA) was used in combination with a 2-cm LC-NH2 SupelguardTM 

cartridge. The stroke volume for the system was 50 µL, and an isocratic pump mode was 

used. Ideal separation occurred when the mobile phase was composed of 25% HPLC-

grade water (EMD Chemicals, Inc., NJ, USA) and 75% HPLC-grade acetonitrile (EMD 

Chemicals, Inc., NJ, USA). The column temperature was set at 30 ± 5°C. The area under 

the curve of the eluted peaks on the HPLC chromatograms was converted to mg of the 

corresponding sugar (glucose and maltose) using a calibration curve. This conversion 

yielded the absolute bioaccessible glucose, maltose, and total sugars (glucose plus 

maltose), which was used to determine cumulative bioaccessible glucose, maltose, and 

total sugars.  
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5.4 Results and Discussion 

 The meals prepared from three commercially available oat products were digested 

in the TIM-1 in vitro digestion system to examine changes in rates of starch digestion and 

in situ luminal viscosity. Although the three products originate from the same grain, they 

underwent different processing techniques and cooking procedures. Milled oat grains are 

kiln-dried to inactivate lipase to prevent the development of off-flavors and extend shelf 

life [6]. The oats are then cut into smaller particles to produce steel cut oats [6]. Steaming 

and rolling of steel cut oats yields instant oat flakes [6, 352]. Flakes or whole oat groats 

can be ground into flour, from which the coarse oat bran portion is separated. Oat bran 

consists of the aleurone and subaleurone layers of the grain [6], which are characterized 

by a high β-glucan content, as shown in Tables 5.1 and 5.3.  

From the three oat-based meals, the cumulative bioaccessible glucose, maltose, 

and total sugars (glucose and maltose) (Figure 5.1) were determined in the jejunum and 

ileum compartments of the small intestine and in the ileal efflux (data not shown) 

collected from the TIM-1 over 420 min. The lowest bioaccessible glucose, maltose, and 

total sugars at 420 min (Figure 5.1a, b, and c) of digestion was observed for the oat bran. 

After a lag period of 30–60 min for steel cut and instant oats, and a lag period of 90 min 

for oat bran, significant amounts of glucose and maltose were cleaved, producing a 

sigmoidal release profile (Figure 5.1a and b).  



	   100	  

	  

 

Figure 5.1: Cumulative bioaccessible glucose (a), maltose (b), and total sugars (c) in 
the jejunum and ileum compartments (combined) for instant oats (red), oat bran 
(black), and steel cut oats (blue). 

A shifted logistic model with three parameters was used to characterize the 

amount of sugars released in the different TIM-1 compartments as a function of time (t): 

 
C(t) =

Casymp

1+ ek (tc−1)
−
Casymp

1+ ektc
 (5.1)  

where C(t) is the amount of released sugar at a given time, Casymp provides an upper 

bound to the sugar bioaccessibility curve, k is a rate constant (i.e., mg glucose, maltose, 

or total sugars per unit time), and induction time (tc) represents the time at which half of 

the total bioaccessible sugars have been released. 

 This model accounts for the lag period and sigmoidal trend (Figure 5.1) and 

includes a correction term at the right side of the equation, forcing the curve to pass 
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through the origin and satisfy the condition that at time (t) = 0 min, the amount of 

bioaccessible sugars is 0 mg. It is important to note that Equation 5.1 was initially applied 

to lipid systems [353-355] to characterize lipolytic activity. However, the 

phenomenological characteristics of this model allow its use in diverse applications such 

as the determination of carbohydrate bioaccessibility. Bioaccessibility refers to the 

amount of a nutrient that is available for absorption [176], whereas bioavailability refers 

to the amount of a nutrient that is available to perform its specific physiological function 

[191]. Since the TIM-1 does not measure advanced transport properties across the 

intestinal membrane, it is appropriate to label digestates as bioaccessible but not as 

bioavailable. 

 Sugar bioaccessibility, rate of release, and induction time (Figure 5.2) for each 

compartment were determined by fitting the cumulative bioaccessible sugar curves 

(Figure 5.1) with Equation 5.1 using nonlinear analysis (GraphPad, La Jolla, CA). The 

theoretical bioaccessibility of glucose, maltose, and total sugars (Casymp) (Figure 5.2a, b, 

and c) were similar to the experimentally determined bioaccessibility values obtained 

from the TIM-1 (Figure 5.1). The rate of sugar release (Figure 5.2d, e, and f) varied 

depending on the measured mono- or disaccharide. For example, the rate of glucose 

release (Figure 5.2d) was greatest for oat bran, followed by instant oats, and then steel cut 

oats. The rate at which maltose was cleaved from the polysaccharide was highest for 

instant oats, followed by steel cut oats, and then oat bran (Figure 5.2e). Finally, the rate 

of total sugar release from starch was greatest for instant oats, followed by oat bran, and 

then steel cut oats (Figure 5.2f).  
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A typical serving of steel cut oats provides a greater concentration of digestible 

carbohydrates than instant oats, and oat bran yields the lowest amount of sugars. It is now 

widely accepted that both amount and type of carbohydrate influence postprandial 

glycemic response [356-359]. Figure 5.2c shows that total bioaccessible sugar is at least 

in part governed by the concentration of carbohydrates and starch (Table 5.3) for each 

type of oat-based meal. The rate of starch digestion also influences postprandial glucose 

response [121, 360, 361] and is again affected by starch type and quantity.  

 

 

Figure 5.2: Fitted parameters from Equation 5.1 in the jejunum plus ileum 
compartments, representing total bioaccessible sugar, rate of sugar release, and 
induction time for glucose (left column: a, d, g), maltose (middle column: b, e, h), 
and total sugars (glucose plus maltose) (right column: c, f, i).  

Oat starch differs from other cereal starches in that it exists as clusters of starch 

granules [9].  The steaming and flaking processes used to make rolled oats disrupts the 

cell wall and breaks down these clusters into individual starch granules [8, 9, 362]. This 

breakdown is greater in thinner flakes [9] characteristic of instant oats. Damaged starch 
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granules are more readily hydrolyzed by α-amylase than intact granules [10, 363, 364]. It 

has been hypothesized that the preserved structural integrity of the cell walls in oat bran 

and steel cut oats may act as a barrier that impedes access of the amylase to starch, thus 

possibly reducing the rate of starch hydrolysis [365]. Both high-pressure and normal-

pressure steaming processes remove the protein network surrounding oat starch granules 

[362] that functions as a hurdle against starch digestion [366, 367]. Gelatinization also 

disrupts the native crystalline structure of the starch and allows amylose to “leak” out of 

the starch granules [117, 118], which facilitates digestion [121]. Steaming and rolling 

results in partial gelatinization of starch content in thin flakes of instant oat [10]; 

increasing the groat thickness decreases the extent of gelatinization [10], possibly 

attenuating water penetration and consequently reducing extent of gelatinization [126]. 

Elevated β-glucan levels also reduce the extent of gelatinization by competing for water 

hydration with starch [153, 154] and hindering the motility of digestive enzymes and 

their access to the starch substrate [153, 368, 369] due to elevated luminal viscosity [13, 

345]. These changes may contribute to the more rapid rate of sugar release for instant 

oats (Figure 5.2f) compared with oat bran and steel cut oats. 

The fitted induction times (Figure 5.2g, h, and i) were similar between samples, 

typically between 120 and 135 min, except for the induction time for glucose in oat bran 

(~175 min) (Figure 5.2g). Induction time (tc) combines the initial lag, rate of sugar 

release, and duration of hydrolysis. Such a delay in starch hydrolysis in oat bran may be, 

at least partly, congruent with the above mentioned higher concentration of β-glucan 

characterized with a much higher water binding capacity as compared to starch [82]. 

Thus, possibly attenuating starch hydration and gelatinization and consequent 
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susceptibility to amylosis.  

 The TIM-1 system was coupled with fluorescence spectroscopy to detect changes 

in luminal viscosity. The sensitivity of the fluorescent FG probe to changes in viscosity in 

glycerol/water and concentrated sugar solutions was first evaluated using the Förster and 

Hoffman sensitivity parameter, x [330], which was found to be between 0.4 and 0.5, 

supporting the use of this probe as a molecular rotor:   

  (5.2)  

where I(ν) is the fluorescence signal intensity, α is related to the brightness of the probe, 

and ν is viscosity. To corroborate the validity of this probe in our system, the 

fluorescence intensity and rheological properties of instant oats in various dilutions were 

independently evaluated and compared (Figures 5.3 and 5.4). We found that fluorescence 

intensity decreased with decreasing viscosity (i.e., increasing dilution) (Figure 5.3). The 

rheological measurements indicated a non-Newtonian and shear-thinning behavior for all 

tested dilutions (data not shown) across the measured shear rate range (0.1-400 s-1). It is 

important to note that shear rates in the gastrointestinal tract have not been analyzed due 

to complexity of the digestive system and variability in shear rates at different locations 

of the luminal cavity [314]. For example, a shear rate range of 10 – 100 s-1 was proposed 

to represent shear along the entire gastrointestinal tract previously [315]. Another 

research group suggests a shear rate range of 0.1-10 s-1 in the small intestine [316]. We 

have therefore selected to use the viscosity of the oat samples at an arbitrary shear rate of 

30 s-1, which corresponds to the last point of the shear-thinning behavior of the sample, 

after which a plateau in the sample viscosity is attained. These viscosity values were 

correlated with the maximum fluorescence emission intensity. A direct correlation (R2 = 
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0.98) was found between fluorescence intensity and viscosity (Figure 5.4); therefore, the 

terms “fluorescence intensity” and “viscosity” are used interchangeably hereafter. 

 

Figure 5.3: Fluorescence intensity spectra for various dilutions of cooked instant 
oats after subtracting background fluorescence. 

 

Figure 5.4: Fluorescence emission intensity as a function of viscosity (mPa s) for 
various dilutions of cooked instant oats after subtracting background fluorescence. 

 The measured fluorescence intensity for the oat-based meals was normalized to 

the initial fluorescence intensity of instant oats to facilitate comparison. The maximum 

intensity in the gastric compartment at each time point (Figure 5.5) was fitted using the 

logistic equation (Equation 5.3):  
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 I(t) = Imin+
(Imax − Imin )
1+ ek1(tc1−t )

 (5.3)  

where Imin is the minimum observed fluorescence intensity, Imax is the maximum intensity, 

k1 is the rate of change in fluorescence intensity (viscosity), and tc1 is the inflection point, 

at which half of the total change in fluorescence intensity (viscosity) is observed. Fitted 

parameters from Equation 5.3 are presented in Table 5.5. The normalized fluorescence 

intensity in the gastric compartment was similar for instant oats and oat bran throughout 

the digestion period (Figure 5.5a and b), where maximum viscosity was observed at time 

= 0 min. The thin particles resultant from the rolling step involved in instant oat 

processing and the widely accepted pre-gelatinized starch content [126] may be 

hypothesized to translate into attainment of a maximal viscosity at an earlier stage 

(during cooking); further hydration during digestion results in rapid collapse of the 

matrix. Initial/maximum intensity for oat bran was greater than that of instant oats (Table 

5.5). This may be consequent of a higher proportion of β-glucan in oat bran allowing a 

greater probability of entanglement between the fibrous polymer chains and increasing 

the viscosity. The positive correlation between viscosity and β-glucan concentration is 

widely accepted [3, 314, 370]. There was a longer delay in the degradation of viscosity 

for oat bran, which does not see a significant decline in fluorescence over the first 70 

min, whereas this decline occurs after 10 min for instant oats (Figures 5.5a and b). Oat 

bran was found to undergo ongoing solubilization in the chyme matrix as the gastric 

digestion time progressed in pigs [371]; the same research group [372] showed a higher 

gastric viscosity for oat bran compared to rolled oats in pigs, similar to what was 

observed in Figures 5.5a and 5.5b.  Oat bran β-glucan composition is concentrated within 

thick aleurone and sub-aleurone layers that are sturdier than the endrosperm cell walls 
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and retain their structural integrity throughout both the gastric and intestinal digestion, 

[347, 373, 374]. This resistance to digestion may account for the longer lag period 

observed for oat bran (Figure 5.5b). Interestingly, the longer lag period observed in the 

viscosity profile was also seen in glucose bioaccessibility (Figure 5.1a). However, the 

larger slope of viscosity decay (k1) combined with a shorter inflection point (time at 

which half of the total change in viscosity takes place) indicates a more rapid degradation 

in viscosity in the initially more viscous oat bran chyme compared to instant oats (6). In 

an in vivo system, this rapid drop in viscosity is accountable to the increased intragastric 

dilution in response to increased gastric meal viscosity; however, such a phenomenon is 

not applicable to the pre-determined gastric secretion rates characteristics of TIM-1 in 

vitro system [165].  

Table 5.5: Parameters of the fit of normalized fluorescence intensity as a function of 
time using Equation 5.2.  

 

In contrast, the initial viscosity of steel cut oats was at the minimum (Figure 5.5 c, 

Table 5.5). Initially, the normalized fluorescence intensity of instant oats (Figure 5.5a, 

Table 5.5) was approximately twice that of steel cut oats (Figure 5.5c, Table 5.5). The 

initial/minimum viscosity of steel cut oats was retained for ~ 90 min before a gradual 

increase was observed. This distinction in the measured fluorescence values may be 

attributed to the greater thickness of the steel cut oat particles compared to instant oats 

and oat bran; which may contribute to a  possibly slowed penetration of water [10] and  

Parameters Instant Oats Oat Bran Steel Cut Oats 
Minimum intensity (Imin) 0.056 0.03 0.57 
Maximum intensity (Imax) 1.01 1.18 0.92 
Slope ‘k1’ (min-1) -0.027 -0.054 +0.067 
Inflection point ‘tc1’ (min) 107 97 124 
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Figure 5.5: Normalized fluorescence intensities in theTIM-1 gastric compartment 
for instant oats (a), oat bran (b), and steel cut oats (c) as a function of digestion time.  

hydration of the β-glucan matrix and thus delaying the onset of increase in gastric 

viscosity (Figure 5.5c). However, a very limited number of scientific works exist on steel 

cut oats, and therefore, no relevant previous reportings on steel cut oat luminal viscosity 

are available for comparison. Further, meal viscosity has been correlated with a greater 

sensation of satiety, and reduced hunger and appetite [312, 340]. Accordingly, we 

hypothesize a more rapid onset of satiety in instant and oat bran –based meals retained 

for a short period of time, and steel cut oats resulting in a delayed yet long-lasting 

sensation of satiety; however, scientific experimentation in vivo is needed to confirm this 
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theory.  

Recent studies have indicated that the overall viscosity of oat processed products 

is not only affected by β-glucan content, state, and release kinetics but also it is 

influenced by starch and protein content and the presence of particulates (Grundy et al, 

2017; Zhang et al., 2017). The proposed luminescent technique to measure in situ 

viscosity allows assessing the viscosity of the combined contribution of the meal 

components in a noninvasive way.Two more parameters are agreed upon to influence β-

glucan viscosity: its molecular weight and solubility [375-377]. Previous studies suggest 

molecular weight distribution of β-glucan to be positively correlated with viscosity as 

well as being negatively correlated with rate of in vitro starch hydrolysis [376]. Average 

molecular weights of β-glucan polymers in instant and steel cut oats-based sample meals 

have been determined (Table 5.6); unfortunately, oat bran sample molecular weight was 

not analyzed due to sample unavailability (from the same batch) at time of analysis. It is 

important to note that our current experimental design involves the use of oat grain 

samples that have been exposed to variable commercial processing techniques. Many 

researchers have demonstrated that commercial processing methods modify β-glucan 

quality, such as its molecular weight [3-5]. In addition, the prepared oat-based meals 

underwent different preparation/cooking methods (Table 5.2) and also contained different 

quantities of starch and β-glucan in order of attaining a physiological response (in vitro) 

that is most representative of the typical serving of oats. In consequence of these 

numerous experimental variables, any correlation between viscosity and the 

corresponding molecular weights would prove insufficient. Solubility, with reference to 

β-glucans, is used to describe the ability of the polymer to disperse in a liquid [348]; and 
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was found to be positively associated with viscosity [378]. Solubility of β-glucan 

extracted from oats that have been kilned, then steamed, then flaked was found to be 

higher as compared to kilned-only oats in vitro [379]. Zhang et al. [3] deduce 

replacement of intramolecular hydrogen bonding of β-glucan with water molecules from 

steam exposure, thus adopting a more open and linear configuration; which might 

increase the hydrodynamic volume and possibly increase viscosity.  

Table 5.6: Quantified Molecular Weight of β-glucan in tested oat samples. 

Oat Type Molecular Weight 
(Daltons) 

Instant 1.14 x 106 

Steel Cut 0.69 x 106 
 
The digestive parameters were closely associated with each other. For example, 

there was a correlation between oat bran having the highest initial viscosity (Figure 5.5b, 

Table 5.5), longest induction times for glucose (Figure 5.2g) and total sugar (Figure 5.2i) 

release, lowest total bioaccessible sugars (Figure 5.2c), and lower rate of sugar release 

compared with instant oats (Figure 5.2f). Kim and White [380] treated heated oat slurries 

with α-amylase to hydrolyze starch and lichenase to hydrolyze β-glucan to illustrate the 

contribution of the two polysaccharides on viscosity. Lichenase treatment resulted in a 

higher viscosity than α-amylase treatment, suggesting that starch is the major contributor 

to oat slurry viscosity. The total carbohydrate, β-glucan, and starch concentrations were 

linearly correlated with initial viscosity in the gastric compartment (Figure 5.6). Although 

the linear correlations were strong for both β-glucan (Figure 5.6b) and starch 

concentrations (Figure 5.6c), stronger correlations were observed with respect to total 

carbohydrates (Figure 5.6a).  
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Figure 5.6: Maximum normalized fluorescence intensity at time = 0 min in the 
gastric compartment as a function of total carbohydrate, b-glucan and starch 
concentrations. 

Figure 5.7 illustrates changes in normalized fluorescence intensities as a function 

of time for the duodenum, jejunum, and ileum compartments. The results showed an 

approximately 10-fold reduction in viscosity compared to the gastric compartment 

viscosity. Although distinct changes in gastric fluid viscosity were observed (Figure 5.5), 

the viscosity in the intestinal compartments indicates a highly diluted state. Similarly, 

Villemejane et al. reported a 10-fold reduction in the viscosity of the chyme between the 

stomach and the small intestinal compartments [318]. This result was ascribed to the 
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automated and pre-determined gastric emptying rate that allows passage of small 

particulates into the small intestine in a uniform manner, and not to physiologically 

relevant phenomena.  For example, in vivo gastric emptying is dependent on numerous 

factors including meal viscosity, which is not observed in the TIM-1 [308-311] due to an 

automated and pre-determined gastric emptying protocol. Accordingly, the 

experimentally observed changes in small intestinal viscosity measurements (Figure 5.7) 

are unlikely to represent viscosity changes in vivo. However, viscosity trends in the 

gastric compartment (Figure 5.5) may roughly reflect in vivo gastric emptying. As an 

example, echo-planar magnetic resonance imaging in humans fed locust bean gum meals 

showed longer gastric emptying times with increased meal viscosity [340]. In addition, 

gastric chyme viscosity was found to be a better predictor of changes in gastric emptying 

than initial meal viscosity in pigs [381].  

5.5 Conclusions 

A comparison of three commercially available oat products revealed numerous 

differences in composition that appear to influence the biophysics of digestion. Our 

results showed that starch content was directly proportional to total bioaccessible sugars, 

and the rate of sugar release was slowest for steel cut oats and most rapid for oat bran. 

Although initial viscosity and rate of degradation of viscosity differed for instant and oat 

bran, the gastric luminal viscosity trends were similar. However, a different pattern was 

seen for steel cut oats. These changes in gastric viscosity may influence rates of gastric 

emptying and the sensation of satiety. The physicochemical properties of the different 

oat-based meals, which may influence postprandial glycemia in an inadvertent manner, 

are critical for product development, especially for meals for diabetic patients. 
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Figure 5.7: Normalized fluorescence intensities recorded at TIM-1 duodenum (top 
row), jejunum (middle row), and ileum (bottom row) compartments for instant oats 
(left column: a, d, g), oat bran (middle column: b, e h), and steel cut oats (right 
column: c, f, i) as a function of digestion time.  
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6 Luminal Viscosity and Sugar Bioaccessibility of Instant and 

Steel Cut Oat/Milk Protein Blends 

This chapter is co-authored with Derrick Fondaco, Karen Ben-Elazar, Maria G. 

Corradini, Richard D. Ludescher, Douglas Bolster, Gary Carder, YiFang Chu, Yongsoo 

Chung, Jodee Johnson, Michael A. Rogers 

6.1 Abstract 

Milk protein concentrate (MPC; 0 g, 5 g, and 10 g) was added to two 

commercially available oat products, instant oats and steel cut oats, to study its effects on 

carbohydrate-digestion kinetics and luminal viscosity during in vitro digestion. We used 

the TNO Intestinal Model-1 (TIM-1) to simulate gastrointestinal digestion of the oats-

based meals. Meals containing 5 g or 10 g MPC yielded significantly less total 

bioaccessible sugar compared with those containing 0 g MPC, while the rate of starch 

digestion was significantly higher in meals containing 5 g or 10 g MPC. The TIM-1 was 

coupled with fluorescence spectroscopy and a luminescent molecular rotor to report 

changes in gastric viscosity in situ, showing that the gastric viscosity was higher in the 

meals containing MPC. Those findings suggest that MPC in oats-based meals 

significantly modifies the kinetics of carbohydrate digestion and increases gastric 

viscosity.  
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6.2 Introduction 

Designing foods by modifying their form and formulation is becoming a plausible 

strategy to control how foods behave and are digested in the gastrointestinal tract (GIT). 

The resultant changes in the physiological impact of modified foods may serve as a 

dietary intervention to combat diet-related chronic diseases. Starch-rich foods are of 

special concern, given the persistence of the type II diabetes pandemic [14, 19]. 

Therefore, there is a great need for dietary interventions that target postprandial glucose 

levels. Oats are a staple starchy food with an intermediate-to-high glycemic index (~78) 

[382]. The hydrothermal processing (cooking) of oats involves gelatinization of the starch 

and the formation of a biphasic paste with an aqueous, continuous phase and a dispersed 

phase of swollen starch granules [383]. Modifying the meal formulation allows the 

physical properties of the starch-paste matrix and the response of the starch to 

physiological conditions to be controlled. For example, hydrocolloids have a high water 

retention capacity that was found to contribute to an increase in digesta viscosity 

throughout the GIT [313]. Increased gastric digesta viscosity impedes motion and access 

of enzymes to the substrate, consequently reducing nutrient hydrolysis [70-72], as well as 

hinders diffusion of the hydrolysis by-products to the luminal brush border and renders 

absorption less effective [70-72]. The subsequent reduction in rate and extent of starch 

digestion, attributed to increased digesta viscosity [69] has been associated with 

controlling postprandial glycemia [73-78]. β-glucan is a soluble fiber found in oats that is 

capable of entrapping water in its network [345, 346] and increasing chyme viscosity in 

the GIT. These properties of β-glucan are hypothesized to be central in the plasma 

glucose-lowering health claims associated with oats [80, 384].  
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Milk protein, especially milk protein concentrate (MPC), is another hydrocolloid 

that has received attention as a food additive. MPC has a casein-to-whey protein ratio 

very similar to that of milk [385]. The high protein content of MPC makes MPC an ideal 

thickening agent, capable of binding water and increasing the food-matrix viscosity. The 

rheological and physiological aspects of blends of MPC and β-glucan are largely 

unknown. The viscosity of starch paste prepared in milk is greater than that of pastes 

containing the same amount of starch but prepared in water [386, 387]. Milk proteins are 

presumed to modify the properties of the dispersed phase of the starch paste and thus 

increase the overall viscosity of the paste [388]. We hypothesize that the addition of MPC 

to oat-based meals may increase the chyme viscosity during luminal transit and 

consequently influence the rate and extent of starch digestion. Such correlations between 

the contents of meals and the properties of the meals during digestion are vital for 

altering glucose bioaccessibility [176] and, potentially, the glycemic index of oats-based 

meals. Glucose bioaccessibility is of distinct importance because it is the rate-limiting 

step to glucose bioavailability [15]. 

We evaluated the effects of the addition of two doses of MPC to instant oat-based 

and steel cut oat-based meals on carbohydrate digestion and gastric viscosity. We used 

simulated digestion in the TNO Intestinal Model-1 (TIM-1) paired with molecular rotors 

(optical chromophores) to assess real-time luminal viscosity throughout a simulated 

gastric environment. The TIM-1 is an advanced artificial digestive system that mimics 

the human stomach and upper small intestine. In comparison with other in vitro 

techniques, this dynamic, computer-controlled system is unique in its ability to regulate 

pH, temperature, gastric and intestinal emptying, transit time, and GIT secretions [318]. 
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Real-time viscosity in the TIM-1 was previously monitored using molecular rotors as 

luminescent probes to assess viscosity [389]. Molecular rotors are molecules that consist 

of two or more segments that are capable of rotating relative to one another [390]. 

Photoexcitation of MR causes intramolecular twisting of the two segments at a rate that is 

dependent on the free-volume (or molecular crowding) of the surrounding environment. 

Less viscous environments facilitate a non-planar (twisted) configuration of the 

molecular rotor in the excited state, thus favoring twisted intramolecular charge transfer 

(TICT) state. Relaxation from TICT to the ground state is predominantly in the form of 

non-radiative decay (without photon emission). Rigid or more viscous environments 

hinder the rotation of the two MR segments relative to one another, yielding a planar 

configuration in the excited state, and favoring the local excited (LE) state. Relaxation 

from LE to the ground state involves photon emission (radiative decay). The rate of 

formation of the TICT state is slower in highly viscous materials, and the two competing 

decay pathways determine the sensitivity of the probe to the micro-viscosity of the 

surrounding medium [213]. We analyzed digestates from the TIM-1 to obtain total sugar-

release profiles for each of the tested mixtures of oats and MPC. We used a shifted-

logistic model to estimate the rate and extent of sugar release as a function of digestion 

time. The luminescence emitted by the molecular rotors during in vitro digestion suggests 

that mixtures of oats and MPC have a higher viscosity than oats-only meals.  

6.3 Methods 

6.3.1 Materials and Sample Preparation 

Quaker Oats (PepsiCo, Inc., IL, USA) supplied the oat products (instant oats and 

steel cut oats) and MPC80 (MPC, 80% protein) tested in our experiments. Oats were 
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pooled from numerous production batches. We used standard methods to measure the 

moisture, ash, protein, fat, and soluble and insoluble (AOAC 991.43) dietary fiber 

compositions of the oat products (Table 6.1). We then subtracted those values from the 

total weight to estimate the total carbohydrate content [Total Carbohydrates (%) – Table 

6.1]. We used AOAC methods 995.16 and 996.11 to quantify the β-glucan and starch 

compositions. 

We prepared a 45-g serving of each type of oatmeal sample immediately prior to 

analysis. We mixed the instant oats with various amounts of water and MPC80 (Table 

6.2) in a 1-quart Pyrex® measuring cup and heated them in a microwave (NN-SD987SA, 

1250 watts, Panasonic Corp., Osaka, Japan) on high power (Table 6.2). The steel cut oats 

were mixed with various amounts of MPC80, stirred into boiling water in a medium 

saucepan on a stovetop at high heat, and allowed to simmer on low heat for 25 to 30 min 

(Table 6.2).  

Table 6.1: Compositions of the tested oat products. 

Oat 
Type 

Soluble 
Fiber 
(%) 

β-glucan  
(%) 

Insoluble 
Fiber 
(%) 

Starch 
(%) 

Total 
Carbohydrates 
(%) 

Instant Oats 4.50 3.97 5.20 54.00 62.80 
Steel Cut Oats 4.20 3.45 5.10 54.70 64.40 

* All results are presented on an as-is/wet basis. The 2 × %RSD (i.e., 95% confidence 
interval) for the tests are 12% (soluble fiber and insoluble fiber), 6% (β-glucan), 4% 
(starch), and 12% (total carbohydrates). 
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Table 6.2: Meal preparation: mixture composition, heating duration, cooling 
duration, and heating unit. 

Oat 
Type 

Oats 
(g) 

Water 
(g) 

MPC80 
(g) 

Heating 
Duration 

Cooling 
Duration 
(min) 

Heating 
Unit 

Instant Oats + 0 g 
MPC80 

45 190 0.00 65 s 2 Microwave 

Instant Oats + 5 g 
MPC80 

45 215 5.88 90 s   u 2 Microwave 

Instant Oats + 10 g 
MPC80 

45 240 11.76 124 s u 2 Microwave 

Steel Cut Oats + 0 g 
MPC80 

45 335 0.00 25 min v 2 Stovetop 

Steel Cut Oats + 5 g 
MPC80 

45 380 5.88 28 min v 2 Stovetop 

Steel Cut Oats + 10 g 
MPC80 

45 425 11.76 30 min v 2 Stovetop 

u The microwave cooking was stopped at 60 s and 90 s for stirring, after which the 
heating process was continued. 
v Occasional stirring during cooking. 

 

6.3.2 Experimental Meals 

 After the meals were allowed to cool for 2 min, a single volunteer masticated the 

prepared meals using the “10 chew-and-spit” method. The chewing allowed the oats to be 

masticated and exposed to salivary α-amylase. To mimic the initial gastric conditions, we 

mixed 100 g of the chewed samples with 5 g gastric-secretion fluid, 95 g gastric-

electrolyte solution, and 50 g water. We then fed the samples into the TIM-1 (TNO 

Triskelion, Zeist, The Netherlands) gastric compartment along with 50 g water for a total 

experimental meal weight of 300 g. Available total carbohydrates, starch and β-glucan of 

the meals (Table 6.3) were calculated based on the total carbohydrate content of each 

type of oat (Table 6.1) and the total weight of the meal (accounting for water loss during 

cooking) fed into the TIM-1 (Table 6.2). Calculating the available total carbohydrates 



	   120	  

	  

required a 10/9 conversion factor to account for the cleavage of the glycosidic linkages of 

starch to yield glucose or maltose [351].  

Table 6.3: Estimated total available carbohydrates, β-glucan, starch, and water-to-
starch ratio of each oats-based meal fed into the TIM-1.  

Oat 
Type 

Total 
Carbohydrates 
(%) 

β-glucan (%) Starch (%) 
 

Instant Oat + 0 g MPC80 13.21 ±1.59 0.84 ± 0.05 12.62 ± 0.50 
Instant Oat + 5 g MPC80 11.68 ± 1.40 0.74 ± 0.04 11.20 ± 0.45 
Instant Oat + 10 g MPC80 10.46 ± 1.26 0.67 ± 0.04 9.99 ± 0.40 
Steel Cut Oat + 0 g MPC80 14.00 ± 1.68 0.75 ± 0.05 13.21 ± 0.53 
Steel Cut Oat + 5 g MPC80 13.04 ± 1.74 0.70 ± 0.05 12.42 ± 0.55 
Steel Cut Oat + 10 g MPC80 12.07 ± 1.45 0.65 ± 0.04 11.40 ± 0.46 

* Standard deviations were calculated as per deviations in composition, shown in Table 
6.1.  

6.3.3 TIM-1 Simulated Digestion 

 The TIM-1 mimics the digestive process of a healthy adult and replicates the 

stomach, duodenum, jejunum, and ileum. The ileal-secretion fluid consisted of small 

intestinal electrolyte solution (SIES; 5 g/l NaCl, 0.6 g/l KCl, and 0.25 g/l CaCl2). The 

jejunal fluid consisted of SIES and 10% fresh porcine bile. A 7% pancreatin solution, 

prepared with Pancrex V powder (α-amylase activity = 25,000 units/g, lipase activity = 

25,000 units/g, protease activity = 1,400 units/g), was obtained from Paines & Byrne, 

UK. The gastric-secretion fluid consisted of 600 U/ml pepsin (P7012, Sigma-Aldrich, 

MO, USA) and 40 U/ml lipase (F-AP15, Amano Enzyme Inc., Nagoya, Japan) in a 

gastric-electrolyte solution (4.8 g/l NaCl, 2.2 g/l KCl, 0.22 g/l CaCl2, 1.0 g/l NaHCO3). 

The pancreatin and gastric fluid solutions were placed on ice immediately after 

preparation. The porcine bile was collected from a slaughterhouse (Farm-to-Pharm, NJ, 

USA); multiple collections of bile were pooled, divided into single-use quantities, and 

stored at -20°C. Bile was thawed and filtered using Miracloth (Merck KGaA, Darmstadt, 
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Germany) prior to incorporation into the experimental solutions. We used 1M NaHCO3 to 

maintain the following pH levels in the duodenal, jejunal, and ileal compartments: 5.9, 

6.5, and 7.4, respectively. HCl was added to the gastric compartment to generate a 

predetermined pH pattern over time (Table 6.4). The gastric emptying was set to mimic 

human conditions (i.e., gastric emptying half-time = 80 min). 

Table 6.4: The TIM-1 stomach pH decreased over time during the 5-hour digestion 
period. 

Digestion Time (min) Predetermined pH value 
0 5.5 
30 4.5 
60 3.0 
120 2.0 
210 1.7 
300 1.7 

 
 To simulate digestion, each TIM-1 compartment was filled with the 

corresponding start residues to mimic in vivo conditions. The duodenal start residue 

consisted of 15 g SIES, 15 g pancreatin solution (7%), 30 g fresh porcine bile, and 2 mg 

trypsin [Sigma, T4665-5G; trypsin activity ≥ 7,500 Nα-Benzoyl-L-arginine ethyl ester 

(BAEE) units/mg solid]. The jejunal start residue (160 g total) consisted of 40 g SIES, 40 

g pancreatin solution (7%), and 80 g fresh porcine bile. The ileal start residue (180 g 

total) consisted of 180 g SIES. After warming the system to physiological temperature 

(37°C), the experimental meal (300 g) was fed into the gastric compartment and the 5-

hour digestion process was initiated. The jejunum and ileum compartments were 

connected to filtration units (M20S-300-01P, MiniKros® filter modules, Spectrum Labs, 

Breda, The Netherlands) to remove the digestate. During the experiment, samples were 

taken from the duodenum and jejunum filtrates as well as from the ileum efflux at 30-min 

intervals. These samples were immersed in ice until they could be transferred to the high-
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performance liquid chromatography (HPLC) system for analysis.  

6.3.4 Statistical Analysis 

Statistical significance of variability in the total cumulative % bioaccessible sugars at the 

end-point of digestion and on the fitted parameters was determined with one-way analysis 

of variance (ANOVA) (p<0.05) and Tukey’s Multiple Comparison Test using GraphPad 

Prism 7 (La Jolla, California, USA).  Statistical significance was defined as p value < 

0.05. 

6.3.5 Luminescence Spectroscopy Coupled with TIM-1  

 The TIM-1 system was coupled to a Cary Eclipse spectrofluorimeter (Agilent 

Technologies, Santa Clara, CA) and a fiber optic attachment to measure in situ 

fluorescence intensity (FI). The viscosity-sensitive luminescent probe, Fast Green FCF 

(FG; Sigma-Aldrich, ON, USA), was added to each of the TIM-1 sample solutions, 

rinses, and secretion solutions (final FG concentration = 40 µM). FG was used as the 

fluorescent probe because its emission spectrum is easily differentiated from the 

background noise generated by naturally occurring fluorophores in the oatmeals, MPC, 

and TIM-1 secretion fluids. Because FI data are dependent on the probe concentration, 

FG was added at a concentration of 40 µM to each of the TIM-1 secretions and meals fed 

into the TIM-1. This step ensured a consistent concentration of FG throughout the 5-hour 

TIM-1 trials, allowing for simplified data analysis that assumed no dilution of FG during 

digestion. The TIM-1 and fiber optic probe were placed under a blackout blind to prevent 

ambient light from influencing the spectroscopic measurements. We used an adapter to 

place the fiber optic probe against the glass surface of the sample container at a 45° angle 

to reduce backscatter from the glass surface. The fluorescence spectra were recorded 
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between 610 nm and 750 nm, using an excitation wavelength of 580 nm. The excitation 

and emission slits were set at 5 nm and 20 nm, respectively. The photomultiplier detector 

voltage was set at high. Measurements were taken every 10 min during the first 60 min of 

digestion, every 15 min from 60 min to 180 min of digestion, and then every 30 min from 

180 min to 300 min of digestion. For comparisons between samples, we used values 

normalized relative to the maximum FI for instant oats + 0 g MPC80.  

Experiments were performed in quadruplicate for each oat type and MPC80 

quantity combination (Table 6.2); three of which contained the above-mentioned FG 

concentration. The fourth run served as a blank/control, and therefore no FG was added. 

The FI of the blank (control) runs were subtracted from the FI of the corresponding FG-

containing runs to eliminate the background fluorescence unrelated to the changes in 

viscosity trends as a function of digestion time; i.e. the contribution of light scatter from 

the TIM-1 glass surface, if any. We also performed control runs in which we added FG to 

5 g or 10 g MPC80 meals without oats to determine if the MPC80 changed the sensitivity 

of the FG to the matrix viscosity during in vitro digestion. Experiments were performed 

once for each MPC80 quantity (5 g and 10 g) with FG and once without FG (blanks). FI 

from blanks (without FG) were subtracted from the FI of FG-containing runs to eliminate 

background FI unrelated to changes in viscosity.  

6.3.6 Probe Sensitivity Verification using Steady-State Rheology  

 A Discovery Hybrid Rheometer (TA Instruments, DE, USA) equipped with a 25-

mm sandblasted parallel plate was used to determine the rheological properties of the 

instant oats prepared with 0 g or 10 g MPC80. A flow curve was obtained at 37°C and 

recorded within a shear rate range of 0.1–400 s-1. Samples were sequentially diluted to 
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obtain six oat:water ratios (1:0, 1:0.25, 1:0.5, 1:1, 1:2, and 1:3). We added 40 µM FG to 

each solution to correlate the FI with the rheological measurements. FI was measured by 

the same method used to determine luminal viscosity, described above.  

6.3.7 HPLC Analysis of Sugars 

 At each collection time point, the filtrates from the jejunum and ileum as well as 

the ileal efflux from the TIM-1 were analyzed using HPLC (Alliance Separation Module 

e2695, Waters Corp., MA, USA) equipped with a 2424 Evaporative Light Scattering 

Detector (Waters Corp. MA, USA). A SUPELCOSILTM LC-NH2 5 µm column (25 cm × 

4.6 mm; Sigma-Aldrich, PA, USA) was used in combination with a 2 cm LC-NH2 

SUPELGUARDTM cartridge (Sigma-Aldrich, PA, USA). The stroke volume was 50 µL, 

and an isocratic pump mode was used. Ideal separation was achieved when the mobile 

phase was composed of 25% water (HPLC grade, EMD Chemicals, Inc., NJ, USA) and 

75% acetonitrile (HPLCE grade, EMD Chemicals, Inc., NJ, USA). The column 

temperature was set at 30°C. The area under the curve of the eluted peaks on the HPLC 

chromatograms was converted to the mass (mg) of the corresponding sugar (glucose or 

maltose) using a calibration curve. The conversion yielded the absolute bioaccessible 

glucose, maltose, and total sugars (glucose + maltose), which were used to determine the 

cumulative bioaccessible glucose, maltose, and total sugars. 

6.4 Results and Discussion 

Six meals, composed of either steel cut or instant oats and one of three quantities 

of MPC80 (0 g, 5 g, or 10 g), underwent in vitro digestion in a TIM-1 to examine the 

influence of MPC80 on parameters of starch digestion and luminal viscosity. The TIM-1 

does not measure advanced transport properties across the intestinal membrane [176]. 
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Accordingly, the experimentally quantified digestates represent sugar bioaccessibility 

(i.e., the amount of a nutrient that is available for absorption) [176] and not 

bioavailability [191]. Cumulative bioaccessible glucose and maltose were determined 

individually in the jejunum and ileum compartments individually; however, for the 

purposes of analysis they were combined to represent the total bioaccessible sugars 

(Figure 6.1a and b). All of the meals produced similarly shaped sugar-release profiles 

(Figure 6.1a and b). An initial lag period (the first 90 min) was followed by a gradual 

sigmoidal increase that was attenuated by the addition of MPC80. The addition of 

MPC80 required more water to hydrate the added protein, and the carbohydrate levels in 

the digestates varied accordingly (Table 6.3). To correct for that variability, the 

cumulative percent bioaccessible total sugars (Figure 6.1 c and d) were determined by 

dividing the cumulative values (Figure 6.1 a and b) by the estimated total fed 

carbohydrates (Table 6.3).  

The total sugars hydrolyzed from the instant oats significantly decreased after the 

addition of MPC80, with no significant dose dependence (5 g versus 10 g MPC80; 

Figures 6.1a and 6.1c). Steel cut oat-based meals with 0 g and 5 g MPC80 yielded similar 

total bioaccessible sugars; significant attenuation was only evident in steel cut oats-based 

meals containing 10 g MPC80 (Figures 6.1b and 6.1d). There is a wide consensus on the 

glucose-lowering properties of whey and casein [391-393]. The digestion of milk proteins 

releases bioactive peptides and amino acids that induce hormones that regulate insulin 

secretion and blood glucose [394]. Because the TIM-1 system lacks feedback 

mechanisms [176], it cannot account for hormonal factors, so other factors must be 

responsible for the reduction in the sugar bioaccessibility upon the addition of MPC80.  
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Figure 6.1: Cumulative (a and b) and percent (c and d) bioaccessible total sugars 
(glucose + maltose) in the jejunum and ileum compartments (combined) for instant 
oats (left column: graphs a and c) and steel cut oats (right column: graphs b and d) 
with 0 g MPC80 (red), 5 g MPC80 (black), and 10 g MPC80 (blue). One-way 
ANOVA (p < 0.05) with a Tukey’s Multiple Comparison Test was performed on the 
total cumulative percent bioaccessible total sugars (glucose + maltose, mg) endpoints 
(at 300 min of digestion). Different number of asterisks (*) within each graph 
suggests statistically significant (p < 0.05) differences in total cumulative percent 
bioaccessible total sugars at 300 min of digestion. The same number of asterisks (*) 
within each graph suggests no statistically significant differences.  

A more descriptive approach was required to characterize and analyze the 

changes during amylolysis. Therefore, we applied a shifted-logistical model (Eq. 6.1), 

originally applied to lipid systems [353-355] to characterize lipolytic activity, to analyze 

the cumulative bioaccessible sugars in our experiments. The phenomenological 

characteristics of the shifted-logistic model allow it to be used in diverse applications. 
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The shifted-logistic model characterizes the amount of sugars released in the TIM-1 

compartments as a function of time (t): 

 
C(t) =

Casymp

1+ ek (tc−1)
−
Casymp

1+ ektc
 (6.1)  

where C(t) is the amount of released sugar at a given time (t), Casymp is the maximum 

sugar bioaccessibility attained, k is a rate constant (i.e., glucose, maltose, or total sugars 

per unit time), and the induction time (tc) represents the time at which half of the total 

bioaccessible sugars have been released. This model accounts for the lag period and 

sigmoidal release profile of the bioaccessible sugars (Figure 6.1) and includes a 

correction term at the right side of the equation, forcing the curve to pass through the 

origin and satisfy the condition that at time (t) = 0 min, the amount of bioaccessible 

sugars is 0 mg.  

Sugar bioaccessibility, rate of release, and induction time (Figure 6.2) were 

determined using the shifted-logistical model (Equation 6.1) fitted to the experimental 

bioaccessible glucose (data not shown), maltose (data not shown), and total-sugar curves 

(Figures 6.1a and 6.1b). The addition of 5 g MPC80 to either instant or steel cut oats 

significantly reduced the glucose, maltose, and total-sugar bioaccessibility (Figure 6.2a–

c). The results shown in Table 6.3 suggest that the samples with 0 g MPC80 had the 

highest levels of available starch compared with the samples with 5 g or 10 g MPC80 

and, furthermore, that the extent of starch amylosis is greatly dependent on the amount of 

available starch substrate. The instant oats with 10 g MPC80 had a greater reduction in 

total sugar bioaccessibility than the instant oats with 5 g MPC80; however, the steel cut 

oats had the same amounts of bioaccessible sugars irrespective of the amount of MPC80 

added. Therefore, factors beyond the amount of starch were driving the reduction in 
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bioaccessible sugars (Figure 6.2c). The extent of hydrolysis has been correlated to the 

integrity of starch granules [10, 347], the degree of gelatinization [117, 118], and the β-

glucan quality and quantity [153, 154].  

 

Figure 6.2: Parameters from the shifted-logistical model for glucose (a, d, g), 
maltose (b, e, h), and total sugars (c, f, i) in the jejunum plus ileum compartments 
for each oat type and MPC80 quantity. One-way ANOVA (p < 0.05) with Tukey’s 
Multiple Comparison Test was performed for each of the estimated parameters and 
sugar type for each type of oats-based meals. Different number of asterisks (*) or 
carets (^) within each graph suggests statistically significant (p < 0.05) differences 
between the different combinations of MPC0 and instant or steel cut oats, 
respectively. The same number of asterisks (*) or carets (^) within each graph 
suggests no differences between the different instant oats and MPC80 combinations 
for the corresponding parameters. Different number of carets (^) within each graph 
suggests statistically significant (p < 0.05) differences between the different 
combinations of MPC0 and instant or steel cut oats, respectively.  

The rate of total sugar release significantly increased with the addition of 5 g 

MPC80, and there was no further increase with the addition of 10 g MPC80 (Figure 6.2 

d-f) for either type of oats. Tables 6.2 and 6.3 indicate an inverse relationship between the 

amount of water added to the meals, which increased with the addition of MPC80, and 

the percent starch available in the meals. The hydrothermal treatment of starch permits 
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the starch to gelatinize, rendering its amylose composition more susceptible to interaction 

with α-amylase and consequent hydrolysis [121]. A study in which biscuits enriched with 

protein and fiber were digested in a TIM-1 found that both the degree of starch 

gelatinization and the degree of starch hydrolysis were greater in samples enriched with 

fiber and protein than in those enriched with fiber only [395]. The β-glucan content of the 

meals in our study decreased with increasing MPC80 content (Table 6.3). β-glucan is 

naturally present in oat grain and competes with starch for hydration, thus reducing the 

water activity of the solution and, consequently, the swelling, rupture, and amylose 

leaching of the starch granules [153, 154]. Elevated β-glucan levels have therefore been 

associated with reduced rates of starch digestion [13, 345].  The fitted induction times in 

our experiments (Figure 6.3g–i) were similar among the samples, typically between 125 

min and 135 min, suggesting that the addition of MPC80 had no influence on that 

parameter. 

6.4.1 In Situ Gastric Viscosity Measurements 

Luminal viscosity was determined by coupling the TIM-1 with fluorescence 

spectroscopy using the molecular rotor FG. We first evaluated the sensitivity of the FG to 

changes in viscosity in glycerol/water and concentrated sugar solutions using the Förster 

and Hoffman equation [330] (Equation 6.2)  

 I(υ) =α •υ x
 (6.2) 

where I(ν) is the FI, α is proportional to the ‘brightness’ of the probe, ν is the viscosity, 

and x is a viscosity sensitivity parameter. The value of x for FG in the model systems was 

between 0.4 and 0.5, similar to the values reported for effective and commonly used 

molecular rotors in equivalent media [e.g., 0.53 for DCVJ [221]]. To verify the suitability 
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of FG for the characterization of chyme viscosity, we prepared instant oats with 0 g or 10 

g MPC80 and sequentially diluted the preparations to obtain six solutions (oats + 

MPC80:water 1:0, 1:0.25, 1:0.5, 1:1, 1:2, and 1:3). We evaluated the FIs of the diluted 

solutions independently. The results shown in Figure 6.3a and b suggest a decrease in FI 

with increasing dilution of both the oats + 0 g MPC80 solution and the oats + 10 g 

MPC80 solution. The FI was ~400 a.u. for the undiluted oats + 0 g MPC80 solution 

(Figure 6.3a) and decreased to 200 a.u. at the 1:3 dilution. The range was wider for the 

oats + 10 g MPC80 solution (Figure 6.3b), ranging from ~900 a.u. with no dilution to 

~200 a.u at the 1:3 dilution. The broadening of the fluorescence range had two possible 

causes. The desired cause would be an increase in viscosity due to the added protein. The 

undesirable cause would be the formation of protein-FG complexes, which would hinder 

the FG rotation upon photoexcitation. Complex formation would yield high FI values, 

which an untrained analyst might falsely interpret as high viscosity of the medium. More 

importantly, FG-protein interaction would hinder the technique from characterizing the 

actual chyme viscosity in the samples with MPC80. Therefore, we performed rheological 

viscosity measurements, which are independent of molecular rotor interaction, on the 

same diluted samples to better characterize the relationship between the FI and the 

viscosity. The rheological findings indicated a non-Newtonian, shear-thinning behavior 

for all of the tested dilutions (data not shown) across the measured shear-rate range (0.1–

400 s-1). It is important to note that shear rates in the GIT have not been adequately 

analyzed because of the complexity of the digestive system and variability in the shear 

rates at different locations of the luminal cavity [314]. For example, a shear-rate range of 

10–100 s-1 was previously proposed to represent the shear along the entire GIT [315], 
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whereas another research group suggested a shear-rate range of 0.1–10 s-1 in the small 

intestine [316]. In our experiments, the maximum FI was correlated with the 

corresponding rheological viscosity (Figure 6.3c), yielding a direct linear relationship (R2 

= 0.92) and suggesting that FG is a suitable probe to measure viscosity changes in the 

oats-based food matrix (with or without MPC80). Therefore, we considered the FI to be a 

direct indicator of the viscosity. 

 

Figure 6.3: FI spectra for dilutions of cooked instant oats with 0 g MPC80 (a) and 10 
g MPC80 (b) after the subtraction of the background FI. FI as a function of viscosity 
(mPa s) (c) for dilutions of cooked instant oats with 0 g MPC80 (�) and 10 g MPC80 
( ). 

FG was added to all of the solutions of the TIM-1 apparatus at identical 

concentrations and the FI was recorded as a function of time in the stomach, duodenum, 

jejunum, and ileum compartments of the TIM-1. Initially, MPC80-only meals (5 g or 10 

g MPC80 mixed with the corresponding amount of water without oats) were fed into the 

TIM-1 (Figure 6.4); no error bars are presented in Figure 6.4 because those runs were 

performed only once for each amount of MPC80. The purpose of the initial TIM-1 runs 

was to obtain gastric digestion-viscosity profiles of MPC80 to be compared to those of 

the blends of oats and MPC80 (see Figure 6.5). The maximum FI of the MPC80-only 
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samples recorded for the stomach compartment decreased exponentially and was fitted to 

Equation 6.3: 

 I(t) = ae−k2t  (6.3) 

where a corresponds to the initial FI, k2 is the rate-of-decay curve, and t is time. Table 6.5 

shows the parameters of the exponential model (Equation 6.3). The fitted parameters of 

the normalized FI vs. time relationships (Table 6.5) suggest a slightly more rapid decay in 

oats with 5 g MPC80 (k value of -0.012 min-1) compared with that in oats with 10 g 

MPC80 (k value of - 0.01 min-1).  

 

Figure 6.4: Normalized FI in the TIM-1 gastric compartment for a) 5 g MPC80-only 
meal (5.88 g MPC80) and b) 10 g MPC80-only meal (11.76 g MPC80) as a function 
of digestion time. Values were normalized to the initial FI of instant oats (Figure 
6.5e) to facilitate comparison. 

Table 6.5: Parameters of the exponential decay (Equation 6.3) of normalized FI as a 
function of time for 5 g and 10 g MPC80-only (no oat grain) meals (from Figure 6.4). 

Parameters 5 g MPC80 10 g MPC80 
Initial intensity in exponential decay (a) 0.88 1.3 
Slope of exponential decay (k2) 0.01 0.01 
Mean Squared Error ^ 0.0210 0.0046 

^ Presented with four decimal digits to better reflect the accuracy of the estimated 
parameters. 

As previously mentioned, the measured FI for all the samples was normalized to 

the initial FI of instant oats to facilitate comparisons. We recorded the normalized 
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maximum FI of the instant oats-based meals with 0 g, 5 g, and 10 g MPC80  (Figure 

6.5a-c) in the stomach compartment and fit the measurements to a Fermi model (Equation 

6.4): 

 I(t) = Imin +
Iinit − Imin
1+ ek1(tc1−t )

 (6.4) 

where Imin is the minimum observed intensity, Iinit is the initial observed intensity, k1 is 

the rate of intensity decay, and tc1 is the inflection point. Table 6.6 presents the 

parameters of the Fermi model. We recorded the normalized maximum FI of the steel cut 

oats-based meal with 0 g MPC80 (Figure 6.5d) in the stomach compartment and fit the 

measurements to a logistic model (Equation 6.5): 

 I(t) = Imin +
Imax − Imin
1+ ek3 (tc2−t )

 (6.5) 

where Imin is the minimum observed intensity, Imax is the maximum observed intensity, k3 

is the rate of intensity increase, and tc2 is the inflection point. Table 6.7 (first column) 

shows the parameters of the logistic model. The Fermi function is mirror image of the 

logistic function [396], which denotes the differences in behavior of the two types of oats. 

The gastric viscosity varied depending on the type of oat and the concentration of 

MPC80 (Figure 6.5a and d). The gastric viscosity for instant oats (Figure 6.5a) had a 

maximum value at the onset and decreased during digestion. Conversely, the gastric 

viscosity for steel cut oats increased during digestion (Figure 6.5d). We previously 

correlated the gastric viscosity and physico-chemical properties of instant oats-based and 

steel cut oats-based meals [389]. Numerous factors contribute to differences in the gastric 

viscosity, including: (a) the physical properties of the oat and starch granules, (b) the 
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consequent influence on the rate of starch gelatinization, and (c) the β-glucan quantity 

and quality. The addition of MPC80 to the instant oats resulted in a dose-dependent  
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Figure 6.5: Normalized FI in the gastric compartment as a function of digestion time 
for instant oats (a, b, c) and steel cut oats (d, e, f) with 0 g MPC80 (a and d), 5 g 
MPC80 (b and e), and 10 g MPC80 (c and f) fitted with the respective models. The 
MPC80 gastric FIs (Figure 6.4) are re-plotted with the corresponding oat-protein 
meals (blue data set). 

increase in both the initial FI and the inflection point (tc; Figure 6.5a–c; Table 6.6). The 

increase in the initial FI indicates a possible increase in the viscosity of the meal paste 

during the hydrothermal meal-preparation process. The apparent viscosity of starch-milk 

pastes was previously reported to be higher than that of starch-water pastes [386, 388, 

397]. Starch-water pastes are characterized as bi-phasic. The continuous phase is an 

aqueous solution containing the amylose leached from the starch granules during 

gelatinization, while the dispersed phase is made up of swollen starch granules that 

mainly consist of amylopectin [383]. The presence of milk proteins, such as caseins and 

whey, has been shown to increase the viscosity of the dispersed phase [398]. Matser and 

Steeneken [399] postulated that the gelatinization process in starch-milk pastes creates a 
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bicontinuous system. The authors suggested that casein micelles are excluded from the 

starch granules and reside within the voids between the starch granules. That structural 

alteration is presumed to increase the rigidity and viscosity of the medium [386, 388]. 

Increases in starch-paste viscosity have been associated with the entanglement of whey 

proteins [400] and possible cross-linking between starch and casein hydrophilic groups 

(i.e., –OH, -NH2, -COOH, and –SH) [386, 399, 401].  

Table 6.6: Parameters of the Fermi model (Equation 6.4) used to fit the normalized 
FI values as a function of time for instant oats with various amounts of MPC80.  

Parameters MPC80 (g) Added to Instant Oats 
0 g 
MPC80 

5 g 
MPC80 

10 g 
MPC80  

Minimum intensity (Imin) 0.06 0.19 0.1 
Initial intensity (Iinit) 1.01 1.08 1.32 
Slope (k1, min-1) 0.03 0.02 0.03 
Inflection point (tc1, min) 107.00 119.00 127.00 
Mean Square Error ^ 0.0010 0.0018 0.0017 

^ Presented with four decimal digits to better reflect the accuracy of the estimated 
parameters. 
 

Table 6.7: Parameters of the logistic model (Equation 6.5) and the additive-
contributions model (Equation 6.6) that were used to fit the normalized FI values as 
a function of time for steel cut oats with different amounts of MPC80.  

Parameters MPC80 (g) added to Steel Cut Oats 
0 g 
MPC80 * 

5 g 
MPC80 ** 

10 g 
MPC80 ** 

Minimum intensity (Imin) 0.57 0.31 0.96 
Maximum intensity (Imax) 0.92 0.79 0.63 
Slope (k3, min-1) 0.07 0.10 0.05 
Inflection point (tc, min) 124.00 121.00 215.00 
Initial FI in exponential decay (a) - 0.94 0.42 
Rate of exponential decay (k2, min-1) - 0.01 0.02 
Mean Square Error ^ 0.0018 0.0005 0.0013 
Asterisks indicate the model used to fit the experimental data in Figure 6.5: * Equation 
6.5 and ** Equation 6.6. 
^ Presented with four decimal digits to better reflect the accuracy of the estimated 
parameters. 
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The inflection point represents the time required to produce half of the total 

change in FI, implying an ability of the gastric chyme to resist reductions in viscosity 

during digestion with the addition of MPC80. Caseins are the most abundant protein in 

MPC80 and are able to form gels under acidic conditions by denaturing [402]. MPC80-

only gastric FI trends (Figure 6.4) were re-plotted (blue data set) with the corresponding 

oats + MPC80 meals in Figures 6.5b and 6.5c to illustrate that the two sets (blue vs. 

black) follow different trends. This suggests that the recorded fluorescence indicated 

changes in the instant oats + MPC80 chyme. The addition of MPC80 to the steel cut oats 

modified the FI over time (Figure 6.5d vs. Figure 6.5e and f). The addition of MPC80 

contributed to the degradation in the FI of the steel cut oats-based meal between the 

initiation of digestion and 100 min of digestion in a manner that resembled the 

corresponding MPC80-only gastric FI trends (blue data set). Beyond 100 min of 

digestion, the mixtures of 5 g MPC80 and steel cut oats (Figure 6.5e) underwent an 

increase in FI comparable to that of steel cut oats + 0 g MPC80 (Figure 6.5d). In addition, 

the experimental data of the oats + 5g MPC80 (Figure 6.5e) corresponded very closely to 

the sum of the independent contributions of steel cut oats + 0 g MPC80 (Figure 6.5d) and 

5 g MPC80 only (Figure 6.4a). Those observations imply the possibility of an additive 

effect between MPC80 and steel cut oats. We therefore generated an equation (Equation 

6.6) in which the logistic (Equation 6.5) and exponential (Equation 6.3) models are 

summed to express the respective contributions of steel cut oats and MPC80 to the 

overall FI trends in Figures 6.5e and 6.5f:  

 I(t) = Imin +
(Imax − Imin )
1+ ek3 (tc2−t )

"
#
$

%
&
'
+ ae−k2t  (6.6) 
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 The experimental initial FI value was 1.25 (Figure 6.5e) and is depicted in Table 

6.7 as the sum of the a and Imin parameters (0.94 and 0.31, respectively). The initial FI 

value attained from the experimental data was larger for the steel cut oats + 5 g MPC80 

(1.25) than for the steel cut oats without MPC80 (0.75), suggesting that the addition of 5 

g MPC80 to the steel cut oats increased the luminal viscosity in the gastric compartment. 

The k2 term (Table 6.7) illustrates the slope of the initial decrease in FI (0.01). 

Subsequently, the FI  of steel cut oats + 5 g MPC80 increased from 100 min to 150 min 

of digestion (Figure 6.5e). In comparison, the 5 g MPC80-only meal (blue data set, 

Figure 6.5e) showed a minimal contribution to the FI during the corresponding time 

frame. Given the complexity of the system, we deduced that the increase in viscosity is a 

function of the interdependence of the system components. Soluble fiber (1à3)(1à4) β-

D-glucan is a constituent of oat grains [80-82]. β-D-glucans are widely acknowledged for 

their thickening ability due to the binding of water to form a water-entrapping, non-starch 

polysaccharide network in the GIT [11, 12]. Kim and White [380] treated heated oat 

slurries with α-amylase to hydrolyze starch and with lichenase to hydrolyze β-glucan to 

illustrate the contribution of the two polysaccharides to viscosity. The lichenase treatment 

resulted in a higher viscosity than the α-amylase treatment, suggesting that starch is the 

major contributor to oat-slurry viscosity. The k3 term (Table 6.7) represents the slope 

(0.1) of the increase in FI between 100 min and 150 min of digestion, during which the 

inflection point occurs at 121 min, which is slightly more rapid than the inflection point 

of 0 g MPC80 (~124 min). In the case of the addition of 10 g MPC80 to steel cut oats 

(Figure 6.5f), the effect of both contributions is less discernible, and the interpretation of 

the parameters is less straightforward. We also used Equation 6.6 to fit the data from the 
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stomach for the steel cut oats + 10 g MPC80 (Figure 6.5f). Although the first part of the 

dataset shows a decrease that could be characterized by the sum of the protein 

exponential decay, the second part of the graph shows a different regime from that of 0 g 

and 5 g MPC80 + steel cut oats, probably because of changes in the matrix. Therefore, 

the obtained parameters of Equation 6.6 for the steel cut oats + 10 g MPC80 sample are 

not representative of the same regions of the curve represented by those parameters for 

the steel cut oats + 0 g and 5 g MPC80 samples. We also analyzed the normalized FI as a 

function of time in the duodenum, jejunum, and ileum compartments (data not shown). In 

a previous publication [389], we observed an approximately 10-fold reduction in 

intestinal viscosity compared with the gastric-compartment viscosity. We ascribed that 

result to the automated and pre-determined gastric-emptying rate that allows for the 

uniform passage of small particulates into the small intestine. 

6.5 Conclusion 

We added MPC80 to instant oats-based and steel cut oats-based meals at two 

doses, 5 g and 10 g, to determine the changes in luminal viscosity and carbohydrate 

digestion in vitro. The total bioaccessible sugars significantly decreased with the addition 

of increasing amounts of MPC80 and increased with increasing available starch content. 

The rate of starch hydrolysis was positively correlated to the amount of MPC80 in the 

meals. The metabolic response to dietary starch is a function of the rate of starch 

hydrolysis/digestion [16, 17]. Therefore, an understanding of the kinetics of starch 

digestion offers opportunities to control the postprandial glycemic response [18]. FI 

measurements suggest a progressive increase in gastric viscosity with increased addition 

of MPC80. Luminal viscosity decreases both α-amylase motility and access to the starch 
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substrate and glucose bioaccessibility [72, 153, 369]. Gastric viscosity has also been 

associated with increasing distention in the stomach cavity, which was repeatedly 

correlated with increasing sensations of satiety [310, 311]. A better understanding of such 

relationships between food form and formulation may be useful in the design of food 

products intended for patients with specific diet-related chronic diseases, such as 

diabetes, with pre-determined physiological impact.  
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7 Biophysical Aspects of Lipid Digestion in Human Breast 

Milk and SimilacTM Infant Formulas 

This chapter is published in Food Biophysics: (10.1007/s11483-014-9388-6, 

September 2015, Volume 10, Issue 3, pages 282–291), and co-authored with 

Derrick Fondaco, Yaqi Lan, Shirley Ben-Elazar, Karen Connolly, and 

Michael A. Rogers. 

7.1 Abstract 

Physico-chemical properties of human breast milk were compared to four 

SimilacTM infant formulas, and correlated with in vitro free fatty acid bioaccessibility 

using a simulated gastrointestinal system (TIM-1). Viscoelastic measurements, as a 

function of pH (pH 6.5 to 3.0) and shear rate, showed lower viscosities in breast milk 

compared to infant formulas. Droplet size and distribution measurements showed distinct 

differences between the tested formulas and breast milk. During lipid digestion, a lag 

period was observed for only breast milk. The rate of lipolysis was found to be higher in 

breast milk compared to SimilacTM formulas. The total bioaccessible free fatty acids for 

Advance infant formula and breast milk were not statistically different for the in vitro 

TIM-1 model and the shifted-logistical model using one-way ANOVA (p < 0.05) with a 

Tukey’s Multiple Comparison Test. All other infant formulas had significantly lower free 

fatty acid bioaccessibilities at the end of the simulated digestion. A positive correlation 

between rate of lipolysis and droplet surface area per gram for the SimilacTM infant 
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formulas was found. However, breast milk did not follow that trend, suggesting the 

possible involvement of other factors in rate of lipolysis for breast milk. 

7.2 Introduction 

Childhood obesity is an alarming universal epidemic where the rate of incidence 

has precipitously increased over the last 25 years.[403-409] It was reported in the 1980s, 

that 7.2% of 6 to 23 month old children in the United States were classified as obese and 

this has increased to 11.6% by 2000.[410-412] Amongst the numerous adverse health 

effects associated with childhood obesity is Type 2 diabetes; once a disease explicit to 

adults, now half of recently diagnosed incidences of diabetes are adolescents.[20] It has 

also been noted that the prevalence of childhood obesity is lower in breast-fed infants 

compared to formula fed infants.[21-23] Regrettably, the mechanism responsible for this 

correlation is not understood.[24] Numerous hypothetical links between obesity and 

breast feeding pertain to the passive nature of bottle-feeding, regardless of the type of 

milk, versus active suckling when infants are fed directly at the breast, [24, 25] the 

hormones and adipokines in breast milk,[26-32] the rates of gastric emptying,[413, 414] 

and the rate of the ileal break in emulsions.[415] Accordingly, supplemental in-depth 

studies comparing the physico-chemical properties and digestibility of breast milk and 

infant formula are imperative.  

The high caloric density and functionality of the lipid composition in both breast 

milk and infant formulas may be considered an important marker of their nutritional 

quality.  At birth, there is a switch from a glucose-dominated to a lipid-dominated energy 

supply since fat constitutes half of the energy content in breast milk and infant 

formulas.[416] This presents major challenges to the digestive system, because of the 
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poor solubility of lipids, which must first be converted to structures that are less insoluble 

and available for uptake. Despite these limitations, the human digestive system is 

effectively designed at digesting and absorbing most lipids.[417] Key reactions, such as 

adsorption of digestive lipases and emulsification of fatty acid and monoglyceride during 

digestion, must take place at the oil-water interface to solubilize lipids and lipid soluble 

nutrients.[418]  

Lipid hydrolysis depends on the ability of lingual, gastric and pancreatic lipases, 

to access the interface, which depends on both the action of bile salts and co-lipase.  It is 

believed during infant digestion, lingual lipase, which does not require co-factors, may 

play a more significant role in digestion due to the immaturity of the pancreatic lipase 

system.[419] von Ebner’s glands of the human tongue secrete lingual lipase [420]; which 

facilitates initiation of digestion of triglyceride components of the milk when it reaches 

the stomach. [421] It is reported that milk fat globular exposure to lingual lipase prior to 

exposure to pancreatic lipase results in increased rate of lipolysis.[422] Another lipase 

that is considered to be of interest with regards to infant digestion of milk fats is bile salt-

stimulated lipase (BSSL); [423] which is understood to be of maternal origin, produced in 

the human mammary glands.[424, 425] BSSL is unique, in its ability to hydrolyze the 3 

sn-positions of a triglyceride, thus generating free fatty acids and glycerol.[426, 427] 

BSSL is reported to withstand (dormant) the infant stomach pH, while resuming its 

activity in gastrointestinal areas where elevated levels of bile salt are available.[428-430] 

[431-433] Bile salts not only facilitate the adsorption of co-lipase and lipase, but also aid 

in the solubilization of the lipolysis products as they accumulate at the interface, into 

mixed micelles, allowing the transport to and through the gut mucosal surface.[417] The 
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gut cell lining is then able to sense these nutrients and in response, secrete hormones and 

peptides that slow digestion and send signals to the brain that reduce appetite.[434] 

Michalski et al. [435] found infant formula fat droplets to be smaller than human milk fat 

droplets and that the milk fat globule surface area, required for lipolytic activity, is 

relevant to lipid digestion.[436] In addition it has been shown that human milk has a 

greater lipid bioaccessibility during the gastric digestion than infant formula. [437] We 

hypothesize that a correlation lies between the physico-chemical properties of these 

different infant formulas and breast milk and the bioaccessibility/digestion of their lipid 

composition. Digestion refers to the process of disassembling food macronutrients into 

absorbable units, [438] while bioaccessibility of a nutrient refers to its potential to be 

absorbed. 

In the present work, we investigate the physico-chemical properties of human 

breast milk and infant formula by light scattering, to illustrate droplet size and 

distribution, as well as rheological viscosity measurements. The TNO Intestinal model 

(TIM-1), an in vitro model that simulates the upper gastrointestinal tract, was used to 

monitor the bioaccessible free fatty acids generated throughout a 5-hour simulated 

digestion. A study on the effect of partially hydrolysed guar gum on fat bioaccessibility 

showed good correlations between the TIM-1 and in vivo bioaccessibility data.[439] Free 

fatty acid release profiles are described for each of the tested infant milks and a shifted 

logistical model, developed by Troncoso et al.,[354] was used to elucidate the rate of 

lipolytic generation of free fatty acids as a function of time. 
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7.3 Method 

7.3.1 Materials and Sample Preparation 

Similac TM (Abbott Nutrition, OH, USA) infant formulas (Total Comfort, 

Sensitive, Soy, and Advance) were prepared, immediately before analysis, as per the 

label instructions. ~8.8 g of dry powered formula was added to 2 oz of distilled tap water 

and mixed with a magnetic stirrer until homogenous. Human breast milk was expressed 

(as per IRB Protocol 13-824M) on the same day of the corresponding experiment and 

stored at 4°C while being mixed thoroughly to prevent creaming.  

7.3.2 Light Scattering 

Droplet size in the infant formulas and breast milk were studied using light 

scattering (Masterisizer 2000, Ver 5.54, Malvern Instruments Ltd., Malvern UK). The 

ultrasound was not used to ensure that particle size reduction did not occur. Instead, 

constant stirring at 2700 rpm was used to prevent creaming. A refractive index (RI) of 

1.42 (approximate RI of oils) was used for particle size determination.[440] Five 

replicates were conducted for each sample and the average droplet size distribution (in 

µm) was used for data analyses. Standard deviation of the maximum, minimum, and 

mean diameters, as well as the surface area and Sauter mean diameter (D[3,2]) values 

were determined for each of the five formulas and averaged. 

7.3.3 Viscosity at different pH 

The initial pH of the infant formulas and breast milk all fell between 6.5 and 7.0. 

Using 1 M hydrochloric acid, each sample was acidified from pH 6.5 to 3.0 in 0.5 

increments. For each pH, six replicates were run on a Discovery Hybrid Rheometer (TA 
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Instruments, DE, USA) to measure viscosity as a function of shear rate. A temperature 

controlled peltier plate and a 6 cm stainless steal cone (cone angle (3 deg: 59 min: 20 sec) 

and truncation (105 µm)) was set at 37 °C, and a logarithmic shear rate sweep from 0.5 to 

500 s-1 was used to determine the rheological properties. The points per decade of data 

collection were limited to ensure that the run did not exceed 5 min, this was in part to 

prevent phase separation from occurring, no macroscopic separation was observed during 

the viscosity measurements. 

7.3.4 TIM-1 Simulated Digestion 

The TIM-1 (TNO, Zeist, The Netherlands) simulated gastrointestinal tract was 

used to mimic the gastrointestinal tract of infants and the lipid digestion of breast milk 

and SimilacTM formulas. TIM-1 consists of four compartments representing the stomach, 

duodenum, jejunum and ileum. Duodenal start residue (60 g; 15 g SIES, 30 g fresh 

porcine bile, 2 mg trypsin solution (bovine pancreas (7500 N-α-benzoyl-L-arginine ethyl 

ester (BAEE) units/mg, T9201) was obtained from Sigma Aldrich), 15 g pancreatin 

solution), jejunal start residue (160 g: 40 g SIES, 80 g fresh porcine bile, 40 g pancreatin 

solution), and ileal start residue (160 g SIES) were injected into their respective 

compartments prior to heating the system to physiological temperature (37 ˚C) in 

preparation for feeding.  Also, prepared solutions simulating bile, gastric and pancreatic 

secretions were attached to the TIM-1. Pancreatin was obtained from Sigma Aldrich, 

USA. Fresh pig bile (Farm-to-Pharm (Warren, NJ, USA)) was collected from a 

slaughterhouse, standardized by pooling numerous collections, aliquoted into single use 

amounts for individual TIM experiments, and then stored at -20 oC until use. Enzyme 

solutions were placed in ice, until they were used to fill the TIM-1.  Although the same 
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lot of each enzyme was consistently used for each run, it is important to note that 

biological differences exist between commercially available enzymes and enzymes 

present in vivo.  Therefore, the absolute values obtained from the simulated digestions 

may not be biologically relevant, however, the changes observed between each sample 

are relevant.  

Also, Modifications to the solutions (a), software program (b), fed sample(c), and 

total digestion period/run (d) were implemented to mimic the human infant 

gastrointestinal conditions.   

(a) Modified solutions attached to the TIM-1 to simulate infant conditions: only 75 % 

of the 7 % pancreatin solution (Pancrex V powder, Paines & Byrne, UK) was 

utilized; the small intestinal electrolyte solution constituted of NaCl 5 g/L, KCl 

0.6 g/L, CaCl2 0.25 g/L. the initial gastric enzyme solution included 150 g gastric 

electrolyte solution, 28.1 mg of lipase (Rhizopus lipase (150,000 units/mg F-AP-

15), obtained from Amano Enzyme Inc. (Nagoya, Japan)), and 22.5 mg pepsin 

(from porcine gastric mucosa, lyophilized powder, >2,500 units/mg protein, 

Sigma Aldrich) (pepsin and lipase quantities used are 75% of the quantity 

typically used in an adult-digestion simulated TIM-1 experiment); the solution 

was mixed for 10 min at room temperature.  

(b) In addition, the TIM-1 system protocol used was that of the ‘infant fed-state’; thus 

controlling peristaltic movements, nutrient and water absorption, gastric 

emptying, pH, enzyme secretion rates and transit times to be similar to the in vivo 

gastrointestinal environment of the human infant.[353] The software provides the 

following conditions in the respective TIM-1 compartments (Table 7.1). 
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Table 7.1: Software pH values of TIM-1 stomach throughout 5-hour digestion 
period to mimic human infant gastrointestinal conditions. 

Digestion Time (Min.) pH value 
0 6.5 
30 6.5 
150 4.5 
240 3.5 
300 3.5 

 

(c) The total sample fed into TIM-1 was reduced to 200 g (67 g of gastric electrolyte 

solution and 133 g meal), while an adult run would involve feeding 300 g of total 

fed sample. 

(d) Five hour simulated digestions were performed to mimic the suggested transit 

time to the cecum in infants.[441] Samples were collected from the jejunal and 

ileal filtrates and ileal efflux at 30, 60, 90, 120, 180, 240, and 300 min and then 

frozen (~ -40 oC) until extraction. 

7.3.5 Experimental Meals 

The gastric electrolyte solution (8.25 mg of amylase and 5 g of the above 

mentioned gastric electrolyte solution) was mixed with 133 g of the sample, and fed into 

TIM-1 after the four GI compartments were heated to 37 °C. 133 g of the mixed sample 

was then fed to the TIM-1 standardizing the amount of fat (~5 g fat in each meal) fed to 

the TIM-1 allowing the bioaccessibility to be approximated. To fill the gastric 

compartment a 200 g meal was fed for the infant model, therefore 67 g of gastric 

electrolyte solution was added to the 133 g meal.  
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7.3.6 Free Fatty Acid Extraction 

The fatty acid concentrations from the jejunum, ileum and ileum efflux, at each of 

the aforementioned time intervals, were thawed and extracted in duplicate. Fatty acids 

were extracted by first adjusting the pH of 5 mL of filtrate to a pH value between 10-12 

using 10 N NaOH. 200 µl of 5 mg/ml nonanoic acid was added to serve as an internal 

standard and 15 ml dichloromethane was added. After 24 hrs, the organic and aqueous 

layers were separated and the bottom dichloromethane layer was discarded. 1 N HCl was 

added reducing the pH to between 1-2 and 5 mL dichloromethane was added. After 24 

hrs the layers were separated and the bottom layer was collected and frozen at -20 °C 

until further analyses.    

7.3.7 High-Performance Liquid Chromatography (HPLC) analysis of Free Fatty 

Acids 

The extracted free fatty acids, from the TIM-1 runs (completed in duplicated) 

were analyzed using High-Performance Liquid Chromatography (HPLC) (Alliance, 

Waters e2695) with 2424 Evaporative Light Scattering (ELS) Detector (Waters). A 

reverse phase free fatty acid HP 4µm (3.9x150 mm) column (Waters, Milford, MA, 

USA) was used. The stroke volume for the system was 50 µL; and a gradient pump mode 

was used. Ideal separation occurred when the solvents selected were: 35% Water HPLC 

Grade 0.22 micron filtered (Pharmco-Aaaper, Brookfield, CT, USA), 20% 

Tetrahydrofuran (THF) stabilized with 250 ppm BHT (OmniSolv, Bellerica, MA), and 

45% Acetonitrile HPLC Grade (EMD Chemicals, Inc., Gibbstown, NJ, USA). The 

column temperature was set at 30 ± 5 °C.  Each of the extractions was run in the HPLC 

and two injections were taken for each replicate. Accordingly, twelve chromatograms 
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were attained for each sample at every collection interval (30, 60, 90, 120, 180, 240, and 

300 min) at each of the small intestine locations (i.e., jejunum, ileum, and ileal efflux).  

7.3.8 Determination of Bioaccessibility 

Samples fed to the TIM-1 were controlled to contain 5 g of fat allowing the 

bioaccessibility to be determined. The % dispersed phase volume, determined with light 

scattering, for the infant formulas and breast milk were not statistically different and 

assuming that the fats have the same density it was assumed that they had similar fat 

contents (albeit it should be mentioned that differences in density may be a potential 

source of error).  From a computational standpoint, the triglyceride composition in the 

samples was assumed to have the molecular weight of triolein and that 2 mols of oleic 

acid are released per mol of triolein (i.e., of the 5 g of fat fed 3 g of fatty acids may be 

released) (Equation 7.1):  

 Maximum Bioaccessability = feed fat
MWTO

 x2 MWOA  (7.1) 

where MWTO is the molecular weight of triolein, MWOA is the molecular weight of oleic 

acid. 

7.3.9 Statistical analysis  

A one-way ANOVA (p < 0.05) with a Tukey’s Multiple Comparison Test (Graph 

Prism 5.0 (La Jolla, CA) was used to determine the statistical significance in the means.  

7.4 Results and Discussion 

Lipid droplet size distributions of Sensitive, Total Comfort, Advance, and Soy 

formulas were compared to human breast milk (Figure 7.1). Breast milk has three 

primary distributions of particle sizes (~ 0.1, 1 and 7 µm), which have been previously 
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reported,[442] while the Total Comfort infant formula has a single distribution of 

particles at ~ 0.4 µm and Advance, Soy, and Sensitive formulas have two distinct peaks, 

one at 0.4 µm and the other at 3 µm. Variations in the individual particle size volumes are 

shown in Figure 7.1. Based on these results, it is evident that the particle size distribution 

varies distinctly between infant formulas and breast milk. 

The effects of pH on viscosity (Pa s-1) were determined, for the formulas and 

breast milk, using strain rate sweeps from 5 – 500 s-1 (data not shown). Initially, the pH 

for each sample was between 6.5 and 7, following they were incrementally (every 0.5) 

acidified using HCl to the pH of an infant’s stomach pH ~ 3.[443] Upon feeding, the pH 

of the gastric compartment is buffered to near the initial pH of the formula/milk, after 

which the pH decreases until it returns to the initial pH of the stomach.[443] It was 

apparent that the non-acidified formulas behave as Newtonian fluids and the viscosity is 

independent of pH.  However, as the meals are acidified the viscosity not only increases 

but the solution behavior changes to a non-Newtonian shear-thinning fluid (data not 

shown).  Since non-Newtonian fluid behavior is observed, a single strain rate of 20 s-1 

was arbitrarily selected and was plotted against each pH value to allow statistical 

comparison (Figure 7.2). Enzymatic reactions are dependent on the solution properties, 

including the viscosity, and can possibly play a role in digestion.  Viscosity alters the rate 

of gastric emptying, postprandial glucose concentrations, and satiety.[444] Various 

researchers agree upon the presence of a positive correlation between the viscosity of the 

ingested meal and both gastric emptying and satiety sensation.[308-311] However, the 

role of viscosity, throughout its transit time in the gastrointestinal tract, is not understood. 

The question remains, if it is the initial viscosity of the meal or its changing viscosity in 



	   151	  

	  

the gastrointestinal tract that plays a role in satiety. The viscosity of both Sensitive 

(Figure 7.2A) and Advance (Figure 7.2C) remain unchanged from their initial pH value 

to pH 5.5.  Upon further acidification there is a dramatic increase in the viscosity after 

followed by decrease in viscosity. Similar patterns are seen in Total Comfort (Figure 

7.2B) and Soy (Figure 7.2D); however, these samples have the same viscosity at the 

extreme pH values tested. Breast milk does not follow similar trends to the infant 

formulas; instead, the viscosity of breast milk does not drastically change between pH 

values of 6.5 and 4.0, and it is not until a pH of 3.5 that an increase, albeit not dramatic, 

in the viscosity is observed.  

 

Figure 7.1: Particle size distribution for Similac TM brand types: Sensitive, Total 
Comfort, Advance, and Soy compared to human breast milk. 

The maximum viscosity for Sensitive is pH 5.0 (Figure 7.2A), for Total Comfort 

4.5 (Figure 7.2B), Advance and Soy are 4.0 (Figure 7.2C and 2D), and breast milk is 3.0. 

Advance, Total Comfort, and Soy had statistically similar viscosities between pH 5.5 and 
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6.5; while Sensitive was significantly higher at pH 6.5 and 6 and lower at 5.5. Similar 

pattern are seen at pH 4.5; however, there is no significant difference between Sensitive 

(0.023 Pa s-1) and Advance at this pH.  At all pH values tested, the viscosity of breast 

milk is statistically lower than the infant formulas with the exception of at pH 3.0 where 

both Total Comfort and Soy had lower viscosities.  In addition, breast milk had the 

lowest viscosity between 4.0 and 6.5. It is clear that significant differences exist in both 

the droplet sizes and the viscosity profiles between infant formulas and breast milk; 

however, it is unclear if these physical differences correlate to differences in lipid 

bioaccessibility. 
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Figure 7.2: Viscosity determined at 20 s-1 for Sensitive, Total Comfort, Advance, and 
Soy based infant formulas compared to human breast milk at pH values between 3.0 
and 6.5.  Different letters represent significant differences determined using a one-
way ANOVA (P<0.05) and a Tukey’s Multiple Comparison Test. 

The TIM-1 (TNO, Zeist, The Netherlands) simulated gastrointestinal tract was 

used to quantify the absolute, non-cumulative bioaccessible fatty acids in the jejunum 

(Figure 7.3), ileum (data not shown) compartments of the small intestine, as well as the 
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ileal efflux (data not shown). In the Sensitive, Total Comfort and Soy, there is an initial 

rapid release of fatty acids at the first time point measured and as time progressed the 

concentration of free fatty acids decreased in the jejunum (Figure 7.3A, B, and D). Fatty 

acids bioaccessibility increases with time and plateaus at ~200 min for the Advance 

formula (Figure 7.3C).  In all infant formulas, no lag time for lipolysis is observed.  

Interestingly, in only the breast milk, there is a significant lag (~90 min) before 

appreciable amounts of fatty acids are released (Figure 7.3E) in the jejunum. 

The cumulative free fatty acid, in the jejunum (Figure 7.4A) and ileum (Figure 

7.4B), have similar release profiles for Sensitive, Soy and Total Comfort; while the 

Advance has a greater free fatty acid bioaccessibility.  After 300 min of digestion, 

approximately 1850 mg and 500 mg of fatty acids were bioaccessible in the jejunum and 

the ileum for Advance. On the other hand, in Sensitive, Soy, and Total Comfort ~250 mg 

and ~150 mg fatty acids are bioaccessible in the jejunum and ileum. Unlike the infant 

formulas, breast milk has a significant lag period and even with this delay in lipid 

digestion, breast milk still provides a total of ~1000 mg and ~400 mg of bioaccessible 

free fatty acids in jejunum and ileum. Given that breast milk contains maternal BSSL, 

endogenously, this could lead to the conclusion that the initial interfacial layer is 

extremely apt at preventing pancreatic lipase from accessing the lipid droplet interface.   
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Figure 7.3: Total fatty acids per given time point in the jejunum and ileum (TIM) 
for (A) Sensitive, (B) Total Comfort, (C) Advance, and (D) Soy based infant 
formulas compared to (E) human breast milk. 

 This lag phase was also reported by Bernback et al. [427] in human breast 

milk triglycerides upon in vitro hydrolysis with gastric lipase, colipase-dependent lipase, 

and BSSL. Similarly, Berton et al. reported a similar lag phase for hydrolysis of 

triglycerides in raw, non-homogenised cow’s milk by human pancreatic lipase.[445] 

Structurally, breast milk fat globules differ from those of infant formula. Breast milk fat 

globules consist of a triglycerides core, enveloped by a membrane of phospholipids, 

cholesterol and protein;[446] whilst infant formula fat globules consist of a triglycerides 
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core, surrounded by phospholipids.[437] Lindstrom et al.,[447, 448] found barrier 

properties of phospholipids against BSSL hydrolysis and that pancreatic colipase-

dependent lipase hydrolysis activity was found to be constrained by the presence of 

phospholipids and proteins.[449] Accordingly, the constituents of the human breast milk 

fat globule membrane could play a role in delaying the initiation of the triglyceride 

hydrolysis process, thus resulting in the lag period evident in lipid digestion. It is reported 

that minimal hydrolysis does occur during this lag phase;[450] hence possibly modifying 

the fat globule membrane composition by increasing its fatty acid and diacylglycerol 

composition.[445] As a result, the lipases’ access to the human breast milk fat globules’ 

triglyceride core is facilitated following the lag phase, allowing for hydrolysis to take 

place.[445] 

The absence of the lag phase in infant formulas could be explained by referring to 

Figure 7.1, which illustrates that the bulk of the droplet size distribution in the various 

infant formulas is ~ 0.4 µm. Thus, the lipase will be more capable of accessing the 

triglyceride core when compared to the breast milk fat globules, whose particle size 

distribution contains mostly larger size droplets (i.e., 1 µm and 7 µm diameters). These 

differences in the rate of fatty acid release and the presence of a lag period in breast milk, 

in both the jejunum and ileum may play a role in satiety.  It is extremely important to 

note however, there is not scientific evidence as of yet to support this. 

The overall fatty acids bioaccessibility (Figure 7.4C) is a combination of the fatty 

acids released from the jejunum and ileum.  Fatty acids that were not removed via the 

jejunal and ileal filtrates were measured at the outlet of the ileal compartment (Figure 
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7.4D).  Similar trends, albeit at much lower concentrations, were observed between the 

jejunum and at the ileal efflux.  

 

Figure 7.4: Total fatty acids bioaccessibility for Sensitive, Total Comfort, Advance, 
and Soy based infant formulas as well as human breast milk in various parts of the 
simulated in vitro (TIM) gastrointestinal tract; A) jejunum, B) ileum, C) combined 
jejunum and ileum, and D) efflux. 

The total fatty acid bioaccessibility, in Figure 7.4C at 300 min, was the sum of the 

fatty acids measured in the ileum and jejunum filtrates. The bioaccessibility from highest 

to lowest are: Advance (~74.5 ± 6.1 %), breast milk (~50.6 ± 5.3 %), Total Comfort 

(~24.5 ± 5.56 %), Sensitive (~14.1 ± 3.9 %) and Soy (~12.4 ± 2.7 %). Using a one-way 

ANOVA, no significant differences between fatty acid bioaccessibility in breast milk and 

Advance was found and Total Comfort, Sensitive, and Soy are not statistically different 

from one and other. Breast milk and Advance fatty acid bioaccessibility are significantly 

higher than the remaining SimilacTM infant formulas tested.  
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A three-parameter shifted logistic model (Equation 7.2) [353-355] was used to 

characterize the free fatty acids generated as a result of lipolytic activity in each digestive 

compartment as a function of time, t: 

 C(t) = Casymp

1+ e[k (tc−t )]
−
Casymp

1+ e[ktc]
 (7.2) 

where Casymp is the total amount of fatty acids released, k is the rate of release of fatty 

acids per unit time, and tc is the critical time at which half of the total amount of fatty 

acids is released.[353] Through the use of nonlinear analysis in Graphpad Prism (La 

Jolla, CA), the three bioaccessibility parameters determined from Equation 7.2 (Casymp, k, 

and tc) were analysed.  

Upon fitting the shifted logistic model to the free fatty acid bioaccessibility curves 

(Figure 7.4C), the theoretical bioaccessibility (Casymp) (Table 7.2) showed similar trends 

compared to what was observed at 300 min of simulated digestion from the in vitro 

digestion. The critical time, tc, is a parameter which combines the initial lag time, the rate 

of fatty acid release and the duration of lipolysis.  It is evident that breast milk had a 

much longer Tc compared to the infant formulas, coinciding with our in vitro observation 

of a lag time presented earlier.  It has been well established that there is an inhibitory 

effect of the native milk fat globular membrane on pancreatic lipase activity.[451] No 

major differences were found between the studied infant formulas.  The rate constants, K, 

for the infant formulas were very similar while breast milk had a much higher rate of 

release. 

 

 



	   159	  

	  

Table 7.2: Fitted parameters from equation 7.2 including the total fatty acids 
released, induction time, and rate of release in jejunum and ileum in the TIM-1. 

 Sensitive Total 
Comfort 

Advance Soy Breast 
Milk 

FFAs released (Casymp) (mg) 725 796 3000 739 1534 
Induction time (Tc) (min) 48 41 79 38 175 
Rate constant (K) (mg/min) 0.0106 0.012 0.0099 0.0083 0.0245 

 

Two different phenomena can account for the differences observed in the rate 

constants.  First, interfacial lipase activity is dependent on the amount of surface area 

available for the reaction to progress.  Therefore, the particle size and particle size 

distribution may account for differences in the reaction rates, as discussed earlier.  As 

well, breast milk has endogenous maternal BSSL, which could account for the elevated 

reaction rate in breast milk. Bernback et al.,[427] show that the addition of only gastric 

lipase and colipase-dependent lipase to human milk, in vitro, results in an increase in the 

release of the free fatty acids up to 60 minutes of digestion, beyond which, a stagnant 

release profile is evident. When they added BSSL to the same mixture, the stagnant free 

fatty acid release profile was replaced with a continuous increase in the rate of free fatty 

acids generation. This supports our hypothesis that the presence of BSSL in breast milk 

influences the rate of free fatty acid release (Table 7.2) and total free fatty acids released 

(Table 7.2 and Figure 7.4C), despite the initial lag phase. This further explains the 

stagnant pattern observed in all the infant formulas over the entire digestion period in 

both the jejunum and ileum compartments (Figure 7.3A-D). To our knowledge, no data 

exists pertaining to the quantitative rate of free fatty acid release in both infant formula 

and breast milk in the small intestinal compartments.  However, Armand et al.[437] 

compared the rate of gastric free fatty acid release in vivo, and found, similar to our 
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findings, a significantly higher rate of gastric lipolysis in breast milk than in infant 

formulas.  This suggests consistency in the hydrolysis pattern by varying enzymes, since 

gastric lipase is the predominant hydrolysis performer in the gastric compartment of the 

gastrointestinal tract; while pancreatic lipase and BSSL (in case of human breast milk) 

are the predominant hydrolysers in the small intestinal compartments. 

 

Figure 7.5: Surface area (A), and D[3,2] (C) for human breast milk and SimilacTM 
infant formulas and correlations between surface area (B) and D[3,2] (D) against 
bioaccessibility.  

Using particle size distributions (Figure 7.1), the surface area per gram (Figure 

7.5A), Sauter Mean Diameter (surface weighted mean - D[3,2]) (Figure 7.5C). Total 

Comfort infant formula has the highest surface area followed by Advance, breast milk, 

Sensitive and Soy. Correlations between the rate of lipolysis and surface area (Figure 

7.5B) show a very strong positive correlation (R2=0.90) for the infant formulas, which 
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did not include breast milk. This highlights that the rate of lipolysis, in the infant 

formulas, varied based on the surface area available for lipase access.  However, the 

difference in the rate of the reaction for breast milk suggests that it is not dictated by 

surface area alone; and other factors such as endogenous maternal BSSL and/or the 

unique interfacial properties of the milk fat globular membrane could be playing a role in 

the rate of lipolysis seen in breast milk.  

 The Sauter mean diameter (surface weighted mean - D[3,2]) (Figure 7.5C) 

provides information about the central point around which the surface area for each 

sample resides.  This type of particle size measurement does not require measurement of 

the number of particles involved, and takes into consideration the individual value and 

the frequency of its presence in the distribution. D[3,2] (Figure 7.5C) values, in 

descending order, are Soy (~ 0.7 µm), Sensitive (~ 0.55 µm), breast milk (~0.5 µm), 

Advance (~ 0.45 µm), and Total Comfort (~ 0.3 µm) (Figure 7.2 A, B). A strong, 

negative correlation (R2=0.91) is seen between rate of fatty acid release and D[3,2] for 

the infant formulas while breast milk does not follow the trend (Figure 7.5D).  

7.5 Conclusion 

Comparing breast milk to different SimilacTM infant formulas highlighted 

numerous differences that could result in important alterations in the biophysics of 

digestion.  Breast milk had lower viscosities, at all pHs, than infant formulas and the 

highest viscosity of the breast milk was at a pH of 3 (the pH of an infants’ stomach), 

while the highest viscosity for infant formulas were observed between 4 and 5.  These 

changes in the viscous properties could influence gastric emptying rates and potentially 

satiety; however, we found no correlations between viscosity and lipid bioaccessibility.  
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Free fatty acid release profiles showed a lag phase during lipid digestion, exclusive to 

human breast milk. The droplets size and distribution varied for the different milk 

samples tested; similarly the calculated surface area and D[3,2] varied between different 

samples.  It was found, for the infant formulas, that the rate of lipolysis was positively 

correlated with the surface area per gram.  However, the rate of lipolysis, in breast milk, 

did not follow that trend. These biophysical aspects of breast milk versus infant formulas 

may alter different facets of their respective digestibility which may have unintended 

consequences. 
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8 CONCLUSIONS 

TNO Intestinal Model-1 (TIM-1), spectrophotometry, and molecular rotors (MR) 

were integrated to generate a method capable of simultaneously measuring real-time 

luminal viscosity changes and in vitro digestion kinetics. The TIM-1 is considered the 

closest in vitro gastrointestinal (GI) simulation system to the in vivo human GI “gold 

standard” that is currently available. Numerous studies have shown good correlation 

between TIM-1 results and in vivo data, suggesting the system is reliable in predicting in 

vivo parameters [193, 195, 199]. The use of MR-based fluorescence spectroscopy as an 

analytical technique in food systems presents distinct advantages: it is noninvasive, site 

specific, rapid, sensitive, versatile, and non-complex. Therefore, we exploited the 

sensitivity of MRs to increased molecular crowding within the TIM-1 apparatus to 

achieve continuous monitoring of in vitro luminal chyme viscosity. 

The digestate samples collected from TIM-1 facilitated estimation of digestion 

kinetics, which included total bioaccessibility and rate of hydrolysis (α-amylase or 

lipase). The investigated physico-chemical properties were determined using 

fluorescence spectra in addition to other techniques, and included GI viscosity, available 

starch and β-glucan, extent of starch gelatinization, and particle size distribution. Major 

findings presented in this dissertation were a product of correlations between the attained 

parameters of digestion kinetics and physico-chemical properties, as a function of:  

I. Changes in amylose-to-amylopectin ratio in maize starch;  

II. Changes in the integrity and quantity of both β-glucan and starch, due to 

differences in the production methods involved in oat processing;  
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III. Addition of a thickening agent, milk protein concentrate (MPC) to oat-

based meals.  

IV. Differences in droplet size and distribution of fat globules in SimilacTM 

infant formulas as compared to human breast milk.  

 

Our findings suggest that the retention of meal formulation does not translate into 

identical physiological responses. Instead, the physico-chemical modifications associated 

with variable meal preparation methods, industrial processing techniques, and 

organoleptic considerations appear to significantly impact the biophysics of digestion. 

We have illustrated the role of amylopectin, in comparison to amylose and native 

starches, in increasing gastric viscosity in maize starch. A comparison of commercially 

available oat products revealed dependency of sugar bioaccessibility on available starch 

content. Significant differences in rate of sugar release in the oat samples were attributed 

to multiple factors, including, differences in β-glucan composition and physical 

properties associated with the different methods used in oat production. Addition of MPC 

to oats-based meals significantly decreased the total bioaccessible sugars and increased 

the rate of starch hydrolysis. Comparing breast milk to different SimilacTM infant 

formulas highlighted numerous differences that could result in important alterations in 

the biophysics of digestion. Free fatty acid release profiles of human breast milk showed 

a lag phase during lipid digestion, which was absent in the tested infant formulas. The 

rate of lipolysis was positively correlated with the surface area per gram in all infant 

formulas tested, with exclusion of human breast milk. These biophysical aspects of breast 
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milk versus infant formulas may alter different facets of their respective digestibility 

which may have unintended consequences. 

The significance of this total body of work pertains to the unintentional changes in 

food physico-chemical properties that may influence physiological responses in an 

inadvertent manner; which may prove critical for production of meals specifically 

designated for the diabetic and/or the obese consumer. The prospective biophysical 

implications of our findings include manipulating food glycemic indices, controlling 

diabetic postprandial glycemic response, as well as weight management in cases of 

childhood obesity at the food production/manufacturing level. The universal interest in 

combatting diet-related chronic diseases has directed the food industry towards the 

research and development of functional foods aimed towards instigation of specific 

physiological responses upon digestion. For this purpose, there is a need to clearly 

identify the relationships between the possible mechanisms that alter food form and 

formulation, their role in the modification of food matrix physico-chemical properties, 

and the consequent changes in biophysics of digestion.  

Future research interests include application of a Generally Recognized as Safe 

(GRAS) MR to report on changes in luminal viscosity in vivo. Such an application would 

allow correlations with accurate feedback mechanisms such as gastric emptying 

dependency on chyme state (solid/liquid) and temperature as well as satiety. In addition, 

there is insufficient knowledge about the properties and characteristics of interaction of 

Fast Green MR; it would be useful to understand the nature of the interaction between FG 

and other macronutrients and how these interactions may influence its luminescence 

properties. Rheological viscosity may be compared to fluorescence intensities (FI) of 
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samples extracted from within the TIM-1 compartments, rather than the collected 

digestates, to give a specific definition of the actual viscosity (mPa s) value 

corresponding to a certain FI measurement. Digestion kinetics and luminal viscosity 

parameters may also be assessed in food matrices of special health concern in TIM-1, 

such as high fat food and high glycemic index foods. Soluble fibers and/or other 

thickening agents may then be added to the same foods to determine possible alterations 

in digestion kinetics and luminal viscosity to attain positive physiological responses.  

 This body of work provided insight on the influence of physico-chemical 

properties on starch and lipid digestion and a better understanding of succinct physico-

chemical properties that can reduce the rate and extent of bioaccessibility. We expect that 

the adoption of simple steps such as a homogenization process, control of β-glucan 

composition, or inclusion of thickening agent at the product development level can aid in 

achievement of desirable physiological outcomes. A better understanding of such 

relationships between food form and formulation may be useful in the design of food 

products intended for patients with specific diet-related chronic diseases, such as 

diabetes, with pre-determined physiological impact. 
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