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One-shot units are usually produced and stored (or used as standby) in batches until 

retrieved. These units can be defined as a system which may experience degradations or 

sudden failures during its storage period. To assess the reliability performance of the units, 

reliability tests are repeatedly (in non-identical pattern) and randomly conducted across the 

lifetime of the units; where corresponding actions are taken afterwards. The continuous 

arrival of batches and conduct of tests induce the system contains a mixture of 

nonhomogeneous units, which is defined as a general “k-out-of-n: F system” with k and n 

nonhomogeneous and time-dependent. In this dissertation, we propose models to 

investigate the reliability metrics of the system under a variety of scenarios. Extensive 

simulation studies are performed to validate the models. 

 

Failure or degradation caused by thermal fatigue is a pervasive phenomenon during the 

one-shot units’ storage period. The Birnbaum-Saunders (BS) distribution is specifically 

developed for describing mechanical fatigue failures, but limited in describing a variety of 
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hazard functions. Hence it is reasonable to investigate whether the generalized form of BS 

(GBS) distribution can be extended for modeling the plastic deformation induced by 

thermal cyclic stresses and providing reliability metrics of units subject to thermal fatigue. 

In this dissertation, we investigate system reliability metrics when subjecting to thermal 

fatigue failure by adopting the GBS accelerated model.  

 

The one-shot units might experience competing failure modes during its storage period. 

Specifically, repeated thermal cyclic tests (TCTs) are randomly conducted; at the end of 

an arbitrary TCT, the unit’s failure is observed either when any of its failure modes occurs 

suddenly or when any of its degradation modes reach its “failure threshold”. Under such 

circumstances, unit’s failure data cannot be described by a single failure time distribution; 

instead, a competing failure model which considers multiple failure modes is adopted to 

assess unit’s reliability metrics. The units’ potential failure modes as well as the reliability 

metrics of the system under competing failure modes are investigated in this dissertation.  

 

Due to the characteristics of one-shot units and recent advances in technology and materials, 

one-shot units are usually highly reliable and it is impractical to obtain one-shot units’ 

failure (degradation) data under operating conditions. Accelerated life testing (ALT) is an 

efficient approach to obtain failure/degradation observations in a much shorter time period 

and utilize the test data to predict reliability metrics under normal operating conditions. We 

develop physics-statistics-based models and obtain optimal sequential accelerated non-

destructive test (NDT) plans under different scenarios. The efficiency of the NDT plans is 
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validated by comparing the system reliability metrics obtained under accelerated and 

normal conditions. 

NDT assesses unit’s functionality without permanent damage in order to demonstrate the 

unit’s reliability. However, one cannot make decisions regarding system reliability by only 

depending on NDT results because NDT does not fully perform the unit’s functionality. In 

contrast, destructive testing (DT) fully tests the unit’s functionality but destroys the units. 

This intensifies the need to investigate hybrid reliability tests that include both NDT and 

DT. In this dissertation, an optimal sequential hybrid reliability testing plan is designed and 

the results of the tests are utilized to improve the accuracy of the system reliability metrics 

estimation. We validate that by conducting hybrid reliability test, the unit’s lifetime 

parameters approach their true values. As the reliability estimation converge, we decrease 

the number of units tested in DTs and eventually perform NDT only. 

There exists many situations that a specific number of one-units are used consecutively 

when put into operational use. Therefore, it becomes interesting and challenging to 

determine the characteristics and sequence of the one-shot units to be launched such that 

the operational use of the launched units is optimized. Defining the launched one-shot units 

as a system, we investigate the reliability metrics of the system to optimize the system’s 

operational use at arbitrary time by formulating an optimization problem which is 

applicable to a variety of objectives. We also provide the bounds of the system’s successful 

operational probability estimation. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background 

 

The development of new technologies and global competition emphasize the need for 

accurate estimation or prediction of a unit’s quality. Reliability is one of the most important 

quality characteristics of interest. Reliability is defined as the probability that a unit 

operates for a given period of time (design lifetime) under the designed operating 

conditions. Although modeling of systems reliability has been extensively investigated, the 

reliability modeling of one-shot units is limited which motivates the research of this 

dissertation.  

 

1.1.1 Reliability of One-shot Units and Systems Composed of One-shot Units 

 

1.1.1.1 Reliability of One-shot Units 

 

There exist some types of units that can only perform its function once as its use is normally 

accompanied by irreversible reactions, e.g. chemical reaction or physical destruction. After 

the use, the units are destroyed or require extensive repair. Units with such a property are 

referred to as one-shot units. Missiles, airbags and most of the military weapons are typical 

examples of one-shot units. An important characteristic of one-shot units is its long-term 
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storage period or standby status before delivered to users or deployed. To illustrate, military 

weapons are conventionally stored for long periods, often in excess of decades until there 

is a need. The auto airbag is another example of one-shot units as an airbag stays in standby 

status during a vehicle operating life and inflates rapidly (in millisecond) when an accident 

or collision happens in order to provide the auto occupant(s) with protection. One-shot 

unit’s storage life (or time in standby status) approximately equals to its operational life.  

 

Generally, the reliability of one-shot units is defined as the probability that they 

successfully perform required function when needed. Initially, reliability of one-shot units 

is simply assigned a time-independent probability. However, reliability of one-shot units 

needs to consider the effect of aging since the units experience a variety of potential failure 

modes which are caused by different failure mechanisms and are dependent on the length 

of the storage/standby periods. These failure modes may inhibit one-shot unit’s ability to 

perform its function. For example, the integrated circuit (IC) board of the missile’s 

electronic guidance system might no longer function properly as the temperature 

fluctuation incudes the crack of the solder joints to an unacceptable level (thermal fatigue), 

or as its resistance degrades and eventually reaches a critical point, or due to a failure 

without indicator. Meanwhile, the IC board might fail suddenly with no indicator of failure. 

Determining the status of one-shot units during the long storage/standby period under 

different types of failure modes, evaluating the reliability of stored one-shot units and 

ensuring the proper function of one-shot units when needed become an important issue.  

 



3 
 

 

1.1.1.2 Systems Composed of One-shot Units 

 

Batches of one-shot units are produced and stored to form a system. Current research on 

one-shot units’ reliability is sparse by addressing single (non-repeated) test and assuming 

that all units are homogenous. In real life, the successive arrivals of batches and the 

repeated reliability tests result in a mixture of nonhomogeneous units with different 

characteristics at any point of time. Instead of the exact lifetime data, the testing results 

only show the number and the characteristics of the testing units. Such data can be 

addressed as generalized binary data. As reliability tests (non-destructive or other types) 

are repeated during the life horizon of the units, appropriate decisions are made regarding 

the failed units during the test. Specifically, there could be the following possible decisions 

regarding the failed units: 

 

1. Failed units are repaired and placed back into the system with a higher failure rate; 

2. Failed units are discarded after certain consecutive number of failures; 

3. Failed units are discarded after certain number of failures.  

 

Consequently, the characteristics of the units in the system are continuously changing. 

Specifically, the population size changes as the new batches arrive and failed units might 

be discarded. In the system, some units are newly arrived whereas some units are aged; 

some are repaired multiple times and might have high failure rates and some have never 

failed.  
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The extensive experience with units’ reliability testing indicates that all tests require some 

kind of combinatorial testing such as “k-out-of-n” system. In this dissertation, the system 

with a mixture of different units can be defined as a generalized “k(t)-out-of-n(t): F system”. 

Specifically, in this dissertation, the “k(t)-out-of-n(t): F system” is a generalization of 

traditional “k-out-of-n: F system”  as both k(t) and n(t) increase with time. Characteristic 

of such a system is described in details and the reliability metrics evaluation under different 

scenarios becomes challenging. Computationally efficient approximations that evaluate the 

system reliability metrics over an extended time horizon as well as large batch sizes have 

significant practical values and should be investigated. Additionally, not much attention 

has been paid to investigate the effect of population’s non-homogeneity on reliability 

prediction.  This is addressed in details in this dissertation. 

 

For the system described above, there could be many testing approaches and testing 

scenarios to conduct the reliability tests during the storage period (under either normal or 

accelerated conditions) such that the unit’s/system’s reliability metrics are assessed. The 

reliability tests can be performed by testing the entire population; however, with the 

continuous arrival of units, the cost of testing a large population becomes high and testing 

samples which represent the population mixture proves to be a viable alternative. Different 

types of reliability tests under different scenarios, as well as their advantages, 

disadvantages, and applications, are discussed later in this dissertation.  
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In real life, times of arrivals of batches, times to perform the reliability tests, and the batch 

sizes are not arbitrary. Instead, they could be described by specific probabilistic 

distributions. To illustrate, the arrival of batches and the conduct of the reliability tests may 

follow nonhomogeneous Poisson distributions and the batch size may follow a uniform or 

normal distribution. Under such circumstances, the potential condition and reliability of 

the system can be obtained by applying a stochastic approach (SA). The details are 

investigated in the dissertation. 

 

1.1.2 Reliability Testing 

 

Performing reliability testing is an effective approach to demonstrate or predict the 

reliability of the units or systems, which is a function of time. Specifically, to determine 

the reliability of one-shot units, one can perform either DT or NDT under either normal or 

accelerated conditions. 

 

DT involves the actual use of the units and determines whether the units perform the 

expected function or not. Its use is limited since performing such a test “destroys” the unit 

or requires high repair cost, the units are discarded after the test. Accordingly, it is not 

appropriate to conduct DT using large samples. Consequently, performing the test on a 

limited number of one-shot units inevitably results in sampling errors.  
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Another type of reliability test, NDT, assesses the unit’s reliability without causing 

permanent damage. The NDT is used to ensure that the testing units continue to perform 

their functions after the test. The procedures during NDT incorporate inspecting, testing, 

and evaluating individual units or assemblies. For example, the electronic guidance 

subsystem of a missile may be subjected to a functional test or electric field test such as 

thermal cyclic test (TCT) to determine its reliability. In a TCT, the testing systems are 

heated at a temperature and kept for a certain dwell time, then cooled to a temperature to 

complete a testing cycle. Obviously, there exists no limit on the number of testing units 

except test time and cost. However, it is difficult to make decisions regarding system 

reliability by completely relying on the results of NDT since it does not fully perform all 

functions of the units.  

 

Most of the research in the literature utilizes and analyzes the failure data obtained from 

DTs, which destroys (consumes) the one-shot units. In this dissertation, we consider 

repeated NDTs (under either normal or accelerated conditions) during the storage period 

of the one-shot units which do not affect the units’ functionality. We also utilize the units’ 

lifetime models to predict the units’ reliability behavior, by assuming that test data only 

show the number and combination of the failed units at the end of each test when repeated 

NDTs are performed. 

 

Besides performing NDT, it is also challenging but interesting to hybridize NDT and DT 

to demonstrate and predict the reliability of the system, which has not been addressed and 

investigated in previous research. To conclude, the reliability metrics of the system 
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composed of one-shot units can be assessed by considering a variety of combinations of 

reliability tests. Specifically, we investigate the following testing scenarios in this 

dissertation: 

 

1. Conducting a sequence of normal NDTs on the entire population/selected samples; 

2. Conducting a sequence of accelerated NDTs on the entire population/selected samples; 

3. Conducting a sequence of normal hybrid reliability tests on the selected samples. 

 

Specifically, when scenario 3 (conducting hybrid reliability tests that utilize NDTs and 

DTs) is considered, the following two specific approaches are taken into consideration: 

 

a. Each NDT and DT are performed on two different samples; 

b. Each NDT and DT are performed using the same sample; 

 

Units failed in the NDTs are either repaired and tested in DTs, or repaired and placed back 

into the system, or discarded. 

 

The above tests are repeatedly performed during the entire storage period of one-shot units 

in order to determine the reliability metrics of the system regularly. Once the type of the 

reliability test is determined (NDT, or hybrid reliability test), designing the optimal 

sequential reliability testing plan based on sampling is necessary and challenging. To 
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illustrate, it is reasonable to minimize the number of units destroyed during the tests, i.e., 

the number of units assigned to the DTs, while obtaining accurate reliability metrics 

estimation.  

 

When designing the optimal sequential NDTs plans under accelerated conditions, the 

difference between the reliability estimation obtained under accelerated and normal 

conditions needs to be minimized, or/and the test durations need to be reduced. 

Investigation of the above problems is unique and has significant contributions.  

 

It is difficult to continuously monitor one-shot units’ status. In such a case, reliability tests 

are performed at discrete time intervals and only the number of occurrences (say failures) 

during an interval is known, i.e., no information between observation time points is 

available. Panel count data which include the number of event occurrences between 

observation time points are collected. In this dissertation, the collected panel count data 

demonstrate the testing units’ nonhomogeneous characteristics, which are general. 

Reliability estimation is then obtained by considering the general panel count data.  

 

1.1.3 Accelerated Life Testing (ALT) Models and Optimal Testing Plans 

 

1.1.3.1 ALT Models 
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There are many situations that neither exact nor binary failure/degradation data of highly-

reliable units under normal operating conditions are attainable during its expected life, e.g., 

the electronic units (transistors, resistors, integrated circuits, and capacitors, etc.) show low 

failure rates during their lifetime and only a small number of  failures occur if the reliability 

tests are conducted at normal conditions. An effective approach to obtain failure data 

within a reasonable period of time is to consider accelerated life testing, which induces 

failures quickly by subjecting the units to severer stresses conditions than normal operating 

conditions. The accelerated data are then used to estimate the unit’s reliability metrics 

under normal stresses. In this dissertation, we intend to investigate the use of the ALT in 

estimating the reliability of one-shot units. 

 

The accuracy of reliability metrics estimation is highly dependent on: 1) a proper ALT 

model that models the unit’s life characteristics, reflects the effect of applied stresses on 

the units’ reliability metrics, and accurately relates the failure data under the severer 

stresses and normal stresses, and 2) an optimal ALT plan that specifically determines the 

details of implementing the ALT.  

 

Elsayed (2012) classifies ALT models mainly into three categories: statistics-based models 

(including parametric and non-parametric models), physics-statistics-based models, and 

physics-experimental-based models.  
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Statistic-based models are generally used when the exact relationship between the applied 

stresses and failure times of the units cannot be determined based on the physics or 

chemistry principles of the units. Either parametric models (failure time distributions) or 

non-parametric models (linear, proportional-hazards (PH), and proportional-odds (PO), 

etc.) can be adopted. However, if only a small number of units are tested for a short time, 

evaluation process will be biased since insufficient failure data are collected. Besides, only 

analyzing the unit’s lifetime based on statistic-based models is insufficient since statistics-

based models fail to consider the unit’s failure mechanism. 

 

The physics-based models are effective in estimating unit’s reliability metrics and 

addressing subtle performance problems (e.g., when only very few units are tested) once 

the unit’s specific failure mechanisms are known; especially when the changes in the unit’s 

physics are closely related to the unit’s lifetime model parameters. However, the 

uncertainty of modeling (caused by the variation of the unit’s material property, operating 

conditions, and the variation during the unit’s manufacturing process) is not considered in 

most of the physics-based models. This is addressed in the next models. 

 

Physics-statistics-based models consider both the statistics-based models and physics-

based models by describing the physics of unit’s failure mechanisms and considering the 

uncertainty during the modeling process. Arrhenius model, Eyring model, and inverse 

power rule model, are typical examples of physics-statistics-based models. We intend to 

investigate physics-statistics-based model to estimate the reliability of one-shot units. 
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In some cases, the unit exhibits degradation indicator before failure. In such cases, we 

monitor the degradation indicator with time (under normal or accelerated conditions) and 

utilize the degradation data to estimate the unit’s/system’s expected time to failure (time to 

reach a threshold of the degradation level) and other reliability metrics. We refer to the test 

where degradation data are collected at accelerated conditions as accelerated degradation 

testing (ADT).  Elsayed (2012) summarizes typical ADT models, similar to the ALT 

models: the physics-based models such as resistor degradation mode, laser degradation 

model and hot-carrier degradation model; the stochastic degradation models such 

Brownian motion models, Inverse Gaussian models and Gamma models; and the physics-

statistics-based models which include the characteristics of the previous two models. In 

this dissertation, we investigate the system reliability metrics under the scenario that the 

units are subject to different types of failure modes. 

 

1.1.3.2 Optimal Testing Plans 

 

Once the ALT (ADT) models are determined, an optimal ALT (ADT) plan is designed. 

The reliability metrics obtained via extrapolation in accelerated stresses levels and reduced 

test duration are inevitably less accurate than those obtained under normal reliability tests. 

The motivation of the optimal ALT (ADT) plan design is to obtain reliability metrics 

estimates at normal operating conditions as accurate as possible. Specifically, an ALT 

(ADT) plan needs to be designed to optimize a specific objective (usually minimizing the 
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error of certain reliability metrics estimates at normal operating conditions) while 

satisfying given constraints.  

 

Usually, some or all of the following decision variables need to be determined: the applied 

stresses (temperature, electric field, radiation, etc.), the method of stress application 

(constant stress, step stress, cyclic stress, ramp-step stress, and triangular-cyclic stress, etc.), 

the applied stresses levels, the number of testing units to be allocated to each stress level, 

the test duration, and the time to perform the test. 

  

In this dissertation, different types of reliability tests are successively performed and 

corresponding optimal sequential testing plans based on sampling need to be designed 

(when the reliability tests are performed under accelerated stresses). Different from the 

traditional ALT plan that considers the reliability metrics of individual units, we propose 

sequential ALT plans by taking the system reliability metrics into account, which is 

significantly different from existing ALT plans and is realistic. Moreover, the optimal ALT 

plans are designed sequentially, i.e., the design of current testing plan is dependent on the 

previous testing plans, which incorporates and generalizes the traditional design of single 

ALT plan.  

 

1.1.4 One-shot Units Optimal Operational Use 
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One-shot units such as missiles, airbags, and most of the military weapons are deployed 

after long terms of storage (or standby). It is important to ensure the stored units operate 

its function properly when needed. In this dissertation, we investigate the optimization of 

one-shot units’ operational use at arbitrary time. 

 

There exists many situations that the one-units are used consecutively when put into 

operational use. To illustrate, a certain number of one-shot units are selected from the 

stored population and launched in sequence. The population has a mixture of one-shot units 

with nonhomogeneous characteristics due to the units’ different arrival times and the 

conduct of the sequential reliability tests during its storage period. Therefore, it becomes 

interesting and challenging to determine the characteristics and sequence of the one-shot 

units to be launched such that the operational use of the launched units is optimized. 

Defining the launched one-shot units as a system, the reliability metrics of the system (e.g., 

the probability that the system achieves the successful operation, the expected number of 

successfully launched units) need to be investigated. In this dissertation, we optimize the 

system’s operational use at arbitrary time by formulating an optimization problem which 

is applicable to a variety of objectives. We also provide the bounds of the system’s 

successful operational probability estimation and develop a simulation study to validate the 

proposed approach. 

 

1.2 Dissertation Organization  
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The dissertation is organized as follows: In chapter 2, we provide a detailed review of 

related literature. We summarize the literature, analyze its contributions and limitations, 

and highlight the motivation as well as the uniqueness of the problems investigated in the 

dissertation.  

 

In chapter 3, we propose the problem, describe the system in details, and develop effective 

models to estimate the system reliability metrics under different scenarios by either testing 

the population or testing the sample. The effect of aging on the system reliability is also 

taken into consideration. Defining the system as a generalized “k(t)-out-of-n(t): F” system, 

we develop analytical expressions of the system reliability metrics. We also propose 

several computationally effective alternatives to investigate the system reliability metrics 

when the batch size is large or when the reliability tests are performed extensively over the 

time horizon. Extensive simulation studies are studied in chapter 3 to validate the proposed 

models under different scenarios. 

 

In chapter 4, the problem investigated in chapter 3 is solved by using a stochastic approach. 

We assume that specific probabilistic distributions are used to describe the batches’ arrival 

times, batches’ sizes, and the times to conduct the tests, then the system reliability metrics 

are investigated. The potential characteristics of the system (the number of units in the 

system, the ages of the units, the times to perform the reliability tests, and the times to 

repair failed units, etc.) become complicated. The expected system reliability metrics are 
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then compared with those investigated in chapter 3. Reliability metrics based on sampling 

is also discussed. 

 

In chapter 5, we address the system reliability metrics under thermal fatigue. Modeling 

units’ thermal fatigue life due to cyclic temperature fluctuation based on Coffin-Mason 

(CM) principle has been extensively investigated. However, sparse research assesses the 

thermal fatigue life by providing the reliability metrics of components/systems under 

thermal fatigue. We investigate a GBS distribution and its performance in predicting 

fatigue failure caused by thermal cyclic stresses. We then apply the GBS distribution to 

model the reliability metrics of a system with mixtures of nonhomogeneous one-shot units 

subject to thermal fatigue. An extensive simulation model is developed to validate the 

system reliability metrics accuracy. Numerical examples are presented to illustrate the use 

of the models. 

 

In chapter 6, the reliability metrics of the system under competing failure modes are 

investigated. The unit’s failure is observed either when any of its failure modes occurs 

suddenly (failure modes without indicators of failure) or when any of its degradation modes 

(which exhibit indicators that eventually lead to failure) reach its “failure threshold”. 

Meanwhile, the unit is repaired either when it fails between two reliability tests or when 

one of its degradation modes reaches the predetermined “repair threshold”, where the 

“repair threshold” is lower than the “failure threshold”. We study the units’ potential failure 

modes, its reliability at arbitrary time and the reliability metrics of the system under a 

generalized competing failure modes.  
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In chapter 7, we address the design of optimal sequential accelerated NDTs plans. We first 

study the individual unit’s reliability behavior under accelerated conditions by developing 

a statistics-physics-based lifetime distribution, which directly relates the applied stresses 

to the system reliability metrics. We then propose the optimal design of sequential 

accelerated NDTs, taking system’s/sample’s reliability metrics under different testing 

scenarios into account. Specifically, we determine the optimal times to perform the tests, 

the applied stresses levels, and the test durations. The uncertainty during the sampling 

procedure as well as the units’ characteristics are considered. We show that a well-designed 

sequential accelerated NDT is an effective approach to reduce the test durations while 

providing accurate reliability prediction with negligible consequences on the residual lives 

of the units and other system reliability metrics. Moreover, we numerically illustrate that 

the sample size has no effect on the accelerated NDTs plan design, in the long run.  

 

In chapter 8, we consider the optimization of sequential hybrid reliability tests (including 

DT and NDT) based on sampling with the objective of minimizing the number of units 

used in the DT while obtaining accurate estimates of the reliability metrics. Specifically, 

we determine the optimal times to perform the tests and the number of units assigned to 

the two types of testing in each hybrid test. Consequently, after conducting a number of 

hybrid tests, we decrease the sample size of the DT as the accuracy of reliability metrics 

estimation improves and eventually we conduct NDT only. The optimization problem is 

studied under several testing scenarios. The proposed methods are validated by numerical 

illustrations and extensive simulation studies.  
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In chapter 9, we optimize the operational use of the one-shot units at arbitrary time during 

its storage. Some units (with nonhomogeneous characteristics) are selected from storage 

and launched or operationally used at arbitrary time as needed. Referring to the launched 

units as a system, we optimize the system’s operational use by determining the selected 

units’ characteristics (number of units selected from each batch) and its launching sequence. 

The system reliability metrics such as the expected number of successfully launched units, 

the average and variance of the probability that the system achieves a successful operation, 

and the expected time of the system’s kth failure are considered in the optimum selection 

procedure. Considering the units’ inhomogeneity, we provide the confidence bounds of the 

probability that the system achieves a successful operation based on the units’ optimal 

selection and launching sequence. 

 

In chapter 10, we give conclusive remarks of our research.
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, we present a detailed overview of research related to the problem being 

investigated in this dissertation. We summarize the limitations of current research and 

highlight the motivation and the uniqueness of the research in the dissertation. We first 

review the research on the storage life and reliability metrics of one-shot units. There is 

extensive work on thermal fatigue failure, however, limited research is done on the 

reliability metrics of systems with mixtures of one-shot units when subjecting to thermal 

fatigue. We review current study on thermal fatigue and summarize existing approaches 

and models on thermal fatigue. We then review the research on the reliability evaluation 

and optimization of different types of k-out-of-n systems. Most of the existing research is 

based on the assumptions that units in the system are identical, which is limited. There is 

few research on the reliability metrics of systems composed of one-shot units. Evaluation 

of system’s reliability through the conduct of NDT is limited. There is no investigation on 

hybridizing NDT and DT when conducting reliability tests. We then present a thorough 

review of literature about the current ALT models and design of optimal ALT plans. 

Limited research is carried on the design, analysis, and application of sequential ALT plans 

when evaluating one-shot unit’s storage reliability during its lifetime. We also review units’ 

lifetime models under different failure modes related to the proposed research but not as 

general as the lifetime models we investigate in the dissertation. 
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In section 2.1, we review all related literature in details. In section 2.2, we summarize the 

limitations of the literature and highlight the importance and uniqueness of the research in 

this dissertation. 

 

2.1 Literature Review 

 

Approaches to estimate the reliability of one-shot electro-explosive units are introduced 

and current practices which can result in suspect data are discussed. Besides, remedial 

action which leads to accurate and dependable methods of reliability estimation is 

suggested (Peckham, 1965). Several priors in the Bayesian approach (with three different 

prior settings) for the predictions of reliability metrics of electro-explosive units at 

operating conditions under the exponential lifetime distribution are compared (Fan et al., 

2009). The deterioration of stored one-shot units is examined and the reliability levels of 

individual units which together with the inspection regime give a particular reliability level 

in the delivered units are established (Newby, 2008). Apparently, no research is carried on 

the reliability metrics on systems that composed of nonhomogeneous one-shot units. 

 

Approaches and difficulties of estimating the total life (which approximately equals to the 

storage life) of one-shot unit are investigated as follows: prognostics and health monitoring 

(PHM) systems are entirely applied in design and storage stages of tactical missile. 

Engineering approaches to the life degradation factor analysis and life prediction process 

are investigated (Li et al., 2014). The analysis results are used by U.S. Army personnel and 
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contractors in evaluating current missile programs, the results are also used in the design 

of future missile systems. The storage-life modeling method of electric steering gear based 

on competing failure modes is studied, including the function and structure principle, the 

main performance parameters and failure thresholds of electric steering gear. The 

sensitivity of the various components of the electric steering gear is also analyzed in order 

to determine the degradation paths of the components (Deng et al., 2014). A case study of 

condition-based remaining storage life prediction for gyros in the inertial navigation system 

is presented (Wang et al., 2014) on the basis of the condition monitoring data by 

considering the slow degradation that occurs when the system is in storage. The previously 

mentioned literature only analyzes the storage lifetime of individual one-shot units rather 

than the reliability metrics of systems that compose one-shot units. Moreover, the effect of 

time on unit’s storage life and characteristics is not addressed during the analysis.  

 

Failure or degradation caused by thermal fatigue is a pervasive phenomenon. Temperature 

fluctuation in thermal fatigue can quickly lead to strains which are much higher than the 

elastic limit thus cause plastic strains and deformation in each cycle. Therefore, most 

mechanical stress fatigue models that deal with high-cycle failure (e.g., the S-N curve, 

Miner’s law) are not readily applicable for modeling thermal fatigue failure. Instead, 

Coffin-Manson (CM) model and its modified versions (e.g., Norris-Landzberg model, 

Engelmaier’s model and Darveaux’s model) are widely adopted when assessing the unit’s 

cycle-to-thermal-failure especially for low-cycle fatigue, where the CM model considers 

the loads in terms of plastic strain rather than stress. 
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Darveaux’s model (McPherson, 2010) considers the strain rate effect under various ramp 

rates for the prediction of thermal fatigue lifetime of the solder interconnections. The 

derivation and application of the CM model to different types of materials (ductile, plastic, 

and brittle) are discussed and illustrated in McPherson (McPherson, 2010). The parameters 

of the CM model for solder fatigue life prediction are evaluated and different reference 

temperatures are simulated to investigate the effect of temperature on solder fatigue life 

prediction (Che and Pang, 2013)  

 

The parameters of Engelmaier’s model are recalibrated (Salmela et al., 2005) to contrast 

the fatigue data. A rapid life-prediction simulation approach for solder joints based on 

Engelmaier’s model is developed (Qi et al., 2009) for combined temperature cycle and 

vibration conditions. The life expectancy of solder interconnect under simple temperature 

cycles using the Engelmaier model is predicted (Chai et al., 2014). The characteristic 

lifetime data are contrasted with a recalibrated Engelmaier’s model (Putaala et al., 2012). 

Norris-Landzberg’s model is recalibrated to provide an accurate estimation of units’ 

lifetime under mechanical fatigue (Pan et al., 2005). It is also indicated that Norris–

Landzberg’s model  fits the  experimental  data  accurately  and  the  error  is less  than  6% 

in the lead-free assemblies (Vasudevan and Fan, 2008). In this paper, the CM model is used 

to validate the accelerated statistical model that we propose.   

 

Thermal cyclic test (TCT) is performed to obtain the units’ fatigue life data which are then 

used for units’ fatigue life modeling. When performing TCT, the testing units’ material 

properties and the TCT plan (e.g., dwell time, heating and cooling rate and temperature 
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amplitude) have a direct impact on the units’ fatigue life. It shows that the damage per 

thermal cycle increases with the temperature amplitude (Qi et al., 2006). It is also validated 

that a faster ramp rate generates more fatigue failures per cycle and thus decreases the 

testing units’ fatigue life (Zhai and Blish, 2003), (Qi et al., 2006), (Darveaux, 2002), 

(Chaparala et al., 2005) and (Ghaffarian, 2000). However, the effect of the ramp rate and 

the dwell time on testing units’ life are negligible due to the stress relaxation at maximum 

cycle temperature (Schubert et al., 2002).  

 

Accelerated thermal cyclic test (ATCT) is applied where the testing samples are subjected 

to a larger temperature fluctuation than the actual situation in order to induce sufficient 

failures. A comprehensive set of ATCTs are performed on vehicles (Ma et al., 2011) to 

analyze the impact of solder alloy characteristics on ATCT acceleration factors. By 

simulating ATCTs under different conditions, it is determined that the ATCT acceleration 

factor is independent of sample composition (Bosco et al., 2016). An ATCT is introduced 

(Yang et al., 2008) to approximate the operating conditions, showing that the low thermal 

conductivity and high specific heat of lead-free solder cause a short thermal fatigue life. 

Experimental and modeling results of surviving material combinations that occur at various 

temperatures are described (Shapiro et al., 2010). Different plated through holes (PTH) 

cycle-to-failure (CTF)-temperature models are evaluated for its effectiveness in 

determining acceleration factors for PTH fatigue life prediction under different conditions 

(Xie et al., 2008).  

 



23 
 

 

The Birnbaum-Saunders (BS) distribution is specifically developed for describing 

mechanical fatigue failures. It is noted that the BS distribution can be applied even when 

the assumption of the BS is relaxed (Desmond, 1985), i.e., the crack increment in a certain 

cycle not only depends on the applied stresses but is also affected by the accumulated crack 

size. It is stated that the BS distribution is more flexible than the Inverse Gaussian (IG) 

distribution (Bhattacharyya and Fries, 1982). Owen proposes a generalized BS (GBS) 

distribution by introducing a second shape parameter (Owen, 2006). 

 

Reliability tests are performed during the storage period of one-shot units. Instead of 

continuous monitoring of the units, reliability tests are carried out at discrete times; 

correspondingly, the test data (panel count data) only show the status (fail, survive, or other 

states) of testing units. The following literature covers recent studies on the analysis of 

panel count data: the statistical analysis of interval-censored failure time data with 

applications are explored, three different data sets (Breast Cancer, Hemophilia, and AIDS 

data) are used to numerically illustrate both parametric and nonparametric methods of 

analysis (Sun and Fang, 2003). A family of mixed Poisson likelihood regression method 

for longitudinal interval count data is applied (Thall, 1988) to estimate and test the unit’s 

failure rate over a time of a particular event. Meanwhile, a related empirical Bayesian 

estimation of random-effect parameters is proposed. A method for fitting the proportional 

hazards (PH) regression model when utilizing interval-censored observations is developed 

(Finkelstein, 1986). The Poisson assumption of panel count data when the observation time 

or process is related to the underlying recurrent event process is relaxed and a robust 

method for regression analysis of panel count data is applied (Zhao et al., 2013). 
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Meanwhile, the asymptotic properties of the resulting estimates are discussed and 

numerical illustrations are proposed to demonstrate the use of the approach in practical 

situations. Nonparametric estimation procedures for the marginal mean function of a 

counting process are developed based on periodic observations (Hu et al., 2009). Obviously, 

most of the current research on panel count data emphasizes on the optimization of 

parameter estimation. Little attention has been paid to the application of panel count data 

to unit’s lifetime models and reliability prediction. 

 

It is assumed that the system is good if and only if less (no less) than k out of the n units 

fail (survive). There is an extensive work on the reliability of traditional k-out-of-n: F (G) 

systems: The reliability of a k-out-of-n system based on expandable reliability block 

diagram is calculated (Chang and Zhao, 2013), which is very efficient and convenient for 

engineering application. A fast and robust reliability evaluation algorithm based on 

conditional probabilities is developed (Amari et al., 2009), which is computationally 

efficient and general for calculating the exact reliability of large multi-state-k-out-of-n 

systems. An effective approach is proposed (Tian et al., 2008) for obtaining the “reliability 

bounds” of complex k-out-of-n systems with a large number of components and possible 

states by focusing on the probability of the system in certain states, which provides the 

range of the system reliability in a much shorter computation time.  

 

Consecutive-k-out-of-n: F (G) system is a special kind of k-out-of-n: F (G) system, where 

the system works if and only if less (no less) than k consecutive units fail (survive). The 
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reliability evaluation and optimization of such a system have been investigated as follows: 

Recent advances in methods of reliability evaluation, importance and optimal stochastic 

orderings of the units in consecutive-k-out-of-n systems are reviewed comprehensively 

(Eryilmaz, 2010). Optimal system reliability design of consecutive-k-out-of-n systems is 

investigated, both invariant and variant optimal design under different circumstances are 

proposed (Zuo, 1989). Zuo’s work is generalized and extended to multi-dimensional 

consecutive-k-out-of-n systems (Kuo and Zuo, 2003); other types of k-out-of-n and 

consecutive-k-out-of-n systems are meanwhile addressed, e.g., the s-stage-k-out-of-n 

systems, linear and circular m-consecutive-k-out-of-n systems and the k-within-

consecutive-m-out-of-n systems. The optimal component arrangement for a multi-

state consecutive-k-out-of-n: F system with the objective of maximizing the expectation of 

the system state is considered (Akiba et al., 2011) when the selected units are arranged to 

the positions in the system. Graphical Evaluation and Review Technique (GERT) is applied 

(Agarwal et al., 2007) to deal with the reliability of m-consecutive-k-out-of-n: F system 

with (k-1)-step Markov dependence and m-consecutive-k-out-of-n: F system with Block-k 

dependence. The time efficiency of GERT is validated by illustrative numerical examples. 

The Stein-Chen method is employed (Godbole, 1993) to obtain the Poisson approximation 

for a linear m-consecutive-k-out-of-n system, considering the units in the system are 

stationary Markov dependent. The reliability and residual lifetime of linear and 

circular consecutive-k-out-of-n systems with nonhomogeneous components lifetimes are 

investigated (Salehi et al., 2011), i.e., the lifetimes of components are independent but 

nonhomogeneous. However, the units in the system are non-repairable and investigation 

of system’s current status relies on system’s previous status.  
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Performing reliability tests is an effective process to assess and predict the reliability of 

various types of units. Reliability tests might either destroy the testing unit’s serviceability 

(DT) or not (NDT). The optimization of the NDT program is studied (Hunt and Wester, 

2013) for a missile inventory system. Specifically, the number of testing units in each NDT 

is optimized with the constraint of frequency of NDTs. However, the reliability of 

individual missile is considered to be independent of the time and age, which is unrealistic. 

The test planning methods for designing accelerated destructive degradation tests is studied 

from different aspects (Shi et al., 2009), including non-Bayesian and Bayesian methods. 

The effect of sample size and test duration on the optimal plan is shown by conducting 

sensitivity analysis. The reliability of NDT techniques for the inspection of pipeline welds 

employed in the petroleum industry is evaluated (Carvalho et al., 2008). Tests on specimen 

made from pipelines containing defects are carried out and artificial neural networks (ANN) 

in the detection and automatic classification of the defects are used. To conclude, the use 

of NDT for reliability estimation of one-shot units is limited and the hybrid reliability 

testing that combines NDT and DT has not been addressed so far. 

 

There are many situations when the failure data of the test units are lacking especially when 

the reliability test is performed under normal operating conditions. In such cases, ALT is 

applied by subjecting the units to severer-than-normal stresses, such that failures are 

induced in a much shorter time and accelerated data are then utilized with appropriate ALT 

model to estimate the units’ lifetime under normal conditions.  
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Statistics-based models, physics-statistics-based models, and physics-experimental-based 

models are discussed (Elsayed, 2012). An overall review of ALT models that are widely 

used in engineering practice is provided (Escobar and Meeker, 2006), including both 

statistics-based models and physics-based models.  

 

Several frequently used types of testing stresses and corresponding failure mechanisms that 

the stresses might induce are introduced (Elsayed, 2012). The design of ALT plans under 

different conditions and constrains are summarized; the concept and detailed application 

of the equivalent ALT plans are explained (Elsayed, 2012). The methods and principles of 

designing optimal ALT plans with two experimental factors without interactions are 

investigated (Escobar and Meeker, 1995). Escobar and Meeker’s work is extended by 

designing the optimal ALT plan with two types of stresses assuming possible interactions 

between them (Park and Yum, 1996). It is widely accepted that if the ALT is performed 

under multiple stresses levels, the number of testing units should be allocated inversely 

proportional to the applied stresses levels. 

 

An ALT plan needs to be designed to accurately estimate the unit’s (system’s) reliability 

metrics while reducing the testing time. Extensive work can be found in designing ALT 

plan on regular units (which is different from one-shot units) by assuming different types 

of ALT models and different objective functions (see (Liao and Elsayed, 2010), (Zhu and 

Elsayed, 2013), (Zhao and Elsayed, 2005),  (Elsayed and Jiao, 2002), (Zhang, 2007), 

(Nelson and Meeker, 1978) , etc.). The application of ALT on one-shot units is limited: an 
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optimal ALT plan is designed by assuming the testing unit’ lifetime follows a Weibull 

distribution (Balakrishnan and Ling, 2013). However, the work assumes only a single 

accelerated DT is conducted and the units are homogeneous. Moreover, the testing plan is 

designed by considering the individual unit’s reliability, which is limited. There is no 

research investigating the design of optimal accelerated NDT plan based on the system’s 

reliability metrics with mixture of nonhomogeneous one-shot units. 

 

The current research on ALT plan design only addresses the single optimal testing plan 

without considering the possibility that a sequential ALTs are performed. Besides, the 

testing scenario that failed units are repaired, placed back into the system, and are subjected 

to the next ALT has not been addressed yet.  

 

When evaluating the reliability of the system or units (under either normal or accelerated 

stresses), the unit’s lifetime model (physics-based model, statistics-based model, or 

physics-statistics-based model) is of great significance. A probabilistic physics of failure 

approach for estimating tube rupture frequency in steam generator of water reactor is 

presented (Chatterjee and Modarres, 2012). A methodology for the implementation of 

physics-based models of unit lifetimes is described (Hall and Strutt, 2003), treating the 

uncertain parameters as random variables which can be described by certain statistical 

distribution and sampled using Monte Carlo methods. The application of physics-statistics-

based model to ALT, where the model parameter (usually scale parameter) is dependent 

on the applied stresses has not been extensively investigated. Current work on physics 
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models or physics-statistics-based models does not pay attention to the lifetime of one-shot 

units, which is limited. 

 

2.2 Limitations of Literature 

 

A thorough review of the literature shows that the research on storage life and storage 

reliability of one-shot units is limited as current work only focuses on identical one-shot 

units. Moreover, the investigation of one-shot unit’s reliability metrics is limited to the 

individual units. The effect of successive reliability tests on the unit’s reliability has not 

been investigated. In additional, most of the current work only assigns a constant value as 

the reliability of the one-shot units, where the effect of time is not considered in the 

reliability modeling of the one-shot units. There is also no investigation on the reliability 

modeling of mixtures of nonhomogeneous one-shot units when subjecting to a variety 

types of failure modes such as thermal fatigue, degradation, and/or competing failure 

modes. 

 

Although ALT models and optimization of ALT plan design have been widely and 

extensively investigated, they are limited to testing the units as a onetime ALT and all 

testing units are identical and non-repairable. Designing optimal sequential ALT plans for 

the system which considers the one-shot units’ nonhomogeneous characteristics has not 

been addressed. The consequence of applying accelerated NDT needs to be discussed. 
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Significant work has been done on the reliability modeling of different types of systems. 

However, the characteristics of the units in the system are assumed to be identical, 

stationary, and known beforehand. This dissertation investigates the generalized k(t)-out-

of-n(t) systems composed of units whose characteristics vary and are nonhomogeneous, 

which is a generalization of previous work.  

 

Although extensive research has been done on the reliability optimization of a variety of 

k(t)-out-of-n(t) and consecutive-k(t)-out-of-n(t) systems, literature review indicates that 

there is no research on nonhomogeneous one-shot units. Moreover, current research is 

based on the assumptions that the characteristics of the units in the system are known and 

the units are non-repairable, which fails to provide a generalized result.  

 

The hybridization of NDT and DT when performing reliability tests has not been studied. 

Moreover, the effect of sequential hybrid reliability tests on the estimates of system 

reliability metrics has not be considered. We investigate hybrid reliability tests by 

performing NDT and DT under different testing scenarios. By investigating the design of 

optimal sequential hybrid tests, we increase the accuracy of system reliability estimation 

and the unit’s lifetime parameter. 
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CHAPTER 3  

RELIABILTY MODELING AND PREDICTION OF SYSYTEMS WITH 

MIXTURES OF UNITS  

 

One-shot units such as missiles, airbags, and most military weapons, are usually produced 

in batches and then stored (or used as standby) for a long time before deployment. These 

units can be defined as a system which may experience degradation or failure during its 

storage period due to corrosion, thermal fatigue, or repeated shock loads. It is important to 

ensure these units or systems perform its function when needed regardless of its storage 

(standby) duration. Conducting NDTs during the storage period is an effective way to 

assess their functionality. Moreover, these tests are repeated during the entire life horizon 

of the unit (system). Corresponding actions (either repair or discard failed units) can be 

taken. The testing is randomly performed over time, and the population becomes a mixture 

because of the different ages of the units and the conduct of previous multiple test. 

Specifically, the population might contain previously repaired units, recently arrived units, 

or units that arrived at different time periods into the storage area).  

 

Once all units in the storage are defined as a system, the reliability of the individual units 

which can be either identical or nonhomogeneous with different characteristics (age, 

number of repairs, failure rate, etc.) have a direct effect on the system’s reliability metrics.  

A system with a mixture of different units can be defined as a general “k(t)-out-of-n(t): F 

system”. Traditional k-out-of-n: F systems assume all units in the system are identical and 

the system is good if and only if less than k out of the n units fail. However, when units 
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arrive at different times and NDTs are performed repeatedly, both k(t)  and n(t) become 

mixtures of nonhomogeneous units and increase with time. Details of such a system are 

described in this chapter.  

 

The remainder of the chapter is organized as follows: section 3.1 presents the problem and 

proposes models for different scenarios. Predicting the distribution of failed units when 

considering the effect of aging on the system is presented. We then develop general 

expressions of the system reliability metrics in section 3.2. In section 3.3, predicting 

distribution of failed units as well as the expected number of failures by sampling are 

investigated.  Three approaches are provided in section 3.4 to estimate system reliability 

over an extended time horizon as well as large batch sizes, their limitations and applicable 

conditions are discussed. A general simulation model is developed in section 3.5 to validate 

the proposed models and approaches. Several examples are provided in section 3.6 to 

numerically illustrate the use of the models. 

 

3.1 Reliability Evaluation of Systems with Mixtures of Units 

 

One-shot units are produced in batches and kept in storage until needed. Specifically, the 

ith batch of units with size ni arrives into the storage at time iw  immediately after 

production. NDTs are conducted at arbitrary time during the entire life horizon of the units 

by either testing all units in the storage area or by testing selected samples. The mth test is 

performed at time mt , which is independent of the unit’s arrival time iw . The test is assumed 
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to be instantaneous (duration of the test is ignored). Failed units are either repaired and 

placed back into the system, or removed after a predetermined number of repairs 

(consecutive or not). The failure rates are increasing functions of the number of repairs, 

and the effect of aging on the failure rate is also considered. All units in the storage are 

defined as a system which is composed of nonhomogeneous units that arrived at different 

times, subjected to different series of tests, and repaired at different times. In this chapter, 

the system fails at time t, if k(t) or more units fail, which is referred to as “k(t)-out-of-n(t): 

F” system. This criterion is commonly used in many reliability testing such as reliability 

acceptance test and reliability demonstration test. Note that in this chapter, k(t) is not fixed 

and increases as n(t) increases with the continuous arrival of batches. 

 

We investigate the distribution of failed units at the end of an arbitrary test when all units 

in the system are tested. The following are necessary notations: 

:iw  time when the ith batch arrives in storage; 

:mt  time when the mth test is performed, 1,2,3...m  ; 

:mK total number of failed units observed at mt ;  

:in  size of the ith batch; 

iz : number of tests performed before arrival of the ith batch; 

   / :x xF f  cdf/pdf of unit lifetime after the xth repair; 
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, ,/ :m m

i j i jK R number of failed/survived units at mt  , the , ,/m m

i j i jK R  units are from the ith batch 

and observed to fail at test sequence j  ; note that j  does not exist when 0j  ; 

 j : the th  NDT in test sequence j ; 

 # j : the number of tests in sequence j ;   

ys :  time when the yth failure of the unit is observed; and 

ˆ
ys : last test time before y

s , if y y
s t

1
, ˆ 

y y
s t


 ; 

m

iN : a certain batch state, which is a combination of units with different characteristics in 

the ith batch; 

mN : a certain system state, which is a combination of units with different characteristics 

(certain states for all batches). 

 

Figure 3.1 illustrates the relationship between ˆ
ys and ys , where ys  could be the time of any 

of the first (m-1) tests. Note that ˆ
ys  is uniquely determined by ys , while 1ys   could be any 

test time of the first (y-1) tests. 

 

Figure 3.1 Relationship between andˆ   y ys s  
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There could be numerous possible system states when the tests are performed depending 

on the size and arrival time of the batches in the system. Generally, when the mth test is 

performed, number of possible system states equals to the number of feasible solutions of 

the following equation sets. Meanwhile, number of solutions of the ith row of the following 

equation sets is the number of possible states of the ith batch:  

 

 

1, 1, 1

, ,

       Row 1

                                             

       Row 













m m

j j

j

m m

i j i j i

j

K R = n

K R = n i

 

We numerically show how the system states and batch states reflect by ,

m

i jK and ,

m

i jR  ,i j  

at time 2t  (the end of the 2nd test), assuming there are two batches ( 1, 2i  ) in the system by

2t , each batch has 5 units ( 1 2 5n n  ). Specifically, the first batch arrives before the first 

NDT and the second batch arrives between the first and second NDT (see Figure 3.2). The 

system reliability metrics under different scenarios are analyzed in details from section 

3.1.1, 3.1.2, and 3.1.3, respectively. 

 

3.1.1 Distribution of Failed Units under “No-Removal” Scenario 

 

In this section, we study the mixtures of units under the “no-removal” scenario, i.e., a failed 

unit is repaired and placed back into the population which results in a higher failure rate of 
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the system. Figure 3.2 shows the failed and repaired units at the end of the first two NDTs 

under “no-removal” scenario, where we simplify the scenario by assuming only one batch 

arrives between two tests without loss of generality. It is assumed that
1 2 1 2, , ,t t n n  , 

1 2 and w w  are arbitrary. 

 

 

Figure 3.2 Test procedure under “no-removal” scenario 

 

To obtain the probability of having exactly 
mk ( 

 
 ranges from 0 tom

i

mii w t

k n
 

;

) failures 

among all the units at test time (  m mP K k ), we analyze the system state at time mt , all 

system states that yield 
mk   failures (system state that satisfies ,

 

 m m

i j

i j

k k  ) are 

considered and its probabilities are calculated and summed; consequently, the sum of the 

probabilities is  m mP K k  (term A of Eq. (3.1)). Since all batches are independent, the 

probability of certain system state (term B) equals to the product (term C) of the 

probabilities of all possible states of all batches. The probability of a batch’s certain state 

(term D) is obtained by using a multinomial distribution (term D), equaling to number of 

trials/ways to generate the specific batch state (term E), times the probability of one “trail” 
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to generate the specific batch state (certain combination of units with different 

characteristics (term F)): 
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Term F is calculated in Eq. (2) as:  
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where 
          

-1

1 1 1

1

- - -
     




j

a a

j j j j

a

L F t t F t t  . 

 

Note that 1s   could be any test selected from  1,... 1iz m   , and as  could be any test 

selected from  1 1,..., 1as m   . Moreover, constraint (3.3) must be satisfied: 

 , ,



  m m

i j i j i

j

k r = n    i                                                                                                        (3.3) 

 

The expected number of failures at mt is calculated accordingly: 

   
0







  

i

i

m

n

m m m m

k

E K k P K k                                                                                          (3.4) 

 

3.1.2 Distribution of Failed Units under “p-Consecutive-Failure-Removal” Scenario 

 

Now consider the same system discussed in the previous scenario with the exception that 

when a unit experiences the pth consecutive failure, it is removed from the system without 

repair. The following notations are necessary to obtain the distribution of failures: 

 

'j : test sequence indicating the time when the failures are observed where  # j p ;  
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:j''  test sequence indicating the time when the failures are observed, where  # j p and 

there are less than p consecutive tests in j'' ; 

:j'''  test sequence indicating the time when the j failures are observed, where  # j p

and there are p or more consecutive tests in j''' ; and 

 :j  union of j' , j'' and j''' . 

 

Compared to Eq. (3.1),  m mP K k  changes since system states that include units with p 

or more consecutive failures (combinations of ,

m

i jk  and ,
m

i jr units including '''j ) are not 

counted. The term B remains unchanged as explained in section 3.1.1. 
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                         (3.5) 

where
0           if  1

1            if  1 

   


   

i

i

I z m p

I z m p
 ，and terms a and b are interpreted in section 3.1.1. 

 

In additional, constraint (3.6) must be satisfied: 
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'''  

   
    

      
  m m m m m m

i, j' i, j' i, j'' i, j'' i, j''' i, j''' i

j' j'' j

 k +r + I  k +r +  k +r = n  i                                    (3.6) 

 

3.1.3 Distribution of Failed Units under “p-Failure-Removal” Scenario  

 

If a unit is removed from the system when it experiences the pth failure (either consecutive 

or not), system states including units with p or more failures ( ,

m

i jk and ,
m

i jr  units including 

either j'' or j''' ) are not counted, the failure distribution of the system is obtained via Eq. 

(3.7): 
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                                        (3.7) 

where terms a and b are interpreted in section 3.1.1. 

 

Comparing the system failure distributions under the above three scenarios, we expect most 

failures when there is no removal (scenario 1). An intuitive explanation is that keeping 

repaired units which have higher failure rates increases the expected number of failures. In 

section 3.6, we provide a numerical comparison of system reliability metrics under the 

three scenarios.   
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3.1.4 Distribution of Failed Units Considering Effect of Aging 

 

Currently, units stored for long periods of time experience aging, which has a direct effect 

on its failure rates.  Assuming an one-shot unit has a Weibull storage lifetime in Eq.(3.8), 

its failure rate increases due to change in the Weibull shape parameter. In other words, the 

shape parameter is an increasing function of the unit’s age. Under such circumstance, term 

B in Eq. (3.1) is obtained by Eq. (3.9) as: 

  

 

1
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θ
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-1

1 1

1

,1 ,0

, , , ,

- - -

0 0 0

ˆ

, ;

; , - ; , 1- ; ,
m i m i m i

i i

m m-

j j

m m
i i

m m m m

i j i j i j i j

t w t w t w

s s

i i i i

w w

t t

j j

j i

s s

k r

P K k R r j

f d f d f d

f δ - w ; , δ - w dδ - f δ - w ; , δ - w dδ

L

f δ - s ; , δ - w dδ - f δ -

              

   

 

  

   
       
   

 
 
 
 






  

 

    

     

  

1 1
,ˆ

 

i i

m

j

m
i, j

m
i j

j i

j
s s

j

i i i i

w w

t

j

j i

s

k

r

s ; , δ - w dδ

f δ - w ; , δ - w dδ - f δ - w ; , δ - w dδ

L 1- f δ - s ; , δ - w dδ

 

   

 



  
 
 
 
 
  
 
 
   

  
      
 
   
   
    
   
    
   

   



 



           (3.9)  

 

where 
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1 1ˆ

-
a a

a a

a a

a i a i

s s

a s s
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The above model assumes that a failed unit is repaired to as-good-as new condition. 

However, the effect of aging and repairs on the failure rate is cumulative. Accordingly, 

 m mP K k  under different scenarios can be obtained by applying the models in section 

3.1. 

 

3.2 System Reliability        

 

Wide applications of fault-tolerant systems, e.g., k-out-of-n systems, are found in industrial 

and military systems where it is not necessarily that all units are required to be operational. 

In this chapter, the system is operational when less than %q of units of the system fail, 

which can be defined as a generalized “k(t)-out-of-n(t)” system. Clearly, both k(t) and n(t) 

are functions of time, i.e., they experience step increases when new batches arrive. 

Specifically, we have:  
 i

i

i w t

k t q n
 

  
    
   


,

% and  
 , i

i
i w t

n t n
 

   . Eq. (3.10) calculates 

the system reliability at arbitrary time: 

   
,
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m m
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                                                                                     (3.10) 
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where  mR t is the reliability of the system at any time between  1,m mt t
 and 1 2m  , , .... 

Specifically, system reliability is a piecewise function as shown in Eq. (3.11).  Expression 

of system reliability changes according to the increasing number of tests since the potential 

system states increase significantly with the performance of tests. The reliability is 

expressed as 

 

 
 

 

1 1

2 2

1

0

1

m m- m

R t              t t  

R t              t < t t

R t =       
R t             t < t t

  
 







                                                                            (3.11) 

Intuitively, the system reliability shows a small step increment when new units are 

introduced, or when the system is tested and the failed units are repaired.  

 

Reliability prediction models are proposed in this section to deal with systems experiencing 

complex states, taking into account the age distribution of the units, repaired/unrepaired 

units, removal of failing units, and the conduct of multiple tests. These models can be 

applied to different cases, e.g., when the repair of the units results in as-good-as new units 

(with unchanged failure rates), or when the repair only restores the units to as-good-as old. 

Moreover, in reality, previous test results are known, i.e., 1 1

, , and  m m

i j i jk r ,i j  are known 

when predicting system reliability metrics at mt ; under such circumstance, there is no need 

to investigate potential system states in the previous tests, consequently, 

    1 1 1 1

, , , , , , , ,,  ; , ,  ; ,        m m m m m m m m

i j i j i j i j i j i j i j i jP K k R r i j K k R r i j can be similarly obtained. 
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Theoretically, system reliability metrics can be obtained using the above models under any 

scenarios. However, for large mt and/or, the extensive system states complicate the 

analytical expression. Later, we present approaches for reliability estimation under such 

circumstances.   

 

3.3 System Reliability by Sampling  

 

When the size of the total population in the system is large, it is impractical to test all units 

in the system. A possible approach to estimate the reliability of the system is to perform 

sampling. What fundamentally matters for the statistic from a random sample is that it 

represents the population mixture. Selecting a sample size proportional to the batch size 

and investigating effective relationship between the population and the samples become a 

feasible approach to estimate the reliability of the system.  

 

Additional notations: 

 

,,

/ :m m

i ji j
K R

S S  number of failed/survived units that are selected  from , , and m m

i j i jK R at m
t  ; 

  :mP N probability of being in system state mN , i.e., the term B in Eq. (3.1)   

( , , , ,,  ; ,m m m m

i j i j i j i jK k R r i j   ); 

is : number of units selected from the ith batch; and 
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m

sK : number of selected units that fail at 
mt . 

 

Assuming all failed units are repaired and placed back into the population, the failure 

distribution of the sample is obtained by Eq. (3.12):  
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                              (3.13) 

 

Eq. (3.13) calculates the expected distribution of failures of a sample. Since repeated tests 

are performed and repeated samples are selected, in the long run, the expectation of the 

sample’s reliability metrics represents the population’s metrics without loss of generality, 

as on average units with different characteristics are proportionally selected in the samples. 

This is validated in section 3.5. 
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3.4 Alternative System Reliability Evaluation Approaches 

 

A computationally efficient approach is required when m or in are large. We provide three 

time-saving approaches, summarize the limitations and applicable conditions of the three 

approaches in this section. 

 

3.4.1 Approach 1 (A1) 

 

This approach only considers the effects of some of the repairs or/and aggregates the arrival 

times of different batches. Since the batch arrival time and the test time are independent, we 

can use the exact arrival time of each batch while considering some of the repairs, or 

aggregate the arrival times of different batches, but take all repairs into consideration. 

Moreover, this approach obtains system reliability metrics conditional on the previous 

system metrics, e.g., system’s reliability performances obtained in the mth test are utilized 

to predict the system’s reliability in the following test. Intuitively, it provides accurate 

estimation especially for early tests but underestimates the system reliability as m increases 

because some repairs are overlooked. To conclude, it applies to the situation when 1
t

θ
  or 

when the time increment between two adjacent tests is small. A reasonable explanation is 

when 1
t

θ
 , the probability of failure is small and the effect of the repair is insignificant. We 

numerically illustrate an application of A1 in section 3.6. 
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3.4.2 Approach 2 (A2) 

 

One of the most frequently investigated reliability metrics is the expected number of failures 

during a specified time period.  In this section, we apply the renewal process (RP) since the 

observed time scale is discrete. We first investigate the scenario when the repair of the units 

has no effect on units’ failure rates. The following additional notations are necessary: 

 

m

iM : the number of expected failures of one unit from the ith batch by mt ; and 

 , mM t  : the number of expected failures of one unit in the interval , mt t
   . 

 

The number of expected failures until time mt  for a unit from the ith batch is derived as: 
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The integral  
1

i

i

i

iz +a+

z +a

t -w

t -w

f t dt is the probability that the first failure of the unit occurs in the 

interval  1,
i iz a z at t   .  

 

RP can be applied to the general case when the failure rate of the unit is an increasing 

function of the number of repairs experienced by the unit. We define the following notations: 

 

 f t
: pdf of unit lifetime after failures; and 

 ,mM t

 : the number of expected failures of a unit during interval , mt t
    with   

failures. 

 

The number of expected failures until mt  for one unit in the ith batch is obtained recursively 

by: 
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For the system, we have: 

 

 m m

i isystem
i

E K = n M


                                                                                                                          (3.16) 

 1 1m- m

i isystem
i

E K = n M 



                                                                                                                   (3.17) 

 

The total number of expected failures at mt  equals to    1m m

system systemE K - E K  . Applying 

Eqs. (3.16) and (3.17), the distribution of failures in the mth test is obtained by first 

calculating the average failure probability mp  of a single unit: 

   1m m-

system system

m

i

i

E K - E K
p

n





 .              

Accordingly,  m mP K k  is calculated as: 

     1

 

mi
m m

m m
m

m
i

i

k -
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n k
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P K = k = p - p
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                                                               (3.18) 

 

3.4.3 Approach 3 (A3) 

The complexity of the models discussed in section 3.1 is caused by the investigation of the 

system’s detailed conditions. Specifically, listing all feasible solutions to

 , ,



  m m

i j i j i

j

K R n and calculating corresponding probabilities become complex as in  and 

m  increase. We derive a simplified model which yields accurate reliability prediction by 
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defining 
m

iK and 
m

iR  as the number of failed and survived units at mt from the ith batch. 

 

We only consider the effect of aging of the units on the failure distribution and

 = ,m m m m

i i i iP K k R r   and ( )m mP K k  are respectively determined as: 
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where 
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In this section, we propose three computationally efficient approaches to estimate the 

system reliability. A1 is limited as it only predicts the system reliability metrics accurately 

at its early stages. A2 calculates the system failure distribution within short time under 

arbitrary condition and provides results close to the exact solutions. A3 gives exact system 

reliability metrics while masking detailed system conditions. A2 and A3 are compared with 
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a simulation model in section 3.5 to validate its feasibility. 

 

3.5 Simulation Model 

 

In this section, we develop a simulation model to validate the exact model, A2, and A3. We 

introduce the objective and the procedure of the simulation study in section 3.5.1. In section 

3.5.2, we numerically obtain the reliability metrics using the simulation model and compare 

the results with those of three proposed approaches. We then predict the system reliability 

metrics with large size batches and extensive testing over time, based on A2.  

 

3.5.1 Simulation Model 

 

The objective of this simulation model is to validate that:  

 

a. The exact model and A3 obtain accurate and identical system reliability metrics prediction;  

b. A2 provides accurate system reliability metrics prediction for large mt  and in . 

 

To validate the exact model, A2, and A3 comprehensively, we apply r (r is usually large) 

replications of simulation, each replication with one set of randomly generated test 

parameters (batch size in , batch arrival time iw , number of batches between two adjacent 

tests y  , test time yt , where 1,2,...,y m  ). In each replication, we obtain the reliability 



52 
 

 

metrics (  mE K  and  m mP K k ) using the three approaches and the simulation model. 

Afterwards, we obtain and compare the mean and standard deviation of the r replications.  

 

The test parameters are randomly generated with: 

 , , 1,2,...,y L Uunidrnd y m    ;  

1
( , ), 1,2,...,

y y L Ut t rand t t y m


   ;  

    ,
i L Un unidrnd n in   ; and 

   1 1, ,    ,i y y i y yw rand t t w t t    

 

The failure time of the units has the following Weibull parameters:  

  100
; , 1  x

xt

F t e



 

 
 
                                                                                                                    (3.20) 

where x  represents the effect of number of previous repairs on the failure rate as discussed 

in section 3.1 and x  is the shape parameter which is dependent on x.  

 

To reflect the scenario, we randomly generate y  (the number of batches arriving between 

the yth and the (y-1)th test for any y).  The set of generated  y y  is fixed once generated and 

used for all r replications of parameter ( , ,y i it n w ) generations. Note that yt y  are first 

generated, then the batch arrival times and sizes ( ,  i iw n i ) are generated accordingly.  
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We apply Eq. (3.4), Eqs. (3.16)-(3.17), and Eq.(3.19) to obtain  mE K using the exact 

model, A2, and A3, respectively. We specifically express the number of failures at end of 

the mth test ( mK ) as the sum of units that fail once or more before 
mt  and the units that never 

failed until 
mt . We then obtain the number of failures at the end of one iteration which is 

repeated for 103 times to simulate the system conditions under a certain set of realistic test 

parameters.  

 

The following notations are used during one iteration in the simulation procedure: 

 

:j  the j th step in the iteration to obtain 
,

m

i jK ; 

       / 1 / / 1 :    j j j j j j j j j j  jth (last)/  1j  th/  j j th/  1j j  th element 

(time point) in  test sequence j ; 

 
 

, 1

j j

i j
K : the number of failed units at the end of the  

th
j j  test; the

 
 

, 1

j j

i j
K units are in the ith 

batch and fail in sequence  1j ; where  1j is composed of the first 

  # 1j  tests in j . 

  

 Estimation of ,1  m

iK i  : 

1． Generate 
1

m

y
y



  groups of random failure times that follow Weibull distribution with

0x  , the ith group has in random failure times. 
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2. For the ith group, count the number of failure times that occurred between

 1
,

m i m i
t w t w


  , record as

,1  m

iK i . 

3. Do 2 i , record 
,1  m

iK i . 

 

 Estimation of  , ,  # 1  m

i jK i j j  : 

1. For any ,i j , generate 
 
 

, 1

j j

i j
K  random failure times that follow Weibull distribution with

1x j   . 

2. Count the number of failure times between
    1 ,  

j mm j j j
t t t t , record as ,

m

i jK . 

3. Do 2  ,i j , record ,

m

i jK  ,i j  . 

 

The following are procedures of the estimation of  
, 1

j j

i jK : 

 

1. Generate  1

, 2





j j

i jK random failure times that follow Weibull distribution. 

2. Count the number of failure times that occurred between
       1 1ˆ

,
 

 
  

 
j jj j j jj j

t t t t  , 

record as  
, 1 , 
j j

i jK i j . 

3. Do 2 ,i j  , record  
, 1 , 
j j

i jK i j . 
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Accordingly, , ,m

i jK i j  can be traced back to the in  random failure times generated when 

estimating
,1

m

iK . The number of failures in this iteration is obtained accordingly. 

 

The above procedure is iterated 103 times, yielding 103 mK in one replication of the 

simulation run. Counting the occurring frequency of possible 
mK  during the 103 iteration, 

we obtain  m mP K k  at the end of the mth test. The distribution is a tabulation of 

frequencies of each possible
mk , ranging from 0 to i

i

n


 . Specifically,

  3

frequency of   

10

m
m m k

P K k   . 

 

The number of failures at the end of the mth test in one replication, with one set of generated 

test parameters is obtained by taking the mean of number of failures at the end of the 103 

iterations. 

 

To compare the three proposed approaches, we calculate  mE K and  m mP K k  in each 

replication and obtain the mean of the r replications  mE K  using the exact model, A2, and 

A3. Figure 3.3 outlines the procedure of the comparison. 
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3

Exact model (Eq.(3.4))

A2 (Eqs.(3.15),(3.16))

:
A3 (based on Eq. (3.18))

Simulation model

 , =mean of 10  iterations' numbers of failu
1 replication (1 set of + the fixed set of ) 

 , 1,...







m

i i

y

y

E K

w n i

t y m

 

                         

3

res 
 

Exact model (Eq.(3.1))

A2 (Eq.(3.17))

A3 (Eq. (3.18))

Simulation model

mean of 10  iterations' failure frequencies

 
 
 
 
 







 







  

 
 
 
 
  

m mP K k

                          

   , 
a

 ,  1, ..., 

 

 fixed set of         sets of  generated 

 replications











 i i
y

y
w n i
t y m

r

r

                                                                                                            

   Means and standard deviations of expected number of failu


res in  replications  
             using exact model, A2, A3, and simulation model

r

Figure 3.3 Procedure of the comparison among exact model, A2, A3, and simulation 

model 

 

This simulation model is general and can be applied to other scenarios. When applying “p-

failure-removal” and “p-consecutive-failure-removal” scenarios, all procedures remain the 

same except at the end of each iteration. 

 

3.5.2 Simulation Results and Validation 

 

We apply the simulation procedure and compare  mE K  numerically, assuming the 

following parameters: 
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1

1 1

200

10

1,3 , 1,2,...

(9,11), 1,2,...

24,26   

, ,   for ,

4 0.1

y y

y

i

i y y i y y

x

t t

i

r

m

rand y m

rand y m

n rand

w rand t t w t t

x







 







  





 

  

 

The average and standard deviations of  mE K  at the end of first 10 tests using the three 

approaches and simulation model, are shown in Tables 3.1 and 3.2.  

 

Table 3.1 Means of expected number of failures at the end of first 10 tests using the 

exact model, A2, A3, and the simulation model 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Exact 

model 

0.00

3 

0.03

8 

0.18

8 

0.63

2 

1.63

9 

3.59

3 

6.85

8 

11.82

1 

18.48

0 

26.75

3 

A2 0.00

3 

0.03

8 

0.19

1 

0.63

5 

1.64

2 

3.59

8 

6.86

4 

11.82

9 

18.49

0 

26.76

7 

A3 0.00

3 

0.03

8 

0.18

8 

0.63

2 

1.63

9 

3.59

3 

6.85

8 

11.82

1 

18.48

0 

26.75

3 

Simulation 0.00

2 

0.03

8 

0.19

0 

0.62

9 

1.63

8 

3.59

5 

6.83

3 

11.79

8 

18.45

4 

26.69

3 
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Table 3.2 Standard deviations of expected number of failures at the end of first 10 tests 

using the exact model, A2, A3, and the simulation model 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t

10 

Exact 

model 

0.00

1 

0.00

8 

0.03

4 

0.10

4 

0.26

0 

0.44

4 

0.83

8 

1.29

1 

1.89

5 

2.5

54 

A2 0.00

1 

0.00

8 

0.03

5 

0.10

4 

0.26

1 

0.44

5 

0.83

8 

1.29

2 

1.89

5 

2.5

55 

A3 0.00

1 

0.00

8 

0.03

4 

0.10

4 

0.26

0 

0.44

4 

0.83

8 

1.29

1 

1.89

5 

2.5

54 

Simulation 0.00

2 

0.01

1 

0.03

9 

0.10

6 

0.25

9 

0.45

0 

0.83

1 

1.31

3 

1.89

9 

2.5

53 

 

 

The means and standard deviations of  mE K  obtained by the three approaches and 

simulation model are approximately equal, which validates the exact model, A2, and A3. It 

is also observed that more iterations (104 or 105 times) result in closer simulation results to 

the real system situation, and the two results (simulation model and exact model (A3)) are 

closer to each other.  
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In Figure 3.4, we predict the expected probability of failure of one unit at the end of first 50 

tests ( 50m ) using A2 with:  

1 0, 10 5 for 2,...40iw w i i    ;  

100 in i   ; 1y  ; and 10  yt y y   

 

Figure 3.4 Expected probability of failure for one unit in the first 50 tests based on A2 

 

Similar comparisons are extended to the “p-consecutive-failure removal” and “p-failure-

removal” scenarios, which indeed validate the exact models derived in section 3.1.  

 

3.6 Numerical Illustrations 

 

3.6.1 Distribution of Failures under Different Scenarios 

 

Four batches of units arrive in the storage area at times 1w =0, 10 5, 2,3,4iw i i   with 

population sizes 1 10n  , 2 9n   , 3 8n   and 4 7n  , respectively. Tests are conducted on all 
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units in storage at times 10 , 1,2,3,4yt y y  . Units are i.i.d. with the following lifetime 

distribution in Eq. (3.21): 

   

   

4 3

2

1

2 3

; 1 ; ; 1 ;

; 1 ; ; 1 

x

x x

t t

t t

F t e F t e

F t e F t e

 

 

 

 

   
   

   

   
   

    

 

 

   

   

                                                                    (3.21) 

where 50  , and  ;
x

F t   represents the cumulative distribution (cdf) of the unit after the 

xth repair. 

 

The distributions of the failed units at time 4t  under “no-removal”, “2-failure-removal”, 

and “2-consecutive-failure-removal” scenarios are shown in Figure 3.5. An important 

observation is that the peak of the failure distribution curve shifts to the left when removal 

happens. This is due to the fact that keeping a large proportion of aged units in the system 

(no-removal scenario) increases the probability of having a larger number of failures. 

 

Figure 3.5 Distribution of failed units under different scenarios 
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3.6.2 System Reliability Estimation for both Testing using the Entire Population and by 

Sampling 

 

Four batches of units arriving in storage at times 
1w =0, 10 5, 2,3,4  iw i i , the batch 

sizes are 
1n  =6, 

2n  =12, 3n  =18, and 
4n =24, respectively. The lifetime of the units follows 

Weibull distribution as shown in Eq. (3.21). We select the units proportionally, i.e., pre-

determined proportion (1/2, 1/4 and 1/6) of units are chosen randomly from each batch 

(recorded as 1, 2, 3, 4s s s s ) to constitute the sample. Assuming that tests are performed at

10 , 1,2,3,4yt y y  , we calculate  4

sE K  and  4 4

s sP K k  at 4t  in Figure 3.6, assuming 

all failed units are repaired and returned to storage. It is clear that reduction of the sample 

size “compresses” the curve such that the peak of the curve moves to the left. The expected 

number of failures of the total population and samples with different sizes are obtained 

below.  

4

4

4

4

1 2 3 412, 24, 36, 48 (all population)

1/2 populaion

1/3 populaion

1/6 populaion

2.08

1.04

0.70

0.35

s

s

s

s

s s s s
E K

E K

E K

E K
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Figure 3.6 Distribution of failed units with different sample sizes and total population 

under “no-removal” scenario 

 

Obviously, the expected number of failures is proportional to the sample size. Extending to 

the “p-consecutive-failure-removal” and “p-failure-removal” scenario, we validate that 

indeed the samples accurately represent the population. 

 

3.6.3 An Illustration of A1 

 

Applying A1, we predict the failure distribution of the system at time 4t  with

1 1 2 2 3 3 4 4w t w t w t w t        . We only consider the 2nd and 4th tests and repairs. 

Accordingly, we calculate the aggregated batches’ arrival times:  

3 3 4 41 1 2 2
12 34

1 2 3 4

;
w n w nw n w n

w w
n n n n

    
 

 
  

 

Figures 3.7 and 3.8 are procedures of the original problem and A1. 

 

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10

P
(K

)

K

all population

1/2 population

1/3 populaiton

1/6 population
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Figure 3.7 Procedure of the original problem by 4t  

 

Figure 3.8 Procedure of A1 by 4t  

 

Since A1 relies on the previous system reliability metrics, we predict the distribution of 

failures at time 2t first:  

      
2 2

1 2
1 2

2 2

2 12 2 12
2   

 
 

           
 

k n n k
n n

P K k F t w R t w
k

  

 

Failure distribution at 4t is obtained conditionally on system status at time 2t  : 

     
1 2

2

4 4 2 2 4 4 2 2 2 2

0

 
n n

k

P K k K k P K k K k P K k




 
       

 
  

 

where 
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4,1

2 4,1
1 2

4,2 2 4,2

4,3

2

1 2
4 12 2 12

4,1
2 12

4 12 2 12

2 12
4 4 2 2

2

1 1

4 2 4 2
4,2

3 4

4 34
4,3

      

1

 
1

1
  

k

n n k k

k k k

k

n n k F t w F t w

R t wk

F t w F t w

R t w
P K k K k

k
F t t F t t

k

n n
F t w F

k

  



      
   
    

   
 

 
  

 
           
 

 
      
 

 
4,3

3 4

4 34

4,1 4,2 44,3

 

n n k

k k k k

t w
 

  

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

   
  

  

 

3.7 Conclusions 

 

In this chapter, we investigate effective approaches to estimate the reliability metrics of a 

system with nonhomogeneous one-shot units under different scenarios, by performing 

consecutive reliability tests and taking into account the units’ different characteristics 

during their storage period. Moreover, we show that the reliability metrics of such systems 

can be obtained by sampling from the total population. The approaches obtain accurate 

system reliability metrics but require extensive computation time when the batch size is 

large or when many tests are performed. In such situations, we propose three 

computationally efficient approaches that provide effective and accurate system reliability 

estimations while either masking some of the system conditions or yielding negligible 

estimation bias.  An extensive simulation model validates that the proposed exact model 

estimate system reliability accurately; meanwhile the proposed approaches also yield 

accurate and immediate system reliability predictions.  
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CHAPTER 4 

RELIABILTY MODELING OF SYSYTEMS WITH MIXTURE OF UNITS: A 

STOCHASTIC APPROACH 

 

A general “k(t)-out-of-n(t): F” system with mixtures of nonhomogeneous one-shot units is 

proposed and its reliability metrics are investigated in chapter 3. The one-shot units are 

produced in batches at arbitrary time and kept in storage until needed. During the entire 

life horizon of the units, reliability tests are conducted at arbitrary time. This original 

approach is named as “OA”. 

 

Under some circumstances, we can describe the arrival times of the batches, the sizes of 

the batches, as well as the times to perform the reliability tests using specific probabilistic 

distributions. The number of units in the system, the ages of the units, and the times to 

perform the tests become stochastic at arbitrary time. In this chapter, we propose  a 

stochastic approach (SA) to investigate the system reliability metrics.  

 

In section 4.1, we introduce the system and propose models to estimate the system 

reliability metrics. The distribution of failed units is studied. We assume that the batch 

arrival times, batch sizes, and test times respectively follow specific probabilistic 

distributions. The entire population (regardless of the size) is tested. In section 4.2, we 

predict the distribution of failed units as well as the expected number of failures by testing 

a sample from the population. Several examples are provided in section 4.3 to numerically 
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compare the system reliability metrics obtained using both the OA and the SA. 

 

4.1 Failure Distribution of Systems with Mixtures of Units Using the SA 

 

One-shot units are produced in batches and kept in storage until needed. The batches of 

units arrive into the storage immediately after production according to a compound non-

homogeneous Poisson distribution (CNPD). Specifically, the number of units in each batch 

follows a uniform distribution and the batches themselves arrive according to non-

homogeneous Poisson distribution (NPD). The time to perform the NDT follows an NPD 

and the testing is conducted during the entire life horizon of the units by either testing all 

units in the storage area or by testing selected samples. Specifically, we have: 

 

 The number of units in the ith batch follows a uniform distribution i  , i.e., 

 ,iN U a b , where a and b are the lower and upper limits of the distribution. 

 The arrival time of the batch follows a non-homogeneous Poisson distribution, i.e., 

  i BW NPD    where  B  is the parameter of the distribution. 

 The time to perform the NDT follows a non-homogeneous Poisson distribution, i.e., 

  y TT NPD    where  T  is the parameter of the distribution. 

The NDTs are assumed to be instantaneous (duration of the test is ignored). The batch 

arrival time and the test time are independent (i.e., iW  and yT  are two independent random 

variables). Failed units are either repaired and placed back into the system, or removed 
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after a predetermined number of repairs (consecutive or not). All units in the storage are 

defined as a system which is composed of nonhomogeneous one-shot units. We consider 

that the system fails if %q  or more units of the entire population fail. The system state at 

arbitrary time t is defined as: 

 

  :t  the possible system state at time t , where  t is defined by the number of batches 

(of units) in the system, the batch sizes, the batch arrival times, the number of NDTs 

conducted, and the test times. Specifically,    t t   where  t  is a specific 

system state. 

 

We investigate the distribution of failed units at arbitrary time t  when all units in the 

system are tested. In sections 4.1.1 and 4.1.2, we investigate the system reliability metrics 

under two testing scenarios, respectively. In the first scenario we assume that the failed 

units are discarded. In the second scenario we assume that the failed units are repaired and 

placed back into the system with higher failure rates. 

 

4.1.1 Reliability Metrics of the Systems Using SA without Repairs 

 

In this section, we investigate the system’s failure distribution, assuming no repair is 

performed. The following are necessary notations: 
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  :B t  the total number of batches of units in the system until time t , specifically, 

   B t b t where   0,1 ,...b t   ; 

  :K t  the total number of failed units at time t , specifically,    K t k t  where 

  0,1,...k t  ; 

  :iK t  the number of failed units in the ith batch at time t , specifically,    i iK t k t  

where   0,1,...,ik t b and    i

i

k t k t


 
 

 
   

 L t  : the number of units remaining in the system at time t (when units are removed after 

a predetermined number of repairs), specifically,    L t l t  where   0,1 ,...l t  ; 

   , ; 1,2,..., :
i iW N i b tf    joint conditional distribution of the batch arrival times and batch sizes. 

 

Without the repair, the system state at time t  is determined by the number of batches, the 

arrival times of the batches, and the batch sizes. The probability of having ( )k t  failures at 

time t is obtained by considering the probability of all system states that might yield ( )k t

failures at time t  (i.e., all system states with a total number of units in the system at time t  

greater than ( )k t ). The probability of having ( )k t failures under such a system state is: 

       
   

   
   : i

i

A

t n k t

K t k t
P K t k t P t t P

t t







 
  
 

 
   

             
       

                           (4.1) 
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where 

               

        
   

 
 

 

                                              ;

  
                                              =

i

i

i

i

i

i i

k t

k ti

i
i

k t

P K t k t t t P K t k t t t

P K t k t i t t

n
F t w

k t

 







 
 

 

  
            

  

      



 
    

 





   i

i

i
k t k t



  
 

 

  
  
    

 

           (4.2) 

 

Eq. (4.2) is the probability of having  k t failures in the system under a specific system 

state. We now address the probability of having a specific system state. Letting

   
0

 

t

B Bt d      , we obtain the probability of realizing an arbitrary system state 

(    P t t    ) as: 

   

  

 

 

 
 1 ( ) 1 1

0

, ; 1,2,...,

( )

... ...  
, ; 1,2,...,

( )

b t b t

i i

A

t t tb b
B

i

n a n a w w i i

W N i b t

P t t

P B t b t

dw i
w n i b t

f
B t b t




 



   

  
   
   

   
   
   

      

    
( ) 0b t






              (4.3) 

where the terms A and B are expressed as: 

  
    

 

( )
exp

( )
( ) !

b t

B Bt t
P B t b t

b t

                                                                            (4.4) 
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and  

      

     
 

    

   

   
 

 
 

1

, ; 1,2,...,

1

1

, ; 1, 2,..., ( )

1

1

i i

B B b tB i B i

B

i iW N i b t

b t
t ww w

B i b t
i

b t
t

B i b t
i

f w n i b t B t b t

w e e
b a

e w
b a









     







 

                

  
   
     





                                   (4.5) 

 

Eq. (4.4) estimates the probability of having ( )b t  batches in the system until time t . Eq. 

(4.5) is the conditional joint pdf of the batches’ arrival times and sizes, given ( )b t  batches 

arrive into the system until time t . Due to the complexity of the integration, we obtain the 

numerical solution of Eq. (4.5) by approximating the continuous variables by its discrete 

forms in Eq. (4.6), where we partition the time interval  0, t into small time intervals with 

length w . To illustrate, the numerical solution of Eq. (4.6) is infinitely close to but does 

not equal to 0. However, it is known that numerical realization of Eq. (4.5) equals to 0 if 

iW  is strictly considered as a continuous variable. 
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( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1

2 2 2

1 1 1

1 1 1

2 2 2 2

2 2
...
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(4.6) 

 

The probability of having %p of the units fail, the expected number of failures, and the 

system reliability at time t , can be obtained in the similar way in Eqs. (4.7)-(4.9), 

respectively: 

     
 

   
 

%
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                (4.7) 
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t

A

q n
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t

                 (4.9) 

 

The terms A in Eqs. (4.7)-(4.9) are respectively the probability of having p% of the entire 

population fail, the expected number of failures, and the reliability of the system at time t, 

conditional on a specific system state. These three reliability metrics can be obtained by 

referring to Eq. (4.2). Specifically,      % i

i

P K t p N t t


  
    

   
 is directly 

obtained via Eq. (4.4) by replacing  k t  with % i

i

p N


 
 
 
 , and the remaining two 

reliability metrics are obtained as: 

             
 

    

 
0

i

i

n t t

system

k t

E K t t t P K t k t t t k t



 


 
  

 





                     (4.10) 

and 
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                             (4.11) 

 

4.1.2 Failure Distribution and Reliability of Systems Using SA with Repairs 

 

Consider the scenario when the conduct of tests is taken into consideration. The following 

additional notations are necessary: 

 

  :T t the number of NDTs conducted until time t ; specifically,    T t t t where 

  0,1,...t t  ; 

:yB  the number of batches arrive between the (y-1)th and yth NDT; specifically, y yB b

where 0,1,...yb   ; 

:B  the expected number of batches in the system until time t ; 

:T  the expected number of NDTs conducted until time t . 

 

Specifically, the system state at time t  is determined by the number of NDTs conducted, 

the test times, the number of batches that arrive between two arbitrary NDTs, all batches’ 

sizes, and all batches’ arrival times. We obtain the probability of realizing a specific system 

state  t  by applying the law of total probability as follows: 
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                     (4.17) 

 

In Eq. (4.12), the term A is the sum of the probability of potential numbers of NDTs 

conducted until time t . Similarly, the term B considers the probability of potential numbers 

of batches that arrive between two arbitrary NDTs, given ( )t t  tests are performed until 

time t . The term C considers the times that the ( )t t  is performed. Terms D and E include 

all possible batches’ arrival times and sizes.  
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In Eq. (4.13), we obtain the expected number of NDTs conducted during an arbitrary time 

interval. We then investigate the probability that ( )t t  NDTs are conducted until time t  in 

Eq. (4.14). Eq. (4.15) provides the conditional joint pdf of the times when the tests are 

conducted, given    T t t t . In Eq. (4.16), we obtain the probability of having a specific 

number of batches arrive between two arbitrary NDTs. Similarly, we provide the 

conditional joint pdf of the batches’ arrival times and sizes in Eq. (4.17). 

 

The system reliability metrics are obtained by applying Eq. (4.1) and Eqs. (4.7)-(4.9). 

Under the scenario discussed in this section, the term A in Eq. (4.1) is obtained by referring 

to the calculation of  =m mP K k  in chapter 3. Accordingly, the probability of having p% 

of the entire population fail, the expected number of failures, and the reliability of the 

system at time t can be obtained. 

 

The above models are applicable to other scenarios, e.g., the units are removed after p 

failures (consecutive or not), or units are repaired to as-good-as old ones. Under such 

scenarios, the probability that defines the system state given in Eq. (4.9) still applies and 

the system reliability metrics under a specific system state are obtained by referring to the 

models in chapter 3 (section 3.1.2 and 3.1.3, respectively). Assuming the units are 

discarded after p failures, we investigate the expected number of units in the system at 

arbitrary time t  : 

            
 t

E L t P t t E L t t t


 


                                                                  (4.18) 
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       (4.19) 

 

In Eq. (4.19), 1s   could be any test selected from   1,..., 1iz t t    and as  could be any 

NDT selected from   1 1,..., 1as t t   . 

 

It is expected that the system reliability metrics obtained by using the OA should 

approximately equal to the expected system reliability obtained by using the SA as shown  

numerically in section 4.3. 

 

4.2 Reliability Metrics of Systems with Mixture of Units Using the SA by Sampling 

 

It is impractical to test all units in the system when the size of the total population in the 

system is large. Selecting a sample that represents the population mixture and investigating 

the relationship between the population and the sample is a feasible approach to obtain the 

reliability metrics of the population. We randomly select qs% of the units and conduct the 

NDT test at an arbitrary time t. Letting: 
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 S t : the sample state at time t, where a sample state is determined by the number of units, 

the ages of the units, the number of tests and repairs performed on the units. 

Specifically,    S t s t where  s t  is a specific sample state; 

 sK t : the number of failed units in the sample, specifically,    s sK t k t . 

 

We obtain the expected failure distribution of the sample by applying the law of total 

probability in Eq. (4.20): 
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The terms A and B have been described in details in section 4.1. With the characteristics of 

all the units in the system known, the probability of realizing a specific sample state (Term 

C in Eq. (4.20)) can be obtained by applying the hypergeometric distribution in Eq. (4.21): 
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Term D is an indicator function with binary values (0 or 1), specifically: 

        
   

, ,
1    if   

0   otherwise
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The expected number of failures in the sample is: 
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(4.23) 

 

Since repeated tests are extensively performed, the sample represents the population’s 

mixture in the long run without loss of generality. On the average, the units with different 

characteristics are proportionally selected. This is also numerically validated in section 4.3. 

 

4.3 Numerical Comparisons  

 

In this section, we numerically compare the system reliability metrics (reliability and 

expected number of failures) using the SA and OA. The reliability metrics obtained by the 

two approaches are compared by first testing the entire population and then testing the 

sample. We validate that: 1) the sample represents the population when applying the SA, 

and 2) the system reliability obtained by the SA can be accurately predicted by those 

obtained by the OA, and vice versa. 
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4.3.1 System Reliability Metrics Estimation by Testing the Total Population 

 

We assume that arrival times of the batches, the conduct of the NDT tests, the batch size, 

and the unit’s failure time distribution have the following distributions: 

 

     3NPP ,  where 1.2 10 ;i B BW t t t     

     3NPP ;  where 1 10y T TT t t t   

     
1

Discrete Distribution, specifically, 10 20 30
3

i i i iN P N P N P N       

 

 

Unit's failure time distribution: 1 ;  70

r j
t

jF t e  

 
 
     

 

We analyze the system reliability metrics at time 100t  . Theoretically, there could be an 

arbitrary number of tests performed and number of arrivals of batches until 100t   

depending on their probability distributions. Table 4.1 shows some of the probabilities: 

 

Table 4.1 Probabilities of system’s numbers of arrived batches and performed tests 

     100b       100P b     100t   100P t    

0 0.0498    0  0.1353 

1 0.1494    1  0.2702 

2 0.2240    2  0.2702 

3 0.2240    3         0.1804 
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4 0.1680    4  0.0902 

5        0.1008    5  0.0361 

6 0.0504    6  0.0120 

7 0.0216   

 

We also calculate the means of the above distributions, which are the parameters of the 

OA: 

   
1 2 3

100 100 3; 50,  71,  87;B B W W W          

   
1 2

100 100 2; 58;  82;T T T T        

1 2 3
20N N N     . 

 

Applying the OA, two NDTs are performed at time 1 258 and 82t t  . Three batches arrive 

at time 1 2 350,  71,  and 87w w w   respectively. We now calculate the system reliability 

at an arbitrary time before 100t   using the two approaches. When calculating the system 

reliability metrics using the SA, we use the discrete approximation proposed in Eq. (4.6). 

Note that since the life of the system using the OA starts at 1 50w  , the comparison of the 

system reliabilities starts from 50t  to100 .  
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Figure 4.1 System reliability using the OA and SA over time 

 

As shown in Figure 4.1, the two approaches (the black curve shows the system reliability 

obtained by the OA and the blue curve shows the system reliability obtained by the SA) 

yield approximately equal system reliability functions, which validates the assumption that 

the system reliability obtained by one approach can be predicted by using the other.  

 

4.3.2 System Reliability Metrics Estimation by Sampling  

 

In this section, we estimate the reliability metrics of the system using two approaches by 

either testing the samples or testing the population. We validate that sample represents the 

population mixture when applying both approaches in terms of the estimated expected 

number of failures.  

 

Assuming the arrivals of batches and the conduct of NDTs follow the same distributions 
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in section 4.3.1. We estimate and plot the expected numbers of failures when testing all 

units, choosing % 50%sq  , and % 20%sq  in each test as shown in Figure 4.2.  

 

Figure 4.2. Expected numbers of failures with different sample sizes and total 

population using the two approaches 

 

We observe that the expected numbers of failures obtained by the two approaches are 

approximately equal.  

 

4.4 Conclusions 

 

In this chapter, we investigate the system reliability metrics using a stochastic approach. 

We analyze the system’s failure distribution, the expected number of failures, and the 

system reliability. The investigation is based on either testing the entire population or 

testing a selected sample. We also propose an approximation to obtain the system reliability 
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metrics numerically. The numerical comparison between the reliability metrics obtained 

using the OA and SA show that the system reliability metrics obtained by the SA can be 

approximately predicted by those obtained by the OA, by either testing all the units or 

testing a sample, and vice versa. 
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CHAPTER 5  

RELIABILITY MODELING OF MIXTURES OF ONE-SHOT UNITS UNDER 

THERMAL CYCLIC STRESSES 

 

Failure or degradation caused by thermal fatigue is a pervasive phenomenon. Repeated 

fluctuations of temperature (and in some cases humidity) expand and contract the volume 

of a solid body. The expansion and contraction produce thermal stresses (and strains) which 

lead to the material deformation. Unlike the cyclic mechanical stresses that normally occur 

at stress levels which are much lower than the material’s yield/proof stresses, temperature 

fluctuation in thermal fatigue can quickly lead to strains which are much higher than the 

elastic limit thus cause plastic strains and deformation in each cycle. The accumulation of 

plastic strains initiates and propagates cracks, which eventually cause thermal fatigue 

failure with a host of potential failure modes within a small number of temperature 

fluctuation cycles.  

 

Most mechanical stress fatigue models that deal with high-cycle failure (e.g., the S-N curve, 

Miner’s law) are not readily applicable for modeling thermal fatigue failure. Instead, 

Coffin-Manson (CM) model and its modified versions are widely adopted when assessing 

the unit’s cycle-to-thermal-failure especially for low-cycle fatigue, where the CM model 

considers the loads in terms of plastic strain rather than stress.  
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As stated earlier, the CM model and its extensions have been used in reliability evaluation 

of units subject to thermal fatigue. However, they neglect the uncertainty during the unit’s 

failure process and thus fail to provide the units’ lifetime distribution and other reliability 

metrics under thermal fatigue. Moreover, they investigate the individual unit’s fatigue life 

performance but do not provide other reliability metrics of a system which is a collection 

of units arranged in a specific configuration. Therefore, development of statistics-based 

model is useful in providing overall system reliability metrics.  

  

The Birnbaum-Saunders (BS) distribution is specifically developed for describing 

mechanical fatigue. Hence it is reasonable to investigate whether the BS distribution can 

be extended for modeling the plastic deformation induced by thermal stresses and 

providing reliability metrics of units subject to thermal fatigue. In this chapter, we validate 

the performance of a generalized BS (GBS) distribution in modeling thermal fatigue. We 

then investigate the reliability metrics of the system when subjected to thermal fatigue 

failure. 

 

The remainder of the chapter is organized as follows: Section 5.1 presents the development 

of the GBS distribution. The characteristics, properties and the hazard function of the GBS 

distribution are investigated. In section 5.2, we examine the accuracy and robustness of the 

GBS distribution in predicting unit’s thermal fatigue failure under arbitrary conditions. 

Section 5.3 introduces the conduct of accelerated thermal cyclic tests (ATCTs) and a 

system with mixtures of nonhomogeneous one-shot units subjected to a sequence of 

ATCTs. Effective models are developed to explore system reliability metrics (e.g., 
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distributions of failed units, reliability and expected number of failed units) at arbitrary 

time by sampling. A simulation model is developed to validate the proposed models. 

Section 5.4 provides numerical examples to illustrate the use of the models.  

 

5.1 Generalized Birnbaum-Saunders (GBS) Distribution 

 

The Birnbaum-Saunders (BS) distribution is proposed to model fatigue lifetime of units 

when a dominant crack (caused by repeated cycles of mechanical stress) surpasses or 

reaches a predetermined crack length threshold. Each cycle of stress leads to an incremental 

increase in the accumulated crack length. After the nth cycle, the accumulated crack 

length is assumed to be normally distributed with n and variance
2n . It does not exceed a 

critical length   with probability: 

 Pr =
n

X
n

 




 
  

 
                                                                                               (5.1) 

 

If the number of cycles is denoted in terms of unit’s fatigue life T, the cumulative density 

function (CDF) of T is: 

 
0.5 0.5

1 t
P T t

t



 

     
       

      

  

              

(5.2) 

where is the shape parameter and  is the scale parameter respectively: 

= , ;   >0,  >0
 

   


 . 
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Adding the second shape parameter  (Owen, 2004), the GBS distribution has the following 

CDF and hazard function as presented in Eqs. (5.3) and (5.4): 
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                            (5.4) 

where  and  are GBS shape parameters and  is GBS scale parameter. The BS 

distribution is a special case of GBS with =0.5 .  

 

Utilizing Newton’s generalized binomial theorem, we obtain the rth moment of the GBS 

distribution in Eq. (5.5): 
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Note that when
2

z
a

   , the GBS moments do not exist.  

 

The BS hazard function is unimodally upside-down, which limits BS distribution in 

modeling flexible hazard functions. We show that GBS covers three types of failure 

conditions. Specifically, the following are necessary and sufficient conditions which enable 

GBS distribution to model diverse hazard functions: 

 

1. The hazard function can be either increasing or multimodal when 0.5  ;  

2. The hazard function can be either upside-down or multimodal when 0.5  ; 

3. The hazard function is always upside-down when 0.5  .  

 

5.2 Reliability Prediction Models for Thermal Fatigue Data 

 

In this section, the GBS performance in predicting unit’s thermal fatigue life based on 

accelerated fatigue failure data is presented and compared with the commonly used CM 

model. We show that GBS distribution models thermal fatigue data as accurate as CM 

model and provides more reliability metrics accurately.  

 

5.2.1 The Coffin-Manson (CM) Model  
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Temperature cycling causes thermal expansion and contraction which induce thermo-

mechanical stresses. It is considered that each thermal cycle causes plastic deformation 

which damages the units. Low-cycle (stress conditions that require a few hundred or 

thousand cycles to produce failure) fatigue data for either ductile or brittle material are 

effectively modeled using CM model as: 

 
b

fN A T                                                                                                                   (5.6) 

where 

fN is the number of cycle-to-failure; 

T is the applied temperature amplitude in Kelvin;  

b is an empirically dependent exponent; and 

A is the material-dependent parameter. 

 

The CM model deterministically calculates the number of cycle-to-failure. However, it is 

worth noting that the empirically determined exponent b usually follows certain 

probabilistic distribution due to the variation of the testing environment. Without loss of 

generality, we assume that  , b bb N  , where 1 3b    for ductile material, 

4 6  for hard material (or plastics) and 7 9  for brittle material. Accordingly, unit’s 

cycle-to-failure becomes non-deterministic. 
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5.2.2  GBS Performance in Predicting Thermal Faituge Life 

 

There are many situations when the units’ failure data are not attainable under operating 

conditions. Under such circumstances, ALT is conducted to induce failures in a much 

shorter time and the accelrated failure data are then used to predict the unit’s reliability 

performance under operating (or arbitrary) conditions. We investigate the GBS 

performance in predicting units’ lifetime under normal conditions based on the accelerated 

thermal fatigue data. 

 

We assume the scale parameter  (characteristic life) of the GBS distribution is 

determined by the applied temperature amplitude and other material/environmental-

dependent parameters. Specifically, the GBS accelerated model is derived as:  

 
 

 1
b

b

A Tt
F t

tA T

 



             
          

                                                                  (5.7) 

 

The GBS accelerated model’s parameters can be estimated based on the accelerated fatigue 

failure data generated by the CM model. The estimated parameters are then used to predict 

the fatigue life under normal conditions. Specifically, GBS accelerated model and the CM 

model respectively predict units’ expected life under thermal conditions NT as:  

    _

0

ˆ ˆˆ ˆ ˆ ˆˆ ˆ; ; , , , ; ; , , ,   




   GBS f N N GBS N

t

E N T A b t f t T A b dt                                         (5.8) 
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b b

bN N
f N f A A

A A

T T
N N A T

T T
                                                                    (5.9) 

where  

_ _,f A f NN N is the average number of cycles to failure under accelerated (normal) 

conditions; 

,A NT T  is the temperature fluctuation under accelerated (normal) conditions; and 

 _
ˆˆ ˆˆ; ; , , ,GBS f N NE N T A b  is the expected life at normal operating conditions obtained 

using the GBS model. 

 

The estimated expected life under normal conditions using the two models is compared in 

section 5.4. Moreover, the GBS models provide additional reliability metrics. To illustrate, 

units’ reliability at time t under thermal stresses
NT is predicted by GBS model in Eq. 

(5.10), which is not attainable by the CM model:  
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b

N

N b

N

A Tt
R t T A b

tA T

 

 


                         

                                    (5.10) 

Similarly, the units’ harazrd function, pdf, the pth percentile life, time-to-kth-failure and 

other reliability metrics can be predicted by the GBS accelerated model. 
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In this section, we verify that the GBS distribution, though developed to model mechanical 

fatigue, provides accurate prediction of thermal fatigue failure under arbitrary conditions. 

Besides, the GBS distribution enables the estimation of other reliability metrics that are not 

attainable by the CM model as stated earlier. It is worth noting that the GBS distribution 

not only applies to thermal cyclic stresses, but could also be generally used in modeling 

the fatigue data caused by mechanical stresses, acoustic stresses and/or other types of cyclic 

stresses.  

 

5.3 Reliability Metrics of Systems with Mixtures of One-Shot Units 

 

As discussed in section 5.2, the GBS distribution can be utilized to model and predict 

thermal fatigue by providing the reliability metrics of units subject to thermal stresses. In 

this section, sequence of thermal cyclic tests is performed as non-destructive reliability 

tests to assess the reliability metrics of a system with mixtures of nonhomogeneous one-

shot units. The CM model does not provide reliability metrics of a system when it is 

subjected to thermal fatigue. Instead, the GBS distribution is versatile and provides systems’ 

reliability metrics of interest.  

 

5.3.1 ATCT and Equivalent Test Duration  

 

In a normal TCT, testing units are subjected to a temperature (
U

N
T ) and kept for a certain 

dwell time. It then cooled to a temperature (
L

N
T ) to complete a testing cycle. However, 
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there are many situations when “highly” reliable units’ failure data are lacking when the 

tests are performed under normal operating conditions. Under such circumstances, ATCTs 

are conducted with higher temperature amplitudes to induce more failures for accurate 

reliability prediction in a short duration with negligible consequences on the testing units’ 

reliability metrics. Specifically, with the designed accelerated testing plan (considering the 

testing units’ reliability metrics, material properties and testing conditions), units are 

subjected to a higher temperature 
U

A
T  (

U U

N A
T T ) and cooled to a lower temperature 

L

A
T  

(
L L

N A
T T ). To illustrate, during the ATCT, IC solder joints of a missile’s electronic guidance 

system are subjected to cycles of temperature fluctuations whose amplitude is higher than 

that when the solder joints undergo normal power-up and power-down cycles; therefore, 

more failures occur. 

 

Compared with TCT, ATCT produces higher thermal-mechanical stresses and causes more 

damage. Specifically, cycles of temperature fluctuation produces  N
D  damage under 

normal conditions and  A
D  damage under accelerated conditions, where    N A

D D    . 

Equivalently, under normal conditions, the testing unit needs
E cycles of temperature 

fluctuation to produce  A
D  damage, where

E is defined as the “equivalent test duration” 

or “equivalent number of cycles”. Obviously,
E  . Equivalent test duration relates 

testing units’ reliability metrics under normal conditions to those under accelerated 

conditions. 
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5.3.2 System Reliability Metrics under ATCTs 

 

One-shot units (such as missiles) are produced in batches and kept in storage until needed. 

Specifically, the ith batch of units with size 
in  arrives into the storage at time iw

immediately after production. ATCTs are repeatedly (not in identical pattern) conducted at 

arbitrary time during the entire life horizon of the units. The mth test is performed at time

mt for
m
 cycles of temperature fluctuation. Failed units are repaired and placed back into 

the system. The failure rate of a unit is an increasing function of the number of repairs. All 

units in the storage are defined as a system which is composed of nonhomogeneous units 

that arrived at different times, subjected to different ATCTs and repaired (when applicable) 

at different times. The system fails if a certain percentage or more units fail, which is 

referred to as a generalized “k(t)-out-of-n(t): F” system.  

 

The reliability metrics of a system composed of one-shot units are investigated in chapter 

3, assuming the entire population is tested in each test under normal conditions. However, 

accelerated TCTs are performed repeatedly by testing samples as stated earlier. In the 

following, we analyze the system reliability metrics at arbitrary time under such a scenario. 

In each ATCT, p% of the population are tested under accelerated applied stress 

(temperature amplitude) at arbitrary levels (lower than a given threshold). 
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To obtain the system reliability metrics, the system state needs to be investigated first. The 

system state at time t is determined by the number of nonhomogeneous units with different 

characteristics (e.g., arrival time, the ATCT sequences under which the units are tested, 

and the ATCT sequences under which the units’ failures are observed). To obtain the 

system state and the distribution of failed units, we define the following: 

 

   , :x xF f  cdf/pdf of unit’s lifetime after the xth repair; 

 x : the GBS shape parameter after the xth repair;  

:iw  time when ith batch arrives in storage; 

:in  size of the ith batch; 

: duration of the th ATCT, 1,2,..., ,...m   

:t  time when the th ATCT is conducted; 

, :N AT T  the temperature amplitude under normal/accelerated conditions; 

iz : the number of ATCT s conducted before the arrival of the ith batch; 

: the ATCT sequence under which the units are tested; 

 # :  the number of tests in sequence ;  #   ;  

 a : the a th test in sequence ;  

:j the ATCT sequence under which the units’ failure(s) is observed; 
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 # :j  the number of tests in sequence j ;  # j j ;  

  :j  the a th test in sequence j ;  

,
:m

i j
N


 the number of units with characteristics , ,i j at time m

t . Specifically, the units are 

from the ith batch, tested in sequence and fails in sequence j  (until the mth test); 

j is composed of arbitrary  # j tests/elements in ;
, ,

m m

i j i j
N n

 
 ; 

 j
t


: time when the unit’s a th failure is observed;  

  :mK t  the number of failed units at arbitrary time  1,m m mt t t   ,    m mK t k t ; 

   , ,
, :m m

i j i j
K t R t

 
the number of failed/survived units (with characteristics , ,i j ) at time

t ;    , ,

m m

i j i j
K t k t

 
 and    , ,

m m

i j i j
R t r t

 
 ;  

 ,E i j  : equivalent test duration of the
th ATCT for units with characteristics , ,i j ; 

 

For an arbitrary m,  a could be any element in  1,...,iz m and  j a could be any of the 

elements in sequence . Note that   1j a  is uniquely determined by  j a while  1j a 

could be any element in         1 ,..., 1 :s s j a    .  

 

There are numerous potential system states at arbitrary time t, depending on the batch sizes 

and number of previously performed ATCTs. Generally, the number of potential system 

states at time t equals to the number of feasible solutions to the following equations. 
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Meanwhile, the number of solutions of the ith row of the following equations is the number 

of possible states of the ith batch.  

    
 

    
 

1

11, 1,
# 0

, ,
# 0

       Row 1

                                             

       Row 
i

m z
m m

j j
j

m z
m m

ii j i j
j

K t R t = n

K t R t = n i

 
 

 
 



  



  





 

 

 

 

We numerically show how the system states and batch states are reflected by  ,

m

i j
K t


and

 ,

m

i j
R t


, ,i j  at time  1 1 2,t t t  , assuming two batches in the system at time t  with

1 2 5n n  . Specifically, 1 1 1 2w t w t    .The number of potential system states at time

t is obtained by solving all feasible solutions to: 

1 1 1 1 1 1

1,11 1,01 1,0 0 1,11 1,01 1,0 0
5K K K R R R                                                                         (5.11) 

1 1

2,0 0 2,0 0
5K R                                                                                                             (5.12) 

 

We always have:          1 1 1 1 1
1,11 1,01 1,00 2,00

K t K t K t K t K t    . In the following, we list 

a possible system state, which yields one failure at time t  (  1 1K t  ). Batch states are 

marked in the system state.  
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1 st
1,11

1 1
1 st
1,01

1

2

0 (# of failed units in batch 1 at , tested in 1  test, 

                   observed failure at  )

1 (# of failed units in batch 1 at , tested in 1  test, 

     

5

   

5

K t t

t

K t t

n

n









 


 
 

 

 

1
1,0 0

1 st
1,11

              no failure observed)

0 (# of failed units in batch 1 at , 

                    no test thus no failure observed)

0 (# of survived units in batch 1 at , tested in 1  test,

K t t

R t t





 

 

1 1
1 st
1,01

1
1,0 0

 

                   observed failure at  )

0 (# of survived units in batch 1 at , tested in 1  test, 

                    no failure observed)

0 (# of survived units in batch 1 at 

t

R t t

R t







 

 

1
2,0 0

1
2,0 0

batch 1 state

, 

                    no test thus no failure observed)

0 (# of failed units in batch 2 at , 

                    no test thus no failure observed)

0 (# of survived units i

t

K t t

R t




batch 2 state

n batch 2 at , 

                    no test thus no failure observed)

t



























  

 

The distribution of the failed units (the probability of having  mk t failures at time

 1,m m mt t t   ) is obtained by considering all potential system states whose sum of failed 

units with nonhomogeneous characteristics equals to  mk t :  

        

        

 

   

,
, ,

, , , ,

, ,

                             , ;  , ,

!
                             

! ! ,

m m m m

i j
i j

A

m m m m

i j i j i j i j
a b

i

m m
i

i j i j

P K t k t P K t k t

P K t k t R t r t i j

n

k t r t




   

 









 
   

 
 

   


    
   







   

   

, ,

, ,

,
;

,

B

C

m m

i j i j

m m

i j i j
a b

K t k t
P

R t r t
j

j
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 , ,

, ,

, ,

!
                             

! ! ,

m m
i j i jk t r t

D E

i m m

i j i jm m
a b i

i j i j

n
P k t P r t

k t r t j

 

 

 


     
       
          
        

  

(5.13) 

 

where 

    
 

, ,
# 0

i
m m

ii j i j
j

m z

k t r t = n    i
 

  





    

   ,
, ,

m m

i j
i j

a k t k t




 
  
 
 
  

 
 

 ,
, , ; i

m m

ii j
i j i w t

b r t n k t


  

   
       

  
   

 

To obtain the probability that the system has  mk t ( 

 
 = 0,1, ...,

;

m

i

ii w t

k n
 
 ) failures at 

time t  (     m mP K t k t ), we consider all system states that yield  mk t failures (system 

states that satisfy    ,

mm

i j
i j

k t k t


  

 ) and sum these probabilities as

    m mP K t k t (term A in Eq. (5.13)). The probability of a specific system state (term 

B) is obtained by taking the product of the probabilities of all batch states. The probability 

of a batch’s state (term C) is obtained by a multinomial distribution. Terms D and E are 

respectively the probability that the unit with characteristic , ,i j fails and survives at time 
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t . Term D is presented in Eq. (5.14). Term E is obtained by replacing term D4 in Eq. (5.14) 

with 
   

 

 

 
 

 1

; , 1

,
   

 
   

  


   

 
    

 
  E

j j j j
j j j j

R t t i j . 

    
 
 

 

 
 

 

 
 

 

 
     

 

1

# #

,

1 1 1

1
1 ; , 1 ; ,

1 1

1
1 ; ,: 1

% 1 %

                     

,

                    

,

 



 
       



 
   

  

 

 



   

 


 

  

 
    

 

   

 



i

D

m zm

i j

j j

E

ij

s

E

is

s j

P k t p p

F t w i j

F t w i j 
 

 

   
 

 

 
 

 

 
   

 

3

1

1 ; ,

1

1
1 ; , 1 1; ,

1 1

: 

,
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s

j j

E

j j
j j

s j

s j

F t t i j

F t t
 

 

 
 

 

 

 
 

 

 
 

 

   
 

 

 
 

1 1 1
2

1 ; , 1 1; ,

1

; , 1

1

; , 1

,

,
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j j

s s

E

j j

E

j j
j j j j

E

j j
j j j j

i j

F t t i j

F t t i j
 

2
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D

D

 

(5.14) 

 

where  
 

 

 
 

1
x x

b

x b

A Tt
F t

tA T
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Term D1 in Eq.(5.14) is the probability that the unit in the ith batch is tested in sequence , 

where we assume without loss of generality that an arbitrary unit is selected and tested with 

equal probability %p in each ATCT. Term D2 is the probability that the unit with 

characteristics , ,i j fails at time t. In the following, we explain term D3: 

 
 

 

 
 

 

 
     

 

1

3 4

1 1 1

1
1 ; , 1 ; ,

6

5 1 1

1
1 ; ,: 1

3 ,

         

 
       




   

  





   

 


 

 
 

    
 
 

  

 



j j

E

ij

s

is

s j

D F t w i j

F t w  
 

 

2

7

1

1 ; ,

,



   

 


 

 
 

 
 
 


s

E i j

 

 

Term D3 calculates the probability that the unit’s first failure is observed at time
   1 1j j

t  . 

Specifically: 

Term 1 is the probability the unit fails before    1 1j j
t  ; 

Term 2 is the probability that the unit fails before  
   

 
   

1 1

: 1 : 1

s s

s j s j

t
 
 


 

 

 , where 

 
   

 
   

1 1

: 1 : 1

s s

s j s j

t
 
 


 

 

 is the time when the last ATCT (that tests the unit before the unit’s first 

failure is observed) ends; 

Term 3 is the sum of the durations of all ATCTs that test the unit before the unit’s first 

failure; 

Term 4 is  the sum of these ATCTs’ equivalent durations under accelerated conditions;  
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Term 5 is the time when the last ATCT (that tests the unit before the unit’s first failure is 

observed) starts;  

Terms 6 and 7 are the durations and equivalent durations of all ATCTs that test the unit 

with characteristics , ,i j before time 
     1 : 1s s j

t
  

, respectively.  

 

Note that the equivalent test duration is always dependent on a specific unit’s 

characteristics, i.e.,  , E i j  is dependent on , ,i j with fixed  . The iterative 

procedures and an illustration of calculating equivalent duration of the th ATCT 

(  , E i j ) for a unit with characteristics , ,i j can be obtained by the following steps: 

 

Step 1: Find y and such that    1j y j y   and    1       ; meanwhile, 

we always have:      j y s    . If 1y  , continue with step 2; if

 0,  i.e., 1 y j , move to step 3. 

Step 2: Calculate  ,E i j   via Eq. (5.15) 

    
 

 

 

 

   

    
1 1

, , ;

, ;

E E

GBS Ns s
s s

E

GBS As

F t t i j i j T

F t i j T

   

    
   

 

     

 

   



 
       

 

  

 
                       (5.15) 

where    ,E

s
t i j
 




is obtained in Eq. (5.16): 
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1 1

1 1

, ; , ;
   

     
   

    
 


   

 
        

 
 E E

GBS A GBS Ns s s
s s

F t i j T F t t i j T (5.16)  

where      , , 1 ,..., 1       E i j s in Eq. (5.15) is obtained iteratively according to 

the above procedure. 

 

Step 3: Calculate  ,E i j   via Eq. (5.17): 

 

 

 

 

      
1 1

, , ; , ;
i

E E E

GBS i N GBS w AF t w i j i j T F t i j T
   

     
   

      

 

 
         

 
  (5.17) 

where  ,
i

E

wt i j  is obtained in Eq. (5.18): 

  
 

 

 

 

 
1 1

, ; , ;
i

E E

GBS w A GBS i NF t i j T F t w i j T
   

   
   

   

 

 
       

 
                       (5.18) 

 

The expected number of failures at arbitrary time  1,m m mt t t   is obtained as: 

         
  0

m m m m

tm

i
i

k

n

E K t k t P K t k t




  



                                                              (5.19) 

 

Note that the testing results are known under some circumstances, i.e., 
,

m

i j
n


, ,i j are 

known by time m mt  . The model proposed in Eq. (5.13) can be simplified and applied: 
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m
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i j i j i j i j i j i j

k t
A

m

i j m m m m m
m i j i j i j i j i j i j
i j

P K t k t R t r t i j N n i j

n
P k t N n P r t N n

k t



     



     


     

  
      

   
   

 ,

, ,

m
i jr t

B

m

a b i j





 
 
 
 



 

(5.20) 

 

where terms a and b are the same as presented in Eq. (5.14), and terms A and B can be 

obtained conditionally by referring to Eq. (5.14).  

 

The potential number of system states increases with the conduct of the ATCTs. Therefore, 

the analytical expression of the system reliability is a piecewise function as the conduct of 

the ATCTs. We also note that the system reliability shows a step increment when new 

batches are introduced or when the ATCT is conducted and failed units are repaired. An 

illustration is given in section 5.5. 

 

5.4 Simulation Model 

 

We develop a simulation model to validate the proposed model in section 5.3. We apply r 

replications and compare the mean of system’s expected number of failures of the r 

replications (using the simulation model and the proposed model). Each replication with 

one set of randomly generated testing parameters (batch size in , batch arrival time iw , test 

time t , test duration  , where 1,2,...,m  ) runs for 104 iterations. In each iteration, the 
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number of failed units is recorded as  mK t . The reliability metrics (   mE K t  and

    m mP K t k t ) in one replication are respectively obtained by Eqs. (5.21) and (5.22): 

  
 

410

410

m

m

K t

E K t 


                                                                                                  (5.21) 

    
   

4

frequency of   

10

m m

m m
K t k t

P K t k t


                                                      (5.22) 

 

We illustrate the procedures of estimating  1K t and  2K t in one iteration as follows, where

 mK t m can be estimated iteratively. We assume that 1 1 1 2 20w t w t     . 

 

• Estimation of  1K t : 

1. Generate
1n random failure times follow GBS distribution with given parameters and 

temperature amplitude
NT ; randomly select 1

11,0 0
%n p n  failure times; within the

1

1,0 0
n failure times, record the number of failure times between   1 10, 1,0 0Et    as

1

1,11
n . 

2. Generate 1

1,11
n failure times, record the number of failure times between  1 10,t t   as

 1

1,11
K t . 

3. From the
1 1 1

1,0 0 1,11 1,01
n n n  failure times, record the number of failure times between

    1 1 1 11,0 0 , 1,0 0E Et t      
as  1

1,01
K t . 

4. Generate 1

1 1,0 0
n n failure times, record the number of failure times between  0, t as
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 1

1,0 0
K t . 

5.        1 1 1 1

1,0 0 1,01 1,11
K t K t K t K t   .   

 

 Estimation of  2K t  

1. Generate 1

1,11
n failure times from

1

1 1,0 0
n s ; 

1.1.Randomly select %p ; 

1.1.1 Record the number of failure times between   2 1 1 20, 1,11Et t      
 as

2

1,1212
n ; 

generate
2

1,1212
n random failures times and record the number of random failures 

between  2 20,t t   as 2

1,1212
K ; 

1.1.2 Record the number of failure times between 

    2 1 1 2 1 1 2 21,11 , 1,11E Et t t t             as 2

1,112
K .  

1.2 From the remaining 1 %p failure times, record the number of failures between

 1 10,t t   as 2

1,11
K .   

2. From the 1

1,01
n failure times: 

2.1 Randomly select 1

1,01
%p n ; 

2.1.1 Record the number of failure times between

      1 1 2 1 1 21,0 0 , 1,0 0 1,0 1E E Et t         as 1

1,112
n ; generate 1

1,112
n random failures 

and record the number of failures between  2 20,t t   as 1

1,212
K ;     
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2.1.2 From 1 1

1,01 1,112
%p n n  failure times, record the number of failure times between 

        2 1 1 2 1 2 1 21,0 0 1,0 1 , 1,0 0 1,0 1E E E Et t               as 1

1,012
K ;  

2.2 From the remaining   1

1,01
1 %p n  failure times, record the number of failure times 

between     1 1 1 11,0 0 , 1,0 0E Et t     as 1

1,01
K .  

3. From the 1

1,0 0
n failure times: 

3.1 Randomly select 1

1,0 0
%p n ; 

3.1.1 Record the number of failure times between   2 20, 1,0 0Et     as 1

1,2 2
n ; generate 

1

1,2 2
n failure times and record the number of failure times between  2 20,t t   as 

2

1,2 2
K ; 

3.1.2 Record the number of failure times between     2 2 2 21,0 0 , 1,0 0E Et t       as

2

1,0 2
K ; 

3.2  From the remaining failure times, record the number of failures between  0, t as

2

1,0 0
K .    

4.                  2 2 2 2 2 2 2 2 2

1,1212 1,112 1,212 1,11 1,01 1,2 2 1,0 2 1,0 0
K t K t K t K t K t K t K t K t K t          

 

General procedures of estimating  mK t m in one simulation iteration can be obtained 

iteratively. 
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In this section, we conduct sequential ATCTs on batches of one-shot units with 

nonhomogeneous characteristics. We propose accurate and effective models to obtain 

reliability metrics of the mixtures of units, taking into account the effect of thermal fatigue 

and sampling uncertainty. The proposed models can be applied to a variety of testing 

scenarios as discussed in chapter 3. 

 

5.5 Numerical Illustrations and Validation of the Proposed Models 

 

5.5.1 GBS Performance in Predicting Fatigue Life  

 

Assuming that
71 10 , 2, 0.01 and 194b b AA T        , we generate a group of 

accelerated fatigue data based on the CM model which are then used for the estimation of 

GBS parameters. The parameters are then used to predict the expected fatigue life under 

normal conditions. Table 5.1 shows the predicted fatigue life by the CM model and the GBS 

accelerated model under different normal conditions. The comparisons validate the 

performance of GBS distribution in predicting fatigue life under normal conditions. 

 

Table 5.1 Expected fatigue life predicted by the CM model and the GBS model 

NT  

CM model GBS model 

64 2441.4063 2442.9241 

104 924.5562 927.7419 

144 482.2531 481.4050 
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184 295.3686 295.8766 

 

5.5.2 System Reliability  

 

In section 5.3, the system reliability metrics at arbitrary time  1,  m m mt t t m    are 

investigated. In the following, the system reliability until 
4 4t t   is plotted for different

%p values with the following parameters:  

 

% 20%q  ; 20,  1,2,3,4,5in i  ;  

1 2 30, 150, 350;w w w   1 2 3 1 2 3100, 250, 450, 460; 20;t t t t            

 66 10 , 2, 1, 0.5 0.001A b x x        ; and 104, 194N AT T    . 

 

Figure 5.1 System reliability until time t with % 50%p   
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Figure 5.2 System reliability until time t with % 90%p   

 

Figures 5.1 and 5.2 show the system reliabilities for % 50% and % 90%p p  , respectively. 

They also show that selecting and testing (and repairing failed units) a large number of units 

improves the system reliability metrics. Meanwhile, the system reliability shows a step 

increment when new batches arrive or when the tests are conducted. 

 

5.5.3 Expected Number of Failures by the Proposed Model and the Simulation Model  

  

Applying the simulation model and the proposed model, we calculate   mE K t at arbitrary 

time  1m m m
t t t


  , for 1,2,3m  . The testing parameters are generated with simple 

distributions as described in section 5.4. We validate the proposed model for arbitrary values 

of in by considering: 
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a) 150 in i  ; 

b) 
1 2 150,  100,  150n n n   ; i.e., the system has a large number of newly arrived units; 

c) 1 2 3150, 100,  50n n n   ; i.e., the system has a large number of aged units.    

 

The average   mE K t for 1,2,3m  using the proposed model and simulation model with 

batch sizes in a), b) and c) are shown in Tables 5.2-5.4. 

 

Table 5.2 Expected number of failures at arbitrary time between the first three tests based 

on proposed model and simulation model with batch sizes in a) 

 
t1 t2 t3 

Proposed model 0.0243 0.0978 0.1703 

Simulation model 0.0243 0.0981 0.1709 

 

Table 5.3 Expected number of failures at arbitrary time between the first three tests based 

on proposed model and simulation model with batch sizes in b) 

 
t1 t2 t3 

Proposed model 0.0501 0.1836 0.2773 

Simulation model 0.0502 0.1839 0.2779 

 

Table 5.4 Expected number of failures at arbitrary time between the first three tests based 

on proposed model and simulation model with batch sizes in c) 
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t1 t2 t3 

Proposed model 0.0718 0.2692 0.3978 

Simulation model 0.0719 0.2694 0.3974 

 

5.6 Conclusions 

 

In this chapter, we propose accurate and effective approaches that model the reliability 

metrics of a system subjecting to thermal cyclic fatigue by utilizing the GBS distribution. 

The system has a mixture of nonhomogeneous one-shot units that arrive at different times 

and are subjected to sequential ATCTs. We demonstrate that the GBS distribution, though 

developed for mechanical fatigue failure, is suitable for modelling thermal fatigue data. 

Moreover, compared with the commonly used CM model, we show that the GBS 

distribution provides additional reliability metrics and assesses the reliability at the system 

level that could not be accomplished by the CM model. The proposed models’ flexibility 

and robustness in estimating/predicting the system reliability metrics are validated by a 

simulation model.  
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CHAPTER 6 

RELIABILITY MODELING OF MIXTURES OF ONE-SHOT UNITS UNDER 

COMPETING FAILURE MODES 

 

There exists many situations that a unit fails in different failure modes which are caused 

by different failure mechanisms. For example, the integrated circuit (IC) board might no 

longer function properly due to either the fluctuations of temperature that initiates and 

propagates cracks in the solder joints to an unacceptable level, or due to degradation of 

resistors with time that eventually reaches a critical point and the IC seizes to function. 

Under such circumstances, the failure data cannot be described by a single failure time 

distribution; instead, a competing failure model which considers multiple failure modes is 

adopted to assess unit’s reliability metrics. Under competing failure modes, a unit fails 

when any of the failure mechanisms reaches its failure state. 

 

The one-shot unit might experience competing failure modes during its storage period. 

Repeated thermal cyclic tests (TCTs) are randomly conducted. At the end of an arbitrary 

TCT, the unit’s failure is observed either when any of its failure modes occurs suddenly 

(failure modes without indicators of failure) or when any of its degradation modes (which 

exhibit indicators that eventually lead to failure) reach its “failure threshold”. Meanwhile, 

the unit is repaired either when it fails between two tests or when one of its degradation 

modes reaches the predetermined “repair threshold”, where the “repair threshold” is lower 

than the “failure threshold”.  
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In this chapter, the reliability metrics of the system under competing failure modes are 

investigated. In section 6.1, we study the units’ potential failure modes and its reliability at 

arbitrary time. In section 6.2, we investigate the reliability metrics (such as failure 

distribution, reliability function, time-to-the kth failure) of the system under competing 

failure modes, where batches of one-shot units arrive and sequential TCTs are conducted. 

In section 6.3, we investigate the system reliability metrics under a generalized scenario 

where the units may exhibit M failure modes (that occur suddenly) and N degradation 

modes. In section 6.4, we develop a simulation model to validate the models proposed in 

sections 6.2 and 6.3. In section 6.5 we illustrate the use of the proposed models with a 

numerical example. In section 6.6, we conclude our work.  

 

6.1 Unit’s Reliability under Competing Failure Modes 

 

The one-shot units might fail suddenly (without indications that failure is about to occur) 

at arbitrary time during its storage period, which can be characterized by certain lifetime 

distributions (e.g., Weibull distribution); besides, the repeated fluctuations of temperature 

produce thermal stresses and initiate and propagate cracks of the units (e.g., solid solder 

joints in an IC board) in each cycle. The crack is observable (as an indicator of failure) and 

eventually causes thermal fatigue failure when it reaches the failure threshold. Moreover, 

the resistance of the units degrades with time under arbitrary temperature, which eventually 
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reaches an unacceptable level and causes the failure of the unit. Specifically, the one-shot 

units in the system might fail due to any of the following three reasons: 

 

a) Failure occurs suddenly without an indicator; the failure time follows a Weibull 

distribution and its CDF is given by Eq. (6.1); 

        1 expW

t
F t





  
       

                                                                                                            (6.1) 

b) Crack is initiated and propagated due to the thermal cyclic stresses; the failure time due 

to crack propagation is modeled by a GBS distribution as presented in Eq. (6.2); 

          ; F

F GBS F

F F

C t t
P C t C F t C

C C

 

  

                            

       (6.2) 

where  

,  and    are the GBS parameters which depend only on unit’s material property;  

 C t  is the crack length at time t ; and 

FC  is the failure threshold of the crack. 

c) The resistor changes (degrades) under arbitrary temperature as described in Eq. (6.3): 

  0

 

m

E

kT

t
R t R

e

 
   
  
 

                                                                                                                                     (6.3) 

where  
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 R t is the change in resistance (degradation level) at time t; 

0R  is the initial value of resistance; 

  and m are constants; 

T is the temperature (in Kelvin);  

k  is the Boltzmann constant and equals to 
58.62 10 ; and 

E  is the activation energy which depends on the unit’s material property. 

 

It is worth noting that in the resistance change model, the empirically determined exponent

  usually follows certain probability distribution either due to the variation of the testing 

environment or due to the material property inconsistency. Without loss of generality, we 

assume that  follows a normal distribution, i.e.,  ,N     . In Eq. (6.4), we calculate 

the probability that the resistance degrades to its failure threshold ( FR ) before time t : 

  0

0

expexp

( )

F
m

mF
m

F m

REEm
R

kT R tkT
P R t R P

R t










             
           

  
    

   

                  (6.4) 

 

As stated earlier, the degradation process provides indicators of failure which can be 

utilized to prevent potential failures. Specifically, units are repaired to as good as new 

either when it fails abruptly or when either of the above two degradation modes (crack 
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growth or resistance degradation) reaches its repair threshold. It is without loss of 

generality to assume the repair threshold is lower than the failure threshold. Respectively, 

the unit in the system needs repair at time t  due to the crack growth or the resistance 

degradation with the probabilities calculated in Eqs. (6.5) and (6.6) respectively: 

 

 ; R

GBS R

R R

C t t
F t C

C C

 

  

                         

                                                         (6.5) 
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                      (6.6) 

 

At arbitrary time t , the units can (only) be in any of the following three states: 

 

State 1: the unit is good and needs no repair; i.e., the unit does not fail suddenly and neither 

of the degradation levels reaches its repair threshold; 

State 2: the unit is good but needs repair; i.e., the unit does not fail suddenly and at least 

one of the degradation modes’ levels reaches its repair threshold; however, neither 

of the degradation levels reaches its failure threshold; 

State 3: the unit fails and needs repair; i.e., the unit either fails suddenly or at least one of 

the degradation levels reaches its failure threshold.  
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At arbitrary time t, letting      1 2 3,   and P t P t P t  respectively denote the probability that 

the unit is in state 1, 2 and 3, then: 
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(6.9) 

 

6.2 System Reliability Metrics under Competing Failure Modes 

 

As discussed in the previous chapters, one-shot units (such as missiles) are produced in 

batches and kept in storage until needed. Specifically, the ith batch of units with size in

arrives into the storage at time
iw immediately after production. TCTs are conducted at 

arbitrary times during the entire life horizon of the units. The mth TCT is performed at time

mt  by testing the entire population. The units in storage are subject to three failure modes 

as discussed in section 6.1. Units are repaired and placed back into the system either when: 

1) they fail suddenly between two tests; or 2) when crack length reaches the repair threshold

RC ; or 3) when resistance changes to the repair threshold RR . The system fails if a 

certain percentage or more units fail, which is referred to as a generalized “k(t)-out-of-n(t): 

F” system.  

 



122 
 

 

In this section, we investigate the system reliability metrics at arbitrary time t  under the 

competing failure modes. The following notations are defined: 

 

iz : the number of TCTs conducted before the arrival of the ith batch; 

:j the TCT sequence under which the units’ repair(s) is conducted; 

 # :j  the number of tests in sequence j ;  # j j ;  

  :j  the a th TCT in sequence j ;  

  C j  : the crack length at the end of the a th TCT; 

  R j  : the resistance change at the end of the a th TCT; 

mK : the number of failed units at the end of the mth TCT; 

, ,, :m m

i j i jK R   the number of failed (survived) units with characteristics ,i j  at time 
m

t  ; j  is 

composed of arbitrary  # j tests in the discrete set  1,...,iz m  ; specifically, 

, ,

m m

i j i jK k and , ,

m m

i j i jR r ; 

 j
t

 : time when the unit’s a th repair is conducted.  

 

6.2.1 System Failure Distribution and Reliability under Competing Failure Modes 
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The distribution of the failed units at the end of the mth TCT is obtained in Eq. (6.10) by 

considering all potential possibilities that yield
mk failures:  
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where 

 
, ,

, , ;

;  
i

m m m m

i j i j i

i j i j i w t

a k k b r n k
   

     
             

    
    

 

We obtain the expected number of failures at the end of the mth TCT as shown in Eq. (6.11) 

   
0

m m m m

m

i
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n
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                                                                                             (6.11) 

 

Defining the entire population as a generalized “k(t)-out-of-n(t): F” system, where 

 
 ,

%
i

i

i w t

k t q n
 

  
    
   

  and  
 , i

i

i w t

n t n
 

   . The reliability of the system at time

 1,  m mt t t   ( 1,2,...m  ) is obtained using Eq. (6.12):  
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                                                                                                  (6.12) 

 

The analytical expression of the system reliability is a piecewise function of the time of the 

conduct of the TCTs. We also note that the system reliability shows a step increment when 

new batches are introduced or when the TCT is conducted and units are repaired. An 

illustration is given in section 6.5. 

 

6.2.2 System’s Time-to-kth-failure 

  

One-shot units are deployed after long terms of storage. A sample with certain number of 

one-shot units is selected from the stored population and deployed for use. In the following, 

we obtain the pdf of the time-to-kth-failure (  kf t ) of an arbitrarily selected sample (with 

nonhomogeneous units) under competing failure modes. We first define the following: 

 

,

m

i js : the number of selected one-shot units with characteristics ,i j at the end of the mth TCT;  

', '

m

i js : the number of selected one-shot units with characteristics ', 'i j  at the end of the mth 

TCT, specifically, the kth failed one-shot unit has the characteristics ', 'i j ;  

,

m

i jk : the number of selected one-shot units (with characteristics ,i j  at the end of the mth 

TCT) that fail between time mt and t ;  
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', '

m

i jk : the number of selected one-shot units (with characteristics ', 'i j at the end of the mth 

TCT) that fail between time 
mt and t ;  

,

m

i jr :  the number of selected one-shot units (with characteristics ,i j  at the end of the mth 

TCT) that survive until time t ;  

', '

m

i jr : the number of selected one-shot units (with characteristics ', 'i j  at the end of the mth 

TCT) that survive until time t ; 

  

The reliability of the unit with characteristics ,i j  at arbitrary time  1,  m mt t t   is obtained 

by Eq. (6.13): 
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          (6.13) 

 

Accordingly, the expected time-to-kth-failure of the sample is expressed as

   
0

k m kE T t f t dt


   , where in Eq. (6.14), 
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(6.14) 
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When the units exhibit competing failure modes, then the sample’s time-to-kth-failure is 

expected to occur earlier than that when the system exhibits a single failure mode. 

 

6.3 Generalization of System Reliability Metrics Modeling  

 

In this section, we generalize the scenario discussed in section 6.2 and investigate the 

system reliability metrics when the units exhibit  M failure modes without indictors and N 

degradation modes. At the end of the mth TCT, the unit’s failure might be observed either 

when any of the M failures occurs suddenly between the (m-1)th and the mth TCTs or when 

any of the N degradation modes reaches its failure threshold. Similarly, the unit is repaired 

either when any of the M failures occurs or when any of the N degradation modes reaches 

its repair threshold. Under such circumstances, the system’s failure distribution can be 

obtained by referring to Eq. (6.10); however, the probability that the unit has specific 

characteristics ,i j  and fails (survives) at the end of the mth TCT needs to be reinvestigated.  

 

We define the following and calculate the  ,

m

i jP k and  ,

m

i jP r  by referring to Eq. (6.14). 

 

 pR t : the unit’s reliability due to the pth failure mode (without an indicator) at time t, 

1,2,...,p M ;   

 qR t : the level of the qth degradation mode at time t , 1,2,...,q N ;  

F

qR  : the failure threshold of the qth degradation mode; 
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R

qR  : the repair threshold of the qth degradation mode; 

q : a set of degradation modes (selected from the N degradation modes) which reach its 

repair thresholds at the end of the TCTs in sequence j .  

 

Appendix A shows the calculation of system reliability metrics.  

 

6.4 Simulation Model 

 

In this section, we develop a simulation model to validate the proposed models in sections 

6.2 and 6.3. For a comprehensive validation, we apply r replications and compare the 

system reliability metrics (e.g., reliability, expected number of failures) obtained by the 

proposed models and the simulation model in each replication. Each replication has one 

set of randomly generated testing parameters (batch size, batch arrival time, test time and 

temperatures). In one replication, the simulating procedure is repeated for 103 iterations. 

The steps of simulating the number of failed units in the 1st batch (assuming 1 0w  ) at the 

end of the 1st (
1

1k ) and 2nd (
2 2 2 2

1 1 1,0 1,1,  where k k k k  ) TCTs in one iteration are illustrated 

in the flow charts in Figures 6.1 and 6.2. We define the following notations: 

 

, _

m

i j Wv : vector composed of random failure times at the mth TCT  (with characteristics ,i j ) 

generated based on the Weibull distribution; 

 , _

m

i j Wv  : the  th element in vector , _

m

i j Wv ; 
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, _

m

i j GBSv : vector composed of random failure times (with characteristics ,i j ) generated 

based on the GBS distribution; 

 , _

m

i j GBSv  : the  th element in vector , _

m

i j GBSv ; 

, _

m

i j Resistorv : vector composed of random failure times (with characteristics ,i j ) generated 

based on the resistance change model; 

 , _

m

i j Resistorv  : the  th element in vector , _

m

i j Resistorv . 

 

Simulating random failures at time
1t : 

 

Figure 6.1 Steps of simulating the number of failures in the 1st batch after the 1st TCT 
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Simulating random failures at time
2t : 
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Figure 6.2 Steps of simulating the number of failures in the 1st batch at  

the end of the 2nd TCT 

 

6.5 A Numerical Illustration 

 

In this section, we numerically obtain the system reliability at arbitrary time t until the end 

of the 3rd TCT, under competing failure modes.  
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Batches of one-shot units are produced and stored at times 
1 2 30,  200 and 400w w w  

with batch sizes 1 2 3 20n n n   , respectively. TCTs are conducted at times

1 2 3100,  300 and 500t t t   . In each temperature fluctuation cycle, the entire population 

is subjected to temperature ( 350
U

T K ) for 10UD s , and then cooled to a temperature 

( 250
L

T K ) for 20LD s , where ,L UD D  are the dwell time in seconds at the lower and 

upper temperatures, respectively. Units in the system might fail due to any of the following 

reasons:  

 

1. The sudden failure time is modeled by a Weibull distribution with CDF 

1 expW

t
F





  
       

  where 450 and =2  ;  

2. The probability of failure due to crack length  C t  reaching a predetermined 

failure threshold FC  due to the thermal stresses is modeled as: 

              
   

F

F B B

U L F U L F

C t t
P C t C

A T T C A T T C

 



                
             

 ,   

where 

40%FC  , i.e., the crack length reaches 40% of the unit’s entire length; 

132,  8 10 ,  -5,  0.5,  350 ,  250U LA B T K T K        ; and 
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3.  The change of the resistance reaches a predetermined failure threshold 
FR  with 

the probability:  

               0

exp expUF L
m

m

U L U U L L

F

DR DE E

R t D D kT D D kT
P R t R









     
      

       
     

 
 
 

where 

          
5

0100 ,  200 ,  0.3eV, 8.62 1 V/ ;  0 e KFR R E k          

0.5,  2, 0.02m       

 

Repairs are conducted: 1) when the unit is observed to fail suddenly between two tests, or 

2) when the repair threshold for the crack length 20%RC  is reached, or 3) when the 

repair threshold for the resistance change 40RR   is reached. Defining the system as a 

“k(t)-out-of-n(t): F” system with    25%k t n t   , we plot the system reliability at 

arbitrary time t until the end of the 3rd TCT in Figure 6.3. Besides the competing failure 

modes, we also plot the system reliability under each failure mode independently to 

identify the dominant failure/degradation mode that causes system’s failure.  
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Figure 6.3 System reliability until the 3rd TCT under different failure modes 

 

It is observed that the “sudden” failure, characterized by the Weibull distribution, is the 

dominant failure mode. However, when   changes from 450 to 800 and A  changes from 

138 10  to 133 10 , the crack caused by the thermal fatigue becomes the dominant failure 

mode, as plotted in Figure 6.4. 

 

Figure 6.4 System reliability until the 3rd TCT under different failure modes  
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6.6 Conclusions 

 

In this chapter, we propose efficient and effective approaches that model the reliability 

metrics of systems subject to competing failure modes. The system has a mixture of 

nonhomogeneous one-shot units that arrive at different times and subjected to sequential 

TCTs. We develop and utilize statistics-based models and physics-statistics-based models 

to characterize the failure/degradation modes. We state that more frequent NDT is required 

to minimize the probability of system failure and validate that competing failure modes 

result in worse system reliability than single failure mode. Moreover, the proposed models’ 

accuracy in estimating the system reliability metrics is validated by a simulation model.  
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CHAPTER 7 

OPTIMAL SEQUENTIAL ALT PLANS   

 

In many situations, it is difficult or impossible to obtain failure data under normal 

conditions for highly reliable units. In such cases, accelerated life testing is applied by 

subjecting the units to severer-than-normal stresses such that failures are induced in a much 

shorter time. The accelerated data are utilized to estimate the units’ lifetime and other 

reliability metrics under normal conditions by using ALT models. The accuracy of 

reliability estimation depends on the ALT models that relate the failure data under 

accelerated conditions to that under normal conditions and the design of the ALT plans. 

 

Statistics-based models, physics-statistics-based models, and physics-experimental-based 

models are typical types of ALT models which relate the failure data at accelerated 

conditions to the normal conditions and predict the units’ reliability under normal stresses. 

Statistics-based models utilize historical failure data but neglect the physics of the units’ 

failure mechanism, moreover, they do not apply to the situations when insufficient data are 

available. Physics-based models are effective when the change in the unit’s physics (either 

due to the unit’s material properties, or due to the unit’s working environments) is precisely 

related to the reliability model parameters, however, it neglects the uncertainty during the 

units’ failure processes. Physics-statistics-based models combine both the statistics-based 

models and the physics-based models by predominately considering unit’s failures 

mechanism as well as taking the uncertainty during the modeling process into account.  
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When selecting ALT models based on the units’ physics and statistical properties, an 

optimal ALT plan is required to improve the accuracy and efficiency of the reliability 

estimation. Specifically, an ALT plan optimizes a specific objective (usually specific 

reliability metrics) meanwhile meets given constraints. An appropriate optimization 

criterion for the ALT plan is important as it reflects the purpose of the ALT plan, ensures 

the accelerated stress levels are within engineering range, as well as ensures that the 

reliability estimation is accurate.  

 

Usually, some or all of the types and levels of the applied stresses, the number of testing 

units, the time to perform the test, and test duration need to be determined. These factors 

are mainly decided by the functions that the units will be performing under normal 

conditions. In this chapter, we design a sequence of accelerated NDTs plans, considering 

the effect of population’s non-homogeneity. Only a sample is randomly selected and tested 

in each test. The results show that a well-designed sequential accelerated NDT is an 

effective approach for accurate reliability prediction with negligible effect on the residual 

lives of the units and other system reliability metrics.  

 

The accelerated NDTs plans are designed under the following two testing scenarios:  

 

Testing scenario 1 (TS1): The NDTs (duration of the test is considered) are sequentially 

performed under accelerated conditions at arbitrary time by 

testing the selected samples, failed units are discarded; 
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Testing scenario 2 (TS2): The NDTs (duration of the test is considered) are repeatedly 

performed under accelerated conditions at arbitrary time by 

testing the selected samples, failed units are repaired and placed 

back in the population with higher failure rates. 

 

The remainder of this chapter is organized as follows: Section 7.1 investigates the lifetime 

distribution of an individual unit in the system by developing a physics-statistics-based 

model, which directly relates the applied stresses to system reliability metrics. In section 

7.2, we design a sequence of accelerated NDTs plans by considering the population’s non-

homogeneity under TS1 and TS2. A numerical example is provided in section 7.3 to 

demonstrate the design of the optimal sequential ALT plans. In section 7.4, we summarize 

the conclusions of this chapter. 

 

7.1 Power-Law Humidity Model 

 

In chapter 3, we apply the general notations  xF   and  xf  to relate the system reliability 

metrics to individual unit’s lifetime when calculating a specific system state’s probability 

(  , , , ,, ; ,m m m m
i j i j i j i jP K k R r i j   ). The specific form of unit’s lifetime model, which reflects 

unit’s characteristics and applied stresses, is required. In this section, we develop a physics-

statistics-based model to analyze the individual unit’s lifetime, which relates the unit’s 

lifetime under arbitrary environment to its working environment.  
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We consider the one-shot units that are affected by both temperature and humidity follow 

a physics-based power-law model. The model relates the relative humidity (RH) and 

temperature (T ) to the unit’s lifetime as shown in Eq. (7.1):  

 0 exp
n

B

Q
TF A RH

K T

  
  

 
                                                                                          (7.1) 

 

Where TF is the time to failure; 
0A  is the process (material) dependent parameter and 

serves to produce a distribution of the unit’s time-to-failure; RH and T are the relative 

humidity and temperature, respectively; n is the power-law exponent; BK  is the 

Boltzmann constant and equals to
5

8.62 10


  andQ  is the activation energy constant which 

depends on the material.  

 

The power-law humidity model determines the time to failure once the environmental 

stresses and the unit’s specific property-dependent parameters are known. The parameters 

of the model can follow specific probabilistic distributions due to the units’ production 

processes variability, the variation of the unit’s material properties, and the environments 

under which the units are tested. Without loss of generality, we assume that 0A  follows 

lognormal distribution with known mean and variance:  
0 0

2

0 log ,A AA N u  . Similarly, 

the power-law exponent n is normally distributed with  2,n nn N u  , which reflects the 

uncertainty effect of RH on the unit’s reliability. Taking the logarithm of both sides of 

Eq.(7.1), we obtain: 
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0 0

2 2 2ln ln , lnA n A n

B

Q
TF N u RH u RH

K T
 

 
     

 
, i.e.  2log ,TF N     

where 

0
lnA n

B

Q
u RH u

K T
     and

0

2 2 2lnA nRH      

 

Specifically, the cdf and reliability of the units in the system are respectively:  

 
1 1 ln

2 2 2

t
F t erf





 
   

 
                                                                                                              (7.2) 

and 

 
1 1 ln

2 2 2

t
R t erf





 
   

 
                                                                                                                (7.3) 

 

Eqs. (7.2) and (7.3) are used in section 7.2 to design the optimal sequential accelerated 

NDTs plans. 

 

7.2 Optimal Sequential Accelerated NDTs Plans  

 

There exists some circumstances that the reliability metrics of highly reliable units are not 

attainable within a short testing period under working (normal) conditions. As an 
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alternative, conducting reliability tests under accelerated conditions yields acceptable 

reliability metrics estimates in a shorter test duration. In this section, we design the optimal 

sequential testing plans for a sequence of accelerated NDTs (including m NDTs, where m 

could be an arbitrary value) with the objective of minimizing the difference between units’ 

reliability metrics estimates under normal and accelerated conditions while controlling the 

testing duration within an acceptable level. In each accelerated NDT plan, we determine 

the test duration as well as the applied stress levels; taking into account the effect of the 

units’ nonhomogeneous and time-dependent characteristics and the previously conducted 

accelerated NDTs. We design the optimal sequential testing plans based on the 

sample’s/system’s reliability metrics under TS2 and TS3. At the end of this section, we 

numerically illustrate how the first three accelerated NDTs are designed sequentially. 

 

7.2.1 Mean Residual Life (MRL), Scenarios and Notations 

 

When a unit has the lognormal lifetime distribution as given in Eq.(8), its MRL at time t 

can be derived as the function of: time t , number of its prior repairs x, applied stresses Z  

( RH andT ), and the material-dependent parameters (
0

A and n):  

 

 2 22

2
ln

1

ln
1

t
e

MRL t t
t

   







        
       

 
 

 

                                                                             (7.4) 

where 
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0

lnA n

B

Q
x RH x

K T
       and  

0

22 2lnA nRH      

 

We formulate the optimization problem with the following statements: 

 

a. In each accelerated NDT, 
sq  ( 0 1

s
q   ) of the entire population are selected and 

tested; the “stratified sampling” approach (samples are selected proportionally 

according to the units’ characteristics) is adopted such that the sample represents the 

population’s characteristics; 

b. Samples are placed back into the population after the accelerated NDTs; 

c. The applied stresses (temperature and relative humidity) and the test duration need to 

be determined in each accelerated NDT; 

d. The unit has a lifetime that follows the log-normal distribution and the MRL(t) as given 

in Eq. (7.4). 

 

We use the subscripts A and N to refer to reliability metrics associated with the accelerated 

and normal NDTs, respectively. The yth accelerated NDT plan is affected by the previously 

designed (y-1) NDT plans. The following notations are applicable for the problems 

formulated under TS2 and TS3: 

 

:yt time when the yth accelerated NDT starts, 1,2,...,y m ; 

 y : duration of the yth accelerated NDT; 

,y y

U L   : upper and lower bounds of the yth accelerated NDT duration; 



142 
 

 
 

yZ : the applied stresses (relative humidity yRH and temperature yT ) levels in the yth 

accelerated NDT; 

y

NZ : the applied stresses levels under normal operating conditions;  

y

UZ : the upper bounds of the applied stresses levels in the yth accelerated NDT; 

yN  : the system state at yt , which is a combination of units with different characteristics 

in the system, specifically, 
y yN n where 

yn is a specific system state;  

yS  : the sample state at yt , which is a combination of units with different characteristics 

in the sample, specifically, 
y yS s where 

ys is a specific sample state;  

   ; ,  , ; ,  , ; ,  ,  ; , :y y y y y y y y y y y y y

A A A AP K k Z TMRL s Z R Z E Z                 
the 

probability of having yk  failed units, expected total mean residual life (TMRL) of the units 

in the sample (with sample state
ys ),  the system reliability, and the expected number of 

failed units at the end of the yth accelerated NDT, with applied stresses  ,
y y yZ RH T  and 

test duration 
y , respectively;  

   ; ,  , ; ,  , ; ,  ,  ; ,y y y y y y y y y y y y y

N N N N N N N NP K k Z TMRL s Z R Z E Z                  : the 

probability of having yk failed units, expected total mean residual life (TMRL) of the units 

in the sample (with sample state
ys ),  the system reliability, and the expected number of 

failed units at the end of the yth normal NDT, with normal stresses  ,
y y y

N N NZ RH T  and test 

duration 
y , respectively;  

1

y
q : the ratio of the sample’s expected TMRL after the yth accelerated and normal NDT;  

2

y
q : the ratio of the system reliability after the yth accelerated and normal NDT; 
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3

y
q : the ratio of the expected number of failed units after the yth accelerated and normal 

NDT; 

 

7.2.2 Optimization of Sequential Accelerated NDTs under TS1 

 

We first design the optimal sequential ALTs under TS1, i.e., at the end of each accelerated 

NDT, the sample is placed back into the system without repairs. Under such circumstance, 

the units in the system have different reliability characteristics due to their different arrival 

times and accelerated NDT sequences under which they are tested. The following 

additional notations are necessary for the optimization problem under TS1: 

 

,

y

iN : at time yt , the number of units from the ith batch which are subjected to accelerated 

NDT sequence . Specifically, under TS1, ,  


  y

i in n i always holds, where ,

y

in  

ranges from 0 to in ; 

,

y

iS : the number of testing units selected from ,

y

iN   at yt , specifically, , , , ,  y y

i iS = s i . 

Note that , , ,   y y

i is n i  and 
, ,

, ,

y y

i s i

i i

S = q % N 
  

 
 
 

   always holds; 

 #  : the number of elements/NDTs in NDT sequence , i.e., the number of accelerated 

NDTs the ,

y

iN units subject to; 
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 , ,

, ,

y A y N

i iK K  : the number of failed units out of ,

y

iN at the end of the yth accelerated (normal) 

NDT;  

 , ,

, ,

y A y N

i iR R  : the number of survived units out of ,

y

iN at the end of the yth accelerated 

(normal) NDT; 

    , ,; , ; ,y y y y y y

A i N i NMRL S Z MRL S Z   : mean residual life of any of the ,

y

iS units at the 

end of the yth accelerated (normal) NDT; 

    , ,; , ; ,y y y y y y

A i N i Nt S Z t S Z   : “true” age of any of the ,

y

iS units at the end of the yth 

accelerated (normal) NDT;  

    , ,; , ; ,y y y y y y

A i N i NR S Z R S Z   : reliability of any of the ,

y

iS units at its true age 

    , ,; , ; ,y y y y y y

A i N i Nt S Z t S Z   ; 

 : sum of test durations of all NDTs in sequence  ; 

 and Z  : accelerated stresses under all NDTs in NDT sequence ; 

 , ; , : y y y y

iS Z  “equivalent” test duration of the yth accelerated NDT for any of the ,

y

iS

units; 

 , ; , :  

 y

iS Z  sum of “equivalent” test durations of all accelerated NDTs in sequence 

  (in which the ,

y

iS units are tested) for any of the ,

y

iS  units; 

 x
f  : pdf of the units’ lifetime distribution (lognormal) after its xth repair in Eq. (7.1); 
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The optimal testing plans for the first m accelerated NDTs are obtained successively by 

first solving for 
1 1

1, , and Z t   in the first accelerated NDT; then optimal decision is found 

for the second accelerated NDT. Generally, the yth accelerated NDT plan is affected by 

previous (y-1) NDTs plans and the system state at time yt . We investigate the procedure of 

optimizing the yth accelerated NDT, where 1,...,y m . Specifically, the applied stresses 

(temperature and relative humidity) in the yth test, the time to conduct the yth test, and the 

yth test duration are determined by optimizing the following problem:  

 

Min  

   
0

; , ; ,

i
i

y

y y y y y y y y

A N N

n

k

P K k Z P K k Z 




     
   



                                                        (7.5) 

Subject to 

y y y

N UZ Z Z                                                                                                                                         (7.6)  

 and   y y y y

U L y Ut t t y i                                        (7.7) 

         1; ,  ; ,y y y y y y y y y y y

A N N
y ys s

P S s TMRL s Z q P S s TMRL s Z 
 

              (7.8) 

2; , ; ,
y y

N

y y y y y

A NE Z E Zq                                                                                                        (7.9) 

3; , ; ,y y y y y y y

A N NR Z q R Z                                                                                                 (7.10) 

      Max ; , Max ; ,y y y y y y y y

A N Nk P K k Z k P K k Z                                           (7.11) 
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To minimize the effect of acceleration on the system reliability metrics, we minimize the 

sum of the difference between the failure distributions at the end of the yth accelerated NDT 

and normal NDT (Eq. (7.5)). Constraint (7.6) ensures that applied stresses’ levels are 

higher-than-normal and lower than specified thresholds such that failure modes remain 

unchanged. The test duration of the accelerated NDT should not exceed its upper bound 

and the test should be performed within certain time intervals (Eq. (7.7)). We require the 

total expected  mean residual life (TMRL) of the units in the sample at the end of the yth 

accelerated NDT equals to or longer than 1

yq of total expected mean residual life after the 

yth normal NDT (constraint (7.8)). According to constraint (7.9), the system’s expected 

number of failures after the yth accelerated NDT should not be less than 2

yq of that after the 

yth normal NDT. Similarly, the difference between system reliability after the yth 

accelerated NDT and the yth normal NDT is less than 3

yq according to constraint (7.10). In 

constraint (7.11), the peaks (maxima) of the number of failures distributions after the yth 

accelerated and normal NDT are the same. This optimization problem can be solved by 

using nonlinear optimization programming. 

 

Assuming
y yS s , i.e., 

, ,
,y y

i i
S s i

 
  , the TMRLs of the units in the sample equals to: 

   , ,

,

; , ; ,y y y y y y y

A i A i

i
A

TMRL s Z s MRL s Z 


 


                                                                           (7.12) 

Term A in Eq. (7.12) (the MRL of any of the ,

y

is  units at the end of the yth accelerated NDT) 

is obtained as: 
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   , ,

,
, ; ,

1
; , ; ,

; ,

y y y y y y

A i A iy y y

A i
A

y y y
A it s Z

MRL s Z f d t s Z
R s Z

 


 

    




 
 
 

                     (7.13) 

 

Term A in Eq. (7.13) is obtained as shown in Eq. (7.14) by reducing the sum of all 

accelerated NDTs’ durations in sequence  (term A in Eq. (7.14)), and adding the sum of 

their corresponding “equivalent” test durations (term B and C in Eq. (7.14)): 

     , , ,; , ; , ; ,y y y y y y y

A i y i i i

A
B C

t s Z t w s Z s Z    

                                              (7.14) 

 

Term B in Eq. (7.14) can be obtained by letting the reliability of any of the ,

y

is units at yt  

(if all NDTs in sequence are accelerated) equals to the reliability of any of the ,

y

is  units 

at its true age (if all NDTs in sequence are under normal conditions): 

    1 1 ,; ,  NDT in ; , ; , ,  NDT in y

y i y i i N NR t w Z R t w s Z Z        

                 

(7.15) 

 

Similarly, the equivalent duration of the yth NDT for any of the ,

y

is units is obtained as: 

 
   , ,; , ; ,

; , , ,
; , ,  , ,

y y y y y

y i i iy y y

y i
y y

N N N

t w s Z s Z
R t w Z Z R

Z Z

   

  

  

    
   

   

    
    
  

 (7.16) 
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Then  , ; , y y y

A iR s Z  is obtained. The MRL of any of the 
,

y

is  units at the end of the yth 

accelerated NDT is accordingly obtained.  

 

Terms B and C in Eq. (7.14) reflect the effect of applied stresses on the units’ reliability 

metrics as described in Eq. (7.2). The expected TMRL of the sample at the end of the yth 

normal NDT can be calculated by following the same steps in Eqs.(7.12)-(7.14), only 

replacing term C in Eq. (7.14) with
y .  

    

Eqs. (7.12)-(7.14) obtain the sample’s TMRL under a specific sample state
ys . Obviously, 

there exists many potential sample states at yt and the probability of having a specific 

sample state (  y yP S s ) needs to be investigated. Under TS1,  y yP S s is obtained 

by applying the law of total probability. Specifically, for arbitrary
ys we consider all 

possible system states (
, ,,  i.e., ,    y y y y

i iN n N n i ) that yield
ys . Term A in Eq. (7.17)) 

uses a hypergeometric distribution to obtain all possible 
ys  under system state

yn . All 

possible system states that yield 
ys are considered and the conditional probabilities (term 

B) are summed as: 
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      , , , , , ,                   , , ,       



 
      
 
 

 
        
 
 


y

y y y y y y y y

BA

y y y y y y

i i i i i i

BA

n

P S s P S s N n P N n

P S s i N n i P N n i

 

 
 

,

,

, ,

,

,

,

,

                  ,
    

%



 

 










 













 
 
  
  

  
     

  
  
     
  










y

i

y
i i y y

i i

i
B

i

s i

i

A

y
i

y
i

n i

n i

n

s
P N n i

n

q n  (7.17) 

A specific system state is realized with the probability shown in Eq. (7.18), where the 

numerator is the probability of having a specified system state and the denominator is the 

sum of all potential system states’ probabilities. All potential system states are obtained by 

solving Eqs. (7.19)-(7.21). 

   

 

 
 

 
 

 

 

 
 

 

 
 

,

,

, ,

# #

,

#

#
,

, , ,  satisfy

,

!
1

!

                    

!

! 1

y
i

i

y
i

i

y y y y

i i

n
y-zi

s sy
i i

n

si

y y-z
i i s

y y
i iN n i

P N n = P N n i

n
q - q

n

qn

n - q





 

 











  





 




  

 
  

  

  

 
  
  
 
 

 
 

 
 

 
 

  
 

 


 
ing Eqs.(7.19-7.21)



 (7.18) 

 

Assuming that in each accelerated NDT, any unit is equally selected and tested with 

probability sq , the following equations always hold: 
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,    


 y

i iN = n i                                                                                                                                     (7.19) 

 
, 1

;   including  

   ;




  

 
   
 

  
i z

y

i i s i i

i w ti z

N n q z = z ,z ,..., y z represents the zth test             (7.20) 

, 0   ,  y

iN i                                                                                                                                    (7.21) 

 

In Eq. (7.19), the sum of number of units with different characteristics in the ith batch equals 

to the ith batch’s size. Eq. (7.20) guarantees that in each accelerated NDT， sq  units of the 

total population are selected and tested. Moreover, 
,

y

iN should be non-negative (constraint 

(7.21)). To illustrate, assuming there are two batches in the system when the third NDT 

starts ( 3t ), where the 1st batch arrives before the first NDT and the 2nd batch arrives between 

the 1st  and 2nd NDT, we obtain the number of all possible system states at 3t  by solving 

the following set of equations: 

 

3 3 3 3

1,12 1,1 1,2 1,0 1

3 3

2,2 2,0 2

3 3

1,12 1,1 1

3 3 3

1,12 1,2 2,2 1 2

3 3 3 3 3 3

1,12 1,1 1,2 1,0 2,2 2,0,  ,  ,  ,  ,  0 

   

 

  

    



s

s

N N N N n

N N n

N N q n

N N N q n n

N N N N N N
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Distribution of failed units at the end of the yth accelerated NDT (  ; ,y y y y

AP K = k Z  ) can 

be obtained using Eq. (7.22) by enumerating all possible system states which satisfy

,

,

,

y A y

i

i

K = k


 
 
 
 and summing their probabilities.  

  

 

    

  

,
,

,
,

,

,

,

,

,

,

,,

,

; ,

; ,

!

; ,!

; ,






































  
    

  

   
   

    
   

         
  
   

    



 


y A
i

y A
i

y y y y

A

y A y y y

A i

i

y

i

y A

i

i
k

y y yy
i A ii

r
y y y

A i

P K k Z

P K k Z

n

k
n

F t s Zn

R t s Z

, ,
, ,

, ,

- 
 

     
     
               

   

 
y A y Ay y

ii i
i i i

k k r n k

            (7.22) 

 

Similarly, the distribution of failed units at the end of the yth normal NDT is obtained in 

Eq. (7.23): 
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y N y Ny y

ii i
i i i

k k r n k

        (7.23) 

 

Accordingly, the expected number of failed units and the system reliability at the end of 

the yth accelerated (normal) NDT can be obtained. The optimization problem is flexible 

and can be generalized to consider different scenarios.  

 

7.2.3 Optimization of Sequential Accelerated NDTs Plans under TS2 

 

We now design a sequence of optimal accelerated NDTs plans under TS2, where failed 

units are repaired and placed back in storage. The following notations are necessary: 

 1 1

, , 

 y y

i j i j
K R : number of failed (survived) units in the system at the end of the (y-1)th 

accelerated test, the  1 1

, , 

 y y

i j i j
K R units are from the ith batch and observed to 

fail j times (which are observed at test sequence j ) until 1yt  , j is composed 
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of arbitrary j NDTs/elements that are selected from the NDT sequence 

and  is the NDT sequence in which the units are tested.  

 1 1

, , 

 y y

i j i j
SK SR : the number of units selected from the  1 1

, , 

 y y

i j i j
K R units that are tested at yt ; 

under TS2, a certain 
yS  is determined  by the values of 

 1 1 1

, , ,
 and    , ,y y y

i j i j i j
SK SR R i j

  
    , specifically,  1 1

, , 

 y y

i j i j
SK sk  and 

1 1

, ,
 , ,y y

i j i j
SR sr i j

 
    

    1 1

, ,
; , ; ,y y y y y y

A Ai j i j
MRL SK Z MRL SR Z

 
   : MRL of any of the  1 1

, , 

 y y

i j i j
SK SR units at 

the end of the yth accelerated NDT; 

    1 1

, ,
; , ; ,

 
  y y y y y y

N Ni j i j
MRL SK Z MRL SR Z : MRL of any of the  1 1

, , 

 y y

i j i j
SK SR units at 

the end of the yth normal NDT; 

    1 1

, ,
; , ; ,

 
  y y y y y y

A Ai j i j
t SK Z t SR Z : true age of any of the  1 1

, , 

 y y

i j i j
SK SR units at the end 

of the yth accelerated NDT;  

    1 1

, ,
; , ; ,

 
  y y y y y y

N Ni j i j
t SK Z t SR Z : true age of any of the  1 1

, , 

 y y

i j i j
SK SR  units at the 

end of the yth normal NDT; 

    1 1

, ,
; , ; ,

 
  y y y y y y

A Ai j i j
R SK Z R SR Z : reliability of any of the  1 1

, , 

 y y

i j i j
SK SR units at its 

true age 

    1 1

, , , ,
; , ; ,

 
  

j j

y y y y y y

A Ai j l i j l
t SK Z t SR Z ; 
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    1 1

, ,
; , ; ,

 
  y y y y y y

N Ni j i j
R SK Z R SR Z : reliability of any of the  1 1

, , 

 y y

i j i j
SK SR units at its 

true age     1 1

, ,
; , ; ,

 
  y y y y y y

A Ai j i j
t SK Z t SR Z ; 

    1 1

, ,
; , ; ,

 
    y y y y y y y y

A Ai j i j
SK Z SR Z : equivalent test duration of the yth accelerated NDT 

for any of the  1 1

, , 

 y y

i j i j
SK SR units;  

 
jj

: duration of the  
th

j j NDT. 

 

Under TS2, units in the system have different arrival times, testing sequences , and failing 

sequences j . With the same objective and constraints as shown in Eqs. (7.5)-(7.11), the 

sample’s TMRL with sample state 
y yS s (i.e., 1 1 1 1

, , , ,
,  ;  , ,y y y y

i j i j i j i j
SK sk SR sr i j

   
      ) 

is calculated as: 

    1 1 1 1

, , , ,
, ,

( ) ; , ; ,; ,
   



     



    y y y y

A A A

y y y y y y y

i j i j i j i j
i j

TMRL sk MRL SK Z sr MRL SR Zs Z (7.24) 

 

When the yth accelerated NDT starts, unit that fails in the (y-1)th accelerated NDT has a 

lifetime  1

1

y

y yt t  

  as it is repaired at the end of the (y-1)th test. Unit that survives in the 

(y-1)th NDT has a lifetime  
   

j

y j

j

j
t t  since its latest failure is observed at the end of 

the  j j th NDT. MRLs of units with different characteristics can be obtained. Specifically, 
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MRL of any of the 1

, 
y

i j
sk units at the end of the yth accelerated NDT is obtained in Eq. 

(7.25): 

 
 

 
 

 
1

,
; ,

1 1

, ,1

,

1
; ,  ; ,

; , y y y
A i j

y y j y y

A A
y y

t sk ZA
A

y y

i j i jy

i j

MRL sk Z f d t sk Z
R sk Z




 



    
 



 


    (7.25) 

 

Similarly, MRL of any of the 1

, 
y

i j
sr units at the end of the yth accelerated NDT is obtained 

by Eq. (7.26): 

 
 

 
 

 
1

,
; ,

1 1

, ,1

,

1
; ,  ; ,

; ,




 



    
 



 


 

y y y
A i j

y y j y y

A A
y y

t sr ZA
A

y y

i j i jy

i j

MRL sr Z f d t sr Z
R sr Z

  (7.26) 

 

Replacing the subscript A with N, we have the MRL of any of the 1

, 
y

i j
sk  ( 1

, 
y

i j
sr ) units at 

the end of the yth normal NDT: 

 
 

 
 

 
1

,
; ,

1 1

, ,1

,

1
; ,  ; ,

; ,




 



    
 



 


 

y y y
N Ni j

y y j y y

N N N N
y y

t sk ZN N
A

y y

i j i jy

i j

MRL sk Z f d t sk Z
R sk Z

 (7.27) 

and 

 
 

 
 

 
1

,
; ,

1 1

, ,1

,

1
; ,  ; ,

; ,




 



    
 



 


 

y y y
N Ni j

y y j y y

N N N N
y y

t sr ZN N
A

y y

i j i jy

i j

MRL sr Z f d t sr Z
R sr Z

 (7.28) 
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Terms A in Eqs. (7.25)-(7.28) (true age of any of the 1

, 
y

i j
sk  ( 1

, 
y

i j
sr ) at the end of the yth 

accelerated (normal) NDT) are respectively obtained as: 

     1

1

1 1

, ,
; ,

 
   



    y y y y

A y A y

A

y y

i j i j
t sk Z t sk t                                                              (7.29) 

                     1 1 1

, , ,
; , ; , ; ,

     

  
          

j j j j j j j j j j j jy y y

A y N N

A B

y y y

i j i j i j
t sr Z t sr Z sr Z  (7.30) 

   1 1

1,
; ,y y y y y

N y yi j
t sk Z t t


   

                                                                               (7.31) 

              1 1

, ,
; , ; ,

   

 
        

j j j j j j j jy y y y y

N N y Ni j i j
t sr Z t sr Z                                (7.32) 

 

Specifically,  1

, 
 y y

A i j
sk in Eq. (7.29) is calculated by letting:  

    1 1 1

1 1,
; , ; ,


       

       y y y y y y y y y

y y y A y Ni j
R t t Z R t sk t Z                         (7.33) 

 

Terms A and B in Eq. (7.30) can be obtained similarly.  

 

Under TS2, the probability of yielding a specific sample state
ys at time yt  is calculated by 

considering all possible system states 
1yN 
at time 1yt  as shown in Eq. (7.34): 
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,
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P

i j

k

sk
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y y
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y y
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k r i j

r

sr

n

q n
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 1 1

, ,
 and  , ,y y

i j i j
R r i j

 
  

          (7.34) 

 

Term A in Eq. (7.34) (units’ states (fail or survive) when the (y-1)th NDT ends) is obtained 

by Eq. (7.35). It is affected by the characteristics of the units that are tested in previous (y-

1) NDTs (term B in Eq. (7.35)), which has been investigated by Eq. (7.18).  

 

Details of term A in Eq. (7.34) (the units’ states (fail or survive) when the (y-1)th NDT ends, 

conditional on term B) can be obtained by referring to the models in chapter 3, where the 

failure probabilities of units with different characteristics are determined by their “true” 

ages.  
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The distribution of failed units at the end of the yth accelerated NDT   ; ,y y y y

AP K = k Z  

is obtained based on Eq. (7.34) by replacing 1y   with y , then all  y yP N n  satisfying

,
, ,




 
 

 
 
 y y

i j
i j

K k  are summed. The expected number of failed units  ; ,y y

AE Z and the 

system reliability  ; ,y y

AR Z are obtained accordingly.  

 

Different scenarios can be developed based on TS2. For example, failed units are either 

repaired to as-good-as new or to as-good-as old. Meanwhile, failed units are either repaired 

and placed back in storage, or discarded after a specified number of failures.  

 

7.3 A Numerical Illustration 

 

In this section, we numerically design the optimal testing plans for the first three 

accelerated NDTs under TS2 and TS3, respectively. We describe how the sequential 

accelerated NDTs are conducted as well as the procedure of designing the sequential 

optimal testing plans as follows: 
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 Three batches of one-shot units arrive into storage at times 1 2 30,  300,  600w w w , 

respectively; the three batch sizes are 1 2 3100, 100, 100n n n   , respectively.  

 The unit’s lifetime T follows lognormal distribution, specifically,  2log ,T N   ; 

where 

       
0

lnA n

B

Q
RH

K T
      ; 

0
10 0 001  0 00012 0 5 V e     

A N
Qx x. . .; ; ; and

58 26 10 
B

K .   

           
0

2 2 2
lnA nRH      

0
2 A and 0 01 

n
. ; 

 The 1st, 2nd, and the 3rd accelerated NDT are conducted at times

1 2 3
150 450 and 750t t t  , ; the test durations are respectively 1 2 3,  and    (need to 

be determined).  In each NDT, 20% of the population is selected and tested 

(
1 2 3 20  
s s s

q q q % ); i.e., 20, 40, and 60 units are tested under the first three NDTs, 

respectively. The upper bound of each test duration is 100U  ; meanwhile, the 

following requirement needs to be satisfied when designing 1 2 3,  and    :

1 1 2 2 2 2 3 3 3 3,  ,             Ut w w t w w t t ; 850
U
t . 

 The temperature and the relative humidity in each of the three tests need to be 

determined ( 1 2 3y yRH T y, ; , , ); the lower and upper bounds of the relative humidity 

and temperature are: 0.7,  0.3,  373 ,  293   y y y y

U N U NRH RH T K T K ;  

 The system is operational if no more than 20% of the entire population fail; 
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 The ratio of the testing sample’s MRLs after the 1st, 2nd, and 3rd accelerated and normal 

NDT needs to be respectively greater than 0 9 0 9  and 0.9. , . ,  (and less than 1 1 and 1, ); 

 The ratio of the system reliability after the 1st, 2nd, and 3rd accelerated and normal NDT 

needs to be respectively greater than 0 9 0 9  and 0.9. , . ,  (and less than 1 1  and 1, , ); 

 The ratio of the expected number of failed units after the 1st, 2nd, and 3rd accelerated 

and normal NDT needs to be respectively greater than1 15 1 15 and 1 15. , . . . 

 

Under each testing scenario, we first determine the optimal testing plan for the 1st NDT; 

accordingly, the equivalent test duration of the 1st accelerated NDT for units with different 

characteristics, the system/sample reliability metrics are calculated and considered in the 

design of the optimal testing plan for the 2nd accelerated NDT; followed by the 3rd 

accelerated NDT.  

 

We obtain the optimal testing plans for the first three accelerated NDTs under TS2 and 

TS3 in Tables 7.1 and 7.2. In Table 7.3, we quantify the differences between the accelerated 

and normal NDTs by calculating the objective values of the optimization problem 

(differences between the distributions of failed units after the first three accelerated and 

normal NDTs) under TS2 and TS3.  

 

We observe that TS2 and TS3 yield the same optimal testing plan for the 1st accelerated 

NDT, as no repair is conducted when designing the 1st NDT; besides, the distributions of 

failed units after accelerated and normal NDTs are approximately the same as the 



161 
 

 
 

differences between the distributions of failed units after the accelerated and normal NDTs 

for 1,2,3y  are negligible as shown in Table 7.3. 

 

As required, the ratios of the system reliability after the accelerated and normal tests as 

well as the ratios of the sample’s TMRL after the accelerated and normal tests 

approximately equal to 1 ( 1 2
0 9  0 9; 1 2 3  y yq q y. ,  .  , , ); which implies that the optimal 

accelerated NDTs have negligible effect on the system reliability metrics within a short test 

duration. Furthermore, as the sample represents the population characteristics, 
y

s
q  does not 

affect the yth optimal testing plan as the sampling error does not exist.  

 

Table 7.1 Optimal testing plans for the first three accelerated NDTs under TS2 

 1st NDT 2nd NDT 3rd NDT 

yRH  

0.41 0.34 0.34 

yT  

294 300 300 

 y
 

13 34 57 

 

Table 7.2 Optimal testing plans for the first three accelerated NDTs under TS3 

 1st NDT 2nd NDT 3rd NDT 

yRH  

0.41 0.44 0.39 

yT  

294 294 297 

 y
 

13 23 35 
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Table 7.3 Objective function values after the first three accelerated and normal NDTs 

under TS2 and TS3 

 1st NDT 2nd NDT 3rd NDT 

TS2 1.53e-5 6.98e-4 2.68e-3 

TS3 1.53e-5 2.71e-5 1.62e-3 

 

7.4 Conclusions 

 

In this chapter, we study the individual unit’s reliability behavior by developing a statistics-

physics-based model, which directly relates the applied stresses to the system reliability 

metrics. We then propose the optimal design of a sequence of accelerated NDTs on the 

system level, taking system’s/sample’s reliability metrics under different testing scenarios 

into account. The uncertainty during the sampling procedure as well as the units’ different 

time-dependent characteristics are considered. We show that the accelerated NDTs have 

insignificant effect on the system reliability metrics while reducing the test durations.   
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CHAPTER 8 

OPTIMAL DESIGN OF HYBRID SEQUENTIAL TESTING PLANS 

 

NDT is conducted to determine the functionality of the units without permanent damage. 

It is also used to estimate the units’ reliability. However, it is difficult to make decisions 

regarding system’s reliability by completely using the results of the NDT since the total 

functionality of the units are not fully tested. In contrast, destructive test (DT) is conducted 

to observe the failure times of the units. This results in a more accurate estimation of the 

units’ reliability. However, after the DT, testing units are destroyed. This amplifies the 

need to investigate the hybrid reliability testing which utilizes the advantages of both the 

NDT and DT. In this chapter, we assume the units selected from the system are subjected 

to a sequence of hybrid reliability testing. It is of great interest to optimally design the 

hybrid sequential reliability testing which results in more accurate reliability estimation 

and minimizes the number of units subjected to DT based on sampling. After conducting a 

number of hybrid testing, we decrease the sample size of the DT as the accuracy of 

reliability metrics estimation improves. Eventually, we conduct NDT only. We investigate 

the problem under four testing scenarios. The proposed methods are validated through 

numerical illustrations and extensive simulation studies.  

 

This chapter is organized as follows: in sections 8.1 and 8.2, we design the optimal 

sequential hybrid reliability testing plans. We formulate the optimization problem, update 

the unit’s lifetime parameter based on the testing results and improve the accuracy of 
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system reliability prediction. We assume that NDT and DT are performed on two separate 

samples in each hybrid test in section 8.1. In section 8.2, we assume that each hybrid test 

is performed on the same sample (three testing scenarios are assumed and investigated in 

details). In section 8.3, we develop extensive simulation studies to validate the optimization 

problems and methods. In section 8.4, we provide a numerical example to illustrate the 

proposed methods. 

 

8.1 Optimal Sequential Hybrid Reliability Testing Plans based on Two Separated 

Samples 

 

One-shot units are produced in batches and kept in storage until placed into actual use. 

Specifically, the ith batch of units with size 
in  arrives into the storage at time iw

immediately after production. A sequence of hybrid reliability tests are conducted at 

arbitrary time during the entire life horizon of the units by testing selected samples. 

Specifically, in each hybrid reliability test NDT and DT are performed simultaneously on 

two selected samples. The yth hybrid reliability test is performed at time yt . The reliability 

tests are assumed to be instantaneous (duration of the test is ignored). Units subjected to 

the DTs are removed from the system after the tests. Units that fail in the NDT are repaired 

and placed back into the system. The units in the storage are subjected to different series 

of hybrid reliability tests and thus have different characteristics. The system is referred to 

a generalized “k-out-of-n: F” system.  
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We assume the lifetime of the units in the system follows exponential distribution. The 

following are necessary notations: 

 

     :x xF f   cdf (pdf) of the unit lifetime after the xth repair; 

:yt  time when the yth hybrid test is performed, 1,2,...,y m ; 

:y

in number of units in the ith batch when the yth test starts; 

:yN  total number of units in the system at time yt ; 

:  sequence of NDTs that the testing units are subjected to; 

 # :  number of NDTs in sequence ; 

 1;  

y

i yM : number of expected failures of a unit (in the ith batch) until time yt based on 

1y  , the unit is subjected to NDT sequence  ;  

 1; :y yp    failure probability of the unit in the system at time yt based on 1y  ; 

:R threshold of the difference between the reliability estimate of the system and the 

reliability estimation of the sample; 

 y y

N Ds s : number of testing units assigned to the yth NDT (DT); 

  :y y

N DK K  number of units failed in the yth NDT (DT),  respectively;   ;y y y y

N N D DK k K k   

= 0,1,..., y y

N Nk s  ( 0,1,...,  )y y

D Dk s ; 
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%:Nq  percentage of units assigned to the yth NDT, %Nq is constant y ; specifically, 

%y

N N ys q N  ; 

%q  : the system fails if %q  or more units fail; 

:y  unit’s updated lifetime parameter after the yth hybrid test; the initial value of the 

parameter is recorded as ; 

:true  the true value of unit’s lifetime parameter; 

  :L Ut t  lower and upper bounds of the time interval between two reliability tests; 

 y y

N Dk k : the sample assigned to the yth NDT  (DT) is considered to fail if  y y

N Dk k or more 

units fail. 

 

In section 8.1, two samples are selected in each hybrid test. One sample is for the NDT and 

the other is for the DT. The following two factors significantly affect the testing results and 

the accuracy of system reliability estimation:  

1. Time when the yth hybrid test is performed ( yt ); 

2. The number of units in the samples of the yth NDT and DT, respectively (  and y y

N Ds s  ). 

 

The design of the yth test is affected by the previous (y-1) tests and the system state at time

yt . Specifically, the optimal solutions for the first m tests are obtained by first obtaining 
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1 1

1,   and N Dt s s in the 1st test. Based on 
1 1

1,  , N Dt s s and the first test’s results, the units’ lifetime 

parameter is updated from   to 
1 . An optimal testing design is then found for the second 

hybrid test and the units’ lifetime parameter is updated from 
1  to

2 . A sequence of 

optimal hybrid testing can be determined by applying the above procedures. In the 

following, we describe the steps when optimizing the yth hybrid test, where 1,...,y m .  

 

Step 1: Determine the optimal time to start the yth test and the number of testing units 

assigned to the yth NDT and DT. Note that the optimization of the test plan is 

affected by 1y   , which is updated based on the results of previous (y-1) tests; 

 

Specifically, the time to start the yth hybrid reliability test and the number of units assigned 

to the yth test ( ,  , and y y

y N Dt s s ) are determined by solving the following optimization 

problem:  

 

Min 
y

Ds                                                                                                                            (8.1) 

Subject to  

1L y y Ut t t t                                                                                                                                       (8.2) 

%y

N N ys q N                                       (8.3) 
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    1 1-out-of- ; , % -out-of- ; ,y y y y

sample D D y y system y y y yR k s t R q N N t R                          (8.4) 

where 

 

1

1; i y

y

y i D

i w t

N n s





 

 
  
 
 
                                                                                                                                 (8.5) 

 

The objective (Eq. (8.1)) is to minimize the number of units assigned to the yth DT. There 

exist an upper and a lower bound for the time interval between two hybrid tests (Eq. (8.2)). 

Note that for 1y  , Eq. (8.2) is written as: 
1 Ut t  . 

 

In the yth hybrid test, we randomly select %Nq of the units in the system to perform NDT 

(Eq. (8.3). It is required that the difference between the reliability estimation of the system 

and the sample should not be greater than a predetermined threshold such that the sample 

represents the population’s characteristics in the yth DT (Eq. (8.4)). The total number of 

units in the system equals to the total number of arrived units in the system minus the total 

number of units assigned to the previous  1y  DTs (Eq. (8.5)). The reliability of the 

system is defined in Eq. (8.6): 

    1

%

0

% -out-of- ; ,  y y y

system y y y y

y

y

q N

k

R q N N t P K k 





                                                    (8.6) 
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Similarly, the reliability of the sample subjected to the yth DT is obtained using Eq. (8.7) 

as: 

   1

0

-out-of- ; ,

y
D

y
D

y y y y

D D y y D D

k
y
sample

k

R k s t P K k 



                                                               (8.7) 

 

The failure distributions corresponding to Eqs. (8.6) and (8.7) are obtained by applying the 

models proposed in section 3.2. Moreover, an alternative approach to approximately obtain 

the failure distributions is using the binomial distribution. Specifically: 

      1 1; 1 ;
yy

yyy y

y y y yy

N kkN
P K k p p

k
  

 
    

 
                                                        (8.8) 

      1 1; 1 ;
y yy
D DD

y

Dy y

D D y y y yy

D

s kks
P K k p p

k
  

 
    

 
                                                               (8.9) 

 

The system’s failure probability  1;y yp    is obtained by applying the renewal process. 

Specifically: 

     
 
 

    
 

# #

1 1

;

1
; % 1 % ;i

i y

y zy y

y y i N N i y

i w ty

p n q q M
N

 
  

 

 

 

      
  
                      (8.10) 

 

The number of units in the ith batch when the yth test starts is obtained by solving Eq. (8.11) 

recursively. We specifically have
1

i in n . 
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1 1
1

1

y y
y y D i
i i

y

s n
n n

N

 





                                                                                                        (8.11) 

 

The number of expected number of failures that one unit (from the ith batch) experiences 

until time yt , which is tested in NDT sequence   , is found by applying the RP in Eq. 

(8.12): 

     

   
 

1

1

1 +1, 1

0

: 1

1  1

1

; 1 ;

1 ;

i

i

ii

i

i

iz +i

iz +a+

z +a

y

i y z y y

m-z -

z +a+ , y y

α=

t -w

t -w

t -w

M = + M t f t dt

   

                        + I + M t f t dt


  



 



     

             



 

                                (8.12) 

where 

1 if 1
 
 0 if 1

i

i

         z < m -
I =

      z = m -





 

     
1

+

1

1

+a

+a-

,m a,m

t -tm-

α= t -t

M t + M t f t dt

 



 



      

and   0m, mM t =   i  

 

Step 2: Perform the yth hybrid test and obtain the number of failed units in the yth NDT and 

DT. Update the parameter of the unit’s lifetime from 1y   to y  based on the results 

of the test;  
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Intuitively, we expect 
y y

N D

y y

N D

k k

s s
  since DT fully performs the testing units’ functionalities. 

All potential failures are detected in the DT. The number of failed units in the yth NDT is 

obtained as:  

   1 1
ˆ 0

ˆ ˆ; ;

y
N

y
N

s

y y y y y

N N y N N y N

k

k E K P K k k  



                                                                       (8.13) 

where 

      
ˆˆ

1 1 1
ˆ ; ; 1 ;

ˆ

y yy
N NN

y
s kkNy y

N N y y y y yy

N

s
P K k p p

k
  



  

 
   

 
 

 

 

Utilizing the results of the yth NDT and DT, we update the unit’s lifetime parameter from 

1y   to y using Eqs. (8.14)-(8.17): 

   
ˆ 0

ˆ ˆ;
;

y
N

y
N

s

y y y

N N y Nyy y
N y kN D

y y y y

N D N N

P K k k
E Kk k

s s s s






 


 



                                                                      (8.14) 

where 

      
ˆˆ

ˆ ; ; 1 ;
ˆ

y yy
N NN

y
s kkNy y

N N y y y y yy

N

s
P K k p p

k
  

 
   

 
 

                                                               (8.15) 

   
 
 

    
 

# #

;

1
; % 1 % ;

 
  

 

 

      
  
 i

i y

y zy y

y y i N N i y

i w ty

p n q q M
N

                        (8.16) 
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 1 1: 1

1, 1  

10

;

1 ; 1 ;



 

 

                      

 
i

ii

i i

i

i iz + z +a+i

z +a

y

i y

m-z -

z y y z +a+ , y y

α=

t -w t -w

t -w

M

= + M t f t dt + I + M t f t dt

 (8.17) 

 

Assuming the units have an exponentially distributed lifetime distribution, the term 

  ; yf t  in Eq. (8.17) is   ; yt

y yf t e


 


 .  

 

Step 3: Determine the optimal time to start the (y+1)th test and the number of testing units 

assigned to the (y+1)th test. The optimal testing plan is based on y . 

 

Based on the unit’s updated lifetime parameter y , the optimal 
1 1

1,   and y y

y N Dt s s 

 are 

determined by solving the same optimization problem formulated in step 1. The units’ 

lifetime parameter is then updated from y to 1y   based on the (y+1)th test’s results. 

  

The accuracy of the system reliability estimation improves by applying the above 

procedure. We gradually decrease the sample size of the DT and  expect there exists a 'y

such that
''

' '
0

yy

ND

y y

D N

kk

s s
    . We then conduct NDT only as the difference between 'y  and 

its true value 
true  becomes negligible. 
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The optimization problem formulated above is based on the assumption that units that fail 

in the NDT are repaired and placed back into the system. Under some circumstances, failed 

units are discarded after the NDT, therefore the total number of units in the system at time 

yt  is continuously updated after the NDTs as follows:  

 

1 1

1 1; i y

y y

y i D N

i w t

N n s k 

 

 

  

 
   
 
 
                                                                                                      (8.18) 

where the last term in Eq. (8.18) is the total number of units that failed in the previous (y-

1) NDTs.  

 

8.2 Optimal Sequential Hybrid Testing Plans based on One Sample 

 

In this section, we design the sequential testing plans by assuming that only one sample of 

the units is tested in each hybrid test. Specifically, the sample is first subjected to the NDT 

and then is subjected to DT. Specifically, the following testing scenarios in the yth hybrid 

test are investigated: 

 

Testing scenario a (TSa): The sample (with sample size ys ) is first subjected to the yth NDT. 

Units that fail in the yth NDT (
y

Nk ) are repaired and placed back 

into the system, i.e., only units that survive in the yth NDT 

(
y

y Ns k ) are subjected to the yth DT; 
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Testing scenario b (TSb): The sample (with sample size ys ) is first subjected to the yth NDT. 

Units that fail in the yth NDT (
y

Nk ) are repaired and placed back 

into the sample with a higher failure rate, i.e., units that are 

subjected to the yth DT are a mixture of the units that fail in the 

yth NDT (
y

Nk ) and the units that survive in the yth NDT (
y

y Ns k ); 

 

 

Testing scenario c (TSc): The sample (with sample size ys ) is first subjected to the yth NDT. 

Units that fail in the yth NDT (
y

Nk ) are discarded, i.e., only units 

that survive in the DT (
y

y Ns k ) are subjected to the yth DT; 

 

We now design the optimal sequential hybrid testing plans for the above three scenarios. 

The following two decision variables need to be determined: 

1. The time to perform the yth hybrid test ( yt ); 

2. The number of units assigned to the yth test ( ys ). 

 

8.2.1 Optimal Sequential Hybrid Testing Plans for the TSa 

 

We describe the three steps when optimizing the yth hybrid test:  
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Step 1: Determine the optimal time to start the yth test and the number of testing units based 

on 1y  ; 

 

Specifically, the time to start the yth test and the number of testing units (  and y yt s ) are 

determined by solving the following optimization problem, which applies to arbitrary y 

between 0 and m.  

 

Min ys                                                                                                                          (8.19) 

Subject to  

1L y y Ut t t t                                                                                                                                  (8.20) 

    1 1-out-of- ; , % -out-of- ; ,y y y

sample N y y y system y y y yR k s t R q N N t R                        (8.21) 

where 

 
 

1

1; i y

y

y i N

i w t

N n s k






 

 
   
 
 
                                                                                                          (8.22) 

 

The objective (Eq. (8.19)) is to minimize the number of units assigned to the yth test, which 

minimizes the number of units assigned to the DTs. There exist an upper and a lower bound 

for the time interval between the two hybrid tests (Eq. (8.20)).  
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The difference between the reliability of the system and the sample (when performing NDT) 

should not be greater than a predetermined threshold (Eq. (8.21)). Under TSa, the total 

number of units in the system at time yt equals to the total number of units arrived into the 

system minus the units that survived in the previous (y-1) NDTs (those units are tested in 

the previous (y-1) DTs), which is reflected by Eq. (8.22). The reliabilities of the system 

and sample are given in Eqs. (8.23) and (8.24). 

 

    1

%

ˆ 0

ˆ% -out-of- ; ,  

y

y

system y y y y y y

yq N

k

R q N N t P K k 





                                                     (8.23) 

   1
ˆ 0

ˆ-out-of- ; ,
y
N

y
N

y y y y

sample N y y y N N

k

k

R k s t P K k 



                                                                         (8.24) 

 

The failure distributions in Eqs. (8.23) and (8.24) are obtained approximately by using a 

binomial distribution. Specifically: 

      1 1; 1 ;
yy

yyy y

y y y yy

N kkN
P K k p p

k
  

 
    

 
                                                             (8.25) 

      
ˆˆ

1 1
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                                                               (8.26) 

 

The system’s failure probability  1;y yp   is obtained as:  
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                                 (8.27) 

 

where in Eq. (8.27),  a  represents the ath element in sequence  a . 

 

The terms A, B, and C are: 

A: the probability that the units in the ith batch are tested in NDT sequence a ; 

B: the probability that the units are observed to fail in a specific sequence ' , given they 

are tested in NDT sequence a ;  

C: the probability that the units with characteristics described in B fail in the yth NDT. 

 

The number of units in the ith batch when the yth test starts can be obtained by solving Eq. 

(8.28) recursively: 
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                                                                                                                              (8.28) 

 

Step 2:  

Step 2.1: Subject the ys units to the yth NDT, obtain the number of failed unit and record it    

as
y

Nk . Repair failed units and place them back into the system;  

Step 2.2: Subject the  y

y Ns k  units (that survive in the yth NDT) to the yth DT and obtain 

the number of units fail in the yth DT, record it as
y

Dk ; 

Step 2.3: Update the unit’s lifetime parameter from 1y   to y  based on the results of the 

yth test.  

 

It is expected that 0y

Dk  since not all potential failures can be detected in NDT. The 

number of failed units in the yth NDT is obtained via Eq. (8.29): 

   1 1
ˆ 0

ˆ ˆ; ;
y

y
N

s

y y y y y

N N y N N y N

k

k E K P K k k  



                                                                         (8.29) 

where  1
ˆ ;y y

N N yP K k   is presented in Eq. (8.26). 
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Under all three scenarios in section 8.2, the number of units fail in the yth DT (
y

Dk ) is 

dependent on the number of units fail in the yth NDT (
y

Nk ). Based on the result of the yth 

DT, we update the unit’s lifetime parameter from 1y   to y : 

 
ˆ 0

ˆ ˆ 

y
y N
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                                                                                                                             (8.30) 

where 
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P K k

p t p ts k k
          (8.31) 

 

In Eq. (8.31), term A is the probability that the unit survives in the yth DT and the term B is 

the probability that the unit survives in the yth NDT. The ratio of terms A and B conditionally 

provides the unit’s probability of surviving in the yth DT. We then combine Eqs. (8.30) and 

(8.31) to update the units’ lifetime parameter. 

  

Step 3: Determine the optimal time to start the (y+1)th test and the number of testing units 

based on y . 

The optimal solution of 1 1 and y yt s  is determined by solving the same optimization 

problem formulated in step 1. We then update the units’ lifetime parameter from y to 1y 

by following the procedures in step 2. 
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Intuitively, after conducting a number of hybrid tests, we expect there exists a 'y such that

'

'

'

y

D

y

y N

k

s k
 


. Specifically, the proportion of units that fail in the 'y th DT approximately 

equals to 0 because the 'y th NDT reveals the entire population’s characteristics and 

demonstrates the unit’s reliability performance. In other words, units that survive in the 'y

th NDT are expected to survive in the 'y th DT since the difference between 'y  and its true 

value 
true  is negligible. There is no need to perform DT in the subsequent tests as NDT 

provides accurate estimation of the system reliability. 

 

8.2.2 Optimal Sequential Hybrid Testing Plans for the TSb 

 

In the TSb (units that fail in the NDT are repaired and subjected to the DT), the following 

additional notations are necessary: 

 

:y

D FNk   the number of units that fail in the yth NDT and the yth DT; 

:y

D RNk   the number of units that survive in the yth NDT and fail in the yth DT. 

 

The three steps of the yth hybrid test for the TSb are: 
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Step 1: This step is the same as that proposed in section 6.2.1, except the following two 

system characteristics are different: 

 

1)  The total number of units in the system at time yt  equals to the total number of units 

arrived into the system minus the total number of units that tested in the previous (y-1) 

reliability tests (Eq. (8.32)): 

       
 

1

1; i y

y

y i

i w t

N n s




 

  
   
  
  

                                                                                                                (8.32) 

 

Obviously, yN  affects the testing plans as the system reliability is affected by the total 

number of units in the system.   

 

2) The system’s failure probability  1;y yp   is now obtained as:  

   
 

1

;

1
; -

i y

y

y y i y i

i w ty

p n F t w
N

 

 

  
    

  
                                                                      (8.33) 

where 
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1

y
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                                                                                                      (8.34) 
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Step 2: Steps 2.1 and 2.3 for the TSb are the same as those proposed for the TSa. Step 2.2 

is different: 

 

Step 2.2: Subject the ys  units to the yth DT (among these ys units: 
y

Nk  units fail in the yth 

NDT are repaired with higher failure rates,  y

y Ns k units survive in the yth NDT) 

and obtain the number of units fail in the yth DT, record as
y

Dk ; 

 

The number of failed units in the yth NDT (
y

Nk ) is obtained by referring to Eq. (8.29). The 

number of units fail in the yth DT is dependent on
y

Nk . Based on Eqs. (8.35)-(8.38), we 

update the unit’s lifetime parameter from 1y   to y : 

 
ˆ 0

ˆ ˆ 
y

y
D

s

y y y y

D D D D

k

k P K k k


                                                                                                                               (8.35) 

where 

   
 

 =

 
ˆ ˆ+ =  

 
 

 

 

  

 
   
 
 


y y y
D FN D RN D

y y

D FN D FN
y y y y y

D D D FN D RN D y y
k k k D RN D RN

P K k
P K k P K K k

P K k
                  (8.36) 

     
   

 ; 1 ;
y y y
D FN N D FN

y
k k k

Ny y

D FN D FN y y y yy

D FN

k
P K k p t p t

k
 

 

 



 
           

 
                             (8.37) 

and 



183 
 

 
 

 

 
 

   
 

1

1 1

 

    1 ; ; ;

1 ; 1 ;

  

 

 

 

 



 



      
     
             

y y y
y N D RN D RN

y y

D RN D RN

s k k k
y

y N y y y y y y

y y
y y y yy N D RN

P K k

s k p t p t p t

p t p ts k k

                  (8.38) 

 

Eqs. (8.37) and (8.38) obtain the distributions of failed units in the yth DT with different 

characteristics. 

  

Step 3: Determine the optimal time to start the (y+1)th test and the number of testing units 

based on y . 

 

Based on the unit’s lifetime parameter y , the optimal 1 1 and y yt s  are determined by 

solving the same optimization problem formulated in step 1. We then update the units’ 

lifetime parameter from y to 1y  based on the test results. 

  

In the TSb, there exists a 'y so that
'y

D RN

y

y N

k

s k

  


 after a number of hybrid tests. The 'y th NDT 

provides accurate estimation of the system’s reliability metrics. Consequently, there is no 

need to perform DT in subsequent reliability tests. 
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8.2.3 Optimal Sequential Hybrid Testing Plans for the TSc 

 

The three steps of the problem formulation for the TSc (units that fail in the NDT are 

discarded) are the same as those proposed in section 8.1.1. Only the total number of units 

in the system at time yt  is different as shown in Eq. (8.39): 

 

1

1; i y

y

y i

i w t

N n s




 

  
   
  
  

                                                                                                                          (8.39) 

 

8.3 Simulation Model 

 

In this section, we develop a simulation model to validate the methods investigated in 

section 8.1 and 8.2. We introduce the objectives and the procedures of the simulation model. 

We then generate the number of failed units in the sequential reliability tests and update 

the units’ lifetime parameter by applying the simulation model.  

 

We perform the simulation model and observe if the unit’s lifetime parameter approaches 

its true value during the sequential hybrid tests. The following three testing scenarios are 

addressed:  
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i) Each hybrid test is performed on two separate samples, units that fail in the NDT are 

repaired and placed back into the system; 

ii) Each hybrid test is performed on one sample, units that fail in the NDT are repaired and 

placed back into the system;  

iii) Each hybrid test is performed on one sample, units that fail in the NDT are repaired and 

placed back into the sample (TSb). 

 

To validate the proposed methods, we replicate the simulation model 1000 times. In each 

replication, we obtain the number of failed units (in the simulation model, they are 

measured as random failure times) in the sequential hybrid tests. We then calculate the 

average number of failures in the 1000 replications. The simulated number of failures is 

used to update the units’ lifetime parameter. We illustrate the first two hybrid reliability 

tests by the simulation model. 

 

The following notations are necessary: 

 

    , , 

y y

i j i j
s N s D : the number of units selected from the ith batch and fail in NDT (DT) 

sequence j  in each replication at time yt . These units are tested in 

NDT (DT) sequence ;  

    , ,
:

 

y y

i j i j
k N k D  the number of failed units selected from the ith batch and fail in NDT 

(DT) sequence j  in each replication at time yt . These units are tested 

in NDT (DT) sequence ; 
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    , ,
:

 

y y

i j i j
s N s D the average number of 1000     , , 

y y

i j i j
s N s D ; 

    , ,
:

 

y y

i j i j
k N k D the average number of 1000     , ,

:
 

y y

i j i j
k N k D . 

 

Under testing scenario i), the number of failures in the first two hybrid tests (in one 

replication) is simulated in the following: 

 

 Estimation of 
1 1 and N Dk k : 

1. Generate 
1n  random failure times that follow exponential distribution with parameter

 ; randomly select 
1

Ns  failure times from
1n ; within the  

1

Ns  failure times, count the 

number of failure times that occur between  10, t ; record it as 
1

Nk . 

2. Generate 1n  random failure times  exp true ; randomly select 
1

Ds  failure times from

1n ; within the 
1

Ds  failure times, count the number of failure times that occur between

 10, t ; record it as 
1

Dk . 

3. Update   to
1 . 

 

 Estimation of 
2 2 and N Dk k  

5. Generate 
1 1

1 N Dn s s   random failure times  1exp  ; randomly select  2

1,0 0
s N  

failure times from 
1 1

1 N Dn s s  ; count the number of failure times that occur between 

 20,t ; record it as  2

1,2 2
k N ; 
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6. Generate 
1

Nk  random failure times  1exp  ; randomly select  2

1,11
s N  failure times 

from 
1

Nk ; count the number of failure times that occur between  2 10,t t ; record it as 

 2

1,1212
k N ; 

7. Generate 
1 1

N Ns k  random failure times  1exp  ; randomly select  2

1,01
s N  failure 

times from 
1 1

N Ns k ; count the number of failure times that occur between  1 2,t t ; 

record it as  2

1,212
k N ; 

8. Generate 
2n  random failure times  1exp  ; randomly select  2

2,0 0
s N  failure times 

from 
2n ; count the number of failure times that occur between  2 20,t w ; record as 

 2

2,12
k N ; 

 

The following constraint must be satisfied in steps 1-4: 

        2 2 2 2 2

1,0 0 1,11 1,01 2,0 0 Ns N s N s N s N s    .  

Meanwhile, we have:        2 2 2 2 2

1,2 2 1,212 1,1212 2,12Nk k N k N k N k N      

 

9. Generate 
1 1

1 N Dn s s   random failure times  exp true ; randomly select  2

1,0 0
s D  

failure times from 
1 1

1 N Dn s s  ; count the number of failure times that occur between 

 20,t ; record it as  2

1,2 2
k D ; 
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10. Generate 
1

Nk  random failure times  exp true ; randomly select  2

1,11
s D  failure times 

from 
1

Nk ; count the number of failure times that occur between  2 10,t t ; record it as 

 2

1,1212
k D ; 

11. Generate 
1 1

N Ns k  random failure times  exp true ; randomly select  2

1,01
s D  failure 

times from 
1 1

N Ns k ; count the number of failure times that occur between  1 2,t t ; 

record it as  2

1,212
k D ; 

12. Generate 2n  random failure times  exp true ; randomly select  2

2,0 0
s D  failure times 

from 2n ; count the number of failure times that occur between  2 20,t w ; record it as 

 2

2,12
k D ; 

 

The following constraint must be satisfied in steps 5-8:  

       2 2 2 2 2

1,0 0 1,11 1,01 2,0 0 Ds D s D s D s D s    . 

 Meanwhile, we have:        2 2 2 2 2

1,2 2 1,212 1,1212 2,12Nk k D k D k D k D     

 

13. Update 
1  to

2 . 

 

In the above procedures, we simulate and obtain 
1 1 2 2,  ,   and N D N Dk k k k  in one replication. The 

replication is repeated for 1000 times. The means of the above four terms are calculated 

and compared with those obtained from the proposed methods. 
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For the testing scenario ii (TSb), 
1 1 2 2,  ,   and N D N Dk k k k  in one replication are generated as 

follows: 

 

 Estimation of 
1 1 and N Dk k : 

1. Generate 1n  random failure times  exp  ; randomly select 1s  failure times from 
1n ; 

count the number of failure times that occur between  10, t ; record it as 
1

Nk ; 

2. Generate 
1

1 Ns k  random failure times 
 
 

1

1

1

0,
;

1
;

true

t
Uniform

R t

R t





 
 
 
  
    

  

; count the 

number of failure times that occur between  10, t ; record it as 
1

Dk ; 

3. Update   to
1 . 

 

 Estimation of 
2 2 and N Dk k  

1. Generate 1 1n s  random failure times  1exp  ; randomly select  2

1,0 0
s N  failure 

times from 1 1n s ; count the number of failure times that occur between  20,t ; record 

it as  2

1,2 2
k N ; 

2. Generate 
1

Nk  random failure times  1exp  ; randomly select  2

1,11
s N  failure times 

from 
1

Nk ; count the number of failure times that occur between  2 10,t t ; record it as 

 2

1,1212
k N ; 
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3. Generate 2n  random failure times  1exp  ; randomly select  2

2,0 0
s N  failure times 

from 2n ; count the number of failure times that occur between  2 20,t w ; record it as 

 2

2,12
k N ; 

 

The following constraint must be satisfied in steps 1-3: 

      2 2 2 2

1,0 0 1,11 2,0 0 Ns N s N s N s   . 

Meanwhile, we have:      2 2 2 2

1,2 2 1,1212 2,12Nk k N k N k N   .  

4. Generate  2 2

1,0 0 1,2 2
s k N  random failure times

 
 

2

2

2 1

0,
;

1
;

true

t
Uniform

R t

R t





 
 
 
  
    

  

; count 

the number of failure times that occur between  20,t ; record it as  2

1,2 2
k D ; 

5. Generate  2 2

1,11 1,1212
s k N  random failure times

 
 

2 1

2 1

2 1 1

0,
;

1
;

true

t t
Uniform

R t t

R t t





 
 

 
  
      

; 

count the number of failure times that occur between  2 10,t t ; record it as  2

1,1212
k D ; 

6. Generate  2 2

2,0 0 1,2 2
s k N  random failure times

 
 

2 2

2 1

2 1 1

0,
;

1
;

true

t w
Uniform

R t t

R t t





 
 

 
  
      

; 

count the number of failure times that occur between  2 20,t w ; record it as  2

2,2 2
k D ; 
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The following constraint must be satisfied in steps 5-6: 

       2 2 2 2 2

1,0 0 1,11 1,01 2,0 0 Ds D s D s D s D s    .  

Meanwhile, we have:      2 2 2 2

1,2 2 1,1212 2,2 2Dk k D k D k D   . 

 

7. Update 
1  to 

2 . 

 

The simulation procedures for the TSc are similar to the procedures for the TSb. However, 

units fail in the NDT are also repaired and subjected to the DT under TSc. Accordingly, 

when considering the total number of failures in DT under TSc, additional random failure 

times need to be generated and taken into consideration. Specifically: 

 

 Estimation of 
1

Nk  and 
1

Dk : 

1. 
1

Nk  is generated by following the same steps under TSb.  

2. 1 1 1

_ _D D FN D RNk k k   ,where 
1

_D RNk is generated by following the same procedures as 

generating 
1

Dk  under TSb and 
1

_D FNk is obtained by: 

Generating 
1

Nk  random failure times  exp true ; counting the number of failure times 

that occur between  10, t ; recording as
1

_D FNk . 

 

 Estimation of 
2

Nk  and 
2

Dk : 
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1. Generate 1 1n s  random failure times  1exp  ; randomly select  2

1,0 0
s N  failure 

times from 1 1n s ; count the number of failure times that occur between  20,t ; record 

it as  2

1,1,2 0
k N ; 

2. Generate 2n  random failure times  1exp  ; randomly select  2

2,0 0
s N  failure times 

from 2n ; count the number of failure times that occur between  2 20,t w ; record it as 

 2

2,1,2 0
k N ; 

 

The following constraint must be satisfied in steps 1-2: 

   2 2 2

1,0 0 2,0 0 Ns N s N s 
. 

Meanwhile, we have:    2 2 2

1,1,2 0 2,1,2 0Nk k N k N  .  

 

3. Generate  2

1,1,2 0
k N  random failure times  exp true ; count the number of failure 

times that occur between  20,t ; record it as  2

1,1,2 0
k D ; 

4. Generate  2

2,1,2 0
k N  random failure times  exp true ; count the number of failure 

times that occur between  2 20,t w ; record it as  2

2,1,2 0
k D ; 

 

We have    2 2 2 2

_1,1,2 0 2,1,2 0D D RNk k D k D k   , where 
2

_D RNk is generated by following the 

same procedures when generating 
2

Dk  under TSb. 
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8.4 A Numerical Illustration 

 

In this section, we illustrate the optimal sequential hybrid reliability testing design for 

different testing scenarios and numerically compare the optimal testing plans obtained from 

proposed methods with those obtained from the simulation model.  

 

We show the design of the first four hybrid reliability tests with the following parameters: 

6

3 3

200;  200 ;  % 10%;  10 ;  

2 10 ;  2.5 10 ;  50,  200

i i N

true L U

n w i q R

t t 



 

    

       

  

 

In Tables 8.1-8.6, we show the optimal testing plans, the unit’s updated lifetime parameter

  and other characteristics. We apply the proposed methods and the simulation model for 

the three testing scenarios, respectively. Specifically, Tables 8.1-8.6 show the optimal 

testing plans and unit’s updated lifetime for the testing scenarios investigated in section 

8.1, TSa and TSb in section 8.2, respectively: 

 

Table 8.1 First four optimal reliability tests based on the method proposed in section 8.1 

for the testing scenario investigated in section 8.1 

Reliability Test 1 2 3 4 

yt   182 391 596 799 



194 
 

 
 

y  32.35 10   
32.41 10  

32.44 10  
32.46 10   

y

Ds   38 37 40 44 

Proportion of 
y

Ds in the 

population 

0.19 0.10 0.06 0.04 

y

Ns  20 36 53 69 

 

Table 8.2 First four optimal reliability tests based on the simulation model for the testing 

scenario investigated in section 8.1 

Reliability Test 1 2 3 4 

yt   182 398 598 792 

y  32.35 10  
32.42 10  

32.45 10  
32.46 10   

y

Ds   38 38 41 46 

Proportion of 
y

Ds in the 

population 

0.19 0.10 0.06 0.04 

y

Ns  20 36 53 69 

 

Table 8.3 First four optimal reliability tests based on the method proposed in section 8.2 

for the TSa 

Reliability Test 1 2 3 4 

yt   182 334 565 734 

Updated y  32.35 10  
32.43 10   

32.46 10  
32.47 10  

y

Ds   38 28 30 19 

Proportion of 
y

Ds in the 

population 

0.19 0.08 0.06 0.03 

y

Ns  20 36 53 70 

 

Table 8.4 First four optimal reliability tests based on the simulation model for the TSa  
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Reliability Tests 1 2 3 4 

yt   182 339 569 739 

Updated y  32.35 10  
32.45 10  32.47 10  

32.48 10  

y

Ds   38 30 31 20 

Proportion of 
y

Ds in the 

population 

0.19 0.08 0.06 0.03 

y

Ns  20 36 53 70 

 

Table 8.5 First four optimal reliability tests based on the method proposed in section 8.2 

for the TSb 

Reliability Test 1 2 3 4 

yt   182 334 565 734 

Updated y  32.35 10  
32.43 10  

32.46 10  
32.47 10  

y

Ds   38 28 30 19 

Proportion of 
y

Ds in the 

population 

0.19 0.08 0.06 0.03 

y

Ns  20 36 53 70 

 

Table 8.6 First four optimal reliability tests based on the simulation model for the TSb  

Reliability Tests 1 2 3 4 

yt   182 342 552 729 

Updated y  32.35 10  
32.44 10  

32.45 10  
32.46 10  

y

Ds   38 29 29 18 

Proportion of 
y

Ds in the 

population 

0.19 0.08 0.06 0.03 

y

Ns  20 36 53 70 

 

From the tables, we have the following observations: 
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1) 1y y    decreases as y increases, which shows that the unit’s parameter converges; 

2) 
4 approximately equals to

true , which shows the efficiency of the methods; 

3) The proportion of units assigned to the DTs shows a decreasing trend, which also 

demonstrates the efficiency of the methods. 

4) The proposed methods and the simulation model yield approximately the same updated 

lifetime parameter, which validates the accuracy of the methods. 

 

 

8.5 Conclusions 

 

In this chapter, we design optimal hybrid sequential reliability testing plans during the one-

shot units’ storage life by performing NDT and DT in each reliability test. We determine 

the optimal times to conduct the reliability tests as well as the numbers of units assigned to 

the hybrid tests under different testing scenarios, such that the number of available units 

after the tests is maximized. Based on the results of the sequential hybrid tests, the accuracy 

of the system reliability estimation is improved such that DT is no longer needed after a 

number of hybrid tests. We also develop a simulation model to validate the accuracy and 

efficiency of the proposed methods. We use a numerical example to illustrate the proposed 

methods. 
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CHAPTER 9  

OPTIMAL SELECTION AND OPERATIONAL SEQUENCING OF 

NONHOMOGENEOUS ONE-SHOT UNITS 

 

One-shot units such as missiles, airbags, and most of the military weapons are deployed 

after long terms of storage (or standby). It is important to ensure the stored units operate 

its function properly when needed. In this chapter, we investigate the optimization of one-

shot units’ operational use at arbitrary time. 

  

There exists many situations that the one-units are used consecutively when put into 

operational use. To illustrate, a certain number of one-shot units (say, s) are selected from 

the stored population and launched in sequence. Successful operation is achieved when the: 

1) first k one-shot units are successfully launched and 2) no less than consecutive r out of 

the remaining (s-k) one-shot units are successfully launched. The population has a mixture 

of one-shot units with nonhomogeneous characteristics due to the units’ different arrival 

times and the conduct of the sequential reliability tests during its storage period. Therefore, 

it becomes interesting and challenging to determine the characteristics and sequence of the 

one-shot units to be launched such that the operational use of the s launched units is 

optimized. Defining the s launched one-shot units as a system, the reliability metrics of the 

system (e.g., the probability that the system achieves the successful operation, the expected 

number of successfully launched units) need to be investigated. In this chapter, we optimize 

the system’s operational use at arbitrary time by formulating an optimization problem 

which is applicable to a variety of objectives. We also provide the bounds of the system’s 
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successful operational probability estimation and develop a simulation study to validate the 

proposed approach. 

 

The chapter is organized as follows: in section 9.1, we state the problem and scenarios in 

details and calculate the reliability of the one-shot units when they are put into operational 

use. In section 9.2, we investigate the expected time-to-kth-failure of the system (with 

nonhomogeneous units) and formulate an optimization problem to maximize the 

operational use of the system. Specifically, we determine the characteristics and launching 

sequence of the selected units by considering the system’s reliability metrics. In section 

9.3, we analyze the detailed characteristics of the one-shot units and investigate the bounds 

of the system’s probability of successful operation based on the optimal selection and 

launching sequence obtained in section 9.2. In section 9.4, we develop a simulation model 

to validate the optimality of the solution(s) obtained in section 9.2. In section 9.5, we 

provide several numerical examples to illustrate the application of the optimization 

problem. We then conclude our work in section 9.6. 

 

9.1. One-shot Units’ Operational Use Reliability 

 

One-shot units are produced and stored in batches at different times. To guarantee the one-

shot units’ operational use when needed, instantaneous NDTs are repeatedly conducted 

during its entire storage life horizon. The following notations are needed when obtaining 

the expected number of one-shot units with specific characteristics:   
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m
t  : the time when the mth NDT is conducted; 

i
n : the number of units in the ith batch;  

i
w : the arrival time of the ith batch;  

,
m
i jn : the number of one-shot units with characteristics ,i j  (i.e., the one-shot unit is in the 

ith batch and fails in NDT sequence j ) at time 
mt ; 

 j# : the number of tests in sequence j ; 

 j  :  the th  test in NDT sequence j ;  j j  is the last test in j ; 

 ,i jR t : reliability of the one-shot unit (with characteristics ,i j at time
mt ) at time t; 

 xF  : CDF of the one-shot unit’s lifetime after its xth repair;  F   is the CDF of units that 

never repaired. 

 

The expected numbers of one-shot units (with specific characteristics) at time m
t  are 

obtained in Eqs. (9.1) and (9.2), where  j j m  means the unit fails at time t  (its jth 

failure is observed in the mth NDT) and  j j m  means the unit has survived at time t. 

  

      

          
 

         

1 1 1

# -1

, 1 1 1
1

1# #

- - -

; - - -

- - -

i ij j

j

m
i j i a aj j j j

a

m mj j j jj j

F t w F t w

E n j j m n F t t F t t

F t t F t t

   



  




 
 
 
 
    
 
 
  
    

                                   (9.1) 
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1 1 1

# -1

, 1 1 1
1

#

- - -

; - - -

-

i ij j

j

m
i j i a aj j j j

a

m j jj

F t w F t w

E n j j m n F t t F t t

R t t

   



  


 
 
 
 
    
 
 
 
  

                          (9.2) 

The reliability of the one-shot unit (with characteristics i j, ) at time t (
m

t t ) is accordingly 

calculated: 

 
    

    
#

,

#

-

-

j jj

i j

m j jj

R t t
R t

R t t
                                                                                                                           (9.3) 

Under most circumstances, the one-shot units within the same batch have different 

characteristics. Specifically, they have different repair conditions (the number of repairs

 j#  and the when the repairs are conducted ( j )). Based on Eqs. (9.1)-(9.3), we obtain 

the mean and variance of the reliability (  iR t and   iVar R t ) of the one-shot units in the 

ith batch: 

 

    

    
 

#

,

#

-

-

j jj m
i j

j m j jj

i

i

R t t
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                                                                                            (9.4) 
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                                                               (9.5) 

 

9.2 Optimal Selection and Operational Sequencing of One-shot Units 
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The stored one-shot units (with nonhomogeneous characteristics) are put into operational 

use whenever needed (say, at time t ). Under most circumstances, a specific number of one-

shot units (say, s, where i

i

s n


 ) are selected and put into operational use. The successful 

operation is achieved once 1) the first k one-shot units are successfully launched and 2) 

consecutive r out of the rest (s-k) one-shot units are successfully launched. It is without 

loss of generality to define the selected one-shot units as a “first-hit-k-consecutive-r-out-

of-(s-k)” system, where the time of selecting and launching the one-shot units is negligible. 

In this section, we investigate the time-to-kth-failure of the system with nonhomogeneous 

one-shot units and optimize the system’s operational use. 

 

9.2.1 Optimal Selection and Operational Sequencing  

 

In this section, we formulate an optimization problem to obtain the optimal selection and 

launching sequence of the one-shot units. We first define the following:  

 

:  the sequence to launch the selected one-shot units, v  is presented in terms of selected 

one-shot unit’s batch number; 

  :   the batch number of the
th launched one-shot unit; 

    :R t   expected reliability of the 
th  launched one-shot unit at time t; 

    Var R t
 

: variance of the reliability of the 
th  launched one-shot unit at time t; 

:  one-shot units in the th batch have the th lowest average reliability;  
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  ;systemR t v   : expected probability that the system operates successfully at time t ; 

   ;systemVar R t v   : variance of the probability that the system operates 

successfully at time t  ; 

:s  the number of one-shot units selected from the th  batch; s s


 .  

To optimize the operational use of the system (e.g., maximize the expected probability that 

the system achieves the successful operation), the following two variables need to be 

determined:  

1) The characteristics of the selected one-shot units; i.e., the number of one-shot units 

selected from each batch; and 

2) The sequence to launch the selected one-shot units. 

 

The above two variables determine the characteristics of the 
th  launched one-shot units 

 (
   R t

 
 and     Var R t

 
). Note that the one-shot units’ launching sequence is 

dependent on its characteristics. The expected probability that the system achieves the 

successful operation at arbitrary time 
mt t  ( 1,2,...m  ) can be maximized by solving the 

following problem: 

  

Max 

  ;systemR t v                                                                                                            (9.6) 

s.t. 
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 1 1 1 1

;   
n s n R t

n s n R t

   

   


   

 
 

 
                                                                                    (9.7) 

  1;system s k rE T v t                                                                                                (9.8) 

  number of sucessfully laun one-shot unitsched ; ;systemE t v k r                     (9.9) 

    threshold;systemVar R t v Var                                                                               (9.10) 

s s


                                                                                                                       (9.11) 

          # :   
v v

R t R t R t s  
                                                                               (9.12) 

 

The objective is to maximize the expected probability that the system successfully operates 

at arbitrary time t  (Eq. (9.6)). Intuitively, the objective can be achieved by selecting one-

shot units in a decreasing order in terms of its average reliability at time t  (  R t ). 

However, the reliability metrics of unselected one-shot units also need to be considered for 

future operational use. Therefore, we consider that a minimum number of less-reliable one-

shot units need to be selected (Eq. (9.7)). In Eq. (9.8), the system’s expected-time-to-(s-

k+r+1)th-failure must  be later than time t. Similarly, the expected number of successfully 

launched one-shot units at time t  should be greater than (k+r) (Eq. (9.9)). As the 

characteristics of the one-shot units are nonhomogeneous, the randomness of selected one-

shot units’ reliability metrics needs to be considered (Eq. (9.10)). Eqs. (9.11) and (9.12) 

indicate that the launched one-shot units are selected from different batches. 
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Note that the above formulated optimization problem is general as the objective can be 

exchanged with some of the constraints. To illustrate, the optimal operational use can be 

realized by minimizing the variance of probability of  the system’s success; meanwhile, 

the expected probability that the system achieves a successful operation becomes a 

constraint which should be less than a given threshold: 

 

Min 

   ;systemVar R t v                                                                                                (9.13) 

s.t. 

  ;system thresholdR t v R   ; and                                                                                                      (9.14) 

Constraints as shown in Eqs. (9.7)-(9.8), (9.10)-(9.11).  

 

We can also maximize the expected number of successfully launched one-shot units; 

meanwhile the expected probability that system achieves a successful operation should be 

less than a given threshold: 

 

Max 

  system number of sucessfully launched one-shot units; ;E t v                                      (9.15) 

s.t. 

  ;system thresholdR t v R   ; and                                                                                                    (9.16) 

Constraints as shown in Eqs. (9.7)-(9.9), (9.11).  
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The probability that a “first-hit-k-consecutive-r-out-of-(s-k)” system successfully operates 

is obtained by taking the product of the probability that the first k launched one-shot units 

are successful (term A in Eq. (9.17)) and the probability that at least r out of the rest (s-k) 

one-shot units are consecutively launched (term B). Specifically:  

          
 

    
  ˆ ˆ ˆ ˆ:1)#1

ˆ     2)  consecutive elements in  

; 1

B

A

k s k

system

r r r v r v r
r r

R t v R t R t R t
     

  

 


     

 
  

     
   

 

    

(9.17) 

where r̂  is the sequence of successfully launched one-shot units out of the (s-k) one-shot 

units and  ˆ# r is the number of elements (one-shot units) in  r̂ . In term B, we consider all 

possible combinations of launched one-shot units’ status (successful or not), where there 

need to be  r̂# (   1r r r s k  ˆ# , , ..., ) successfully launched one-shot units with at least 

r one-shot units are consecutive. 

 

As stated earlier, the probability that the system successfully operates is not deterministic. 

We respectively obtain the expected probability that the system successfully operates and 

the expected number of successfully launched one-shot units in Eq. (9.18) and (9.19): 

          
 

    
  ˆ ˆ ˆ ˆ:1)#1

ˆ     2)  consecutive elements in 

; 1

B

A

k

system

r r r v r v r
r r

R t v R t R t R t
     

  

 
     

 
  

     
   

 

    

(9.18) 
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system

ˆ ˆ ˆ ˆ1 :1)#
ˆ     2)  consecutive elements in 

number of successfully launched one-shot units; ;

ˆ# 1

B

A

k

r r r v r v r
r r

E t

R t r R t R t
     

  

  

      



 
  

     
   

 

   

         (9.19) 

 

In Eq. (9.15), the expected number of successfully launched one-shot units in the first k 

one-shot units (term A) and in the remaining (s-k) one-shot units (term B) are respectively 

calculated and summed.  Similarly, referring to i

i

Var X


 
 
 


        
2 2

i i i

i i

Var X E X E X
 

     and  i i

i i

Var X Var X
 

 
 

 
    if iX  are 

independent of each other, we obtain the variance of the probability that the system 

operates successfully in Eq. (9.20): 

   

               

system

2 2 2 2

; , 1, 2,...,Var R t R t s

Var A E A Var B E B E A E B


 

      
   

                                       (9.20) 

where 

                
2 2

1 1

k k

v v v
Var A Var R t R t R t

  
  

    
 

   

     
1

k

E A R t
 



  

                
 

2 2

ˆ ˆ:1)# 1 1
ˆ     2)  consecutive elements in 

s s

v v v
r r r k k

r r

Var B Var R t R t R t
  

      

        
    

     
 

    
  ˆ ˆ ˆ ˆ:1)#

ˆ     2)  consecutive elements in 

1
r r r v r v r

r r

E B R t R t
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The optimal solution(s) can be obtained by either searching for all feasible solutions or 

using a nonlinear optimal algorithm. It is noted that some constraints are associated with 

the characteristics of the selected units while some constraints are associated with units’ 

characteristics and launching sequence.  

 

9.2.2 Time-to-kth-failure of a Population with Nonhomogeneous One-shot Units 

 

Current research on time-to-kth-failure (
kT ) of a population assumes that the population has 

homogeneous units. In this section, we investigate 
kT  of a population with 

nonhomogeneous one-shot units. Specifically, we investigate the system’s expected time-

to-kth-failure since the last nondestructive test time mt . 

 

9.2.2.1 Probability Density Function (pdf) of System’s Time-to-kth-Failure 

 

The characteristics of the one-shot units have an important impact on system’s time-to-kth-

failure. We obtain the probability that 
kT happens at time t  (

mt t ) with one-shot units’ 

characteristics known (i.e., the number of selected one-shot units with different 

characteristics are known). We first define the following:  

 

,

m

i js :the number of selected one-shot units with characteristics ,i j at time mt ; 

 , ,  ,m m

i j i js E n i j   



208 
 

 
 

', '

m

i js : the number of selected one-shot units with characteristics ', 'i j at time mt , specifically, 

the kth failed one-shot units has the characteristics ', 'i j ;  

,

m

i jk : the number of selected one-shot units (with characteristics ,i j at time mt ) that fail 

between time mt and t ;  

', '

m

i jk : the number of selected one-shot units (with characteristics ', 'i j at time mt ) that fail 

between time mt and t ;  

,

m

i jr : the number of selected one-shot units (with characteristics ,i j at time mt ) that survive 

until time t ;  

', '

m

i jr : the number of selected one-shot units (with characteristics ', 'i j at time mt ) that 

survive until time t ; 

 

We obtain the pdf of kT (  
kTf t ) in Eq. (9.21): 
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                 (9.21) 

where 
, , ,

m m m

i j i j i jr s k   and
', ' ', ' ', ' 1m m m

i j i j i jr s k   . 

 

The term A in Eq.(9.21) considers and sums of  all possibilities that the kth failed one-shot 

unit has specific characteristics ', 'i j , where ', 'i j could be any of the ,i j .  The term B 

considers the possible characteristics of previously failed (k-1) one-shot units, where the 

(k-1) failures occur between time 
mt  and t . The term C is the probability that out of the

', '

m

i js  one-shot units: ', '

m

i jk  one-shot units fail between time mt  and t , one one-shot unit fails 

at time t  and ', '

m

i jr  one-shot units survive until time t . The term D calculates the probability 

that: out of the ,

m

i js  one-shot units (with all potential characteristics except ', 'i j ), ,

m

i jk  one-

shot units fail between time mt  and t , and ,

m

i jr  one-shot units survive until time t .  
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9.2.2.2 Expected Time-to-kth-Failure of the System  

 

Based on Eq. (9.21), the expected time-to-kth-failure of the system (  kE T ) can be obtained 

as    
0

k m kE T t f t dt


   . Note that  kE T can only be numerically obtained under most 

circumstances, except that when the unit’s lifetime is exponentially distributed (whose 

failure rate is constant). Defining: 

 

x : the one-shot unit’s failure rate after its xth repair; 

m ys  : the number of one-shot units selected from the 
thy batch that arrives after the mth 

NDT; 

m yw  : the arrival time of the 
thy batch that arrives after the mth NDT. 

  

We iteratively obtain  kE T of the system:  

Step 1:  
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Otherwise go to step 2; 

Step 2:  

Find 
*

1k such that: 

 

 

 

 

* *
1 11

1

0 0, ,# #
, ,

, ,# #
, ,, ,

, ,

1 1
,  

k k

m m m

i j i jj j
i j i jm m

i j i jm mj j
i j i ji j i j

i j i j

w
s s

s s
s s

  

   





 

 

 

 

 





  


      


 

 
 

 
 

 and

 

 

 

*
1

*
1

11
0 , 0 1#

,

,#
, ,

,

1 1
min ,

k

mmk
i j mj

i jm

i j mj
i j i j

i j

E T w
s s

s
s

  

 


 







 
 
 
 
 

  
  

   
 
  







 . 

If 

 

 

   

*
1

*
1

1

21
0 , , 0 1# #

, ,*

, 0 1 1#
, , , 1

, ,

1
,  

k k

mk m m

i j i j mj j
i j i jm

i j m m mj
i j i j i j m

i j i j

E T w
s s s

s s k
s s s

   

  

 


 

 



 

 

 
    
 

     


 
 


 


 

 

Stop,

   

 

   

*
1

*
1

1

1
0 , , 0 1# #

, ,*

, 0 1 1#
, , , 1

, ,

1
; 

k k

k k m m

i j i j mj j
i j i jm

i j m m mj
i j i j i j m

i j i j

E T E T
s s s

s s k
s s s

   

  

 


 

 



 

 

 
    
 

     


 
 


 


 

  



212 
 

 
 

Otherwise, go to step 3; 

Step 3 

Find
*

2k such that: 
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Otherwise, continue with step 4. 

… 

The above steps iterates until  kE T is found. Note that the number of steps until stop is 

dependent on the batches’ arrival times and sizes. 

 

9.3 Bounds of System’s Successful Probability  

 

As the one-shot units within a batch are nonhomogeneous, the system’s successful 

operational probability based on the optimal selection and launching sequence (which only 

shows the launched one-shot units’ batch numbers) varies within a certain range depending 
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on the specific unit selected from the batch. In this section, we investigate the lower and 

upper bounds of system’s successful operational probability by considering the one-shot 

units’ repair conditions (the number of repairs and when the repairs are conducted).  

 

9.3.1 Bounds of System’s Successful Probability of Operation under Constant Failure Rate 

 

If the one-shot units have an exponentially distributed lifetime, the reliability of one-shot 

units with characteristics i j,  at time t  is presented by Eq. (9.22). It can be observed the 

reliability of the one-shot units (with characteristics i j, ) at time t  is independent of i  and 

j .  

 
    
    

     
     

    
##

, #

# #

exp --
exp

- exp -

j j jj j j

i j mj

mj j j j j j

t tR t t
R t t t

R t t t t







    


                                   (9.22) 

 

Generally, one-shot unit’s reliability at time t  decreases when its number of repairs 

increases as presented in Eq. (9.23):  

               
0 1 2 ii j j i j j i j j i j j m z

R t R t R t R t i
    

    
, :# , :# , :# , :#

... ;                                          (9.23) 

 

Based on the optimal selection and launching sequence obtained in section 9.2, the 

system’s successful operational probability is guaranteed to be within the range in Eq. 

(9.24):  
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                                             (9.24)   

where   ;#v j x  represents the
th  launched one-shot unit that has been repaired x 

repairs.  

 

The lower bound of the system’s successful operational probability is achieved if selecting 

one-shot units with the largest number of repairs in the designated batches and the upper 

bound is achieved by selecting one-shot units with no prior repairs. 

 

9.3.2 Bounds of System’s Successful Probability under Time-dependent Failure Rate 

 

If the one-shot units’ lifetime follows Weibull distribution with its shape parameter 
 j


#

 

dependent on the one-shot units’ number of repairs  j# , the reliability of the one-shot 

units at time t  is dependent on: the time when its last failure is observed and its number of 

repairs. Specifically, the unit’s reliability at time t is an increasing function of  j j  and a 

decreasing function of the unit’s number of prior repair (see Eq. (9.25)):  

                 

last failure observed at time 

1 2
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m
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i j j j j m i j j j j m i j j j j m z m
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, : , : , :
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1

1
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1 1 2 1 1 1
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1 1 1
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i j j j j m i j j j j m i j j j j m z m
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i j j j i j
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, : , : , :

, : ,

... ...

   

no failure observed

0j
t

:#

                       (9.25) 
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We randomly generate the batches’ arrival times, the times to conduct the sequential NDTs, 

and the Weibull shape parameters  j


#
. The generation runs for 103 iterations.  Specifically,  

1
0w  ;   1

0 50t randbetween , ;  2 1
0 50w t randbetween  , ;   

   2 2 3 2
0 50 0 50t w randbetween w t randbetween   , ; , ;  

     4 3 3 4 3
0 50 0 50 0 50w w randbetween t w randbetween t t randbetween     , ; , ; , ;  

         0 1
2 4 0 1 1 3 1 2 3

j j
randbetween r randbetween j 


    

# #
, ; . , ;# , , ;  

 

We calculate the means of  i j
R t

,
 of the 1000 iterations i j , . We numerically validate 

that the one-shot unit’s reliability is lower when more repairs are conducted and/or when 

the one-shot unit’s last repair happens earlier. The reliabilities of the one-shot units in the 

four batches with different characteristics and the average reliabilities of the one-shot units 

in the four batches at time t  are shown in Table 9.1. 

 

Table 9.1 Reliabilities of the one-shot units (with different characteristics) at time t  

 

Reliabilities of 

one-shot units in 

the 1st batch 

Reliabilities of one-

shot units in the 2nd 

batch 

Reliabilities of 

one-shot units in 

the 3rd batch 

Reliabilities of 

one-shot units in 

the 4th batch 

 1 0
R t

,
 0.9805  2 0

R t
,

 0.9896  3 0
R t

,
 0.9960  4 0

R t
,

 0.9982 

 1
R t  0.9813  2

R t  0.9897  3
R t  0.9960  4

R t  0.9982 
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 1 1
R t

,
 0.9827  2 2

R t
,

 0.9912  3 3
R t

,
 0.9993  4 3

R t
,

 0.9993 

 1 12,
R t  0.9900  2 23

R t
,

 0.9991     

 1 2
R t

,
 0.9912  2 3

R t
,

 0.9993     

 1 123
R t

,
 0.0980       

 1 13
R t

,

 1 23
R t

,
 

0.9991       

 1 3
R t

,
 0.9993       

 

 

Therefore, Eq. (9.25) is numerically proven. Based on the optimal launching sequence 

obtained in section 9.2, the system’s successful operational probability is guaranteed to be 

within the range presented in Eq. (9.26):  

  
   

     

; ;# 0 , ;

;

; ; : 1 0 ,

system

system

system

R t v j

R t v

R t v j j j j m

 

 

 

  
 

  
    
 

                                     (9.26)   

where     ; : 1 0v j j j j m     represents the
th  launched one-shot unit which is 

selected from the designated batch with its last (also the 1st) repair conducted at time 
m

t . 

The lower bound of the system’s successful operational probability is achieved by selecting 

one-shot units with no prior repairs in the designated batches (i.e., one-shot units with the 
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“longest” age) and the upper bound is achieved by selecting one-shot units with one failure 

(and repair) at time m
t  (i.e., one-shot units with the shortest age ( m

t t )).  

 

9.4 Simulation Model 

 

In this section, we develop a simulation model to validate the optimality of the solution(s) 

obtained in section 9.2. The steps of the simulation model are introduced as follows: 

 

Step 1: Find all sequences satisfying the constraint of Eq. (9.7). 

Step 2: Find all sequences satisfying Eq. (9.8): 

Step 2.1: For a specific sequence v  with
is i , randomly determine 

,

m

i js j such that

,

m

i j i

j

s s


 and  , ,

m m

i j i js E n .  

Step 2.2: Generate ,

m

i js failure times ,i j  where the ,

m

i js failure times follow the distribution 

with CDF
   # j

F  ; note that the  , , :m

i js i j j j m  failure times need to be 

greater than
 m j j

t t ;  

Step 2.3: Add 
mt  to the

,

m

i js  failure times  , :i j j j m  ; add  j j
t to the , , j

m

i j ls  failure times 

 , :i j j j m   ; sort all failure times in an increasing order and record the 
th  

failure time as T ; 
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Step 2.4: Repeat steps 2.2-2.3 for 105 times and calculate the average of T  as 

 systemE T ; let 
1 1I   if   1system s k r

E T
  

t ; otherwise 
1 0I  . 

Step 2.5: Eliminate all sequences whose
1 0I  . 

Step 3: Simulate   ;systemR t v   : 

Step 3.1：For  v   in a specific sequence v , generate 
  ,

100 m

v j
E n


 failure times j , 

where 
      , ,

100 m

v j v j
E n R t

 
  failure times with index 1 and 

      , ,
100 m

v j v j
E n F t

 
  failure times with index 0;  

Step 3.2: randomly select one number out of 
  ,

100 m

v j
E n


 , record its index as  v

I


 (  v
I



=1 or 0); 

Step 3.3: Repeat steps 3.1-3.2  ; 

Step 3.4: Record 1systemI   if 1)  
1 for 1,...,

v
I k


   and 2) at least consecutive r 

 
=1 for = 1,...,

v
I k s


  ; otherwise 0systemI  . 

Step 3.5: Repeat steps 3.1-3.4 106 times, we have:   
610

6
;

10

system

system

I

R t v    


 and 

             

  

   
6

system

1 110

6

number of successfully launched one-shot units; ;

10

k s

k

E t v

I I I
   

 

 

  



 
  

 

      

             where 1I   if 2) in step 3.4 is satisfied and 0I  otherwise; 
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Step 3.6: the variance of the probability that the system operates successfully is obtained 

accordingly. 

Step 4: Among the qualified sequences, select the sequence optimalv with the largest

  ;systemR t v   . 

 

We examine if the optimalv  obtained by the simulation model is the same as that obtained in 

section 9.2. The simulation model generally applies when the objective is exchanged with 

some of the constraints as discussed in section 9.2.   

 

9.5 Numerical Illustrations 

 

In this section, we numerically illustrate the optimal selecting and launching sequencing of 

one-shot units from the population. We also show the bounds of system’s successful 

operational probability based on the optimal sequence(s). The following testing parameters 

and one-shot units’ lifetime distributions are given as: 

6, 2, 2  N k r ; 0.5;thresholdR   0.05thresholdVar  ; 

 

Testing parameters a): The one-shot units’ lifetime follows Exponential distribution: 

   1 expj jF t t   , where 0 1 2 30.0001; 0.0003; 0.0005; 0.001;         
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1 2 3 4 1 2 30, 1200, 2500, 3000; 1000; 2000; 3500;w w w w t t t        

1 2 3 4
3 4 5 6n n n n   , , ,  

Testing parameters b): The one-shot units’ lifetime follows Weibull distribution: 

  1 exp
j

j

t
F t





  
       

, where 
0 1 2 32.5; 2.8; 3; 3.2;         

1 2 3 4 1 2 30, 200, 275, 350; 100; 250; 400.w w w w t t t         

1 2 3 44, 5, 5, 6;n n n n     

 

The following three objectives are considered:  

Objective 1 (O1): Maximize the expected probability of system’s successful operation;  

Objective 2 (O2): Maximize the expected number of successfully launched one-shot units;  

Objective 3 (O3): Minimize the variance of the system’s successful probability. 

 

The expected number of one-shot units with different characteristics and its reliability at 

time t  are calculated. We use the one-shot units in the 1st batch to illustrate the model, 

where  x
R   is the reliability of the units with x repairs. 

           3

1,123 1 1 1 1 2 1 2 3 2 1,123 4 3;                              ;E n n F t w F t t F t t R t R t t           

         
 

 
3 23

1,12 1 1 1 1 2 1 2 3 2 1,12

3 3 2

;                               ;  
R t t

E n n F t w F t t R t t R t
R t t
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           3

1,13 1 1 1 1 3 1 1 2 1 1,13 2 3;                           ;E n n F t w F t t F t t R t R t t             

           3

1,23 1 2 1 1 1 1 3 2 1,23 3 3;                          ;E n n F t w F t w F t t R t R t t             

       
 

 
2 13

1,1 1 1 1 1 3 1 1,1

2 3 1

;                                                   ;       
R t t

E n n F t w R t t R t
R t t


     


  

         
 

 
3 23

1,2 1 2 1 1 1 1 3 2 1,2

3 3 2

;                           ;  
R t t

E n n F t w F t w R t t R t
R t t


          

  

         3

1,3 1 3 1 2 1 1,3 1 3;                                             ;E n n F t w F t w R t R t t           

     
 

 
1 13

1,0 1 3 1 1,0

1 3 1

;                                                                     .
R t w

E n n R t w R t
R t w


   


 

Accordingly, we have: 

 
   3

1, 1,

1,

1

1

j j

j

E n R t

R t
n








 and   

     
2

3

1, 1 1,

1

1

j jR t R t E n
Var R t

n

  
 

     

 

We then solve for the optimal solutions for different objectives with different testing 

parameters.  Generally, it is observed the batches’ arrival times and sizes, units’ failure rate, 

the times to conduct the NDTs, and the time to select and launch the units affect the optimal 

selection and launching sequence(s). Several illustrations are shown in Tables 9.2-9.4. The 

optimal sequences are presented in terms of the selected units’ batch numbers. The 

sequence (3, 4, 1, 2, 2, 1) means that the 1st launched unit is selected from the 3rd batch, the 

2nd launched unit is selected from the 4th batch, and so on. 
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Table 9.2 One-shot units’ optimal selection and launching sequences with testing 

parameters a) at time 4000t   

Objective Optimal Sequence(s) Objective Function 

Value 

O1 (3, 4, 1, 2, 2, 1) or (4, 3, 1, 2, 2, 1) 0.8784 

O2 (1, 1, 2, 4, 3, 2) or (1, 1, 2, 3, 4, 2) 5.5616 

O3 (1, 1, 4, 2, 2, 3) 0.0112 

 

Table 9.3 One-shot units’ optimal selection and launching sequences with testing 

parameters a) at time 6500t    

Objective Optimal Sequence Objective Function 

Value 

O1 (3, 4, 1, 2, 2, 1) or (4, 3, 1, 2, 2, 1) 0.6391 

O2 (1, 1, 2, 3, 4, 2) or (1, 1, 2, 4, 3, 2) 4.7369 

O3 (3, 4, 2, 1, 1, 2) or (4, 3, 2, 1, 1, 2) 0.0281 

 

Table 9.4 One-shot units’ optimal selection and launching sequences with testing 

parameters b) at time 500t    

Objective Optimal Sequence Objective Function 

Value 
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O1 (2, 3, 1, 1, 2, 1) or (3, 2, 1, 1, 2, 1) 0.6941 

O2 (1, 1, 1, 2, 3, 2) or (1, 1, 2, 3, 2, 1) 4.8623 

O3 (2, 3, 1, 1, 1, 2) or (3, 2, 1, 1, 1, 2) 0.0357 

 

 

With testing parameter a) at time 4000t  , the system achieves its highest successful 

probability at an average value of 0.8747, with sequence (3, 4, 1, 2, 2, 1) or (4, 3, 1, 2, 2, 

1). Specifically, the average reliabilities of the one-shot units in the four batches at time 

4000t   are respectively: 

   1 2
4000 0 9156 4000 0 9303R t R t   . ; . ;  

   3 4
4000 0 9426 4000 0 9468R t R t   . ; .                                                    

 

We observe that:    0
4000 0 9512 4000  

i i
R t R t i    

,
. . Therefore, the upper bound 

of the system’s probability of successful operation is 0.8986 by selecting the one-shot units 

that have not experienced repairs in the designated batch. Similarly, the lower bound of the 

system’s probability of successful operation is 0.6041 when selecting the one-shot units 

with the highest numbers of repairs in the designated batches (Eq. (9.27)): 

   1 123 2 23
4000 0 6065 4000 0 7788R t R t   

, ,
. ; . ; 

   3 3 4 3
4000 0 8607 4000 0 8607R t R t   

, ,
. ; . .                                                                     (9.27) 

 

With testing parameters b) at time 500t  , the system achieves the highest successful 

probability at an average value of 0.6941 with launching sequence (2, 3, 1, 1, 2, 1) or (3, 2, 
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1, 1, 2, 1). In Eq. (9.28), we calculate the reliabilities of the one-shot units (that fail once 

at time 3
t ) in the four batches at time 500t   : 

       1 3 2 3 3 3 4 3
500 500 500 500 0 9890R t R t R t R t       

, , , ,
. ;                        (9.28) 

 

We also obtain the reliabilities of one-shot units that have not experienced repairs in the 

four batches in Eq. (9.29): 

   1 0 2 0
500 0 6521 500 0 8372R t R t   

, ,
. ; . ;  

   3 0 4 0
500 0 9007 500 0 9549R t R t   

, ,
. ; . ;                                                                          (9.29) 

 

Selecting and launching the one-shot units in sequence (2, 3, 1, 1, 2, 1) or (3, 2, 1, 1, 2, 1), 

the system’s probability of successful operation is guaranteed to be within the range of

 0 6071 0 9778. , . , where the upper bound is achieved if the one-shot units with one failure 

at time 3
t  (Eq. (9.28)) are selected from the designated batches and the lower bound is 

achieved if the one-shot units that have not experienced repairs are selected (Eq. (9.29)). 

 

9.6 Conclusions 

 

In this chapter, we investigate the optimal operational use of the one-shot units at arbitrary 

time. We determine the characteristics of the one-shot units selected from the stored 

population and the launching sequence to achieve the one-shot units’ optimal successful 

operation. The reliability metrics of the launched one-shot units and a variety of objectives 

are considered. The bounds of the launched one-shot units’ probability of successful 
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operation based on the optimal launching sequence are provided. We also develop a 

simulation model to validate the optimality of the solution(s) obtained by the formulated 

optimization problem. 
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CHAPTER 10  

CONCLUSIONS 

 

In this dissertation, we investigate several interesting and challenging problems regarding 

the reliability metrics of systems with mixtures of nonhomogeneous one-shot units. 

Batches of one-shot units arrive into storage at arbitrary time and a sequence of reliability 

tests are conducted randomly to assess the reliability metrics of the units. Defining the 

stored one-shot units as a system, we investigate the reliability metrics of the system under 

a variety of failure modes such as failures with no indicator, thermal fatigue failures, and 

competing failure modes. We also investigate the optimal design of sequential reliability 

testing plans by considering different types of reliability tests. The one-shot units are 

retrieved from storage and launched at arbitrary time during its storage, we also investigate 

the optimal operational use of the one-shot units in this dissertation. In the following, we 

briefly provide conclusions of this dissertation. 

 

In chapter 3, we propose effective approaches to assess the reliability metrics of a 

generalized “k-out-of-n: F” system with nonhomogeneous one-shot units under different 

scenarios, taking into account the units’ characteristics during its storage period. We show 

that aging has an important effect on the system reliability metrics. We also show that the 

reliability metrics of such systems can be obtained by either testing the entire population 

or testing selected samples. We propose that the system reliability metrics can be estimated 

accurately and effectively even when the batch size is large or when the reliability tests are 
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performed extensively over the time horizon, by developing three computationally 

effective alternatives which either mask some of the system conditions or yield negligible 

estimation bias.  An extensive simulation model validates that the proposed approaches 

estimate system reliability metrics accurately. 

 

In chapter 4, we propose stochastic approaches to assess the system reliability metrics when 

the batches’ arrival time and sizes, and the time to conduct the reliability tests can be 

described by specific probabilistic distributions. We show that the system reliability 

metrics obtained by the stochastic approaches can be approximately predicted by those 

obtained by the approaches proposed in chapter 3, by either testing the entire population or 

testing a sample, and vice versa. 

 

In chapter 5, we propose accurate and effective approaches that model the system reliability 

metrics subjecting to thermal fatigue by utilizing the GBS distribution, where the system 

has a mixture of nonhomogeneous one-shot units that are subjected to sequential ATCTs. 

We demonstrate that the GBS distribution, though developed for mechanical fatigue failure, 

is suitable for modelling thermal fatigue data. Moreover, compared with the commonly 

used CM model, we show that the GBS distribution provides additional reliability metrics 

and assesses the reliability at the system level which could not be accomplished by the CM 

model. The proposed models’ flexibility and robustness in estimating/predicting the system 

reliability metrics are validated by a simulation model.  
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In chapter 6, we propose efficient and effective approaches that model the reliability 

metrics of systems subject to competing failure modes, where the system has a mixture of 

nonhomogeneous one-shot units subject to sequential TCTs. We develop and utilize 

statistics-based models and physics-statistics-based models to characterize the 

failure/degradation modes. We validate that competing failure modes result in worse 

system reliability metrics than single failure mode. Moreover, the proposed models’ 

accuracy in estimating the system reliability metrics is validated by a simulation model.  

 

In chapter 7, we study the unit’s reliability metrics by developing a statistics-physics-based 

model and show the temperature and humidity have significant effect on the system 

reliability metrics. We then propose the optimal design of sequential accelerated NDTs on 

the system level, taking system’s/sample’s reliability metrics under different testing 

scenarios into account. We numerically prove that: 1) a randomly selected sample 

represents the population’s characteristics in the long run when designing the optimal 

testing plans; and 2) the sample size has negligible consequence on the design of optimal 

testing plans. We also show that the accelerated NDTs have insignificant effect on the 

system reliability metrics while reducing the test durations. 

 

In chapter 8, we design optimal sequential hybrid reliability testing plans during the one-

shot units’ storage life under different scenarios, by performing both NDT and DT in each 

reliability test. We therefore show that the number of available units after the tests can be 

maximized by designing the optimal testing plan. We also prove that the accuracy of the 
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system reliability metrics estimation is improved based on the results of the sequential 

hybrid tests, such that DT is no longer needed after a number of hybrid tests.  

 

In chapter 9, we achieve the optimal operational use of the one-shot units at arbitrary time. 

The characteristics of the one-shot units when launched are obtained. We optimize the 

launched one-shot units’ optimal successful operation by determining its characteristics 

and launching sequence. We show that the probability that the launched one-shot units 

achieves a successful operation is guaranteed to be within a certain range based on the 

proposed optimal launching sequence, by providing the bounds of the estimates of the 

probability. 
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APPENDIX 

 

The probability that the unit has specific characteristics are obtained in Eqs. (A1) and (A2): 
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