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Andrzej Ruszczyński

In this thesis, we develop theoretical foundations of the theory of dynamic risk mea-

sures for controlled stochastic processes, and we apply our theory to Markov decision

processes (MDP) and partially observable Markov decision processes (POMDP).

We consider a new class of dynamic risk measures for controlled discrete-time s-

tochastic processes, which we call process-based. By introducing a new concept of

stochastic conditional time consistency, we derive the structure of process-based risk

measures enjoying this property. It is shown that such risk measures can be equiva-

lently represented by a collection of static law-invariant risk measures on the space of

functions of the state of the base process.

The results are first specialized to Markov decision problems (MDP), in which we

use process-based dynamic risk measures to evaluate control policies. We derive the

refined structure of risk measures for this kind of problems, along with the associated

dynamic programming equations.
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We then specialize our theory to partially observable Markov decision problems

(POMDP). Compared to MDP, in POMDP we can only observe part of the state, and

we need to infer the rest of the state conditional on our observations. We derive that the

stochastically conditionally time-consistent dynamic risk measures can be represented

by a sequence of law-invariant risk measures on the space of function of the observable

part of the state. The corresponding dynamic programming equations are also derived.

Finally, as an application to our theory on POMDP, we study a model for machine

deterioration problem.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Quantifying risk in a dynamic multistage setup is a research subject that is intruiging

and of immense practical importance. In the extant literature, three basic approaches to

introduce risk aversion for discrete-time processes have been employed: utility functions

(see, e.g., [31, 32, 19, 7, 33]), mean–variance models (see. e.g., [63, 23, 42, 1]), and

entropic (exponential) models (see, e.g., [29, 43, 10, 17, 20, 40, 7]).

In recent years, as a multistage extension to the classical theory of risk measures,

the theory of dynamic risk measures emerges as a more general tool for quantifying risk

compared to the approaches mentioned above, see [58, 48, 53, 24, 15, 55, 4, 47, 35, 34, 16]

and the references therein. The basic setting is the following: we have a probability

space (Ω,F , P ), a filtration {Ft}t=1,...,T with a trivial F1, and we define appropriate

spaces Zt of Ft-measurable random variables, t = 1, . . . , T . For each t = 1, . . . , T , a

mapping ρt,T : ZT → Zt is called a conditional risk measure. The central role in the

theory is played by the concept of time consistency, which regulates relations between

the mappings ρt,T and ρs,T for different s and t. One definition employed in the literature

is the following: for all Z,W ∈ ZT , if ρt,T (Z) ≤ ρt,T (W ) then ρs,T (Z) ≤ ρs,T (W ) for

all s < t. This can be used to derive recursive relations ρt,T (Z) = ρt

(
ρt+1,T (Z)

)
, with

simpler one-step conditional risk mappings ρt : Zt+1 → Zt, t = 1, . . . , T − 1. Much

effort has been devoted to derive dual representations of the conditional risk mapping

and to study their evolution in various settings.

When applied to processes described by controlled kernels, in particular, to Markov

processes, the theory of dynamic measures of risk encounters difficulties. The spaces

Zt are different for different t, and thus each one-step mapping ρt has different domain
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and range spaces. With Zt containing all Ft measurable random variables, arbitrary

dependence of ρt on the past is allowed. Moreover, no satisfactory theory of law-

invariant dynamic risk measures exists, which would be suitable for Markov control

problems (the restrictive definitions of law invariance employed in [37] and [59] lead to

conclusions of limited practical usefulness, while the translation of the approach of [62]

to the Markov case appears to be difficult). These difficulties are compounded in the

case of controlled processes, when a control policy changes the probability measure on

the space of paths of the process. Risk measurement of the entire family of processes

defined by control policies is needed.

Motivated by these issues, a specific class of dynamic risk measures was introduced

in [57], which is well-suited for Markov problems. It was postulated in [57] that the

one-step conditional risk mappings ρt have a special form, which allows for their repre-

sentation in terms of static risk measures on the space of functions defined on the state

space of the Markov process. This restriction allowed for the development of dynam-

ic programming equations and corresponding solution methods, which generalizes the

well-known results for expected value problems. The ideas were successfully extended

in [13, 12, 41, 61]. However, the construction of the Markov risk measures appeared

somewhat arbitrary.

Aiming at building more solid theoretical foundations for the Markov risk measures

introduced in [57], in this thesis, we introduce and analyze a general class of risk mea-

sures, which we call process-based. We consider a controlled process {Xt}t=1,...,T taking

values in a state space X , whose conditional distributions are described by controlled

history-dependent transition kernels

Qt : X t × U → P(X ), t = 1, . . . , T − 1,

where

X t = X × · · · × X︸ ︷︷ ︸
t times

,

and U is a certain control space. Any history-dependent (measurable) control ut =

πt(x1, . . . , xt) is allowed. In this setting, we are only interested in measuring risk of

stochastic processes of the form Zt = ct(Xt, ut), t = 1, . . . , T , where ct : X ×U → R can
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be any bounded measurable function. This restriction of the class of stochastic processes

for which risk needs to be measured is one of the two cornerstones of our approach.

The other cornerstone is our new concept of stochastic conditional time consistency.

It is more restrictive than the usual time consistency, because it involves conditional

distributions and uses stochastic dominance rather than the pointwise order.

These two foundations allow for the development of a theory of dynamic risk mea-

sures for controlled processes. We demonstrate that dynamic risk measures for history-

dependent controlled processes can be fully described by a sequence of static law-

invariant risk measures on a space V of measurable functions on the state space X .

This proves that our theory generalizes the utility and entropic models. On the other

hand, the mean–variance models do not satisfy, in general, the monotonicity and time

consistency conditions, except the version of [14].

In the special case of controlled Markov processes, we derive the structure postu-

lated in [57], thus providing its solid theoretical foundations. We also derive dynamic

programming equations in a much more general setting than that of [57]. For multistage

stochastic programming problems with decision-dependent probabilities, we derive from

our axioms the form of risk measures on a scenario tree and we also derive the associated

dynamic programming equations.

In the second part of the thesis, we develop risk theory for partially observable con-

trolled Markov processes. In the expected-value case, this classical topic is covered

in many monographs (see, e.g., [28, 9, 6] and the references therein). The standard

approach is to consider the belief state space, involving the space of probability dis-

tributions of the unobserved part of the state. The recent article [21] provides the

state-of-the-art setting. The risk-averse case has been dealt, so far, with the use of the

entropic risk measure [30, 22]. A more general partially-observable utility model was

recently analyzed in [8].

In a partially-observable model, with the state process {Xt, Yt}t=1,...,T , where Xt

is observable at time t, while {Yt} is unobservable, the concepts of conditional and

dynamic risk measures are insufficient. The reason is that the cost process, in general,

is adapted to the full filtration
{
FX,Yt

}
defined by the full state process {Xt, Yt}, while
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the dynamic risk evaluation has to be available at each time t, and thus must be adapted

to the sub-filtration
{
FXt
}

defined by the observable part of the state process. To deal

with this difficulty, we introduce the concept of a risk filter. We postulate a new property

of stochastic conditional time consistency of such a filter. Our main result is that the

risk filters can be equivalently modeled by special forms of transition risk mappings:

static risk measures on the space of functions defined on the observable part of the

state only. We also derive dynamic programming equations for risk-averse partially

observable Markov models. In these equations, the state space comprises belief states

and observable states, as in the expected value model, but the conditional expectation

is replaced by a transition risk mapping.

1.2 Outline of the Dissertation

The thesis is organized as follows.

• We briefly review the fundamental theory of static risk measures in the rest of

this chapter.

• In Chapter 2 and 3 we consider general discrete-time stochastic processes and in-

troduce a new class of risk measures that are process-based. A new property for

process-based dynamic risk measures, which we call stochastic conditional time

consistency, is also introduced (Definitions 2.3.1, 3.2.1). Respectively for uncon-

trolled processes (Chapter 2) and controlled processes (Chapter 3), we charac-

terize the structure of dynamic risk measures enjoying this property (Theorems

2.4.5, 3.2.3).

• In Chapter 4 we specialize the concepts and results to controlled Markov processes.

We introduce the concept of Markov risk measures and we derive its structure

(Theorem 4.1.3). In Section 4.2, we prove the dynamic programming equations in

this case. In Section 4.3, we consider multistage stochastic programming problems

in which the exogenous (data) process is history-dependent, while the physical

state evolves according to a controlled state equation.



5

• In Chapter 5 we extend our theory to partially observable Markov process (POMD-

P). The concept of risk filters is introduced (Section 5.2) and their structures are

derived under stochastic conditional time consistency (Theorem 5.3.8). In Sec-

tion 5.4, we prove the dynamic programming equations for risk-averse partially

observable models.

• In Chapter 6, we apply our theory for POMDP to a machine replacement problem.

1.3 Static Risk Measures

The modern theory of static risk measures has been established since late 1990’s [2, 3,

25, 26, 27], while a list of axioms are imposed to define the concept of coherent risk

measures. We would like to point out that our convention throughout the thesis might

be different compared to some literature: we adopt the convention that smaller values

of random variables are preferred, while the values can be interpreted as “costs”. Let

us begin with presenting the rigorous definition for risk measures.

Definition 1.3.1. Assume that (Ω,F , P ) is a probability space and Z = Lp(Ω,F , P ) is

the space of all p-integrable random variables with p ∈ [1,+∞]. A function ρ : Z → R

is called a convex risk measure if it satisfies the following axioms:

• Monotonicity. If V,Z ∈ Z and V ≤ Z, then ρ(V ) ≤ ρ(Z).

• Convexity. ρ(αZ + (1−α)V ) ≤ αρ(Z) + (1−α)ρ(V ), ∀Z, V ∈ Z, α ∈ [0, 1].

• Translation Equivariance. If c ∈ R and Z ∈ Z, then ρ(c+ Z) = c+ ρ(Z).

Furthermore, a risk measure is called a coherent risk measure if additionally it

satisfies

• Positive Homogeneity. If γ ≥ 0 and Z ∈ Z, then ρ(γZ) = γρ(Z).

A convex risk measure satisfies the following property.

Proposition 1.3.2. If ρ is a convex risk measure, then for all Z ∈ Z, ρ(Z) is the

certainty equivalent to Z, namely

ρ(ρ(Z)) = ρ(Z).
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Let us discuss each of the properties in Definition 1.3.1 and explain their modeling

motivations. The theory of risk measure originates from the need of quantifying risk

in financial instruments, and here it is illuminating to think of Z as a random variable

representing the loss of a portfolio in different scenarios, where a positive number stands

for a loss and a negative number stands for a gain. The word “risk” in our discussion

that follows refers to a comprehensive summary of “unacceptability” a portfolio incurs,

with a higher number leading to a “less acceptable” portfolio. This includes the level of

uncertainty of the return of the portfolio, but also includes the average performance of

the portfolio. In contrast, sometimes in the literature, the term “risk” only corresponds

to the level of uncertainty.

The monotonicity axiom is straightforward and expresses the fact that if a portfolio

loses less than another portfolio in all circumstances, it is a better portfolio. The

convexity axiom corresponds to the benefit of diversification: by forming a convex

combination of two portfolios, the risk of the newly created hybrid portfolio is never

larger than the convex combination of the risks of the original two portfolios, and

sometimes the risk is lower. The translation equivariance axiom stipulates that all sure

losses contribute directly to the certainty equivalent. Finally, the positive homogeneity

means that we cannot achieve lower risk by simply combining identical portfolios.

Let us illustrate the definition of risk measures by several examples.

Example 1.3.3 (Ogryczak and Ruszczyński [44, 45]). The mean-semideviation risk

measure is defined as

ρ(Z) = E[Z] + κ‖(Z − E[Z])+‖p, κ ∈ [0, 1],

and it is a coherent risk measure.

Example 1.3.4 (Rockafellar and Uryasev [51, 52]). The average (or conditional)

value at risk is defined as

AVaRα(Z) = min
t∈R

{
t+

1

α
E[(Z − t)+]

}
=

1

α

∫ 1

1−α
F−1
Z (β)dβ, α ∈ (0, 1).

This risk measure is a coherent risk measure, and we shall see in the next section

that it is particularly important because it acts as a basic building block for Kusuoka

representation of law-invariant risk measures.
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Example 1.3.5 (Föllmer and Schied [26]). The entropic risk measure is defined as

ρ(Z) =
1

γ
lnE

[
eγZ
]
, γ > 0.

It is a convex risk measure. Note that it is not a coherent risk measure as it does not

satisfy the positive homogeneity axiom.

1.4 Dual Representation of Coherent Risk Measures

One of the most remarkable properties of coherent risk measures is the following dual

representation.

Theorem 1.4.1 (Dual Representation). Assume that Z = Lp(Ω,F , P ), p ∈ [1,∞),

and define q to be the conjugate of p, i.e. 1/p+ 1/q = 1. We also define

Pq =

{
Q ∈ P(Ω,F) |

∫
Ω

∣∣∣dQ
dP

∣∣∣qdP < +∞
}
.

A function ρ : Z → R is a coherent risk measure if and only if there exists a convex

closed set A ⊂ Pq such that

ρ(Z) = max
µ∈A

∫
Ω
Z(ω)µ(dω). (1.1)

This dual representation theorem is a special case of conjugate duality in con-

vex analysis [50]. In the risk measure context, it was initially proved in the finite-

dimensional case in [3] and was later refined in several papers (e.g., [27, 56]). Theo-

rem 1.4.1 is important as it is the foundation of many numerical methods for optimizing

risk measures.

It turns out that if we additionally assume that the risk measure is law-invariant,

we have an even more explicit representation theorem.

Definition 1.4.2. A coherent risk measure ρ is called law-invariant (w.r.t. the

underlying probability P ) if Z ∼st W implies ρ(Z) = ρ(W ), where ∼st stands for

equality in distribution, i.e., P [Z ≤ η] = P [W ≤ η] for all η ∈ R.

We check readily that the Average Value at Risk (AVaR) presented in Example

1.3.4 is a law-invariant coherent risk measure. The following theorem, due to Kusuoka,

states that all law-invariant coherent risk measure can be represented using AVaR.
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Theorem 1.4.3 (Kusuoka [39]). Assume that (Ω,F , P ) is atomless and Z = Lp(Ω,F , P ).

Then ρ : Z → R is a law-invariant coherent risk measure if and only if there exists a

convex set Λ ⊂ P
(
(0, 1]

)
such that

ρ(Z) = sup
λ∈Λ

∫
[0,1)

AVaRα(Z)λ(dα), ∀Z ∈ Z, (1.2)

The Kusuoka representation theorem establishes a correspondence between the set

of law-invariant coherent risk measures and the set of all convex sets of P
(
(0, 1]

)
. We

hence obtain a very handy way to construct law-invariant coherent risk measures: it

suffices to define a convex set of P
(
(0, 1]

)
and define the risk measure via (1.2). In

the special case where Λ contains only one element, the corresponding law-invariant

coherent risk measure is called spectral.

Let us revisit some of the examples presented in the previous section and examine

these representation theorems in an explicit fashion.

We start with the Average Value at Risk (AVaR) presented in Example 1.3.4. We

check readily that it is a law-invariant coherent risk measure. In [56] it was proved that

AVaRα has a dual representation (1.1) with

A =

{
u | 0 ≤ dµ

dP
≤ 1

α
, µ(Ω) = 1

}
.

AVaRα has an obvious Kusuoka representation (1.2) with Λ = {δα}, where δ stands for

the Dirac mass.

We then look at the mean-semideviation risk measure presented in Example 1.3.3.

Again we check readily that it is a law-invariant coherent risk measure. It was also

proved in [56] that the set A in the dual representation theorem is given by

A =

{
µ | dµ

dP
= 1 + h−

∫
Ω
h(ω)P (dω), ‖h‖q ≤ κ, h ≥ 0

}
.

Moreover, in [46, Lemma 3.6] the authors proved that the Kusuoka representation of

the first order mean-semideviation risk measure (p = 1) has the form

Λ = {λ ∈ P([0, 1)) | ∃α ∈ (0, 1), λ = καδα + (1− κα)δ1} ,

where δ stands for the Dirac mass.
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Chapter 2

Risk Measures Based on Observable Processes

In this chapter we introduce fundamental concepts and properties of dynamic risk mea-

sures for uncontrolled stochastic processes in discrete time. In Section 2.1 we set up our

probabilistic framework, and in Sections 2.2 and 2.3 we revisit some important concept-

s existing in the literature. In Section 2.4, we introduce the new notion of stochastic

conditional time consistency, which is a stronger requirement on the dynamic risk mea-

sure than the standard time consistency, and which is particularly useful for controlled

stochastic processes. Based on this concept, we derive the structure of dynamic risk

measures involving transition risk mappings: a family of static risk measures on the

space of functions of a state.

2.1 Preliminaries

In all subsequent considerations, we work with a Borel subset X of a Polish space

(a separable and complete metric space) and the product measurable space
(
Ω :=

X T ,F := B(X )T
)

where T is a positive integer and B(X )T is the product σ-algebra of

Borel sets. For an element of X T , we use {Xt}t=1,...,T to denote the discrete-time process

of projections of X on the coordinate spaces. For t = 1, . . . , T , we also define Ht = X t

to be the space of possible histories up to time t, and we use ht = (x1, . . . , xt) for a

generic element of Ht: a specific history up to time t. The random vector (X1, . . . , Xt)

will be denoted by Ht. In applications, X is usually a finite or finite-dimensional space,

but we use a more general setting to allow for X to be the space of probability measures

(for instance the space of belief states in POMDP).

We assume that for all t = 1, . . . , T − 1, the transition kernels, which describe
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the conditional distribution of Xt+1, given X1, · · · , Xt, are measurable functions

Qt : X t → P(X ), t = 1, . . . , T − 1, (2.1)

where P(X ) is the set of probability measures on (X ,B(X )). These kernels, along with

the initial distribution of X1, define a unique probability measure P on the product

space X T with the product σ-algebra.

For a stochastic system described above, we consider a sequence of random variables

{Zt}t=1,...,T taking values in R; we assume that lower values of Zt are preferred (e.g.,

Zt represents a “cost” at time t). We require {Zt}t=1,...,T to be bounded and adapted

to {Ft}t=1,...,T - the natural filtration generated by the process X. In order to facilitate

our discussion, we introduce the following spaces:

Zt =
{
Z : X T → R

∣∣Z is Ft-measurable and bounded
}
, t = 1, . . . , T. (2.2)

It is then equivalent to say that Zt ∈ Zt. We also introduce the spaces

Zt,T = Zt × · · · × ZT , t = 1, . . . , T,

representing the space of sequences of costs starting from time t.

Since Zt is Ft-measurable, a measurable function φt : X t → R exists such that

Zt = φt(X1, . . . , Xt). With a slight abuse of notation, we still use Zt to denote this

function.

2.2 Dynamic Risk Measures

In this section, we quickly review some definitions and concepts related to conditional

and dynamic risk measures. All relations (e.g., equality, inequality) between random

variables are understood in the “everywhere” sense.

Definition 2.2.1. A mapping ρt,T : Zt,T → Zt, where 1 ≤ t ≤ T , is called a con-

ditional risk measure, if it has the monotonicity property: for all (Zt, . . . , ZT )

and (Wt, . . . ,WT ) in Zt,T , if Zs ≤ Ws, for all s = t, . . . , T , then ρt,T (Zt, . . . , ZT ) ≤

ρt,T (Wt, . . . ,WT ).
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Definition 2.2.2. A conditional risk measure ρt,T : Zt,T → Zt

(i) is normalized if ρt,T (0, . . . , 0) = 0;

(ii) is translation-invariant if for all (Zt, . . . , ZT ) ∈ Zt,T ,

ρt,T (Zt, . . . , ZT ) = Zt + ρt,T (0, Zt+1, . . . , ZT ).

Compared to the properties introduced in Definition 1.3.1 for static risk measures,

the normalization property is weaker than the positive homogeneity and the translation

invariance is a dynamic version of translation equivariance. Throughout the chapter, we

assume all conditional risk measures to be at least normalized. Translation-invariance

is a fundamental property, which will also be frequently used; under normalization, it

implies that ρt,T (Zt, 0, . . . , 0) = Zt.

Definition 2.2.3. A conditional risk measure ρt,T has the local property if

1Aρt,T (Zt, . . . , ZT ) = ρt,T (1AZt, . . . ,1AZT ),

for all (Zt, . . . , ZT ) ∈ Zt,T and for all events A ∈ Ft.

The local property means that the conditional risk measure at time t restricted to

any Ft-event A is not influenced by the values that Zt, . . . , ZT take on Ac.

Definition 2.2.4. A dynamic risk measure ρ =
{
ρt,T

}
t=1,...,T

is a sequence of

conditional risk measures ρt,T : Zt,T → Zt. We say that ρ is normalized, translation-

invariant, or has the local property, if all ρt,T , t = 1, . . . , T , satisfy the respective con-

ditions of Definitions 2.2.2 or 2.2.3.

Note that the above definitions and time consistency in the following section can

be introduced on a underlying probability space (Ω,F , P ) equipped with filtrations

{Ft}t=1,...,T , and cost spaces Zt = Lp(Ω,Ft, P ), where Ω is not necessarily X T . Here

we choose the natural model by starting from the process X and its transition kernels

for two reasons:

• In this work we really want to focus on the history Ht that can happen.

• It is easy to extend this setup to the controlled case (Chapter 3) by allowing

various distributions P for
(
X T ,B(X )T

)
.
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2.3 Time Consistency

The notion of time consistency can be formulated in different ways, with weaker or

stronger assumptions; but the key idea is that if one sequence of costs, compared to

another sequence, has the same current cost and lower measure in the future, then it

should have lower current measure. In this and the next section, we discuss two for-

mulations of time consistency: the (now) standard one, and our new proposal specially

suited for process-based measures. We also show how the tower property (the recursive

relation between ρt,T and ρt+1,T that the time consistency implies) improves with the

more refined time consistency concept. The following definition of time consistency was

employed in [57].

Definition 2.3.1. A dynamic risk measure
{
ρt,T

}
t=1,...,T

is time-consistent if for

any 1 ≤ t < T and for all (Zt, . . . , ZT ), (Wt, . . . ,WT ) ∈ Zt, the conditions
Zt = Wt,

ρt+1,T (Zt+1, . . . , ZT ) ≤ ρt+1,T (Wt+1, . . . ,WT ),

imply that ρt,T (Zt, . . . , ZT ) ≤ ρt,T (Wt, . . . ,WT ).

In the extant literature, time consistency is usually defined for mappings ρt,T :

ZT → Zt, which evaluate at time t the risk of a final cost ZT . In [4] it is required

that ρt,T (ZT ) = ρt,T

(
ρs,T (ZT )

)
for all 1 ≤ t ≤ s ≤ T . Our definition, restricted to

sequences of form (0, . . . , 0, ZT ), is equivalent to it, which can be easily verified by

induction. In [60, Def. 6.79] a strong version of Definition 2.3.1 is introduced (with

sharp inequalities).

It turns out that a translation-invariant and time-consistent dynamic risk measure

can be decomposed into and then reconstructed from so-called one-step conditional risk

mappings.

Theorem 2.3.2 ([57]). A dynamic risk measure
{
ρt,T

}
t=1,...,T

is translation-invariant

and time-consistent if and only if there exist mappings ρt : Zt+1 → Zt, t = 1, . . . , T −1,

satisfying the monotonicity and normalization properties, called one-step conditional
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risk mappings, such that for all t = 1, . . . , T − 1,

ρt,T (Zt, . . . , ZT ) = Zt + ρt

(
ρt+1,T (Zt+1, . . . , ZT )

)
. (2.3)

This relation is related to the Koopmans equation [36] for utility functions. The

operators A(Zt, Zt+1) = Zt + ρt(Zt+1) generalize the concept of aggregator to measures

of risk.

In general, time consistency does not imply the local property, unless additional

conditions are satisfied.

Conceptually, the one-step conditional risk mappings play a similar role to one-step

conditional expectations, and will be very useful when an analog of the tower prop-

erty is involved. At this stage, without further refinement of assumptions, it remains

a fairly abstract and general object that is hard to characterize. In [33], for the case

of the expected utility model, ρt was a conditional expectation of a pointwise mono-

tonic transformation of its argument. In [57], a more general, but seemingly special

form of this one-step conditional risk mappings was imposed, which was well suited

for Markovian applications, but it was unclear whether other forms of such mappings

exist. In order to gain deeper understanding of these concepts, we introduce a stronger

notion of time consistency, and we argue that any one-step conditional risk mapping is

of the form postulated in [57]. To this end, we use the particular structure of the space(
X T ,B(X )T

)
and the way a probability measure is defined on this space.

2.4 Stochastic Conditional Time Consistency and Transition Risk

Mappings

We now refine the concept of time consistency for process-based risk measures.

Definition 2.4.1. A dynamic risk measure
{
ρt,T

}
t=1,...,T

is stochastically condi-

tionally time-consistent with respect to {Qt}t=1,...,T−1 if for any 1 ≤ t ≤ T − 1, for

any ht ∈ X t, and for all (Zt, . . . , ZT ), (Wt, . . . ,WT ) ∈ Zt,T , the conditions
Zt(ht) = Wt(ht),(
ρt+1,T (Zt+1, . . . , ZT ) | Ht = ht

)
�st

(
ρt+1,T (Wt+1, . . . ,WT ) | Ht = ht

)
,

(2.4)
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imply

ρt,T (Zt, . . . , ZT )(ht) ≤ ρt,T (Wt, . . . ,WT )(ht), (2.5)

where the relation �st is the conditional stochastic order understood as follows:

Qt(ht)
({

x | ρt+1,T (Zt+1, . . . , ZT )(ht, x) > η
})

≤ Qt(ht)
({

x | ρt+1,T (Wt+1, . . . ,WT )(ht, x) > η
})
, ∀ η ∈ R.

When the choice of the underlying transition kernels is clear from the context, we will

simply say that the dynamic risk measure is stochastically conditionally time-consistent.

Proposition 2.4.2. If a dynamic risk measure
{
ρt,T

}
t=1,...,T

is stochastically condi-

tionally time-consistent and has the translation property, then it is time-consistent and

has the local property.

Proof. Suppose
{
ρt,T

}
t=1,...,T

is stochastically conditionally time-consistent. We verify

Definition 2.3.1. If Zt = Wt and ρt+1,T (Zt+1, . . . , ZT ) ≤ ρt+1,T (Wt+1, . . . ,WT ) (point-

wise) then (2.4) is true, for all ht. Then Definition 2.4.1 implies that (2.5) is true, and

thus
{
ρt,T

}
t=1,...,T

is time-consistent.

Let us prove by induction on t from T down to 1 that ρt,T have the local property.

Clearly, ρT,T does: if A ∈ FT , then Definition 2.2.2 yields

1AρT,T (ZT ) = 1AZT = ρT,T (1AZT ).

Suppose ρt+1,T satisfies the local property for some 1 ≤ t < T , and consider any

A ∈ Ft, any ht ∈ X t, and any (Zt, . . . , ZT ) ∈ Zt,T . Two cases may occur.

• If 1A(ht) = 0, then [1AZt](ht) = 0. The local property for t+ 1 yields:

[
ρt+1,T (1AZt+1, . . . ,1AZT )

]
(ht, ·) =

[
1Aρt+1,T (Zt+1, . . . , ZT )

]
(ht, ·) = 0.

By stochastic conditional time consistency,

ρt,T (1AZt,1AZt+1, . . . ,1AZT )(ht) = ρt,T (0, . . . , 0)(ht) = 0.
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• If 1A(ht) = 1, then [1AZt](ht) = Zt(ht). The local property for t+ 1 implies that

[
ρt+1,T (1AZt+1, . . . ,1AZT )

]
(ht, ·)

=
[
1Aρt+1,T (Zt+1, . . . , ZT )

]
(ht, ·)

= ρt+1,T (Zt+1, . . . , ZT )(ht, ·).

By stochastic conditional time consistency,

ρt,T (1AZt, . . . ,1AZT )(ht) = ρt,T (Zt, . . . , ZT )(ht).

In both cases, ρt,T (1AZt, . . . ,1AZT )(ht) =
[
1Aρt,T (Zt, . . . , ZT )

]
(ht).

The following examples illustrate the differences between the concepts of time con-

sistency and stochastic conditional time consistency.

Example 2.4.3. Suppose X = {0, 1}, T = 2, Q(x) = {1/2, 1/2} for both x ∈ X .

A random element Z1 is a function of x1, while Z2 is a function of the pair (x1, x2).

Consider the risk measure

ρ1,2(Z1, Z2)(x1) = Z1(x1) + Z2(x1, x1),

ρ2,2(Z2)(x1, x2) = Z2(x1, x2).

(2.6)

It is time-consistent: if Z1 = W1 and Z2 ≤ W2 then also ρ1,2(Z1, Z2) ≤ ρ1,2(W1,W2).

It also has the normalization, translation, and local properties. Let
Z1(x1) = 0,

Z2(x1, x2) = x2;
W1(x1) = 0,

W2(x1, x2) = 1− x2.

The conditional distributions of Z2 and W2 are identical, and Definition 2.4.1 re-

quires that ρ1,2(Z1, Z2) = ρ1,2(W1,W2). But (2.6) yields ρ1,2(Z1, Z2)(x1) = x1 and

ρ1,2(W1,W2)(x1) = 1− x1. The measure (2.6) is not stochastically conditionally time-

consistent. The reason is that it does not include the distribution of the next state in

the risk evaluation. �
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Generally, the definition of dynamic risk measures in Section 2.2 and the definition

of time consistency property in Section 2.3 are valid with any filtration on an underlying

probability space (Ω,F , P ), instead of process-generated filtration. However, from now

on, we only consider dynamic risk measures defined with a filtration generated by a

specific process, because we are interested in those risk measures which can be evaluated

on each specific history path. That is why we call these risk measures “process-based.”

The following proposition shows that the stochastic conditional time consistency

implies that the one-step risk mappings ρt can be equivalently represented by static

law-invariant risk measures on V, where

V =
{
v : X → R

∣∣ v is measurable and bounded
}
. (2.7)

Let us first restate Definition 1.4.2 on law invariance and make the dependency on

the underlying probability measure explicit.

Definition 2.4.4. A measurable function r : V → R is law-invariant with respect

to the probability measure q on (X ,B(X )), if for all v, w ∈ V(
v|q ∼st w|q

)
⇒
(
r(v) = r(w)

)
,

where
(
v|q ∼st w|q

)
means that q

(
{v ≤ η}

)
= q
(
{w ≤ η}

)
for all η ∈ R.

We can now state the main result of this section.

Theorem 2.4.5. A process-based dynamic risk measure
{
ρt,T

}
t=1,...,T

is translation-

invariant and stochastically conditionally time-consistent if and only if functionals σt :

graph(Qt)× V → R, t = 1, . . . , T − 1, exist, such that

(i) for all t = 1, . . . , T−1 and all ht ∈ X t, the functional σt(ht, Qt(ht), ·) is a normalized,

monotonic, and law-invariant risk measure on V with respect to the distribution Qt(ht);

(ii) for all t = 1, . . . , T − 1, for all (Zt, . . . , ZT ) ∈ Zt,T , and for all ht ∈ X t,

ρt,T (Zt, . . . , ZT )(ht) = Zt(ht) + σt
(
ht, Qt(ht), ρt+1,T (Zt+1, . . . , ZT )(ht, ·)

)
. (2.8)

Moreover, for all t = 1, . . . , T − 1, σt is uniquely determined by ρt,T as follows: for

every ht ∈ X t and every v ∈ V,

σt(ht, Qt(ht), v) = ρt,T (0, V, 0, . . . , 0)(ht), (2.9)
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where V ∈ Zt+1 satisfies the equation V (ht, ·) = v(·), and can be arbitrary elsewhere.

Proof. • Assume
{
ρt,T

}
t=1,...,T

is translation-invariant and stochastically condition-

ally time-consistent. We shall prove the existence of σt satisfying (2.8)–(2.9).

Formula (2.9) defines a normalized and monotonic risk measure on the space V.

Define, for a fixed ht ∈ X t,

v(x) = ρt+1,T (Zt+1, . . . , ZT )(ht, x), ∀x ∈ X ,

V (ht+1) =


v(x), if ht+1 = (ht, x),

0, otherwise.

By translation invariance and normalization,

ρt+1,T (V, 0, . . . , 0)(ht, ·) = V (ht, ·) = ρt+1,T (Zt+1, . . . , ZT )(ht, ·).

Thus, by the translation property and stochastic conditional time consistency,

ρt,T (Zt, . . . , ZT )(ht) = Zt(ht) + ρt,T (0, Zt+1, . . . , ZT )(ht)

= Zt(ht) + ρt,T (0, V, 0, . . . , 0)(ht)

= Zt(ht) + σt(ht, Qt(ht), v).

This chain of relations proves also the uniqueness of σt.

We need only verify the postulated law invariance of σt(ht, Qt(ht), ·). If V, V ′ ∈

Zt+1 have the same conditional distribution, given ht, then Definition 2.4.1 implies

that ρt,T (0, V, 0, . . . , 0)(ht) = ρt,T (0, V ′, 0, . . . , 0)(ht), and law invariance follows

from (2.9).

• On the other hand, if such transition risk mappings exist, then
{
ρt,T

}
t=1,...,T

is

stochastically conditionally time-consistent by the monotonicity and law invari-

ance of σ(ht, ·). In order to show the translation invariance of ρt,T , we can use

(2.8) to obtain for any t = 1, . . . , T − 1, and for all ht ∈ X t the following identity:

ρt,T (0, Zt+1, . . . , ZT )(ht) = σt
(
ht, Qt(ht), ρt+1,T (Zt+1, . . . , ZT )(ht, ·)

)
= ρt,T (Zt, . . . , ZT )(ht)− Zt(ht).
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Remark 2.4.6. With a slight abuse of notation, we included the distribution Qt(ht)

as an argument of the transition risk mapping in view of the application to controlled

processes.

In the following examples, we apply common static risk measures (Examples 1.3.3-

1.3.5) to σt to construct dynamic risk measures.

Example 2.4.7. In the theory of risk-sensitive Markov decision processes, the following

family of entropic risk measures is employed (see [29, 43, 18, 54, 10, 17, 20, 40, 7]):

ρt,T (Zt, . . . , ZT ) =
1

γ
ln

(
E

[
exp

(
γ
∑T

s=tZs

) ∣∣ Ft]), t = 1, . . . , T, γ > 0.

It is stochastically conditionally time-consistent, and corresponds to the transition risk

mapping

σt(ht, q, v) =
1

γ
ln
(
Eq[e

γv]
)

=
1

γ
ln

(∫
X
eγv(x) q(dx)

)
, γ > 0. (2.10)

In the construction of a dynamic risk measure, we use q = Qt(ht). We could also make

γ in (2.10) dependent on the time t, the current state xt, or even the entire history ht,

and still obtain a stochastically conditionally time-consistent dynamic risk measure. If

γ depends on t and xt only, the mapping (2.10) corresponds to a Markov risk measure

discussed in Sections 4.1 and 4.2. �

Example 2.4.8. The following transition risk mapping satisfies the condition of The-

orem 2.4.5 and corresponds to a stochastically conditionally time-consistent dynamic

risk measure:

σt(ht, q, v) =

∫
X
v(s) q(ds) + κt(ht)

(∫
X

[(
v(s)−

∫
X
v(s′) q(ds′)

)
+

]p
q(ds)

)1/p

,

(2.11)

where κt : X t → [0, 1] is a measurable function, and p ∈ [1,+∞). It is an analogue

of the static mean–semideviation measure of risk (Example 1.3.3), whose consistency

with stochastic dominance is well–known [44, 45]. In the construction of a dynamic risk

measure, we use q = Qt(ht). If κt depends on xt only, the mapping (2.11) corresponds

to a Markov risk measure (see Sections 4.1 and 4.2). �
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Example 2.4.9. The following transition risk mapping is derived from the Average

Value at Risk [51]:

σt(ht, q, v) = min
η∈R

{
η +

1

αt(ht)

∫
X

(
v(s)− η

)
+
q(ds)

}
, (2.12)

where αt(ht) is a measurable function with values in [αmin, αmax] ⊂ (0, 1). The map-

ping (2.12) satisfies the condition of Theorem 2.4.5; its consistency with stochastic

dominance is well–known [46]. �

Our use of the stochastic dominance relation in the definition of stochastic condi-

tional time consistency rules out some candidates for transition risk mappings.

Example 2.4.10. Suppose σt(ht, q, v) = v(x1), where x1 ∈ X is a selected state. Such

a mapping is a coherent measure of risk, as a function of the last argument, and may

be law-invariant. In particular, it is law-invariant with X = {x1, x2}, q(x1) = 1/3,

q(x2) = 2/3, v(x1) = 3, v(x2) = 1, w(x1) = 2, w(x2) = 4. For this mapping, we have

v �st w under q, but σt(ht, q, v) > σt(ht, q, w), and thus the condition of stochastic

conditional time consistency is violated. This is due to the fact that the probability of

reaching x1, no matter how small, does not affect the value of the risk measure. We

consciously exclude such cases, because in controlled systems, to be discussed in the

next section, the second argument (q) is the only one that depends on our decisions. It

should be included in the definition of our preferences, if practically meaningful results

are to be obtained. �
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Chapter 3

Risk Measures for Controlled Stochastic Processes

We now extend the setting of Chapter 2 by allowing the transition kernels (2.1) to

depend on control variables ut.

3.1 The Model

We still work with the process {Xt}t=1,...,T on the space X T and introduce a control

space U , which is assumed to be a Borel subset of a Polish space. At each time t, we

observe the state xt and then apply a control ut ∈ U . We assume that the admissi-

ble control sets and the transition kernels (conditional distributions of the next state)

depend on all currently-known state and control values. More precisely, we make the

following assumptions:

1. For all t = 1, . . . , T , we require that ut ∈ Ut(x1, u1, . . . , xt−1, ut−1, xt), where

Ut : Gt ⇒ U is a measurable multifunction, and G1, . . . ,GT are the sets of histories

of all currently-known state and control values before applying each control:
G1 = X ,

Gt+1 = graph(Ut)×X ⊆ (X × U)t ×X , t = 1, . . . , T − 1;

Here graph(Ut) =
{

(x1, u1, . . . , xt, ut) ∈ (X × U)t : ut ∈ Ut(x1, u1, . . . , xt)
}

.

2. For all t = 1, . . . , T , the control-dependent transition kernels

Qt : graph(Ut)→ P(X ), t = 1, . . . , T − 1, (3.1)

are measurable, and for all t = 1, . . . , T −1, for all (x1, u1, . . . , xt, ut) ∈ graph(Ut),

Qt(x1, u1, . . . , xt, ut) describes the conditional distribution ofXt+1, given currently-

known states and controls.



21

For this controlled process, a (deterministic) history-dependent admissible policy

π = (π1, . . . , πT ) is a sequence of measurable selectors, called decision rules, πt : Gt → U

such that πt(gt) ∈ Ut(gt) for all gt ∈ Gt. We can easily prove by induction on t that for

an admissible policy π each πt reduces to a measurable function on X t, as us = πs(hs)

for all s = 1, . . . , t − 1. We are still using πs to denote the decision rule, although it

is a different function, formally; it will not lead to any misunderstanding. The set of

admissible policies is

Π :=
{
π = (π1, . . . , πT ) |

∀t, πt(x1, . . . , xt) ∈ Ut(x1, π1(x1), . . . , xt−1, πt−1(x1, . . . , xt−1), xt)
}
.

(3.2)

For any fixed policy π ∈ Π, the transition kernels can be rewritten as measurable

functions from X t to P(X ):

Qπt : (x1, . . . , xt) 7→ Qt
(
x1, π1(x1), . . . , xt, πt(x1, . . . , xt)

)
, t = 1, . . . , T − 1, (3.3)

just like the transition kernels of the uncontrolled case given in (2.1), but indexed by

π. Thus, for any policy π ∈ Π, we can consider {Xt}t=1,...,T as an “uncontrolled”

process, on the probability space
(
X T ,B(X )T , P π

)
with P π defined by {Qπt }t=1,...,T−1.

The process {Xt} is adapted to the policy-independent filtration {Ft}t=1,...,T . As before

and throughout this chapter, ht ∈ X t stands for (x1, . . . , xt).

We still use the same spaces Zt, t = 1, . . . , T , as defined in (2.2) for the costs

incurred at each stage; these spaces also allow us to consider control-dependent costs

as collections of policy-indexed costs in Z1,T . Thus, we are able to define and analyze

(time-consistent) dynamic risk measures ρπ for each fixed π ∈ Π, as in Chapter 2. Note

that ρπ are defined on the same spaces independently of π, because the filtration and

the spaces Zt, t = 1, . . . , T , are not dependent on π; however, we do need to index the

measures of risk by the policy π, because the transition kernels and, consequently, the

probability measure on the space X T , depend on π.
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3.2 Stochastic Conditional Time Consistency and Transition Risk

Mappings

We need to compare risk levels among different policies, so a meaningful order among

the risk measures ρπ, with π ∈ Π, is needed. It turns out that our concept of stochastic

conditional time consistency (Definition 2.4.1) can be extended to this setting.

Definition 3.2.1. A family of process-based dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T−1

is

stochastically conditionally time-consistent if for any π, π′ ∈ Π, for any 1 ≤ t <

T , for all ht ∈ X t, all (Zt, . . . , ZT ) ∈ Zt,T and all (Wt, . . . ,WT ) ∈ Zt,T , the conditions
Zt(ht) = Wt(ht),(
ρπ
t+1,T

(Zt+1, . . . , ZT ) | Hπ
t = ht

)
�st

(
ρπ

′

t+1,T
(Wt+1, . . . ,WT ) | Hπ′

t = ht
)
,

imply

ρπ
t,T

(Zt, . . . , ZT )(ht) ≤ ρπ
′

t,T
(Wt, . . . ,WT )(ht).

Remark 3.2.2. As in Definition 2.4.1, the conditional stochastic order “�st” is un-

derstood as follows: for all η ∈ R we have

Qπt (ht)
({

x | ρπ
t+1,T

(Zt+1, . . . , ZT )(ht, x) > η
})

≤ Qπ′
t (ht)

({
x | ρπ′

t+1,T
(Wt+1, . . . ,WT )(ht, x) > η

})
.

This definition helps us build a connection among dynamic risk measures ρπ, for

π ∈ Π, as we explain it below. Before passing to the details, we can say in short that

the same transition risk mappings as in the uncontrolled case are the only possible

structures of such risk measures.

If a family of process-based dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T−1

is stochastically

conditionally time-consistent, then for each fixed π ∈ Π the process-based dynamic risk

measure
{
ρπ
t,T

}
t=1,...,T−1

is stochastically conditionally time-consistent, as defined in

Definition 2.4.1. By virtue of Proposition 2.4.5, for each π ∈ Π, there exist functionals

σπt : graph(Qπt )×V → R, t = 1 . . . T − 1, such that for all t = 1, . . . , T − 1, all ht ∈ X t,

the functional σπt (ht, Q
π
t (ht), · ) is a law-invariant risk measure on V with respect to the

distribution Qπt (ht) and

ρπ
t,T

(Zt, . . . , ZT )(ht) = Zt(ht) + σπt
(
ht, Q

π
t (ht), ρ

π
t+1,T

(Zt+1, . . . , ZT )(ht, ·)
)
, ∀ht ∈ X t.
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Consider any π, π′ ∈ Π, ht ∈ X t, and (Zt, . . . , ZT ) ∈ Zt,T , (Wt, . . . ,WT ) ∈ Zt,T such

that 
Zt(ht) = Wt(ht),

Qπt (ht) = Qπ
′
t (ht),

ρπ
t+1,T

(Zt+1, . . . , ZT )(ht, ·) = ρπ
′

t+1,T
(Wt+1, . . . ,WT )(ht, ·).

Then we have(
ρπ
t+1,T

(Zt+1, . . . , ZT ) | Hπ
t = ht

)
∼st

(
ρπ

′

t+1,T
(Wt+1, . . . ,WT ) | Hπ′

t = ht
)
,

where the relation ∼st means that both �st and �st are true; in other words, equality

in law. Because of the stochastic conditional time consistency,

ρπ
t,T

(Zt, . . . , ZT )(ht) = ρπ
′

t,T
(Wt, . . . ,WT )(ht),

whence

σπt
(
ht, Q

π
t (ht), ρ

π
t+1,T

(Zt+1, . . . , ZT )(ht, ·)
)

= σπ
′

t

(
ht, Q

π′
t (ht), ρ

π′

t+1,T
(Wt+1, . . . ,WT )(ht, ·)

)
.

All three arguments of σπt and σπ
′

t are identical. Consequently, σπ does not depend on

π directly, and all dependence on π is carried by the controlled kernel Qπt . This is a

highly desirable property, when we apply dynamic risk measures to a control problem.

We summarize this important observation in the following theorem, which extends

Theorem 2.4.5 to the case of controlled processes.

Theorem 3.2.3. A family of process-based dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

is

translation-invariant and stochastically conditionally time-consistent if and only if there

exist functionals

σt :

{ ⋃
π∈Π

graph(Qπt )

}
× V → R, t = 1 . . . T − 1,

such that:

(i) For all t = 1, . . . , T−1 and all ht ∈ X t, σt(ht, ·, ·) is normalized and has the following

property of strong monotonicity with respect to stochastic dominance:

∀q1, q2 ∈
{
Qπt (ht) : π ∈ Π

}
, ∀v1, v2 ∈ V,(
v1 | q1

)
�st

(
v2 | q2

)
=⇒ σt(ht, q

1, v1) ≤ σt(ht, q2, v2),
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where
(
v1 | q1

)
= q ◦ v−1 means “the distribution of v under q;”

(ii) For all π ∈ Π, for all t = 1, . . . , T − 1, for all (Zt, . . . , ZT ) ∈ Zt,T , and for all

ht ∈ X t,

ρπ
t,T

(Zt, . . . , ZT )(ht) = Zt(ht) + σt
(
ht, Q

π
t (ht), ρ

π
t+1,T

(Zt+1, . . . , ZT )(ht, ·)
)
. (3.4)

Moreover, for all t = 1, . . . , T − 1, σt is uniquely determined by ρt,T as follows: for

every ht ∈ X t, for every q ∈
{
Qπt (ht) : π ∈ Π

}
, and for every v ∈ V,

σt(ht, q, v) = ρπ
t,T

(0, V, 0, . . . , 0)(ht), (3.5)

where π is any admissible policy such that q = Qπt (ht), and V ∈ Zt+1 satisfies the

equation V (ht, ·) = v(·), and can be arbitrary elsewhere.

Proof. We have shown the existence of {σt}t=1,...,T satisfying (3.4) and (3.5) in the

discussion preceding the theorem. We can verify the strong monotonicity with respect

to stochastic dominance by (3.5) and Definition 3.2.1.

It follows that the transition risk mappings of Examples 2.4.7, 2.4.8, and 2.4.9 are

perfectly suitable transition risk mappings for controlled processes as well, provided

that the corresponding parameters (γ, κ, and α) depend on t and xt only.
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Chapter 4

Application to Controlled Markov Systems

Our results can be further specialized to the case when {Xt} is a controlled Markov

system, in which we assume the following conditions:

• The admissible control sets are measurable multifunctions of the current state,

i.e., Ut : X ⇒ U , t = 1, . . . , T ;

• The dependence in the transition kernel (3.1) on the history is carried only through

the last state and control: Qt : graph(Ut)→ P(X ), t = 1, . . . , T − 1;

• The step-wise costs are dependent only on the current state and control: Zt =

ct(xt, ut), t = 1, . . . , T , where ct : graph(Ut) → R, t = 1, . . . , T are measurable

bounded functions.

Let Π be the set of admissible history-dependent policies:

Π :=
{
π = (π1, . . . , πT ) | ∀t, πt(x1, . . . , xt) ∈ Ut(xt)

}
.

To alleviate notation, for all π ∈ Π and for all measurable c = (c1, . . . , cT ), we write

vc,πt (ht) := ρπ
t,T

(
ct(Xt, πt(Ht)), . . . , cT (XT , πT (HT ))

)
(ht).

The following result is a direct consequence of Theorem 3.2.3 in the Markovian case.

Corollary 4.0.1. For a controlled Markov system, a family of process-based dynam-

ic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

is translation-invariant and stochastically conditionally

time-consistent if and only if functionals

σt :
{(
ht, Qt(xt, u)

)
: ht ∈ X t, u ∈ Ut(xt)

}
× V → R, t = 1 . . . T − 1,

exist, such that
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(i) For all t = 1, . . . , T − 1 and all ht ∈ X t, σt(ht, ·, ·) is normalized and strongly

monotonic with respect to stochastic dominance on
{
Qt(xt, u) : u ∈ Ut(xt)

}
;

(ii) For all π ∈ Π, for all bounded measurable c = (c1, . . . , cT ), for all t = 1, . . . , T − 1,

and for all ht ∈ X t,

vc,πt (ht) = ct(xt, πt(ht)) + σt

(
ht, Qt(xt, πt(ht)), v

c,π
t+1(ht, ·)

)
. (4.1)

Proof. To verify the “if and only if” statement, we can show that (3.5) is true if σt

satisfies (4.1) for all measurable bounded c.

4.1 Markov Risk Measures

Consider a Markov policy π composed of state-dependent measurable decision rules

πt : X 7→ U , t = 1, . . . , T . Because of the Markov property of the transition kernels, for

a Markov policy π, the future evolution of the process {Xτ}τ=t,...,T is solely dependent

on the current state xt, so is the distribution of the future costs cτ (Xτ , πτ (Xτ )), τ =

t, . . . , T . Therefore, it is reasonable to assume that the dependence of the conditional

risk measure on the history is also carried by the current state only.

Definition 4.1.1. A family of process-based dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

for a

controlled Markov system is Markov if for all Markov policies π ∈ Π, for all measurable

c = (c1, . . . , cT ), and for all ht = (x1, . . . , xt) and h′t = (x′1, . . . , x
′
t) in X t such that

xt = x′t, we have vc,πt (ht) = vc,πt (h′t).

Proposition 4.1.2. Under translation invariance and stochastic conditional time con-

sistency,
{
ρπ
t,T

}π∈Π
t=1,...,T

is Markov if and only if the dependence of σt on ht is carried

only by xt, for all t = 1, . . . , T − 1.

Proof. Suppose
{
ρπ
t,T

}π∈Π
t=1,...,T

is Markov. For all t = 1, . . . , T − 1, for all ht, h
′
t ∈ X t

such that xt = x′t, for all u ∈ Ut(xt) and for all v ∈ V, there exists a Markov π ∈ Π such

that πt(xt) = u. By setting c = (0, . . . , 0, ct+1, 0, . . . , 0) with ct+1 : (x′, u′) 7→ v(x′), the

Markov property of ρπ implies that

σt(ht, Qt(xt, u), v) = vc,πt (ht) = vc,πt (h′t) = σt(h
′
t, Qt(xt, u), v).
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Therefore, σt is indeed memoryless, that is, its dependence on ht is carried by xt only.

Suppose σt, t = 1, . . . , T − 1, are all memoryless. We prove by induction backward

in time that for all t = T, . . . , 1, vc,πt (ht) = vc,πt (h′t) for all Markov π and all ht, h
′
t ∈ X t

such that xt = x′t. For t = T we have: vc,π
T

(hT ) = cT (xT , πT (xT )) = vc,π
T

(h′T ). We can

just write it as vc,π
T

(xT ). If this relation is true for some t+ 1 ≤ T , then for t we obtain

vc,πt (ht) = ct(xt, πt(xt)) + σt
(
xt, Qt(xt, πt(xt)), v

c,π
t+1(ht, ·)

)
= ct(xt, πt(xt)) + σt

(
xt, Qt(xt, πt(xt)), v

c,π
t+1(·)

)
.

The right hand side is a function of xt, rather than ht, and we can write the value of

the risk measure as vc,πt (xt). By induction, the result holds true for all t.

Theorem 4.1.3. For a controlled Markov system, a family of process-based dynamic

risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

is translation-invariant, stochastically conditionally time-

consistent, and Markov, if and only if there exist functionals

σt :
{(
x,Qt(x, u)

)
: x ∈ X , u ∈ Ut(x)

}
× V → R, t = 1 . . . T − 1,

where V is the set of bounded measurable functions on X , such that:

(i) For all t = 1, . . . , T−1 and all x ∈ X , σt(x, ·, ·) is normalized and strongly monotonic

with respect to stochastic dominance on
{
Qt(x, u) : u ∈ Ut(x)

}
;

(ii) For all π ∈ Π, for all measurable bounded c, for all t = 1, . . . , T − 1, and for all

ht ∈ X t,

vc,πt (ht) = ct(xt, πt(ht)) + σt

(
xt, Qt(xt, πt(ht)), v

c,π
t+1(ht, ·)

)
. (4.2)

Theorem 4.1.3 provides us with a simple recursive formula (4.2) for the evaluation

of risk of a Markov policy π:

• for final time T

vc,π
T

(x) = cT (x, πT (x)), x ∈ X

• for time t = T − 1, . . . , 1,

vc,πt (x) = ct(x, πt(x)) + σt

(
x,Qt(x, πt(x)), vc,πt+1

)
, x ∈ X

It involves calculation of the values of functions vc,πt (·) on the state space X .
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4.2 Dynamic Programming

In this section, we fix the cost functions c = (c1, . . . , cT ) and consider a family of

dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

which is normalized, translation-invariant (Defini-

tion 2.2.2), stochastically conditionally time-consistent (Definition 3.2.1), and Markov

(Definition 4.1.1). Our objective is to analyze the risk minimization problem:

min
π∈Π

vπ1 (x1), x1 ∈ X . (4.3)

For this purpose, we introduce the family of value functions:

v∗t (ht) = inf
π∈Π

t,T
(ht)

vπt (ht), t = 1, . . . , T, ht ∈ X t, (4.4)

where Πt,T (ht) is the set of feasible deterministic policies π = {πt, . . . , πT }. As stated

in Theorem 4.1.3, transition risk mappings
{
σt
}
t=1,...,T−1

exist, such that

vπt (ht) = ct(xt, πt(ht)) + σt

(
xt, Qt(xt, πt(ht)), v

π
t+1(ht, ·)

)
,

t = 1, . . . , T − 1, π ∈ Π, ht ∈ X t. (4.5)

Our intention is to prove that the value functions v∗t (·) are memoryless, that is, for

all ht = (x1, . . . , xt) and h′t = (x′1, . . . , x
′
t) such that xt = x′t, we have v∗t (ht) = v∗t (h

′
t).

In this case, with a slight abuse of notation, we shall simply write v∗t (xt).

In order to formulate the main result of this section, we equip the space P(X ) of

probability measures on X with the topology of weak convergence.

Theorem 4.2.1. Suppose a family of dynamic risk measures
{
ρπ
t,T

}π∈Π
t=1,...,T

is nor-

malized, translation-invariant, stochastically conditionally time-consistent, and Markov.

We assume the following conditions:

(i) The transition kernels Qt(·, ·), t = 1, . . . , T , are weakly continuous;

(ii) For every lower semicontinuous v ∈ V the transition risk mappings σt(·, ·, v), t =

1, . . . , T , are lower semicontinuous;

(iii) The functions ct(·, ·), t = 1, . . . , T , are lower semicontinuous;

(iv) The multifunctions Ut(·), t = 1, . . . , T , are compact-valued, and upper semicontinu-

ous.
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Then the functions v∗t , t = 1, . . . , T , are memoryless, lower semicontinuous, and satisfy

the following dynamic programming equations:

v∗
T

(x) = min
u∈UT (x)

cT (x, u), x ∈ X , (4.6)

v∗t (x) = min
u∈Ut(x)

{
ct(x, u) + σt

(
x,Qt(x, u), v∗t+1

)}
, x ∈ X , t = T − 1, . . . , 1. (4.7)

Moreover, the Markov policy π̂ given by the equations:

π̂T (x) ∈ argmin
u∈UT (x)

cT (x, u), x ∈ X ,

π̂t(x) ∈ argmin
u∈Ut(x)

{
ct(x, u) + σt

(
x,Qt(x, u), v∗t+1

)}
, x ∈ X , t = T − 1, . . . , 1,

is optimal for problem (4.3).

Proof. We prove the memoryless property of v∗t (·) and construct the optimal Markov

policy by induction backwards in time. For all hT ∈ X T we have

v∗
T

(hT ) = inf
π∈Π

cT (xT , πT (hT )) = inf
u∈UT (x

T
)
cT (xT , u). (4.8)

Since cT (·, ·) is lower semicontinuous, it is a normal integrand, that is, its epigraphical

mapping x 7→ {(u, α) ∈ U ×R : cT (x, u) ≤ α} is closed-valued and measurable [49, Def.

14.1, Ex. 14.31]. Due to assumption (iv), the mapping

c̄T (x, u) =


cT (x, u) if u ∈ UT (x),

+∞ otherwise,

is a normal integrand as well. By virtue of [49, Thm. 14.37], the infimum in (4.8) is

attained and is a measurable function of xT . Hence, v∗
T

(·) is measurable and memoryless.

By assumptions (iii) and (iv) and Berge’s theorem, it is also lower semicontinuous (see,

e.g., [5, Thm. 1.4.16]). Moreover, the optimal solution mapping ΨT (x) =
{
u ∈ UT (x) :

cT (x, u) = v∗
T

(x)
}

is measurable and has nonempty and closed values. Therefore, a

measurable selector π̂T of ΨT exists [38], [5, Thm. 8.1.3].

Suppose v∗t+1(·) is memoryless and lower semicontinuous, and Markov decision rules

{π̂t+1, . . . , π̂T } exist such that

v∗t+1(ht+1) = v∗t+1(xt+1) = v
{π̂t+1,...,π̂T }
t+1 (xt+1), ∀ht+1 ∈ X t+1.
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Then for any ht ∈ X t we have

v∗t (ht) = inf
π∈Π

vπt (ht) = inf
π∈Π

{
ct(xt, πt(ht)) + σt

(
xt, Qt(xt, πt(ht)), v

π
t+1(ht, ·)

)}
.

On the one hand, since vπt+1(ht, ·) ≥ v∗t+1(·) and σt is non-decreasing with respect

to the last argument, we obtain

v∗t (ht) ≥ inf
π∈Π

{
ct(xt, πt(ht)) + σt

(
xt, Qt(xt, πt(ht)), v

∗
t+1

)}
= inf

u∈Ut(xt)

{
ct(xt, u) + σt

(
xt, Qt(xt, u), v∗t+1

)}
.

(4.9)

By assumptions (i)–(iii), the mapping (x, u) 7→ ct(x, u) + σt
(
x,Qt(x, u), v∗t+1

)
is lower

semicontinuous. Invoking [49, Thm. 14.37] and assumption (iv) again, exactly as in

the case of t = T , we conclude that the optimal solution mapping

Ψt(x) =
{
u ∈ Ut(x) | ct(x, u) + σt

(
x,Qt(x, u), v∗t+1

)
=

inf
u∈Ut(x)

{
ct(x, u) + σt

(
x,Qt(x, u), v∗t+1

)}}
is measurable and has nonempty and closed values; hence, a measurable selector π̂t of

Ψt exists [5, Thm. 8.1.3]. Substituting this selector into (4.9), we obtain

v∗t (ht) ≥ ct(xt, π̂t(xt)) + σt
(
xt, Qt(xt, π̂t(xt)), v

{π̂t+1,...,π̂T }
t+1

)
= v

{π̂t,...,π̂T }
t (xt).

In the last equation, we used (4.5) and the fact that the decision rules π̂t, . . . , π̂T are

Markov.

On the other hand,

v∗t (ht) = inf
π∈Π

vπt (ht) ≤ v
{π̂t,...,π̂T }
t (xt).

Therefore, v∗t (ht) = v
{π̂t,...,π̂T }
t (xt) is measurable, memoryless, and

v∗t (xt) = min
u∈Ut(xt)

{
ct(xt, u) + σt

(
xt, Qt(x, u), v∗t+1

)}
= ct(xt, π̂t(xt)) + σt

(
xt, Qt(xt, π̂t(xt)), v

∗
t+1

)
.

By assumptions (ii), (iii), (iv), and Berge’s theorem, v∗t (·) is lower semicontinuous (see,

e.g. [5, Thm. 1.4.16]). This completes the induction step.
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Remark 4.2.2. If we replace semicontinuity with continuity in assumptions (ii)–(iv),

then the value functions v∗t , t = 1, . . . , T , will be continuous. The proof is identical.

Let us verify the weak lower semicontinuity assumption (ii) of the mean–semidevia-

tion transition risk mapping of Example 2.4.8. To make the mapping Markovian, we

assume that the parameter κ depends on x only, that is,

σ(x, q, v) =

∫
X
v(s) q(ds) + κ(x)

(∫
X

[(
v(s)−

∫
X
v(s′) q(ds′)

)
+

]p
q(ds)

)1/p

. (4.10)

As before, p ∈ [1,∞). For simplicity, we skip the subscript t of σ and κ.

Lemma 4.2.3. Suppose κ(·) is continuous. Then for every lower semicontinuous func-

tion v, the mapping (x, q) 7→ σ(x, q, v) in (4.10) is lower semicontinuous.

Proof. Let qk → q weakly and xk → x. For all s ∈ X we have the inequality

0 ≤
[
v(s)−

∫
X
v(s′) q(ds′)

]
+

≤
[
v(s)−

∫
X
v(s′) qk(ds

′)

]
+

+

[ ∫
X
v(s′) qk(ds

′)−
∫
X
v(s′) q(ds′)

]
+

.

By the triangle inequality for the norm in Lp(X ,B(X ), qk),(∫
X

[
v(s)−

∫
X
v(s′) q(ds′)

]p
+

qk(ds)

)1/p

≤
(∫
X

[
v(s)−

∫
X
v(s′) qk(ds

′)

]p
+

qk(ds)

)1/p

+

[ ∫
X
v(s′) qk(ds

′)−
∫
X
v(s′) q(ds′)

]
+

.

Adding
∫
X v(s) q(ds) to both sides, we obtain∫

X
v(s) q(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) q(ds′)

]p
+

qk(ds)

)1/p

≤
(∫
X

[
v(s)−

∫
X
v(s′) qk(ds

′)

]p
+

qk(ds)

)1/p

+ max

{∫
X
v(s) qk(ds),

∫
X
v(s) q(ds)

}
.

By the lower semicontinuity of v and weak convergence of qk to q, we have∫
X
v(s) q(ds) ≤ lim inf

k→∞

∫
X
v(s) qk(ds),

that is, for every ε > 0, we can find kε such that for all k ≥ kε∫
X
v(s) qk(ds) ≥

∫
X
v(s) q(ds)− ε.
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Therefore, for these k we obtain∫
X
v(s) q(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) q(ds′)

]p
+

qk(ds)

)1/p

≤
∫
X
v(s) qk(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) qk(ds

′)

]p
+

qk(ds)

)1/p

+ ε.

Taking the “lim inf” of both sides, and using the weak convergence of qk to q and the

lower semicontinuity of the functions integrated, we conclude that∫
X
v(s) q(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) q(ds′)

]p
+

q(ds)

)1/p

≤ lim inf
k→∞

{∫
X
v(s) qk(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) qk(ds

′)

]p
+

qk(ds)

)1/p
}

+ ε.

As ε > 0 was arbitrary, the last relation proves the lower semicontinuity of σ in the

case when κ(x) ≡ 1. The case of a continuous κ(x) ∈ [0, 1] can be now easily analyzed

by noticing that σ(x, q, v) is a convex combination of the expected value, and the risk

measure of the last displayed relation:

σ(x, q, v) =
(
1− κ(x)

) ∫
X
v(s) q(ds)

+ κ(x)

{∫
X
v(s) q(ds) +

(∫
X

[
v(s)−

∫
X
v(s′) q(ds′)

]p
+

q(ds)

)1/p
}
.

As both components are lower semicontinuous in (x, q), so is their sum.

We can also verify the weak continuity of the Average-Value-at-Risk transition risk

mapping of Example 2.4.9. To make the mapping Markovian, we assume that the

parameter α depends on x only, that is,

σ(x, q, v) = min
η∈R

{
η +

1

α(x)

∫
X

(
v(s)− η

)
+
q(ds)

}
, (4.11)

For simplicity, we skip the subscript t of σ and α.

Lemma 4.2.4. Suppose α(·) is continuous and takes values in [αmin, αmax] ⊂ (0, 1).

Then for every continuous function v, the mapping (x, q) 7→ σ(x, q, v) in (4.11) is

continuous.

Proof. Consider the function

(q, η) 7→
∫
X

(
v(s)− η

)
+
q(ds). (4.12)
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Suppose qk → q weakly and ηk → η. We have∫
X

(
v(s)− η

)
+
qk(ds) ≤

∫
X

(
v(s)− ηk

)
+
qk(ds) + |ηk − η|.

Taking the “lim inf” of both sides and using the weak convergence of qk to q and the

lower semicontinuity of the functions integrated, we conclude that∫
X

(
v(s)− η

)
+
q(ds)

≤ lim inf
k→∞

∫
X

(
v(s)− η

)
+
qk(ds)

≤ lim inf
k→∞

∫
X

(
v(s)− ηk

)
+
qk(ds).

Thus the function (4.12) is lower semicontinuous. It follows that the function being

minimized with respect to η in (4.11) is jointly lower semicontinuous with respect to

(x, q, η). Since qk → q weakly, the collection {qk} is tight (Prohorov’s theorem; see,

e.g., [11, Sec. 1.6]). Since v(·) is continuous, the measures qk ◦ v−1 are tight as well.

Hence, a bounded interval C ⊂ R exists such that all α-quantiles of all qk ◦ v−1 and

q ◦ v−1 are contained in C, for all α ∈ [αmin, αmax]. Therefore, we can restrict η to C in

(4.11), without affecting the values of σ(xk, qk, v) and σ(x, q, v). By Berge’s theorem,

the optimal value in (4.11) is continuous (see, e.g., [5, Thm. 1.4.16]).

4.3 Application to Multistage Stochastic Programming with Decision-

Dependent Probabilities

In this section, we consider a multistage stochastic programming problem with three

ingredients in the model. The first one is the history-dependent process {It}t=1,...,T

with each It taking values in a Borel space It (a Borel subset of a Polish space). We

can interpret {It} as the process of exogeneous random inputs (data process).

The second one is the “physical” state process {Yt}t=1,...,T on the Borel space Y, and

the third is the control process {Ut}t=1,...,T on the Borel control space U . The processes

are related by the equation:

Yt+1 = ft(Yt, Ut, It+1), t = 1, . . . , T − 1, (4.13)

in which ft : Y × U × It+1 → Y are measurable functions. We assume that Y1 ∈ Y is

deterministic and known.
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The distribution of the process {It} is defined by the controlled transition kernels

Kt : I1 × · · · × It × U → P(It+1),

P[It+1 ∈ B] = Kt(i1, . . . , it, ut)(B), ∀ B ∈ B(It+1).

We can now proceed as in Section 3.1, substituting X by (I, Y ) and Q by K.

1. The information revealed at time t is it and yt, and then we make decision ut in the

admissible control set Ut(i1, . . . , it, yt).

2. The set of admissible policies is

Π =
{
π = (π1, . . . , πT ) | ∀t, πt(i1, . . . , it, yt) ∈ Ut(i1, . . . , it, yt)

}
.

3. For a fixed policy π ∈ Π, the physical state Yt is formally a function of i1, . . . , it.

Therefore, the resulting transition kernels can be formally written as

Kπ
t : (i1, . . . , it) 7→ Kt

(
i1, π1(i1), . . . , it, πt(i1, . . . , it, yt(i1, . . . , it, π))

)
∈ P(It+1),

t = 1 . . . T − 1.

Example 4.3.1. In a special case, {It} may be a process on a scenario tree, where I1 is

deterministic (the root node), and each set It is the set of possible histories (i1, . . . , it)

which are represented as nodes at level t of the tree. The variable It+1, given i1, . . . , it,

has a finite number of possible realizations: a set of successor nodes of the node at

level t representing the history (i1, . . . , it). In this case, Kπ
t (i1, . . . , it) is the conditional

probability distribution of the next It+1 on this finite set. Our model allows for these

conditional probabilities to depend on the control ut at time t. �

It follows that the process

{
Xt = (I1, . . . , It, Yt)

}
t=1,...,T

is a controlled Markov process with values in the spaces

Xt = I1 × · · · × It × Y, t = 1, . . . , T,

because of
{

(I1, . . . , It)
}
t=1,...,T

being Markov, and because of (4.13).
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If we assume in addition that stage-wise costs have the form Zt = ct(Yt, Ut), we can

apply the results of Chapter 4 (in particular Theorem 4.1.3) with the notions of Ht, ht,

Qt, Zt, ρ, Π, vt associated with the process X. The policy evaluation equation (4.2) in

this case takes on the form

vc,πt (ht) = ct(yt, πt(ht)) + σt

(
xt, Qt(xt, πt(ht)), v

c,π
t+1(ht, ·)

)
(4.14)

for any π ∈ Π =
{
π = (π1, . . . , πT ) | ∀t, πt(x1, . . . , xt) ∈ Ut(xt)

}
. As for a fixed

policy π ∈ Π, Ht is function of (I1 . . . It), the transition kernel Qt(xt, πt(ht)) is solely

determined by Kπ
t (i1, . . . , it). Consequently, if we only consider the histories ht that

can happen, (4.14) becomes

wc,πt (i1, . . . , it) = ct(yt, πt(i1, . . . , it))

+ σt

(
i1, . . . , it, yt,K

π
t (i1, . . . , it), w

c,π
t+1(i1, . . . , it, ·)

)
, ∀π ∈ Π, (4.15)

where

wc,πt (i1, . . . , it) = vc,πt (Hπ
t (i1, . . . , it)).

In this equation, yt is considered as a dependent variable, which can be evaluated for

a given policy π as a function of the history i1, . . . , it. Thus, the policy evaluation can

be carried out on the space of functions of (i1, . . . , it).

In the dynamic programming equation (4.6) we must take into account the entire

state Xt. The equation takes on the form:

w∗t (i1, . . . , it, yt) = min
u∈Ut(i1,...,it,yt)

{
ct(yt, u)

+ σt

(
i1, . . . , it, yt,Kt(i1, . . . , it, u), i 7→ w∗t+1

(
i1, . . . , it, i, ft(yt, u, i)

))
.

The reason is that the dynamic programming equation is solved backwards, and there

is no way to know the value of yt. For each yt, however, the last argument of σt is a

function of the new information it+1 only, because the next yt+1 follows from (yt, u, it+1)

via (4.13).

In the scenario tree case, this result extends the dynamic programming equations

of [60, sec. 6.8.4] in two ways: it is derived from the assumptions about the stochastic
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conditional time consistency and the Markovian structure of the risk measure, and it

covers the case of decision-dependent probabilities.
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Chapter 5

Partially Observable Markov Decision Processes

5.1 The Model

In this chapter, we introduce a partially observable Markov decision process {Xt,

Yt}t=1,...,T , in which {Xt}t=1,...,T is observable and {Yt}t=1,...,T is not. We use the term

“partially observable Markov decision process” (POMDP) in a more general way than

the extant literature, because we consider dynamic risk measures of the cost sequence,

rather than just the expected value of the total cost.

In order to develop our subsequent theory, it is essential to define the model in a

clear and rigorous way. This section follows [6, Ch. 5], which the readers are encouraged

to consult for more details.

The state space of the model is defined as X ×Y where (X ,B(X )) and (Y,B(Y)) are

two Borel spaces (Borel subsets of Polish spaces). From the modeling perspective, x ∈ X

is the part of the state that we can observe at each step, while y ∈ Y is unobservable.

The measurable space that we will work with is then given by Ω = (X × Y)T endowed

with the canonical product σ-field F , and we use xt and yt to denote the canonical

projections at time t.

Let {FX,Yt }t=1,...,T denote the natural filtration generated by the process (X,Y ) and

{FXt }t=1,...,T be the filtration generated by the process X.

The control space is given by a Borel space U , and since only X is observable, the

set of admissible controls at step t is given by a measurable multifunction Ut : X ⇒ U

with nonempty values. The transition kernel at time t is

Kt : graph(Ut)× Y → P(X × Y),

where P(X × Y) is the space of probability measures on X × Y. In other words, if the
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state at time t is (x, y) and we apply control u, the distribution of the next state is

Kt

(
· , · | x, y, u

)
.

At time t, the history of observed states is ht = (x1, x2, . . . , xt), while all the infor-

mation available for making a decision is gt = (x1, u1, x2, u2, . . . , xt). We use

Ht = X t = X × · · · × X︸ ︷︷ ︸
t times

and 
G1 = X ,

Gt = {(gt−1, ut−1) | gt−1 ∈ Gt−1, ut−1 ∈ Ut(xt−1)} × X , t ≥ 2,

(5.1)

to respectively denote the spaces of possible histories ht and gt. Here we make dis-

tinction of gt and ht because we should make decision of ut based on gt as the past

controls u1, . . . , ut−1 are also taken into consideration when estimating the conditional

distribution of Yt (see Section 5.3). We still write Ht = (X1, . . . , Xt).

For this controlled process, a (deterministic) history-dependent admissible policy

π = (π1, . . . , πT ) is a sequence of measurable decision rules πt : Gt → U such that

πt(gt) ∈ Ut(xt) for all gt ∈ Gt ( such a policy exists, due to the measurable selector

theorem of [38]). We can easily prove by induction on t that for such an admissible

policy π, each πt reduces to a measurable function of ht = (x1, x2, . . . , xt), as us =

πs(x1, . . . , xs) for all s = 1, . . . , t− 1. We are still using πs to denote the decision rule,

although it is a different function, formally; it will not lead to any misunderstanding.

Therefore the set of admissible policies is

Π =
{
π = (π1, . . . , πT ) | πt(x1, . . . , xt) ∈ Ut(xt), t = 1, . . . , T

}
.

For a random Y1, any policy π ∈ Π defines a process {Xt, Yt, Ut}t=1,...,T on the

probability space (Ω,F , P π), with Ut = πt(X1, . . . , Xt).

We assume that the cost process Zπt , t = 1, . . . , T is bounded and adapted to FX,Y ,

i.e., Zπt ∈ Zt for all π and t, where

Zt =
{
Z : Ω→ R

∣∣Z is FX,Yt -measurable and bounded
}
, t = 1, . . . , T.

For any Z ∈ Zt, there is a measurable and bounded functional Z : (X × Y)t → R
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such that Z = Z(X1, Y1, . . . , Xt, Yt). With a slight abuse of notation, we still use Z to

denote this function.

5.2 Risk Filters for Partially Observable Systems

5.2.1 Dynamic risk filters

In this subsection, we fix any policy π ∈ Π, and our objective is to evaluate at each time

t the sequence of costs Zπt , . . . , Z
π
T

in such a way that the evaluation is FXt -measurable.

We denote Zt,T = Zt × · · · × ZT , t = 1, . . . , T , and

St =
{
S : Ω→ R

∣∣S is FXt -measurable and bounded
}
, t = 1, . . . , T.

We have St ⊂ Zt, and any element S ∈ St can also be considered as a measurable

bounded functional on X t; with slight abuse of notation, S = S(Ht). All equality

and inequality relations between random variables are understood in the “everywhere”

sense.

Definition 5.2.1. A mapping ρt,T : Zt,T → St, where 1 ≤ t ≤ T , is called a condi-

tional risk evaluator, if it satisfies the monotonicity property: for all (Zt, . . . , ZT )

and (Wt, . . . ,WT ) in Zt,T , if Zs ≤Ws for all s = t, . . . , T , then

ρt,T (Zt, . . . , ZT ) ≤ ρt,T (Wt, . . . ,WT ).

Definition 5.2.2. A conditional risk evaluator ρt,T : Zt,T → St

(i) is normalized if ρt,T (0, . . . , 0) = 0;

(ii) is translation invariant if ∀(Zt, . . . , ZT ) ∈ St ×Zt+1,T ,

ρt,T (Zt, . . . , ZT ) = Zt + ρt,T (0, Zt+1, . . . , ZT );

(iii) is decomposable if a mapping ρt : Zt → St exists such that:
ρt(Zt) = Zt, ∀Zt ∈ St,

ρt,T (Zt, . . . , ZT ) = ρt(Zt) + ρt,T (0, Zt+1, . . . , ZT ), ∀(Zt, . . . , ZT ) ∈ Zt,T .

The concept of conditional risk evaluator reduces to the conditional risk measure

(Definition 2.2.1), if the arguments Zt, . . . , ZT are in the spaces St × · · · × ST ; and the

translation invariance property in the above definition is defined in the same way as
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in Definition 2.2.2, while the spaces of arguments Zt+1, . . . , ZT are larger. The decom-

posability property is a similar but stronger assumption compared to the translation

invariance.

Throughout the chapter, we assume all conditional risk evaluators to be at least

normalized. The properties (i) and (iii) of Definition 5.2.2 imply that

ρt(Zt) = ρt,T (Zt, 0, . . . , 0). (5.2)

We also redefine the local property (see Definition 2.2.3 for the conditional risk

measures) specifically for the conditional risk evaluators.

Definition 5.2.3. A conditional risk evaluator ρt,T has the local property if for any

event A ∈ FXt and all (Zt, . . . , ZT ) ∈ Zt,T we have

1Aρt,T (Zt, . . . , ZT ) = ρt,T (1AZt, . . . ,1AZT ).

The local property means that the conditional risk evaluator at time t restricted to

any FXt -event A is not influenced by the values that Zt, . . . , ZT take on Ac.

Definition 5.2.4. A risk filter
{
ρt,T

}
t=1,...,T

is a sequence of conditional risk evaluators

ρt,T : Zt,T → St. We say that it is normalized, translation-invariant, decomposable,

or has the local property, if all ρt,T , t = 1, . . . , T , satisfy the respective conditions of

Definitions 5.2.2 or 5.2.3.

5.2.2 Stochastic conditional time consistency

For a POMDP defined in Section 5.1, we have to use a family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

,

because the policy affects the probability measure on the space Ω = (X × Y)T . When

two policies π and π′ are compared, even if the resulting costs were pointwise equal,

ρπ
t,T

(Zt, . . . , ZT ) and ρπ
′

t,T
(Zt, . . . , ZT ) should not be necessarily equal, because the prob-

ability measures P π and P π
′

could be different. We extend the concept stochastic

conditional time consistency (Definition 3.2.1) that allows us to relate the whole family

of risk filters.
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Definition 5.2.5. A family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

is stochastically condition-

ally time-consistent if for any π, π′ ∈ Π, for any 1 ≤ t < T , for all ht ∈ X t, all

(Zt+1, . . . , ZT ) ∈ Zt+1,T and all (Wt+1, . . . ,WT ) ∈ Zt+1,T , the condition

(
ρπ
t+1,T

(Zt+1, . . . , ZT ) | Hπ
t = ht

)
�st

(
ρπ

′

t+1,T
(Wt+1, . . . ,WT ) | Hπ′

t = ht
)
,

implies

ρπ
t,T

(0, Zt+1, . . . , ZT )(ht) ≤ ρπ
′

t,T
(0,Wt+1, . . . ,WT )(ht).

Remark 5.2.6. The conditional stochastic order “�st” is understood as follows: for

all η ∈ R we have

P
π
[
ρπ
t+1,T

(Zt+1, . . . , ZT )(Ht+1) ≤ η
∣∣Ht = ht

]
≤ P

π′[
ρπ

′

t+1,T
(Wt+1, . . . ,WT )(Ht+1) ≤ η

∣∣Ht = ht
]

Proposition 5.2.7. A family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

that is normalized, decom-

posable, and stochastically conditionally time-consistent has the local property if and

only if all ρπ
t

(Definition 5.2.2) satisfy the local property: ρπ
t
(1AZt) = 1Aρ

π
t
(Zt) for all

A ∈ FXt , Zt ∈ Zt, π ∈ Π, and t = 1, . . . , T .

Proof. The “only if” part is obvious because of (5.2); we need to prove that if all ρπ
t

satisfy the local property, then for any π ∈ Π, for any t = 1, . . . , T , and any A ∈ FXt ,

1Aρ
π
t,T

(Zt, . . . , ZT ) = ρπ
t,T

(1AZt, . . . ,1AZT ). (5.3)

We use induction on t from T down to 1. At the final time,

ρπ
T,T

(1AZt) = ρπT (1AZt) = 1Aρ
π
T

(Zt).

Suppose ρπ
t+1,T

has the local property. Then by decomposability we have

ρπ
t,T

(1AZt, . . . ,1AZT ) = ρπt (1AZt) + ρπ
t,T

(0,1AZt+1, . . . ,1AZT )

and

1Aρ
π
t,T

(Zt, . . . , ZT ) = 1Aρ
π
t (Zt) + 1Aρ

π
t,T

(0, Zt+1, . . . , ZT ).

As ρπ
t
(1AZt) = 1Aρ

π
t
(Zt), to verify (5.3) we need to show that

ρπ
t,T

(0,1AZt+1, . . . ,1AZT ) = 1Aρ
π
t,T

(0, Zt+1, . . . , ZT ).
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For any ht ∈ X T we have

[(1Aρ
π
t,T

(0, Zt+1, . . . , ZT ))](ht) = 1A(ht)ρ
π
t,T

(0, Zt+1, . . . , ZT ))(ht).

The local property of ρπt+1 yields

ρπ
t+1,T

(1AZt+1,1AZt+2, . . . ,1AZT )(ht, ·) = 1A(ht)ρ
π
t+1,T

(Zt+1, . . . , ZT )(ht, ·),

so by stochastic conditional time consistency,

ρπ
t,T

(0,1AZt+1, . . . ,1AZT )(ht) =


0, if 1A(ht) = 0;

ρπ
t,T

(0, Zt+1, . . . , ZT )(ht), if 1A(ht) = 1.

Thus,

ρπ
t,T

(0,1AZt+1, . . . ,1AZT )(ht) = 1Aρ
π
t,T

(0, Zt+1, . . . , ZT )(ht), ∀ht ∈ X t,

which proves (5.3).

The following theorem shows that the stochastic conditional time consistency implies

that one-step risk mappings can be represented by static law-invariant risk measures

on

V =
{
v : X → R

∣∣ v is measurable and bounded
}
. (5.4)

Recall that a measurable function r : V → R is said to be monotonic, normalized

and translation invariant if it satisfies the Definition 1.3.1. It is said to be law-invariant

with respect to a probability measure q on (X ,B(X )) if it satisfies Definition 2.4.4.

The conditional distribution of ρπ
t+1,T

(Zt+1, . . . , ZT )(Ht+1) given Ht = ht under P π

plays an important role in the stochastic conditional time consistency, so does the

conditional distribution of Xt+1, given ht. We denote the latter by Qπt (ht) ∈ P(X ):

Qπt (ht)(C) = P
π[Xt+1 ∈ C |Ht = ht], ∀C ∈ B(X ). (5.5)

Later in Section 5.3 we will show that Qπt can be computed in a recursive way with the

help of belief states and Bayes operators.

We can now state the main result of this section.
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Theorem 5.2.8. A family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

is normalized, translation in-

variant, and stochastically conditionally time-consistent if and only if transition risk

mappings

σt :

{ ⋃
π∈Π

graph(Qπt )

}
× V → R, t = 1 . . . T − 1,

exist, such that

(i) For all t = 1 . . . T −1 and all ht ∈ X t, σt(ht, ·, ·) is normalized and has the following

property of strong monotonicity with respect to stochastic dominance:

∀q1, q2 ∈
{
Qπt (ht) : π ∈ Π

}
, ∀ v1, v2 ∈ V,

(v1 | q1) �st (v2 | q2) =⇒ σt(ht, q
1, v1) ≤ σt(ht, q2, v2),

where (v | q) = q ◦ v−1 means “the distribution of v under q;”

(ii) For all π ∈ Π, for all t = 1 . . . T − 1, for all (Zt, . . . , ZT ) ∈ St ×Zt+1,T , and for all

ht ∈ X t,

ρπ
t,T

(Zt, Zt+1, . . . , ZT )(ht) = Zt + σt(ht, Q
π
t (ht), ρ

π
t+1,T

(Zt+1, . . . , ZT )(ht, ·)). (5.6)

Moreover, for all t = 1 . . . T − 1, σt is uniquely determined by {ρπ
t,T
}π∈Π as follows: for

every ht ∈ X t, for every q ∈
{
Qπt (ht) : π ∈ Π

}
, and for every v ∈ V,

σt(ht, q, v) = ρπ
t,T

(0, V, 0, . . . , 0)(ht),

where π is any admissible policy such that q = Qπt (ht), and V ∈ St+1 satisfies the

equation V (ht, ·) = v(·), and can be arbitrary elsewhere.

Proof. • Assume
{
ρπ
t,T

}π∈Π
t=1,...,T

is translation invariant and stochastically condition-

ally time-consistent. For any v ∈ V and any ht ∈ X t we define V (ht, ·) =

v(·). The function V is an element of St+1. Then the formula σπt (ht, q, v) =

ρπ
t,T

(0, V, 0, . . . , 0)(ht), defines for each π a normalized and monotonic risk mea-

sure on the space V. For any (Zt, . . . , ZT ) ∈ St ×Zt+1,T , setting

w(x) = ρπ
t+1,T

(Zt+1, . . . , ZT )(ht, x), ∀x ∈ X ,

W (ht+1) =


w(x), if ht+1 = (ht, x),

0, otherwise,
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we obtain, by translation invariance and normalization,

ρπ
t+1,T

(W, 0, . . . , 0)(ht, ·) = W (ht, ·) = ρπ
t+1,T

(Zt+1, . . . , ZT )(ht, ·).

Thus, by translation invariance and stochastic conditional time consistency,

ρπ
t,T

(Zt, . . . , ZT )(ht)

= Zt(ht) + ρπ
t,T

(0, Zt+1, . . . , ZT )(ht)

= Zt(ht) + ρπ
t,T

(0,W, 0, . . . , 0)(ht)

= Zt(ht) + σπt (ht, q, w).

(5.7)

This chain of relations proves also the uniqueness of σπt for each π.

We can now verify the strong monotonicity of σπt (ht, ·, ·) with respect to stochastic

dominance. Suppose

(v1 | Qπ1t (ht)) �st (v2 | Qπ2t (ht)), (5.8)

where v1, v2 ∈ V and ht ∈ X t. Define V 1(ht, ·) = v1(·) and V 2(ht, ·) = v2(·).

Then Definition 5.2.5 implies that

ρπ1
t,T

(0, V 1, 0, . . . , 0)(ht) ≤ ρπ2t,T
(0, V 2, 0, . . . , 0)(ht).

This combined with (5.7) yields

σπ1t (ht, Q
π1
t (ht), v

1) ≤ σπ2t (ht, Q
π2
t (ht), v

2). (5.9)

Suppose Qπ1t (ht) = Qπ2t (ht) and v1 = v2. Then both �st and �st are true in (5.8)

and thus (5.9) becomes an equality. This proves that in fact σπt does not depend

on π, and all dependence on π is carried by the controlled kernel Qπt . Moreover,

the function σt(ht, ·, ·) is indeed strongly monotonic with respect to stochastic

dominance.

• On the other hand, if such transition risk mappings σt exist, then
{
ρt,T

}π∈Π
t=1,...,T

is

stochastically conditionally time-consistent by the monotonicity and law invari-

ance of σt(ht, ·, ·). We can now use (5.6) to obtain for any t = 1, . . . , T − 1, and

for all ht ∈ X t the translation invariance of ρπ
t,T

.
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Let us stress that in Theorem 5.2.8 we assume the translation invariance and there-

fore Zt ∈ St in formula (5.6) (Zt is observed at time t). For general Zt ∈ Zt we have

the following corollary.

Corollary 5.2.9. If a family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

is normalized, decomposable,

and stochastically conditionally time-consistent, then for any π ∈ Π, t = 1 . . . T − 1,

for all (Zt, . . . , ZT ) ∈ Zt,T and all ht ∈ X t,

ρπ
t,T

(Zt, Zt+1, . . . , ZT )(ht) = ρπ
t
(Zt) + σt(ht, Q

π
t (ht), ρ

π
t+1,T

(Zt+1, . . . , ZT )(ht, ·)), (5.10)

with the transition risk mappings σt defined in Theorem 5.2.8. Moreover, the function-

als
{
ρπ
t

}π∈Π
t=1,...,T

, are monotonic, normalized, and translation invariant risk measures.

Proof. The derivation is identical, just in the chain of relations (5.7) we use decom-

posability instead of translation invariance. The properties of the functionals ρπ
t

follow

directly from the corresponding properties of the risk filter.

Theorem 5.2.8 and Corollary 5.2.9 can be considered as the counterpart of Theo-

rem 3.2.3 in the POMDP case. They allow us to characterize and construct stochasti-

cally conditionally time-consistent risk filters defined on space of cost functions adapted

to FX,Y , by static risk measures defined on the space of the observed state X .

Corollary 5.2.10. If a family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

is normalized, decomposable

and stochastically conditionally time-consistent, then for any π ∈ Π, t = 1, . . . , T − 1,

for all (Zt, . . . , ZT ) ∈ Zt,T and all ht ∈ X t,

ρπ
t,T

(Zt, Zt+1, . . . , ZT )(ht) = ρπ
t,T

(Wt,Wt+1, . . . ,WT )(ht),

where Wt ∈ St is defined as Wt = ρπt (Zt), for t = 1, . . . , T .

Proof. The result can be verified from (5.10) by induction on t from T down to 1.
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5.3 Bayes Operator and Belief States

5.3.1 Bayes operator

At each time t, the conditional distribution of the next observable state Qπt (ht) defined

in (5.5) can be easily computed if we know the conditional distribution of the current

unobservable state, called the belief state:

Ξπ
t (ht) ∈ P(Y) : Ξπ

t (ht)(D) = P
π[Yt ∈ D |Ht = ht], ∀D ∈ B(Y), (5.11)

as we have

Qπt (ht) =

∫
Y
KX
t (xt, y, πt(ht)) Ξ

π
t (ht)(dy), (5.12)

where KX
t (xt, y, πt(ht)) is the marginal distribution of Kt(xt, y, πt(ht)) on X .

In a POMDP, the Bayes operator provides a way to update from prior belief to

posterior belief. Suppose the current state observation is x, the action is u, and the

conditional distribution of the unobservable state, given the history of the process, is ξ.

After a new observation x′ of the observable part of the state, we can find a formula to

determine the posterior distribution of the unobservable state.

Let us start with a fairly general construction of the Bayes operator. Assuming the

above setup, for given (x, ξ, u) ∈ X × P(Y) × U , define a new measure mt(x, ξ, u) on

X × Y, initially on all measurable rectangles A×B, as

mt(x, ξ, u)(A×B) =

∫
Y
Kt(A×B |x, y, u) ξ(dy).

We verify readily that this uniquely defines a probability measure on X × Y. If the

measurable space (Y,B(Y)) is standard Borel, i.e., isomorphic to a Borel subspace of R,

we can disintegrate mt(x, ξ, u) into its marginal λt(x, ξ, u)(dx′) on X and a transition

kernel Γt(x, ξ, u)(x′, dy′) from X to Y:

mt(x, ξ, u)(dx′, dy′) = λt(x, ξ, u)(dx′)Γt(x, ξ, u)(x′, dy′).

For all C ∈ B(Y), we define the Bayes operator of the POMDP as follows:

Φt(x, ξ, u, x
′)(C) = Γt(x, ξ, u)(x′, C).
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The above argument shows that the Bayes operator exists and is unique as long as the

space Y is standard Borel, which is almost always the case in applications of POMDP.

In the following considerations, we always assume that the Bayes operator exists.

Example 5.3.1 (Bayes operator with kernels given by density functions). Assume that

each transition kernel Kt(x, y, u) has a density qt(·, · | x, y, u) with respect to a finite

product measure µX ⊗ µY on X × Y. Then the Bayes operator has the form

[
Φt(x, ξ, u, x

′)
]
(A) =

∫
A

∫
Y qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′)∫
Y
∫
Y qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′)
, ∀A ∈ B(Y).

If the formula above has a zero denominator for some (x, ξ, u, x′), we can formally

define Φt(x, ξ, u, x
′) to be an arbitrarily selected distribution on Y.

Thus, we can calculate Qt and Ξt (defined in (5.5) and (5.11)) based on

gt = (x1, u1, . . . , xt−1, ut−1, xt) ∈ Gt (5.1) recursively with the help of Bayes operators:

• The initial belief Ξ1(x1) is the conditional distribution of Y1 given X1 = x1;

• The Bayes operator provides us the following formula to update the belief states:

Ξπ
t+1(ht+1) = Φt

(
xt, Ξ

π
t (ht), πt(ht), xt+1

)
,

and, by induction on t,

Ξπ
t (ht) = Ξt

(
x1, π1(x1), . . . , xt−1, πt−1(ht−1), xt

)
= Ξt

(
Gπt (ht)

)
;

• The conditional distribution of Xt+1 can be calculated by (5.12), and

Qπt (ht) = Qt
(
x1, π1(x1), . . . , xt, πt(ht)

)
= Qt

(
Gπt (ht), πt(ht)

)
.

5.3.2 Markov problems

For this section, we make the following additional assumptions:

Assumption 5.3.2. The costs Z1, . . . , ZT are only dependent on the current states and

controls, that is, they have the following form

Zπt = Zt(Xt, Yt, πt(Ht)), ∀t = 1, . . . , T, ∀π ∈ Π. (5.13)
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Assumption 5.3.3. For any t = 1, . . . , T and all π ∈ Π the operators
{
ρπt
}π∈Π

(introduced in Defintion 5.2.2) are law-invariant in the following sense:

[
ρπt (Zπt )

]
(ht) =

[
ρπ

′
t (Zπ

′
t )
]
(h′t)

for all π, π′ ∈ Π and all ht, h
′
t ∈ Ht such that

P
π
[
Zπt ≤ η | Ht = ht

]
= P

π′[
Zπ

′
t ≤ η | Ht = h′t

]
, ∀η ∈ R.

Under these assumptions we are able to express the immediate risk of a cost Zt as

a function of the extended state.

Proposition 5.3.4. Under Assumptions 5.3.2 and 5.3.3, a bounded measurable func-

tion rt : X × P(Y)× U → R exists, such that for all t = 1, . . . , T , all ht ∈ Ht, and all

π ∈ Π,

ρπ
t
(Zt(Xt, Yt, πt(Ht)))(ht) = rt(xt, Ξ

π
t (ht), πt(ht)),

Proof. For any t = 1, . . . , T , all ht, h
′
t ∈ Ht, all π, π′ ∈ Π, if xt = x′t, Ξ

π
t (ht) = Ξπ′

t (h′t),

and πt(ht) = π′t(h
′
t), then

P
π
[
Zt(Xt, Yt, πt(Ht)) ≤ η | Ht = ht

]
= P

π′[
Zt(Xt, Yt, π

′
t(Ht)) ≤ η | Ht = h′t

]
.

By Assumption 5.3.3, the following equality holds:

ρπ
t
(Zt(Xt, Yt, πt(Ht)))(ht) = ρπ

′

t
(Zt(Xt, Yt, π

′
t(Ht)))(h

′
t).

This means that ρπ
t
(Zt(Xt, Yt, πt(Ht)))(ht) is in fact a function of xt, Ξ

π
t (ht), and πt(ht).

The boundedness of rt follows from the boundedness of ρπ
t
(Zt).

Proposition 5.3.4 allows us to substitute Zπ1 , . . . , Z
π
T

of the form (5.13) with

W π
t = rt(xt, Ξ

π
t (ht), πt(ht)), t = 1, . . . , T, (5.14)

and the conditional risk evaluator keeps the same values. For example, in expected value

models, we have rt(x, ξ, u) =
∫
Y ct(x, y, u) ξ(dy), where ct : X×Y×U → R is the running

cost function, but more general functionals can be used here instead of the expectation
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with respect to the belief state. We call the functions rt(·, ·, ·) the running risk func-

tions. In the case when the running cost does not depend on the unobservable state,

i.e., Zπt = ct(Xt, πt(Ht)) in (5.13), we simply have rt(xt, Ξ
π
t (ht), πt(ht)) = ct(xt, πt(ht))

and the running risk function reduces to the running cost function.

The transition risk mappings of Examples 2.4.7, 2.4.8, and 2.4.9 satisfy the condi-

tions of Theorem 5.6 corresponding to stochastically conditionally time-consistent risk

filters.

5.3.3 Markov risk measures

We say that a policy π ∈ Π is Markov if each decision rule πt(·) depends only on the

current observed state xt and the current belief state ξt.

Definition 5.3.5. In POMDP, a policy π ∈ Π is Markov if πt(ht) = πt(h
′
t) for all

t = 1, . . . , T and all ht, h
′
t ∈ X t such that xt = x′t and Ξπ

t (ht) = Ξπ
t (h′t).

For a fixed Markov policy π, the future evolution of the process {(Xτ , Ξ
π
τ )}τ=t,...,T is

solely dependent on the current (xt, Ξ
π
t (ht)), and so is the distribution of the future risk

functions rτ (Xτ , Ξ
π
τ , πτ (Xτ , Ξ

π
τ )), τ = t, . . . , T . Therefore, we can define the Markov

property of risk measures for POMDP. To alleviate notation, for all π ∈ Π and for a

measurable and bounded r = (r1, . . . , rT ), we write

vπt (ht) := ρπ
t,T

(
rt(Xt, Ξ

π
t , πt(Ht)), . . . , rT (XT , Ξ

π
T
, πT (HT ))

)
(ht). (5.15)

Definition 5.3.6. A family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

for a POMDP is Markov if

for all Markov policies π ∈ Π, for all bounded measurable r = (r1, . . . , rT ), and for all

ht = (x1, . . . , xt) and h′t = (x′1, . . . , x
′
t) in X t such that xt = x′t and Ξπ

t (ht) = Ξπ
t (h′t),

we have

vπt (ht) = vπt (h′t).

Proposition 5.3.7. A normalized, translation invariant, and stochastically condition-

ally time-consistent family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

is Markov if and only if the

dependence of σt on ht is carried by (xt, Ξ
π
t (ht)) only, for all t = 1, . . . , T − 1.
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Proof. Fix t = 1, . . . , T − 1 and w ∈ V. Let π ∈ Π be an arbitrary policy. Consider

ht, h
′
t ∈ X t such that xt = x′t, Ξ

π
t (ht) = Ξπ

t (h′t) = ξt, and Qπt (ht) = Qπt (h′t). By the

measurable selector Theorem [38], a Markov policy λ ∈ Π exists, such that πt(ht) =

λt(xt, ξt) (for the fixed t and ht).

By setting r = (0, . . . , 0, rt+1, 0, . . . , 0) with rt+1(x′, ξ′, u′) ≡ w(x′), we obtain from

the Markov property in Definition 5.3.6:

σt(ht, Q
π
t (ht), w) = σt(ht, Q

λ
t (xt, ξt), w) = vλt (ht) = vλt (h′t)

= σt(h
′
t, Q

λ
t (xt, ξt), w) = σt(h

′
t, Q

π
t (ht), w) = σt(h

′
t, Q

π
t (h′t), w).

Therefore, σt is indeed memoryless, that is, its direct dependence on ht is carried by

(xt, ξt) only.

If σt, t = 1, . . . , T − 1 are all memoryless, we can prove by induction backward in

time that for all t = T, . . . , 1, vπt (ht) = vπt (h′t) for all Markov π and all ht, h
′
t ∈ X t such

that xt = x′t and ξt = ξ′t.

The following theorem summarizes our observations.

Theorem 5.3.8. A family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

for a POMDP is normalized,

translation-invariant, stochastically conditionally time-consistent, and Markov if and

only if transition risk mappings

σt :
{(
xt, Ξ

π
t (ht), Q

π
t (ht)

)
: π ∈ Π, ht ∈ X t

}
× V → R, t = 1 . . . T − 1,

exist, such that

(i) for all t = 1, . . . , T − 1 and all (x, ξ) ∈
{(
xt, Ξ

π
t (ht)

)
: π ∈ Π, ht ∈ X t

}
, σt(x, ξ, ·, ·)

is normalized and strongly monotonic with respect to stochastic dominance on
{
Qπt (ht) :

π ∈ Π, ht ∈ X t such that xt = x, Ξπ
t (ht) = ξ

}
;

(ii) for all π ∈ Π, for all measurable bounded r, for all t = 1, . . . , T − 1, and for all

ht ∈ X t,

vπt (ht) = rt(xt, ξt, πt(ht)) + σt
(
xt, Ξ

π
t (ht), Q

π
t (ht), v

π
t+1(ht, ·)

)
. (5.16)

This allows us to evaluate risk of Markov policies in a recursive way.
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Corollary 5.3.9. Under the conditions of Theorem 5.3.8, for any Markov policy π, the

function (5.15) depends on r, πt,. . . ,πT , and (xt, ξt) only, and the following relation is

true:

v
πt,...,πT
t (xt, ξt) = rt(xt, ξt, πt(xt, ξt)) +

σt
(
xt, ξt,

∫
Y
KX
t (xt, y, πt(xt, ξt)) ξt(dy), x′ 7→ v

πt+1,...,πT
t+1 (x′, Φt(xt, ξt, πt(xt, ξt), x

′))
)
.

(5.17)

Proof. We use induction backward in time. For t = T we have vπ
T

(hT ) = rT (XT , ξT ,

πT (XT , ξT )) and our assertion is true. If it is true for t+ 1, formula (5.16) reads

vπt (ht) = rt(xt, ξt, πt(xt, ξt)) +

σt
(
xt, ξt, Qt(xt, ξt, πt(xt, ξt)), x

′ 7→ v
πt+1,...,πT
t+1 (x′, Φt(xt, ξt, πt(xt, ξt), x

′))
)
.

Substitution of (5.12) proves our assertion.

5.4 Dynamic Programming

We consider a family of risk filters
{
ρπ
t,T

}π∈Π
t=1,...,T

which is normalized, translation-

invariant, stochastically conditionally time-consistent, and Markov. Our objective is

to analyze the risk minimization problem:

min
π∈Π

vπ1 (x1, Ξ1(x1)), x1 ∈ X .

For this purpose, we introduce the family of value functions:

v∗t (gt) = inf
π∈Π

t,T
(gt)

vπt (ht), gt = (x1, u1, . . . , ut−1, xt) ∈ Gt, t = 1, . . . , T, (5.18)

where Gt is defined in (5.1) and Πt,T (gt) is the set of feasible deterministic policies π

such that πs(hs) = us, ∀s = 1 . . . t − 1. By Theorem 5.3.8, transition risk mappings{
σt
}
t=1,...,T−1

exist, such that equations (5.16) hold.

We assume that the spaces P(X ) and P(Y) are equipped with the topology of weak

convergence, and the space V is equipped with the topology of pointwise convergence.

All continuity statements are made with respect to the said topologies.
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We also assume that the kernels Kt(x, y, u) have densities qt(·, · | x, y, u) with respect

to a finite product measure µX ⊗ µY on X × Y, as in Example 5.3.1. In this case,[∫
Y
KX
t (x, y, u) ξ(dy)

]
(dx′) =

[∫
Y

∫
Y
qt(x

′, y′ | x, y, u) ξ(dy)µY (dy′)

]
µX(dx′).

(5.19)

Our main result is that the value functions (5.18) are memoryless, that is, they

depend on (xt, ξt) only, and that they satisfy a generalized form of a dynamic program-

ming equation. The equation also allows us to identify the optimal policy.

We remark that we cannot mechanically apply earlier results in Section 4.2 on fully

observable Markov models and new techniques are required to prove the result. The

difficulty is in the composite nature of the transition risk mappings, where the Bayes

operator features.

Theorem 5.4.1. We assume the following conditions:

(i) The functions (x, u) 7→ qt(x
′, y′|x, y, u) are continuous at all (x′, y′, x, y, u), uniform-

ly over (x′, y′, y);

(ii) The transition risk mappings σt(·, ·, ·, ·), t = 1, . . . , T , are lower semi-continuous;

(iii) The functions rt(·, ·, ·), t = 1, . . . , T , are lower semicontinuous;

(iv) The multifunctions Ut(·), t = 1, . . . , T , are compact-valued and upper-semicontinu-

ous.

Then the functions v∗t , t = 1, . . . , T are memoryless, lower semicontinuous, and satisfy

the following dynamic programming equations:

v∗
T

(x, ξ) = min
u∈UT (x)

rT (x, ξ, u), x ∈ X , ξ ∈ P(X ),

v∗t (x, ξ) = min
u∈Ut(x)

{
rt(x, ξ, u) +

σt

(
x, ξ,

∫
Y
KX
t (x, y, u) ξ(dy), x′ 7→ v∗t+1

(
x′, Φt(x, ξ, u, x

′)
))}

,

x ∈ X , ξ ∈ P(Y), t = T − 1, . . . , 1.

Moreover, an optimal Markov policy π̂ exists and satisfies the equations:

π̂T (x, ξ) ∈ argmin
u∈UT (x)

rT (x, ξ, u), x ∈ X , ξ ∈ P(Y), (5.20)
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π̂t(x, ξ) ∈ argmin
u∈Ut(x)

{
rt(x, ξ, u) +

σt

(
x, ξ,

∫
Y
KX
t (x, y, u) ξ(dy), x′ 7→ v∗t+1

(
x′, Φt(x, ξ, u, x

′)
))}

,

x ∈ X , ξ ∈ P(Y), t = T − 1, . . . , 1. (5.21)

Proof. For all gT ∈ GT we have

v∗
T

(gT ) = inf
π
T

(g
T

)
rT (xT , ξT , πT (hT )) = inf

u∈UT (x
T

)
rT (xT , ξT , u). (5.22)

By assumptions (iii) and (iv), owing to the Berge theorem (see [5, Theorem 1.4.16]), the

infimum in (5.22) is attained and is a lower semicontinuous function of (xT , ξT ). Hence,

v∗
T

is memoryless. Moreover, the optimal solution mapping ΨT (x, ξ) =
{
u ∈ UT (x) :

rT (x, ξ, u) = v∗
T

(x, ξ)
}

has nonempty and closed values and is measurable. Therefore,

a measurable selector π̂T of ΨT exists (see, [38], [5, Thm. 8.1.3]), and

v∗
T

(gT ) = v∗
T

(xT , ξT ) = v
π̂
T

T (xT , ξT ).

We prove the theorem by induction backward in time. Suppose v∗t+1(·) is memoryless,

lower semicontinuous, and Markov decision rules {π̂t+1, . . . , π̂T } exist such that

v∗t+1(gt+1) = v∗t+1(xt+1, ξt+1) = v
{π̂t+1,...,π̂T }
t+1 (xt+1, ξt+1), ∀gt+1 ∈ Gt+1.

Then for any gt ∈ Gt formula (5.16), after substituting (5.12), yields

v∗t (gt) = inf
π∈Π

t,T
(gt)

vπt (ht)

= inf
π∈Π

t,T
(gt)

{
rt(xt, ξt, πt(ht)) + σt

(
xt, ξt,

∫
Y
KX
t (xt, y, πt(ht)) ξt(dy), vπt+1(ht, ·)

)}
.

Since vπt+1(ht, x
′) ≥ v∗t+1

(
x′, Φt

(
xt, ξt, πt(ht), x

′)) for all x′ ∈ X , and σt is non-decreasing

with respect to the last argument, we obtain

v∗t (gt)

≥ inf
π∈Π

t,T
(gt)

{
rt(xt, ξt, πt(ht)) +

σt

(
xt, ξt,

∫
Y
KX
t (xt, y, πt(ht)) ξt(dy), x′ 7→ v∗t+1(x′, Φt(xt, ξt, πt(ht), x

′))
)}

= inf
u∈Ut(xt)

{
rt(xt, ξt, u) +

σt

(
xt, ξt,

∫
Y
KX
t (xt, y, u) ξt(dy), x′ 7→ v∗t+1(x′, Φt(xt, ξt, u, x

′))
)}

.

(5.23)
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In order to complete the induction step, we need to establish lower semicontinuity of

the mapping

(x, ξ, u) 7→ σt

(
x, ξ,

∫
Y
KX
t (x, y, u) ξ(dy), x′ 7→ v∗t+1

(
x′, Φt(x, ξ, u, x

′)
))
. (5.24)

To this end, suppose x(k) → x, ξ(k) → ξ (weakly), u(k) → u, as k →∞.

First, we verify that the mapping (x, ξ, u) 7→
∫
Y K

X
t (x, y, u) ξ(dy) appearing in

the third argument of σt is weakly continuous. By formula (5.19), for any bounded

continuous function f : X → R we have∫
X
f(x′)

[∫
Y
KX
t (x(k), y, u(k)) ξ(k)(dy)

]
(dx′)

=

∫
X
f(x′)

[∫
Y

∫
Y
qt(x

′, y′ | x(k), y, u(k)) ξ(k)(dy)µY (dy′)

]
µX(dx′)

(5.25)

By assumption (i),

lim
k→∞

∫
Y

[
qt(x

′, y′ | x(k), y, u(k))− qt(x′, y′ | x, y, u)
]
ξ(k)(dy) = 0, (5.26)

uniformly over x′, y′. Moreover, by Lebesgue theorem, the function

y 7→
∫
X
f(x′)

∫
Y
qt(x

′, y′ | x, y, u) µY (dy′) µX(dx′) (5.27)

is continuous. Therefore, combining (5.25) and (5.26), we obtain the chain of equations:

lim
k→∞

∫
X
f(x′)

[∫
Y
KX
t (x(k), y, u(k)) ξ(k)(dy)

]
(dx′)

= lim
k→∞

∫
X
f(x′)

[∫
Y

∫
Y
qt(x

′, y′ | x, y, u) ξ(k)(dy)µY (dy′)

]
µX(dx′)

= lim
k→∞

∫
Y

[∫
X
f(x′)

∫
Y
qt(x

′, y′ | x, y, u) µY (dy′) µX(dx′)

]
ξ(k)(dy)

=

∫
Y

[∫
X
f(x′)

∫
Y
qt(x

′, y′ | x, y, u) µY (dy′) µX(dx′)

]
ξ(dy)

=

∫
X
f(x′)

[∫
Y
KX
t (x, y, u) ξ(dy)

]
(dx′).

The last by one equation follows from the weak convergence of ξ(k) to ξ and from the

continuity of the function (5.27). Thus, the third argument of σt in (5.24) is continuous

with respect to (x, ξ, u).
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Let us examine the last argument of σt in (5.24). By (5.26), for every continuous

bounded function f(·) on Y, and for each fixed x′ ∈ X ,

lim
k→∞

∫
Y
f(y′) Φt(x

(k), ξ(k), u(k), x′)(dy′)

= lim
k→∞

∫
Y f(y′)

∫
Y qt(x

′, y′ | x(k), y, u(k)) ξ(k)(dy) µY (dy′)∫
Y
∫
Y qt(x

′, y′ | x(k), y, u(k)) ξ(k)(dy) µY (dy′)

=

∫
Y f(y′)

∫
Y qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′)∫
Y
∫
Y qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′)
,

provided that (x, ξ, u, x′) is such that∫
Y

∫
Y
qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′) > 0. (5.28)

Therefore, the operator Φt(·, ·, ·, x′) is weakly continuous at these points. Let x, ξ, u be

fixed. Consider the sequence of functions V (k) : X → R, k = 1, 2, . . . , and the function

V : X → R, defined as follows:

V (k)(x′) = v∗t+1

(
x′, Φt(x

(k), ξ(k), u(k), x′)
)
,

V (x′) = v∗t+1

(
x′, Φt(x, ξ, u, x

′)
)
.

Since v∗t+1(·, ·) is lower-semicontinuous and Φt(·, ·, ·, x′) is continuous, whenever condi-

tion (5.28) is satisfied, we infer that

V (x′) ≤ lim inf
k→∞

V (k)(x′),

at all x′ ∈ X at which (5.28) holds. As v∗t+1 and Φt are measurable, both V and

lim infk→∞ V
(k) are measurable as well.

By Theorem 5.3.8, the mapping σt is preserving the stochastic order �st of the last

argument with respect to the measure
∫
Y K

X
t (x, y, u) ξ(dy). Since(∫

Y
KX
t (x, y, u) ξ(dy)

){
x′ ∈ X :

∫
Y

∫
Y
qt(x

′, y′ | x, y, u) ξ(dy) µY (dy′) = 0

}
= 0,

the value of lim infk→∞ V (k)(x′) at the set of x′ at which (5.28) is violated, is irrelevant.

Consequently, by assumption (ii), with the view at the already established continuity
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of the third argument, we obtain the following chain of relations:

σt

(
x, ξ,

∫
Y
KX
t (x, y, u) ξ(dy), V

)
≤ σt

(
x, ξ,

∫
Y
KX
t (x, y, u) ξ(dy), lim inf

k→∞
V (k)

)
= σt

(
x, ξ, lim

k→∞

∫
Y
KX
t (x(k), y, u(k)) ξ(k)(dy), lim inf

k→∞
V (k)

)
≤ lim inf

k→∞
σt

(
x(k), ξ(k),

∫
Y
KX
t (x(k), y, u(k)) ξ(k)(dy), V (k)

)
.

Consequently, the mapping (5.24) is lower semicontinuous.

Using assumptions (ii) and (iv) and invoking the Berge theorem again (see, e.g.,

[5, Theorem 1.4.16]), we deduce that the infimum in (5.23) is attained and is a lower

semicontinuous function of (xt, ξt). Moreover, the optimal solution mapping, that is, the

set of u ∈ UT (x) at which the infimum in (5.23) is attained, is nonempty, closed-valued,

and measurable. Therefore, a minimizer π̂t in (5.23) exists and is a measurable function

of (xt, ξt) (see, e.g., [38], [5, Thm. 8.1.3]). Substituting this minimizer into (5.23), we

obtain

v∗t (gt) ≥ rt
(
xt, ξt, π̂t(xt, ξt)

)
+σt

(
xt, ξt,

∫
Y
KX
t

(
xt, y, π̂t(xt, ξt)

)
ξt(dy), x′ 7→ v∗t+1

(
x′, Φt(x, ξ, π̂t(xt, ξt), x

′)
))

= v
{π̂t,...,π̂T }
t (xt, ξt).

In the last equation, we used Corollary 5.3.9. On the other hand, we have

v∗t (gt) = inf
π∈Π

t,T
(ht)

vπt (ht) ≤ v
{π̂t,...,π̂T }
t (xt, ξt).

Therefore v∗t (gt) = v
{π̂t,...,π̂T }
t (xt, ξt) is memoryless, lower semicontinuous, and

v∗t (xt, ξt)

= min
u∈Ut(xt)

{
rt(xt, ξt, u)

+ σt

(
xt, ξt,

∫
Y
KX
t (xt, y, u) ξt(dy), x′ 7→ v∗t+1

(
x′, Φt(xt, ξt, u, x

′)
))}

= rt
(
xt, ξt, π̂t(xt, ξt)

)
+

σt

(
xt, ξt,

∫
Y
KX
t

(
xt, y, π̂t(xt, ξt)

)
ξt(dy), x′ 7→ v∗t+1

(
x′, Φt(xt, ξt, π̂t(xt, ξt), x

′)
))
.
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This completes the induction step.

The most essential assumption of Theorem 5.4.1 is assumption (ii) of the lower semi-

continuity of the transition risk mappings σt(·, ·, ·, ·). If these mappings are derived from

convex or coherent risk measures, their lower semicontinuity with respect to the last

argument follows from the corresponding property of the risk measure. In particular,

[56, Cor. 3.1] derives continuity from monotonicity on Banach lattices. The semiconti-

nuity with respect to the third argument, the probability measure, is a more complex

issue. Lemmas 4.2.3 and 4.2.4, verified this condition for two popular risk measures:

the Average Value at Risk and the mean-semideviation measure. Similar remarks apply

to the assumption (iii) about the running risk functions. The assumptions (i) and (iv)

are the same as in the utility models of [8].

We could have made the sets Ut depend on ξt, but this is hard to justify.



58

Chapter 6

Illustration: Machine Deterioration

6.1 Description of the Process

We consider the problem of minimizing costs of using a machine in T periods. The

condition of the machine can deteriorate over time, but is not known with certainty.

The only information available is the operating cost. The control in any period is to

continue using the machine, or to replace it.

At the beginning of period t = 1, . . . , T , the condition of the machine is denoted by

yt ∈ {1, 2}, with 1 denoting the “good” state, and 2 the “bad” state. The controls are

denoted by ut ∈ {0, 1}, with 0 meaning “continue”, and 1 meaning “replace”.

The dynamics is Markovian, with the following transition graph for the “continue”

control:

1 2

1− p

p

1

and the following transition matrices K [u], u ∈ {0, 1}:

K [0] =

1− p p

0 1

 ,

K [1] =

1− p p

1− p p

 .

(6.1)

We can observe the cost incurred during period t, denoted by xt+1. The increment of

the time index is due to the fact that this cost becomes known at the end of the period,

and provides information for the decision making in the next period. The conditional
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distribution of xt+1, given yt and ut, is described by two density functions f1 and f2;

for all C ∈ R,

P
[
xt+1 ≤ C

∣∣ yt = i, ut = 0
]

=

∫ C

−∞
fi(x) dx, i = 1, 2,

P
[
xt+1 ≤ C

∣∣ yt = i, ut = 1
]

=

∫ C

−∞
f1(x) dx, i = 1, 2.

(6.2)

Assumption 6.1.1. The functions f1 and f2 are uniformly bounded and the condition-

al distribution of xt+1 given that the machine is in “good” condition is stochastically

smaller than the conditional distribution of xt+1 given that the machine is in “bad”

condition, i.e., ∫ C

−∞
f1(x) dx ≥

∫ C

−∞
f2(x) dx, ∀C ∈ R;

with a slight abuse of notation, we write it f1 �st f2.

Thus the relations (6.1) and (6.2) define
{
xt, yt

}
t=1,...,T+1

as a partially observable

Markov process controlled by
{
ut
}
t=1,...,T

. Based on observations (x1, . . . , xt), the belief

state ξt ∈ [0, 1] denotes the conditional probability that yt = 1. We can update the

posterior belief state as follows:

ξt+1 =


Φ(ξt, xt+1), if ut = 0;

1− p, if ut = 1,

where Φ is the Bayes operator,

Φ(ξ, x′) =
(1− p)ξf1(x′)

ξf1(x′) + (1− ξ)f2(x′)
. (6.3)

We assume that the initial probability ξ0 ∈ [0, 1] is known; then ξ1(x1) = Φ(ξ0, x1).

Directly from (6.3) we see that Φ(0, · ) = 0, Φ(1, · ) = 1 − p, and Φ( · , x′) is non-

decreasing.

6.2 Risk Modeling

At the beginning of period t, if we replace the machine (ut = 1), there is an additional

fixed replacement cost R. Then the costs incurred are
rt(xt, ut) = R · ut + xt, t = 1, . . . , T ;

rT+1(xT+1) = xT+1.

(6.4)



60

We denote the history of observations by ht = (x1, . . . , xt) and the set of all history-

dependent policies by

Π :=
{
π = (π1, . . . , πT ) | ∀t, πt(x1, . . . , xt) ∈ {0, 1}

}
.

We want to evaluate the costs (6.4) for any π ∈ Π, and find an optimal policy. The

risk-neutral approach is to evaluate the conditional expectations of the sum of future

costs:

E

[ T∑
τ=t

(
R · πτ (hτ ) + xτ

)
+ xT+1

∣∣∣∣ht], ht ∈ Rt, t = 1, . . . , T + 1, π ∈ Π.

As shown in Theorem 5.3.8, construction of Markovian risk measures that replace the

above expectations, is equivalent to specifying transition risk mappings

σt : R× P(R)× P(R)× V → R,

where V is the space of all bounded and measurable functions from R to R. For

simplicity, we assume that σt(·, ·, ·, ·) is the same for all t and does not depend on the

current state (xt, ξt), that is,

σt(x, ξ, q, v) = σ(q, v).

Remark 6.2.1. For a probability measure q ∈ P(R) that has f as the density function,

with slight abuse of notation, we also write σ(f, ·) instead of σ(q, ·).

6.3 Value and Policy Monotonicity

In this section, we assume that the transition risk mapping σ : P(R)×V → R satisfies

all assumptions of Theorem 5.4.1. Then the optimal value functions v∗t , t = 1, . . . , T +1

are memoryless and satisfy the following dynamic programming equations:

v∗t (x, ξ) = x+ min


R+ σ

(
f1, x

′ 7→ v∗t+1(x′, 1− p)
)
;

σ
(
ξf1 + (1− ξ)f2, x

′ 7→ v∗t+1(x′, Φ(ξ, x′))
)
 ,

x ∈ R, ξ ∈ [0, 1], t = 1, . . . , T, (6.5)

with the final stage value v∗T+1(x, ξ) = x. Moreover, an optimal Markov policy exists,

which is defined by the minimizers in the above dynamic programming equations.
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Directly from (6.5) we see that v∗t (x, ξ) = x+w∗t (ξ), t = 1, . . . , T + 1. The dynamic

programming equations (6.5) simplify as follows:

w∗t (ξ) = min


R+ σ

(
f1, x

′ 7→ x′ + w∗t+1(1− p)
)
;

σ
(
ξf1 + (1− ξ)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ, x′))
)
 ,

ξ ∈ [0, 1], t = 1, . . . , T, (6.6)

with the final stage value w∗T+1( · ) = 0. We can establish monotonicity of w∗(·).

Theorem 6.3.1. If f1
f2

is non-increasing, then the functions w∗t : [0, 1] → R, t =

1, . . . , T + 1 are non-increasing.

Proof. Clearly, w∗T+1 is non-increasing. Assume by induction that w∗t+1 is non-increasing.

For any ξ1 ≤ ξ2 we have:

1. ξ1f1 + (1− ξ1)f2 �st ξ2f1 + (1− ξ2)f2, because f1 �st f2.

2. For all x′, we have x′ + w∗t+1(Φ(ξ1, x
′)) ≥ x′ + w∗t+1(Φ(ξ2, x

′)), as w∗t+1 is non-

increasing and Φ(·, x′) is non-decreasing.

3. the mapping x′ 7→ x′+w∗t+1(Φ(ξ, x′)) is non-decreasing for all ξ. To show that, it

is sufficient to establish that x′ 7→ Φ(ξ, x′) is non-increasing, and this can be seen

from the formula (for 0 ≤ p < 1):

1

Φ(ξ, x′)
=

1

1− p

(
1 +

f2(x′)

f1(x′)

(
1

ξ
− 1

))
.

Thus

σ
(
ξ1f1 + (1− ξ1)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ1, x
′))
)

≥ σ
(
ξ1f1 + (1− ξ1)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ2, x
′))
)

(because of 2.)

≥ σ
(
ξ2f1 + (1− ξ2)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ2, x
′))
)

(because of 1. and 3.)

which completes the induction step.

The monotonicity assumption on f1
f2

is in fact a sufficient (but not necessary) con-

dition for f1 �st f2. We illustrate this issue by the following examples.
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Example 6.3.2 (Exponentially distributed costs). We have

fi(x) =
1

θi
exp

(
−x−mi

θi

)
1{x≥mi}, i = 1, 2,

with m1, m2, θ1, θ2 ≥ 0. To have f1 �st f2, we must have m1 ≤ m2 and θ1 ≥ θ2. Thus

the non-increasing property of f1
f2

is equivalent to f1 �st f2, as

f1(x)

f2(x)
=


+∞, for x < m2, if m1 < m2;

0, for x < m1, if m2 < m1;

θ2

θ1
exp

(
x−m2

θ2
− x−m1

θ1

)
, for x ≥ max(m1,m2).

Example 6.3.3 (Normally distributed costs). Consider the normal distributions trun-

cated to [0,+∞)

fi(x) =

exp

(
−1

2

(
x−µi
σi

)2
)

∫∞
0 exp

(
−1

2

(
z−µi
σi

)2
)
dz

, i = 1, 2,

where σ1, σ2 > 0 and µ1, µ2 ∈ R. We have

f1(x)

f2(x)
= const · exp

(
−1

2

(
x− µ1

σ1

)2

+
1

2

(
x− µ2

σ2

)2
)
,

so the derivative of ln f1
f2

is −x−µ1
σ2
1

+ x−µ2
σ2
2

. A necessary and sufficient condition for f1
f2

being non-increasing on [0,+∞) is

σ1 ≤ σ2 and
µ1

σ2
1

≤ µ2

σ2
2

.

Example 6.3.4 (Uniformly distributed costs). We set

fi =
1

Mi −mi
1[mi,Mi], i = 1, 2.

To have f1 �st f2, we must have m1 ≤ m2 and M1 ≤M2, and then

f1(x)

f2(x)
=


+∞, for m1 ≤ x ≤ m2;

M2 −m2

M1 −m1
, for m2 < x ≤M1;

0, for x ≥M2,

is non-increasing.
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From Theorem 6.3.1 we obtain the following threshold property of the policy.

Theorem 6.3.5. Under the assumptions of Theorem 6.3.1, there exist thresholds ξ∗t ∈

[0, 1], t = 1, . . . , T such that the policy

u∗t =


0 if ξt > ξ∗t ,

1 if ξt ≤ ξ∗t ,

is optimal.

Proof. Suppose ξ is such that replacement at time t is optimal:

R+ σ
(
f1, x

′ 7→ x′ + w∗t+1(1− p)
)
≤ σ

(
ξf1 + (1− ξ)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ, x′))
)
.

Then for any ζ ≤ ξ, we have ξf1 + (1− ξ)f2 �st ζf1 + (1− ζ)f2 and Φ(ξ, x′) ≥ Φ(ζ, x′).

Consequently,

R+ σ
(
f1, x

′ 7→ x′ + w∗t+1(1− p)
)

≤ σ
(
ξf1 + (1− ξ)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ, x′))
)

≤ σ
(
ζf1 + (1− ζ)f2, x

′ 7→ x′ + w∗t+1(Φ(ξ, x′))
)

≤ σ
(
ζf1 + (1− ζ)f2, x

′ 7→ x′ + w∗t+1(Φ(ζ, x′))
)
,

and replacement is optimal for ζ as well.

6.4 Numerical Illustration

In this section, we solve the problem in the special case where f1 and f2 are density

functions U(m1,M1) and U(m2,M2) with m1 ≤ m2 ≤M1 ≤M2, as in Example 6.3.4.

Then the Bayes operator is piece-wise constant with respect to x′:

Φ(ξ, x′) =



1− p, if m1 ≤ x′ ≤ m2;

(1− p)ξ(M2 −m2)

ξ(M2 −m2) + (1− ξ)(M1 −m1)
:= φ̂(ξ), if m2 ≤ x′ ≤M1;

0, if M1 ≤ x′ ≤M2.
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The conditional distribution of x′ given ξ is described by the density function ξf1 +

(1 − ξ)f2, which is also constant in each of the three intervals [m1,m2), [m2,M1] and

(M1,M2], with the following probabilities amassed in each of the three intervals:

q1(ξ) =
ξ(m2 −m1)

M1 −m1
,

q2(ξ) = (M1 −m2)

(
ξ

M1 −m1
+

1− ξ
M2 −m2

)
,

q3(ξ) =
(1− ξ)(M2 −M1)

M2 −m2
.

We use the mean-semideviation transition risk mapping of Example 2.4.8, with p = 1

and constant κ, i.e,

σ(q, v) = Eq[v] + κEq
[
(v −Eq(v))+] .

It is strongly monotonic with respect to stochastic order and lower semi-continuous

with respect to (q, v). Then the dynamic programming equations (6.6) for t = 1, . . . , T

become:

w∗t (ξ) = min
{
R+ E∗t (1) +Ef1

(
x′ 7→ x′ + w∗t+1(1− p)− E∗t (1)

)
+

;

E∗t (ξ) +Eξf1+(1−ξ)f2
(
x′ 7→ x′ + w∗t+1(Φ(ξ, x′))− E∗t (ξ)

)
+

}
, (6.7)

where

E∗t (ξ) := Eξf1+(1−ξ)f2
(
x′ 7→ x′ + w∗t+1(Φ(ξ, x′))

)
= q1(ξ)

(
m1 +m2

2
+ w∗t+1(1− p)

)
+ q2(ξ)

(
m2 +M1

2
+ w∗t+1(φ̂(ξ))

)
+ q3(ξ)

(
M1 +M2

2
+ w∗t+1(0)

)
.

(6.8)

As x′ 7→ x′ +w∗t+1(Φ(ξ, x′))−E∗t (ξ) is linear in each of the intervals [m1,m2], [m2,M1]

and [M1,M2], we have

Eξf1+(1−ξ)f2
(
x′ 7→ x′ + w∗t+1(Φ(ξ, x′))− E∗t (ξ)

)
+

= q1(ξ) θ
(
m1,m2, E

∗
t (ξ)− w∗t+1(1− p)

)
+ q2(ξ) θ

(
m2,M1, E

∗
t (ξ)− w∗t+1(φ̂(ξ))

)
+ q3(ξ) θ

(
M1,M2, E

∗
t (ξ)− w∗t+1(0)

)
,

(6.9)
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where, for a1 ≤ a2,

θ(a1, a2, a3) :=

∫ a2
a1

( · − a3)+

a2 − a1
=



1
2(a1 + a2), if a3 ≤ a1;

1
2(a3 + a2)a2−a3a2−a1 , if a1 < a3 < a2;

0, if a3 ≥ a2.

For any t and any ξ, if we know w∗t+1(1− p), w∗t+1(φ̂(ξ)) and w∗t+1(0), then the compu-

tation of w∗t (ξ) can be accomplished in three steps:

1. Compute E∗t (1) and E∗t (ξ) by (6.8).

2. Compute Ef1
(
x′ 7→ x′ + w∗t+1(1− p)− E∗t (1)

)
+

and

Eξf1+(1−ξ)f2
(
x′ 7→ x′ + w∗t+1(Φ(ξ, x′))− E∗t (ξ)

)
+

by (6.9).

3. Compute w∗t (ξ) using the dynamic programming equation (6.7).

Since we have the final stage value w∗T+1 = 0, all w∗t (ξ) can be easily calculated by

recursion backward in time.

In Figure 6.1, we present the value functions and optimal policies for an example

with m1 = 0, m2 = 80, M1 = 100, M2 = 500, p = 0.2, T = 6, R = 50, and κ = 0.9. In

Figure 6.2, we display the distribution of the total cost obtained by simulating 100,000

runs of the system with both policies.

We see that the application of the risk-averse model increases the threshold values

ξ∗t of the optimal policies and results in a significantly less dispersed distribution of the

total cost.
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Figure 6.1: The value function for the risk-neutral model (dashed) and the risk-averse

model (solid). The stars denote the critical value ξ∗ below which replacement is optimal.
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Figure 6.2: Empirical distribution of the total cost for the risk-neutral model (blue)

and the risk-averse model (orange).
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Conclusion

In this thesis, we developed theoretical foundations of the theory of dynamic risk mea-

sures for controlled stochastic processes, and the results were successfully applied and

specialized to Markov decision processes (MDP) and partially observable Markov deci-

sion processes (POMDP).

We began with introducing a new class of dynamic risk measures for general discrete-

time stochastic processes, which we call process-based. Under the uncontrolled setting,

we introduced the notion of stochastic conditional time consistency, which is stronger

than the classical notion of time consistency. We proved under general assumptions

that a dynamic risk measure is stochastically conditionally time-consistent if and only

if it can be represented by a collection of static law-invariant risk measures on the

space of functions of the state of the base process. (These static law-invariant risk

measures are called “transition risk mappings”.) This full characterization allows us to

construct such dynamic risk measures from static risk measures, while the static risk

measures are mathematical objects that are much better understood and analyzed in

the literature. Under the controlled setting, due to the presence of different control

policies, we modified the notion of stochastic conditional time consistency so that it

connects different policies into one unified property. In other words, the dynamic risk

measures for all admissible policies share the same collection of transition risk mappings

that is policy-independent.

The results were first specialized to Markov decision problems (MDP), where we

evaluate different policies according to a process-based dynamic risk measure. We dis-

covered that under the assumption that risk measures are memoryless under Markov

policies, the history dependence of the transition risk mappings is reduced to the cur-

rent state only. With the help of this special form of characterization, the dynamic
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programming equations governing the value function was derived. As a special case of

MDP, for multistage stochastic programming problems with decision-dependent prob-

abilities, we derived the form of risk measures on a scenario tree and we also derived

the associated dynamic programming equations.

We then specialized our theory to partially observable Markov decision problems

(POMDP). Due to the fact that part of the state is unobservable, the agent in POMDP

needs to optimize the objective function while making “best guesses” on the unobserv-

able part of the state. One of the major difficulties is that the cost process is adapted

to the filtration generated by the full state process, while the risk measure needs to be

assessed according to the filtration generated by the observable state process. To deal

with this difficulty, we introduced the concept of a risk filter. We postulated the prop-

erty of stochastic conditional time consistency adapted to such a filter. Our main result

was that the risk filters can be equivalently modeled by special forms of transition risk

mappings: static risk measures on the space of functions defined on the observable part

of the state only. We also derived dynamic programming equations under this setting.

Finally, our theory on POMDP was applied to the machine deterioration problem.

The problem was formulated as a cost minimization problem, where in each step we can

choose to continue using the machine or to replace it. We can observe the operating

cost, while the gradual deterioration of the machine is not directly observable. Our

numerical results showcased the power of our risk-averse theory, in the sense that the

dispersion of the total cost under the optimal policy noticeably decreased compared to

the risk-neutral case.
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