
c⃝2018

Priya Govindan

ALL RIGHTS RESERVED



CORE STRUCTURE AND INFLUENCE IN SOCIAL
NETWORKS

BY

PRIYA GOVINDAN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

S. Muthukrishnan

and approved by

New Brunswick, New Jersey

January, 2018



ABSTRACT OF THE DISSERTATION
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by PRIYA GOVINDAN

Dissertation Director:

S. Muthukrishnan

Structure of social connections and interpersonal dynamics based on user behavior shapes the

culture, politics and economics of the world. Building consumer products and services, re-

quire a good understanding of the human social behavior, computational tools to analyze it and

efficient techniques to model and predict it.

In this dissertation we study the graph structure of interactions at the community level and

the social influence between users at an individual level in a social network. Our contributions

are in the form of efficient algorithms, theoretical and experimental analysis and visualizations.

At the community level, k-core decomposition has been used in many applications to find

dense regions in a graph. We present a space efficient approximate algorithm to compute k-core

decomposition using O(n logd) space approximate algorithm to estimate k-cores in graphs,

where n is the number of nodes, and d is the maximum degree. Our experimental study shows

space savings up to 60X with average relative error less than 2.3% as compared to the in-

memory method. Analogous to k-core, k-peak decomposition finds centers of dense regions in

a graph. We present analysis of the k-peak decomposition and show that it outperforms k-core

decomposition in applications such as community detection. In addition to that, we present a

graph visualization technique, that uses both k-core and k-peak decomposition to give a global

mapping of the graph.

At the individual level, we study the influence of users on one another based on the posts
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they share and the feedback received. H-index, used as a measure of impact in academic

settings, can also be used as a measure of influence in online social interactions. The high

volume and rate of online social interactions make in-memory computations challenging. We

present algorithms to compute h-index in various streaming settings and get a (1± ϵ) estimate

of the h-index with sublinear, ie, polylog or even O(1) space.

Thus, we present efficient algorithms, analysis and visualizations in an effort to study the

group level structure of interactions and individual level influence, among users in social net-

works.
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Chapter 1

Introduction

1.1 Introduction

Around 130,000 years ago human ancestors lived in groups and with resources shared among

neighboring groups [52]. This was one of the earliest evidence of social behavior among ho-

minids. Fast forward to current day, our social behavior has certainly evolved since our hunter-

gatherer days. We still form and rely on our communities, but the structure and dynamics of

our social networks have become highly complex. Our social structures and dynamics shape

everything from our daily personal experiences to culture, politics and human progress .

Going back in time once again, but to a more recent past, consider the world we were in,

in early 2000s. We communicated mostly by phone, email, postal mail or in person. The

phone companies would have known who, presumably, knows whom, from the call logs. The

email service providers could have studied how information was passed on. But, apart from

conducting surveys, it would have been difficult to study how people formed groups and the

structure of their communities. Besides, without the knowledge of what information people

shared with others and how people responded to each other, it would also have been difficult to

understand the interpersonal dynamics such as that of influence, trust and authority [66], [15].

The online social networks available today, such as Facebook, Twitter and LinkedIn, allow

us to study the structure of social connections and the interpersonal behavior. The key aspects

that differentiate these services from the communication services available in the past, are as

follows: (1) Users can make explicit connections with other users (2) They can share content

such as opinions, photos or videos. (3) Other users can respond to the content by ‘liking’,

commenting or passing it on to their contacts. Given such data, we can try to understand

the structure of communities based on social connections. The dynamics of the relationship

between users can be further studied based on content sharing and responses received.
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As of 2017, more than 3 billion people, i.e. 40% of the world’s population, use one of the

online social networks [40]. As of January 2017, roughly 500 million tweets are posted on

Twitter each day [6]. Thus, the size of data and the complexity of the computations, presents

algorithmic challenges in the study of social networks. In this dissertation, we present al-

gorithms, analysis, experiments and visualizations, in an effort to understand the structure of

communities and measure influence among users in social networks.

In this chapter, we discuss the current online social networks, give an overview of the

interesting research questions in this area and conclude with an outline of the dissertation.

1.2 Social networks

Currently, there are several social network services 1 available, for different social interactions.

For instance Facebook interactions tend to be casual and meant for personal relationships. On

the other hand, LinkedIn is a platform for making professional connections. Blogging and mi-

croblogging services share many features of social networks. Some of the popular blogging

and microblogging services include Twitter, Snapchat, Sina Weibo and Tumblr. Services such

as Snapchat, Instagram, Pinterest and Flickr can also be considered as social networks, al-

though such services encourage sharing of a specific type of content, such as photos or videos.

Although, slightly different from social networks, messengers and discussion websites could

also help in studying social interactions. Popular messenger services include Whatsapp, Skype,

Wechat and Viber. Reddit, and Quora are popular discussion websites.

Most of the social network services allow users to make explicit connections to other users.

The connection may be unidirectional (Example: Twitter) or reciprocated by default (Example:

LinkedIn). Unidirectional connections often don’t require approval by the other person, where

as connections reciprocated by default require the other party to approve the connection.

The type of content allowed to be shared depends on the service provider and the purpose

of the platform. Some services restrict the type of content allowed to be posted. For example:

Only photos and videos can be posted on Flickr, Where as, some services allow a variety of

content to be posted. For Example: On Facebook, one may post text, photos, videos or URLs.

1Note: In the rest of the this work, we use ‘social networks’ and ‘online social networks’ interchangeably, and
networks and graphs interchangeably as well.
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Social networks also vary in the type of response that another user might make. One of the

most common responses is ‘Like’or ‘Favorite’. Some services also allow comments or replies,

where another user might respond with their own content. The third kind of response is where

user A posts something and user B shares or passes on user A’s post to other users, with or

without adding, appending or modifying the content of user A’s post. An example of this type

of response is ‘Retweet’ on Twitter or ‘Share’on LinkedIn.

Regardless of the differences in the kind of interactions on the above mentioned services,

they share the common goal of encouraging users to share information and build communities.

1.3 Interesting questions

There are several perspectives and granularities at which one could study social networks. The

content shared by the users is certainly a rich source of information to study user behavior.

But for the purpose of this work, we will ignore the content and focus on the metadata of the

activities. Further, we can classify the observations into two categories : (1) Social connections

such as ‘Friends’ in Facebook, ‘Followers’ in Twitter and (2) Content sharing and responses

from others.

Exploring the connections between users could reveal the structure of relationships among

groups of people. Communities and cohorts are often hard to define and they change constantly.

A question that has been of interest has been to identify communities and track them over

time [23]. Other topics of interest include identifying hierarchies, understanding core-periphery

structures and finding hidden groups. The structure of connections can also help understand

some of the global phenomenon, such as information propagation and evolution of a social

network over time [13], [11]. Evidently, the simple information of connectivity between users

has potential answers to many interesting questions. In this work, will address the problem of

finding cohesive groups of users, given the connections between them.

The second category of observations listed above, heps us understand the dynamics of in-

terpersonal relationships. Based on the feedback and attention a user gets, we could explore

concepts such as user influence, trust or authority. In this work, we will present methods to

measure influence between users.
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1.4 Overview of of the dissertation

This dissertation is divided into two parts:

1. Community level study of social networks

2. Individual level study of social networks

Chapters 2 through 4 cover the first part and Chapters 5 and 6 cover the second part of our

work.

In the first part, we study the community level structure resulting from interactions be-

tween users. We choose to represent the interactions as graphs and explore the structures in

the graphs. In Chapter 2, we give an overview of the problems and techniques in social graph

analysis. In doing so, we present the context for graph decomposition methods and the research

problems addressed in Chapter 3 and 4. In Chapter 3, we present our space efficient approx-

imate algorithm to compute k-core graph decomposition. We support the theoretical results

with experiments on real graphs. In Chapter 4, we analyze an alternate graph decomposition

technique called the k-peak decomposition and show how it could be applied to solve problems

such as community detection and maximizing information propagation. In this chapter, we also

present Mountain plots, a new visualization technique that takes into account both k-core and

k-peak decomposition to give a global mapping of graphs.

In the second part of this dissertation, we shift our focus to individual users in a social

network. Chapter 5 gives an overview of user behavior in online social networks and discusses

the interesting research questions in this context. This chapter also gives an overview of the

results covered in Chapter 6. In Chapter 6, we focus on social influence of users and study how

to measure this efficiently. We present algorithms under different settings, that uses as little as

sublinear or even O(1) space to compute influence of a user.

The last chapter, Chapter 7, concludes the dissertation.
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Chapter 2

Community level study of social networks:
Structure of social interactions

2.1 Introduction

As discussed in Chapter 1, this dissertation is in two parts. Chapter 2, 3 and 4, constitute

the first part based on community level study of social interactions between users in a social

network.

In this chapter, we discuss the representation of social interactions in the form of graphs

and the interesting questions one might ask based on such a representation. We conclude this

chapter with an overview of remaining chapters in this part of the dissertation.

2.2 Graph representation

In this work, we represent the interactions between users as a graph, G(V, E), where V is set

of vertices or nodes and E is the set of edges. A graph representation allows us to capture

both the users and the relationships between them. The algorithms and analysis presented in

Chapter 3 and 4 further assume an undirected and unweighted graph. Note that most of the

work presented here can be extended to include directionality and weights on edges.

Depending on the nature of the data and the problem, observations of connections between

users of a social network can be represented using other data structures as well. For instance,

Foursquare allows users to post their current geo-locations. The relationship between users

can be inferred from the physical proximity recorded by the service. However, in this case, a

pair-wise representation such as a graph, might not be an ideal choice.

Since our goal is to study pair-wise user interactions in social networks, where users can

explicitly interact and connect with other users, we choose to analyze and build algorithms
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based on a graph representation.

2.3 Interesting questions based on graph structure

By representing the interactions between users as a graph, we ignore the content of these in-

teractions and focus on structure of interactions among the given set of users. This view of

interactions allow us to look for patterns of interactions of groups of people. For example, we

know that a group of closely-knit people, such as a family or a group of classmates, might know

most of the other members in the group. In a graph representation, this translates to looking for

densely connected subgraphs within the larger graph.

The types of research questions in this area include trying to understand patterns in real

graphs, identifying real phenomenon such as communities, predicting future events such as

new connections and building realistic synthetic models of social connections.

Motivated by trying to understand patterns in real graphs, graph decomposition is an ap-

proach to partition the nodes in a graph based of certain connectivity properties of the nodes.

K-core graph decomposition is one of the most popular graph decompositions that finds dense

regions in a graph and thus has many applications. In Chapter 3, we take a closer look at k-core

decomposition and present a new space-efficient approximate k-core decomposition algorithm.

In Chapter 4, we study another graph decomposition called k-peak decomposition and present

its analysis, applications and a new visualization technique.

Some of the other important research questions based on graph representation of social

connections include community detection [23], link prediction [30], synthetic graph models [2]

[44], graph evolution [48], [11], [46] and sampling [72].

2.4 Overview of the results in this part

In Chapter 3, we present NimbleCore a space-efficient approximate algorithm to compute k-

core in graphs. We support this contribution with theoretical analysis and experiments on real

social graphs. In Chapter 4, we analyze the k-peak decomposition algorithm and define k-

mountain based on the k-peak structures. We also present a novel graph visualization technique

using k-mountains, study the global structure of real graphs using this visualization and show



7

how various applications could benefit from using k-peak decomposition.
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Chapter 3

Space-efficient k-core decomposition: NimbleCore

3.1 Introduction

As discussed in Chapter 2, graphs are used to represent social connections, interactions, co-

occurrences, and relationships between entities. Understanding the structure of graphs is key

to building robust and efficient mining algorithms. Questions such as ‘how central is a node?’,

‘what is the most densely connected set of nodes?’, or ‘which nodes lie on the periphery of the

graph?’, are relevant in various graph-mining applications. Central to such applications is the

concept of a k-core [65], which is defined to be the maximal subgraph such that all the nodes in

the subgraph have degree at least k in the subgraph. Every node may be part of several k-cores,

each corresponding to a different value of k. The core number of a node is the highest value

k such that the node is a part of a k-core. Core numbers of nodes have wide applications in

problems such as community detection, selecting nodes for network experiments, and modeling

the spread of information. For example, in community detection it is helpful to know the set of

nodes that are part of a k-core containing high degree nodes [59]. Another example is the use

of k-core decomposition and core numbers to understand the structure of protein interaction

networks [75].

Problem definition: Given a graph G = (V, E), compute the core number Cu of each

node u in V . Core numbers can be calculated by running an in-memory k-core decomposition

algorithm [7], which takes O(max(n,m)) time and O(m) space, where n and m are the

number of nodes and edges in the graph respectively. Other existing algorithms perform k-core

decomposition in a distributed setting [56], or estimate a node’s core number from its local

subgraph [58], or partition the graph and load the required partitions to compute k-cores [14].

Building the local subgraph [58] or finding the appropriate partition [14] can take large amounts

of time and space, with significant numbers of I/O calls. In the worst case, these algorithms can
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Figure 3.1: NimbleCore gives significant savings (8.04X average ± 7.5) while accurately
estimating core numbers (0.011 average error ± 0.018).

require O(m) space in memory. Similarly, the distributed algorithm by Montresor et al. [56]

could requireO(m) space and up to n iterations over the data. As graph datasets become larger

and larger, the need for algorithms that require much less thanO(m) space increases. The main

challenge for estimating core numbers in large graphs is that the graph cannot be stored in main

memory.

The major contributions of our work are as follows:

1. Novel algorithm: We present NimbleCore, a space-efficient external memory algorithm

that accurately core numbers in a large graph without storing the graph.

2. Theoretical analysis: NimbleCore requires only O(n) space for graphs with power-law

degree distributions and O(n logdmax) space for general graphs, where n is the number

of nodes in the graph and dmax is the maximum node degree.

3. Real-world experiments: Experiments on large real-world large graphs from various

domains show that NimbleCore’s achieves space savings on average of 8.04X (± 7.5)

while returning core number estimates with average relative error of 0.011 (± 0.018).

The code for NimbleCore is available at http://eden.rutgers.edu/˜priyagn/code.

html

The remainder of this chapter is organized as follows. Section 3.2 gives the background and

notations used in the chapter. In Section 3.3, we present our proposed algorithm NimbleCore

http://eden.rutgers.edu/~priyagn/code.html
http://eden.rutgers.edu/~priyagn/code.html
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and its theoretical analysis. Section 3.4 discusses experiments, which show the efficiency and

effectiveness of NimbleCore. Section 3.5 reports on the related work. Section 4.8 concludes

the chapter.

3.2 Background

Table 3.1 lists the notation used in this chapter. We are given a graph G = (V, E). A node

u ∈ V has degree du; its neighboring nodes are in Γu (i.e., Γu = {v ∈ V s.t. (u, v) ∈ E}).

Definition 1. k-core: Given graph G(V, E), the k-core is the maximal subgraph such that all

the nodes in the subgraph have degree at least k in the subgraph.

Definition 2. Core number: The core number of node u is denoted by Cu and is the maximum

value k of k-core in which u participates.

Given the core numbers of a node’s neighbors, its core number can be exactly calculated as

follows:

Lemma 1. Let Su contain the core numbers of neighbors of node u, sorted in descending order.

Cu = max
1≤i≤du

(min(Su[i], i))

Proof. See [56] [58] for the proof. ■

From the above lemma, we can state that the core numberCu of a node u is the largest value

k such that there are at least k neighbors with degree at least k. Note that the above computation

of Cu is equivalent to the definition of h-index [31] used to measure the productivity and

citation impact of a scholar. The h-index of a scholar with N papers, is defined as the highest

value h such that the scholar has at least h papers with h or more citations. We can formally

generalize the definition of h-index on a list of values as follows:

Definition 3. The h-index of a list of positive integers L sorted in descending order is defined

as

h(L) = max
1≤i≤length(L)

(min(L[i]), i))

where Li ∈ Z>0.
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Given Lemma 1 and Definition 3, we can state that node u’s core number is equal to the

h-index of the core numbers of u’s neighbors (see Figure 3.2a for a toy example). We will refer

to the computation in Lemma 1 as h-index. The following lemma shows that for a node u, the

h-index of the upper bounds on the core numbers of u’s neighbors is an upper bound on the

core number of u.

Lemma 2. Let ψ be a function such that ψ(x) ≥ Cx, for x ∈ V . Let Γu = {v1, v2...vdu} be the

neighbors of node u ∈ V . Let Ψ be the list of ψ(v)∀v ∈ Γu in descending order.

Cu ≤ max
1≤i≤du

(min (Ψ(vi), i)) .

Proof. See [14]. ■

Because a node in a k-core must have degree at least k, the degree of a node is a naive

upper-bound for the node’s core number (i.e., for a node u, Cu ≤ du). For graphs that can

be stored on a single machine, Montresor et al. [56] show that we can use Lemmas 1 and 2,

begin with degree as a naive upper-bound estimate for a node and iterate over the set of edges

to compute the upper-bound estimate of each node’s core number. They show that these values

will converge to the true core number of each node. However, for graphs that cannot be stored

in memory, this is not feasible.

3.3 Proposed Approach: NimbleCore

This section is organized as follows. We first provide an overview of NimbleCore. Next, we

describe its binning strategy, followed by its stopping condition. We then present the entire

algorithm, and wrap-up the section by discussing a theoretical analysis and extensions of Nim-

bleCore.

3.3.1 Overview of NimbleCore

We present an iterative external-memory algorithm, NimbleCore, that estimates each node’s

core number by binning its neighbors’ core-number estimates and then estimating the h-index

using these binned values. In other words, rather than storing a complete vector of core-number
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Notation Description
V set of nodes
E set of edges
n number of nodes
m number of edges
du degree of node u
dmax maximum degree in the graph
Cu core number of node u
Ĉu upper-bound on the core number of node u
C̄u lower-bound on the core number of node u
Ciu estimate of node u’s core number in ith iteration
Γu list containing neighbors of node u
Su sorted list (in descending order) containing

core numbers of neighbors of node u
kmax maximum core number (a.k.a. degeneracy) in G
h(L) h-index of list L
L[i] the ith element of the list L

Table 3.1: Notations used in the chapter.

estimates for each node’s neighbors, we divide these neighbor estimates into separate core-

number bins. This allows for a large reduction in space requirements.

NimbleCore iterates over the graph’s edges. In the first iteration, it computes the degree

of each node. In subsequent iterations, while the stopping condition is not satisfied (see Sec-

tion 3.3.3), NimbleCore uses binning to keep approximate counts of the core numbers of neigh-

bors of each node. At the end of each iterations, NimbleCore updates the core number estimates

of all the nodes.

The two main aspects of NimbleCore are (1) the binning strategy and (2) the stopping

condition. Bins are vectors that are maintained to count the frequency of items. For example,

while creating a histogram, one would be required to count items that fall in each range of

values. Similarly, NimbleCore uses bins to approximately count the frequency of core numbers

of neighbors of a node. The binning strategy plays an important role because the number of

bins determines the space requirement of NimbleCore and the assignment of bin sizes affects

the error on the estimated core numbers. Lastly, a good stopping condition results in fewer

number iterations, thus saving runtime.
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3.3.2 Binning Strategy

In this section, we describe NimbleCore’s binning strategy, which requires O(n logdmax)

space. The error resulting from the binning strategy of NimbleCore is discussed in Section 3.3.5.

Lets first consider a naive binning algorithm, as shown in Figure 3.2a, where a bin is main-

tained for each distinct value of a neighbor’s core number estimate, for each node. This naive

binning strategy essentially build a histogram and thus requires O(ndmax) space, which is

equivalent to O(m); and hence not feasible for large graphs. One could use fewer counters (or

bins) to build an approximate histogram. But, how many bins do we choose, and of what sizes,

to get the best estimates of core numbers?

Given the core numbers of a node’s neighbors, NimbleCore’s binning, called reverse log-

binning, selects larger bins for smaller values and smaller bins for larger values. In this way,

NimbleCore allows for more granularity in the core-number estimates of u’s neighbors that are

closer to the estimated upper-bound core number Ĉu.

Reverse log-binning sets the number and sizes of bins (for the computation of approximate

h-index) as follows:

• Let g be an upper bound on the estimate of node u’s core number. g is initially set to the

degree of u.

• Let B be the number of bins: B = log(g) + 1.

• Set BinCount and BinValue of length B such that

∀0 ≤ i < B, BinValue (i) = g− 2log(g)−i + 1.

• A value Su[j] is counted in BinCount (i) if

BinValue (i− 1) < Su[j] ≤ BinValue (i).

Figure 3.2b demonstrates how NimbleCore’s reverse log-binning would estimate Ĉu using

BinCount and BinValue . As shown in the figure, there are two kinds of approximations

done depending on whether the values are higher or lower than the current estimate. In Fig-

ure 3.2b, the current estimate, Ĉu, is the degree, which is 8. Values higher than Ĉu are approxi-

mated to the last bin (i.e., the current upper-bound estimate). For example, 12 being higher than

8, is approximated to 8 and counted in the last bin corresponding to 8. Values that are at most
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(a) Let the core numbers of the 8 neighbors of node u be [12, 9, 8, 7, 7, 7, 6, 1]. A node’s core number
is the h-index of the core numbers of its neighbors. The h-index is the value at which the descending
order of a set of values intersect with the ‘X=Y’ line. A node’s exact core number can be computed by
storing the exact core numbers of its neighbors in arrays BinValue = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12] and BinCount = [1, 0, 0, 0, 0, 1, 3, 1, 1, 0, 0, 1]. This requires O(du) space per node.

(b) Proposed idea: Reverse Log-binnng. A node’s approximate core number can be computed by storing
approximate values and counts of its neighbors’s core numbers in arrays, BinValue = [1, 5, 7, 8] and
BinCount = [1, 0, 4, 3]. This requires O(log(du)) space per node.

Figure 3.2: Example: Calculating node u’s core number using the core numbers of u’s neigh-
bors

the current estimate Ĉu, are assigned to an appropriate bin as described above. For example, 6

is assigned to third bin and its value is approximated to 7.

Next, we show that the above approximation of core numbers of a node’s neighbors and the

subsequent h-index computation result in an upper-bound estimate of the node’s core number.

For values in Su that are greater than the given upper bound of the h-index, we count them in

the last bin (i.e., in BinCount(B)). Lemma 3 shows that this procedure does not change the
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h-index result.

Lemma 3. Let L be an ordered list (in descending order). Let j be the highest index such that

L[j] > h(L), where h(L) is the h-index of the list L (see Definition 3). Furthermore, let L ′ be

an ordered list (in descending order) such that ∀i : 0 ≤ i < length(L), L ′[i] is set to h(L) if

i ≤ j; otherwise, L ′[i] is set to L[i]. Then, h(L ′) = h(L).

Proof. If ∄j such that L[j] > h(L), then L ′ and L are equivalent. Hence h(L ′) = h(L). On the

other hand, if ∃j such that L[j] > h(L), then the maximum value in L ′ is h(L). So, h(L ′) ≤

h(L). The values at indices i ≤ j are replaced with h(L) because j is the highest index (i.e.,

L[j] > h(L)). Thus, there are at least h(L) values in L ′ that are at least h(L); i.e. h(L ′) ≥ h(L).

Hence h(L ′) = h(L). ■

For values in Su that are less than the given upper bound of the h-index, reverse log-binning

assigns them to one of the bins and approximates their values to the upper bound of the range

of values held by the bin. Hence for values in Su that are less than the current estimate, their

approximation is always an upper bound of their exact value. By Lemma 2, we know that the

upper bounds on the core numbers of u’s neighbors give the upper bound of u’s core number.

Having small bin sizes for values that are close to but not larger than the current upper-

bound estimate gives lower error in the h-index computation.1 For example, for a node with

degree five to have a core number of five, five of its neighbors must have core numbers equal to

or greater than five. Thus, having smaller bins close to and not greater than five, would result

in lower error in the h-index for our example node.

3.3.3 Stopping Condition

In every iteration, NimbleCore calculates better estimates for the core numbers of nodes than

that in the previous iteration. Although more iterations give better estimates and lower error,

this increases the runtime of NimbleCore. In this section, we discuss how NimbleCore decides

to stop iterating over the list of edges, making a good trade-off between number of iterations

and error.

1Recall that values larger than the current estimate are all placed in the last bin.
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Our stopping condition is based on estimating the average relative error at every iteration

and stopping when the estimated error drops below a threshold. The relative error (also referred

to as ‘error’ in the chapter) of these estimates can be calculated as follows,

Relative Error =
Ĉu − Cu
Cu

(3.1)

where Cu is u’s exact core number and Ĉu is the upper-bound estimate for u’s exact core

number. Since Cu is not known, we estimate the lower bound C̄u and thus estimate the error.

Estimated Relative Error =
Ĉu − C̄u

C̄u
(3.2)

Since C̄u ≤ Cu, Estimated Relative Error ≥ Relative Error. We compute the lower bound

as follows: Step 1: Sample a set of wedges for each node. Step 2: Count the number of closed

wedges i.e. triangles. Step 3: Given the number of triangles of node u, using Turan’s theorem,2

compute the size of the lower bound of the size of largest clique, r, that the node u participates

in. If a node participates in a clique of size r, it is a part of the r-core and hence the lower bound

of core number of u is r.

Similar to tightening the upper bound, we can tighten the lower bound estimate for a node’s

core number in each iteration. Better lower bounds give a better estimate of the error. In every

iteration, for all u ∈ V , the lower-bound C̄u and the upper-bound Ĉu of u’s core number are

updated. C̄u helps estimate the error, as described above. Since the upper bound monotonically

decreases and the lower bound monotonically increases, the estimated error also monotonically

decreases. As the number of the iterations increases, the estimates of core numbers converge

(i.e., stop changing). The goal of the stopping condition is to terminate NimbleCore when the

change in the estimates falls below a negligible value. Specifically, when the difference in the

estimated error, averaged over all nodes, between consecutive iterations falls below a threshold,

NimbleCore terminates.3

2Turan’s theorem [68] about a graph without a clique of size r + 1 is as follows: Let G be any graph with n
vertices andm edges, such that G does not have a clique of size r + 1. Thenm ≤

(
r−1
r
.n

2

2

)
3The experiments in Section 3.4 use a threshold of 0.01.
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3.3.4 The Complete Algorithm

In the first iteration, the degree of each node u is calculated by incrementing a counter for

u when an edge containing u is read. The second and the third iterations are used to count

triangles, which are used in calculating a lower-bound estimate on core numbers. Specifically,

in the second iteration, the neighbors of a node are sampled with probability p. A wedge is

comprised of a pair of sampled neighbors. In the third iteration, each edge is checked to see if

it closes any of the sampled wedges. A closed wedge is a triangle. From the triangles observed

in the third iteration, NimbleCore estimates the lower bound on each node’s core number and

calculates an estimated error (described in Section 3.3.3). The subsequent iterations estimate

and update the upper and lower-bounds of core numbers of the nodes. The method terminates

when the drop in the estimated error falls below a threshold. The upper-bound estimates from

the last iteration are then returned as the final estimates.

3.3.5 Performance Analysis of NimbleCore

The main challenge that NimbleCore is trying to address is that of space. By cleverly choosing

bin sizes, NimbleCore is able to achieve a dramatic reduction in required space, as compared to

existing methods. In this section, we provide bounds on NimbleCore’s space and time require-

ments.

Space

NimbleCore requires O(n logdmax) space, which is less than the O(m) space required for a

k-core decomposition. Many real graphs have power-law degree distributions [22]. For these

graphs, NimbleCore requires only O(n) space.

Theorem 1. NimbleCore requires O(n logdmax) space.

Proof. NimbleCore requires logdu bins per node, where du is the degree of node u in the

graph. So, it requiresO(logdmax) space per node, where dmax is the maximum degree. Given

n nodes in the graph, the total space required is then O(n logdmax). ■
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Theorem 2. NimbleCore requires O(n) space for any graph with power-law degree distribu-

tion.

Proof. Suppose a graph G = (V, E) has n = |V | nodes, such that the degrees of the nodes,

arranged in decreasing order, follow a Zipf distribution. The ith node with degree di is given

as di = iR/nR for all i = 1, . . . , n, where R < 0. Space required by NimbleCore per node is

logϵ di = log(iR/nR), where ϵ > 1. The base of the log is 2 (i.e., ϵ = 2). Total space used by

the algorithm for computation of core numbers (in each iteration) is then:

n∑
i=1

log(di) =
n∑
i=1

log(iR/nR)

Approximating the summation with integral we get,∫n
x=1

log(xR/nR)dx = −nR+ R+ R logn

Since R < 0, ∀n > 1, R logn < 0. Thus, the total space required by NimbleCore is less

than −nR, i.e. O(n). ■

Note that in Chapter 6, we present an algorithm [27] that further reduces the space re-

quirement, to compute h-index, by only maintaining O( 1
ϵ
) bins per node. Since, the space

requirement for the whole graph is lower bounded at O(n), in real graphs with power-law

degree distribution, the further improvement might not matter.

Runtime

The runtime required by NimbleCore depends on the number of iterations. Each iteration takes

O(m+ n logdmax) time.

Theorem 3. NimbleCore requires O(m+ n logdmax) time per iteration.

Proof. Each iteration requires O(m) time to read the edges. After an iteration, NimbleCore

takes O(logdmax) time per node to estimate its core number. Hence, the time taken per itera-

tion by NimbleCore is O(m+ n logdmax). ■

The number of iterations depends on the stopping condition (described in Section 3.3.2),

which in turn depends on the estimates of the lower bounds on core numbers. Thus, the number
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of iterations, and hence the runtime for NimbleCore, depends on the quality of the lower-bound

estimates.

3.3.6 Extensions

NimbleCore easily extends to directed graphs, by considering either the in-degree or out-

degree to find the corresponding k-cores. NimbleCore can also be extended to weighted graphs

G(V, E,W), where W(u, v) is the weight on edge (u, v) as described by Giatsidis et.al [25],

by replacing the h-index function in Lemma 1 with

Cu = max( min
1≤i≤du

(Su[i],

i∑
j=1

W(u,Λu[j])))

where Λu is the list of neighbors corresponding to the sorted list of core numbers of neighbors

Su.

3.4 Experiments

This section is organized as follows: datasets, baseline and competing approaches, and results.

All experiments were run on a CentOS machine with 2.4 GHz (x 80) and 1024 GB memory,

running Linux 2.6 and using Python 2.7.

3.4.1 Datasets

Graph # Nodes # Edges kmax Graph type
Web-NotreDame 326K 1.1M 155 Unipartite

Web-Stanford 282K 2.M 71 Unipartite
Flickr 106K 2.3M 573 Unipartite

Amazon 403K 2.4M 10 Projected Bipartite
YouTube 1M 3.M 51 Unipartite

Web-Google 876K 4.3M 44 Unipartite
Wiki-Talk 2M 4.7M 131 Unipartite

Web-BerkStan 685K 6.6M 201 Unipartite
Cit-Patents 4M 16.5M 64 Unipartite
LiveJournal 4M 34.7M 360 Unipartite

Orkut 3M 117.2M 253 Unipartite

Table 3.2: Graphs used in our experiments. The graph’s degeneracy is denoted by kmax.
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Tables 3.2 lists the graphs from the Stanford Large Network Dataset Collection [49], used

in our experiments. We consider a variety of graph types: social networks (Flickr, LiveJournal,

Orkut, and YouTube), Web graphs (Web-BerkStan, Web-Google, Web-NotreDame and Web-

Stanford), citation graph (Cit-Patent), co-purchasing graphs (Amazon), and communication

networks (Wiki-Talk).

3.4.2 Baseline and Competing Methods

Figure 3.3: Comparison of other methods to NimbleCore. Unlike NimbleCore, several of the
existing methods (listed in the right-hand side table) do not guarantee space less than O(m).
Shaving is the only method that provides a guaranteed space of less than O(m), but it requires
many more iterations than NimbleCore and has slower runtime than NimbleCore. * Note that
the lower space guarantee in EMcore [14] was shown to be incorrect by Khaouid et al. [41]
and by Goodrich and Pszona [26].

Figure 3.3 provides a summary of NimbleCore and the baseline and competing methods.

Specifically, we compare NimbleCore against the following four methods.

(1) k-core decomposition: Batagelj and Zaversnik [7] propose an in-memory algorithm to

find the k-cores of a graph, and thus the core numbers of nodes. To find a k-core, their method

recursively deletes all nodes with degree less than k, until there are no nodes of degree k left.

This method requires O(m) space and O(max(n,m)) runtime.



21

(2) Shaving Method: k-core decomposition as described above can be implemented in an

out-of-memory fashion by maintaining the current degree of each node in a vector of length n

and by reading edges from the disk. To find a k-core, Shaving deletes nodes that have degree

less than k and re-computes the degree of the remaining nodes, requiring two iterations on the

edge list. As this step is performed repeatedly, a node that is removed when finding a k-core will

have a core number equal to k − 1. This exact method requires O(n) space and could require

up to O(m× kmax) iterations, resulting in a worst case time complexity of O(m2 × kmax).

(3) EMcore: Cheng et al. [14] propose an out-of-memory exact k-core decomposition

method that partitions the graph into blocks and loads the required blocks of the graph into

memory for the k-core decomposition. Unfortunately the space guarantees given in their paper

was shown to be incorrect by Goodrich and Pszona [26] and by Khaouid et al. [41]. In worst

case, EMcore could require O(m) space.

(4) Egonet-based core number estimation: O’Brien and Sullivan [58] propose an approx-

imate method to estimate a node’s core number by using the induced subgraph up to h hops

away from the node. Specifically, for each such subgraph, they run k-core decomposition to

estimate the node’s the core number. When the number of hops is set to the diameter of the

graph, the core number of a node is exactly calculated. The performance of their algorithm in

terms of space, runtime, and error depends on the number of hops considered for each node. In

our comparisons, we use the 1-hop induced subgraph (i.e., the egonet) of a node.

3.4.3 Results

This section contains two parts. In part 1, we demonstrate the performance of NimbleCore in

terms of space, error, runtime, and stopping condition. In part 2, we discuss observations about

NimbleCore in terms of the drop in error on core-number estimates and error on core-number

estimates of high-degree nodes.

Performance of NimbleCore

Q1: Space: How much space does NimbleCore save? Figure 3.1 shows that on average,

NimbleCore saves 8.04X (± 7.5) of the space as compared to the k-core decomposition [7] on

the graphs in Table3.2. These observations support the theoretical results that real graphs, with
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Figure 3.4: NimbleCore uses 2× lesser space than EMcore [14]. The space required by Nim-
bleCore for a given graph is O(n logdmax), while the space requirement for EMcore depends
on the k-core being identified.

power-law degree distributions, the NimbleCore’s space complexity is O(n) and for general

graphs is O(n log(dmax)) while the space requirement for k-core decomposition is O(m) For

example, for Orkut graph with 3 million nodes and 117.2 million edges, NimbleCore requires

only 2.1 GB space, where as the k-core decomposition requires 59 GB space.

EMcore [14] is an out-of-memory exact k-core decomposition method, based on graph-

partitioning that requires O(m) space in worst case. Figure 3.4 shows that the space required

by EMcore is at least 2× higher than NimbleCore (on average 8× higher, with ± 7.49). In

contrast to EMcore, NimbleCore guarantees the space requirement to beO(n logdmax), which

is smaller than O(m).

Q2: Error: How accurate are NimbleCore’s estimated core numbers?

The average relative error of core number estimates of the graphs in Table 3.2 is 0.011

(±0.018). To demonstrate the quality of the estimates returned by NimbleCore, we ran ex-

periments on additional 48 graphs4 from KONECT [47]5 with more than a million nodes and

for which the competition (namely, the in-memory k-core decomposition) took up to 36 hours

to terminate (in contrast NimbleCore took less than 2.5 hours to terminate, for all 48 graphs).

Figure 3.5 shows that up to 60X space savings (14.6X average ±10.8) with relative error less

4List of the additional 48 graphs: http://eden.rutgers.edu/˜priyagn/code.html
5http://konect.uni-koblenz.de/networks/

http://eden.rutgers.edu/~priyagn/code.html
http://konect.uni-koblenz.de/networks/
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Figure 3.5: NimbleCoregives upto 60.5X space savings for error less than 2.3% Each point
corresponds to one of the 48 large graphs from KONECT [47]. (0.002 average error ± 0.005
and 14.6X average space saving ± 10.8X).

Figure 3.6: NimbleCore’s error is less than the 1-hop Egonet-based method [58]. Each
point on the plot represents a graph. The average ratio of error on NimbleCore to error on the
Egonet-based method is 0.051 (± 0.097). (A tie would have an average ratio of error = 1).

than 2.3% (0.002 average error ± 0.005) was achieved. The three points to the right represent

road networks (with maximum degree of 12), which are similar to planar graphs.

O’Brien and Sullivan’s egonet-based method [58] extracts a h-hop egonet for every node

and computes its core number based on the egonet. The value for h has to be set by the

user. Constructing egonets for every node can be time-consuming depending on the value of

h. Figure 3.6 compares the relative error of the 1-hop Egonet-based method with NimbleCore

on graphs in Table 3.2. We observe that the average error of the Egonet-based method is 0.29

(with ± of 0.18), while that of NimbleCore’s is 0.011 (with ± of 0.018).
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Figure 3.7: NimbleCore requires fewer iterations than Shaving. Each point on the line in
the plot corresponds to the number of iterations required by NimbleCore and the number of
iterations required by Shaving to obtain the same relative error. NimbleCore has 2.8× faster
runtime than Shaving.

Q3: Runtime: How much faster is NimbleCore than the Shaving method? The Shaving

method is an out-of-memory baseline that uses O(n) space and iterates over the edges by

reading them off the disk. Since NimbleCore also requires O(n) space for graphs with power-

law degree distributions and iterates over the edges from the disk, we compare the number of

iterations required by the two methods. Figure 3.7 shows the number of iterations required by

NimbleCore and the Shaving method to achieve the same error, on graphs in Table3.2. It shows

that the Shaving method requires at least 40X more iterations over the edges than NimbleCore,

to achieve the same error. In terms of wall-clock runtime, NimbleCore was found to be at least

2.8× faster than the Shaving method.

Q4: Stopping Condition: How effective is NimbleCore’s stopping condition? The stop-

ping condition helps NimbleCore terminate in a small number of iterations, making a trade-off

between error and runtime. Recall that the stopping condition depends on the estimated error.

Figure 3.8 presents the number of iterations vs. relative error under two scenarios: (1) using

NimbleCore’s stopping condition (See Section 3.3.3), and (2) using no stopping condition (i.e.

terminating NimbleCore when there is no change in the core number of all nodes between con-

sequent iterations). NimbleCore’s stopping condition provides an average speedup of 11.5×

(±10.7) with an average difference in error of 0.012 (± 0.019). Note that the error for ‘Web-

NotreDame’ graph is higher than 0 because NimbleCore without a stopping condition is still an
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Figure 3.8: NimbleCore’s stopping condition produces significant speed-up. The stopping
condition described in 3.3.3 helps terminate NimbleCore in fewer iterations. The average speed-
up is 11.5× (± 10.7). The average difference (i.e. sacrifice) in error is 0.012 (± 0.019).

approximate algorithm.

Observations about NimbleCore

Observation 1: Error drops quickly over a small number of iterations. The first, fifth,

tenth and twentieth iterations, respectively, give an error of 0.49 (± 0.19), 0.04 (± 0.03), 0.017

(±0.021) and 0.01 (± 0.017), on graphs in Table3.2. This demonstrates that even without a

stopping condition, in real graphs, low error can be obtained by running NimbleCore for as low

as 5 iterations.

Observation 2: The error of high degree nodes is low. In many applications [69] [59],

it is useful to know the core number of high degree nodes. We found that the average error

of NimbleCore on the top 1% of the high-degree nodes in the graphs in Table3.2, is 0.012 (±

0.008), as compared to an average of 0.011 (± 0.018) for the whole graph.

3.5 Related Work

Core numbers and k-cores of a graph, introduced by Seidman [65], have been shown to have

many applications in problems such as community detection [25], finding dense subgraphs [60],

designing network experiments [69], modeling spread in networks [43], predicting protein

function [75] and graph coloring problems [53].
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Batagelj and Zaversnik [7] proposed a k-core decomposition algorithm that requires

O(max(n,m)) runtime and O(m) space to perform k-core decomposition. Cheng et al. [14]

presented a method to partition the graph and compute core number in a distributed fashion.

O’Brien and Sullivan [58] introduced a recursive algorithm that computes core numbers for

each node based on a h hop subgraph around the node. We compare NimbleCore against these

three methods. See Figure 3.3 for a summary comparison and Section 3.4.3 for empirical

comparisons.

Montresor et al. [56] proposed a distributed k-core decomposition algorithm, which is sim-

ilar to NimbleCore. In [63], Sarı́yüce et al. propose algorithms for updating a k-core decom-

position of a graph, as edge insertions and deletions are given as a stream, by storing certain

subgraphs in memory. NimbleCore does not store any subgraph or list of neighbors of any

node. In recent work by Khaouid et al. [41], they implement the algorithms in [7], in [14] and

in a distributed setting. Goodrich and Pszona [26] present a method that returns an approxi-

mate degeneracy-ordering of nodes. Given the core numbers of nodes, a degeneracy-ordering

is simply an ordering of nodes by their core number, but the core number of nodes cannot be

obtained from a degeneracy-ordering.

3.6 Conclusion and Extensions

We have presented NimbleCore, a novel space-efficient external-memory algorithm, which es-

timates core numbers of nodes in graphs too large to be stored in main memory. Some of

NimbleCore’s properties are as follows:

1. Novel algorithm: NimbleCore iterates over the edges and computes accurate estimates

of core numbers in a large graph without storing the graph in memory.

2. Theoretical analysis: NimbleCore requires O(n) space for graphs with power-law de-

gree distributions and O(n logdmax) for general graphs.

3. Real-world experiments: In real graphs, NimbleCore gave significant space savings

(average 8.04X ±7.5 ) and consistently low error (0.011 average error ± 0.018).
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The code for NimbleCore is available at http://eden.rutgers.edu/˜priyagn/code.

html

There are several open questions and extensions to this work. Below, we list a few interest-

ing open problems.

1. We have shown that NimbleCore gives low error in a small number of passes (See Sec-

tion 3.4.3 in Chapter 3). Can the error over k iterations in the approximate NimbleCore

or even in Montresor et. al’s [56] exact method, be estimated?

2. For a given subset of nodes and an input of stream of edges, can we estimate their core

numbers, better than (1 ± ϵ) approximation, in one or maybe constant number of itera-

tions?

3. Can k-core computation be distributed with known theoretical guarantees? In a given

iteration, the computations at each node inNimbleCore , can be carried out in parallel.

We could use a distributed model such as MapReduce, where in the Map phase creates

two key-value pairs for each edge (u, v). The key would be the ID of one of the nodes

and the value would the current core number estimate of the other node. In the Map phase

we can collect the keys for a node, estimate h-index, and in the Reduce phase the updated

upper bound for core number of each node could be returned. However, in a MapReduce

framework, it is important to be able to estimate the number of passes it would take until

convergence or to get a good estimate. Recently, Sariyuce et. al. [64] presented upper

bounds to the number of iterations until convergence, in the above described approach.

Can find a tighter bound, assuming certain graph properties, or modify the algorithm such

that would give tighter bounds on the number of iterations? Note that, the challenges

faced by this approach to using MapReduce to compute k-cores is related closely to the

previous problem. However, another approach is to partition the graph and distribute

the computations. Khaouid et al. [41] and Aridhi et al. [5] present alternate approaches

to distributed k-core computation by demonstrating the performance of their methods

through experimental results.

http://eden.rutgers.edu/~priyagn/code.html
http://eden.rutgers.edu/~priyagn/code.html
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Chapter 4

The k-peak decomposition: Mapping the Global Structure of
Graphs

4.1 Introduction

In recent years, there have been significant efforts to characterize the structure of real-world

graphs, which requires an understanding of both global as well as local structure. It is thus

interesting and useful to characterize the globally central parts of the graph as well as the local

inter-dependence of nodes. The k-core graph decomposition has become a common way to

describe the global structure of a graph. A k-core is the maximal subgraph with minimum

degree k in the subgraph. This decomposition has well-understood properties [7, 65], and

several efficient algorithms have been proposed for finding it, including algorithms for large

graphs or streaming settings [28, 58, 63]. The k-core decomposition has achieved widespread

success for applications that require finding a central, well-connected subgraph that, in a sense,

captures the most important structure of the graph.

Weakness of the k-core decomposition: While useful, the k-core decomposition suffers

from one important weakness, illustrated as follows: Suppose that a graph contains distinct and

independent regions of different edge densities. In such cases, the k-core decomposition will

fail to find a good global representation of the graph, instead focusing on the densest of these

regions. If one wishes to find the central regions across the entire graph, the k-core would not

be effective.

For example, consider the Facebook friendship graph of all the users in the world. In Ice-

land, 100% of the population has Internet access, while in Eritrea, only 1.1% of the population

has Internet access. If one finds the k-core of the graph for some large value of k, this core will

likely capture the important aspects of the Icelandic region, but none of the Eritrean region.

Naturally, any method that finds a core or other type of dense subgraph will exclude many
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(a) First mountain of Reed Facebook network. (b) Second mountain of Reed Facebook network.

Figure 4.1: Mountains (distinct regions) obtained as a result of k-peak decomposition. The
most central (highest peak number) nodes, peripheral nodes and nodes outside of the mountain
are shown in dark red, in lighter shades of red and in white, respectively. Pruning the graph
by core number would have found the peripheral nodes of the first mountain before finding the
central nodes of the second mountain. Note that the second mountain consists of 2 components.
(Best viewed in color.)

nodes, but the critical observation in this case is that the structure of the dense region is inde-

pendent of the structure of the sparser, excluded region. If one lowers the value of k to capture

the sparser region, too much of the dense region will be captured, negating the gains obtained

by finding the core. Note that this observation is in contrast to the traditional notion of a net-

work with strong core-periphery structure, in which a high k-core, while excluding peripheral

nodes, would capture the essential structure of the entire graph. In this example, the k-core

would be much more informative if one could set different values of k for different regions.

Moreover, the k-core decomposition does not capture the local structure in graphs. To un-

derstand the local structure, one might ask the following questions: How does the core number

of a node depend on those of its neighbors? What are the patterns of inter-dependence between

nodes?

The k-peak decomposition: To address this weakness, we re-state and analyze the k-peak

decomposition, originally presented by Abello and Queyroi [1] as ‘Vertex Core decomposi-

tion’. Intuitively, the k-peak is similar to the k-core decomposition, except that different values

of k are used in different regions of the graph. The k-peak decomposition divides the graph into

separate ‘mountains’, each of which represents a different region of the graph. Alternatively,
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one can view the the k-peak decomposition as a notion of centrality that gives equal considera-

tion to nodes in sparser regions of the networks. For example, Figure 4.1 shows the two highest

mountains in the Reed University Facebook network. Each mountain contains a central region

(dark red), as well as nodes dependent on this region (lighter shades of red). We show that the

k-peak decomposition algorithm requiresO((
√
N)(M+N)) running time forN nodes andM

edges and present a novel visualization method that allows one to obtain a global picture of the

network’s structure with respect to the k-peak decomposition.

Additionally, we show how the k-peak decomposition can be used to gain a nuanced under-

standing of the relationships between a node and its region. To illustrate its value, we perform

this decomposition on a multitude of graphs from different domains. Finally, we show how the

k-peak can replace or supplement the k-core in a variety of applications.

Distinctions from related concepts: The k-peak decomposition is related to the concepts

of community structure and core-periphery structure, but differs from these notions in important

ways. A ‘community’ is generally thought of as a well-connected group of nodes, while a

mountain in the k-peak decomposition is a region that may contain multiple communities. A

mountain is thus something coarser than, but also fundamentally different from, a community,

as it lacks the expectation of well-connectedness.

The k-peak decomposition is more closely related to the notion of core-periphery structure;

indeed, the regions found by this decomposition can sometimes be thought of as core-periphery

structures, and others have observed the presence of multiple core-periphery structures in a

network [62]. However, the k-peak decomposition and corresponding mountain plot offer sig-

nificantly more nuance and insight into graph regions than simply identifying them as core-

periphery structures. In our descriptive study in Section 4.6, we show how the mountain plot

can be used to identify narrow, ‘column’-like structures, classical core-periphery structures, as

well as many other patterns.

Our contributions are summarized as follows: (1) We define and analyze novel structures,

such as ‘Mountains’ using the k-peak graph decomposition to understand the global structure

of distinct regions within a graph, and present an efficient algorithm to find it. (2) We perform

a rigorous theoretical analysis of the properties of the k-peak decomposition. (3) We create

the ‘mountain plot’, a new visualization technique to understand a graph’s global structure.
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(4) We use the k-peak decomposition to empirically analyze the structures of 22 diverse real

graphs. (5) We show how the k-peak decomposition can be used in various k-core-based appli-

cations to achieve improved results (e.g., up to an average of 53% improvement in spreading a

contagion through a network).

4.2 Previous Work

The k-core was introduced by Seidman [65] as a concept to find densely connected subgraphs.

Batagelj and Zaversnik [7] proposed an in-memory algorithm to compute k-cores in a graph.

The wide interest in the use of k-core decomposition led to the development of efficient algo-

rithms in distributed [56], streaming [63] and external memory [28] [58] settings. The well-

understood properties of k-core and the efficient algorithms to compute it have encouraged its

use in solving several problems. The k-core decomposition has been used in applications such

as community detection [59], improving contagion [43], in choosing nodes for network exper-

iments [69] and finding essential proteins in a protein-protein interaction network [76]. Liu et

al. [50] proposed a similar modification to the k-core algorithm as our algorithm but their goal

was to perform clustering.

There has been considerable research on studying the k-core decomposition, its process,

and how to generalize it. Abello and Queyroi [1] originally proposed the ‘Vertex Core de-

composition’, algorithm that we refer to as k-peak decomposition. We present an analysis of

the decomposition, by further defining k-contours, k-peaks, k-mountains and analyzing their

properties. We also present a new visualization technique called ‘Mountain Plots’, that use

both k-core and k-peak decompositions. The k-core decomposition process has been shown to

reveal an ordering of nodes based on the iteration at which it was ‘peeled’ from the graph [37].

There has been considerable research on generalizing and extending the definition of k-core to

higher structures. A k-truss defined on an edge was proposed by Cohen [16]. More recently,

Sariyuce et al. [21] further extended the generalization of k-core by defining it on a subgraph.

The goal of all the previous graph decompositions based on k-cores was to find dense sub-

graphs, rather than globally distinct regions. The graph decomposition studied in this chapter

finds distinct regions in a graph, that have properties similar to k-core. In [64], Sariyuce et al
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present an iterative approach to nucleus decomposition and give an upper bound to the number

of iterations.

The global structure of a graph as a core-periphery structure was formalized by Borgatti and

Everett [8] as a single core-periphery component. Rombach et. al [62] extended the definition

to a more general model that allows for multiple core-periphery structures. An alternate model

based on clustering co-efficient was proposed by Holme [34]. Zhang et. al [77] proposed a

stochastic block model based approximate algorithm to find core-peripheries in graphs. The

goal of these methods is to clearly define a core-periphery structure and design algorithms

to find them. In contrast, the goal of our work is to reveal distinct regions (mountains) in a

graph, using a known efficient algorithm (k-core). Although some of the mountains returned

by k-peak decomposition are similar to core-periphery structures, the mountains also reveal

interesting structures quite different from an ideal core-periphery. Moreover, rather than simply

labeling or quantifying a region as a core-periphery structure, the k-peak decomposition allows

an understanding of the specific shape and dependencies within that region.

Wang et al [71] presented a visualization technique to maps dense subgraphs. The moun-

tain plots presented in this chapter are similar to their work with respect to the goal of plotting

groups of nodes in a 2-dimensional plot, with the nodes ordered on the x-axis. But, our method

differs in both the subgraphs (mountains) found and the ordering of the nodes in the plot.

Specifically, the mountains found, depend on the k-peak decomposition algorithm and the or-

dering of nodes in a mountain in the plot depends on both the core and peak numbers. The

plotting of both the core and peak numbers in the mountain plot gives information about the

internal structure of the subgraphs that form the mountains.

4.3 k-peak Decomposition

Because the k-peak decomposition is based on the k-core decomposition, we first provide a

review of key k-core definitions. We then introduce the k-peak decomposition and related

concepts.

Recall that our goal behind the k-peak decomposition is twofold: first, to identify the dis-

tinct regions of the network and second, to obtain a deeper understanding of the relationships
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and dependencies between nodes.

Note that Abello and Queyroi [1] originally proposed the ‘Vertex Core decomposition’,

which is equivalent to the k-peak decomposition that we discuss here. Our contribution is that

we present the decomposition through newly defined structures of k-contours, and k-peaks, and

further analyze the output of the algorithm by defining and studying k-mountains. Hence, note

that the Algorithm 1, is equivalent to Algorithm 1 [1].

4.3.1 Preliminaries

A k-core is defined as follows:

Definition 4. k-core: Given a graph G, a k-core is a maximal subgraph Gk−core such that

each node in Gk−core has degree at least k in Gk−core.

The core number of a node is the highest value k such that the node is a part of a k-core.

The k-core decomposition is the assignment of core numbers to nodes. To find a k-core, the

k-core decomposition algorithm recursively removes nodes with degree less than k. The graph

degeneracy is the highest k such that there exists a k-core in the graph and the degeneracy

core is the corresponding k-core. The set of all nodes with core number k is the k-shell.

Alternatively:

Definition 5. k-shell: Given a graphG, a k-shell is the induced subgraph over the maximal set

of nodes such that (1) the k-shell does not include nodes from any existing higher shells (i.e.,

p-shells where p > k), and (2) each node in the k-shell has at least k connections to nodes in

the k-shell or higher shells.

Note that the k-core is the induced subgraph of the union of j-shells for j ≥ k.

4.3.2 k-Peak Graph Decomposition

We posit that the global structure of a network can be viewed as a set of regions, each of which

resembles a mountain with a central ‘peak’. Mountains are drawn on topographical maps, with

contours representing different elevations. Our terminology is based on this analogy.

First, we define a k-contour in a manner analogously to the k-shell:
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(a) k-shells and k-cores (b) k-contours and k-peaks

Figure 4.2: k-core and k-peak decomposition in a toy graph. The peak number of a node (the
k-contour it belongs to) is at most its core number (the k-shell it belongs to).

Definition 6. k-contour: Given a graph G, a k-contour is the induced subgraph over the

maximal set of nodes such that (1) the k-contour does not include nodes from a higher contour

(i.e., a p-contour where p > k), and (2) each node in the k-contour has at least k connections

to other nodes in the k-contour .

The difference between the k-contour and k-shell definitions is that in a k-shell, we count a

node’s connections to higher shells, whereas in a k-contour, we only count connections within

the same contour.

The definition of a k-contour can be restated as follows:

Definition 7. k-contour: Given a graph G, let d be the degeneracy of G. A k-contour of G is

a maximal induced subgraph Gk−contour(Vk−contour, Ek−contour) such that

Gk−contour =


Gk−core if k = d

(G \
∪d
j=k+1Gj−contour)k−core if k < d

If the degeneracy of the graph is d, then the d-contour is equivalent to the d-shell and the

d-core is the induced subgraph of the d-contour.

The peak number of a node is the value k such that the node belongs to a k-contour.1

1Note that each node can belong to only one contour.
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Definition 8. k-peak decomposition: Given a graph G(V, E), a k-peak decomposition is de-

fined as the assignment of each node to exactly one k-contour.

See Figure 4.2 for a toy example. Notice that the peak number of the two nodes with degree

3 (shown as green nodes in Fig 4.2b), is less than their core number.

Similar to the k-core, we define the k-peak as the induced subgraph of the union of j-

contours, where j ≥ k.

Definition 9. k-peak: Given a graph G, a k-peak is the induced subgraph of the union of

j-contours, ∀j ≥ k.

For a given graphG, the k-core decomposition is unique- i.e., each node has a single unique

core number. In Theorem 4 below, we show that the k-peak decomposition is also unique- i.e.,

each node has a single unique peak number.

Theorem 4. Given a graph G and k ∈ Z+, the k-peak is unique for all k > 0.

Proof. Let d be the degeneracy of graph G. First, consider values of k > d. It is clear that

there is no non-empty k-peak, because if such a k-peak existed, there would be a non-empty j-

contour for some j ≥ k. But then there would be a set of nodes, each with at least j connections

to other nodes in the set; i.e., a j-core. But we assumed the d-core was the highest core of the

graph. Contradiction, so the k-peak is empty, and so is unique.

Next, consider k = d. Then the d-core satisfies Definition 6 of the d-contour: (1) There are

no higher contours, so no node in the d-core belongs to a higher contour, and (2) By Definition 4

of a k-core, each node in the d-contour has at least d edges to other nodes in the d-contour.

Thus, the k-peak is simply the d-core, and so is unique.

Finally, consider k < d. Suppose for a contradiction that there exists some k < d such that

the k-contour is not unique. Select j to be the largest such value, so the j-contour is not unique

but the j + 1-contour and higher contours are unique. Let S1 and S2, S1 ̸= S2, be two sets that

are both j-contours. Define S = S1 ∪ S2. Since S1 and S2 satisfy Definition 6, ∀u ∈ S, u does

not belong to a higher contour. Additionally, u must have at least j neighbors in either S1 or S2

(depending on which of these two sets it belongs to), and so it certainly has at least j neighbors

in S. Thus, S satisfies conditions (1) and (2) of Definition 6 of a j-contour. However, because
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S is a proper superset of S1 and S2, both S1 and S2 violated the maximality requirement in

Definition 6. This is a contradiction, so the k-contour must be unique. Thus, the k-peaks are

unique for all integers k > 0. ■

4.3.3 k-Mountains

Using the k-peaks, one can identify the k-mountains of the network, each of which can be

thought of as a distinct regions within the larger network.

A k-mountain is defined as follows:

Definition 10. k-mountain: A k-mountain is the induced subgraph of G containing all nodes

v ∈ G such that Ckv < Ck+1v , where Ckv is the core number of node v after the nodes in the

k-peak are removed (if a node itself is removed, define its core number after removal as 0).

Intuitively, the k-mountain contains the k-contour as well as nodes whose core numbers

are affected by its removal (after higher contours have been removed). Next, we prove that for

every node in a k-mountain, there is a path from that node to the k-contour using only other

nodes in the k-mountain. If the k-contour is a connected subgraph, then the k-mountain is

also a connected subgraph. If the k-contour consists of multiple connected subgraphs, then the

k-mountain may also contain multiple connected subgraphs.

The essence of the following proof is the observation that if edges are removed from a

graph and the core number of some node changes as a result, then either that node was directly

modified, or its core number changed as a result of a neighbor’s core number changing.

Theorem 5. Given a graph G, for every node u in a k-mountain of G, there is a path from u

to a node in the k-contour of G that only uses other nodes in the k-mountain of G.

Proof. The determination of whether a node belongs to the k-mountain depends only on its

core number after the k+ 1-peak is removed vs. its core number after the k-peak is removed.

Define H to be the graph after the k + 1-peak is removed. If G contains a k-contour, that

means that the degeneracy of H must be equal to k. It thus suffices to consider only H, and

show the theorem for the d-mountain of H, where d is the degeneracy of H.

Let H ′ be the resulting graph after nodes in the d-contour (degeneracy core) are removed

from H. Define an affected node to be a node with a lower core number in H ′ than in H (i.e.,
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a node in the d-mountain). Suppose for a contradiction that there is some affected node u, but

there is no path from u to the d-contour using only other affected nodes.

Let S be the maximal connected (in H) set of affected nodes that contains u. Because there

is no path along affected nodes from u to the d-contour, and S is connected in H, then there is

no path from any node in S to the degeneracy core. S also clearly cannot contain any nodes in

the d-contour itself.

Let T be the set of nodes that are adjacent to a node in S, but are themselves not in S.

Because a node’s core number cannot increase after the degeneracy core is removed, every

node in T must have the same core number in both H and H ′, because otherwise S would not

be maximal.

Suppose the core number of u inH is ku, and define K be the ku-core inH. Let Sk = S∩K

and Tk = T ∩ K. In H, each node in Sk had at least ku connections to other nodes in Sk ∪ Tk

(because it has at least ku connections to K, and all of its neighbors are in either S or T ). In H ′,

the nodes in Sk still have at least ku connections to Sk ∪ Tk. This is because only edges within

the degeneracy core were removed, and we have assumed that S (and thus also Sk) are disjoint

from the degeneracy core. Thus, none of the edges incident to S were affected.

Let K ′ be the ku-core in H ′. K ′ ⊆ K since H ′ ⊆ H. Note that none of the nodes in Sk can

be part of K ′, because these are the nodes that had core number ku in H and some lower core

number inH ′. We know that the core numbers of all nodes in T are unchanged. Hence the core

number of the nodes in Tk is still ku. Thus Tk ⊂ K ′. But then Sk ∪ K ′ is a ku-core. This is

a contradiction, because this means that K ′ was not maximal, and thus was not the ku-core of

H ′. Contradiction, so the claim is proved. ■

4.4 Computing the k-Peak Decomposition

The pseudocode for finding the k-peak decomposition of a graphG is presented in Section 4.4.1

(which is equivalent to equivalent to Algorithm 1 [1]) and proof of its correctness and analysis

of its performance is given in Section 4.4.2.
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4.4.1 Algorithm

The k-peak decomposition algorithm, originally presented by Abello and Queyroi [1], is shown

in Algorithm 1. This algorithm iteratively removes the highest k-core of the graph and com-

putes the core number of the remaining nodes at each iteration. The peak number of a node is

the degeneracy of the graph before the node was removed. This process is carried on until the

graph is empty.

Algorithm 1 k-peak decomposition

Require: The original graph G(V, E)
Ensure: P {Peak Numbers of nodes}

1: while V ̸= ∅ do
2: d-contour← degeneracy core of G {Via k-core decomposition of G}
3: ∀u ∈ d-contour, Pu ← d

4: V ← V \ d-contour {Removing d-contour from G}
5: end while

4.4.2 Theoretical Analysis

Lemma 4. Given graph G(V, E), Algorithm 1 finds the k-peak decomposition.

Proof. To show the correctness of Algorithm 1, we will show that it correctly assigns peak

numbers to each node.

First consider all nodes uwith peak number equal to the degeneracy d of the input graphG.

Each of these nodes u is in the d-core, which is also the d-shell. Since there is no k-contour for

k > d, by Definition 7, Algorithm 1 correctly sets the peak numbers of these nodes.

Next consider nodes with peak number less than d. Suppose for a contradiction that for

some peak number k < d, the algorithm does not work correctly (i.e., a node with true peak

number k is assigned an incorrect peak number). Consider the largest such value k, so that the

algorithm correctly assigns peak numbers to all nodes with peak number above k. Let Gk be

the graph remaining after the k+ 1-peak (which by our assumption is correct) is removed. Let

dk be the degeneracy of graph Gk. There are two possibilities: k > dk or k = dk (if k < dk,

nodes in the degeneracy core of Gk would have been removed as part of the k + 1-peak, so

would not be in Gk).
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Suppose k > dk. Then no nodes are assigned peak number k (because the nodes in the

degeneracy core of Gk are assigned peak number dk.). If this is incorrect, then the true k-

contour of G should be non-empty. By Definition 7, the k-contour is a k-core in Gk. This is a

contradiction, because we assumed that the degeneracy of Gk is less than k.

Now suppose k = dk. After removing the k + 1-peak, the algorithm finds the degeneracy

dk-core of Gk, and these nodes are assigned a peak number of dk = k. We assumed that

this set is not equal to the true k-contour of G. All nodes in the true k-contour of G must be

contained in Gk, because otherwise they would belong to a higher contour, which is assumed

to be correct. The true k-contour of G is a maximal set of nodes in Gk that have at least k

connections to one another; but this is simply the k-core of Gk. Thus, the dk-core of Gk is

equal to the k-contour of G. This proves the correctness of Algorithm 1. ■

The next two Lemmas discuss the running time and space requirements of Algorithm 1. Let

N andM represent, respectively, the number of nodes and edges in G.

Lemma 5. Algorithm 1 requires O(
√
N(M+N)) time.

Proof. Suppose that a graph has b non-empty k-contours with peak numbers k = {k1, ...kb},

of sizes s1, ...sb. Suppose this list of contours is ordered in descending order, so k1 is equal to

the degeneracy of the graph. These ki values must be unique, non-negative integers.

Because there are b non-empty contours, we must have k1 ≥ b−1, so s1 ≥ b (because each

node in this contour has at least b−1 connections within the contour). Similarly, ki ≥ b−i and

si ≥ b−i, for each i. LetN be the number of nodes in the graph. Then,N = s1+s2+...+sb ≥

b + (b − 1) + ... + 1 = (b)(b + 1)/2 ≥ (b2)/2. Rewriting, we get b ≤
√
2N, so there

are at most
√
2N contours. Finding each contour requires performing a core decomposition

on the graph, requiring O(N +M) time. Thus, finding the k-peak decomposition requires

O(
√
N(M+N)). ■

Lemma 6. The algorithm 1 requires O(M+N) space

Proof. Each iteration of the while loop in Algorithm 1 computes a k-contour by computing

the k-core decomposition of the current graph. Finding a k-core decomposition of G requires
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O(M +N) space, which can be reused in subsequent iterations. The vector P requires O(N)

space. Thus, the space requirement at any iteration is at most O(M+N). ■

Theorem 6. Algorithm 1 returns correctly finds the k-peak decomposition of a given graph G

in O(
√
N(N+M)) time using O(M+N) space.

Proof. From Lemmas 4, 5, 6, thus proved. ■

4.5 Proposed Visualization

By using k-peaks, one can gain a deeper understanding of the network structure. In this section,

we present the mountain plot, a novel visualization technique that uses the k-peak decomposi-

tion to understand both the global and local structure of the network.

4.5.1 Mountain Plot

A major motivation behind the k-peak decomposition was understanding the dependencies

between the core numbers of nodes. An obvious way to visualize these dependencies would

be to plot histograms of the core numbers and peak numbers of the nodes in a graph G. An

example of such a plot on the FB-Grad network is presented in Figure 4.3a. As expected, there

are more nodes with higher core numbers than peak numbers. However, this simple plot suffers

from two major problems: (1) It does not give us information on individual nodes, and (2) It

fails to show the effect the removal of a k-contour on the rest of the graph.

Our proposed visualization method, the mountain plot, provides a concise summary of the

global peak structure of the network, depicts how the core and peak numbers of individual

nodes differ, and allows for an understanding of node dependencies on k-contours.

To generate a mountain plot, we find mountains as in Section 4.3.3. Note that these moun-

tains are overlapping. However, to keep the mountain plot concise, we associate each node

with only one mountain.2 We find k-contours as in Algorithm 1, where each contour forms the

2Note that we are not redefining the notion of a mountain, but are distinguishing between mountains that exist
in the graph structure vs. mountains as they are plotted.
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(a) Histogram of core and peak numbers, showing the difference in distribution of core and peak num-
bers.

(b) Mountain plot annotated with the core-periphery measure for each component in each mountain.

Figure 4.3: Facebook Grad network: The mountain plot gives more insight than the histogram.
The mountains represent underlying distinct regions of the graph; e.g., the fourth mountain
identified by the 9-contour, has a component with core-periphery structure (ρ=0.33, see Sec-
tion 4.6.2) that is explained by the many nodes with low peak number (high dependency) in the
mountain.

center of a mountain. We associate each node in the graph with the contour whose removal pro-

duced the greatest drop in its core number: these nodes constitute a plot-mountain. (Note that

a node in the contour itself may not be assigned to that plot-mountain if it were more affected

by an earlier plot-mountain.) The resulting plot-mountains are thus non-overlapping.
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We sort these plot-mountains in descending order of the peak numbers of their associated

contours. Within each mountain, we sort the member nodes in descending order of core number.

For nodes with the same core number in a plot-mountain, we further sort them by their peak-

number. This gives us an ordering of the nodes. On the x-axis of the mountain plot, we show

the nodes in this order. Each integer along the x axis corresponds to the permuted ID of a node.

We plot the core number of this node in blue, and the peak number in red. We then draw a line

connecting all blue markers to outline the mountains.

For example, Figure 4.3b is a mountain plot of the FB-grad network. This plot shows

us that the FB-grad network contains 12 mountains. The highest red markers within each

mountain show the peak number of the contour corresponding to that mountain. The height of

the mountain, in blue, shows the core numbers of the node within the mountain.

4.5.2 Interpreting a Mountain Plot

The mountain plot can give us the following information:

• The number of mountains in the mountain plot tells us the number of distinct regions

in the graph

• The mountains in the left of the plot represent the most well-connected regions of the

graph. The mountains towards the right corresponds to the sparser and more disconnected

parts of the graph.

• The height and width, respectively, of a mountain increase with the core number and

the number of nodes in the mountain. In the graphs that we observed, the nodes with

the highest peak number in a mountain are those in the k-contour giving rise to the

mountain.3

• The difference between the core numbers and peak numbers in a mountain gives

information about the connectedness and dependencies of the subgraph represented by a

mountain (See Section 4.6).

From the mountain plot, we can immediately get a sense of the global structure of the graph.

3Because we assign each node to the mountain that affected its core number most, it may be that the nodes in the
k-contour giving rise to the mountain are not actually assigned to that mountain: however, in practice, this rarely
happens, and mostly for the weaker, less well-connected mountains.
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4.6 Descriptive Study

(a) Bio - yeast

(b) Co-auth CondMat

Figure 4.4: Mountain plots for Protein3 and CondMat graphs. Observe the number, shapes,
and sizes of mountains (i.e. regions).

We consider the 22 real graphs listed in Table 4.1, including social, co-authorship, email,

web, and biological graphs. We begin in Section 4.6.1 by discussing structures observed in the

mountain plots. In Section 4.6.2, we analyze the structures found in the detected mountains. We

also consider 4 synthetic graphs, including random graphs and graph models meant to capture



44

(a) Web - google

(b) Internet topology

Figure 4.5: Mountain plots for Google Web and Internet topology graphs. Observe the number,
shapes, and sizes of mountains (i.e. regions).

real-graph properties. In Section 4.6.3, we present the mountain plots of the synthetic graphs

and discuss k-peak structures found in them.

The mountains found by the k-peak decomposition sometimes exhibit core-periphery struc-

ture [8]; however, the mountain plot allows for substantially more nuance in the way that we

understand these graph regions (i.e., by examining the shapes of the mountains), rather than

simply labeling them as core-periphery structures. Depending on the network structure, the
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Graph |V | |E| d ρG ρ5 ρ10

B
io

Protein1 [47] 1,702 3,155 7 0.06 0.15 0.15
Protein2 [47] 2,239 6,432 10 0.03 0.20 0.20
Protein3 [42] 5,808 362,421 134 0.09 0.22 0.17

C
o-

au
th

GrQC [49] 5,241 14,484 43 0.03 0.24 0.25
HepTH [49] 9,875 25,973 31 0.02 0.25 0.24
HepPH [49] 12,006 118,489 238 0.07 0.29 0.28
AstroPh [49] 17,903 196,972 56 0.03 0.29 0.29
CondMat [49] 23,133 93,439 25 0.02 0.24 0.23

M
sg Digg [47] 30,360 85,155 9 0.03 0.07 0.07

Enron [49] 33,696 180,811 43 0.06 0.16 0.24

So
ci

al

FB Grad [54] 503 3,256 15 0.05 0.26 0.24
FB Caltech [54] 769 16,656 35 0.14 0.05 0.05
FB Reed [54] 962 18,812 34 0.14 0.10 0.08
FB Ugrad [54] 1,220 43,208 47 0.09 0.05 0.03
FB Baylor [54] 12,803 679,817 96 0.05 0.12 0.10
Brightkite [49] 58,228 214,078 52 0.04 0.27 0.28

Te
ch Gnutella [49] 26,498 65,359 5 0.01 0.19 0.19

Internet [47] 34,761 107,720 63 0.08 0.18 0.26

W
eb

Foldoc [47] 13,356 91,471 12 0.02 0.02 0.06
Google [47] 15,763 148,585 102 0.06 0.13 0.12
Stanford [49] 281,903 2,312,497 71 0.04 0.28 0.40

Table 4.1: Statistics of the real graphs, varying in size and type. Here d is the degeneracy
of G and ρG, ρ5 and ρ10 are the core-periphery measures for G, average of the first 5 and 10
mountains respectively.

detected regions may not be core-periphery structures (e.g., as we will see, the CondMat net-

work in Figure 4.4b with ‘column’ mountains). Additionally, although in practice the k-peak

decomposition sometimes finds core-periphery-like structures, it is important to note that this

is not its purpose: rather, the goal is to find distinct regions and understand patterns of node

dependencies.

4.6.1 Mountain Plots of Real Graphs

In Figures 4.3b, 4.4 and 4.5, we present a mountain plot for representative social, biological,

co-authorship, Internet and web graphs.

We make several observations from the mountain plots.

Number and Sizes of Mountains: First, the number of mountains identified by the k-

peak decomposition corresponds to the number of distinct regions within the network, and
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the width of the mountains in the mountain plot shows the size of these regions. For exam-

ple, Figure 4.4a shows us that the yeast biological network contains one large mountain, one

medium-sized mountain, and several very small mountains. In contrast, Figure 4.4b shows us

that the CondMat co-authorship network contains many medium-sized mountains; but these

mountains appear on the right side of the plot, indicating that they are not associated with the

highest k-contours. These mountains, while large, are not as well-connected as the smaller

mountains on the left side of the plot.

Many of the social graphs we consider tend to have a small number of meaningful moun-

tains. In contrast, the co-authorship graphs all had the same basic pattern as the CondMat

graph in Fig. 4.4b: small, well-connected mountains on the left side, followed by weaker,

larger mountains.

Shapes of Mountains: We observe two extreme types of mountains, with gradations in

between: the ‘column’ type mountains (e.g., at the beginning of Figures 4.4a, and 4.4b), and

the ‘wide’ mountains (e.g., the largest mountain in Figures 4.4a and 4.5a). A column mountain

is typically formed of a large clique on which very few other nodes depend for their core

numbers. In contrast, the wide mountains are the well-formed core-periphery structures, with

a small core and a large, highly-dependent periphery.

Co-authorship graphs, such as in Figure 4.4b, tend to have column mountains. These moun-

tains likely correspond to papers with many authors who tend to work together most of the time,

thus forming a clique that is not well-connected to the rest of the network. These narrow col-

umn mountains very rarely exist in social graphs. Web graphs and Internet graphs as shown in

Figure 4.5a and 4.5b, contain several mountains that begin with a column, but suddenly expand

into a wide base at the bottom (e.g., the first two mountains in 4.5b). These represent tightly-

connected structures on which many low-core-number nodes depend: these mountains likely

represent cliques with low-degree nodes on the periphery, as opposed to a gradually expanding

core-periphery structure like we see in Figure 4.4a.

Social networks, as in Figure 4.3b, tend to have one or two large, meaningful core-periphery

structures, and a collection of mountains that are closer to column-like. This latter type of

mountain (e.g., the first mountain in Figure 4.3b represents a tightly-knit group of individuals

with a small number of additional high-core-number individuals (contrast this with the Web
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graph mountains, which are tightly-knit groups with a large number of additional low-core-

number nodes).

By looking at the mountain plot, we get a sense of the overall connectedness of the network

as a whole: does it contain distinct regions or is it one cohesive structure?

Difference between a node’s core and peak number: For each node, the mountain plot

tells us the difference between that node’s core number and peak number. This difference is

simply the distance between the appropriate blue line and red points. This difference tells us the

extent to which a node’s core number is dependent on higher k-contours: the larger the drop,

the more dependent the node is. For example, in the first mountain in Figure 4.3b, we see nodes

with core numbers 9-13, whose peak numbers dropped to 3 and 2, due to the removal of the

degeneracy core of the graph. On the other hand, in the fourth mountain, while there are nodes

with low peak number, these nodes tended to have a low core number to start with: thus, this

mountain contains fewer high-core-number nodes that are highly dependent on the mountain’s

k-contour. For another example across graphs, compare the core and peak numbers of nodes in

the the first mountain in Fig 4.5b (Internet topology graph) with that of the second mountain in

Fig 4.5a (web-graph). In this example, although both mountains have a small tightly-knit core,

the periphery (nodes in the mountain excluding the nodes in the k-contour) of the web-graph is

more dependent on the k-contour for its core number than that in the Internet topology graph.

4.6.2 Core-Periphery Structure in a Mountain

Although finding core-periphery structures is not our goal, it is interesting to measure how

well the detected regions match the ideal core-periphery structure. According to Borgatti and

Everett’s formulation, the core-periphery structure is represented by an idealized adjacency

matrix in which the first r nodes form the core and the remaining s nodes form the periphery

(r + s = N). Every node in the core is connected to every node in the graph, but nodes in the

periphery are only connected to nodes in the core. To measure how well a graph exhibits core-

periphery structure, one reorders the adjacency matrix so that the core nodes appear first, and

then measures ρ, the Pearson’s r correlation between the true adjacency matrix and the idealized

adjacency matrix (in our mountains, the ‘core’ contains nodes in the associated contour, while

the ‘periphery’ contains everything else). ρ ∈ [−1, 1], with values above 0 indicating positive
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core-periphery structure.

Because the k-peak decomposition is premised on the notion that sparser graph regions can

exhibit meaningful structure, we modify this measure by dividing the values in the matrix by

2M, so that the sum of (weighted) edges in the idealized and true adjacency matrices are the

same. We measure significance using a QAP test, by repeatedly randomly permuting the set of

nodes in the core and periphery (while maintaining their sizes), and calculating the correlation

between the permuted adjacency matrix and the idealized adjacency matrix: p is simply the

fraction of times that the permuted adjacency matrix exhibits a greater or equal correlation than

the true adjacency matrix.

The first five mountains in Figure 4.3b are annotated with their core-periphery ρ values.

Note that the fourth and fifth mountains consist of two connected components, so two values

are shown. While these values seem low as correlations, the overall ρ of the entire graph is

only 0.05,4 and so the mountains exhibit much greater core-periphery structure. These values

are significant at the p = 0.01 level.

The average ρ values for the first 5 and first 10 mountains is given in Table 4.1 for all

graphs. Note that the values vary substantially by network: although the k-mountains are

almost always more core-periphery-like than the graph as a whole, some mountains exhibit

strong core-periphery structure (e.g., the first 10 mountains of the Stanford graph), while others

are much weaker (e.g., Google web in Fig. 4.5a).

4.6.3 Mountain plots of Synthetic Graphs

In this section we consider some of the synthetic graphs graph models and study their mountain

plots.

We first consider Erdös-Rényi random graphs, where given nodes n and an edge between

any two nodes may exist with probability p. In figure 4.6a, we present a mountain of a Erdös-

Rényi graph with 10, 000 nodes and probability p of 0.001. As the figure shows, there is one

mountain, corresponding to 7-contour. The peripheral nodes of this mountain belong to 0, 1

and 2-contours. It is not surprising that an Erdös-Rényi graph has only one k-mountain, since

4To measure the ρ of an entire graph, we consider all values of k, and set nodes in the k-core to be the ‘core’
and nodes outside to be the periphery.
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core-periphery structures are unusual in Erdös-Rényi graphs.

Next, we consider the Baräbasi-Albert preferential attachment model [3], which preserves

the power-law degree distribution often observed in real graphs. In this graph model, the proba-

bility of an edge from a new node to an existing node is proportional to the degree of the existing

node, thus capturing the ‘rich gets richer ’ phenomena. Figure 4.6b shows the mountain plot of

Baräbasi-Albert preferential attachment graph with 10, 000 nodes, where each new node has 10

edges. Although this graph has a power-law degree distribution, it has only one mountain, com-

posed of the 10-contour. Since the edges between high degree nodes is unlikely in Baräbasi-

Albert graph model, higher k-cores and k-peaks do not form. The core-periphery structure that

is typical of a k-mountain in real graphs is unlikely to occur in Baräbasi-Albert graphs, thus

resulting in just one mountain of a 10-contour with no peripheral nodes.

Watts-Strogatz [74] is a graph model that aims to capture the small world effect seen in real

social graphs. The generative process beings by creating a regular graph where each node has

degree k. It then rewires the edges with probability p. In figure 4.6c, we present the mountain

plot of a Watts-Strogatz graph with 10, 000 nodes where each node has 5 edges initially, that

are rewired with probability 0.8. This graph consists of exactly one mountain of 3-contour with

peripheral nodes from 1 and 0-contours.

Hence, we observe that the three synthetic graph models described above do not show

mountains similar to that observed in real graphs because they were not designed to capture the

core-periphery structure of real graphs.

We now consider the configuration model [57], which is a random graph with a given de-

gree distribution. We give as input the degree sequence of the Enron email graph, that has a

power-law degree distribution. Figures 4.7a and 4.7b show the mountain plot and the degree

distribution (in log -log scale) of the Enron graph. Figure 4.7b shows that the Enron graph has

a power-law degree distribution and Figure 4.7a shows that the graph has several mountains.

Observe that the mountains of the Enron graph in Figure Figures 4.7a has a tightly knit core

(high peak numbers) and a relatively sparse periphery (lower core and peak numbers). Sec-

ondly, note that the core and peak numbers of the periphery are not too far apart. This shows

that the nodes in the periphery are connected mostly to the mountain assigned to it and have

very sparse connections to the rest of the mountains. Another way to interpret these mountains
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(a) Erdös-Rényi random graph of 10, 000 nodes
where any two nodes have an edge between them
with probabiity 0.001

(b) Baräbasi-Albert preferential attachment graph
of 10, 000 nodes, where each new incoming node
attaches itself to 10 existing nodes.

(c) Watts-Strogatz small world graph of 10, 000 nodes, where
initially each node has 5 edges forming a regular graph. The
edges are then rewired with probability 0.8.

Figure 4.6: Mountain plots for a Erdös-Rényi random graph, a Baräbasi-Albert preferential
attachment graph and a Watts-Strogatz small world graph .

is that these core-periphery regions are fairly non-overlapping. Now, consider the configura-

tion model graph generated using the degree distribution of the Enron graph. Figures 4.7c and

4.7d present the mountain plot and the degree distribution of such a configuration model graph.

Fig 4.7d confirms that the degree distribution remains unchanged. The mountain plot of this

graph in Fig 4.7c, shows that random graph was able to create similar core-periphery structures

as in the original Enron graph i.e. tightly knit core (small set of nodes with high peak num-

bers) with a large loosely connected periphery (larger set of nodes with low peak numbers).

However, as the mountain plots demonstrate, this instance of the configuration model random

graph fails to capture the number of mountains, since there are four mountains in Fig 4.7c as

compared to more than 10 in Fig 4.7a. Also note that the peripheral nodes in the mountains in

the random graph, as shown in Fig 4.7c, has a larger gap between their core and peak numbers
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(a) Mountain plot of Enron graph (b) Degree distribution of Enron graph

(c) Mountain plot of configuration model graph
(generated from degree distribution of Enron
graph)

(d) Degree distribution of the configuration model
graph of Fig 4.7c

Figure 4.7: Mountain plot and degree distribution of Enron graph and a configuration model
graph. The two graphs of similar degree distribution have different graph structures that is
demonstrated by the different number and shape of mountains in their corresponding mountain
plots.

(as compared to that in Fig 4.7a), suggesting more connections to higher contours than to other

peripheral nodes.

The mountain plots of the synthetic graphs discussed in this section shows distinct regions

in these graphs and how they compare to the real graphs. Admittedly, this is not an extensive

study of using the mountain plots to understand how the synthetic graph models might capture

properties of the real graphs. This discussion aims to point out that mountain plots give a global

view of the distinct regions in a graph and that may be used to further study a given synthetic

graph model. An interesting problem that arises from this discussion is whether there exists a

generative graph model that can capture the structure of distinct regions in real graph and thus

produce mountain plots that are similar to that of real graphs.
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4.7 Applications: k-peak vs. k-core

We now show how the k-peak decomposition can replace or supplement the k-core decomposi-

tion in a variety of applications: community detection, contagion, and finding essential proteins

in a protein-protein interaction network. Peng, et al. [59] present a three-step method using k-

cores to accelerate community detection that finds communities in a k-core with ∼ 30% of the

nodes, and uses these community labels to infer community memberships of nodes outside the

k-core. The key intuition behind this process is that the community memberships of nodes in

the k-core are useful in identifying the community memberships of nodes outside of the core.

4.7.1 Accelerating Community Detection

(a) Facebook Grad network

(b) Facebook Baylor network

Figure 4.8: Community detection using k-cores and k-peaks.

This intuition is not justified in a graph with multiple distinct regions. We propose that

instead of using the k-core, one should use the k-peak. To motivate this argument, consider the

example Facebook network from Section 4.1: a high k-core captures the Icelandic community

structure but not the Eritrean structure, and lower values of k capture too much of the Icelandic

region, negating gains in speed.
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To illustrate this, we show results for the Facebook Grad and Facebook Baylor networks in

Fig. 4.8 (similar results observed in other cases).

We find k-cores and k-peaks containing 10% - 50% of the nodes in the graph, run the

algorithm from [59] on these cores and peaks, and measure the modularity of the detected

partitionings. When using the k-peak, the algorithm finds a much better partitioning than when

using the k-core.

This application captures the essence of our motivation for the k-peak: when the graph

contains distinct, independent regions of different densities, the k-core is less suitable than the

k-peak, which finds the cores of these different regions.

4.7.2 Locating Essential Proteins

Biological researchers are interested in experimentally identifying ‘essential’ proteins in protein-

protein interaction (PPI) networks. An essential protein is typically defined as one that is re-

quired for the survival or reproduction of an organism, as opposed to one that simply increases

fitness [78]. Proteins with higher core numbers in this network are more likely to be essen-

tial [76]. Here, we show how peak number and core number can be used together.

First, we observe that peak number should not be used as a replacement for core number in

this application. Suppose, for instance, that a PPI network has degeneracy d. Consider a node

that is tightly connected to this core, but only has core number of d − 1. This node is still part

of this central, well-connected region, and so is likely to be essential, but has a very low peak

number. If we considered peak number alone, we would overlook nodes like this. However,

if one considers only core number, essential nodes with low core numbers are excluded. We

argue that to better identify these nodes, peak number is useful.

We consider the Protein3 graph listed in Table 4.1, a Yeast PPI network. Over the entire

network, essential nodes are 18% of the entire set of nodes, and core numbers range from 1 to

134. Suppose we define a ‘low’ core number to be anything less than or equal to some value t.

Identifying essential low-core-number nodes is necessary to get a complete picture of essential

proteins. For each low core number c ≤ t, let Rc be the set of nodes with highest peak number

within the set of all nodes with core number c. Let R represent the union of Rc subsets over all

low core numbers c.
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Infection Probability (b)
p 0.01 0.02 0.05 0.1 0.2 0.5

0.01
0.06
(0.2)

0.04
(0.12)

0.0
(0.03)

0.0
(0.01)

0.0
(0.01)

0.0
(0.0)

0.05
0.12

(0.17)
0.09

(0.14)
0.07
(0.1)

0.04
(0.05)

0.01
(0.02)

0.0
(0.0)

0.1
0.17

(0.28)
0.17

(0.25)
0.11

(0.15)
0.08

(0.09)
0.04

(0.05)
0.01

(0.01)

0.5
0.55

(0.59)
0.53

(0.55)
0.46

(0.47)
0.38

(0.37)
0.27

(0.27)
0.13

(0.14)

Table 4.2: Average fraction improvement (std. deviation) in number of infected nodes when
initially infected nodes p are chosen according to peak number vs. core number.

At t = 30, R contains 12% of the low-core-number nodes, but 34% of the essential nodes

with low core numbers. Similarly, at t = 10, R consists of 8% of the nodes with low core

number, but 22% of the essential nodes; and if t = 20, R consists of 12% of the nodes, but 28%

of the essential nodes. In other words, by finding nodes with high peak numbers within a given

k-shell, one can improve accuracy.

Effectively, this experiment is identifying nodes that have low core numbers, but are central

within their regions: if two nodes have the same core number, but one exists in the periphery

of a mountain and the other is in the core of a mountain, the second is much more likely to be

essential.

4.7.3 Identifying Influential Nodes

It is well known that nodes with high core number tend to be more important in spreading

disease or information through a network. Kitsak, et al. [43] show that in an SIR contagion, the

core number of the initially infected node is better correlated with the final number of infected

nodes than is the degree of the node.

We show that if multiple nodes are initially infected, selecting nodes with high peak number

leads to a larger set of infected nodes than infecting nodes with high core number. We perform

simulations as follows: Given a network G, we initially infect p fraction of top core number or

top peak number nodes inG, with infection probability b using a SIR contagion. As in [43], we

set the lifetime of the infection to be 1 unit of time, and run the simulation until the infection

dies out. For every network listed in Table 4.1, for a range of values of p, and b, we perform
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100 simulations.

Table 4.2 shows the average fraction improvement obtained by using peak numbers instead

of core numbers. For example, a value of 0.5 would indicate that the contagion beginning at

nodes with high peak numbers infected 50% more nodes than the contagion beginning at nodes

with high core numbers. The standard deviation is sometimes high, but this variation typically

occurs on the upper end: that is, using peak number almost always outperforms using core

number, but the degree of improvement varies.

In almost all cases, values are positive, indicating that beginning the contagion at nodes

with high peak numbers infects a greater number of nodes than beginning the contagion at

nodes with high core numbers.

4.8 Conclusion and Extensions

We have studied the graph structures using the k-peak graph decomposition. We analyze the

k-peak decomposition algorithm and show that it can be used to better understand the global

structure of large network. Additionally, we introduce a new network visualization plot, the

mountain plot, which depicts the separate regions of the network. We apply the k-peak de-

composition to a variety of real-world networks, and show how it gives substantially deeper

insight than the k-core decomposition alone. Finally, we show how the k-peak decomposition

can replace the k-core decomposition in several applications, with large gains in performance.

This work naturally leads to some extensions and open problems, related to efficient com-

putation and application of k-peak decomposition. They are as follows:

1. Can we compute k-peaks faster and using lesser space, with theoretical guarantees?

2. The current 2-dimensional mountain plot, can only show the membership of node to the

mountain it was affected the most by. Could we build a interactive visualization of the k-

peak decomposition that allows a user to pick a k-mountain and study its structure based

on all the nodes affected by it?

3. Are there other applications that require identifying the centers of regions that may be

varying in densities? k-peak decomposition might help find such regions better than
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approaches that simply find the densest regions.
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Chapter 5

Individual level study of social networks: User influence

5.1 Introduction

Chapters 5 and 6, constitute the second part of the dissertation, based on individual level study

of interpersonal behavior between users in a social network.

As discussed in Section 1.2, social networks such as Facebook, LinkedIn and Twitter, en-

courage users to share content and to respond to the content posted by other users. For example:

Figure 5.1 shows a tweet posted by the then US presidential candidate, Hilary Clinton. It also

shows how others have responded to her tweet by ‘retweet’-ing it, ‘favorite’-ing it and replying

to her tweet.

Figure 5.1: An Example of a tweet posted by Hilary Clinton on Twitter and the responses

received in the form of 681K Retweets, 1.3M Favorites and 67K replies.

As of 2017, more than 3 billion people use some form of a social network [40]. As the

number of users increase, we can now observe the interactions between the users and their

contacts. This allows us to study the dynamics of the relationships between people, that was
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not possible in the past. In addition to interacting with people they already know (friends, co-

workers, family), people also interact with celebrities and others they may know only through

online social networks. As shown in Figure 5.1, Twitter was a medium for users to interact with

a politician and for a public personality to reach out to the masses.

In this chapter, we discuss the interesting questions one might ask based on individual level

user behavior and give overview of the next chapter.

5.2 Interesting research questions based on user behavior

In general, interpersonal behavior is often studied by the impact people have on others. Some

of the key aspects of interpersonal behavior include influence, trust, credibility and leader-

ship [66], [15]. These aspects play significant roles in shaping the community and over time

affects the culture and politics of the society. As of September 2017, more than a quarter of the

world’s population (2.07 billion) use Facebook [35]. The interpersonal behavior that sociolo-

gists have studied, can now be observed, recorded and studied more extensively on the online

social networks. In addition to the above mentioned aspects of user behavior, there are some

issues that are specific to the setting of online interactions. For instance, spam bots may be

created and assigned to interact with other users, pretending to be a real person. Or some users

may create multiple accounts and give the illusion of a group interacting. Thus there may be

additional challenges and questions related to online social networks, that is of interest to the

research community. Some of the questions that one could ask include the following:

• Who are the most influential users?

• How can we infer trust and credibility of users?

• What role (leader, follower, go-between) does this person play?

• Which other user is a given user most similar to?

• Is this a real person or a spam bot?

In this work, we focus on measuring influence of users on one another [61]. With more

than 3 billion users on social networks [40] and increased activity, massive amounts of data is
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being generated by these platforms. Thus there is a strong need for space-efficient algorithms

to study these datasets. In this work, we address the question – Can we compute influence of

users, given the responses of their contacts, in limited space?

We consider different models of input data. For instance when observing the twitter feed

for a given user, we might see the total number of retweets or likes a tweet might have got. This

is the first input model we consider (Sections 6.4.1, 6.4.2 ). Alternatively, depending on the

source of data, we may have a record for each like or retweet, instead of the total number of likes

or retweets, for a given post. This is the second input model we consider. (See Section 6.4.3)

5.3 Overview of the results in this part

In Chapter 7, first, we study h-index as a metric for influence and compare it to other similar

metrics in real data. We show that the right choice of a metric of influence is based on the

properties of the social platform and how the data is collected. We then present algorithms

to compute user influence using h-index in little space. Given the user responses as an input

stream, we present a (1 ± ϵ) approximation algorithm that uses O(1/ϵ log(1/ϵ)) space. On

assuming a random permutation of the input stream, we present a (1+ϵ) approximate algorithm

that further reduces the space required to O(1). In the case where each response is input

separately, we present an algorithm that uses

poly(1/ϵ, log(1/δ), logn) space.
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Chapter 6

Streaming Algorithms for Measuring Social Influence

6.1 Introduction

Consider a system that lets users ui publish items p(i, j) and have other users respond to the

items. These could be for example users in Twitter. Users publish their tweets or embed

hashtags, and the others may respond by retweeting the publication or posting with the same

hashtag handle and so on. Likewise, a user in Facebook may post a story or picture, and their

friends can “like” it. In a more familiar setting, researchers publish their results and others

cite the publications. In any publication setting, these responses may be positive or negative to

varying extents or even just neutral or mix of these responses. Our research is on the positive

impact of users, and hence, for the purposes of our research here, we will only focus on the

positive responses. 1

Our focus is on how to measure users’ impact. There is a vast theory of studying influence

of individual user actions on webpages, posts, etc and also the cumulative impact of all of a

users’ publications [61, 67, 73]. We adopt a very simple and fundamental notion of impact,

well-known in academic world, called the H-index [32]. For each item p(i, j) published by

user i, say the number of positive responses is R(i, j). Then, the H-index of user i is the largest

k such that at least k publications j1, j2, . . . , jk have k or more (positive) feedback, that is,

R(i, jℓ) ≥ k, for 1 ≤ ℓ ≤ k. This is one of the most popular measures of impact in academia,

it arose to popularity in the Physics community and is now widespread, with Google Scholar

cited frequently by researchers. One of its attractions is that it is parameter-free, for example,

it does not focus on the total responses for top 10 cited publications or the total number of

1 Our discussion can be extended to the setting when the responses are positive to different extent or when
responses are negative only or when responses can be a mix of positive and negative, etc. This will lead to notions
of impact of users different from the one we study here.
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publications with at least 10 citations each etc., where 10 is a parameter. It combines the number

of publications and the number of responses (citations) for each in a nifty way, to eke out an

impact measure. There is vast literature on extensions of H-index, for example, normalizing

for areas, years of publication, different transformations like at least k publications have total

of k2 or more (positive) feedback , or applying it to groups of users, and so on [10, 17, 20].

See [9] for a discussion of the research on H-index.

We veer from prior research on H-index, in not studying its applicability or in extending

its definition, but in computing it. If we have memory to store every response r(k, i, j) for

each publication p(i, j), then it is easy to compute the H-index of user i. For example, one

can calculate R(i, j) by aggregating over k for each (i, j), sorting based on R(i, j)’s, and deter-

mining H-index by considering them in say the decreasing order. However, in applications, the

publications and responses arrive online over time as they are composed and released. Further,

the number of publications and responses maybe very large, and certainly they are prohibitive

if we have a large number of users like the popular publication forums. Motivated by this, we

study the streaming versions of the problem of computing the H-index.

6.1.1 Our Contribution

Our main results are very small space streaming algorithms for computing the H-index. We

consider both aggregated and unaggregated models of streaming. In more detail, our results are

as follows.

• (Aggregate Streaming Model) We consider a stream of numbers R(i, j) in arbitrary or-

der of i’s and j’s, and we design an algorithm for computing H-index of each user i.

We present a streaming algorithm that uses only O(ϵ−1 log ϵ−1) space and returns an

1 − ϵ approximation to the H-index of a user. Further if there is a mild lower bound

Ω(ϵ−3 log logn) on the ultimate H-index and the publications are considered in a ran-

dom order, we present an improved algorithm that uses only O(1) storage2, independent

of the number of publications j’, number of feedbacks R(i, j)’s or the approximation fac-

tor ϵ. These are some of the most efficient streaming algorithms one could hope for, not

2The constant is just 6 as our proof shows.
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even usingO(logn) words that is standard for a lot of streaming analysis over signals of

size n.

• (Cash Register Streaming Model) In the so called “cash register” streaming model, we

get a stream of responses r(k, i, j), that is, the responses arrive unaggregated. We present

randomized streaming algorithms for estimating the H-index to ϵ additive error using

space poly(1/ϵ, log(1/δ), logn) and with success probability at least 1 − δ. This is the

first sublinear space algorithm for this problem.

We use many of the tools that have been developed in streaming research over the past

few years. This includes exponential bucketing methods, distinct or L0 sampling, group testing

with a subset of items to find the heavy hitting ones, etc. We adopt them to calculate H-index,

but in the process we significantly improve the results one can get. For example, while using

exponential bucketing, we prove that the bucket counters can be reused for our problem and as

a result get streaming algorithms that use very little space, sub-logarithmic or constant space

even, while typical use of these techniques for other streaming problems use logarithmic space

or more. Our work initiates study of streaming algorithms for problems that estimate impact or

identify impactful users. There are many variations of H-index and other impact measures for

users, and streaming algorithms for calculating them per user, or mining anomalous users on

such impact measures is a rich area for further study.

6.2 H-index as a social influence metric

Influence of a user, can be measured based on how other users respond to the activities of a user,

over time. A good measure of influence would be one that takes into account the responses

a user has received over multiple posts over time and one that is preferably parameter-free.

Intuitively, a good influence metric must be one that is higher for a user that consistently gets

high responses as compared to a user who got high responses on a few posts. There are many

metrics to measure influence that can be roughly classified based on the information considered.

Influence can be measured based on the connections between the users, the dissemination of

information or more generally based on the responses of other users. In this work, we only

consider how other users respond to a user’s activities. Specifically, we only consider the counts
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of a particular kind of response. Arguably, considering other settings such as topic of activity,

the connections between users and how information spreads, could give a different perspective

of influence of a user. But, here we consider a much more general setting that could be more

widely applied and one that is agnostic of the content of a user’s activity.

Given the counts of responses for a set of activity of a user, the H-index [32] of the user is

defined as the largest value h such that at least h activities or posts made by the user received

at least h responses. This metric has been used to measure the impact of a researcher on

the scientific community based on the papers she wrote and the citations received for each

paper. The key advantages of h-index are that (1) it is parameter-free (2) for h-index to be

high, the user has to receive a large number of responses on a large number of posts. Other

naive approaches such as average, thresholding, considering top-k posts etc., do not have these

advantages. However, there has been a lot of work on different variants of h-index and a

discussion on the choice of the right variant in the academic setting (See [4]).

In this section we briefly discuss a few variants of h-index and study their distribution in

real datasets.

6.2.1 Variants of h-index

In addition to h-index we consider three variants of it, namely, g-index , h2-index and hα-

index. One of the drawbacks of h-index is that it ignores the number of responses higher than

h. Some users may have a few posts that were very popular and received responses much

higher than h. To take into account the highly popular posts along with the other moderately

popular posts G-index was proposed by Egghe [19]. G-index is defined as the largest value g

such that the top g posts have received a sum of g2 responses. The author also points out that

g− index ≥ h− index.

Since citations in academic papers is sometimes difficult to track, Kosmulski [45] proposed

the h(2)-index, to counter this problem. H(2)-index is defined as the largest value h(2)such there

are at least h(2) posts that received at least [h(2)]2 responses each. For example, a user that has

10 posts with 100 likes for each post, would get a h(2)-index of 10. Clearly h(2)−index ≤ h−

index. In the social setting, h(2), might have another advantage. In social interactions, some

activities such as tweets by a celebrity might get consistently high responses. For example,
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Dataset Posts Response # Users # Total Posts
Instagram Pictures Likes 4999 236,031
Youtube Videos Likes, Views 122,753 239,233
Yelp Reviews Upvotes 310,897 1,142,660
DBLP Papers Citations 737,133 3,181,744

Table 6.1: Datasets used to study individual social influence

the number of retweets received for a tweet by the president of the USA might usually be in

hundreds or thousands. In such settings, the h-index of a user might be just the number of their

posts, thus making is difficult to distinguish between the influence of different celebrities.

Eck and Waltman [70] proposed a generalization of h-index that can be tuned to be higher

or lower than h-index, as required. hα-index is defined as the largest value hα such that of the

n posts by a user, there are hα posts with at least hα ∗ α responses each and the remaining

n− hα posts have at most hα ∗ α responses each.

6.2.2 Datasets

Table 6.1 shows the datasets we used for the analysis here. We consider the Instagram dataset

of ‘Teens from Profile ’ [36], Youtube dataset of views of videos [12], Yelp dataset of upvotes

on reviews of businesses 3 and DBLP dataset 4 of papers of authors matched with number

of citations each paper received scraped from Google Scholar results [18] [51]. Note that

the number of responses received in each dataset varies widely. For instance, the number of

citations received by a paper is rarely more than a few thousands. On the other hand the number

of views of videos on Youtube is often in several thousands. Note that in this work, our focus

in not on the number of responses received with respect to each post; we focus on the overall

influence of a user as a measure of the responses received on all their posts.

6.2.3 Observations in real data

Figure 6.1 shows the distributions of h-index and its above defined three variants, in four real

datasets that are listed in Table 6.1. For hα, we set α to 2 and 100. Note that the figures are

3https://www.yelp.com/dataset/challenge
4http://dblp.uni-trier.de/
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(a) Instagram (b) Youtube

(c) Yelp (d) DBLP

Figure 6.1: Distribution of h-index and similar metrics in real data

plotted in log-log scale.

The first observation is that for all the datasets and all four metrics (excluding α = 100 for

hα-index), the distributions are skewed and similar to that of a power-law distribution. Since

the goal of these metrics is to find influential users, a skewed distribution identifies the small

set of users with high indices i.e. high influence. Also note that the value of the indices vary

across datasets. The highest h-index in the Instagram dataset is higher than 1000, where as the

highest h-index in DBLP is less than 200.

The second observation is that in Figures 6.1c and 6.1d of the Yelp and DBLP datasets

respectively, each metric has a distinct distribution. The relationship h(2) ≤ h ≤ g that was

evident in the definitions above, can be seen clearly for the Yelp and DBLP datasets. The reason

why the distributions (excluding hα-index with α = 100 ) are not distinct in Youtube and
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Instagram datasets, is due to high number of views/ likes for most videos/ photos in Youtube/

Instagram. For example, consider a user who posts 5 videos that received the following number

of views: 30, 35, 50, 80, 100. For this user, h-index, g-index, h(2)-index and hα-index (α = 2)

are all equal to 5, but hα-index (α = 100) is 1. We observe that for datasets where the number

of responses are high for most posts, for most users, a metric like hα-index, with α set to a high

value would help identify influential users. Overall, this demonstrates that a different variant of

h-index, and perhaps with different parameters may need to be picked based on the number of

responses and the distribution of number of responses over the posts of a user.

In this section, we discussed the different variants of h-index, their properties and their

values in real datasets. In real datasets of social interactions, such as twitter or Instagram, users

can publish posts and react to other’s posts in seconds. Thus the number of user activities and

the responses recorded can be very large. For instance, roughly 500 million tweets are posted

on Twitter each day [6]. Storing all the data and computing influence metrics offline might not

be practical. Such high volume data of social interactions leads to a need for space-efficient

computation of influence metrics. In the remainder of this chapter, we will focus on h-index

and its computation in little space.

6.3 Preliminaries

In this section, we present the formal definition ofH-index and the different data stream models.

6.3.1 H-Index

The H-index was suggested in 2005 by Jorge E. Hirsch as a tool for determining theoretical

physicists’ relative quality and is sometimes called the Hirsch index or Hirsch number.

Definition 1 (H-Index [32]). Let V ∈ Nn be a vector of natural numbers of dimension n. We

denote by h∗(V) the maximum number i ∈ [n] such that the number of elements of V that are

greater than or equal to i is at least i, i.e.,

h∗(V) = argmax
i∈[n]

|{j ∈ [n] : V [j] ≥ i}| ,

where we denote [n] = {1, 2, · · · , n}. In other words, for the sorted vector V ′ of V in descend-

ing order, h-index of V ′ (and V) is defined as h∗(V) = h∗(V ′) = maxi∈[n](min(V ′[i]), i).
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We let H(V) = {V [i] : V [i] ≥ h∗(V)} be the support of the H-index of the vector V which

is defined as the set of numbers V [i] that are greater than or equal to the H-index h∗(V). We

drop V and V ′ from h∗(V) and h∗(V ′) when it is clear from the context.

Example 2. Let V ′ = [5, 5, 6, 5, 5, 5, 6, 5, 5, 6] be a vector of 10 numbers.

Let V ′ = [6, 6, 6, 5, 5, 5, 5, 5, 5, 5] be the sorted variant of V . Then, for the H-index h∗(V) of

V which is the same as h∗(V ′) we have h∗(V) = h∗(V ′) = 5 = maxi∈[10] min(V ′[i], i)), but

H(V) = H(V ′) = V ′.

6.3.2 Author, Paper and Citation Model

In this work, we consider publication settings that allows users to give positive feedback on

other users’s activities. Examples of such a setting include tweets and re-tweeting, Facebook

posts and likes and academic papers and citations. We define this setting in the general terms

of authors, papers and citations.

Let A be a set of authors and P be a set of papers. Each paper p ∈ P has a citation number

cp which is the number of papers in P that cite the paper p. As is common in science we

assume a paper p cannot cite itself.

We denote the set of papers of an a ∈ A by Pa ⊆ P . Similarly, we denote the set of authors

of a p ∈ P by Ap ⊆ A. For the sake of simplicity, we assume that there is a natural number x

for the maximum number of authors that a paper p can have, that is, |Ap| ≤ x. We represent a

paper p ∈ P by a tuple (p, ap1 , · · · , a
p
y, cp) for y ≤ x, where ap1 , · · · , a

p
y and cp are the authors

and the citation number of the paper p, respectively. Thus, from now on, we consider a paper

p ∈ P or (p, ap1 , · · · , a
p
y, cp) ∈ P , interchangeably.

6.3.3 Aggregate and Cash-Register Streams

Let V ∈ Nn be a vector of natural numbers of dimension n. Let h∗(V) be the H-index of

V . We say S is an aggregate stream of the vector V if S is a (possibly adversarially ordered)

stream of the elements of the underlying vector V . We say S is a randomly ordered aggregate

stream if S is a random order chosen uniformly at random from the set of all permutations (or

orders) of the elements of the underlying vector V . We say S is a cash register stream if S is
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a stream of updates to the underlying vector V , where an update at time t is a pair (it, z) for a

natural number z that replaces the entity V [it] by V [it] + z.

For the data model described in Section 6.3.2, the aggregate streaming model would con-

sist of one tuple (p, ap1 , · · · , a
p
y, cp) for each paper p in the dataset, where cp is the number

of citations of the paper. In the cash register model for the above data model, each tuple

(p, ap1 , · · · , a
p
y, c

i
p) corresponds to the ith update to the number of citations of paper p, such

that cp =
∑
i c
i
p. Note that in Section 6.4, for the sake of simplicity we assume the case when

there is only one author in the stream. This can easily be extended to papers with multiple

authors and computing H-index for each author.

We say a streaming algorithm A is a multiplicative (ϵ, δ, s)-approximation algorithm for a

stream S (either aggregate or cash register) if over one pass over S, A uses a space s to report

an estimator h(V) such that

Pr
[
|h∗(V) − h(V)| ≤ ϵh∗(V)

]
≥ 1− δ .

Similarly, we say a streaming algorithm A is an additive (ϵ, δ, s)-approximation algorithm

for a stream S (either aggregate or cash register) if one pass over S, A uses a space s reports

an estimator h(V) such that

Pr
[
|h∗(V) − h(V)| ≤ ϵn

]
≥ 1− δ .

6.3.4 ℓ0 -Sampler

We define an ℓ0-Sampler as follows.

Definition 3. (ℓ0-SAMPLER [24,55]) Let 0 < δ < 1 be a parameter. Let S = (a1, t1), · · · , (ai, ti), · · ·

be a stream of updates of an underlying vector x ∈ Rn where ai ∈ [n] and ti ∈ R. The i-th

update (ai, ti) updates the ai-th element of x using x[ai] = x[ai]+ti. An ℓ0-sampler algorithm

for x ̸= 0 returns FAIL with probability at most δ. Else, with probability 1 − δ, it returns an

element j ∈ [n] such that the probability that j-th element is returned is Pr[j] = |x[i]|0

ℓ0(x)
.

Here, ℓ0(x) = (
∑
i∈[n] |x[i]|

0) is the (so-called) “0-norm” of x that counts the number of

non-zero entries.
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Lemma 4 ( [38]). Let 0 < δ < 1 be a parameter. Then, there exists a linear sketch-based

algorithm for ℓ0-sampling using O(log2 n log δ−1) bits of space.

6.4 H-index in streams

In this section we present our algorithms to compute H-index of a single user in different

streaming settings, namely aggregate, random order and cash-register models. In Section 6.4.1,

we consider the aggregate streaming model, where the input stream is the number of likes or

retweets of different posts of a user. In Section 6.4.2, we assume that the stream of number of

positive feedback is given in a random order. In a cash-register streaming model the input is

not the total number of likes or retweets per post, but a sequence of updates when a new like or

retweet occurs. In Section 6.4.3, we present our algorithm to compute H-index of a user when

the input is a cash-register model.

6.4.1 Aggregate Streaming Model

In this section, we first develop a streaming algorithm that using a space 2ϵ−1 logn words

reports an (1 ± ϵ)-estimator of the H-index of a stream. A similar approach was used by

Govindan et. al. [28] to compute H-index of core number of nodes in an effort to compute

k-cores in graphs. Later we improve the space of this algorithm down to 6ϵ−1 log 3ϵ−1 words.

Formally, we first prove the following theorem. The pseudocode of the algorithm and the

correctness proof of the algorithm are given after it.

Theorem 5 (Exponential Histogram). Let 0 < ϵ < 1 be a parameter. Let V ∈ Nn be a vector

of natural numbers of dimension n whose H-index is h∗(V). Let S be an arbitrarily (possibly

adversarially ordered) stream of the elements of the underlying vector V . Then, there exists a

one-pass deterministic streaming algorithm (Algorithm 2) that using space 2ϵ−1 logn words

(where each word consists of logn bits) reports an estimator h(V) such that

(1− ϵ)h∗(V) ≤ h(V) ≤ h∗(V) .

Here for the simplicity of the exposition, we assume n = (1 + ϵ)k is a power of (1 + ϵ)

and we observe that n is a trivial upper bound for the H-index h∗(V) of an underlying vector
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V . We consider log1+ϵ n guesses of (1 + ϵ)i for h∗(V). For each guess (1 + ϵ)i, we design a

counter ci that counts the number of elements of the stream S that are greater than or equal to

(1+ ϵ)i. At the end of the stream, we find the greatest guess (1+ ϵ)i whose counter is at least

(1+ ϵ)i, but the counter of the subsequent guess (1+ ϵ)i+1 is less than (1+ ϵ)i+1.

Algorithm 2 Exponential Histogram

1: Input: Stream S of elements of V .
2: Initialize counters ci = 0 to zero for i ∈ [log1+ϵ n].
3: For step t that the element St arrives
4: For i = 1 to log1+ϵ n
5: If St ≥ (1+ ϵ)i, then ci = ci + 1
6: Let h(V)=(1+ ϵ)i be the greatest threshold such that

ci ≥ (1+ ϵ)i and ci+1 < (1+ ϵ)i+1 .

7: Output h(V).

Proof. Observe that there exists an index i ∈ [log1+ϵ n] such that (1 + ϵ)i ≤ h∗(V) < (1 +

ϵ)i+1. Let us consider two counters ci and ci+1. The counter ci corresponds to the number

of elements of the stream S that are greater than or equal to (1 + ϵ)i. Similarly, the counter

ci+1 corresponds to the number of elements of the stream S that are greater than or equal to

(1+ ϵ)i+1. Observe that since (1+ ϵ)i ≤ h∗(V) < (1+ ϵ)i+1, we have ci+1 < (1+ ϵ)i+1 and

ci ≥ h∗(V) ≥ (1+ ϵ)i = h(V). Therefore,

(1− ϵ)h∗(V) ≤ h∗(V)

(1+ ϵ)
≤ h(V) = (1+ ϵ)i ≤ h∗(V) .

The space of the algorithm is log1+ϵ n ≤ 2ϵ−1 logn words, where each word consists of

logn bits. ■

Next we improve the space of this algorithm to 6ϵ−1 log 3ϵ−1 words by observing that we

do not need to keep the counters for all the guesses at each step of the stream, but only a shifting

window of x = O(1/ϵ) consecutive counters.

Theorem 6 (Shifting Window). Let 0 < ϵ < 1 be a parameter. Let V ∈ Nn be a vector of

natural numbers of dimension n whose H-index is h∗(V). Let S be an arbitrarily (possibly

adversarially ordered) stream of the elements of the underlying vector V . Then, there exists
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a one-pass deterministic streaming algorithm (Algorithm 3) that using space 6ϵ−1 log 3ϵ−1

words (where each word consists of logn bits) reports an estimator h(V) such that

(1− ϵ)h∗(V) ≤ h(V) ≤ h∗(V) .

We maintain a window of x = O(1/ϵ) consecutive counters ci, ci+1, · · · , ci+log x where the

counter ci+j corresponds to the revealed elements of the stream that are greater than or equal

to (1 + ϵ)i+j. At every step t of the stream if the number of elements that are greater than or

equal to (1 + ϵ)i+1 becomes at least (1 + ϵ)i+1, we shift the window of counters by one, i.e.,

we delete the counter ci, create a new counter ci+x+1, and set i = i + 1. We prove that the

number of elements of the stream that are greater than or equal to (1 + ϵ)i+j, but not counted

by the counter ci+j (mainly because they have been revealed before the counter ci+j is created)

is at most ϵ(1+ ϵ)i+j which is an ϵ-fraction of the H-index of the stream if the H-index of the

stream is at least (1+ ϵ)i+j.

Algorithm 3 Shifting Window

1: Input: Stream S of elements of V .
2: Let X = {0, 1, 2, · · · , r = ⌈log1+ϵ ϵ

−1⌉} and i = 1.
3: Initialize counters ci+j = 0 for j ∈ X.
4: For step t that the element St arrives
5: For each j ∈ X
6: If St ≥ (1+ ϵ)i+j, then ci+j = ci+j + 1
7: If ci+1 ≥ (1+ ϵ)i+1, then
8: Delete the counter ci.
9: Let i = i+ 1.

10: Initialize new counter ci+r = 0.
11: If St ≥ (1+ ϵ)i+r, then ci+r = ci+r + 1.
12: Let h(V)=(1+ ϵ)i+j be the greatest threshold for j ∈ X such that

ci+j ≥ (1+ ϵ)i+j and ci+j+1 < (1+ ϵ)i+j+1 .

13: Output h(V).

Proof. For the sake of simplicity we assume ϵ−1 = (1 + ϵ)ℓ is a power of (1 + ϵ). Thus,

r = log1+ϵ ϵ
−1 = ℓ. Observe that for the H-index h∗(V) of the vector V ∈ Nn, there exists a

natural number k for which we have (1+ ϵ)k ≤ h∗(V) < (1+ ϵ)k+1. Let us set i = k+ 1− ℓ,
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x = (1+ ϵ)i and so, x
ϵ
= (1+ ϵ)i+ℓ. Observe that

x

ϵ
· (1+ ϵ)−1 = (1+ ϵ)i+ℓ−1 ≤ h∗(V) < (1+ ϵ)i+ℓ =

x

ϵ
.

Let us consider the set Y = {0, i − sℓ, · · · , i − 2ℓ, i − ℓ, i, i + ℓ} of the powers of (1 + ϵ)

where s = ⌊i/ℓ⌋. The powers in Y correspond to the guesses Z = {1, ϵsx, · · · , ϵ2x, ϵx, x, x
ϵ
}

for h∗(V). Indeed, for each number j ∈ Y, there exists a counter cj that

• is initialized when the counter cj−ℓ is deleted. That in turn, occurs when cj−ℓ+1 ≥ (1 +

ϵ)j−ℓ+1. Note that the case j = 1 is an exception which starts by seeing the first element

of the stream S.

• is deleted when for the subsequent counter cj+1, we have cj+1 ≥ (1 + ϵ)j+1. Observe

that at the same time the new counter cj+ℓ is created and set to zero.

Observe that since j ∈ Y, we must have j + ℓ, j − ℓ ∈ Y. We decompose the stream S

into s + 2 substreams recursively as follows. Corresponding to each number j ∈ Y, we define

the substream Sj which starts when the counter cj is created and set to zero and ends when

the counter cj is deleted. The substream Sj corresponds to the sub-vector Vj of the vector V

including those entries of the vector V that are revealed in the substream Sj. In the remainder

of the proof, we assume that the H-index of the sub-vector Vj is h∗(Vj) = h∗(Sj).

Claim 7. Let j ∈ Y be an index in Y. Let cj be the counter corresponding to the index j. At

the time when cj is deleted, there are at least (1+ ϵ)j+1 and at most (1+ ϵ)j+2 numbers in the

union of the substreams ∪k≤j and j∈YSk that are greater than or equal to (1+ ϵ)j+1. Moreover,

(1+ ϵ)j+1 ≤ cj+1 ≤ (1+ ϵ)j+2 .

Proof. For a fix number j ∈ Y, let us consider three subsequent substreams Sj−ℓ,Sj,Sj+ℓ that

start when the counters cj−ℓ, cj, cj+ℓ are created and end when these counters are deleted, re-

spectively.

Recall that the counters cj and cj+1 (observe that j + 1 /∈ Y) are created when the counters

cj−ℓ and cj−ℓ+1 are deleted what in turn, happen when cj−ℓ+1 ≥ (1 + ϵ)j−ℓ+1 and cj−ℓ+2 ≥

(1+ϵ)j−ℓ+2, respectively. The substream Sj starts when the counter cj is created and the counter

cj−ℓ is deleted. Therefore, the counter cj+1 may not count all the elements of sub-vector Vj that
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are greater than or equal to (1 + ϵ)j+1. Moreover, the substreams Sk for k < j and j ∈ Y were

ended before the counter cj+1 was created. Thus, the counter cj+1 does not count the elements

of the sub-vectors Vk for k ≤ j and j ∈ Y that are greater than or equal to (1 + ϵ)j+1. We will

bound the number of such elements in the union of the sub-vectors ∪k≤j and j∈YVk that are not

counted in cj+1.

Let us first consider the elements of the sub-vector Vj that are greater than or equal to

(1 + ϵ)j+1 but are not counted in cj+1. Let us consider the counter cj−ℓ+1. This counter is

deleted when the counter cj+1 is created and is created when the counter cj−2ℓ+1 is deleted.

Therefore the counter cj−ℓ+1 exists before the substream Sj starts. That is, the number of

elements of the sub-vector Vj that are greater than or equal to (1+ ϵ)j+1 but are not counted in

the counter cj+1 have already been counted by the counter cj−ℓ+1. Observe that those elements

of the substream Sj that are counted by the counter cj−ℓ+1 must be greater than or equal to

(1+ ϵ)j−ℓ+1 not necessarily greater than or equal to (1+ ϵ)j+1 , but that gives an upper bound

for those elements that are greater than or equal to (1+ ϵ)j+1 which is enough for the analysis.

Thus, at most (1 + ϵ)j−ℓ+2 such elements are not counted by the counter cj+1. Indeed, when

cj−ℓ+2 ≥ (1 + ϵ)j−ℓ+2, the counter cj−ℓ+1 is deleted and the counter cj+1 is created and start

counting the elements of the the substream Sj (interchangeably, the sub-vector Vj) that are

greater than or equal to (1+ ϵ)j+1.

On the other hand, the counter cj is deleted when cj+1 ≥ (1 + ϵ)j+1. Therefore, the

substream Sj (interchangeably, the sub-vector Vj) contains at least (1+ ϵ)j+1 elements greater

than or equal to (1+ ϵ)j+1.

Overall, the substream Sj (and respectively, in the sub-vector Vj) contains at least (1+ϵ)j+1

and at most (1 + ϵ)j+1 + (1 + ϵ)j−ℓ+2 = (1 + ϵ)j+1(1 + ϵ(1 + ϵ)) elements that are greater

than or equal to (1 + ϵ)j+1. Let Tj be the exact number of such elements in the the substream

Sj. Then,

(1+ ϵ)j+1 ≤ Tj ≤ (1+ ϵ)j+1(1+ ϵ(1+ ϵ)) .

Thus,

cj+1 ≤ Tj ≤ cj+1 · (1+ ϵ(1+ ϵ)) .

Similarly, for every substream Sj−xℓ for 1 ≤ x ≤ s = ⌊i/ℓ⌋ (observe that j − xℓ ∈ Y) we
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can prove that the number of elements of Sj−xℓ that are greater than or equal to (1 + ϵ)j−xℓ

(what could be greater than or equal to (1 + ϵ)j+1) are at most (1 + ϵ)j−xℓ. Let Tj−xℓ be the

exact number of such elements in the the substream Sj−xℓ. Thus, for ϵ ≤ 1/2 we have

(1+ ϵ)j+1 ≤
∑

j−xℓ and 1≤x≤s
Tj−ℓ ≤

∑
j−xℓ and 0≤x≤s

(1+ ϵ)j−xℓ+1 .

That is,

cj+1 ≤
∑

j−xℓ and 1≤x≤s
Tj−ℓ ≤ cj+1 · (1+

∑
1≤x≤s

ϵx(1+ ϵ))

≤ cj+1 · (1+ ϵ(1+ ϵ)
∑
0≤x≤s

ϵx)

≤ cj+1 · (1+ 2ϵ(1+ ϵ))

≤ cj+1 · (1+ 3ϵ) .

By replacing ϵ with ϵ/3 we finish the proof of this claim. ■

Similar to the proof of Claim 7 we can prove the general case.

Claim 8. Let j ∈ Y be an index in Y. Let cj be the counter corresponding to the index j. At

the time tj+r of the stream S when the counter cj+r for 0 ≤ r ≤ ℓ is deleted, there are at least

(1 + ϵ)j+r and at most (1 + ϵ)j+r+1 numbers from the beginning of the stream S till that time

that are greater than or equal to (1+ ϵ)j+r. Moreover, (1+ ϵ)j+r ≤ cj+r ≤ (1+ ϵ)j+r+1.

Having the above claims, we observe that at the time when every counter ci is deleted, the

next counter ci+1 is a (1± ϵ)-approximation of the H-index of the stream seen so far.

The space of the algorithm is log1+ϵ ϵ
−1 ≤ 2ϵ−1 log ϵ−1 words. Since in the proofs of

Claims 7 and 8 we need to replace ϵ by ϵ/3, the space of the algorithm will be 6ϵ−1 log 3ϵ−1

words where each word consists of logn bits.

■

6.4.2 Random Order Stream

In this section we show that if a stream S of items is uniformly randomly ordered, we can

develop an (1 ± ϵ)-estimator for the H-index of the stream S using much smaller space. In

particular, if we know a mild lower bound O(ϵ−3 log log(n)) for the H-index of the stream,
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we only need six words (where each word consists of logn bits ) to (1 ± ϵ)-estimate the H-

index of the stream. Without having such a mild lower bound, the space of our new streaming

algorithm is O(ϵ−1 log ϵ−1) words where each word consists of O(log log logn) bits. On the

other hand, the streaming algorithm in Theorem 6 usesO(ϵ−1 log ϵ−1) words where each word

in that algorithm consists of logn bits. Formally, we state this main result in theorem below.

Theorem 9 (Random Order Stream). Let S be a randomly ordered stream of elements of an un-

derlying vector V ∈ Nn whose H-index is h∗(V). Let 0 < ϵ, δ < 1 and β = 150ϵ−2 log logn.

Then, there exists a one-pass streaming algorithm that reports an estimator h(V) such that

Pr[|h∗(V) − h(V)| ≤ ϵh∗(V)] ≥ 1− δ.

• Let β/ϵ ≤ h∗(V) be a lower bound for h∗(V). Then, the space usage of this algorithm

is six words, where a word is a binary vector of length logn bits.

• If h∗(V) is upper bounded by h∗(V) ≤ β/ϵ, then the space usage of this algorithm is

6ϵ−1 log 3ϵ−1 words each one consists of log(β/ϵ) bits.

We first give an overview of the algorithm. We runs two subroutines corresponding two

different cases for h∗(V) in parallel. The first case is when we have a lower bound β/ϵ for

h∗(V). The second case is when h∗(V) is upper bounded by β/ϵ. For the latter case we

simply run the streaming algorithm of Theorem 5 that needs a space of O(ϵ−1 log ϵ−1) words

where each word consists of log(β/ϵ) bits. Note that in the latter case the H-index is upper

bounded by β/ϵ and hence each word requires log(β/ϵ) bits. For the former case, we consider

log1+ϵ(n/β) guesses for h∗(V) such that the i-th guess corresponds to n/(1+ϵ)i ≤ h∗(V) ≤

n/(1+ϵ)i−1. For the i-th guess, we look at a windowWi of the stream S of sizeβ(1+ϵ)i−1(2+

ϵ) and count the number of elements of this window that are greater than or equal to n/(1+ϵ)i.

We should mention that every two windows Wi−1 and Wi corresponding to two consecutive

guesses i − 1 and i overlap. Indeed, let Z = {r0 = 1, r1, · · · , ri, · · · , r⌈log1+ϵ(n/β)⌉}, where

ri = ri−1 + β(1+ ϵ)
i. The window Wi contains all the elements in the interval (ri−1, ri+1] of

the stream S. Observe thatWi contains β(1+ϵ)i−1+β(1+ϵ)i = β(1+ϵ)i−1(2+ϵ) elements

of the stream S. Let x = β(2+ϵ)/(1+ϵ). We then accept the i-th guess and report n/(1+ϵ)i

as an (1± ϵ)-approximation of h∗(V) if (1± ϵ)x elements of this window are greater than or

equal to n/(1+ ϵ)i.
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We analyze the algorithm in three steps. Suppose that the i-th guess is correct, that is,

n/(1 + ϵ)i ≤ h∗(V) ≤ n/(1 + ϵ)i−1. First, we show that if we ignore the elements in the

interval [1, ri−1] of the stream S then we lose only ϵ-fraction of h∗(V). Second, we observe that

in expectation x elements of the windowWi are greater than or equal to n/(1+ϵ)i. Finally, we

use a Chernoff concentration bound for the hypergeometric distribution (i.e., sampling without

replacement) to prove that with high probability (i.e., with probability at least 1 − δ for 0 <

δ < 1), (1± ϵ)x elements of the windowWi are greater than or equal to n/(1+ ϵ)i.

The Pseudocode of the algorithm is given in below.

Algorithm 4 Random Order Stream
1: Input: Stream S of elements of V .
2: Let β = 150ϵ−2 log logn.
3: Let h1 be the output of Algorithm 2 with input (S, β).

(We stop Algorithm 3 if the reported H-index of this
algorithm is greater than β.)

4: Let h2 be the output of Algorithm 5 with input (S).
5: h(V) = max(h1, h2).

Algorithm 5 Sampling Without Replacement

1: Input: Stream S of elements of V .
2: Let β = 150ϵ−2 log logn, x = β(2+ ϵ)/(1+ ϵ), k = 1 and c, c ′, r = 0.
3: For i = 0, 1, 2, · · · , ⌈log1+ϵ(n/β)⌉
4: Let r ′ = r and r = r+ β(1+ ϵ)i.
5: While r ′ < k ≤ r
6: If Sk > n/(1+ ϵ)i, then c = c+ 1.
7: If Sk > n/(1+ ϵ)i+1, then c ′ = c ′ + 1.
8: Let k = k+ 1.
9: If (1− ϵ/3)x ≤ c ≤ (1+ ϵ)x, then

10: Output n/(1+ ϵ)i and quit.
11: Else
12: c = c ′ and c ′ = 0.
13: Output c = 0.

Next we prove Theorem 9. First we consider the case that the H-index h∗(V) is upper

bounded by β/ϵ. In this case we invoke Algorithm 3 that returns (1 ± ϵ)-approximation

of h∗(V) using 6ϵ−1 log 3ϵ−1 words where each word consists of logh∗(V) ≤ log(β/ϵ) =

9 log(ϵ−1 log logn) bits.

Next we consider the case that the H-index h∗(V) is lower bounded by β/ϵ. We prove the

following lemma.
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Lemma 10 (H-index is not very small). Let us assume that h∗(V) ≥ β/ϵ. Then, Algorithm 5

approximates the H-index h∗(V) within (1± ϵ)-approximation.

We prove this lemma using a series of lemmas that we prove first.

Let i ∈ [log1+ϵ n] be the guess for h∗(V) such that n
(1+ϵ)i

≤ h∗(V) ≤ n
(1+ϵ)i−1 . The first

lemma shows that if we take a random sample subset of size ti = β(1 + ϵ)i−1(2 + ϵ), the

number of elements in this set that are greater than or equal to n
(1+ϵ)i

is sharply concentrated its

expectation.

Lemma 11 (Sampling Concentration Bound). Let i ∈ [log1+ϵ n] be a guess for h∗(V) such that

n
(1+ϵ)i

≤ h∗(V) ≤ n
(1+ϵ)i−1 . Let Ti be a random sample subset of size ti = β(1+ ϵ)i−1(2+ ϵ)

from the indices of the vector V taken uniformly at random without replacement. Let T ′
i = {j ∈

Ti : V [j] ≥ n
(1+ϵ)i

} and c = |T ′
i |.

• Then, for ti = β(1+ ϵ)i−1(2+ ϵ) we have

Pr[(1− ϵ/3)x ≤ c ≤ (1+ ϵ)x] ≥ 1− δ .

• Noisy Sampling: Suppose that due to a noise (E.g., previously incorrect guesses of

h∗(V)) up to ϵh∗(V) elements of V that are at least n
(1+ϵ)i

have been deleted. Then,

for ti = β(1+ ϵ)i−1(2+ ϵ) and the same definition for T ′
i and c we have

Pr[(1− ϵ/3)x ≤ c ≤ (1+ ϵ)x] ≥ 1− δ .

Proof. We first prove the first claim. We define a random variable Xi which corresponds to the

number of indices j ∈ Ti for which V [j] ≥ n
(1+ϵ)i

. Observe that Xi has the hypergeometric

distribution Xi ∼ H(n, h∗(V), ti) with the probability mass function (pmf)

Pr[Xi = k] =

(
h∗(V)
k

)(
n−h∗(V)
ti−k

)(
n
ti

) ,

and the expectation E[Xi] = piti where pi = h∗(V)/n.

Then, for 0 < ϵ < 1 and ti =
4 ln(2/δ)
ϵ2pi

we have the following tail bound for Xi,

Pr[|Xi − E[Xi]| ≥ ϵE[Xi]] ≤ 2 exp(−ϵ2E[Xi]/4) = δ .
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Recall that 1
(1+ϵ)i

≤ pi = h∗(V)/n ≤ 1
(1+ϵ)i−1 which means that ti

(1+ϵ)i
≤ E[Xi] ≤ ti

(1+ϵ)i−1 .

Thus, x ≤ E[Xi] ≤ (1+ ϵ)x.

From the above tail bound for Xi, with probability at least 1 − δ, we have (1 − ϵ)E[Xi] ≤

Xi ≤ (1+ ϵ)E[Xi]. Now we replace ϵ by ϵ/3 to obtain

(1− ϵ/3)x ≤ Xi ≤ (1+ ϵ)2x ≤ (1+ ϵ)x .

Next, we prove the second claim. Let V ′ be the new vector after removing up to ϵh∗(V)

elements that are at least n
(1+ϵ)i

. Then, since (1− ϵ)h∗(V) ≤ h∗(V ′) ≤ h∗(V), we have

n

(1+ ϵ)i+1
≤ (1− ϵ) · n

(1+ ϵ)i
≤ h∗(V ′) ≤ n

(1+ ϵ)i−1
.

Similar to the first claim, since 1
(1+ϵ)i+1 ≤ pi = h

∗(V)/n ≤ 1
(1+ϵ)i−1 , we obtain x ≤ E[Xi] ≤

(1+ ϵ)2x.

Recall that with probability at least 1−δ, we have (1−ϵ)E[Xi] ≤ Xi ≤ (1+ϵ)E[Xi]. Now

we replace ϵ by ϵ/3 to obtain

(1− ϵ/3)x ≤ Xi ≤ (1+ ϵ)3x ≤ (1+ ϵ)x .

■

Next we show that if we ignore the first ri−1 elements of the randomly ordered stream S ,

the H-index of the remaining part of the stream is at least (1− ϵ)h∗(V).

Lemma 12 (First Sample is a Tiny Noise). Suppose that h∗(V) ≥ n
(1+ϵ)i

≥ (1+ϵ)2β
ϵ2

. Let V ′

be the vector after sampling and removing ri−1 elements from V uniformly at random without

replacement. Then, for H-index of V ′ we have h∗(V ′) ≥ (1− ϵ)h∗(V).

Proof. We first compute an upper bound on ri−1. Recall that

Z = {r0 = 1, r1, · · · , ri, · · · , r⌈log1+ϵ(n/β)⌉}, where ri = ri−1 + β(1 + ϵ)
i. The window Wi

contains all the elements in the interval (ri−1, ri+1] of the stream S. Recall that Wi contains

β(1 + ϵ)i−1 + β(1 + ϵ)i = β(1 + ϵ)i−1(2 + ϵ) elements of the stream S. Also we have
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x = β(2+ ϵ)/(1+ ϵ). Thus,

ri−1 = β

i−1∑
j=0

(1+ ϵ)j

= β(1+ ϵ)i−1(1+
1

(1+ ϵ)
+

1

(1+ ϵ)2
+ · · ·+ 1

(1+ ϵ)i−1
)

≤ β(1+ ϵ)i−1 · ( 1

1− 1
(1+ϵ)

) =
β(1+ ϵ)i

ϵ
,

elements of the stream, by the Taylor series 1
1−x =

∑∞
j=0 x

j for x ∈ (−1, 1).

Let us define a random variable Yi which corresponds to the number of indices j ∈ [ri−1] =

{1, 2, · · · , ri−1} for which V [j] ≥ n
(1+ϵ)i

. Once again, Yi has the hypergeometric distribution

Yi ∼ H(n, h
∗(V), ri−1). Therefore, similar to the random variable Xi in Lemma 11, we can

prove that with probability 1 − δ, the random variable Yi is sharply concentrated around its

expectation

E[Yi] = ri−1 · h∗(V)/n ≤ β(1+ ϵ)i

ϵ
· h

∗(V)

n
,

that is, (1− ϵ)E[Yi] ≤ Yi ≤ (1+ ϵ)E[Yi].

Thus, if n
(1+ϵ)i

≤ h∗(V) ≤ n
(1+ϵ)i−1 , we then have

Yi ≤ (1+ ϵ) · β(1+ ϵ)
i

ϵ
· h

∗(V)

n

≤ β(1+ ϵ)i+1

ϵ
(

n

n(1+ ϵ)i−1
)
(1+ ϵ)2β

ϵ
,

Therefore, if we ignore the first ri−1 elements of the uniformly randomly ordered stream S ,

in the rest of the stream S we have at least n
(1+ϵ)i

− (1+ϵ)2t
ϵ

elements that are at least n/(1+ϵ)i.

Recall that h∗(V) ≥ n
(1+ϵ)i

≥ (1+ϵ)2β
ϵ2

. Let V ′ be the vector after seeing at most t(1+ϵ)
i

ϵ

elements of the stream S that are at least n/(1+ ϵ)i. We then have

h∗(V ′) ≥ h∗(V) − (1+ ϵ)2β

ϵ
≥ (1− ϵ) · n

(1+ ϵ)i
≥ (1− ϵ)h∗(V) .

■

Now we apply the union bound to show that all the guesses that are far from h∗(V) fail and

a guess which is close to h∗(V) will be well-approximated.

Lemma 13 (Union Bound). Let β = 36ϵ−2 ln( 2 log1+ϵ n

δ
). Then, with probability at least 1− δ

we have
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• for each guess i ∈ [log1+ϵ n] such that h∗(V) < n
(1+ϵ)i+5 , we have Xi < (1− ϵ/3)x;

• for the guess i such that n
(1+ϵ)i

≤ h∗(V) ≤ n
(1+ϵ)i−1 , we have (1 − ϵ/3)x ≤ Xi ≤

(1+ ϵ)x.

Proof. The second part of this lemma was proved in Lemma 11. Next, we prove the first

part. Let i ∈ [log1+ϵ n] be a guess for which h∗(V) < n
(1+ϵ)i+5 . We define the random

variable Xi corresponding to the number of elements in the window Wi (i.e, which is the

interval (ri−1, ri+1]) of the stream S that are greater than or equal to n
(1+ϵ)i

. Recall that

pi =
h∗(V)
n

< 1
(1+ϵ)i+5 , ti = β(1 + ϵ)i−1(2 + ϵ), and x = β(2 + ϵ)/(1 + ϵ). Similar to

Lemma 11, the expectation of Xi is upper-bounded by

E[Xi] = piti <
ti

(1+ ϵ)i+5

=
β(2+ ϵ)

(1+ ϵ)6
≤ x

(1+ ϵ)5
≤ x(1− ϵ+ ϵ2)5

≤ x(1− 3ϵ/4)5 ≤ x(1− 4ϵ/3) ,

where ti = (1 + ϵ)i+1β, ϵ ≤ 1/4 and the Taylor series 1
1−x =

∑∞
j=0 x

j for x ∈ (−1, 1). Since

with probability at least 1− δ, (1− ϵ)E[Xi] ≤ Xi ≤ (1+ ϵ)E[Xi], we then have

Xi ≤ (1+ ϵ)(1− 4ϵ/3)x

= (1+ ϵ− 4ϵ/3− 4ϵ2/3)x < (1− ϵ/3)x ,

We have log1+ϵ n guesses i ∈ [log1+ϵ n] for h∗(V) such that for one of them, say j ∈

[log1+ϵ n] we have n
(1+ϵ)j

≤ h∗(V) ≤ n
(1+ϵ)j−1 . We replace δ by δ/ log1+ϵ n and apply the

union bound to show that with probability at least 1− δ for the guess j, we have (1− ϵ/3)x ≤

Xj ≤ (1 + ϵ)x and for the other guesses i ∈ [log1+ϵ n] such that h∗(V) < n
(1+ϵ)i+5 , we have

Xi < (1− ϵ/3)x what finishes the proof of this lemma. As for the sample size ti we have

ti =
4 ln(2/δ)
ϵ2pi

· (1+ ϵ) ≤
4(1+ ϵ)i+1 ln(2/(δ/ log1+ϵ n))

(ϵ/4)2

= β(1+ ϵ)i+1 ,

for β = 36ϵ−2 ln( 2 log1+ϵ n

δ
) ≤ 150ϵ−2 log logn. ■

Now we have enough tools to prove Lemma 10.
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Finishing the Proof of Lemma 10

Observe that we take the elements in the window Wi (i.e, which is the interval (ri−1, ri+1])

of the stream S when the tests for the guesses j < i in Step 8 of Algorithm 5 fail. Since

ri−1 ≤ β(1+ ϵ)i/ϵ, the last guess that we can make is for i = log1+ϵ(ϵn/β) where we test if

n

(1+ ϵ)log1+ϵ(ϵn/β)
≤ h∗(V) ≤ n

(1+ ϵ)log1+ϵ(ϵn/β)−1
,

that is, β/ϵ ≤ h∗(V) ≤ (1+ ϵ)β/ϵ since that guess ri−1 is the last guess such that ri−1 ≤ n.

Now we put all the things together. Let i ∈ [log1+ϵ n] be a guess for h∗(V) such that

n
(1+ϵ)i

≤ h∗(V) ≤ n
(1+ϵ)i−1 . First, we use Lemma 12 for the uniformly randomly ordered

stream S to prove that if we ignore the first set of ri−1 ≤ β(1+ϵ)i

ϵ
elements of the stream S,

then the H-index of the rest of the stream S is at least (1 − ϵ)h∗(V). Let S ′ be the remaining

set of elements of the stream S after ignoring the first β(1+ϵ)
i

ϵ
elements of S. Second, we use

Lemma 11 that shows if we take a random set Ti of size ti = β(1+ϵ)i−1(2+ϵ) from S ′ and let

T ′
i = {j ∈ Ti : V [j] ≥ n

(1+ϵ)i
} and c = |T ′

i |, then, Pr[(1−ϵ/3)x ≤ c ≤ (1+ϵ)x] ≥ 1−δ. Finally,

we use Lemma 13 that shows that for the big guesses j ∈ [log1+ϵ n] such that h∗(V) < n
(1+ϵ)j+5 ,

we have Xj < (1 − ϵ/3)x. Therefore, such big guesses fail. This finishes the proof of Lemma

10.

6.4.3 Cash Register Streaming Model

In this section we prove our result for the cash register model.

Theorem 14 ( Unbiased Sampling). Let 0 < ϵ < 1 be a parameter. Let V ∈ Nn be a vector of

natural numbers of dimension n = (1+ ϵ)k whose H-index is h∗(V) where k ∈ N. Let S be a

stream of updates (it, z) of the underlying vector V . Then, there exists a one-pass randomized

streaming algorithm (Algorithm 6) that reports an estimator h(V).

• Multiplicative Error: Let h∗(V) ≥ β be a lower bound for h∗(V). If this algorithm uses

x instances of ℓ0-Sampler, where x = n
β
· 3
ϵ2

· ln(2/δ), then (1 − ϵ)h∗(V) ≤ h(V) ≤

h∗(V).

• Additive Error: Suppose we do not have a lower bound for h∗(V). If this algorithm
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uses x instances of ℓ0-Sampler where x = 3
ϵ2

· ln(2/δ), then h∗(V) − ϵ · n ≤ h(V) ≤

h∗(V) + ϵ · n.

The success probability of this algorithm is 1− δ.

The outline of the algorithm is as follows. We sample entries of the vector V (almost)

uniformly at random. Given a stream S of updates to the vector V , we keep track of changes to

these samples to find an unbiased estimator for theH-index h∗(V) whose expectation is h∗(V).

We show that with high probability the estimator is sharply concentrated around its expectation

h∗(V).

Algorithm 6 Unbiased Sampling

1: Input: Stream S of updates (it, z) to an underlying n-dimensional vector V and a lower
bound β for h∗(V) ≥ β.

2: Let X be the output set of x instances of ℓ0-Sampler.
{X is a uniformly sample set of non-zero indices of V .}

3: Let y be an (1±ϵ)-approximation of the number of non-zero indices of V using algorithm
of [39].

4: For i = 0 to ⌈log1+ϵ n⌉
5: Let Ri = {j ∈ X : V [j] ≥ (1+ ϵ)i}.
6: Let ri = |Ri| · y/x.
7: Let z be the greatest (1+ ϵ)i s.t. ri ≥ (1+ ϵ)i(1− ϵ).
8: Output z.

Proof. We first prove the multiplicative error bound. Suppose that (1 + ϵ)i ≤ h∗(V) ≤ (1 +

ϵ)i+1. Observe that z is a random variable which depends on random variable |Ri|. In the

following we prove that E[|Ri|] ≥ x · βn what yields E[z] = (1+ ϵ)i.

Let X = {a1, · · · , aj, · · · , ax} be the set of indices that x instances of ℓ0-Sampler return.

Here we assume that none of x instances of ℓ0-Sampler and the algorithm of [39] fail which

can be easily guaranteed by a simple union bound argument. Recall that Ri = {j ∈ X : V [j] ≥

(1 + ϵ)i} and ri = |Ri| · y/x. Let us define an indicator random variable Ij corresponding

to the j-th instance of the ℓ0-Sampler which is one if V [aj] ≥ h∗(V) ≥ (1 + ϵ)i and zero

otherwise. Let I =
∑x
j=1 Ij. Recall that ℓ0-Sampler takes samples with replacement. Observe

that E[Ij] = Pr[Ij = 1] ≥ h∗(V)
y

≥ (1+ϵ)i

y
. Thus, E[|Ri|] ≥ E[I] ≥ x · h

∗(V)
y

≥ x · (1+ϵ)i

y
≥ x · β

n

which means that E[ri] ≥ (1+ ϵ)i.

We use the Chernoff bound which is stated in below.
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Lemma 15 (Chernoff Inequality). [33] Let Z1, · · · , Zm denote m independent random vari-

ables such that 0 ≤ Zi ≤ 1 for 1 ≤ i ≤ m. For Z =
∑m
i=1 Zi we get

Pr[|Z− E[Z]| ≥ ϵE[Z] ≤ 2 exp
(
−
ϵ2E[Z]
3

)
.

Using the Chernoff bound for x = 3ϵ−2 log(2/δ) · β
n

we have

Pr[|z− E[z]| ≥ ϵE[z]] = Pr[|ri − E[ri]| ≥ ϵ(1+ ϵ)i]

= Pr[||Ri|− E[|Ri|]| ≥ ϵE[|Ri|]] ≤ 2 exp(−
ϵ2E[|Ri|]

3
) ≤ δ .

Now we proof the second claim of this theorem. To this end, we use the additive Hoeffding

inequality which is given below.

Lemma 16 (Additive Hoeffding Inequality). [33]

Let Y1, · · · , Ym denotem independent random variables such that 0 ≤ Yi ≤M for 1 ≤ i ≤ n.

For Y =
∑m
i=1 Yi we get

Pr[|Y − E[Y]| ≥ t] ≤ 2 exp
(
−
mt2

3M2

)
.

Using the additive Hoeffding inequality for x = 3ϵ−2 log(2/δ) andM = 1 we have

Pr[|z− E[z]| ≥ ϵn] = Pr[|ri − E[ri]| ≥ ϵn]

= Pr[||Ri|− E[|Ri|]| ≥ ϵn
y

x
] ≤ Pr[||Ri|− E[|Ri|]| ≥ ϵn]

≤ 2 exp(−
xϵ2n2

3M2
) = 2 exp(−

xϵ2n2

3
) ≤ δn ≤ δ ,

for x ≤ y ≤ n and 0 < δ < 1. ■

6.5 Extensions and Concluding Remarks

We have initiated the study of streaming algorithms for problems that estimate impact or iden-

tify impactful users, and focused on the H-index of users. There are many variations of the H-

index, including those that take publication dates, response timestamps, responder’s H-index,

and so on into account; there are also variations based on different functions of the number

of responses with respect to the number of publications like k publications with a total of k2

responses each; heavy hitters that are users withH-index that are large in the count or in square

of the counts (so called L2 heavy hitters); etc. While our techniques will extend naturally to
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some of these problems, there is much that remains to be done in obtaining the best bounds

for these streaming problems. New platforms for social interactions may bring different con-

straints and require re-defining the influence metric. For example, posts on social networks

such as Snapchat, can be set to be visible to other users only for a limited time. The extent of

interaction possible and the reach of the influence is possibly different than in platforms like

Twitter. An interesting study would be to find a reasonable metric for influence in such a system

and compute it efficiently.



85

Chapter 7

Conclusion and Open Problems

The culture, politics and economics of the world is shaped by structure of social connections

and interpersonal dynamics based on user behavior. Building consumer products and services,

require a good understanding of the human social behavior, computational tools to analyze it

and efficient techniques to model and predict it.

In this dissertation, we have developed computational tools such as, mathematical defi-

nitions of patterns of social behavior, efficient algorithms to identify them and presented ex-

ploratory tools to visualize the social structures. In the first part of the dissertation, we focused

on the community level graph structure of the interaction between users. Specifically, we devel-

oped a space-efficient approximate algorithm to compute k-core graph decomposition in Chap-

ter 3, that requires only linear space in real social graphs. In Chapter 4, we defined k-mountains

and k-peaks to find distinct social groups of varying density of connections, analyzed them and

presented a visualization technique to explore them. In the second part of the dissertation, we

shifted our focus to measuring influence between users at an individual level. In Chapter 6,

we presented extremely space efficient approximate algorithms to compute user influence , that

requires as little as O(1) space under certain settings. The contribution of our work in this dis-

sertation can be summarized as an effort to push the boundaries of space-efficient algorithms

and exploratory tools, to study complex social behavior.

As individuals influence one another, the influence often has a propagating effect. Infor-

mation and feedback received from one contact may be passed on to others. Given the graph

structure of interactions and the influence between users, we can aim to measure and study the

spread of influence. For a given user, we can count the number of users reached and record the

responses received. In addition to this, given the graph structure of connectivity, we can also
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measure the reach of the influence based on graph distance. Although there has been consid-

erable research in this area, there are broad open questions regarding the metrics of influence,

their computation and analysis in real data. For example, for a specific user, given the graph

structure of interactions and the responses received, it would be interesting to study a good

metric of influence that takes into account the reach (how far the influence propagated), the

coverage (how many users were influenced) and the impact (how strongly they responded) of

the influence.

Zooming out of the individual level, we could consider the influence of a community or

a group of people. Given the graph structure of interactions and the responses to individual

actions, we could ask questions similar to the ones we discussed above, about the influence of

a community or a group. It may be possible that certain sets of individuals are more influential

as a group than their collective individual influence. An interesting direction of study would be

to measure the influence of different groups, the influence of individuals within these groups

and dynamics of influence between other individuals and groups.

The study of social structures and interactions has many unanswered questions, interesting

patterns and challenging computational problems. This dissertation is a step in solving some of

the computational problems and gaining a better understanding of the structures in real social

networks.
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