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ABSTRACT OF THE DISSERTATION

Safe driving with mobile devices and wearables

by ÇAĞDAŞ KARATAŞ

Dissertation Director:

Marco Gruteser

Driver errors due to distracted driving and inadequate awareness of surroundings

is an increasing concern which has led to national attention. With increasing amount

of information available through the ecosystem of in-vehicle devices like smartphones,

wearables, and mobile OS for cars, opportunities to prevent accidents with safety services

are now more available than ever before. The safety services are expected to be aware of

the driver’s actions and car’s context, and prevent unsafe driving. Mobile and wearable

safety apps differ from conventional built-in automotive safety systems in that they

promise low-cost designs that reach a much larger population. On the other hand,

detecting the driver’s actions and the car’s context from mobile sensors is a challenging

task due to the dynamic nature of the car and the sensors.

To assist in safer driving, we designed and evaluated fundamental solutions that

can be used to detect and prevent driver errors. First, we propose methods to monitor

the vehicle, driver’s steering, and attention to detect driver errors. The preventive

methods are auxiliary services which decrease the need for distracting interactions with

the vehicle and phone.

In order to detect driver errors, mobile devices and wearables such as wrist-worn

devices and head-mounted devices can be used. The mobile device can be used to

monitor the vehicle’s movements while the wearables can be used to monitor the driver’s

head and arm movements. We are particularly interested in the driver’s hand and head
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movements since these type of movements shows the user’s attention and the driving

interactions with the vehicle, particularly with the steering wheel. Additionally, the

detection techniques proposed in this thesis can be also be further utilized to prevent

errors by warning the drivers about dangerous conditions.

Preventive techniques propose a mechanism for convenient interaction between the

user and the environment. Examples of preventive techniques include easy-to use

customizable input interfaces as well as management of notifications to appropriate

communication channels and scheduling them to the most convenient times, e.g. when

the vehicle stops at a red traffic light.

Through various real-driving scenarios, we show that our approach can detect the

wrist-worn device user as driver correctly 98.9% of times and achieve hand on steering

wheel detection with a true positive rate around 99% and provide warning of unsafe

driving when a driver’s hand is off the steering wheel with a true negative rate above

80%. Additionally, the system can achieve accurate steering angle estimation with

errors less than 3.4 degrees to facilitate applications such as curve speed warning and

understeer/oversteer detection. In the second part of our system, we introduced a

novel method to estimate sensor orientation and the vehicle’s heading from only a

single inertial sensor in a moving vehicle. The method was able to estimate sensor

orientation with a mean error of 5.61o for yaw angle and a 3.73o for pitch angle while

the vehicle is driven in controlled environment and without restrictions. We believe

this method can be especially suitable for head tracking applications where the sensor’s

translational motion is limited. Finally, we proposed a framework that enables users

to create customizable printable paper button interfaces that might be used to create

shortcuts and reduce mobile-device usage related distractions. Our experiments indicate

that the sensor achieves touch detection accuracy over 99% with up to ten different

touch points and over 90% with 15 different touch points.
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Chapter 1

Introduction

In 2005, motor vehicle accidents were the leading cause of death for every age from

3 through 6 and 8 through 34 in the United States. In 2007 alone, motor vehicle

accidents caused 41,059 deaths in the United States [1]. According to the World Health

Organization, 1.25 million people died in 2013 from motor vehicle accidents, a figure

that has plateaued since 2007. Motor vehicle accidents are the number one cause of

death among those aged 15-29. The highest death rates from motor vehicle accidents

were seen among middle-income countries (90% of world-wide motor vehicle related

deaths). In 2012, approximately 50 million injuries resulted from motor vehicle accidents

worldwide [2] with 2,362,000 of the injuries occurring in the United States. To date,

these accidents have cost an astounding total of $277 billion [3] in the United States

alone.

While the widespread use of mobile and wearable devices is often viewed as a

distraction [4,5] that can lead to accidents contributing to nearly one thousand fatalities

per year (e.g., [6–9]), it also presents opportunities to prevent accidents through safety

services. Statistics show that the primary reason for motor vehicle accidents is driver

error with ninety-three percent of traffic accidents being attributed to driver errors.

Therefore monitoring drivers actions and surrounding conditions are critical to preventing

crashes. In section 1.2 we provide common driver mistakes and how the system can

contribute to preventing them. Wearable devices and mobile systems can outperform

other existing systems and open new opportunities to detect driver errors and to prevent

errors proactively.

Mobile and wearable safety applications differ from conventional built-in automotive

safety systems, which are typically constructed as stovepipe systems focusing on a specific
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risk and employ dependable system techniques such as multiple levels of redundancy,

quantifiable guarantees on both the timing and paths of state transitions, and precision

sensing. Instead, there is considerable interest in using mobile devices to deliver softer

safety services since they promise low-cost designs that reach a much larger population

(e.g., [10–12]).

Although vehicle safety systems are designed with the driver in mind and must

follow specific guidelines in terms of accuracy, they pose certain limitations. First of all,

only the newest and the most expensive car models are accessorized with built-in safety

systems. The older and cheaper car models usually lack such systems and cannot be

updated. Second, a vehicle’s built-in safety system can be out-dated or unavailable since

most data is proprietary and only accessible to the vehicle manufacture. Therefore, this

type of data offers limited development opportunities to third parties. Similarly, built-in

automotive safety systems have limited access to the driver’s contextual information,

such as actions and physiological state of the driver, creating a disconnect between the

system and the user’s realistic experience. Finally, these safety systems can only detect

the driver’s mistakes after they occur which might be too late. However, a driver’s

contextual information can provide clues about possible driver errors and this data

can be used to preemptively avoid an accident. For example, a smartphone can detect

whether its user is a driver or a passenger and prioritize notifications from apps and the

phone to show only the important ones if the user is a driver and stopped at the traffic

light.

In addition to the built-in automotive system, there are third party systems which

evaluate or classify driver behavior by fusing the built-in sensors of the vehicle through

the OBD-II port with the sensors of the mobile devices to detect dangerous driving

events. Such systems aim to compliment the built-in automotive system but also pose

similar limitations as they require access to the vehicle bus. Moreover, the sensors found

in each vehicle may vary from model to model, lacking a universal mechanism that can

be applied across all vehicles.

Wearable and mobile devices, on the other hand, can provide a wide range of

opportunities for several reasons. First, the data collected from wearables can be easily
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processed. In contrast to computer vision based systems, the kinematic data gathered

from wearables are lower in dimensions since they only convey information about current

rotation and the forces acting on the device. Additionally, this data only needs to be

processed when a movement occurs. The other obvious advantage of wearable devices is

that they can monitor driver behaviors more accurately since they are usually attached

to driver directly. Furthermore, the sensors deployed on wearables are cheap and widely

available. Wearable devices are already used by millions of people, and as a consequence

the additional cost of wearable based safety systems is quite cheaper than built-in safety

systems. Finally, wearables are open to development and the number of wearable apps

are increasing drastically each day.

This dissertation proposes a system for safer driving using solely mobile and wearable

devices, without reliance on the vehicle’s built in automotive system, as a complementary

alternative.

1.1 Challenges

The system proposed through this research thesis poses unique challenges along the

implementation phase. While this dissertation aims to address these challenges and

propose solutions, some of these challenges may not necessarily be overcome.

One of the unique challenges to this study is the limited availability of sensors

in the mobile device that provide contextual information. While certain contextual

information is readily accessible from the OBD-II port of the vehicle, such as the speed

of the vehicle or the steering wheel turning angle, this information may not be readily

available on mobile device, therefore, needs to be approximated. Although, estimating

this information from the GPS and the kinematic sensors of the mobile devices will

require utilizing complex physical models and will be less accurate, such information

can still be inferred and approximated by the mobile devices. As an example, if the

system needs to know only whether the vehicle is moving or stopped, precise speed

measurement is not necessary and only accelerometer measurements can be enough.

Another challenge is presented by the ambiguity of the source of the data gathered
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through the mobile sensors. Since there could be multiple devices present in the vehicle

in any given time (i.e. multiple individuals in the vehicle), we must first be able to

classify each device user as driver or the passenger in order to utilize the contextual

information collected by each device. Such a classification is necessary to determine

whether the data collected depicts movements of the user or the vehicle. The use of the

wearable device is of great importance for classifying the user as passenger or driver

since the hand movements of the driver and the correlating movement of the vehicle

would be more easily discerned from the data provided by the wearable device. The

classification techniques for the wearable device owner will be explained in Section 4.4.2.

On the other hand, even an imprecise location of the mobile device and classification

as passenger or driver device may still provide fertile information about the use of the

data collected by such device. Some studies [13–16] including our previous work [17] is

able to locate the mobile device in the vehicle. However, they rely on additional sensors

or equipment and therefore are not in the scope of this thesis.

The data collected from mobile sensors depends in certain ways on the positioning

of the mobile device in the vehicle. The pose-dependency of the data from mobile

sensors also presents a challenge in this proposed system. The direction of the kinematic

measurement vectors depend on the rotation of the sensors. Therefore, the data must

first be taken to a coordinate frame that does not depend on the rotation of the sensors.

The coordinate frame transformations from mobile device coordinate frame to another

coordinate frame requires knowledge of the mobile sensor’s rotation. We address this

issue in Section 4.4.1.

A fourth challenge is presented by the dynamic environment of a moving vehicle.

Although there are many activity recognition studies that utilizes the kinematic sensors

employed in mobile devices, most of the techniques proposed in the studies cannot

be applied directly to a moving vehicle scenario. The kinematic sensory data can be

affected by both the movements of the vehicle and the user initiated movements of the

mobile device with respect to the vehicle. Consider the accelerometer measurements of

a smartwatch worn by a driver who is making a turn. The acceleration measured by the

device will be a sum of the linear acceleration of the vehicle, centripetal acceleration due
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to vehicle’s turn, the linear acceleration of the driver’s arm and centripetal acceleration

due to the steering wheel turn. Combined with the aforementioned pose dependency

challenge of estimating the hand movement, the movement of the steering wheel is not a

trivial task and must be overcome to obtain proper results. This challenge is addressed

with the proposed methods in Section 4.4.4.

Last but not least, sensors are prone to picking up noise due to the unpredictable

environment they are located in as well as the noise they generate on their own.

Minute errors in accelerometer readings can cause greater errors in speed and position

estimations when integrated. Similarly, electromagnetic noises induced by the engine

or the ferromagnetic materials in the vehicle will cause inaccuracy when calculating

rotation. We propose a novel approach to estimate electromagnetic noise in Chapter 5

1.2 The reasons for traffic accidents

In order to prevent accidents, we first need to understand the underlying reasons of

traffic accidents. However, detecting the reasons for traffic accidents is not a trivial task

which requires in-place investigation and in-depth analyses. Surveys from the drivers

who are involved in the traffic accidents are subjective. The drivers may want to hide

their faults or do not remember the accident accurately. Therefore, investigations must

be carried out by professional experts at the scene right after the traffic accident.

Although there have been some studies on this to date, such as Indiana Tri-Level

Study in 1979 and NHTSA 2006 study, they are far from providing in-depth, on-scene

investigations of crashes that are necessary to determine the factors related to pre-

crash events. Fortunately, in 2008 National Highway Traffic Safety Administration

presented a report to the U.S. congress (NMVCCS) based on surveys collected from

drivers/surrogates of 5,471 crashes between July 2005 to December 2007 immediately

after the accidents. The study also provides on-scene crash causation studies by

investigation experts. In this thesis, we aimed to detect and prevent the factors that

lead to accidents as noted in the NMVCCS report. The primary reason we choose to

utilize this study is that the data is collected right after the crash by an inspector and
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it is a nation-wide long-term study with many vehicles involved.

Usually there is no single reason leading to a traffic accident. Usually there are a

series of mistakes, which contribute to the incident. The NMVCCS report provided the

most critical reason and also listed other crash associated factors. Although the critical

reason can be subjective in nature and it is an important element in the sequence of

events, it does not imply the assignment of all fault to a vehicle, driver, or environment.

However, it is still important to categorize the critical reasons and attribute them to

a factor. Critical reasons that are leading to the accident can be attributed to driver,

vehicle or environment. Here, environment factors implicate roadway and atmospheric

conditions. Accordingly, 5096 of 5471 accidents are attributed to drivers, 130 accidents

are attributed to the vehicle, and 135 of accidents attributed to environment; 110 crashes

were due to various other reasons and a critical reason could not be assigned.

Since the driver is the most important critical factor, tracking the behavior of the

driver and evaluating the driver’s decisions can significantly reduce the causalities of

motor vehicle accidents. Additionally, improvements in driver mistakes will also affect

the associated factors in the crashes where the drivers mistake was not the critical error

and consequently may reduce causalities even further.

1.2.1 Critical reasons attributed to drivers

Driver-related critical reasons and their occurrence frequency from the report are given

in Table 1.1. The critical reasons can be categorized into recognition errors, decision

errors, performance errors, and non-performance errors.

The most frequent three recognition errors- inadequate awareness of surroundings,

internal distractions and external distractions- are the cause of more than one third of

driver errors. Recognition error is defined as the lack of attention of the driver to what

it should be paying attention to. The most common and critical error that is seen is

the inadequate awareness of surroundings situation in which the driver did not look, or

looked but did not see a specific occurrence. This error can be avoided by head tracking

and determining whether the driver made the necessary checks at a critical place, such

as checking the side mirrors before changing the lane or checking sides before making
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a legal right turn. The second most common critical error (11 percent) is the internal

distractions situation. Combined with external distractions, distractions is the reason for

almost 15 percent of driver errors. Although head tracking system might help detecting

when the driver is distracted with an internal equipment, it will not be enough by itself.

Consider the scenario when the driver is eating or smoking, although the driver’s eyes

might be still checking the road, his or her response time will be drastically delayed for

an urgent situation. A complimentary arm tracking system is necessary to track driver’s

attention fully. We introduce methods to track head and arm movements and to warn

the driver when necessary in Chapter 5 & 4. Additionally, the prevention part of this

thesis proposed in Chapter 6 will further aim to decrease obtrusive interactions through

proposed mechanisms.

The next most frequent factor on driver related critical reasons is the speed of

driving for the conditions of the road (8.4 percent) and speeding on curves (4.9 percent).

Detecting that the driver’s speed is too fast for a specific condition or curve requires

an extreme condition’s occurrence so that the vehicle speed can be tagged as excessive.

After conditions and the geographical locations are tagged, these data can be used to

warn the drivers when they are close to a safety critical region. Driving too fast for

a curve or a specific condition can result in slipping at the curve or not being able to

stop efficiently after a brake. We further utilize arm tracking methods introduced in

Chapter 4 to estimate steering wheel angle from the arm rotation. Details of steering

wheel angle estimation will be given in 4.4.4.
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Table 1.1: Critical Reasons for Critical Pre-Crash Event Attributed to Drivers

Critical Reason for Critical Pre-Crash Event
Weighted

Percentage
%

Recognition
Error

inadequate awareness of surroundings 20.3
Internal distraction 10.7
External distraction 3.8
Inattention 3.2
Other 2.5

Decision
Error

Too fast for conditions 8.4
Too fast for curve 4.9
False assumption of other’s actions 4.5
Illegal maneuver 3.8
Misjudgment of gap or other’s speed 3.2
Following too closely 1.5
Aggressive driving behavior 1.5
Other 6.2

Performance
Error

Overcompensation 4.9
Poor directional control 4.7
Other 0.4
Panic/Freezing 0.3

Non-performance
Error

Sleep 3.2
Heart attack or other physical impairment 2.4
Other 1.6

Other/unknown driver error 7.9
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Chapter 2

Background

There have been active research efforts in reinforcing driving safety by utilizing mobile

devices used in vehicles [11, 13–22]. Some prior contributions have been made to

detecting whether the mobile device user is a driver or passenger [13–17] which can

facilitate many applications aiming to mitigate distracted driving, whereas many works

have been done to evaluate or classify driver behaviors by leveraging mobile sensing

technologies (including using embedded sensors, cameras and other auxiliary devices

(e.g.,OBDII) in mobile devices or vehicles) [18]. In addition, there are studies on solving

driving safety issues by detecting distracted driver behaviors [23,24].

In particular, Yang et al. [13] introduce an acoustic ranging system to identify the

location of a smartphone in the vehicle using its audio infrastructure. Wang et al. [14]

utilize embedded sensors in a smartphone and a reference point (e.g., an OBD device)

to capture vehicle dynamics, which can be further exploited to determine whether the

phone is on the left or right side of the vehicle. However, both works rely on access to

extra infrastructures in a vehicle, which may not be widely available and thus reduce

the chance of adopting the approaches quickly among a large number of users. Some

other works [16, 17] distinguish whether the phone is used by a driver or passenger

based on the detection of specific movements, such as entry swing, seat-belt fastening,

or pedal press using inertial phone sensors. In terms of driving behavior detection,

apps, such as iOn-Road [20], Augmented Driving [21], and CarSafe [12], provide

lane changing assistance and safe following distance based on the vision of driver or

outdoor environment captured by cameras in smartphones. Also, Sober-Drive [25] and

CarSafe [12] detects drowsy driving in a similar manner. These approaches do vision

studies based on the camera of the phone. In contrast, inertial sensor-based approaches
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[11,18,19,22] rely less on specific phone placement and more on motion sensing through

phones embedded inertial sensors. Castignani et.al. [18] propose SenseFleet, a driver

profile platform that is able to detect risky driving events independently on a mobile

device. Chen et al. [19] develop a vehicle steering detection middleware to detect various

vehicle maneuvers, including lane changes, turns, and driving on curvy roads. Johnson

et al. [11] and Dai et al. [22] both propose driving behavior monitoring systems to

track unsafe events based on embedded inertial sensors in the smartphone. However,

these approaches have limited accuracy on detectable unsafe driving events, since they

only involve smartphones, which more likely capture vehicles dynamics instead of drivers

dynamics.

The car manufacturers have been improving the vehicle’s design to alleviate driver’s

distraction by providing simpler driver-vehicle interfaces as well as delegating phone

functions to those interfaces. A very common solution is placing some control buttons on

the steering wheel. However, as the number of in-vehicle functions increases this approach

quickly becomes unfeasible, for economical as well as for practical and ergonomic reasons.

Additionally, these buttons are very handy and ease to access, the buttons’ functionality

is hard-wired and cannot be customized by the driver. Some drivers might disagree

on what functions they may prefer to operate via a steering-wheel-mounted button.

Furthermore, the driver’s preferences might change due to everchanging technology

trends on mobile devices. For example, the drivers may not find the control button

to switch vehicle radio to AM band as useful as a button that can send short voice

clip replies via WhatsApp. Therefore, more customizable vehicle interfaces can reduce

driver’s distraction by alleviating the urge to reach the mobile phone and the off-the-

steering-wheel controls of the vehicle. Consequently, the manufacturers introduced touch

screens on the dashboards. However, touch screens cannot be placed on the steering

wheel due to safety issues of inflatable airbags and The touchscreens on the dashboard

are not as easy-reachable as the buttons on the steering wheel. Adaptive user interfaces

are suggested in some projects GIDS [26], CEMVOCAS [27], and COMUNICAR [28].

However, in terms of usability adaptive user interfaces showed a slight improvement

over non-adaptive interfaces.
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Many companies also introduced voice commands systems such as Ford Sync

[29],Lexus Voice Command [30],GM IntelliLink [31] . Maciej and Vollrath [32] show a

comparison of manual and speech-based interfaces for text entry tasks while driving

and operating different in-vehicle information systems manual text input resulted in

a substantial increase of perceived distraction in comparison with voice interaction

during all tasks. However, Harbluk, Noy and Eizenman [33] showed that the drivers

field of view is significantly scaled down while being distracted by using a hands-free

device. Additionally high rate of speech recognition errors and privacy issues which

might increase driver’s cognitive workload. Kun, Peak and Medenica [34] recorded three

measures of driving performance when investigating the effect of different accuracy

levels of speech recognition: the lane position, the steering wheel angle, and the velocity

of the participants when operating with different systems. They found significantly

reduced driving performance for lower speech recognition accuracy levels. They used a

high-fidelity driving simulator with a 180 field of view. 20 participants needed to follow

a leading vehicle at a constant distance without departing from the lane. Multimodal

interfaces that combines speech and steering wheel buttons have attempted to address

this issues since the errors from speech recognition might be corrected with user’s input

from the steering wheel buttons easily.

Some studies focused on reducing the distraction by managing the interaction

driver-phone user. The most direct way to eliminate the distraction from drivers’

phones is to completely ignore incoming calls and texts. For instance, quite a few

smartphone applications, e.g., OneTap [35], AT&T DriveMode [36], and Live2Txt [37],

use GPS information to automatically sense when a user is driving and suppress all

the notifications that could distract the drive from the road. Instead of using GPS

information, Agent [38] assumes users are driving when their smartphones are connected

to vehicles’ Bluetooth systems, and automatically responds a message to people who

call or text the drivers with their driving status. There are strict approaches that utilize

additional hardware installed in vehicles to completely interfere cellular signals [39,40]

to eliminate distractions from phone usage while driving. Lindqvist and Hong [41] move
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a step further to discuss how drivers’ phones could interact with callers by context-

awareness. Negotiator allows caller and callee to negotiate for a good time in the future.

Bayesphone uses user’s calendar and the user-defined importance of caller to determine

whether the user should be interrupted or not. Some studies prefered presenting the

caller with information about the probability that the callee is busy by using calendar [42]

of the callee or by utilizing the sensors around the callee [43].

However, all these papers mentioned above only consider general notification contexts

and does not cover the driver’s input aspect especially when the interaction started by

the driver.
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Chapter 3

Approach

We can classify our approach into two categories, detection and prevention of driver

errors. Detecting driver errors by monitoring driver’s actions and vehicle’s movements

and immediately taking necessary actions is the critical part of proposed system. These

actions and states can be further utilized to predict critical future errors, and to prevent

them by improving driver’s interaction with his mobile device, wearables, the vehicle,

and the outer world which is the second category of methods provided in this thesis.

The mobile device can be used to monitor vehicle’s movements while the wearables

can be used to monitor driver’s head and arm movements. We are particularly interested

in driver’s hand and head movements since these type of movements shows user’s

attention and the driving interactions. Furthermore, these type of movements can be

used to detect and prevent the most common types of driver errors. In order to detect

the car’s movements and driver’s hand and head movements, the system will need at

least three devices and several widely available standard sensors: a mobile device fixed

in the car, a wrist-mounted device, and a head-mounted device. The mobile device can

be a smartphone or a tablet with internet and GPS connection to retrieve location and

geographical information as well as kinematic sensors: accelerometer, gyroscope, and

magnetometer to infer vehicle movement. Since the smartphone is the most common

mobile device in this category, we will use smartphone interchangeably for the mobile

device throughout this thesis. However, we are going to extend our approach to remove

the requirement of having a separate smartphone in Chapter 5. Wrist-mounted sensor

can be a activity tracker or a smartwatch, we assume that it will embody at least

inertial sensors. Similarly, we are going to use smart watch interchangeably for the wrist-

mounted sensor since it is the most common wrist-mounted sensor. The head-mounted
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device can be any device with kinematic sensors such as smart glass. However, for the

head-mounted sensors our system will not depend on any camera or computer vision

techniques. We believe this minimal set of sensor requirements can make our approach

more implementable for future head-mounted sensors such as a posture corrector [44] or

even a futuristic smart-hair clip.

During the drive, the mobile phone will be mostly at a fixed position in the vehicle

and will not be moving independently within the vehicle unless the driver interacts with

it. Therefore, the data collected from the device’s inertial sensors are due to the vehicle’s

movements only and can be utilized to infer vehicle’s movements and its state. On the

other hand, wearable devices will move independently within the vehicle as the driver

moves his/her arm or head. Therefore, wearable devices’ inertial sensors measurements

would be due to a combination of the vehicle’s movements and the sensor’s independent

movements. The driver’s arm and head movements can be extracted from this data

by removing the vehicle’s movements inferred from the mobile device as proposed in

Chapter 4 or by using a single sensor approach introduced in Chapter 5.

In order to detect driver errors, the driver’s and the vehicle’s movements need to

be evaluated continuously and higher level operations needs to be carried out to detect

safety critical behaviors. For example, consider the case when the driver is driving

through a curve. From the smartphone’s gyroscope data, the system can track the

vehicle’s movements and detect that the car is turning. From the smart watch and the

smartphone data, the system can estimate the driver’s hand movements within the car

and can use this data to infer the steering wheel movements, since the driver will be

turning the steering wheel during the curve. Finally, the steering wheel movement and

the vehicle’s movement can be compared and the system can detect whether the vehicle

is moving different than the driver’s intention, i.e., when the car is sliding. In chapter 4

we propose methods to track arm movements of the driver that can be further utilized

to track unsafe driving conditions.

Preventing driver errors, on the other hand, is a more comprehensive task in the

sense that there are more scenarios to evaluate. The first class of scenarios are based

on warning the driver for potential errors. The second class of scenarios prevent errors
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by easing the driver’s interaction with the environment. The simplest driver warning

system relies on relating the crowd-sourced driver mistakes with geographic locations

and warning the drivers when they are close to that region. However, other contextual

information also needs to be incorporated as well as location. Consider the place where

the sliding occurs in rainy weather conditions quite often, warning drivers only when the

weather is rainy would be quite beneficial. We believe detecting driver errors is critical

part of a warning system.

The other very important aspect of preventing driver errors is by easing the drivers

interaction and minimizing distractions. In order to minimize interactions, the input

channels of the system needs to be redesigned to allow the user to interact with the system

without moving his eyes off the road and his hands off the steering wheel. Our input

system is composed of three elements. The first element is customizable paper interfaces

that can be adhered to a surface on the car such as the steering wheel or the dashboard.

These paper interfaces are cheap, flexible and customizable to accommodate user’s

variety of needs. Although many vehicles provide shortcut buttons on the steering wheel,

their functionality is already defined by the manufacturer and usually does not enable

the driver to assign new functions based on the driver’s needs. However, smartphones

have become a gateway and control point for all electronic devices. Additionally, with

third party rule-based apps, such as IF or uTasker, users are able to create custom

shortcut’s for a wide variety of apps and Internet-of-Things (IoT) devices. Our custom

input interfaces enable drivers to create shortcuts for a variety of simple tasks and do

common tasks without moving their hand off the steering wheel by pressing a touch

point on their custom input interface. For example, the driver can assign different touch

points to run different media player or radio apps on his phone or to email his wife

that he is heading home. Although, these shortcuts are very effective to trigger discrete

actions, they are very limited as an analog input. Consider where the driver wants to

increase the volume of the music app, increasing the volume by pressing volume + key

on the custom input interface can be quite distractive and inefficient task due to the

number of key presses required. For this type of analog inputs, we propose gesture

based input system that does not require the driver to move his hand off the steering
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wheel. The approach is based on our capability of tracking the driver’s arm’s rotational

movements and the car’s movements. The driver can use the system by rotating his

hand over the steering wheel without actually steering the car. This system can detect

this type of movement when the driver’s arm is making a rotational movement and

the car is not making any turn. The rotation degree of the arm can be used as the

analog input. A custom touch point on the paper interface can be used to choose

what the driver is willing to control and the gesture can be used to input the analog

level. For example, the user can choose to navigate the radio channels or to adjust the

volume from the paper interface and change the channel or adjust the volume level by

rotational gesture. The third class of input system is based on speech commands and is

already being developed by mobile operating system providers. Speech command based

intelligent personal assistants such as Siri and Google Now are able to understand the

user’s complex requests and perform common tasks.
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Chapter 4

Tracking Driver’s arm and Steering Wheel Usage

4.1 Introduction

While the emerging ecosystem of mobile and wearable devices is often viewed as a

distraction that can lead to accidents (e.g., [6–9]), it also presents opportunities to

prevent accidents through safety services. Mobile and wearable safety apps differ from

conventional built-in automotive safety systems, which are typically constructed as

stovepipe systems focusing on a specific risk and employ dependable systems techniques

such as multiple levels of redundancy, quantifiable guarantees on both the timing and

paths of state transitions, and precision sensing. There is considerable interest in using

mobile devices to deliver softer safety services, since they promise low-cost designs that

reach a much larger population.

Existing mobile solutions have used inertial sensing on smartphones to detect dis-

tracted driver behaviors and monitor driving [18,19]. In order to apply mobile sensing

to driver behavior analysis, the devices also need to recognize when their user is driving

and distinguish that from being a passenger. To date, this has been addressed through

techniques that allow the phone to sense its position inside a vehicle and determine

whether it is in the driver area [14,15,17]. Such smartphone-based sensing techniques

remain limited in accuracy, however. For example, it is challenging to track very gradual

transitions across lanes or to determine that a user is driving when the phone is placed

on the passenger side of the vehicle. Moreover, increasingly automated and self-driving

vehicles will likely let drivers relinquish driving duties for at least some part of a route.

Current smartphone-based sensing techniques cannot determine whether a driver is in

charge and has the hands on the wheel.

We therefore ask whether the emerging quantity and diversity of wearable devices
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can be exploited to achieve more accurate sensing and operation independent of the

vehicle. Apart from some early results [45], the use of wearables in this domain has so far

remained unexplored. Towards this goal, this stufy examines the benefits of wrist-worn

inertial data, such as those from smart watches or fitness bands, when combined with

phone measurements. Such data is particularly useful for tracking hand movements and

can therefore provide information about the driver’s vehicle operation—most notably

steering wheel usage. To allow more accurate identification of driving, we first develop

an inertial detection technique that can distinguish motions when handling steering

wheel from other passenger hand movements. After the user is detected as the driver

of the vehicle, we detect whether the hand is on the steering wheel based on the hand

movements of the driver captured by inertial sensors. We finally extend this technique to

also track the turning angle of the steering wheel. This information can allow for more

precise vehicle motion tracking than gyroscope data and was previously only available

through proprietary interfaces to the vehicle CAN bus.

Tracking the usage of the steering wheel can help monitor driving behaviors and

identify unsafe driving. For example, the steering wheel turning angles could be used

in lane departure warning system to warn a driver when the vehicle is about to drift

across the lane. Moreover, unsafe driving behaviors such as swerving, understeering

or oversteering could also be detected based on the steering wheel turning angles and

other inertial or speed measurements. Just knowing whether a driver’s hands are on the

steering wheel is also useful context information that mobile apps can use to minimize

distractions to drivers.

The contributions of our work are summarized as follows:

• We explore the use of wearable devices, such as smart watches and wristbands, to

track fine-grained driving behaviors including steering wheel usage and angle.

• We introduce machine-learning-based methods and features to classify the wearable

device user as the driver or passenger by steering wheel usage motions from other

passenger hand movements.

• We design a hand on/off steering wheel usage detection method that relies on
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hand movements of the driver captured from the wrist-wearable device.

• We propose a steering wheel angle estimation approach by leveraging the wrist

rotation caused by the movement of rotating the steering wheel. The proposed

approach takes as input the gyroscope reading of a wrist-wearable device and the

relationship between the wrist and steering wheel rotations, for real time steering

wheel angle estimation.

• We demonstrate through experiments in real driving scenarios that it is feasible to

track fine-grained driving behaviors using wrist-wearable devices. Our experiments

show 98.9% driver detection accuracy for individual turns, 99% accuracy in

detecting steering wheel usage and estimation of turning angles with an average

error of 3.4 degrees, when the hand remains on the steering wheel.

4.2 Related Work

In addition to background work introduced in Chapter 2, there are limited number of

studies on tracking steering wheel usage. Van and colleagues [24] introduced several

models that get driving behaviors from the steering wheel angle. Schmidt et al. [23]

present a mathematical model of the steering wheel angle that contributes to predicting

lane change maneuvers. However, these approaches need the steering wheel angle

data, which is not readily available in mobile devices. [46] used steering-wheel-mounted

kinematic sensors to estimate the steering wheel angle. However, this technique still

relies on external sensors that need to be deployed and may cause distraction.

In recent years, wearable devices have been exploited for motion estimation in many

research works. Vlasic et al. [47] propose a full body motion capture system using inertial

sensors. Raiff et al. [48] use a wristband containing a 9-axis inertial measurement unit

to capture changes in the orientation of a persons arm, and develop a machine learning

pipeline that processes the orientation data to accurately detect smoking gestures. We

foresee that wrist-worn wearable devices, such as smartwatches and activity trackers,

are particularly useful for fine-grained tracking driving behaviors, because they capture

the dynamics directly from user’s hand movements. Different from the above works, we
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propose a low-infrastructure approach to accurately determine steering wheel turning

angles based on both smartwatch and smartphone, which can be used as an input for

many driving safety applications.

4.3 Applications and Requirements

The observations that can be gathered from mobile and wearable devices open new

research opportunities that would be impossible to develop with existing built-in,

stovepipe automotive safety systems. The steering wheel usage is one example - it

can be used to analyze drivers’ behaviors, but also to inspire additional driver safety

applications. Although cars equipped with Electronic Stability Control (ESC) could

utilize steering wheel angles to determine a driver’s intended direction, steering wheel

angle information is not usually accessible from the OBD-II port, and therefore not

available for third party applications.

We show that the steering wheel angles can be accurately estimated by leveraging

a wearable device on the driver’s wrist. The estimated steering wheel angle (θest) can

further facilitate various safety and driver behavior monitoring applications, which

will be discussed in Section 4.3.1. Although the real steering wheel angle (θreal) could

be measured more accurately through the car’s built-in systems, the accuracy of the

estimated angle may still be useful for the applications with lower accuracy requirements

such as understeer/oversteer detection. In Section 4.3.2, we calculate the required

accuracy in estimated steering wheel angle in order to achieve desired error rates.

4.3.1 Steering Wheel Tracking Applications Scenarios

Detecting Understeer and Oversteer. One of the critical applications of steering

wheel tracking is understeer/oversteer detection. In the simplest terms, oversteer is

what occurs when a car steers by more than the amount commanded by the driver.

Conversely, understeer is what occurs when a car steers less than the amount commanded

by the driver due to traction loss as illustrated in Fig 4.1a. In addition to estimated

steering wheel angle and real steering wheel angle, we define another term, the Expected
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(a) Understeer and oversteer are in blue and
red. Green line represents driver’s intended
steering.

(b) The real steering wheel angle and the
expected steering wheel angle from car’s
heading.

Figure 4.1: Car and steering wheel for understeer/oversteer.

steering wheel angle (θexp) which is the steering wheel angle that can be calculated

based on the car’s movement. (θreal) and (θexp) are illustrated on a steering wheel in

Figure 4.1b When there is no understeer or oversteer, the expected and real steering

wheel angles should be ideally equal since the car moves as directed by the steering

wheel. However, when an understeering or oversteering incident happens, there will be

a difference between the two values. Therefore, understeer/oversteer can be detected

when this difference exceeds a threshold value (θth) during the car’s turn.

By combining basic circular motion laws and Ackermann steering geometry [49],

the expected steering wheel angle can be calculated from centripetal acceleration and

angular velocity of the car with following equation:

θexp =
1

k
arctan

( 2ω2

(2a+ dω2)L

)
, (4.1)

where a, ω, d, and L represent centripetal acceleration, angular velocity, width, and

length of the car, respectively. Lastly, k is the coefficient that maps car’s steering wheel

angle to wheel angle.

Curve Speed Warning. Generally, vehicles have over five times higher accident

rates on curves than that on straight roadways [50]. Transportation authorities thus

took actions, such as placing dangerous curve warning, to prevent drivers from moving

through a curve at a dangerous speed. However, there are still many sharp roadway

curves without any warning signs or advisory speeds posted. Additionally, accident risks

may still exist, even with warning signs, since the warning signs may be overlooked.
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(a) No oversteer (b) Oversteer

Figure 4.2: Estimated Steering wheel angle and corresponding True positive, False
Positive, False Negative, and True Negative regions are illustrated.

Thus, one example application type that enhances driver safety are Curve Warning

Systems (CWS). These assess threat levels for vehicles approaching curves and provide

timely driver feedback. The maximum safe speed of a vehicle for an approaching curve

is normally affected by both road conditions (e.g., weather conditions) and vehicle

behaviors, such as the type of the vehicles (sedan, truck, etc.) and steering wheel

rotations. One possible CWS might use crowd-sourcing to determine the maximum safe

speed of a vehicle for each upcoming curve by using historical safe turning data sets

of other vehicles passing this curve (i.e., without understeering/oversteering happen).

The CWS would select the data sets to match the road conditions and vehicle behaviors

of the current vehicle to narrow down suitable observational sets and calculate the

optimum speed of the vehicle for the curve. The CWS could warn the driver visually if

the speed of the vehicle is larger than the calculated optimum speed.

Other applications. Tracking steering wheel usage can lead to many other appli-

cations. For example, by comparing estimated and expected steering wheel angles, not

only during the turns, but continuously, a car maintenance system can decide whether or

not a car needs alignment if there is a persistent offset between estimated and expected

steering wheel angles. Also, the steering wheel angle expectation based on online maps

for a specific road can be utilized to detect lane changes by comparing the estimated

steering wheel angle. The same system can further be useful to detect impaired driving

if abnormally frequent lane changes are detected. Similarly, the system can be used

to monitor driving styles and report dangerous driving habits. Another interesting

application would be gesture-based input system, the driver could interact with the
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vehicle by rotating his hand on the steering wheel without actually moving it. Such

a gesture-based input system can enable drivers to change the radio volume without

moving their hand off the steering wheel. However, these type of applications are beyond

the scope of this thesis.

4.3.2 Accuracy Requirement of Understeer/Oversteer Detection

We believe that the coarse data can be still useful for a wide range of applications. In

this section, we thus analyze the steering wheel angle estimation accuracy needed to

deliver various minimums on classification performance for slip detection. We calculate

the allowed deviation of estimated steering wheel angle from real steering wheel angle for

an example oversteer detection application with performance criteria, namely minimum

slip detection angle (MSDA) and error rate. (er). However, the similar calculations

can be carried out for understeer and lane change detection application scenarios.

These two metrics ensure that the system’s error rate will always be less than er

as long as the degree of slipping is greater than MSDA. The metric we choose for the

error rate is Equal Error Rate which is the error rate of the system when the probability

of false positives, false oversteer detections, and that of false negatives, missed oversteers,

are equal. Therefore in order to calculate the error rate, we need to define rate of false

oversteer detections and the rate of missed oversteers first.

For the false positives, we need to consider the case where the car does not slip. The

real steering wheel angle and the expected steering will be equal and have the value of

θreal. The estimated steering wheel angle can be modeled as a normal distribution with

mean θreal and σsteer standard deviation as in Fig. 4.2a. The σsteer is the estimated

steering wheel angle requirement that the estimation algorithm needs to achieve the

aforementioned guarantees. Any θest angle that is greater than θreal + θth will result in

false positives. In order to calculate the false negatives, we need to consider the case when

the car’s slipping causes θslipping degrees of difference between the real steering wheel

angle and the expected steering wheel angle. The estimated the steering wheel angle

can still be modeled with the same normal distribution. The false negatives will occur

for the values of the estimated steering wheel angle greater than θreal + θslipping − θth as
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Figure 4.3: The required steering wheel accuracy (σsteer) for given error rate (er) and
slipping angle (θslipping) is plotted.

Error Rate (er) [%]
0.1 0.2 0.5 1 2 5 10

Minimum Slip 1 0.16 0.17 0.19 0.22 024 0.30 0.39
Detection 5 0.81 0.87 0.97 1.07 1.22 1.52 1.95

Angle 10 1.62 1.74 1.94 2.15 2.43 3.04 3.90
(MSDA)[o] 20 3.24 3.47 3.88 4.30 4.87 6.08 7.80

Table 4.1: The required steering wheel angle accuracy (σsteer) is given for desired error
rates (er) and Minimum slip detection angles (MSDA)

shown in Fig. 4.2b. From these figures, the σsteer can be calculated for given θslipping

and er can be calculated as follows

σsteer =
θslipping

2
√

2 ∗ erf−(1− 2er)
, (4.2)

where the erf() is the error function. The σsteer for some er and θslipping are given in

Figure 4.3. The figure shows that the smaller θslipping values require higher accuracy

in steering wheel angle estimation system. Therefore, we need to set a minimum

slip detection angle in order to define the upper limit of required accuracy. Some

example values of required σsteer are presented in Table 4.1 for different MSDA and er

requirements.

4.4 System Design

In this section, we first provide an overview of our wearable device based steering and

driver tracking system. We then present in detail the proposed, driving detection, hand

on/off steering wheel detection, and the steering wheel angle estimation methods.
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Figure 4.4: System overview.

4.4.1 System Overview

The basic idea of our system is to use wrist-mounted inertial sensors to capture the

hand movements and wrist rotation of the user to detect driving, and tracking steering

wheel usage and angle. As shown in Figure 4.4, the system takes as input real-time

sensor readings from both the wearable device and its paired smartphone including

the accelerometer, gyroscope, and magnetometer readings. It then performs coordinate

alignment to align the sensors’ readings of wearable device and smartphone under the

same coordinate system. Coordinate aligment utilizes magnetometer and accelerometer

readings in order to find the rotation of devices with respect to earth coordinate frame

and then finds an rotation matrix that maps one sensor’s readings to the other sensor’s

coordinate frame. The output of coordinate alignment will be used in different parts

of our work whenever it is necessary to a vector from one coordinate frame to another

coordinate frame. The system finally detects whether a user with the wearable device is

a driver or a passenger.

The other elements of our system are the Hand On/Off Steering Wheel Detection and

Steering Wheel Angle Estimation. If a driver is detected, our system then continuously

detects when driver’s hand is on/off the steering wheel. It could be done by identifying

when the drivers hand is moving away from and moving back to steering wheel based

on the captured hand movements of the driver. During the periods when driver’s hand

is on the steering wheel, we further estimate the turning angle of the steering wheel

based on the wrist rotation caused by the movement of rotating the steering wheel. The
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output of our system, for example, driver’s hand is on/off steering wheel and the steering

wheel rotation angle, could be used as input to build a broad range of driving safety

applications, such as curve speed warning, understeer/oversteer estimation, unsafe lane

changes, and distracted driving.

Coordinate Frame Alignment

Processing the inertial sensors data requires transformations between the different watch,

phone, car and world (earth) coordinate spaces through rotations. In this work, we

use quaternion to represent rotations in three dimensions, a representation that is also

directly available through some sensors APIs [51].

There are two important applications of quaternions in our system. The first is to

represent rotation of a coordinate frame with respect to another coordinate frame.

Quaternions provide a way to encode the axis-angle representation, and to apply the

corresponding rotation to four element vectors. A sensor quaternion vector determines

sensor rotation relative to the world coordinate frame, which we define as the x-axis

pointing east, y-axis pointing north, and the z-axis pointing up. In Figure 4.5 the

different coordinate systems are illustrated. In our work, the smartwatch’s rotation

relative to the smartphone’s can be found by:

qwp = qpeqwe
−1 (4.3)

Here qwp represents smartwatch quaternion relative to phone coordinate frame, qpe and

qwe represents pone and watch quaternions relative to the earth coordinate frame.

The second application of quaternions is representing a vector defined in world

coordinate frame in another coordinate frame by using the Hamilton product as shown

below:

pw = qwepeq
−1
we. (4.4)

Here pe represents the input vector in the world coordinate frame, qwe represents the

quaternion in the world coordinate frame, and pw is the output vector in the watch

coordinate frame.
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Figure 4.5: Phone and smart watch can be utilized to detect user and car movements.

4.4.2 Driving detection

For driving detection, an obvious distinction between a driver and a passenger is that

the driver’s hand will steer the wheel when the car is making a turn. This leads to the

intuition of our system being to distinguish driver and passenger through capturing the

pattern of steering wheel movements. Our system overview is shown in Figure 4.4. It first

collects data from sensors (including the accelerometer, gyroscope and magnetometer)

of both a user’s wrist-worn sensing device (e.g. smartwatch) and smartphone. We

assume that riding in a vehicle can be detected using existing inertial or location-based

techniques [15] and concentrate on differentiating between the driver and passenger.

To this end, it performs turn detection using the collected data. Because the most

discriminative driver hand’s motion tends to happen during turns, our system conducts

turn detection by recognizing three different phases of each turn. Based on the output

of turn detection, we extract six features to characterize the hand movements. With

this feature set, our system can detect whether the user wearing sensing device is a

driver or a passenger using a Support Vector Machine (SVM) based classifier.

Turn detection

We develop a three-phase turn detection algorithm, which segments different turning

periods based on the gyroscope data collected from both smartwatch and smartphone.

The first phase is to find the vehicle turn period, wherein the vehicle is actually

turning, by applying threshold detection to a sliding time window over the vector
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Figure 4.6: Illustration of the turn detection procedure.

magnitude of the smartphone gyroscope. Once all data in the window exceeds the

threshold the algorithm detects a turn and expands the left and right sides of the time

window to the first local minima, to capture the whole vehicle turn period, as shown in

Figure 4.6.

However, based on our observation, the beginning part of the turning steering

wheel movement might be missed in the vehicle turn period, especially at low driving

speeds. The pictures at the bottom of figure 4.6 shows the whole turning steering wheel

movement of a right turn, and the beginning part, between t1 and t2, always occurs

slightly before the vehicle begins to turn. Thus, the second phase of our turn detection

is to detect the first hand movement period through gyroscope x-axis data from the

smart watch, which could precisely characterize this movement. The algorithm uses two

pointers to search for the first zero crossing point on both the left and right sides of

the starting time of the vehicle turn. The segment between left side and right side zero

crossing point is identified as the first hand movement period.

Finally, the third phase identifies the entire turn period as the union of the vehicle

turn period and the first hand movement period. The entire turn period now includes

the entire steering hand motion. Note that this three-phase turn detection algorithm is
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also applied to passenger watch and smartphone data. In this case, the hand movement

may not exist and the detected period is simply the vehicle turn.

Feature Extraction

After a turn is detected, our system extracts features from sensor data so that real

steering movements can be distinguished from arbitrary arm movements performed by

passengers. Our system consists of 6 features in total, which are described as follows

and denoted by ffeaturename.

Rotational Change. Since the arm and wrist typically rotate during steering

movements, we select watch rotation as the first feature. Directly detecting the rotation

of arm using smartwatch data is hard as the watch’s rotation (relative to world coordinate

frame) is affected by both the arm movement and car’s change in heading. We therefore

eliminate the effect car rotation during the entire turn period by calculation the rotation

of the smartwatch relative to the smartphone (qwp(t)). This is performed by applying

Eq. (4.3).

We next need to detect the direction of the rotational movement to distinguish

turning steering wheel from other rotational movements, such as eating snacks. Since,

the phone can be in an arbitrary rotation in the car, the calculated qwp does not provide

information about the direction of arm movement. We can find the rotation of the

watch’s movement during entire turn relative to watch’s rotation at the beginning of the

car’s turn, initial coordinate frame, by using Eq. (4.3) with qwp and initial quaternion

(qw0), the quaternion at the beginning of the turn, as summarized below:

qw(t) = qw0(qpe(t)qwe
−1(t))−1 (4.5)

frotChange = max(abs(T {qw(t)})) (4.6)

Finally, we use the maximum of the absolute values of the time series of Euler angles

in the individual axes as the rotational change feature vector frotChange. Here, T {}

refers to the transformation from quaternion time series to Euler angles time series. We

use the absolute values, since we are not interested in the direction of rotation (steering
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left or right) and select the maximum rotation in each axis over the time window of the

entire turn period.

Arm Acceleration. Although rotational change feature provides information about

the direction and angle of the turn, it does not provide any information about the

radius of rotational movement. As a consequence two hand movements can produce

same rotational change feature as long as hand is rotated along the same axis and same

degrees. To the best of our knowledge, there is no direct way of finding the radius of

rotational movement from inertial sensors. Fortunately, acceleration vectors relative to

a fixed coordinate frame will be larger when the radius of the rotational movement is

large and will be smaller when the radius is small. Thus, we can use acceleration as a

feature. However, acceleration vectors are expressed relative to arm’s rotation and it

will be changing when the arm is rotating. Therefore, these measurements need to be

represented in the same coordinate frame before doing any vector operation on them or

using them as a feature. We chose arm’s initial rotation as the fixed coordinate frame

for the sake of simplicity of calculations. Our method calculates watch’s acceleration

relative to this coordinate frame during entire turn period by first calculating quaternion

vectors relative to initial coordinate frame (qwinit(t)) and then taking Hamilton product

(Eq. (4.4)) of these quaternion vectors with accelerometer vectors (awe(t)). Finally, the

maximum of calculated acceleration is chosen as the feature (farmaccel).

qwinit(t) = qw0qwe
−1(t) (4.7)

farmaccel = max(qwinit(t)awe(t)q−1
winit(t)) (4.8)

Car Acceleration. Since the watch’s acceleration measurements are largely affected by

the car’s acceleration, we also need to provide the car’s maximum acceleration relative to

the watch’s initial coordinate frame as a feature (fcaraccel). The car’s acceleration will be

equal to the phone’s acceleration when the phone is fixed. Therefore, a similar method

as in the farmaccel calculation is carried out for coordinate frame transformations with

the phone’s acceleration measurements during entire turn period.

qpinit(t) = qw0qpe
−1(t) (4.9)
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fcaraccel = max(qpinit(t)ape(t)q−1
pinit(t)) (4.10)

First Hand Movement. As introduced in section 2.2, we also need to extract some

features from the first hand movement. The maximum of watch’s gyroscope x-axis value

is selected to express the maximum rotation velocity during this movement. Besides,

the time duration of the movement is also selected, since passenger’s hand movements

are usually shorter than drivers.

Other Features. To further improve our feature set, we experimented with several

additional features like mean or maximum of devices’ gyroscope data. By utilizing

feature selection, we abandon some of them and choose the watch’s gyroscope magnitude

mean value of the entire turn period, which can improve the accuracy of our classification

model.

Classification

With the identified feature set, the next step of our system is to distinguish whether a

user of the smart watch is a driver. There are multiple methods that could be used for

such a binary classification task and here we choose SVM as our classifier—not only

because it is one of the most robust ones but also because we empirical found that it

achieves the better performance in our task than several alternatives.

During the classification process, we first normalize the feature set by converting it

into unit domain. With this normalized feature input, the classifier determines whether

the data fits driver or passenger.

4.4.3 Hand on/off Steering Wheel Detection

As showed in Figure 4.4, in order to estimate whether a driver’s hand is on or off the

steering wheel, we first perform Hand Movement Detection to capture all the driver’s

hand movements except for rotating the steering wheel. Intuitively, for the period when

the driver’s hand leaves the steering wheel, there must be two movements. One is the

Departure Movement, which indicates driver’s hand moved away from the steering wheel

and happens at the beginning of hand off period. The other is the Returning Movement,
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which means driver’s hand is moving back to the steering wheel and happens at the end

of the hand off period. For each pair of departure movement and returning movement,

the driver’s hand always moves to opposite linear and rotational directions with respect

to the steering wheel. Therefore, after hand movement detection, we perform Linear

Direction Estimation and Rotational Direction Estimation to extract the linear and

rotational moving directions of each hand movement. We then combine the linear

and rotational direction information to match each pair of departure and returning

movements. Thus, the period that between each pair of matched movements are hand

off steering wheel period, the rest are hand on steering wheel periods.

Hand Movement Detection. To detect driver’s hand movements with respect to

the steering wheel, we need to eliminate the effect of car’s motion from driver’s wrist

sensor reading. This could be done by subtracting the car’s acceleration and gyroscope

readings from the ones of the wearable device after coordinate alignment. We then get

the acceleration and angular speed only produced by hand’s movement. We further

smooth the wearable device’s readings to reduce noise by using a low pass filter. We

experimentally find that the gyroscope is more reliable for hand movement detection

than that of acceleration. We thus examine the peaks (i.e., local maximum) of the

magnitude of gyroscope reading to detect the time when hand movements may happen.

After getting peaks of gyroscope magnitude, we perform peak clustering in the time

domain. As each movement could be related to multiple continuous peaks in a specific

time domain, we could then filter out vibration noise and the motion corresponding to

slight hand movements (which are also keeping hand on the steering wheel) by excluding

those clusters that contain less numbers of peaks. Therefore, after peak clustering, we

can get each hand movement, starting at the first peak in each cluster and ending at

the last peak in the same cluster.

Linear Direction Estimation. During each movement period, estimating the

linear moving direction is helpful to characterize and match the movements. For the

three axis of the car’s coordinate system, the x and y axis are always more noisy. We

thus always estimate the linear direction according to z axis, namely the up and down

direction.
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Figure 4.7: Linear Direction Estimation

As the hand always moves from one stationary state to another stationary state for

each hand movement, there will be a speed up process and a slow down process. If the

hand speeds up towards the up direction (i.e., large acceleration with negative readings)

and then slows down, it means the hand is moving up, and vice versa. We thus can

exam the sign and the magnitude of the acceleration to identify the moving direction

of the hand. Figure 4.7 & 4.8 show the acceleration and rotation angle measurements

from a wearable sensor placed on the arm. As shown in Figure 4.7, the black horizontal

dash and solid lines show the ground truth when hand is on and off the steering wheel

respectively and eight curves show the movements we detected. The acceleration pattern

we mentioned above is obvious for the 2nd, 3rd, 4th, 6th, 8th curve, but is indistinct for

1st, 5th and 7th curve. It is because sometimes the effect of gravity could not be perfectly

eliminated. Therefore, we add one more rule to estimate the movement direction. That

is if the maximum value of the z axis acceleration is less than 0.01, this movement is a

up movement (because the maximum value is supposed to be a larger positive value).

Therefore, based on the two patterns we find in the z axis acceleration value, we could

estimate whether a movement is either a up movement or a down movement.

Rotational Based Movement Matching. The main principle of movement

matching is the departure and returning movements must have different moving directions.

Thus, we first find all adjacent paired movements with opposite direction and regard

all such pairs as potential matching. However, some events such as sudden braking

or bumpy road conditions may cause dramatic changes of both the accelerometer and

gyroscope values, which may lead to an incorrect movement detection and even an
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Figure 4.8: Rotational based matching

incorrect hand off period detection. As shown in Figure 4.8, Movement 13 is an incorrect

hand movement detection, while 14 and 15 are a pair of departure and returning

movements.

To solve this problem, we calculate the rotation angle of the watch respect to the

smart phone, and use its magnitude to monitor the angle changes of the watch. Since

the driver’s hands always have slightly continuous movements when his hands are on

the steering wheel, while during the hand off period, his hands are relatively stable,

we developed a variance filter to reduce matching errors. This filter simply calculates

the variance between two potential matching movements and sets a threshold (0.002

rad in our system) to remove those match with a large variance. In the example in

Figure 4.8, the variance between 13 and 14 is 0.004 rad while the variance between 14

and 15 is 0.0003 rad. We therefore match movement 14 and 15 together. By applying

this rotational based movement matching, the system provides more accurate hands

on/off steering wheel detection to facilitate steering wheel angle estimation.

4.4.4 Steering Wheel Angle Estimation

Once steering wheel usage is detected, we further use the wrist rotation of the smart

watch to infer the steering wheel turning angles. When the driver rotates the steering

wheel, the smart watch also experiences wrist rotation as it rotates together with the

steering wheel. The steering wheel angle thus could be inferred from the wrist rotation

of the smart watch. In particular, we use the gyroscope readings of smart watch to

measure the wrist rotation for steering wheel angle estimation.



35

Figure 4.9: Holding position and the projected position of smart watch on steering
wheel.

In the coordinate alignment step of the system, we align both the car’s and the smart

watch’s coordinate systems with the steering wheel’s. By aligning these coordinate

systems, we are able to project the gyroscope readings of both the car and the smart

watch to the plane of the steering wheel. We then perform Data Calibration and

Integration to remove the effect of car’s motion (i.e., car’s rotation) and integrate the

gyroscope readings (i.e., angular velocity) to rotation angle. After this step, we obtain

the wrist rotation of smart watch with respect to the steering wheel’s rotation. Such

wrist rotation is then used in Angle Estimation to infer the steering wheel angle based

on the constructed driver rotation profile in Profile Construction. In this study profile

construction is studied for a single driver and a more generic driver rotation profile

construction is left as a future work.

Data Calibration and Integration. When a car makes a turn, the gyroscope

readings (i.e., angular velocity) of the smart watch are a combination of the angular

velocities of the steering wheel rotation and the car. As the car’s angular velocity can be

measured by the phone inside the car, we simply subtract the car’s angular velocity from

the angular velocity of the smart watch after coordinate alignment. We then obtain

the angular velocity of the smart watch which solely corresponds to the steering wheel

rotation. Such angular velocity is then integrated to wrist rotation angle with respect

to the steering wheel. We define such wrist rotation as θwrist.

Profile Construction. Ideally, we expect the wrist rotation θwrist equal to the
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steering wheel angle θreal when making turns. However, we experimentally find that the

wrist rotation of the smart watch is usually less than that of the steering wheel. This is

because the driver bends his wrist in different ways when holding the steering wheel

under different turning angles. As shown in Figure 4.9, before making a turn, the wrist

has a large angle to the steering wheel plane. The projected location of the smart watch

on the steering wheel is thus close to the holding position. After a 90 degree turn, the

wrist angle to the steering wheel plane becomes smaller, which leads to the projected

location farther away from the holding position. The rotation of the smart watch is thus

smaller than that of the steering wheel. Moreover, the attitude change of the watch

is mainly due to the wrist rotation instead of the translation movement following the

trajectory of the steering wheel movements. Thus, the smart watch mainly rotates side

to side on the wrist. These factors makes the smart watch rotation significantly less

than that of the steering wheel rotation angle.

To address the aforementioned issue, we use a supervised learning method to create a

driver rotation profile. In particular, we collect training data offline to create a mapping

(i.e., a function f(x) such that θreal = f(θwrsit)) between the rotations of the smart

watch and the steering wheel turning angles. This is based on the observation that

people usually consistently bend their wrists when turning. The steering wheel turning

angles thus can be inferred based on the wrist rotation of smart watch (i.e.,θwrist)

and the created angle mapping (i.e., f(x)). To create the driver rotation profile, we

use a gyroscope sensor aligned with the steering wheel to measure the real steering

wheel angles, and then use liner regression to fit the smart watch rotation θwrist to the

measured steering wheel angle. We experience with different models, such as linear,

quadratic and cubic fits, and find that the linear fit is simple yet effective.

To construct the profile, we could also use a semi-supervised approach. It uses the

smart phone inside the car to monitor the centripetal acceleration and angular velocity

of the car when making turns to calculate the angle of the steering wheel. When there

is no understeer/oversteer, the steering wheel angle could be calculated based on the

circular motion laws and Ackermann steering geometry [49], as shown in equation (4.1).

We could then build the profile automatically based on the real-time measurements of
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Figure 4.10: Position of sensors and smartphone.

the θwrist and the calculated steering wheel angles. After the profile is constructed, we

can then infer the steering wheel angle based on wrist rotation of the watch θwrist for

building higher level safety applications, such as understeer/oversteer detection and

curve speed warning.

Angle Estimation. By plugging in the real-time θwrist to the mapping profile f(x),

we could infer the real-time steering wheel angle as θest = f(θwrist).

4.5 Performance Evaluation

4.5.1 Experiment Setup

To evaluate our approach, We conduct experiments with an Invensense MPU-9150

9-axis motion sensor, which is a prototyping alternative to a wearable device. The

motion sensor contains 3-axis accelerometers, gyroscopes, and magnetometers. In our

experiments, the participants (driver and passenger) are asked to attach the motion

sensor to his/her left wrist, where people usually wear watches. The motion sensor is

paired with participant’s android smartphone via Bluetooth. The smartphone is placed

in the middle cup holder with its coordinate system aligned with that of the car. For

steering wheel angle estimation, we align another motion sensor with the steering wheel

to record the ground truth of the steering wheel rotation angles when making turns.

In contrast to other steering-wheel-mounted sensor based approaches our work is a

low-cost and unobtrusive design that can reach a much larger population and focuses

on finding the steering wheel angle without requiring any additional sensors. However,
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Figure 4.11: Measurements from angle finder, smart watch, and steering-wheel-mounted
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obtaining the ground truth is very hard with angle finders in a dynamic while the vehicle

is being used. As a consequence, we used steering-wheel-mounted sensors to collect

the ground truth. Our experiments with static steering wheel showed that the error in

steering-wheel-mounted-sensors is negligibly small (less than 1◦) and can be usable as

ground truth. Figure 4.11 shows mean and standard deviations in angle measurements

from the angle finder, the steering-wheel-mounted sensor, and the smartwatch. All the

other experiments are performed while the car is being driven. Additionally, a GoPro

camera is mounted over the driver’s shoulder to record the ground truth of the driver’s

hand movements while driving.

The positions of these devices are shown in Figure 4.10. The sampling rates of

motion sensors and smartphones are set to 100Hz for driving detection and 50Hz for

steering tracking, which are supported by most off-the-shelf wearable and mobile devices,

such as the smart watches and fitness trackers. The sensing data of the motion sensor is

transmitted to and stored at smartphone via Bluetooth by an app. We have two drivers

preform data collection with one driving Honda Civic and using Nexus 5 smart phone

and the other driving Toyota Camry and using Nexus 6 smart phone.

4.5.2 Driving Detection Evaluation

We evaluate the driver detection in terms of how accurately the system detects turns

and recognizes the user as a driver for each turn, how long it takes to detect that a user

is a driver.
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(a) Highway (b) Local road (c) More movements

Figure 4.12: Maps of commute routes.

Driving Detection Accuracy

For driver detection evaluation, the experiments are conducted under two scenarios. For

the first scenario, the driver drives in a controlled area and the passenger always keeps

both wrists stationary (now arm movement). For the second scenario, the driver drives

on a real road, and the passenger moves (playing with the phone and eating snacks).

We collect data for 239 turns in the first scenario and 41 turns in the second scenario,

both with passenger and driver inside the car. Our three-phase turn detection algorithm

correctly detects all of these 280 turns resulting in 100% accuracy.

Figure 4.13 presents the driver detection accuracy by using 10-fold cross-validation

when different sets of data are used. Overall, our system achieves 98.9% accuracy

by mixing the data collected in both scenarios (i.e., all data). If we only include the

passenger and driver data in the first scenarios for training and testing, the accuracy

goes to 100% as no wrist movement of passenger interferes with the driver detection. In

the second scenario, playing with the phone still yields 100% accuracy; it can apparently

easily be distinguished by the classifier. The more challenge scenario is when the

passenger is eating. When using data when passenger is eating, our system results in

96.7% accuracy due to some movements of eating produce similar features as steering

movements.

4.5.3 Detection Delay

Detection delay indicates how much time our system needs to make a decision after

starting to drive. Often the first turn occurs when leaving the parking space and our
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Figure 4.13: Detection accuracy in different cases

system can detect the driver within the first seconds of the drive. To understand the

performance under less ideal conditions, we consider here the case where no steering

is necessary to leave the parking space. Since we perform driver detection based on a

single turn, the detection delay thus can be defined as the time from starting a vehicle

to complete the first turn. The whole detection delay (dall) could be further divided

into two parts: the time that starting a vehicle from stationary to the beginning of the

first turn (ds) and the time to complete the first turn (dt).

Table 4.2: Detection delay of each drive

Turn No. 1 2 3 4 5 6 7 8
ds(s) 18.55 12.45 18.45 13.90 9.50 8.75 23.20 11.35
dt(s) 6.10 5.40 5.45 7.65 7.60 9.40 5.85 5.40
dall(s) 24.65 17.85 23.90 21.55 17.10 18.15 29.05 16.75

For the previous experiments, we have made 8 trips. The detection delay for these 8

cases are shown in table 4.2. The results show that the detection delay (dall) is very

small: ranging from 16.75 seconds to 29.05 seconds, with an average of 21.13 seconds.

Moreover, a vehicle usually makes multiple turns to pull out of a parking lot at the

beginning of each trip. Our system can thus be expected to have even smaller detection

delay in such cases.
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Figure 4.14: Hand on/off detection performance.

4.5.4 Hand On/Off Steering Wheel Detection Evaluation

For hand on/off steering wheel detection and steering wheel angle estimation evaluation,

We conduct experiments by driving on three routes with different road conditions, as

shown in Figure 4.12. The first two routes, namely Highway Commute and Local Road

Commute, cover the highway and local road commutes (i.e., Figure 4.12 (a) and (b)),

respectively. These two routes cover a wide range of steering wheel angles as highways

usually involve smooth curves resulting in small steering wheel rotation angles, and

local roads often have sharp turns that cause large steering wheel rotation angles. We

collect data for 20 trips over one month on these two routes and the driver is asked to

drive naturally. Additionally, in order to evaluate our hands on/off the steering wheel

detection algorithm, we intentionally perform more frequent hand on/off movements

during real driving on a highway as shown in Fig. 4.12 (c) .

We first evaluate how accurately we can detect the driver’s hand is on or off the

steering. We thus define the positive cases as the driver’s hand is on the steering wheel

and the negative cases as the driver’s hand is off the steering wheel. We measure the

duration of hands on/off the steering wheel in terms of number of seconds. Therefore,

each positive/negative instance corresponds to the driver’s hand is on/off the steering

wheel for one second. The one second’s resolution is good enough to tolerate the error

when we labeling the ground truth manually by checking the video of each commute

trip.

We use the true positive rate and true negative rate to measure the overall perfor-

mance of the hands off/on steering wheel detection. The true positive rate represents the
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Figure 4.15: The distribution of the steering wheel rotation for all the turns.

proportion of the period the hand on the steering wheel could be correctly determined,

while the true negative rate represents the proportion of the period the hand off steering

wheel could be correctly identified. In other words, the true positive rate reflects how

accurately our method could activate the steering wheel angle estimation, whereas

the true negative rate shows how accurately the method could trigger unsafe driving

behavior notification, for example warning driver when his hand is off the steering wheel.

Overall, our hand on/off steering wheel detection achieves a 99.9% true positive rate

and a 89.2% true negative rate for the normal commute data set, and a 99.3% true

positive rate and an 88.4% true negative rate for the frequent hand movement commute

data set. We also evaluate our system in two different commute types: highway and

local road. Figure 4.14 (a) compares the performance of our method on three routes.

We observe that different routes have similar performance, which demonstrates our

method is robust to different road conditions and different frequencies of hand on/off

the steering wheel events. By combining the results from these three routes, our method

achieves a 99.4% accuracy on detecting hand on steering wheel periods and an 88.8%

accuracy on detecting hand off steering wheel periods.

We next evaluate how accurately our method can detect when the hand is off the

steering wheel for different types of hand movements. In the experiments, we tested

three different typical hands-off events of drivers, namely hand on leg, hand on the

armrest and adjusting sun visor. Figure 4.14 (b) compares the true negative rates and

false negative rates for these three hands-off events. We observe that for both hand

on leg and hand on armrest events, the true negative rate remains above 91.5% and
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[0,30] (30,60) > 60 All turns
Mean 0.000063 -0.00012 0.00032 0.000046
Std. 2.21 3.82 6.12 4.93

Table 4.3: The mean and standard deviation (in degree) of the true error for the turns
with different steering wheel angles.

false negative rate is less than 8.5%. However, for reaching for the sun visor event, the

performance decreases to as low as 81.5%. This is mainly because reaching the sun

visor has a smaller moving duration and continuous moving process than that of other

two events. Thus, it is relative harder to match the hand movements to the departure

movement and returning movement.

4.5.5 Steering Wheel Angle Estimation Evaluation

For the steering wheel angle estimation, we collect 109 turns ranging from 120 degrees

right turn to 90 degrees left turn in both the highway commute and the local road

commute. The rotation of the steering wheel for these turns is up to 134 degrees. The

distribution of the steering wheel rotation for the collected turns is shown in Figure 4.15.

In particular, there are 25 turns with steering wheel rotation less than 30 degrees, 43

turns with steering wheel rotation in between 30 to 60 degrees, and 41 turns with

steering wheel rotation larger than 60 degrees.

We use two types of errors, true error and absolute error, to evaluate the performance

our steering wheel angle estimation. The true error is defined as the real steering wheel

rotation minus the estimated steering wheel angle (i.e., θreal−θest), whereas the absolute

error is the magnitude of the difference between the true rotation and the estimated

angle (i.e., ||θreal − θest||).

We first evaluate how the estimated steering wheel angle could detect the slipping of

understeer/oversteer. Table 4.3 presents the mean and standard deviation of the true

error under the turns with different rotation ranges of the steering wheel. We observe

that the mean of the true error is about zero for all the turns and the turns under

different steering wheel rotation ranges. We find the standard deviation of the true error
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Figure 4.16: Steering wheel angle estimation performance.

increases when increasing the steering wheel rotation ranges. This is because that with

larger rotations on steering wheel, the wrist movement experiences larger variation as

well. As we rely on the angle mapping profile f(x) to infer the steering wheel angle,

the larger wrist movement variation consequently produces larger variation of the angle

estimation.

In particular, Figure 4.16 (a) compares the standard deviation of the true error for

the turns with different steering wheel rotation ranges. We next compare the standard

deviation obtained in our experiments with the ones presented in Table 4.1 to evaluate

the effectiveness of understeer/oversteer detection. We find that the standard deviation

for the turns with steering wheel rotation less than 30 degrees is 2.21 degree which

results in approximately 99% accuracy when detecting 10 degrees slipping or about 90%

accuracy in detecting 5 degrees slipping. Whereas for the turns with steering wheel

rotation in between 30 to 60 degrees, the standard deviation is 3.82 which corresponds to

about 99.5% accuracy when detecting 20 degree slipping or more than 90% accuracy in

detecting 10 degree slipping. The standard deviation for the turns with wheel rotation

larger than 60 degree is 6.12 degree which leads to about 95% accuracy when detecting 20

degree slipping. Note that it’s more likely that larger rotation of the steering wheel will

cause larger angle of slipping. Even if the standard deviation increases when increasing

the size of the steering wheel angle, it could still produce high accuracy, 95% to 99% for

example, in detecting increased size of slipping angle. We next investigate the absolute
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error, which describes the magnitude of difference between the true steering wheel angle

and the estimated angle. Figure 4.16 (b) depicts the mean absolute error under the

turns with different rotation ranges of steering wheel. Overall, we observe that the mean

error is less than 3.4 degrees for all the turns. Moreover, the turns with larger steering

wheel rotation have relative larger mean error. Specifically, the mean error for the turns

with less than 30 degree steering wheel rotation is 1.7 degrees, whereas it is 2.73 and

4.38 degrees for the turns with rotation in between 30 to 60 degrees and rotation larger

than 60 degrees, respectively.

Figure 4.16 (c) shows the cumulative distribution function of absolute error under

the turns with different rotation ranges. Similarly, we observe the curve shifts to right

when the rotation of steering wheel becomes larger indicating larger rotation of steering

wheel has relative larger error. The median error increases from 1.45 to 1.76 and to

3.04 when the turns with the steering wheel rotation increases from the range of [0, 30]

to (30, 60) and to larger than 60 degrees. And the 80% percentile error for the case of

[0, 30], (30, 60) and larger than 60 is 2.66, 4.7 and 7.55 degrees respectively. We also

observe a large error (e.g., 10 degrees) at the tail of the CDF curve. This is because

the driver occasionally bends his/her arm very differently for the same size of steering

wheel angle. However, the percentage of such large errors is very small for the turns

with less than 60 degrees rotation of steering wheel. For example, it is less than 3% for

the case of (30, 60) and less than 5% for all the turns. And the large error becomes less

significant for the turns with rotation of steering wheel larger than 60 degrees. It still,

however, leaves us room to further improve the angle estimation method for example by

combining the accelerometer and gyroscope readings [52]. Overall, the above results

show that our steering wheel angle estimation method is effective with a mean error less

than 3.4 degrees.

4.6 Discussion and Conclusion

In this work, we exploit the opportunity of using wristworn wearable devices to enable

activity recognition of unsafe driving. In particular, we develop the fundamental

techniques in driving detection, hand on/off steering wheel detection, and steering wheel
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angle estimation to provide more detailed information in tracking of driving behaviors.

We examine whether our proposed vehicle-independent techniques leveraging wearables

could achieve sufficient accuracy for building driving safety applications. Through

various real-driving scenarios, we show that our approach can achieve 98.9% driver

detection accuracy, which corresponds to an average driver detection latency of 21.13

seconds after starting to drive. System also achieved hand on steering wheel detection

with a true positive rate around 99% and provide warning of unsafe driving when a

driver’s hand is off the steering wheel with a true negative rate above 80%. Additionally,

our system can achieve accurate steering angle estimation with errors less than 3.4

degrees to facilitate applications such as curve speed warning and understeer/oversteer

detection.

Open challenges remain towards realizing automatic steering and driver tracking

using sensing techniques independent of vehicles. A limitation of our approach is its

statistical nature for safety applications. E.g., detection accuracy decreases if the driver

steers only with the watch-less hand. However, we still envision that there exist a

range of human behavior modification and attention direction uses for which statistical

approaches are useful. Furthermore, our algorithms only need to be activated during

driving. For most people, this only occupies a small portion of their day. Thus, the

energy consumption incurred by our system should not pose any significant burden to

the wearables.

Another potential shortcoming is that we only construct and test the profile of wrist

rotation with respect to the steering wheel angle for one driver. We expect such profile is

relative consistent for different drivers as the wrist movements are highly constrained by

the rotation trajectory of the steering wheel. Still, re-training or fine-tuning the profile

may be required for different drivers. Such training efforts, however, could be mitigated

by using the semi-supervised learning based method proposed in profile construction

step. Furthermore, different drivers may have different styles of wearing the device.

For example, the panel of the smartwatch could face down for one driver but face up

for another. As the postures/attitudes of the wearable device could be detected by

the motion sensors, different postures thus could be calibrated to the one matches the
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construed profile based on the detected posture.
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Chapter 5

Single-sensor motion and orientation tracking in a moving

vehicle

Given the increasing popularity of mobile and wearable devices, this chapter explores

the potential use of inertial sensors that are widely available on mobile and wearable

devices for vehicle and driver tracking. Such capability would enable novel classes of

mobile safety and assisted driving applications without relying on information or sensors

in the vehicle. Although inertial sensors have been widely used in motion tracking,

existing approaches cannot distinguish the motion of the vehicle and the device’s motion

in the vehicle. Additionally, the noise exerted from the electronic components in the

vehicle and the ferromagnetic frame of the vehicle distorts the inertial sensor readings.

This paper introduces a method to separately estimate the orientation of both the

vehicle and the sensor by tracking the earth’s magnetic field and the electromagnetic

distortion from the vehicle measured by a magnetometer in addition to a gyroscope and

an accelerometer. Specifically, the vehicle noise is used to estimate the orientation of

the sensor within the vehicle while the earth’s magnetic field combined with vehicle

noise is used to estimate the vehicle’s heading. Our on-road experiments show that the

technique is able estimate sensor orientation with mean error of 5.61o for yaw angle and

3.73o for pitch angle, and able to estimate vehicle heading with mean error of 4.12o .

Inertial sensors on wearable and mobile devices have led to a great number of appli-

cations in activity tracking and have created new forms of human-computer interaction.

Their use in driving applications can enable new unobtrusive advanced assisted driving

systems and safety applications without relying on sensors installed in the vehicle.

Providing such services from mobile devices allows quicker dissemination of new safety

services into legacy vehicles. For example, the orientation of the inertial sensors placed
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Figure 5.1: An example inertial sensor placement on the head mounted device such as
Google Glass

Figure 5.2: Magnetometer readings 1) Outside of the vehicle 2) On Vehicle floor, Engine
off 3) On floor, Engine on 4)On seat, engine off 5) On seat, engine on 6) On seat, Vehicle
Moves. The small peaks occurs when sensor rotates along its x-axes

on wearable devices that tracks driver head movements such as in Figure 5.1 can be

used for contextual warnings, and gesture based arm tracking systems can be used

for interactions with the vehicle’s infotainment system. Such services require accurate

tracking of vehicle motion and the mobile’s sensor orientation in the vehicle.

Existing solutions Nowadays, many vehicles come with seat occupancy sensors.

Some newer models of vehicles come with driver tracking technologies based on a driver’s

steering wheel movements [53, 54] or eye tracking [55]. However, these approaches

require manufacturers to place sensors in the vehicle and most of these sensors are

only available in newer and pricier car models. In order to make this feature more

available in other vehicles, researchers have used mobile phones to track driver head

movements by using smartphone cameras [20, 56]. Although this approach removes the

burden of sensor placement, the driver activity tracking provided by these models are
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very limited and susceptible to visual occlusions. Additionally, these methods utilize

computationally expensive machine vision methods. Only recently have there been

studies investigating the use of wearable devices to track driver behaviours [17, 57].

Although these methods estimate both the vehicle’s and the user’s movements, they

require an additional reference sensor to be placed in the vehicle to separate the mobile

device’s movements from those of the vehicle reference frame.

We propose a single-sensor motion and orientation tracking method that does not

require an additional reference sensor to track vehicle’s motion. The method is able to

separate the vehicle’s motion from the sensor’s motion in a moving vehicle, The method

estimates vehicle’s magnetic noise which occurs naturally due ferromagnetic materials

used in the vehicle and utilizes this magnetic noise as a reference to vehicle’s heading

direction. The method then uses the relative angles between vehicle’s magnetic noise and

earth’s magnetic field to estimate the vehicle’s heading angle as well as sensor’s yaw and

pitch angles. We studied how the measured magnetic field changes as the vehicle and

the sensor rotates and formulated required equations to estimate the vehicle’s heading

angle from magnetometer measurements.

Applications Estimating the sensor’s and the vehicle’s movement from a single-

sensor could enable many useful applications and eliminate the problems related to

multiple sensors in prior models mentioned above. The sensor placed on the driver’s

arm as a smartwatch or a fitness tracker could detect driver’s arm movements and could

be used to estimate steering wheel movements [45,57] which then could be utilized for

many driving safety and assisted driving applications. Additionally, inertial sensors in

head-mounted devices such as Google Glass could be used for tracking the driver’s head

movements. Such movements could give accurate information about the driver’s focus

of attention or lack thereof. Head tracking could be used to enable assisted driving

applications by providing contextual information or warnings to drivers based on where

the driver turns his head.

The contributions of our work are summarized as follows:
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Figure 5.3: System overview

Figure 5.4: Magnetometer readings inside and outside of the vehicle when earth’s
magnetic field rotate

• We analyzed the magnetic noise in the vehicle and how the magnetic field mea-

surements change in the vehicle during the vehicle and sensor turn.

• Provide a mechanism that can estimate the characteristics of the vehicle’s magnetic

noise in the vehicle that can be used for orientation estimation.

• We formulated the relationship between magnetometer measurements and vehicle’s

magnetic noise to estimate the orientation of the sensor in the vehicle as well as

the vehicle’s heading angle.

• Propose an approach that eliminates the reliance on multiple sensors, which

previous studies and researches had utilized and evaluated the method with in-field

experiments.
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5.1 Background

There have been active research efforts in reinforcing driving safety by tracking driver’s

behaviours leveraging mobile sensing technologies on the smartphone (including using

cameras, embedded sensors, and other auxiliary devices (e.g.,OBDII) in mobile devices

or vehicles). In particular, several previous studies use cameras placed on the vehicle

to track driver attention and predict driver maneuvers. Oliver et al. [58] use manually

annotated driver’s gaze from cameras placed in the vehicle to predict driver maneuvers

such as lane change and turning. However, this approach needs information about

where the driver’s visual attention is focused, which is not readily available on current

HMD and mobile devices. Several other studies [59, 60] gathered head or eye poses

with computer vision techniques and used machine learning algorithms to predict the

maneuvers. These studies reveal the correlation between driver’s head movements and

vehicle’s maneuvers. Doshi et al. [60] also states that head pose tracking systems are

more robust than gaze tracking and for the lane change detection systems head pose is

a better cue than eye gaze.

In contrast, other works rely less on specific phone placement and more on motion

sensing through phone’s embedded inertial sensors. Chen et al. [19] develop a vehicle

steering detection middle-ware to detect various vehicle maneuvers, including lane

changes, turns, and driving on curvy roads. Liu et al. [61] design a simple setup to

collect useful driving data for self-driving with smartphone. Castignani et.al. [18]

propose SenseFleet, a driver profile platform that is able to detect risky driving events

independently on a mobile device. Wang et al. [14,17] utilize embedded sensors in a

smartphone and a reference point (e.g., an OBD device) in the vehicle to determine

whether the phone is on the left or right side of the vehicle. However, most of these

approaches can only infer the vehicle’s motion based on the inertial sensing measurements

from the smartphone, which can hardly track driver behaviour inside the car.

The emerging market of wearable devices provides the opportunity to track motion

of human body components. For example, wrist-worn smartwatches or fitness bands can

be used to track human’s hand and arm [48,62–64], while smartglasses and other head
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mounted displays (VR, AR) can be used to track head positions and orientations [65–68].

However, tracking human body inside the vehicle is challenges. As the vehicle is a

non-inertial system, the motion of the vehicle generates large noise to the inertial

sensor measurements, which significantly reduce the tracking accuracy of those previous

algorithms. Previous works [57,61,69] use the inertial sensor measurements from both

the smartphone and smartwatch to estimate the human motion. The basic idea is to

use the smartphone to track vehicle motion, and derive the human motion inside the car

by eliminate the vehicle motion from the smartwatch. However, this approach requires

both the smartphone and smartwatch to work jointly. In our work, we can track both

the vehicle and human motion using only one single inertial sensor.

Applications. Estimating the sensor’s and the vehicle’s movement from a single-

sensor could enable many useful applications and eliminate the problems related to

multiple sensors in prior models mentioned above. The sensor placed on the driver’s

arm as a smartwatch or a fitness tracker could detect proper steering such as whether

the driver turned the steering wheel properly when making a turn or is able to keep the

vehicle in the lane. This model can detect any inconsistency between the steering wheel

and the vehicle movements. In turn, this data can be used to detect external factors, such

as sliding vehicles due to road conditions. Then, such information can be crowd-sourced

to warn other drivers. Drowsy driving can be also detected by comparing inconsistencies

in the driver’s steering through wearable sensor’s such as smartwatches. Similarly, arm

tracking models could also enable gesture based interactions with infotainment systems.

For example, the driver may be able to turn the volume up or down with arm movements

over the steering wheel without actually turning the steering wheel, creating a safer

driving experience with fewer distractions.

Another body of applications could be enabled by inertial sensors in head-mounted

devices such as Google Glass. Head-mounted devices could be used for tracking the

driver’s head movements. Such movements could give accurate information about the

driver’s focus of attention or lack thereof. Headtracking systems could detect the driver’s

errors such as not checking the mirrors before changing lanes or not checking the sides

for oncoming traffic before making a turn at an intersection. Head tracking data could
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(a) Sensor Turn (b) Vehicle Turn

Figure 5.5: Vehicle’s magnetic noise (Hv), Earth’s magnetic field (He) and Sensor
measurement (Ht) during a) sensor turn b) vehicle turn

be used to enable assisted driving applications by providing contextual information or

warnings to drivers based on where the driver turns his head. Just like inertial sensors

on smart-watches, head-mounted devices can be also used for simple interactions with

the infotainment system. A nodding gesture could be detected by the sensor to select

or affirm the option on the current infotainment system. All of such applications will

create a safer driving experience for the driver and eliminate distractions which may

otherwise be caused by such wearable devices.

Different from previous work, our approach does not rely on the sensors that may not

be found in every vehicle. Additionally, the method does not require computationally

intensive computer vision algorithms and does not suffer from visual occlusions. The

primary advantage of the method is that it requires only single device with inertial

sensors that can be found in most of the mobile and wearable devices.

5.2 System Design

Figure 5.3 illustrates the system overview of the proposed single-sensor tracking ap-

proach. Our method first profiles the characteristics of the vehicle’s magnetic field from

magnetometer readings. The parameters calculated in the profiling stage and inertial

sensor readings are used to estimate the vehicle’s heading direction. Finally, sensor’s
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rotation with respect to vehicle is estimated from vehicle’s heading, profile parameters

and sensor readings. Furthermore, Sensor’s orientation with respect to the earth can be

calculated from the vehicle’s and sensor’s orientation.

5.2.1 Challenges

The main challenges lie in separating the vehicle’s motion from the sensor’s motion in

the vehicle by using a single sensor. The inertial sensor readings are affected by both

the vehicle’s movements and the sensor’s movements. As an example, the accelerometer

readings taken from a head mounted device will be affected by linear acceleration of the

head, centripetal force due to the head turn, linear acceleration of the vehicle, centripetal

force due to vehicle turn and gravity. In addition to this ambiguity in the source of the

movement, there are many sources of noise that exist in the vehicles such as vibrations

and magnetic noise due to the vehicle’s ferromagnetic structure. Although the vibrations

could be eliminated by using low-pass filters, the magnetic noise constitutes a greater

problem that requires further attention. Inertial sensors utilize magnetometers as a

3D compass to track the magnetic north pole of the earth. This, combined with the

gravity measured by the accelerometer, is used to estimate the orientation of the sensor

in North-East-Down (NED) coordinate frame. However, the magnetometer readings

exhibit a drift due to the magnetic noise in the vehicle. Furthermore, the magnetic noise

depends on the metallic structure of the vehicle as well as sensor’s closeness to metallic

surfaces. Therefore, there is a greater challenge in eliminating the effect of magnetic

noise on the sensor’s movements and hence, the data collected. Moreover, one could

expect that the magnetic noise in the vehicle can also be affected by the means of the

changes in the electrical signals in the vehicle. In our experiments, however, we have not

observed such a change around the driver/passenger seat area where the users usually

use their wearable devices.

5.2.2 Approach

Our current approach is unique in that it relies on the vehicle’s magnetic noise. In

our experiments, we have observed that vehicle’s magnetic noise is a good beacon
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Figure 5.6: Arduino controlled sensor setup

for vehicle’s orientation. By keeping track of vehicle’s magnetic noise and the earth’s

magnetic field, we estimate the vehicle’s heading and the sensor’s orientation in the

vehicle. During vehicle or sensor turns, the magnitude of earth’s magnetic field and the

vehicle’s magnetic noise remain constant. However, the direction of these magnetic fields

might change during vehicle and sensor turns. Therefore, the angle (α) between these

magnetic vectors and the total magnetic field measurement will change accordingly. Our

approach first estimates the angle between these vectors based on the magnetic field

measurement. Then, based on the angle, we calculate the vehicle’s heading. Finally, we

estimate the sensor’s orientation in the vehicle.

We will introduce the characteristics of the vehicle’s magnetic field in the next

subsection. Then we will define how the magnitude of the magnetic field measurement

changes during vehicle and the sensor turns. Finally, algorithms will be introduced in

detail.

5.2.3 Vehicular Magnetic noise

Due to ferromagnetic materials used and the electrical current running in the electrical

system of the vehicle, the vehicle effects the magnetic field inside the vehicle. These

affects can be grouped in two bodies. First, the hard iron affects act as a separate

magnetic field and are added to the earth’s magnetic field. In Figure 5.2, we have

depicted the magnetometer sensor readings at various positions by holding the sensor
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stable for a while and then making two turns around its x-axis. The turns around x-axes

could be seen as 12 small peaks in the figure. The measurements shown in the first

region of the graph are taken outside of the vehicle in an open field and therefore, purely

depict the earth’s magnetic field. As the sensor rotates on it’s x-axes, the reading on

the y and z axes also vary in a sinusoidal shape. The second region of the graph shows

how the sensor reading changes after the sensor is placed on the floor of the vehicle

when the engine is not running. As the sensor is placed in the vehicle, the magnetic

field introduced by the vehicle is added to earth’s magnetic field.

In the third region, the engine starts running. Regions 4-6 are measured while

the sensor is placed on the car seat. You can observe small changes in magnetometer

readings around t=150s which is due to sensor’s positional change from car floor to the

seat. In region 4, the engine is not running. In region 5 engine starts running and finally

in region 6, the vehicle starts moving. We can observe that the magnetic field does not

change between regions 2-3 and 4-6. Therefore, we can conclude that the magnetic field

measurements are mostly affected by the sensor’s position in the vehicle and are not

affected by the engine run.

The second body of affects is the soft-iron affect. Soft iron affects change the

magnitude of the magnetometer measurements. In magnetometer readings, soft-iron

affects could be observed as different amplitudes on different axes as the sensor rotates

in a constant magnetic field such as the earth’s magnetic field. In Figure 5.4, we have

plotted magnetic field measurements when the earth’s magnetic field rotates when the

sensor is outside of the vehicle (blue circle) and inside of the vehicle (red circle). To

obtain the data points in the the blue circle, we have simply rotated the sensor outside

of the vehicle and measured the earth’s magnetic field. For the sensor, this will result

in the earth’s magnetic field rotating around it. However, rotating the sensor does not

result in depicting only the earth’s magnetic field inside of the vehicle since the vehicle’s

magnetic field is also involved in this test. However, when the vehicle turns, the vehicle’s

magnetic field is constant and only the earth’s magnetic field will be rotating for the

sensor. In our experiments we have not observed significant soft-iron effects inside the

vehicle. Therefore, vehicle ignited soft-iron effects has been disregarded for the sake of
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simplicity.

In addition to hard-iron and soft-iron effects introduced by the vehicle, the electrical

components on the sensor board also introduce hard-iron and soft-iron effects. Since

any magnetometer sensor zero flux offset is also independent of sensor orientation, it

simply adds to the sensor board’s hard-iron component and is calibrated and removed

at the same time. However, both hard-iron and soft-iron effects are not vehicle specific

and require a very standard procedure to calibrate. Therefore, these calibrations are

carried out separately and will not be discussed in this paper.

5.2.4 Magnetic field during a turn

For the purpose of clarity, we introduce how the magnetic field measurements vary as

the vehicle or the sensor in the vehicle rotates. As we have explained in the previous

subsection, we have neglected the soft-iron effects that vehicle introduces, therefore the

vehicle’s magnetic field can be simply represented as a vector hv(t). Similarly,the earth’s

magnetic field is denoted as he(t) and sensor measurement ht(t) can be calculated as :

ht(t) = hv(t) + he(t) (5.1)

Additionally from cosine law in vector addition,

‖ht(t)‖2 = ‖hv(t)‖2 + ‖he(t)‖2 + 2 ∗ ‖hv(t)‖ · ‖he(t)‖ · cos(α) (5.2)

Since, the magnitude of he(t) and hv(t) don’t change with time, ‖ht(t)‖2 can be

used to calculate α. We will now describe how α changes during sensor and vehicle turn.

Sensor turn in the vehicle. During a sensor turn in the sensor coordinate frame,

both the vehicle’s magnetic field and earth’s magnetic field will be rotating along the

rotation axis. Therefore, the sensor will be measured ht(t) as a vector rotating along

the rotation axis as shown in Figure 5.5a. The measurements will lie on the circle at

the base of a cone where the cone’s apex is the origin and the slant of the cone is the

rotation axis. As the sensor turns, hv(t) and he(t) will be constant with respect to

each other and the α angle between them does not change. Hence, the magnitude of

the ht(t) does not change as well.
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Vehicle turn. During the vehicle’s turn, the vehicle and sensor turn simultaneously.

Therefore, the sensor will be measuring hv(t) as a constant. On the other hand, the

earth’s magnetic field would be rotating with respect to the sensor. This would result

in ht lying at a cone’s base circle where cone is formed by rotating he(t) on the apex

of the cone which is hv(t). The slant of the cone is the vehicle’s rotation axes and γ,

vehicle’s heading angle is also illustrated in Fig5.5b. From Eq.5.2, ||ht(t)|| will vary as

the vehicle rotates.

5.2.5 Initial Vehicle magnetic field profiling

For accurate vehicle heading and sensor orientation estimation, several parameters need

to be profiled. The first obvious parameter is the magnitude of the car’s magnetic field.

The second group of parameters define how the α angle maps to the vehicle’s heading

angle. For profiling, we use a single 360o vehicle turn.

One could assume that hv(t) could be simply estimated by subtracting he(t) from

ht(t). Although, ||he(t)|| could be estimated or retrieved from online magnetic field

calculators for given latitude and longitude, estimating its direction in vehicle is not a

trivial task. In early stages of our system design, we have tried the following approach

: First, measure the earth’s magnetic field he(t0) when the sensor is outside of the

vehicle right before the sensor enters the vehicle. Then use gyroscope based orientation

estimation for a short-time to estimate he(ti). The main reason, we relied on gyroscope

based orientation is that the magnetometer based approaches do not work when the

sensor enters the vehicle due to vehicle’s magnetic field. We have empirically observed

that this approach suffers from gyroscope drift problems even when used for a short

time period. However, we use this estimation hvrough as a rough estimation to choose

one of the two possible candidate points which we introduce in the next paragraph.

As an alternative, we used the ht(t) measurements during a 360o vehicle turn. As

mentioned in previous subsection, during the vehicle’s turn hv(t) should be on the

apex of the cone.Therefore by finding the apex of the cone, we can estimate the hv(t).

Additionally, ht(t) measurements lie on the base circle and are ||he(t)|| away from

the apex, hv(t). For given ht(t) measurements during vehicle turn and ||he(t)||, two
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possible cones could be formed. We choose the cone whose apex is closer to hvrough

and use its apex as hv. Here, hv is car’s magnetic field for the static reference frame

defined by the sensor’s coordinate frame during profiling. We choose this coordinate

frame as vehicle’s coordinate frame and define the heading of the vehicle with respect

to this orientation and denote vectors represented in this coordinate frame with left

superscript such as ∗hv

In addition to hv, we define hcenter as the center of the base circle. and two

perpendicular vectors e1 and e2 as shown in Fig. 5.5b. Although, center of the base

circle and e1 and e2 vectors will change with the sensor’s orientation in the vehicle, their

relationship, such as dot product, with hv(t) are independent from sensor orientation

and will not change as the sensor rotates.

5.2.6 Orientation Estimation

Next, we are going to define equations that we will use to estimate the vehicle’s heading,

sensor’s orientation with respect to the vehicle and earth.

Vehicle heading estimation In order to estimate sensor’s orientation, we first

need to estimate the vehicle’s heading. This requires mapping the angle between he

and hv, α, that we obtained from Eq.5.2 to vehicle’s heading angle γ. First, from dot

product rule :

∗he · ∗hv = ‖he‖‖he‖cos(α) (5.3)

∗he can be also written,

∗he = ∗ht − ∗hv (5.4)

Similarly ∗ht can be represented as,

∗ht = ∗hcenter + e1 ∗ cos(γ) + e2 ∗ sin(γ) (5.5)

where e1 and e2 are defined in profiling stage and illustrated in Fig.5.5b. By combining

Eq.5.3 and Eq.5.5 and carrying out equations :
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γ1,2(t) = ±(asin(
‖hv‖‖he‖cos(α)− (∗hcenter · ∗hv) + ‖hv‖2

d

− asin(
e2 · ∗hv

d
))

where d is,

d =
√

(e1 · ∗hv)2 + (e2 · ∗hv)2) (5.6)

Since asin is defined in [0 π], There are two possible γ values. To choose the correct

γ(t) value, we utilize gyroscope measurements. The algorithm makes an estimate from

previous γ(t− 1) and gyroscope measurement φx(t) :

γestimate = γ(t− 1) + φx(t) ∗∆t (5.7)

and assigns the closest γ1,2(t) to γestimate as γ(t). However, this selection operation

might cause fluctuations in heading estimation. For this reason, we have implemented a

temporal filtering approach which requires at least two consequent samples to switch

from one selection to the other. This selection process can be improved by better

temporal filtering approaches.

In-vehicle Sensor Orientation Estimation Sensor orientation estimation is

straight forward. From given γ(t), e1, e2 and ∗hcenter,
∗ht(t) can be calculated from

Eq.5.5. Rotation vector that, Rin(t), transforms ∗ht(t) to sensor’s coordinate frame

representation ht(t) can be calculated in angle-axes form by using Matlab’s built-in

command vrrotvec with ht(t) and ∗ht(t). Rotation vector than can be converted to

rotation matrix, Rin(t), with vrrotvec2mat or to euler angles with rotm2eul command.

Universal Sensor Orientation Estimation Sensor’s orientation with respect to

earth can be calculated by :

Re(t) = Rin(t) ∗


1 0 0

0 cos(γ(t)) −sin(γ(t))

0 sin(γ(t)) cos(γ(t))

 (5.8)
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Figure 5.7: Mean Vehicle Heading Estimation Error when vehicle is placed at 90 to
360 degrees with 90 degree increments. Blue bars indicate mean error, red bars show
minimum and maximum error.

(a) Sensor Yaw Error
(b) Sensor Pitch Error

Figure 5.8: Mean sensor orientation estimation error when sensor is placed at 30 to 360
degrees with 30 degree increments. Estimation Error for a)Sensor Yaw Angle b) Sensor
Pitch Angle. Blue bars indicate mean error, red bars show minimum and maximum
error
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5.3 Performance Evaluation

During our study, we have conducted two sets of experiments. The objective in the

first set of experiments was to estimate the vehicle’s heading angle. The second part

of the evaluation aims to find the sensor’s orientation, namely yaw and pitch angles,

by eliminating vehicle’s motion from sensor motion. Finally, we compare these results

with computer vision based methods and [57] which requires two sensors to estimate

the sensor’s roll angle.

5.3.1 Experiment Setup

We have developed an Arduino controlled setup to simulate sensor movements in the

vehicle. The Arduino controller is used to send commands to step motors to turn the

sensor to specific angles. We have placed the sensor on a 3D-printed spinning wheel with

one degree of freedom, i.e yaw. Both spinning wheel and Arduino controller are placed

on a wooden plank so as to prevent introducing further magnetic noise. The sensor

setup is placed in the passenger seat around the headrest position. However, as the

sensor rotates, it is possible for the 3D printed wheel to get very close to the headrest,

which might have ferromagnetic materials inside. When the sensor approaches any

ferromagnetic materials, the magnetic field might vary as the sensor rotates. Therefore,

we have empirically chosen a placement point where the sensor is not affected by the

ferromagnetic properties of the headrest as it rotates. The sensor placement in the

vehicle is shown in Fig.5.6.

In a standard data collection session, we begin with rotating the sensor 360o placed

outside of the vehicle in an open field. We use this data for standard magnetometer

calibration. Next, we take the sensor into the vehicle and place it in the aforementioned

position. Then we make a 360o vehicle turn while the sensor is fixed for the profiling.

The rest of the experiment involves evaluating vehicle heading estimation and sensor

orientation estimation with respect to the vehicle. For the vehicle heading estimation

stage, we have placed the vehicle at heading angles between 0o to 360o with 90o

increments. The heading angles for the ground truth are determined by aligning vehicle
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with lines at the parking lot which are perpendicular to each other. For sensor orientation

estimation, the sensor makes 30o turns between 0o to 360o angles while the vehicle is

driven freely without any restrictions such as route, speed, or direction. We placed the

step motor vertically and horizontally for yaw and pitch estimation, respectively. We

took the input of the step motor as ground truth for sensor orientation estimation. The

step motor can be rotated with 2.81o increments. The experiments are performed by

three different drivers and two different cars, a Hyundai Tucson and a Mercedes Benz

GLC.

5.3.2 Vehicle Heading Estimation Evaluation

In our first experiment, we have tested vehicle heading estimates of the algorithm by

rotating the vehicle in 0o to 360o range with 90o increments. The ground truth angles

are obtained by aligning the vehicle with the perpendicular lines in the parking lot.

Data is collected at each angle 10 times at different random positions. The results are

plotted in Fig:5.7. The average error is 4.57o with a standard deviation of 2.97o. We

observed minimum errors when the vehicle is placed at 180o. The error goes as low as

0o degrees for 180o and 360o while goes as high as 10o when vehicle is placed at 90o. We

have observed a mean error of 6.86o, 3.9o,4.61o,2.92o when the vehicle’s heading angle

is 90o,180o,270o,360o, respectively. We believe the deviations in these errors could be

due to vehicle’s imperfect placement each time the specific angle is tested, since a slight

shift in the vehicle parking direction could cause a couple of degrees of error.

The other body of evaluation is conducted when the sensor turns while the vehicle

is fixed. The vehicle heading estimate of the system was also fixed as expected with

only a couple of exceptions for the data collected sensor orientation estimation. We

believe these exceptions occur due to switches in selection from γ1,2(t) as mentioned in

Section 5.2.6

5.3.3 Sensor Orientation Estimation Evaluation

To evaluate the sensor orientation estimation, the sensor is rotated with 30o counter-

clockwise increments while the drivers were driving freely as instructed. The results
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Mean Absolute Error
Publication Yaw Pitch

Yan [70] 6.72 8.87

Ba [71] 8.8 9.4

Murphy-Chutorian [72] 6.4 5.58

Xiao [73] 3.8 3.2

Single-Sensor 5.61 3.73

Table 5.1: The comparison in terms of accuracy with computer vision based head pose
estimation studies.

from 480 turns are plotted in Fig.5.8 (a). We have obtained yaw and pitch angles by

placing the Arduino controller setup horizontally and vertically. The results for yaw

angle estimation is plotted in Fig. 5.8a. We have observed a mean error of 5.61o with

standard deviation of 3.46o. We observed the minimum error when the sensor is at

180o and the maximum error when the sensor is at 270o. We also tested the sensor

orientation estimation when the sensor is fixed and the vehicle is making 360o turns

and observed 8.89o ripples on average. We believe this residual effect of vehicle turns

might be the main source of errors in the yaw estimation.

The results for pitch angle estimation is plotted in Fig. 5.8 (b). We have observed

mean error of 3.73o with standard deviation of 1.51o. Overall, the error was less than 8o

and was less then the error we encountered for the yaw angle estimation. This might be

due to residual effects of the vehicle turn might be stronger for the yaw angle since both

vehicle turns and sensor’s yaw rotation are in the same direction.

A comparison of our results with computer vision based head pose estimation methods

are given in Table5.1. We have chosen these studies over many others since they have

achieved best accuracy results for different data sets. Yan and his colleagues [70] were

able to perform 6.72o and 8.87o man absolute error for yaw and pitch estimation on CHIL-

CLEAR07 dataset. Ba& Obodbez [71] proposed a method to estimate head pose with

8.8o and 9.4o yaw and ptich errors on IDIAP Head Pose dataset. Murphy-chutorian and

Trivedi’s head pose estimation system for driver assistance systems was able to achieve

6.4o yaw and 5.58o pitch errors on CVRR-363 dataset. Our single-sensor orientation

estimation system was able to achieve higher accuracy than these aforementioned system

without relying on computationally expensive computer vision techniques. On the other
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hand, Xiao et al [73] recorded a better performance than our approach with 3.8o and

3.2o yaw and pitch angle errors on BU Face Tracking dataset. However, this method

was only tested for only controlled room environment and the in-vehicle performance is

unknown.

Finally, we compared our single-sensor approach to a two-sensor approach [57]. In

this work the authors used the inertial sensors on the mobile phone to track vehicle

movements and sensors on smartwatch to track driver’s arm movements. The authors

estimated only arm’s roll angle by using fused orientation information obtained from

Android API and performance of this approach for yaw and pitch error estimation is

unknown. The comparison is illustrated in Fig. 5.9. Since the authors only evaluated

their system for [0o, 30o], (30o, 60o], (60o, 90o] roll angle intervals, we are able to compare

our system with their results at these angles only. Overall, our system’s pitch angle

estimation is almost as good as two-sensor based approach. A 3.4o mean error was

obtained in two-sensor solution while a 3.73o degree error was achieved in our system.

On the other hand, the single-sensor yaw angle estimation with overall mean error of

5.61o is less accurate than two-sensor roll estimation. The yaw angle estimation we

achieved in our study were 4.25o, 4.87o, and 5.07o while pitch angle estimation accuracy

was 3.25o 4o 4.50o and two-sensor roll angle estimations of 1.7o 2.73o 4.38o mean errors

for sensor angles in [0o, 30o], [30o, 60o], (60o, 90o] ranges was achieved. Overall, the

single-sensor algorithm produces slightly less accurate results when compared to the

two-sensor studies. These slight differences may be due in part to the inefficiency of

eliminating vehicle movements. Additionally, the two-sensor approach utilizes gyroscope,

accelerometer and magnetometer sensors for rotation estimation. In Android API

implementation, the orientation is estimated by integrating angular velocity measured

through gyroscope and corrected by using magnetometer and accelerometer sensors to

eliminate gyroscope’s drift error. The pitch and roll angle correction is mostly affected

from accelerometer readings since they are perpendicular to gravity. On the other

hand, yaw rotation axis is parallel to gravity and gravity measurement doesn’t change

with the yaw angle. Therefore magnetometer readings are mostly used to correct yaw

estimation and more affected by the disturbances and noises in magnetometer data.
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Figure 5.9: Comparison of mean error between two-sensor based roll estimation and
single sensor based yaw and pitch estimation.

This might cause larger errors on yaw angle estimation and very similar accuracy results

on single-sensor based pitch angle estimation and two-sensor based roll angle estimation.

5.4 Limitations and Future work

There are several limitations of this work due to the nature of the car’s magnetic field.

First and most obvious one, similar to a compass at the north/south poles struggling

to show the compass heading, the algorithm’s accuracy at rotation accuracy would

decrease as the earth’s magnetic field and gravity vectors have similar directions. In

other words, as the earth’s magnetic field gets closer to gravity, the information it relays

loses its significance. This has another implication for the magnetometer in the vehicle,

as the vehicle’s magnetic field’s direction gets closer to the gravity;s direction, it becomes

impossible to find the sensor’s orientation with respect to the vehicle.

One of the important limitations of this work is that the method assumes the

magnitude of vehicle’s magnetic field doesn’t change. However, the magnetic field might

vary as the sensor approaches ferromagnetic materials in the vehicle. We believe the

approach will perform especially well where the sensor’s translational motion is limited,

e.g. head mounted devices. The system performance could be improved for changing

vehicle magnetic fields in future work. Additionally, analysis of the vehicle’s magnetic

field for translational movement might lead to interesting research finding and might be
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used for sensor positioning.

5.5 Conclusion

In this paper, we proposed a system that allows monitoring vehicle and driver motion,

namely vehicle’s heading and sensor’s yaw and pitch angles, using only one tri-axis

inertial sensor, which may be found in various mobile and wearable devices. It estimates

the magnetic noise of the vehicle and its effect on the data through magnitude-based

noise estimation method. The approach proposed here eliminates the reliance on multiple

sensors, which previous studies had utilized. Reliance on a single sensor, which is directly

placed on the body or close vicinity of the driver, can estimate sensor orientation with

mean error of 5.61o for yaw angle and 3.73o for pitch angle can be used to track driver

behaviours and using such behaviours to create a safer driving experience. The data

derived from this method could in turn be used to determine unsafe driving techniques

and help improve driving.
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Chapter 6

Preventing Distractions

Majority of driver errors can be prevented by easing the drivers’ interaction and

minimizing distractions. We propose a complimentary input system that will ease

the interaction of driver with mobile devices. In following sections we will introduce

customizable paper shortcuts and gesture-based methods for analog inputs based on

our previous arm-tracking system. The customizable paper shortcuts might decrease

driver distractions by enabling the driver to assign custom shortcuts from his phone

and accommodate his everchanging needs with technology. The customizable touch

points can be printed on a photograph paper by an inkjet printer in a single pass with

commercially available conductive ink. These

6.1 Customizable Paper Inputs

In this section, we present a technique for creating multi-key conductive ink touch user

interfaces that can be printed on paper in a single pass. While 3D printing and open-

source electronics platforms have led to enormous creativity in creating smart objects,

the means for user interaction with such objects are often limited and require remote

interaction through a smartphone app. Paper-based touch circuits are a convenient

medium for exploring custom touch sensors that can be attached to numerous objects

in our environment. The challenge lies in creating a reliable and customizable touch

circuit that is easy to produce. Specifically, it should not require assembly of multiple

layers and it should support multiple touch points without needing separate connections

to a microcontroller for each touch point.

We address this through a resistive touch sensor that exploits the inherently high

resistance of printed traces to create multiple detectable touch points. The finger closes
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the circuit when in contact with the touch point and the sensor uses a polarity-switching

technique to cancel out the effect of the unknown skin resistance. We evaluated the

touch sensor using keypads with 10, 15 and 20 touch points and achieved 99.6%, 93.5%,

and 91% touch detection accuracy, respectively. We also observed touch detection rates

of up to 154 touches per minute.

6.1.1 Introduction

Embedding an ever increasing number of smart devices into our surroundings will create

a need for more ubiquitous user interfaces that let us interact with these devices. As we

have transitioned from PCs and laptops to small mobile devices, touch sensing has proven

itself to be an especially compelling means of interaction with smaller devices. What if

we could touch-enable a much richer set of objects and surfaces in our environment?

One could imagine custom buttons on car dashboards that control devices designed long

after the car was manufactured, remote control functions in clothing or couch armrests,

lighting control and telepresence functions through buttons on the conference table,

or new generations of interactive children’s books that do not require bulky reading

devices.

Challenges. The main challenges lie in creating touch sensors that can be easily

produced and customized for different applications. The touch sensor design should

enable exploration in this area, similar to how 3D printing and open electronics platforms

have led to enormous creativity in the design of smart objects. In particular, touch

sensors should be customizable in size and shape, so that they can easily be affixed to

objects of different proportions. Moreover, a touch sensor should accommodate various

number of distinguishable touch points to allow creation of interfaces with multiple

buttons or keys. Design, production, and particularly reproduction of these keyboards

should not require specialized hardware knowledge. They should be straightforward to

integrate with custom electronics or smartphone apps such as IFTTT [74].

Existing solutions. Earlier research has studied a variety of technologies for touch-

enabling surfaces in our environment. First, projection and camera systems have been

used to create virtual touch points on surfaces [75, 76]. This usually requires careful
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(a) (b) (c)

Figure 6.1: Example prototypes of printed touch interfaces.

setup and alignment of the camera system and is susceptible to occlusion. Second, touch

surfaces have been embedded into objects with custom circuitry. Examples are wearable

keyboards [77] or touch points on tables. This again requires careful engineering and

instrumentation for a specific object. Third, audio sensing of touches has been used to

create a virtual keyboard on a table [78] but it requires careful fingerprinting of the

audio environment during initialization time and the process will need to be repeated

if the nearby objects are moved. Only recently, researchers have explored printing of

touch sensors through conductive ink. The existing work is limited to a single button

interface [79], or requires assembly of multiple printed layers and connection of a large

number of ADC lines to an electronic circuit [80]. Either the level of customization or

the ease of production and reproduction is therefore limited in these approaches.

Approach. To address these challenges, we propose a resistive polarity switched

touch sensor design that can be printed in one pass on paper using conductive ink. It

separates the necessary readout electronics components into a small attachable clip

device in order to avoid mounting electronic components on paper. Single layer printing

is possible through a resistive touch sensor design wherein the finger acts to close the

circuit. A key advantage of the resistive polarity switched design is that the layout

and number of touch points can be modified, without requiring any redesign of the clip

device or a change in the number of interface lines between the device and the paper.

Specifically, the current prototype allows the creation of up to 10-15 reliable touch

points with the three GPIO pins on the clip device. This is in contrast to other more
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common touch sensor designs, where adding more touch points requires more GPIO pins

on the readout interface. The approach supports multiple touch points by exploiting

the inherently high resistivity of printed traces (0.19Ω/2 in our configuration)1 to

create a voltage divider circuit layout that allows distinguishing touch points based on

different read out voltages. This requires a sensing technique that is independent of the

unknown skin resistance at the finger, however. Polarity switched sensing achieves this

by implicitly canceling out the effect of finger resistance.

The approach builds on advances in conductive ink printing which now allow for

printing of conductive traces on plain photographic paper with standard home-use inkjet

printers at relatively low cost (ink prices of a few hundred US dollars per 100ml). This

makes it possible to create touch circuits on a paper substrate that is flexible and thus

able to conform to objects that are not flat. We have also developed layout design

software that can create the necessary printed traces based on a simple specification

of the location of the touch points. The keystroke recognition method is also resource-

efficient in terms of computing power and hardware, allowing the design of long-lasting,

small form factor clip devices that wirelessly connect to the devices they control (e.g., a

smartphone or light switch).

Example applications. To illustrate some of the possible applications for prototype

printed touch sensors, we have presented three sample prototypes in Figure 6.1. Many

printed circuits replace or extend the capabilities of existing input solutions, such as

car dashboards, bulky tablet add-on keyboards, or DJ controllers. Users may want to

create their own physical shortcut keys to be placed in a convenient location. This

is illustrated through the customized interface for a driver’s phone on the steering

wheel 6.1(a). While some cars already include certain functions to control the phone

over Bluetooth, printed interfaces allow for a more personalized experience and allowing

older cars to keep up with newer phone functions. A touch sensor in an interactive

children’s book is demonstrated in Fig 6.1(b). Other examples in this class may include

touch-sensing surveys and ballots. Fig 6.1(c) stretches the support for multiple touch

1The standard unit for sheet resistance is Ω/2 which is dimensionally equal to Ω. However, 2 is
used to discriminate it from regular resistance.
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points to create an entire roll-able and foldable keyboard. These examples also illustrate

how it can be convenient to use the conductive ink to print touch points in the form of

recognizable icons. While not recommended by the manufacturer of the conductive ink

we used, other inks and printing processes may allow for overlaying the touch circuits

with printed imagery using regular ink.

In summary, the salient contributions of our work are itemized below:

• simplifying the use of conductive ink printing for multi-button custom touch input

interfaces that augment objects in our environment.

• introducing a touch circuit design that can be printed in one pass and supports

multiple touch points (i.e., buttons) without changes to the external device’s

hardware or its 3 pin interface to the paper circuit.

• designing a resistive polarity switching touch detection technique to improve

touch detection accuracy and allow scaling to 20 touch points with the three pin

connection from the paper to the external hardware module.

• developing a prototype readout circuit and layout guidance to create custom paper

user interfaces.

• evaluating the accuracy of touch detection and its dependence on several factors

such as skin resistance and size of the touch point.

6.1.2 Background and Related Work

The need for reliable and accurate input interfaces has led to a tremendous effort in

the research community. The research in this field has resulted in great improvements

in touch-screen technology including analog resistive, surface capacitive, projected

capacitive, surface acoustic wave, infrared(IR) and optical technology, to mention a few.

However, power and portability requirements limit the screen size of mobile devices and

the interaction surfaces on them.

Therefore, there has been a great amount of work put into moving touch interfaces

out of the smartphone footprint [75,77,81]. In Canesta keyboard [75], users input text
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(a) Basic voltage divider touch circuit.

(b) Printed voltage divider with pad-
stacks for buttons.

(c) Connector clips

Figure 6.2: Implemented circuit.

by pressing keys on a projected image of a keyboard, and a sensor module captures

the intersection of fingers with an IR light plane emitted from IR light source. Several

works proposed wearable keyboards (e.g., [77]) that detect key presses from kinematic

sensors placed on fingers. Moreover, Elfekey and the colleagues [81] proposed a 4-layer

thin keyboard that exploits the AC hum phenomenon that leads to a small AC current

on the human body due to AC noise from the environment. However, sufficient AC

noise may not exist in all locations.

Analog resistive keypads and touchscreens have been widely used by the industry [82]

mainly because their recognition approach enables detecting multiple keys with a single

sensing line. In a typical circuit, a reference voltage is applied across a voltage divider

resistor with multiple stages in which pressing a key closes the circuit and brings a stage

in contact with the sensing line. Since, the voltage is different at every stage (Vi at ith

stage), the key that is pressed can be found by measuring the voltage on the ADC line.

A similar principle is applied to touch screens to find the 2D position of the finger by

using two resistive sheets separated by spacers. Unfortunately, mechanical switches and

two layer approaches require extra assembly and production effort.

To provide ubiquitous keyboards and touch surfaces, researchers have also explored

vision and audio sensing approaches. Visual panel [76] uses computer vision techniques

to detect a paper keyboard and the relative position of a finger tapping a key on the
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paper. This method, however, is computationally intensive and requires a carefully

positioned camera. Wang and colleagues proposed using [78] using two microphones

employed in a smartphone and detecting a keystroke’s location from multipath fading

features of the audio signals. While this technique could enable a new method of human-

computer interaction, it requires keyboard software training with every movement of

the keyboard or nearby objects. Overall, none of these approaches lends themselves well

to instrumenting our environment with touch surfaces.

More recent work has also explored conductive ink to print special conductive

patterns onto a paper to detect finger touch for creating touch user interfaces. Touch

events on the pattern can be detected with capacitive [79, 83–85] sensing techniques

as well as through resistive graphs [86]. Resistive graphs use a similar approach as

our method and they allow touch sensing in 2D. Although these techniques come into

prominence with different features such as integrated displays [85], they all require

special multi-layer substrates to find the exact touch position and, therefore, the ease of

production and the level of customization are limited. Our polarity-switching technique,

in comparison, enables finger touch detection in single layer, such as on a sheet of paper

printed on one side. An alternative capacitive sensing technique [80, 87] uses similar

conductive ink and a single-layer paper substrate as in our proposed interface. Gong

and colleagues [80] are also able to sense pressure by using skin resistivity. However,

it needs a separate set of input pins from the microcontroller for every touch point to

detect the position of the finger. This requirement means connecting a large number

of tracks from the paper to the off-paper microcontroller, which has implications on

the ease of connection and the size of the off-paper device. Hodges and colleagues [88]

achieved limiting the number of the tracks by connecting touch points with one-wire

and I2C bus-based protocols. Still, this requires additional electrical components for

extra touch points, which limits scalability. We describe how we address the limitations

of these earlier works next.
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6.1.3 Challenges

In this section, we detail the challenges unique to the printing medium and introduce the

polarity-switched resistive touch sensor system as a way to overcome these challenges.

Designing customizable and easily printable touch sensors involves several challenges

due to restrictions in the printing medium.

Single Layer. The touch sensing circuit should be in one layer so that it can be printed

from an inkjet printer in one pass. Several layers would introduce additional

complexity in combining these layers. In particular, connections across layers are

difficult since vias and drilling are not easily achieved on a paper substrate.

No mounting of circuit components. The sensor should not require mounting of

external circuit components, which consumes excess time, restricts flexibility (the

paper becomes less bendable), and introduces protrusions that may be easily

ripped off during use.

Multiple touch points or keys. The touch sensor design should support printing

multiple distinguishable touch points or button on the same circuit. This will

allow, for example, creating the five icons with different functions as depicted in

Fig. 6.1(a).

Easy connectivity. The touch sensor design should allow for straightforward con-

nectivity with mobile devices or devices in our environment. Existing printable

touch sensors often connect printed touch points to an off-paper readout and

communication circuit to accomplish this task. This off-paper device can include

radios to connect to other devices, but the connection between the paper sensor

and the off-paper device introduces a new scalability challenge. As the number

of touch points increases, the number of required sensing lines from the paper

to the off-paper device goes up. The touch sensor design should minimize this

complexity.
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Approach

To eliminate mounting of circuit components, we have moved all other necessary items,

such as the microcontroller, the amplifying transistors, and the high-value resistors, into

a separate off-paper module. This module could be designed in the form of a binder clip

that can be attached directly to the printed tracks. Unfortunately, a typical resistive

touch sensor design requires two layers of electrodes, which are brought into contact

through the pressure from the finger. To allow for single layer printing, we designed

a resistive approach where the sensing circuit is open at the touch point and closed

through the finger when touched. While straightforward in principle, the challenge lies

in allowing for multiple distinguishable touch points without increasing the number of

printed tracks that need to be connected back to the off-paper module. We address this

through two key ideas.

Touch Detection with Polarity Switching

First, we exploit the inherently relatively high resistivity of printed tracks to create

a voltage divider circuit. The sheet resistance (0.19Ω/2 ) of the conductive inks is

sufficiently low enough to use as a conductive trace while still being higher than regular

copper tracks. While often considered a disadvantage, this allows us to print the basic

voltage divider touch circuit shown in Fig. 6.2a without requiring the mounting of
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Figure 6.5: Voltage measurements

external resistor components. We only need to ensure that the printed tracks are long

enough to create the desired resistances R1 to Rn. To elongate the tracks, we printed a

snaking track, as shown in Fig. 6.2b (note the square-wave-like pattern at the top). Given

constant skin resistance, this basic voltage divider circuit will allow for measurement of

distinguishable voltages at the ADC line, depending on which touch point was pressed.

This means that multiple touch points can be created with only three tracks to the

off-paper module (Vcc, GND, and ADC). In practice, however, skin resistance varies

significantly over time, from person to person, and for different tapping gestures.2

2We have observed skin resistances between 0.5 - 65 MΩ.
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Second, we therefore designed a polarity-switching technique that can cancel out the

effect of skin resistance. Its key idea is that the ratio of two voltage measurements, the

regular one and the one where Vcc and GND are swapped, is independent of the skin

resistance. We will detail this technique further below.

Together, these techniques allow us to create multiple touch points by printing only

a single layer and clipping a device onto the paper so that it connects to the three

interface tracks. It thus addresses the challenges above. The number of tracks on the

connection interface remains the same, regardless of the layout and number of touch

points on the printed circuit, which allows for the designing of different touch sensors

without changing the clip hardware. We have also experimented with capacitive sensing

but ultimately chose the resistive approach because we found it to be more robust with

multiple touch points and only require a single sensing line to the ADC.

In our solution, we use the finger as a circuit element in place of mechanical switches.

The finger acts as an inconsistent and high-value resistor Rfinger that connects the

stage of the voltage divider to the ADC line. Both the inconsistency and high-value

characteristics of Rfinger create challenges. First, even a small current drawn from the

analog to digital converter (ADC) pin of the microcontroller will create a significant

voltage drop across the finger due to the high resistance of the finger. Therefore, the

voltage drop is proportional with finger resistance. The measured voltage is also affected

by the pull-down resistor Rb, which is used to ensure zero voltage at the ADC when

there is no finger connection. The measured voltage by the ADC is thus equal to

VADC = ViRb
Rfinger+Rb

where Vi is the voltage at the ith stage of the voltage divider. To

illustrate this, Figure 6.5 shows the voltage measurements when two different touch

points are each pressed three times. We can observe that the voltage for touch point 2

varies between 1.05 and 1.35 volts. Unfortunately, the voltages for touch point 3 are

within the same range. This means the changing finger resistance makes it difficult to

distinguish the touch points based on these voltage measurements alone.

Estimating finger resistance is difficult since there are many psychological [89],

physiological [90], and environmental factors that affect skin resistance. During our

experiments we encountered a wide range of finger resistance values. In Figure 6.4,
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Figure 6.6: Corresponding ratio values of consecutive voltage measurements.

we show the histogram of finger resistances encountered when about 15 students have

touched our keypad at different times. As we can see, more than 93% of the finger

resistance values were less than 10MΩ but two outlier measurements of 27MΩ and

65MΩ were observed (from the same person incidentally). Therefore, we extend the

method to better accommodate different skin resistances.

Our method eliminates the dependence on skin resistance by switching the polarity

of the reference voltage lines that feed the voltage divider and taking a second measure-

ment. The measurements are time multiplexed during a single touch. Using these two

measurements it is possible to determine the touch point independent of finger resistance.

We use this approach since simply calibration Rfinger with a separate independent

circuit suffers from two problems. First, the resistance measuring circuit should not

affect the measurements of the primary touch point detection circuit. Second, there is

no room to route a second independent circuit on a single layer paper.

Figure 6.3 illustrates the polarity switching approach. It shows two copies of the

circuit from Figure 6.2a with opposite polarities. Note that the voltage divider is

abstracted here for the case where the ith touch point is pressed on a n touch point

input interface. If we neglect the current drawn by the ADC and assume that the finger

is not grounded, we can represent the measured voltages as follows.

VADC1 =
ViRb

Rfinger +Rb
(6.1)

Similarly, we obtain the following from the second measurement.
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VADC2 =
Vn−iRb

Rfinger +Rb
(6.2)

Combining and simplifying the Equations (6.1) and (6.2), yields

VADC1

VADC2
=

i

n− i
(6.3)

This ratio of the two ADC voltage readings only depends on the point that the

finger touches and eliminates the dependence on skin resistance and pull up resistor.

To illustrate this Figure 6.6 shows the VADC1
VADC2

ratio for the voltage measurements from

Figure 6.5. Note that the ratio values are considerable more consistent across touches

and remain between 0.4 and 0.5 for touch point 2. Note also that these values can now

clearly be distinguished from those at touch point 3.

Algorithms

We first use a threshold detection algorithm to detect when a finger touches any touch

point. Specifically, we detect a touch if VADC1 + VADC2 > t(Vcc − 2Vbe), where t is a

threshold parameter that we chose as 0.8 based on empirical data and Vbe is the voltage

drop across the transistor. In theory, the following should hold.

VADC1 + VADC2 = Vcc
Rb

Rfinger
− 2Vbe

The conservative threshold therefore accounts for noise and the simplified model due to

unknown finger resistance. When a touch is detected we consider VADC1 and VADC2 a

valid sample pair and process it further. The second stage in our pipeline is a touch

point recognition algorithm. Touch point recognition algorithm first estimates the touch

point for each valid sample pair by finding the the key with the closest expected ratio

value to the measured value. The expected ratio values are determined in calibration

stage after the keyboard is printed. It further applies filtering over multiple samples to

improve robustness. Estimates for invalid sample pairs are assigned to zero. The last

n samples both estimates for both invalid sample pairs and estimates for valid sample

pairs are held in a buffer. The touch recognition algorithm recognizes a key only if at
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least half of the members in the sample buffer are valid and agree on a key other than

the previously recognized key. Therefore, the key recognition algorithm will not produce

duplicate results when the user holds his or her finger on a key constantly.

The third stage applies temporal filtering. The temporal filter holds the output of the

key recognition algorithm temporarily and releasing it only if no other key is recognized

within a certain time period, the temporal window. If another key press is detected

within this period, the earlier key detection is discarded and the new one is placed on

hold. Therefore, the temporal filter ensures that only the last key recognized is released.

This temporal filtering approach reduces spurious key detections at the beginning of a

key press event. While the finger is still moving and the measured resistance is changing,

false detections are especially likely. We have observed that the last recognized key,

when the finger has settled, is usually the correct one and hence the algorithm gives

prioritizes the last detection.

The response time of the current system is affected by the measurement period, buffer

size and temporal window. In our current settings, we have observed best results when

the measurement period is 16.67ms, the prediction buffer is 6 valid samples requiring at

least 4 predictions to agree on a key, and the temporal window is 20ms. Therefore the

time it takes to recognize a touch point is 153ms. In order to recognize another key, the

prediction buffer needs to be flushed by the release of the finger and needs to be refilled

for the values of the following touch event. In theory, the current system can recognize
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consecutive touch events every 286ms. In practice, our experiments show a minimum of

389ms.

Calibration

Unfortunately, the printed voltage divider pattern is quite nonlinear in terms of resistance.

As a consequence, it is not possible to calculate precise expected voltages and the ratio

values for each touch point at design time. These voltage ratio values need to be

measured after the circuit is printed. Fortunately, the system needs to be calibrated

only once. For this purpose, we have created a small calibration procedure for the

microcontroller. During the calibration process, the user is instructed to short the

sensing line with each touch point one after another. After ratio values for each touch

point are calculated, consecutive ratios are averaged to create safe margins between

predefined ratio values.

Layout Considerations

Let us first consider placement of the voltage divider. The voltage divider is in reality a

very long trace. To create such a long trace within a small area we have used a square

wave pattern. We have chosen the top or bottom of the page for the voltage divider,

since we found it less distracting to the rest of the design. It is also important to know

the number of the keys that will be placed on the paper. The number of keys is used to
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find the most efficient strategy for dividing the paper into stages.

Due to the aforementioned voltage drop across the amplifier circuit, the first and

last stage should output 0.5V in the first and second measurement periods, respectively.

On the other hand, the nonlinear resistivity of a printed voltage divider pattern forces

us to use a safer voltage of 0.7V. Since our reference voltage is 5V, most of the first

and last 0.7/5 portions of the voltage divider are left as offset margins. The rest of the

voltage divider is split equally based on the number of keys.

The last step of the design is placing touch points on the paper and connecting them

to the voltage divider pattern. Key patterns must be composed of at least two terminals

that will be connected with only a finger touch. We have observed that the minimum

space between two terminals should be 0.88mm, otherwise a leakage current can occur

between terminals after a touch due to moisture residue from the finger.

6.1.4 Implementation

Implementing this method requires addressing several practical issues that we ignored

so far. First, we assumed that Rfinger does not change between consecutive voltage

readings. This assumption holds when the finger remains steady on a touch point,

but Rfinger actually changes during finger movement due to the change in the contact

area. For example, the contact area is very small at the beginning of a touch event,

largest at full press and then decreases when finger is leaving the touch point, which

continuously changes the resistance. To reduce the change, the time between the

consecutive measurements should be minimized. The change of finger resistance between

consecutive measurements can also be neglected if the change is relatively small with

respect to Rfinger +Rb. For that reason, we used a high-value resistor Rb of 100MΩ in

our circuit.

Second, our analysis neglected the current that the ADC draws. In order to minimize

this current, we used a Sziklai pair transistor configuration with a current gain of

approximately 10000. Therefore, the current that passes through the finger due to ADC

is at the 20− 30nA level. However, the voltage drop across the finger due to the ADC

current can still be significant for very large finger resistances. The current drawn by the
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base of the Sziklai pair can be also taken into account by merging equivalent resistance

seen from the base of the pair with Rb. To compensate the voltage drop across the

Sziklai pair, a 0.5V bias voltage needs to be introduced to key voltages which can be

done by connecting two serial resistors to both ends of the voltage divider. In our design,

we preferred integrating these resistors into the voltage divider on the paper circuit.

Therefore, the layout should start placing keys after leaving a certain margin at both

ends of the voltage divider. Third, we assume the paper is non-conductive; however, the

paper between terminals is highly resistive with a resistance around 500MΩ when they

are open. This resistance of the paper becomes smaller and eventually comparable to

the finger resistance as the gap between touch points decreases and the number of the

keys increase. Therefore, the paper keypad design should maintain a minimum gap size

and increase the gap between terminals as the number of keys are increased.

Finally, we assumed so far that the finger acts purely as a resistor rather than a

voltage source. Unfortunately, the human body can act as an antenna and can introduce

a voltage (noise) into the circuit. The primary source of noise is from the electricity

mains which is also called AC hum noise. Figure 6.7 shows the voltage at the sensing

line when a key is pressed. Note the clearly visible sine wave due to AC hum noise. In

our design, we have solved this problem with a simple trick. By setting the polarity

switching frequency to 60Hz, we can observe exactly one full cycle of AC noise within

our measurement period. Since the average of noise within a full cycle is zero, we

can eliminate the AC hum noise by taking multiple samples within the measurement

period and calculating the average of those samples. Our sampling frequency is 8160Hz

therefore 136 samples are taken in each measurement period. Since AC hum was the

primary noise source in our experiments, we did not use any filter. However, the design

could be further improved with band-pass filtering to reduce noise at other frequencies.

Hardware Platform

We have used an Arduino Duemilanove development board to run the touch point

recognition algorithms. The development board has ATmega328 microcontroller and

provides 6 ADC input pins and 14 Digital I/O pins. We use 2 of these digital I/O pins
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for polarity switching and 1 of the ADC pins as sensing line. The polarity switching is

implemented by simply setting one of the digital I/O pins high while setting the other

one low and then alternating them during the next measurement periods. The amplifier

stage is implemented with a Sziklai pair. The Sziklai pair is a compound unit of two

transistors of opposite polarities. The current gain of the Sziklai pair equals to the

product of the gains of the two transistors. The main advantage of the Sziklai pair over

the well-known, equivalent Darlington pair is that the base turn-on voltage is only half

of the Darlington’s nominal turn-on voltage. This advantage is very important for our

application since the turn-on voltage is left as a margin in the 5V Vcc voltage.

In order to connect paper circuits with the Arduino, we implemented a clip-like

connector as in Figure 6.2c. The connector is composed of a bulldog clip and a copper

board and was first introduced in [91]. The copper board is scored with three separations

for each connection and serves as a pad.

Printing

To print circuits we have used an Epson WF30 printer, NBSIJ-MU01 ink and resin

coated paper from Mitsubishi Imaging. The printed voltage divider resistor (snaking

line) is 0.5cm high and 19.5cm long and has approximately 3kΩ resistance. Based on

equation (3), however, the actual resistance of the printed voltage divider is not very

important as long as it is lower than the resistance of the finger, which is typically on

the order of MΩs. We print touch circuits with different numbers of keys by spacing

keys equally along the entire voltage divider.

6.1.5 Evaluation

The performance of the system is evaluated based on key factors, namely finger resistance,

key patterns and their size, number of keys, as well as key press frequency. First, we

study the limits of our touch detection circuitry in terms of the number of touch points

it can support and the detection delay after touch. Next, we evaluate the detection

accuracy with different touch point designs to provide guidance to printable touch user

interface designers. Finally, we validate the proposed method by testing it with different
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Figure 6.9: The change in accuracy for different users and number of keys

finger resistances and showing the range of finger resistances it can accommodate.

The experiments were carried out in a standard office environment and the paper

interface was placed on a wooden desk. The experiments were performed by three male

and two female users in their 20s and early 30s. During the experiments, users did not

receive visual or audio feedback from the electronic device. They pressed the keys five

times and are asked to touch the key fully.

Metrics. Generally, the experiments consider three types of errors. Missed detection

errors happen when no key is detected after a key press. False detection errors happen

when the wrong key is detected after a key press. In theory, false detections can also

occur when a key press is reported even though no key is pressed. In practice, however,

we have never observed this type of error in our experiments after proper calibration.

All reported false detections are therefore errors where the wrong key was reported.

Finally, multiple detection errors happen when the algorithm produces multiple keys

after a single key press. We define the overall accuracy as the percentage of key touches

correctly recognized, that is touches where none of these errors occur.
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Number of keys

In order to understand the limits of the paper keypads in terms of number of keys, we

have conducted experiments with printed circuits with 1, 5, 10, 15, 20, and 25 keys.

The touch points use a rectangle pattern and the 10 key setup is shown in Figure 6.2b.

Each user presses every key five times.

Due to performance variations between users, Figure 6.9 illustrates the effect of

different number of keys on accuracy for different subjects. We observe that across all

five users the accuracy remains above 96% for up to 10 keys. For larger numbers of

keys, accuracy decreases to as low as 72% for some users but remains above 94% for two

of the users.To understand the root cause of this accuracy decline, rates for different

error types are given in Figure 6.10. As the number of keys is increased, false detection

and multiple detection errors increase significantly. This is likely due to smaller voltage

margins between the keys (or voltage divider stages) as the number of keys increases.

As the finger’s touch surface changes during a key press, the measured finger resistance

varies and the prediction algorithm’s output can swing between keys. As a consequence,

the key recognition algorithm either recognizes the key incorrectly or outputs multiple

keys for a single key press. We believe that the main reason for instantaneous changes

in the measured finger resistance is the fingers motion during a key press.

When considering the average accuracy across all users, we obtain 100% for 1 key,

99.2% (standard deviation [SD] 1.6) for 5 keys, 99.6% (SD 0.8) for 10 keys, 93.5% (SD

4.64) for 15 keys, 91% (SD 6) for 20 keys and 85.1% (SD 10) for 25 keys.
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Figure 6.11: Accuracy for different gap heights

Patterns

Next, let us examine how the shape of the keys affects the performance. We chose

four shapes for comparison. The rectangle key pattern is chosen over a square pattern

because it enables placing enough space between keys and still provides a decent contact

area. The second pattern, which we call circle-in-box was chosen since its uniform shape

ensures a connection between terminals. The third pattern, interdigitated pattern, is

commonly used on printed circuit boards (PCB) for mechanical buttons. Finally, the

last pattern, line pattern, can be used in designs where minimalist key patterns are

desired. On the other hand, the gap between terminals had to be increased slightly

for this pattern in order to make it distinguishable from regular traces. The patterns

are illustrated in Figure 6.13. We also studied how performance changes with size.

The aforementioned patterns are printed in small (4.4x8.8mm) and large (6.6x13.2mm)

versions. The five users pressed every key 5 times on 10-key keypads.

The best performance attained with the rectangle key pattern for both sizes was

99.6% of the keys are correctly recognized and only two missed detection errors occurred

over 500 key presses. The circle-in-a-box pattern and Interdigitated patterns show

similar results for both small and large footprints. The circle-in-a-box yielded 95.2%

(SD 6.65) in small size and 99.6% (SD 0.8) in large size for different people. The

interdigitated pattern resulted in 95.6% (SD 4.08) and 99% (SD 1) accuracy for small

and large sizes, respectively. We observed wrong key error in 0.4% of key presses and

missed detection errors in 2.65% of the key presses. Although, the line pattern had a

similar shape to the rectangle pattern, it performed worst with 94.8% (SD 4.66) and
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95.2 (SD 2.99)% accuracy for small and large key sizes, respectively. False detection

errors occurred only three times and the rest of the errors were missed detection errors.

The accuracy results are illustrated as a bar graph in Figure 6.12. We also experimented

with the gap height factor on the rectangular pattern and its dependence on terminal

size. For this purpose, we prepared 10-key touchpads with the following width, height,

and gap height dimensions: 1.1mm to 5.5mm with 0.55mm increments for touchpad

width, 1.1mm and 1.65mm for touchpad height, and 0.44, 0.88, 1.32, 1.76,2.2,3.3, 4.4,6.6

and 8.8mm for gap heights .The accuracy was not very sensitive to terminal width and

height. For gap height, the average accuracy results are given in Figure 6.11 for the

rectangular pattern.Note that the accuracy remains high for gaps between 0.88-2mm.

However, when gaps become larger than about 2.5mm, the accuracy starts to decline

and the system misses some touch events. This is expected since the chance increases

that the finger no longer covers both terminals sufficiently as the gap gets larger. A

second interesting observation is that for gap heights lower than 0.88mm the system no

longer reliably detects the release of the finger. We believe that this occurs because of

finger moisture left on the paper which compromises the isolating properties of the gap.

Although the effect lasts only a few seconds, missed detection or multiple key errors

occur during this time. In our experiments, this 0.88mm lower bound on the gap height

was independent of the terminals height and width.
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In summary, we observed the following. First, large patterns showed better per-

formance than small patterns. Second, the first three patterns showed quite similar

performance with over 99% accuracy in large patterns. Third, higher missed detection

errors can occur as a consequence of the smaller contact area and larger gap between

terminals, such as in the line pattern.

Typing Speed

In our tests, our 10-key keypad was able to detect up to 154 key presses per minute.

We believe this rate is enough for most touch user interface applications and would

even support keyboard typing at moderate speeds. The typing speed of an average

smartphone user is 9.94 words per minute (WPM) and 75.85 WPM for a desktop

QWERTY keyboard user [92].

Skin resistance

We also examined how effectively our method can cancel out changes in finger resistance.

The experiments are performed by imitating the finger with resistors of a known value.

In order to achieve this the resistor is connected to the sensing line in series, and the

finger touch is simulated by a finger covered with aluminum foil and an isolation layer

between the foil and the finger. The aluminum foil connects the two terminals of the key

when pressed and the isolation layer eliminates any electrical noise that might leak from

the body. We have used a keypad with 10 rectangular keys as in Figure 6.2a & b). This

particular keypad was chosen because of its performance on our key pattern, size, and

number of keys experiments. In this setup, every key is pressed 5 times, yielding a total

of 50 touches, for each of the 10, 20, 30, 40, 50, 60, 70, and 80MΩ resistors. The results

up to 50MΩ are shown in Table 6.1. Although we observed missed detection errors a

few times for each resistance value, these errors occurred when the finger did not stay

on the contact area long enough. The other error types are not as frequently observed

during these experiments. Overall, the performance is not very sensitive to different

finger resistance values up to 50MΩ. Above this threshold, however, the voltage drop

across the finger becomes too significant and we were no longer able to detect touches
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for 60, 70, and 80MΩ.

6.1.6 Limitations and Future work

While we believe that this technique simplifies the construction of prototype touch

interfaces, it also imposes several limitations and presents opportunities for further

research.

Multi-touch. The current system is limited to a single touch at a time. If n touch

points are pressed simultaneously, n finger resistance values and n stage values would

need to be calculated. Such a system could potentially be solved with 2n linearly

independent equations but obtaining independent measurements would require more

sophisticated sensing techniques.

Special electrical conditions. As previously highlighted, the system cannot detect

finger touch events when the finger acts like a voltage source, is grounded, or shows

extremely high skin resistance. When the finger is grounded, the voltage readings on

any key will be zero and therefore it will be impossible to identify the touch point. In

addition, electrostatic discharge related problems can occur when the finger acts like a

voltage source. We have also been unable to detect touches when the finger resistance

exceeds 50MΩ, however this latter limit could be extended by using an ADC with lower

sink current.

Robustness and ink issues. There are also substrate and ink related problems

that may arise. The printed interfaces are not very durable to due to the nature of

paper and ink. The paper interface can be easily broken by folding or tearing the paper

and the ink can be scratched from the surface. Air moisture or residue from the finger

may connect exposed terminals of touch points. However, the problem might be easily

solved by increasing the gap height between terminals. Last but not least, potential

health implications of long-term exposure to nanoparticle-based inks may need to be

further studied.

These issues do not impede prototyping use, however.
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Finger Resistance [MΩ] Accuracy [%]

10 96
20 96
30 98
40 96
50 98

Table 6.1: Finger resistance and accuracy.

6.2 Gesture-based analog input

Although, paper touch-points cover a wide range of input types by enabling user to

assign shortcuts, these shortcuts are not effective in analog inputs as much as they

are in triggering discrete actions. Consider where the driver wants to increase the

volume of the music app, increasing the volume by pressing volume + key multiple

times on the custom input interface can be quite distractive and inefficient task due to

the number of key presses required. For this type of analog inputs, we are proposing

gesture based input system that allow driver to input analog values without moving his

hand off the steering wheel. The approach is based on our capability of tracking driver

arm’s rotational movements and the car’s movements. The driver can use the system

by rotating his hand over the steering wheel without actually steering the car. This

system can detect this type of movement when the driver’s arm is making a rotational

movement and the car is not making any turn. The rotation degree of the arm can be

used as the analog input. Additionally, a custom touch point on the paper interface can

be used to multiplex what the driver is willing to control and the gesture can be used to

input the analog level. For example, the user can choose that he is willing to navigate

the radio channels or to adjust the volume from the paper interface and change the

channel or adjust the volume level by rotational gesture.

This system has two components. These components are already defined in previous

sections. First, the system needs to be sure that the vehicle is not making a turn. For

this purpose we use, turn detection algorithms that are defined in Section 4.4.2. The

system keeps monitoring the estimated steering wheel angle by using the algorithms

defined in Section 4.4.4. Gesture-based analog input system is still being developed.
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6.3 Conclusions

We have demonstrated a method for quick prototyping of ubiquitous touch sensors by

exploiting conductive ink printing. In particular, the method allows for multiple distinct

touch points to be printed using a single layer circuit that can be printed in one pass. It

eliminates the need for assembly or wire connections to a large number of conductive

tracks on the paper. Instead, the printed touch sensor can be completed by simply

attaching a device in the form of a binder clip to the paper.

We introduced a polarity-switched resistive touch identification technique that

supports multiple touch points with only three connections to the binder clip device.

Since it is able to cancel out the effect of changing finger resistance, it allows the fingers

to be used to close the circuit at the touch point. This in turn enables printing the

entire circuit in a single layer.

We have created a prototype of the readout circuit and printed custom touch sensor

designs. Our experiments indicate that the sensor achieves touch detection accuracy

above 99% with up to ten different touch points and above 90% with 15 different touch

points. We found that the effect of the shape of the touch point is relatively small, as

long as it is reasonably large enough to be touched with a finger and includes a gap of

about 1-2mm. This enables a wide range of arbitrary shapes and touch sensor designs.

We hope that this technology inspires creativity in interaction design and touch-

enables our environment, similar to how 3D printing and open electronics platforms

have led to an abundance of smart object designs.
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Chapter 7

Future Directions and Conclusion

This dissertation describes new applications to solve safe driving problems. We proposed

three approaches to enhance driver’s driving experience in terms of safety. First, we

explore the use of wrist-wearable devices, such as smart watches and wristbands, to

track fine-grained driving behaviors including steering wheel usage and angle. Through

various real-driving scenarios, we show that our approach can achieve 98.9% driver

detection accuracy. The system also achieved hand on steering wheel detection with a

true positive rate of about 99% and can provide a warning of unsafe driving when a

drivers hand is off the steering wheel with a true negative rate above 80%. Additionally,

our system can achieve accurate steering angle estimation with errors less than 3.4

degrees to facilitate applications such as curve speed warning and understeer/oversteer

detection. Second, We introduced a novel method to estimate sensor orientation and

vehicle’s heading from only sensor without relying on any other sensors. The method

was able to estimate sensor orientation with mean error of 5.61o for yaw angle and 3.73o

for pitch angle for our limited dataset while the vehicle was driven freely. We believe

this method can be especially suitable for head tracking applications where the sensor’s

translational motion is limited. Finally, we proposed a framework that enables drivers

to create customizable printable paper button interfaces that might be used to create

shortcuts and reduce mobile-device usage related distractions. Our experiments indicate

that the sensor achieves touch detection accuracy above 99% with up to ten different

touch points and above 90% with 15 different touch points. However, there are still

some challenges that remain to be investigated for future research.
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7.1 Autonomous Vehicles

In recent years, many brands introduced semi-autonomous vehicles. Although, these

vehicles reduce the burden on drivers making distracted driving less of a contributing

factor to unsafe driving, we believe these new technological advancements open new

applications for mobile and wearable devices. Since the driver will be less responsible

for driving, they will be interacting more with infotainment systems which may in turn

rely more on utilizing the driver’s and passenger’s motion for better interaction.

Additionally, recent developments in virtual reality have introduced a glimpse of the

importance of head tracking systems. However, as we mentioned in previous chapters

current head tracking systems are not usable in the vehicle due to ferromagnetic noise

introduced by the vehicle. We believe the methods we introduced in this thesis could be

also used for in-vehicle virtual reality applications.

7.2 Augmented magnetic fields

We believe our single-sensor based approach can lead to many unprecedented research

opportunities. First of all, further research of vehicles magnetic fields for translational

movement might lead to interesting research studies and might be used for sensor

positioning. Second, the manipulation of magnetic field in the vehicle by an additional

controlled magnetic field source might improve the sensor attitude estimation accuracy.

Additional information transferred to the sensor by means of changing the magnetic

field in the vehicle might open new research opportunities more than sensor attitude

estimation. Moreover, one could detect the positional and orientational relationships

between multiple sensors by adding the controlled magnetic field sources on the sensors.

7.3 Extension of paper interfaces

The customizable paper interfaces introduced in this paper rely on a clip-like device

that interfaces with the paper. We believe further work might study the removal of

this controller device from the circuit. This clip-like device serves two purposes. First,

it feeds the polarity-switched power lines to the circuit on the paper. We believe a
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controllerless approach might exploit the use of printed antennas on the paper with an

additional controlled magnetic field source in the vehicle. The second purpose of this

device is to measure the voltage on the control line. We believe this voltage might be

measured by a wristworn wearable device since it is not affected by the skin resistance

of the user.
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L Liu, H Li , J Liu , Ç Karataş , Y Wang , M Gruteser , Y Chen , R P. Martin,
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Ç Karataş, J Liu, M Gruteser, Y Chen, Y Wang, R P Martin, J Yang, ACM
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L Liu, ACM S3 16
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Liu, Y Wang, S Tan, J Yang, Y Chen, M Gruteser, R. Martin, IEEE Infocom 2016

• Determining Driver Phone Use by Exploiting Smartphone Integrated Sensors Y
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TMC, 2014

• Printing Multi-Key Touch Interfaces Ç Karataş, M Gruteser, Ubicomp 2015.
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• Toward Detection of Unsafe Driving with Wearables. L Liu, Ç Karataş, H Li, S

Tan, M Gruteser, J Yang, Y Chen and R Martin. WearSYS , 2015

https://www.youtube.com/watch?v=9_p517yrZ0g


107

• Laboratory Validation of Inertial Body Sensors to Detect Cigarette Smoking Arm
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