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					Being	able	to	confidently	count	organisms	is	fundamental	to	estimating	the	dynamics	

of	populations	and	to	making	inferences	about	what	influences	those	dynamics.		

However,	an	accurate	census	is	difficult	to	achieve	because	an	entire	population	is	

almost	never	fully	detectable.		The	population	size	of	aquatic	organisms	can	be	

particularly	problematic	to	estimate	because	the	environment	is	not	conducive	to	

human	observation,	and,	particularly	in	the	ocean,	the	entire	habitat	of	the	population	

in	question	can	never	be	fully	sampled.		When	we	attempt	to	count	the	numbers	of	fish	

or	shellfish	in	a	population,	for	example	to	help	manage	a	fishery	or	to	increase	our	

understanding	of	how	a	population	is	responding	to	shifts	in	climate,	this	impediment	

almost	always	results	in	at	least	some	portion	of	the	population	being	unobserved	and	

unquantified.		Having	some	information	about	the	size	and	composition	of	this	

unobserved	demographic	is	fundamental	to	population	ecology	and	is	particularly	
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essential	when	the	relative	contribution	of	the	unobserved	demographic	to	the	true	

population	changes	in	space	and	time.	

					Advancements	in	fisheries	population	dynamics	and	stock	assessment	science	have	

resulted	in	the	generally	accepted	application	of	two	parameters	that	aid	in	estimating	

the	unobserved	portion	of	the	population	from	the	observed	one.		The	first,	selectivity,	

defines	the	proportion	of	a	given	demographic	group,	available	to,	and	retained	by,	

survey	or	fishing	gear	once	it	comes	into	contact	with	it.		The	second,	catchability,	is	

defined	as	the	proportion	of	the	population	caught	by	a	single	unit	of	fishing	or	survey	

effort.		Despite	the	influence	these	two	parameters	have	on	our	perception	of	what	

controls	fish	and	shellfish	population	dynamics,	we	still	don’t	fully	understand	the	

underlying	processes	that	influence	them	for	many	managed	fisheries.		

					Using	fishery	and	population	survey	data	from	two	mid-Atlantic	fisheries,	summer	

flounder	and	Eastern	oysters,	I	use	the	following	four	chapters	to	1.)	identify	patterns	in	

selectivity	and	catchability	and	understand	the	underlying	ecological	processes	that	

drive	them,	and	2.)	propose	how	we	might	better	utilize	this	information	to	assess	and	

manage	these	and	other	fisheries.			

					In	Chapter	1	I	use	summer	flounder	data	collected	from	commercial	and	recreational	

landings	and	a	stock	assessment	trawl	survey	to	evaluate	the	selectivity	of	the	survey	

and	fishing	gear	for	different	demographic	groups.		Some	interesting	patterns	were	

identified,	particularly	that	selectivity	for	female	summer	flounder	is	higher	in	the	

recreational	fishery	than	in	both	the	commercial	fishery	or	the	stock	assessment	trawl	

survey.		This	pattern	suggested	a	highly	female-biased	recreational	catch	and	that	male	

and	female	summer	flounder	separate	in	space	and	time.			
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					In	Chapter	2	I	explored,	given	the	size-	and	sex-specific	selectivity	patterns	and	catch	

composition	identified	in	Chapter	1,	whether	management	actions	could	be	taken	to	

achieve	a	more	sex-balanced	harvest	in	the	recreational	fishery.		I	evaluated	whether	a	

series	of	slot	limits,	size	regulations	that	require	landed	fish	be	between	some	minimum	

and	maximum	size,	have	the	potential	to	simultaneously	reduce	mortality	on	large,	

fecund,	females	while	maintaining	or	reducing	total	fishing	mortality.			

					The	patterns	in	summer	flounder	fishery	catch	composition	and	selectivity	and	the	

prescribed	management	actions	identified	and	discussed	in	Chapters	1	and	2	should	

contribute	significantly	to	our	understanding	of	the	life	history,	particularly	relative	to	

sex-specific	habitat	use,	of	summer	flounder,	and	will	likely	be	relevant	to	the	stock	

assessment	and	management	of	this	commercially	and	recreationally	important	fishery	

going	forward.		

					In	Chapter	3	I	used	a	set	of	field	experiments	to	derive	empirical	estimates	of	

catchability	for	a	survey	dredge	used	in	the	stock	assessment	of	eastern	oysters	in	

Delaware	Bay.		I	identified	an	along-bay	gradient	in	catchability	that	appeared	to	be	

driven	by	changes	in	oyster	density.		This	density-dependent	catchability	lead	to	catch-

per-unit-effort	of	the	survey	dredge	being	hyperstable	at	low	oyster	density,	making	

catch-per-unit-effort	(CPUE)	an	unreliable	proxy	for	abundance	at	low	oyster	density.			

					In	Chapter	4	I	asked	the	question,	given	that	evidence	from	Chapter	3	suggests	a	fixed	

catchability	coefficient	is	not	appropriate	for	estimating	true	density	from	survey	CPUE,	

how	do	three	alternative	models	perform	in	estimating	the	true	density	in	the	sampled	

area.		In	the	first	model,	I	corrected	CPUE	by	applying	spatially-explicit	catchability	

coefficients,	as	opposed	to	a	constant,	that	account	for	the	along-bay	gradient	in	density.		
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In	the	second,	CPUE	was	corrected	for	by	estimating	catchability	in	situ	for	each	tow	

using	a	logistic	model	fit	to	catch	composition	and	tow	covariates.		For	the	third	model,	

CPUE	data	were	ignored	entirely	and	a	model	that	accounted	for	the	proportion	of	the	

sample	composition	that	was	made	up	of	oysters	was	applied	to	estimate	oyster	density	

in	situ	for	each	tow.		The	simplest	model,	which	ignored	both	catchability	of	the	survey	

gear	and	CPUE,	and	relied	only	on	an	estimate	of	the	portion	of	the	catch	that	was	made	

up	of	oysters,	performed	best	in	estimating	the	true	density	in	the	sampled	area.			

					The	density-dependence	in	catchability	identified	for	an	oyster	survey	dredge	in	

Chapter	3	is	an	important	finding	because	it	adds	to	a	growing	body	of	literature	that	

density-dependent	catchability,	a	phenomenon	traditionally	attributed	to	an	interaction	

between	fish	and	fishermen	behavior,	may	be	a	common	problem	in	standardized	stock	

assessment	survey	data	as	well.		In	addition,	Chapter	4	strongly	suggests	that	when	

catchability	varies	at	fine	spatial	and	temporal	scales,	raw	catch	components	may	more	

accurately	reflect	the	true	density	in	the	sampled	area	than	an	index	derived	from	

catch-per-unit-effort	and	catchability.		Both	findings	should	have	application	to	how	

reef	growing	populations	of	organisms,	and	oysters	in	particular,	are	assessed	and	

managed	going	forward.			
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Figure	4.4.	The	density	of	oysters	in	the	sampled	area	as	a	function	of	the	proportion	of	
the	sample	that	is	made	up	oysters.		(A)	2003	data	were	used	to	train	and	estimate	
power	model	parameters	for	the	line	while	the	points	plotted	are	2013,	(B)	2013	data	
were	used	to	train	and	estimate	power	model	parameters	while	the	points	represent	
the	2003	data,	and	(C)	a	random	draw	of	24	of	the	48	experimental	observations	(2003	
and	2013	experimental	data)	were	used	to	train	and	estimate	parameters	for	the	line	
while	the	points	represent	the	remaining	24	data	points.	
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INTRODUCTION	

	
	
					While	our	ability	to	estimate	the	number	of	organisms	in	a	population	is	central	to	

applied	ecology	(Elphick	2008)	and	plays	a	major	role	in	our	understanding	of	

biodiversity	(Colwell	and	Coddington	1994)	and	species	interactions	(Faisal	et	al.	

2010),	identifying	the	most	appropriate	methodology	used	to	count	individuals,	and	the	

most	appropriate	data	interpretations	and	transformations	used	to	scale	those	counts	

to	estimates	of	population	size,	continues	to	be	a	field	of	research	rife	with	challenges	

(Jones	2011;	Guthlin,	et	al.	2014;	Maunder	and	Piner	2014).		Some	of	the	more	common	

approaches	to	estimating	abundance	include	stratified	random	sampling	(Powel	et	al.	

2008),	mark-recapture	methods	(Grimm	et	al.	2014),	depletion	analyses	(Young	et	al.	

2004),	and	the	application	of	complex	models	that	account	for	the	contribution	of	

different	demographic	groups	(Haddon	2011).		Each	method	comes	with	a	set	of	

assumptions	about	how	the	true	population	relates	to	the	sampled	one,	and	attempts	

are	made	to	account	for	these	when	drawing	inferences	about	ecological	phenomenon.						

					For	population	assessment	scientists	and	natural	resource	managers	and	

stakeholders,	the	necessity	for	reliable	count	data	extends	beyond	the	desire	to	advance	

theory	and	principles	in	ecology.		When	applied	in	a	resource	management	context,	

unreliable,	misused,	or	misinterpreted	abundance	data	can	result	in	ecological,	social,	

and	economic	disasters.		Marine	fisheries	management	has	a	particularly	storied,	even	if	

overstated,	history	of	fisheries	collapsing	from	what	have	been	actual	or	perceived	

failures	of	population	assessment	scientists	and/or	the	management	system	to	
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recognize	important	trends	in	the	population	dynamics	of	the	species	being	managed	

(Hilborn	and	Hilborn	2012).			

					A	major	difficulty	associated	with	counting	and	managing	fisheries,	as	well	as	other	

mobile	and	inconspicuous	organisms,	was	summarized	famously	by	John	Shepherd	

(1978)	with,	"Managing	fisheries	is	hard;	it's	like	managing	a	forest,	in	which	trees	are	

invisible	and	keep	moving	around."		The	fisheries	literature	is	full	of	innovative	

attempts	to	overcome	this	reality	(Hilborn	and	Walters	1992;	Quinn	and	Deriso	1999).		

In	addition,	recent	advancements	in	computing	have	made	it	possible	to	assess	the	fit	of	

hundreds	of	non-linear	model	parameters	simultaneously	(Fournier	et	al.	2012)	so	that	

the	evolution	of	population	assessment	might	soon	lead	to	models	that	mirror	the	

complexity	of	a	natural	population.		Yet,	despite	continued	improvement	to	techniques	

for	assessing	population	size	and	complex	model	fitting	procedures,	contemporary	

methods	still	cannot	accurately	depict	key	population	parameters	for	the	most	recent	

years	in	a	time	series	(Cadrin	and	Dickey-Collas	2014;	Maunder	and	Piner	2014).		

					Selectivity	and	catchability	are	both	stock	assessment	parameters	that	scale	

observations	taken	from	a	sample	of	a	population	to	estimates	of	the	true	population	

size	(Cadrin	et	al.	2016).		Selectivity	can	be	defined	as	the	product	of	1)	the	proportion	

of	a	given	demographic	group	retained	by	survey	or	fishing	gear	once	it	comes	into	

contact	with	it,	also	called	contact	selectivity,	and	2)	the	proportion	of	the	same	

demographic	group	available	to	the	fishing	or	survey	gear	at	the	time	and	location	it	

was	fished,	also	called	population	selectivity	(Maunder	et	al.	2014).		Catchability	is	

simply	how	much	of	the	population	is	caught	by	a	single	unit	of	fishing	or	survey	effort	

(Arreguin-Sanchez	1996).		Although	both	are	tightly	linked	with	the	life	history	and	
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behavior	of	the	species	being	studied,	experimental	or	field	observation-based	

approaches	to	estimates	are	often	neglected	in	favor	of	those	derived	inside	the	

assessment	model	(Cadrin	et	al.	2016)	where	they	are	sometimes	correlated	with	other	

model	parameters	(Arreguin-Sanchez	1996).		Despite	key	stock	assessment	outputs,	

including	total	abundance	and	fishing	mortality	rate,	being	highly	sensitive	to	

misspecification	of	selectivity	and	catchability	(Chen	et	al.	2003;	Cardin	et	al.	2016),	

both	remain	poorly	understood	for	most	fisheries	(Sampson	and	Scott	2011;	Sampson	

2013).			

										This	work	is	aimed	at	understanding	the	driving	forces	influencing	catchability	

and	selectivity	and	intersects	two	fields,	stock	assessment	science	and	natural	history,	

that	are	now	too	often	viewed	as	disparate.		I	present	experimental	and	observational	

estimates	of	selectivity	and	catchability	from	two	fisheries,	summer	flounder	and	

eastern	oysters.		Two	chapters	are	devoted	to	each	fishery.		In	first	chapter	I	endeavor	

to	understand,	through	observation	and	experimentation,	some	of	the	underlying	

ecological	processes	that	drive	patterns	in	selectivity	and	catchability	of	fishing	and	

survey	gear.		With	a	better	understanding	of	these	ecological	processes,	I	then	set	out	in	

the	second	chapter	to	evaluate	how	we	might	utilize	this	information	to	develop	more	

appropriate	tools	and	applications	in	fishery	stock	assessment	and	management.		

					I	propose	that	one	of	the	major	complications	with	counting	any	organism	is	that	our	

ability	to	do	it	well	is	directly	dependent	on	how	much	we	already	know	about	the	

organism's	life	history	(distribution,	demography,	growth	rates,	movement	patterns).		

But	such	information	can	only	be	learned	from	properly	designed	population	surveys,	

with	unbiased	interpretations	of	population	data,	so	that	a	feedback	loop	forms	
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between	the	raw	count	data	being	used	to	model	and	assess	the	population	and	basic	

natural	history	information	needed	to	collect	the	raw	count	data.		The	underlying	

processes	(natural	history)	inform	priors	of	the	model	parameters	and	generate	more	

certain	estimates	of	the	size	of	the	population,	which	in	turn	allow	for	stronger	

inference	about	the	underlying	processes,	and	so	on.		This	is	an	admittedly	trivial	

statement.		To	count,	model,	and	manage	a	resource,	of	course	one	would	need	to	

understand	the	basic	life	history	and	ecology	of	that	resource.		However,	financial	and	

time	constraints	often	lead	to	gross	overgeneralizations	of	the	underlying	processes	

that	make	different	species	unique.			
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CHAPTER	1	

ESTIMATING THE SEX COMPOSITION OF THE SUMMER FLOUNDER CATCH 

USING FISHERY-INDEPENDENT DATA** 

Abstract	

Models	that	account	for	sex-specific	behavior	and	population	dynamics	are	becoming	

more	common	in	the	stock	assessment	of	sexually	dimorphic	fishes.		However,	such	

models	can	be	data-intensive	and	require	some	knowledge	or	assumptions	about	the	

sex	ratio	of	fishery	landings.		A	recent	stock	assessment	review	of	Summer	Flounder	

Paralichthys	dentatus	identified	the	need	to	account	for	sex-specific	fishing	mortality	in	

the	assessment	model;	however,	no	data	on	the	sex	composition	of	the	catch	were	

available.		Fishery-independent	sex-specific	information	is	collected	annually	for	this	

species	by	the	National	Marine	Fisheries	Service,	Northeast	Fisheries	Science	Center	on	

their	ocean	trawl	survey.		Sex-at-age	from	the	survey	could	be	applied	to	the	fishery	

landings	if	the	probability	of	landing	a	given	sex	at	a	given	age	is	equivalent	for	fish	

collected	by	the	survey	and	in	the	landings.		To	generate	the	first	regionally	

comprehensive	database	on	the	sex	ratio	of	Summer	Flounder	landings	and	to	

determine	the	efficacy	of	using	survey	sex-at-age	keys	to	sex	the	landings,	I	recorded	

the	sex	composition	of	the	commercial	and	recreational	Summer	Flounder	catch	(n=	

31,912)	in	2010	and	2011.		When	(1)	survey	length	data	were	left-truncated	to	simulate	

the	minimum	retention	sizes	in	the	fisheries	and	(2)	age-length	keys	generated	from	

                                                
*	Published	as:		Morson,	J.	M.,	E.	A.	Bochenek,	E.	N.	Powell,	E.	C.	Hasbrouck,	J.	E.	Gius,	C.	F.	Cotton,	K.	
Gerbino,	and	T.	Froehlich.		2015.		Estimating	the	sex	composition	of	the	summer	flounder	catch	using	
fishery	independent	data.		Marine	and	Coastal	Fisheries:	Dynamics,	Management,	and	Ecosystem	Science	
7:	393-408.	
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fishery-dependent	data	were	applied	to	length-frequency	distributions	from	the	survey	

to	simulate	the	growth	rates	of	fish	landed	in	the	catch,	the	sex-at-age	pattern	in	the	

survey-derived	data	closely	resembled	the	patterns	in	the	catch.		However,	statistically	

significant	differences	in	sex-at-age	remained	between	the	catch	and	the	survey-derived	

data.		I	hypothesize	that	these	differences	are	owed	to	differences	in	the	spatiotemporal	

distribution	of	the	sexes	and	the	spatiotemporal	distribution	of	the	survey	and	fishing	

effort.		

 

Introduction 

					Recent	evidence	suggests	that	including	sex	structure	in	stock	assessment	models	is	

important	for	sexually-dimorphic	fishes.		For	example,	if	growth	rates	or	natural	

mortality	differ	between	male	and	female	fish	(Wang	et	al.	2005;	Su	et	al.	2013),	if	sex-

specific	migratory	behavior	and	fishing	effort	are	not	evenly	distributed	in	space	and	

time	(Okamura	et	al.	2014),	or	if	fishery	selectivity	is	sex-specific	(Myers	et	al.	2014),	

not	including	sex-structure	in	the	assessment	model	can	bias	biological	reference	

points.		In	light	of	these	recent	findings,	sex-structured	assessment	models	are	

becoming	more	common	in	describing	the	population	dynamics	of	fishes	that	have	

sexually-dimorphic	characteristics	and/or	behavior	(Clark	2006;	Wang	et	al.	2007;	

Fenske	et	al.	2011;	Su	et	al.	2011;	McGilliard	et	al.	2013).			

					Female	Summer	Flounder	Paralichthys	dentatus	grow	faster	(Poole	1961;	King	et	al.	

2001)	and	mature	at	a	larger	size	(Able	and	Kaiser	1994;	Packer	et	al.	1999)	than	males.		

In	addition,	the	sex	ratio	of	young	fish	is	skewed	in	favor	of	males,	probably	due	to	a	

complex	interaction	between	temperature	and	the	biochemistry	of	sex	determination	
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(Luckenbach	et	al.,	2009).		However,	as	the	cohort	ages	the	balance	in	sex	ratio	shifts	

toward	females	(Smith	and	Daiber	1977;	Bonzek	et	al.	2009),	a	pattern	that	suggests	a	

higher	natural	mortality	rate	for	the	males	(Maunder	and	Wong	2011).		Sexually-

1dimorphic	life	history	characteristics	of	Summer	Flounder	suggest	that	a	sex-

structured	assessment	model	would	be	appropriate	for	this	species	(Jones	et	al.	2013;	

NEFSC	2013),	yet	the	most	recent	assessment	applied	a	single-sex	statistical	catch-at-

age	model	(NEFSC	2013).			

					Sex-structured	assessment	models	can	be	difficult	to	implement	because	they	are	

data-intensive,	requiring	either	some	prior	knowledge	about	the	sex	composition	of	the	

catch	or	that	assumptions	be	made	about	the	sex-specific	selectivity	curve	and	its	

stability	in	space	and	time	(Methot	and	Wetzel	2013;	Myers	et	al.	2014).		Sex-specific	

information	is	not	collected	from	Summer	Flounder	landings	as	part	of	the	annual	

assessment	process	because,	like	other	flatfishes,	there	are	no	external	characteristics	

that	can	be	used	to	identify	the	sex	and	Summer	Flounder	cannot	be	dissected	by	port	

agents	and	still	retain	their	market	value.		However,	on	the	National	Marine	Fisheries	

Service,	Northeast	Fisheries	Science	Center	(NMFS-NEFSC)	bottom	trawl	survey,	

conducted	twice	annually	in	the	spring	and	fall,	sex-specific	data	are	collected	using	fish	

dissection	(NEFSC	2013).			

					When	fishery-independent	survey	data	are	sex-specific	and	the	probability	of	a	given	

sex	at	a	given	length	or	age	are	similar	between	the	survey	and	the	catch,	it	may	be	

possible	to	apply	a	sex-at-length	or	sex-at-age	key	developed	from	survey	data	directly	

to	length	or	age	data	from	the	catch	(Clark	2004).		However,	the	sex	composition	of	the	
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catch	is	influenced	by	a	combination	of	the	differences	in	the	size-,	age-,	and	sex-specific	

retention	selectivity	imposed	by	the	minimum	retention	size	in	each	fishery	(Kendall	

and	Quinn	2013),	the	size-,	age-,	and	sex-specific	vulnerability	of	fish	resulting	from	

their	interaction	with	(Ryer	2008;	Somerton	et	al.	2011),	and/or	their	availability	to	

(Okamura	2014;	Sampson	2014),	the	fishing	gears,	and	the	spatial-,	temporal-,	and	sex-

specific	growth	rates	of	the	fish	being	retained	by	the	different	sampling	gears	(Poole	

1961;	Planes	et	al.	1999;	Wilderbuer	and	Turnock,	2009).		For	instance,	different	

minimum	retention	size	limits	are	implemented	in	the	recreational	and	commercial	

Summer	Flounder	fisheries	(NEFSC	2013)	and	some	limited	evidence	suggests	that	the	

availability/vulnerability	of	the	sexes	at	a	given	length	to	the	fishing	effort	may	vary	

seasonally	and	between	the	recreational	fishery	and	the	NMFS-NEFSC	survey	(Morson	

et	al.	2012).		These	fishery-specific	processes	can	result	in	differences	in	the	sex-

composition	within	the	catch	and	between	the	catch	and	the	survey,	so	an	assumption	

of	equal	probabilities	of	sex-at-length	or	sex-at-age	between	catch	and	survey	data	may	

be	incorrect.			

					In	this	chapter	I	examine	trends	in	the	sex	composition	of	summer	flounder	landed	in	

the	recreational	and	commercial	fisheries.		Given	these	trends,	I	test	the	efficacy	of	

applying	NMFS-NEFSC	survey-derived	sex-at-age	keys	to	catch	data	so	that	the	stock	

assessment	of	Summer	Flounder	might	implement	a	sex-specific	model.		Finally,	I	

discuss	some	of	the	underlying	ecological	processes	that	may	be	driving	the	observed	

patterns	in	selectivity.			

	



	

	

11	

Methods	

Data	Collection	

					Summer	Flounder	Paralichthys	dentatus	were	collected	along	the	northeast	and	mid-

Atlantic	continental	shelf	of	the	USA	in	2010	and	2011	from	a	fishery-independent	

survey	(NFS)	and	from	commercial	(CFS)	and	recreational	hook-and-line	(RFS)	fishery	

landings	(Table	2.1).		For	all	fish,	total	length,	sex,	and	catch	location	were	recorded.		

For	a	subset	of	the	fish	sampled,	otoliths	and/or	scales	were	removed	for	aging	(Table	

2.1).		Otoliths	were	removed	from	carcasses	collected	from	the	RFS.		Scales	were	

collected	for	specimens	up	to	60	cm	and	otoliths	for	fish	greater	than	60	cm	from	the	

CFS	and	the	NFS.		Otoliths	were	processed	by	selecting	the	right	side	otolith	and	center-

aligned	in	a	merchandise	tag,	embedded	in	black	polyester	resin,	and	then	cross-

sectioned	through	the	core	with	a	low-speed	sectioning	saw.		After	processing,	otoliths	

were	examined	using	a	Leica	MZ-6	dissecting	microscope	with	transmitted	light	at	

between	8	and	60	times	magnification.	Annuli	from	otoliths	were	identified	as	narrow	

opaque	bands	and	were	counted	along	the	ventral	side	of	the	sulcal	groove.		Scales	were	

processed	by	selecting	five	or	six	samples	from	each	fish	and	impressing	them	on	

acetate	sheets.		Impressions	were	examined	using	a	microfiche	reader	with	20	and	

29mm	lenses.	Annuli	were	identified	in	scales	by	using	established	protocols	described	

in	Pentilla	and	Dery	(1988).		

					The	National	Marine	Fisheries	Service,	Northeast	Fisheries	Science	Center	(NMFS-

NEFSC)	provided	NFS	data	for	Summer	Flounder	sampled	from	the	spring	and	fall	

bottom	trawl	survey	cruises	at	predetermined	sampling	strata	at	depths	ranging	from	

27	m	-	365	m	from	Cape	Hatteras,	North	Carolina,	USA	to	Nova	Scotia,	Canada.		A	
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detailed	description	of	the	bottom	trawl	survey	design	can	be	found	in	Azarovitz	(1981)	

and	NEFSC	(1988),	but	briefly	between	350	and	400	stations	are	sampled	each	year	

with	a	bottom	trawl	that	has	a	1.5	cm	stretch	mesh	liner	and	rollers	for	sampling	hard	

substrate.		Tows	are	conducted	for	30	minutes	at	each	station	at	a	tow	speed	of	3.5	

knots.		CFS	and	RFS	data	were	collected	by	sampling	fish	landed	at	marinas,	packing	

houses,	and	fishing	docks	from	North	Carolina	to	Massachusetts	(Table	2.2).	

					Sampling	of	the	CFS	occurred	year-round	wherever	the	fishery	was	operational.		The	

minimum	mesh	size	in	the	CFS	was	a	14	cm	diamond	mesh	or	15	cm	square	mesh	

applied	throughout	the	net	body,	extension,	and	codend.		For	each	visit	to	a	commercial	

dock,	samples	from	up	to	100	fish	were	collected	haphazardly	in	each	market	category	

(medium,	large,	and	jumbo)	available	from	a	given	fishing	trip.		The	market	category	is	

determined	by	each	dock	or	packing	house,	but	generally,	small	fish	ranged	from	35	cm	

-	45	cm,	medium	fish	from	45	cm	-	55	cm,	and	jumbo	fish	were	greater	than	55	cm.		At	

these	sizes,	all	fish	sampled	were	sexually	mature.		Summer	Flounder	cannot	be	sexed	

using	external	characteristics;	so,	to	avoid	a	reduction	in	market	value,	a	developed	a	

minimally-invasive	technique	for	determining	sex	(Figure	2.1).		A	one-inch	incision	was	

made	on	the	pigmented	side	of	the	fish	in	an	area	halfway	between	the	anterior	end	of	

the	anal	fin	and	the	center	of	the	pectoral	fin.		Using	forceps,	the	gonads	were	pulled	out	

through	this	incision.		Orange	eggs	or	empty	ovaries	and	the	white	testis	tissue	were	

used	to	differentiate	female	and	male	fish,	respectively.		Both	male	and	female	fish	were	

easily	identified	even	when	sampling	did	not	occur	during	the	spawning	season.		

					RFS	ports	were	sampled	once	per	week	during	the	recreational	fishing	season	(May-

September)	to	collect	racks	(fileted	carcasses)	of	all	Summer	Flounder	caught	that	day	
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on	all	participating	boats.		Once	Summer	Flounder	were	fileted,	the	sex	organs	

remained	intact	and	visible	on	the	rack.		Boat	captains	and	crew	saved	fish	racks	in	a	

bin	and	those	racks	were	collected	upon	arrival	at	a	participating	dock.	In	order	to	

increase	the	number	of	fish	available	for	collection,	freezers	were	placed	at	each	dock.		

Bags	and	waterproof	tags	were	provided	to	the	boat	captains	and	crew	and	were	

available	near	the	freezers	so	that	samples	could	be	accurately	labeled	with	the	date	

and	location	of	the	catch.	Participating	boat	captains	were	asked	to	deposit	all	fish	racks	

from	the	day’s	catch	in	these	tagged	bags	and	place	the	bags	in	the	freezers.		Freezers	

were	emptied	by	scientists	upon	arrival	at	a	dock	to	collect	fresh	racks.		Morson	et	al.	

(2012)	concluded	that	the	change	in	Summer	Flounder	length	from	freezing	was	

negligible.		To	ensure	a	representative	sample	of	harvested	Summer	Flounder	sex,	

length,	and	age,	all	fish	caught	on	a	fishing	trip	were	sampled	without	regard	to	size.		

Sex	was	determined	by	macroscopic	investigation	of	exposed	gonad	on	filleted	fish	

carcasses.		Over	ninety-nine	percent	of	fish	collected	had	reproductive	organs	intact	

and	readily	visible	to	the	naked	eye.	

					For	all	fish	sampled	from	the	RFS	and	CFS,	a	record	was	kept	of	the	NMFS-NEFSC	

statistical	area	where	the	fish	were	caught	(Figure	2.2	and	Table	2.3).		The	CFS	and	RFS	

operate	in	different	statistical	areas	so	that	there	was	not	complete	overlap	between	the	

two	fisheries	relative	to	fishing	location.		On	the	NFS,	data	were	collected	along	

stratified	sampling	strata.		To	make	spatially-comparable	comparisons	between	the	NFS	

and	the	RFS/CFS,	latitude	and	longitude	from	each	NFS	tow	were	used	to	assign	NFS	

samples	to	NMFS-NEFSC	statistical	areas.			
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Data	analysis	

					Age	was	determined	for	23,020	of	the	36,745	Summer	Flounder	sampled	from	the	

RFS,	CFS,	and	NFS	(Table	2.1).		To	utilize	the	full	set	of	data	to	determine	how	well	sex-

at-age	collected	on	the	NFS	described	sex-at-age	in	the	RFS	and	CFS,	it	was	necessary	to	

generate	appropriately	partitioned	age-length	keys	(ALKs)	and	apply	those	keys	to	fish	

not	aged	empirically.		Age-length	data	were	partitioned	by	sex,	region,	and	data	source	

(SFS/CFS/RFS).		Region	was	defined	as	north,	which	included	all	fish	caught	or	

collected	north	of	40°	latitude;	or	south,	which	included	all	fish	caught	or	collected	

south	of	40°	latitude.		To	compare	ALKs,	the	age	distribution	at	a	given	length	was	

modeled	using	multinomial	logistic	regression	(Gerritsen	et	al.	2006).		The	multinomial	

log-linear	models	were	fit	via	neural	networks	using	the	function	multinom()	available	

in	the	R	package	nnet	(Venables	and	Ripley	2002).		This	approach	provided	a	simple	

and	robust	method	for	identifying	significant	differences	between	ALKs	generated	from	

data	partitioned	by	sex,	region,	and	data	source.		The	best-fit	model	identified	the	most	

appropriate	stratification	of	the	data	and	ALKs	were	generated	based	on	that	

stratification.		ALKs	were	then	applied	to	all	fish	not	aged	empirically	based	on	a	

probability	of	each	age	given	the	length	of	each	fish	using	the	ageKey	function	in	the	R	

package	FSA	(Isermann	and	Knight	2005;	Ogle	2014).	

					I	used	logistic	regression	to	evaluate	the	efficacy	of	applying	a	sex-at-age	key	

developed	from	NFS	data	to	CFS	and	RFS	age	data.		The	probability	of	landing	a	female	

at	given	age	was	modeled	as	the	dependent	variable	and	the	data	source	(NFS,	CFS,	and	

RFS)	was	modeled	as	the	independent	variable	(Wilson	and	Hardy	2002;	Morson	et	al.	

2012).		Significant	differences	between	the	NFS	and	both	fishery	data	sources	suggested	
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a	sex-at-age	key	developed	from	raw	NFS	data	would	not	be	appropriate	in	describing	

the	sex	composition	from	either	fishery.		I	hypothesized	that	the	size-,	age-,	and	sex-

specific	retention	selectivity	imposed	by	the	minimum	retention	size	(MRS)	of	35	cm	in	

the	CFS	and	of	between	46	cm	and	53	cm	in	the	RFS,	as	well	as	the	differences	in	growth	

rates	between	fish	collected	from	the	three	data	sources,	could	explain	the	variability	in	

sex-at-age	among	the	datasets.		Therefore,	I	simulated,	independently	for	the	CFS	and	

RFS,	the	effects	of	these	fishery-specific	processes	on	the	fishery-independent	survey	

data	and	re-analyzed	the	resultant	sex	ratio-at-age.	

					First,	to	simulate	the	length-specific	retention	selectivity	of	the	RFS	and	CFS,	I	left-

truncated	the	NFS	data	at	the	MRS	of	each	fishery.		This	approach	provided	a	NFS-

derived	measure	of	sex-at-age	comparable	to	the	left-truncated	sex	composition	in	each	

fishery-dependent	set	of	data.		A	35-cm	MRS	was	implemented	coast-wide	in	the	CFS	

during	the	sample-collection	period,	so	NFS	and	CFS	data	were	left-truncated	at	35	cm	

for	the	CFS	comparison.		The	recreational	fishery	MRS	varied	from	46cm	-53	cm	

depending	on	the	landing	year	and	state.		To	avoid	too	many	pair-wise	comparisons	

using	too	little	data,	I	left-truncated	the	NFS	and	RFS	data	at	46	cm	and	at	53	cm	in	two	

separate	comparisons	that	together	encompass	the	full	range	of	potential	comparisons.	

					To	simulate	the	observed	growth	rates	in	the	CFS	and	RFS,	sex-	and	region-specific	

ALKs	generated	from	CFS	and	RFS	data	were	applied	to	the	left-truncated	sex-	and	

region-specific	NFS	length	data.		This	allowed	us	to	assign	age	to	the	left-truncated	

distribution	of	lengths	in	the	NFS	data	as	if	the	NFS	fish	grew	at	the	same	rates	as	in	

each	respective	fishery.		
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					Finally,	as	a	proxy	for	evaluating	the	length-specific	vulnerability	of	the	sexes	to	the	

fisheries,	I	compared	the	left-truncated	NFS-derived	sex	ratio-at-length	to	the	measured	

sex-at-length	from	the	CFS	and	RFS.		Since	the	NFS	utilizes	a	smaller	mesh	size	than	the	

regulation	size	in	the	CFS	and	the	RFS-MRS	is	set	higher	than	that	in	the	CFS,	all	left-

truncated	NFS	data	in	these	comparisons	come	from	fish	that	are	fully	recruited	to	the	

survey.		A	logistic	regression	model	was	fit	to	estimate	the	probability	of	landing	a	

female	at	a	given	length	for	each	pairwise	comparison.		

					All	statistical	analyses	were	computed	in	R	v3.0.3	(R	Core	Team	2014).		Model	

selection	followed	Akaike	Information	Criterion	(AIC).		A	model	score	that	was	two	AIC	

units	lower	was	accepted	as	evidence	for	better	fit	among	competing	models	(Arnold	

2010).			

	

Results	

					Summer	Flounder	Paralichthys	dentatus	from	27	different	NMFS-NEFSC	statistical	

areas	were	sampled	on	the	NMFS-NEFSC	bottom	trawl	survey	(NFS)	and	from	the	

commercial	(CFS)	and	recreational	(RFS)	fishery	port	sampling	programs	(Table	2.3).		

The	samples	collected	from	the	CFS	were	distributed	inshore	and	offshore	across	

similar	statistical	areas	as	those	collected	on	the	NFS,	but	the	RFS	samples	were	limited	

to	statistical	areas	located	inshore	(Figure	2.2	and	Table	2.3).	

					The	probability	that	a	fish	of	a	given	length	was	a	given	age	depended	on	its	sex,	

region,	and	data	source	(NFS/CFS/RFS;	Table	2.4).		Sex	was	the	most	important	effect	in	

the	model,	followed	by	data	source,	and	region.		
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					The	sex	ratio-at-age	in	the	NFS	was	significantly	different	than	the	CFS	(p<0.0001)	

and	the	RFS	(p<0.0001)	when	comparisons	included	all	NFS	data	(Figure	2.3a	and	

Figure	2.4a).		A	higher	proportion	of	the	catch-at-age	is	female	in	both	fisheries	(Figure	

2.3a,	4a,	and	5a).		However,	fish	landed	under	a	minimum	retention	size	(MRS)	had	a	

higher	mean	length-at-age	than	fish	collected	by	the	NFS.		The	higher	the	MRS	imposed	

on	the	landed	fish,	the	higher	the	mean	length-at-age	(Figure	2.6).		This	effect	was	

apparent	for	all	ages	containing	the	MRS	within	their	length	frequency.		When	NFS	data	

were	left-truncated	to	simulate	the	MRS	in	the	CFS	and	RFS	to	account	for	this,	the	sex	

ratio-at-age	pattern	more	closely	approximated	the	pattern	in	the	data	collected	

directly	from	the	fisheries	(Figure	2.3b,	4b,	and	5b).		The	proportions-at-age	in	the	

survey-derived	data	shifted	dramatically	toward	female	fish	at	younger	ages	(Figures	

3b,	4b,	and	5b).		Applying,	separately,	sex-	and	region-specific	age-length	keys	(ALK)	

generated	from	CFS	and	RFS	data	to	left-truncated	sex-	and	region-specific	NFS	length	

data	resulted	in	a	sex	ratio-at-age	pattern	that	further	resembled	the	pattern	of	the	data	

collected	directly	from	the	CFS	and	RFS	(Figures	3c,	4c,	and	5c).		The	shift	in	sex	ratio-

at-age	suggests	that	the	differences	in	growth	between	the	fish	landed	in	the	fisheries	

and	the	fish	collected	on	the	survey	is	sex-specific.		Females	landed	in	both	fisheries	had	

grown	faster	than	female	fish	collected	from	the	NFS,	and	male	fish	landed	in	both	

fisheries	had	grown	slower	than	male	fish	collected	from	the	NFS.		Thus,	applying	

fishery-specific	ALKs	resulted	in	a	shift	in	the	sex	ratio	of	younger	fish	further	toward	

female	and	a	shift	in	the	sex	ratio	of	older	fish	toward	male	(Figures	3b	and	3c;	Figure	

2.4b,	4c,	5b,	and	5c).		For	example,	in	the	CFS	comparison	(Figure	2.3b	and	3c),	one-

year-old	survey-derived	sex-at-age	increased	from	approximately	40%	female	(Figure	
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2.3b)	to	approximately	65%	female	(Figure	2.3c)	whereas	six-year-old	survey-derived	

sex-at-age	decreased	from	approximately	75%	female	(Figure	2.3b)	to	approximately	

50%	female	(Figure	2.3c).		Even	so,	statistically	significant	differences	remained	

between	the	CFS	(p<0.0001)	and	RFS	(p<0.0001)	data	and	the	NFS-derived	data	that	

were	manipulated	to	simulate	the	fishery-specific	MRS	and	growth	processes	within	

catches	from	the	fisheries.	

					Given	that	accounting	for	the	length-specific	retention	selectivity	and	the	differences	

in	growth	rates	between	the	fish	landed	in	the	fisheries	and	those	collected	on	the	

survey	did	not	remove	all	of	the	variability	in	sex-at-age	between	the	survey	and	catch	

data,	I	attempted	to	estimate	the	difference	in	availability	of	the	sexes	to	the	survey	and	

the	fisheries.		The	length-specific	vulnerability	of	the	sexes	to	the	gear,	modeled	as	the	

probability	of	a	fish	being	female	at	a	given	length,	was	similar,	but	statistically	different	

(p=0.0037)	for	the	left-truncated	NFS	data	and	CFS	data	comparison	(Figure	2.7a).		The	

probability	of	landing	a	female	at	a	given	length	is	slightly	higher	in	the	CFS	than	in	the	

left-truncated	NFS	(Figure	2.7a).		In	addition,	the	proportion	female-at-length	increased	

in	both	the	CFS	and	the	left-truncated	NFS	at	similar	rates	until	each	reached	the	

smallest	MRS	in	the	recreational	fishery	(~45	cm).		At	this	point	the	female	proportion-

at-length	remained	unchanged	or	increased	only	slightly	from	one	centimeter-

increment	to	the	next	until	reaching	approximately	the	50-cm	length	increment	when	

the	rate	for	both	datasets	returned	to	a	logistic	form	(Figure	2.7).		The	probability	of	

landing	a	female	at	a	given	length	was	much	higher	in	the	RFS	than	for	the	left-

truncated	NFS	data	(p<0.0001;	Figure	2.7b).		In	fact	when	a	fish	is	landed	in	the	

recreational	fishery	at	the	smallest	MRS	(46	cm),	there	is	an	80%	chance	that	the	fish	
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will	be	female	and	this	probability	rapidly	approaches	100%	with	increasing	size	

(Figure	2.7b).	

	

Discussion	

					To	determine	whether	the	sex	composition	of	Summer	Flounder	Paralichthys	

dentatus	from	a	fishery-independent	trawl	survey	could	be	used	to	estimate	the	sex	

composition	of	the	Summer	Flounder	catch	without	collecting	sex-specific	data	directly	

from	the	fisheries,	I	simulated	fishery-specific	processes	on	the	survey	data,	including	

the	minimum	retention	size	(MRS)	in	each	fishery	and	the	growth	rates	of	fish	landed	in	

both	fisheries,	and	compared	those	survey-derived	estimates	to	the	actual	sex	

composition	in	the	catch.			

					Fish	landed	in	the	fisheries	had	grown	at	different	rates	than	those	collected	from	the	

survey,	and	at	different	rates	from	one	another,	suggesting	that	each	gear	is	sampling	a	

different	part	of	the	population.		Furthermore,	this	effect	was	sex-specific;	female	fish	

landed	in	the	fisheries	had	grown	faster	than	those	collected	on	the	survey,	while	male	

fish	collected	on	the	survey	had	grown	faster	than	male	fish	landed	in	the	fisheries.		

This	suggests	that	fisheries	are	selectively	targeting	faster-growing	females	and	slower-

growing	males.				Stari	et	al.	(2010)	offered	that	sampling	location	or	gear	selectivity	

could	explain	differences	in	age-length	keys	(ALK)	for	North	Sea	Haddock	

Melanogrammus	aeglefinus	collected	from	different	gears.		I	propose	the	differences	in	

ALKs	found	here	could	result	from	the	spatial	sex-specific	segregation	of	Summer	

Flounder	previously	suggested	(Morson	et	al.	2012),	the	influence	of	region	on	growth	

rates	previously	identified	(Kraus	and	Musick	2001)	and	further	confirmed	with	this	
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work,	and	the	spatial	and	temporal	distribution	of	fishing	effort;	though	the	influence	of	

age-specific	gear	selectivity	cannot	be	ruled	out.		I	discuss	spatiotemporal	distribution	

of	fish	and	fishing	effort	in	more	detail	below.		

					The	MRS	in	each	fishery,	operating	on	the	sex-specific	growth	rates	(Poole	1961;	

King	et	al.	2001),	forces	a	higher	fraction	female-at-age	in	the	catch	than	would	be	

expected	in	a	non-culled,	fishery-independent	sample.		I	was	able	to	largely	correct	for	

this	by	left-truncating	the	survey	data	to	mimic	the	MRS	in	each	fishery	and	this	

transformation	of	the	survey	data	recovered	a	sex-at-age	pattern	more	closely	

resembling	the	one	measured	directly	from	the	catch.		Not	surprisingly,	when	I	applied	

ALKs	developed	from	fishery-dependent	data	to	left-truncated	survey	data,	the	result	

was	a	sex-at-age	pattern	in	the	survey-derived	data	that	even	more	closely	resembled	

the	one	measured	directly	from	the	catch.	

					This	step-wise	approach	to	simulating	fishery-specific	effects	on	fishery-independent	

data	recovered	the	pattern	of	sex-at-age	in	the	fisheries	and	it	may	therefore	have	

application	to	other	fisheries	where	biological	data	from	the	catch	are	limited	and	a	

desire	exists	to	estimate	sex-specific	parameters	in	an	assessment.		However,	these	

manipulations	did	not	recover	the	exact	proportions-at-age	measured	directly	from	the	

catch.		I	hypothesize	that	this	is	due	to	some	difference	in	the	spatiotemporal	

distributions	in	stock	structure	and	fishing	effort,	such	that	the	availability	of	the	sexes	

to	the	survey	and	the	fishing	fleets	was	not	equivalent.		As	evidence,	I	show	that	sex-at-

length,	used	as	a	proxy	for	the	availability	of	fish	on	the	bottom	to	the	fishing	gears,	

varied	slightly	between	the	commercial	fishery	and	the	survey,	and	dramatically	

between	the	recreational	fishery	and	the	survey.		The	recreational	fishery	occurs	
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inshore	from	late	spring	to	early	fall,	the	commercial	fishery	occurs	year-round	inshore	

and	offshore,	and	the	NMFS-NEFSC	survey	occurs	offshore	once	in	March	and	once	in	

September.		As	no	overlap	exists	in	space	or	time	between	the	recreational	fishery	and	

the	survey,	the	expectation	is	that	if	spatial	and	temporal	structure	to	the	sex	

composition	exists	in	the	population,	then	differences	in	the	spatiotemporal	availability	

of	the	sexes	to	the	survey	and	recreational	fishery	will	be	reflected	in	the	catch.		This	

was	observed,	manifested	in	the	large	difference	in	sex	ratio-at-length	between	the	

recreational	catch	and	survey	data.			

As	the	commercial	fishery	overlaps	both	in	time	and	space	with	the	survey,	the	

expectation	is	that	sex-specific	availability	of	fish	to	the	commercial	fishery	and	survey	

will	be	similar.		Such	a	finding	also	was	observed,	manifested	in	the	fairly	close	match	in	

sex-at-length	between	the	commercial	catch	and	the	survey	data.		This	is	the	first	

evidence,	to	my	knowledge,	of	sex-specific	segregation	of	Summer	Flounder	in	space	

and	time.			

				Spatial	and	temporal	segregation	of	fishes	by	sex	is	a	common	phenomenon	and	

occurs	in	other	sexually-dimorphic	flatfishes	(Morgan	and	Trippel	1996;	Swain	1997;	

Swain	and	Morin	1997;	Gorchinksy	1998;	Richards	et	al.	2008;	Gerritsen	2010;	Sahin	

and	Gunes	2010;	Loher	2012;	Loher	and	Hobden	2012).		Explanations	for	sex-specific	

segregation	include	temperature	(Swain	1997)	and/or	depth	(Swain	and	Morin	1997)	

selection,	sex-specific	life	history	strategies	that	promote	sexually-dimorphic	

characteristics	(Gerritsen	et	al.	2010),	and	sex-specific	foraging	intensity	and	the	spatial	

and	temporal	distribution	of	the	forage	base	(Swain	and	Morin	1996).	Any	of	these	

postulations	could	be	advanced	to	explain	the	sex-specific	distribution	of	Summer	
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Flounder	in	space	and	time.		The	importance,	however,	of	estimating	and	understanding	

the	sex-specific	spatial	and	temporal	distribution	of	Summer	Flounder	goes	beyond	

these	interesting	ecological	implications.		Okamura	et.	al	(2014)	showed	that	biological	

reference	points	are	highly	sensitive	to	assumptions	about	effort	allocation	in	space	and	

time	when	seasonal	migrations	of	Offshore	Lingcod	Ophiodon	elongatus	are	sex-specific.		

A	similar	analysis	for	Summer	Flounder	is	beyond	the	scope	of	this	paper,	but,	

minimally,	the	application	of	sex-aggregated	ALKs	to	landings	data	should	result	in	

highly	biased	estimates	of	the	catch-at-age	given	that	female	Summer	Flounder	grow	

much	faster	than	males	and	that	the	recreational	fishery	lands	female	fish	almost	

exclusively.		Accounting	for	the	complex	spatiotemporal	dynamics	in	the	distribution	of	

sex	composition	and	fishing	effort	will	undoubtedly	complicate	future	stock	

assessments	of	Summer	Flounder.			

					Given	the	importance	of	having	an	accurate	estimate	of	the	sex	composition	of	the	

catch	and	the	failure	of	my	method	to	recover	an	exact	match	by	applying	sex-specific	

processes	to	survey	data,	because	of	what	appear	to	be	complex,	time-	and	space-

varying	sex-specific	fishery	selectivities,	it	makes	sense	to	explore	other	options	for	

collecting	sex-composition	data	directly	from	fishery	landings.		In	the	recreational	

fishery,	this	would	be	easy	to	incorporate	into	any	port-sampling	program	that	already	

collects	length-frequency	data	from	the	catch.		I	show	that	even	when	Summer	Flounder	

are	fileted	at	sea,	the	gonad	remains	intact	and	readily	visible	to	the	naked	eye.		An	

observer	measuring	the	length	of	a	fish	can	determine	the	sex	macroscopically	with	no	

additional	time	or	cost.		In	the	commercial	fishery,	collecting	sex-specific	information	

may	prove	more	difficult	because	fish	are	not	fileted	at	sea	to	expose	the	gonads	and	
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fish	are	typically	sold	whole	to	market,	which	precludes	full	dissection	of	fish	to	

determine	the	sex.		I	introduced	a	method	for	determining	sex	using	a	small	incision	in	

the	gut	cavity.	Although	this	may	still	be	too	invasive	for	some	fishing	ports	or	fish	

sellers	or	buyers,	I	encountered	no	resistance	on	the	part	of	the	many	commercial	docks	

that	I	sampled.		The	Pacific	Halibut	Commission	used	microsatellite-based	genetic	

techniques	to	measure	the	sex	composition	of	the	catch	(Loher	et	al.	2012).		This	

reduced	the	influence	of	spatial	and	temporal	variability	in	survey	and	fishing	effort	

when	deriving	sex	composition	of	the	catch	using	survey	data	because	it	provided	a	

direct	measure	of	the	sex	composition	of	the	catch.		A	cost-benefit	analysis	of	

purchasing	fish	and	dissecting	them	vs.	the	development	of	microsatellite	techniques	

may	shed	some	light	on	the	most	cost-	and	time-effective	way	forward	for	determining	

the	sex	composition	of	the	commercial	catch.		No	matter	how	the	data	are	obtained	

though,	if	a	program	is	instituted	to	collect	sex	composition	data	directly	from	the	catch	

it	would	need	to	mirror	the	spatial	and	temporal	distribution	of	the	fishing	effort	since	

it	appears	male	and	female	fish	disaggregate	in	time	and	space.	

					The	trends	observed	in	the	sex,	length,	and	age	of	the	catch	may	interact	with	fishing	

regulations	and	induce	changes	in	population	structure.		The	mean	length-at-age	of	

individuals	in	the	Summer	Flounder	population	is	declining	over	time	with	no	

accompanying	change	in	the	length-weight	relationship	or	condition	index	(NEFSC	

2013)	that	one	might	expect	from	density-dependent	influences	on	individual	fish	

growth	(Rose	et	al.	2001).		Given	the	dynamic	nature	of	climate	change	in	the	

northwestern	Atlantic	Ocean	(Scavia	et	al.	2002),	and	its	influence	on	the	fish	stocks	of	

this	region	(Rothschild	and	Jiao	2012;	Sparrevohn	et	al.	2013),	a	simple	
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environmentally-determined	change	in	growth	rate	in	the	Summer	Flounder	stock	

cannot	be	discounted.		Nonetheless,	I	show	a	trend	of	increasing	mean	length-at-age	

with	increasing	MRS	in	the	fishery	landings.		The	MRS	being	implemented	is	selecting,	

at	a	given	age,	the	fastest	growing	fish	while	leaving	behind	the	slower	growing	fish	to	

reproduce	another	year.		A	growing	literature	addresses	the	potential	evolutionary	

effects	of	size-selective	fishing	(e.g.,	Conover	and	Munch	2002;	Law	2007).		Varying	

opinions	exist	concerning	the	time-scale	and	fishing	pressure	needed	to	induce	

evolutionary	change	as	opposed	to	simple	phenotypic	change	in	a	fish	population	(e.g.,	

Anderson	and	Brander	2009;	Enberg	et	al.	2009);	however	the	possibility	cannot	be	

ruled	out	that	the	size-selective	fishing	pressure	on	the	Summer	Flounder	population	

could	be	causing	a	shift	in	the	genetic	structure	of	the	stock	favoring	slower	growth	and	

resulting	in	a	decrease	in	the	mean	length-at-age	over	time.			

					Additionally,	the	proportion	female-at-age	in	the	Summer	Flounder	population	is	in	

decline	(NEFSC	2013).		If	the	MRS	is	selecting	the	faster	growing	fish	in	the	population	

at	a	given	age,	those	fish	have	to	be	disproportionately	female	because	of	the	difference	

in	growth	rates	between	the	sexes.		My	sampling	found	that	the	sex-at-age	relationships	

from	the	recreational	catch,	and	to	a	lesser	extent	from	the	commercial	catch,	are	

skewed	toward	female	fish	in	comparison	to	the	sex-at-age	expected	from	survey	data.	

Simulation	of	the	effects	of	the	MRS	shows	that	this	result	accrues	in	part	from	the	

implementation	of	the	MRS	in	each	fishery.		For	example,	the	proportion	of	fish	that	are	

female	increases	with	increasing	length	in	the	survey,	as	well	as	in	the	fisheries.		But,	

interestingly,	in	both	the	commercial	fishery	data	and	survey	data,	at	around	the	5	cm	

increment	that	encompasses	the	range	of	MRS	implemented	in	the	recreational	fishery	
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(45	cm	-	50	cm),	the	sex	ratio	remains	relatively	unchanged,	when	the	expectation	is	

that	it	should	increase	as	it	does	at	each	length	increment	before	and	after	the	45	cm	-	

50	cm	increment.		This	suggests	the	MRS	implemented	in	the	recreational	fishery	may	

have	altered	the	population	sex	ratio	within	this	range	of	sizes.		One	potential	

explanation,	therefore,	for	the	trend	of	decreasing	proportion	female-at-age	in	the	

population	over	the	last	decade	(NEFSC	2013)	could	be	the	increases	in	MRS	used	to	

rebuild	the	stock	over	that	same	time	period	and	the	associated	increases	in	female-

specific	fishing	mortality.		Sex-specific	differences	in	fishery	selectivity	happen	in	other	

sexually-dimorphic	flatfishes	regulated	by	an	MRS	(Briggs	1965;	Lohre	and	Hobden	

2012).		In	fact,	the	sex	composition	estimates	for	commercial	Pacific	halibut	

Hippoglossus	stenolepis	landings	indicate	that	males	may	never	reach	mean	sizes	

associated	with	full	fishery	selectivity-at-age	(Clark	and	Hare	2006).		

					If	current	management	strategies	are	driving	changes	in	the	structure	of	the	Summer	

Flounder	stock,	it	is	important	for	managers	to	consider	the	potential	adverse	effects	of	

those	changes.		Size-selective	fishing	can	alter	the	sex	ratio	of	a	population	(Kendall	and	

Quinn	2013)	and	influence	the	reproductive	potential	of	the	stock	(Rowe	and	Hutchings	

2003;	Claereboudt	et	al.	2004;	Rijnsdorp	et	al.	2010)	and	genetic	traits	selected	against	

by	implementing	a	MRS	as	a	management	strategy	may	be	difficult	to	recover	(Enberg	

et	al.	2009).				
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TABLES	–	CHAPTER	1	
	
	
Table	1.1.		Total	number	of	fish	sampled	for	sex	and	length	and	the	subset	of	those	fish	
that	were	also	aged	by	examining	annuli	in	otoliths	and	scales	(see	Methods).	
	
Survey	 Sex	and	length	 Age	

	 	 	NMFS-NEFSC	bottom	trawl	survey	
(NFS)	 4,828	 3,935	
Commercial	fishery	survey	(CFS)	 18,685	 11,809	
Recreational	fishery	survey	(RFS)	 13,232	 7,276	

	 	 	Total	 36,745	 23,020	
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Table	1.2.		Locations	where	samples	were	collected	from	the	recreational	and	
commercial	Summer	Flounder	fisheries.			
	
Recreational	Fishery	 Commercial	Fishery	
State	 Port	 State	 Port	
VA	 Virginia	Beach	 NC	 Wanchese	

	
Hampton	 VA	 Hampton	

	
Buckroe	

	
Newport	News	

	
James	River	 NJ	 Cape	May	

	
Capeville	

	
Barnegat	Light	

	

Wachapreague	
Yorktown	
Cape	Charles	
Mathews	

	
Point	Pleasant	

MD	 Ocean	City	 NY	 Point	Lookout	
DE	 Lewes	

	
Hampton	Bays	

NJ	 Cape	May	
	

Mattituck	

	
Fortescue	

	
East	Hampton	

	
Barnegat	Light	

	
Montauk	

	
Point	Pleasant	 CT	 Stonington	

	
Atlantic	Highlands	 RI	 Point	Judith	

NY	 Freeport	 MA	 Westport	

	
Huntington	

	
New	Bedford	

	
Captree	

	
Hyannis	

	
Port	Jefferson	

	 	
	

Moriches	
	 	

	
Riverhead	

	 	
	

Hampton	Bays	
	 	

	
Mattituck	

	 	
	

Greenport	
	 	

	
East	Hampton	

	 	
	

Montauk	
	 	CT	 Niantic	
	 	RI	 Point	Judith	
	 	MA	 New	Bedford	
	 			 Hyannis	 		 		
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Table	1.3.		Total	number	of	fish	sampled,	by	NMFS-NEFSC	statistical	area	(see	Figure	
1.2),	from	the	NMFS-NEFSC	bottom	trawl	survey,	the	commercial	fishery,	and	the	
recreational	fishery.	
	

NMFS-NEFSC	
Statistical	
area	

NMFS-NEFSC	
bottom	trawl	
survey	(NFS)	

Commercial	
fishery	(CFS)	

Recreational	
fishery	(RFS)	

201	
	 	

930	
393	

	 	
419	

514	 12	
	 	521	 3	 40	

	522	 14	 120	
	525	 71	 401	
	526	 230	 157	
	537	 741	 1,596	
	538	 5	 454	 1,278	

539	 270	 2,558	 1,065	
561	

	
39	

	562	 27	
	 	611	

	
2,028	 1,078	

612	 7	 842	 3,454	
613	 658	 3,985	 839	
614	 112	 687	 45	
615	 262	 3,343	 40	
616	 441	 822	

	621	 421	 434	 4,080	
622	 289	 508	

	623	 18	
	 	625	 178	 176	 22	

626	 493	 488	
	631	 141	

	
15	

632	 114	
	 	635	 293	
	 	636	 44	 15	 		
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Table	1.4.		Akaike	information	criterion	(AIC)	for	eight	potential	models	describing	the	
probability	of	a	given	age	provided	the	length	(null	model)	and	the	sex,	region	(north	of	
40°	latitude	or	south	of	40°	latitude),	and	data	source	(data	collected	from	the	
recreational	fishery,	the	commercial	fishery,	or	a	fishery-independent	trawl	survey).	
	

Model	 DF	 AIC	 Delta	AIC	 Residual	
deviance	

Sex,	region,	data	source	
Sex,	region	

	
65	
56	

59836	
60226	

0	
390	

59668	
60114	

Sex,	data	source	 70	 60268	 432	 60128	
Sex	 42	 60605	 769	 60521	
Region,	data	source	 70	 65590	 5754	 65450	
Data	source	 56	 65949	 6113	 65837	
Region	 42	 66242	 6406	 66158	
		 28	 66550	 6714	 66494	
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FIGURES	–	CHAPTER	1	
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Figure	1.1.	Photographs	showing	a	technique	for	determining	the	sex	(A	=	Female;	B	=	
Male)	of	a	Summer	Flounder	without	dissecting	the	entire	fish.		A	small	incision	is	made	
along	the	gut	cavity	and	the	gonads	are	pulled	through	the	incision	with	a	pair	of	
forceps.	
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201$

393$

	
Figure	1.2.	Map	showing	National	Marine	Fisheries	Service,	Northeast	Fisheries	
Science	Center	statistical	area	units	along	the	northeast	USA	and	the	western	mid-
Atlantic	continental	shelf	(NEFSC	1997).		The	shapes	around	the	statistical	area	number	
indicate	the	data	source	as	NMFS-NEFSC	bottom	trawl	survey	(NFS),	commercial	
fishery	(CFS),	or	recreational	fishery	(RFS).		Rectangles	represent	RFS	only,	diamonds	
represent	CFS	only,	pentagons	represent	NFS	only,	triangles	represent	RFS	and	CFS,	
hexagons	represent	NFS	and	CFS,	and	circles	represent	RFS,	CFS,	and	NFS.	
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Figure	1.3.	Proportion	female	Summer	Flounder	at-age	in	the	commercial	fishery	(blue	
dots)	and	the	National	Marine	Fisheries	Service,	Northeast	Fisheries	Science	Center	
(NMFS-NEFSC)	bottom	trawl	survey	(green	dots).		Lines	represent	the	probability	of	
landing	a	female	estimated	by	logistic	regression	(see	text).		Commercial	fishery	data	
are	compared	to	(A)	raw	NMFS-NEFSC	bottom	trawl	survey	data,	(B)	NMFS-NEFSC	
bottom	trawl	survey	data	that	were	left-truncated	at	35	cm	to	simulate	the	minimum	
retention	size	in	the	commercial	fishery,	and	(C)	NMFS-NEFSC	bottom	trawl	survey	data	
that	were	left-truncated	at	35	cm	and	assigned	age	based	on	age-length	keys	generated	
from	commercial	fishery	data.	
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Figure	1.4.	Proportion	female	Summer	Flounder	at-age	in	the	recreational	fishery	
(orange	dots)	and	the	National	Marine	Fisheries	Service,	Northeast	Fisheries	Science	
Center	(NMFS-NEFSC)	bottom	trawl	survey	(green	dots).		Lines	represent	the	
probability	of	landing	a	female	estimated	by	logistic	regression	(see	text).		Recreational	
fishery	data	are	compared	to	(A)	raw	NMFS-NEFSC	bottom	trawl	survey	data,	(B)	
NMFS-NEFSC	bottom	trawl	survey	data	that	were	left-truncated	at	46	cm	to	simulate	
the	smallest	minimum	retention	size	in	the	recreational	fishery,	and	(C)	NMFS-NEFSC	
bottom	trawl	survey	data	that	were	left-truncated	at	46	cm	and	assigned	age	based	on	
age-length	keys	generated	from	recreational	fishery	data.	
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Figure	1.5.		Proportion	female	Summer	Flounder	at-age	in	the	recreational	fishery	
(orange	dots)	and	the	National	Marine	Fisheries	Service,	Northeast	Fisheries	Science	
Center	(NMFS-NEFSC)	bottom	trawl	survey	(red	dots).		Lines	represent	the	probability	
of	landing	a	female	estimated	by	logistic	regression	(see	text).		Recreational	fishery	data	
are	compared	to	(A)	raw	NMFS-NEFSC	bottom	trawl	survey	data,	(B)	NMFS-NEFSC	
bottom	trawl	survey	data	that	were	left-truncated	at	53	cm	to	simulate	the	largest	
minimum	retention	size	in	the	recreational	fishery,	and	(C)	NMFS-NEFSC	bottom	trawl	
survey	data	that	were	left-truncated	at	53	cm	and	assigned	age	based	on	age-length	
keys	generated	from	recreational	fishery	data.	
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Figure	1.6.	Box	and	whisker	plots	of	the	mean	length-at-age	of	Summer	Flounder	under	
different	minimum	retention	size	regulations.		Plots	are	organized	by	region	(north	and	
south)	and	sex	(male	and	female).		Black	horizontal	lines	are	the	mean,	boxes	are	the	
interquartile	ranges,	black	vertical	lines	are	the	5th	and	95th	percentiles,	and	dots	are	
outliers.	
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Figure	1.7.		Proportion	female	Summer	Flounder	at-length	in	the	commercial	fishery	
(blue	dots),	the	recreational	fishery	(orange	dots),	and	the	National	Marine	Fisheries	
Service,	Northeast	Fisheries	Science	Center	(NMFS-NEFSC)	bottom	trawl	survey	(green	
dots).		Lines	represent	the	probability	of	landing	a	female	estimated	by	logistic	
regression	(see	text).		NMFS-NEFSC	bottom	trawl	survey	data	are	truncated	according	
to	the	minimum	retention	size	in	the	(A)	commercial	fishery	(35	cm)	and	(B)	
recreational	fishery	(46	cm).	
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CHAPTER	2	

EVALUATING THE POTENTIAL FOR A SEX-BALANCED HARVEST 

APPROACH IN THE RECREATIONAL SUMMER FLOUNDER PARALICHTHYS 

DENTATUS FISHERY** 

	
Abstract	
	
Summer	Flounder	(Paralichthys	dentatus)	support	important	recreational	and	

commercial	fisheries	along	the	northeast	and	mid-Atlantic	coasts	of	the	USA.		In	the	

recreational	sector,	management	efforts	to	constrain	harvest	below	the	maximum	

allowable	catch	have	typically	involved	increasing	the	minimum	landing	size;	however,	

females	grow	faster	than	males.		Thus,	reliance	on	increased	minimum	size	limits	as	a	

management	strategy	has	resulted	in	approximately	90%	of	the	recent	recreational	

landings	being	large,	female	fish.		I	evaluated	the	potential	for	slot	limits	to	produce	a	

sex-balanced	harvest	in	the	recreational	Summer	Flounder	fishery.		To	estimate	the	

size-	and	sex-specific	vulnerability	I	sampled	the	landed	and	discarded	fish	(n=3,290)	

caught	by	recreational	anglers	on	select	party	boats	from	New	Jersey	to	Rhode	Island	

during	the	2016	recreational	fishing	season.		I	then	examined	the	performance	of	a	wide	

array	of	slot	limits	to	estimate	which	would	have	promoted	a	more	sex-balanced	

harvest	while	maintaining	a	fixed	fishing	mortality	given	the	observed	catch	

composition.		I	demonstrate	that	slot	limits	applied	to	the	recreational	Summer	

Flounder	fishery	have	the	potential	to	simultaneously	meet	multiple	management	

objectives,	including	conservation	of	female	biomass	while	maintaining	a	fixed	fishing	

                                                
*	Published	as:		Morson,	J.	M.,	D.	Munroe,	R.	Harner,	and	R.	Marshall.		2017.		Evaluating	the	potential	for	a	
sex-balanced	harvest	approach	in	the	recreational	summer	flounder	Paralichthys	dentatus	fishery.		North	
American	Journal	of	Fisheries	Management:	dx.doi.org/10.1080/02755947.2017.1362490	
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mortality;	however,	no	single	slot	limit	performed	best	at	all	sampling	locations.		

Results	should	therefore	be	viewed	as	optimal	given	the	observed	catch	composition	for	

the	year,	fishing	mode,	and	locations	that	were	observed	and	further	evaluation	of	

interannual,	spatial,	and	fishing	mode	variability	is	warranted.	

	

Introduction	

					Targeted	fishing	of	certain	species	within	an	ecosystem	or	a	particular	demographic	

within	a	population	is	known	as	selective	fishing,	an	activity	that	may	lead	to	

detrimental	imbalances	(Law	2000;	Bundy	et	al.	2005;	Daan	et	al.	2005;	Jorgensen	et	al.	

2007;	Anderson	et	al.	2008).		Distributing	a	moderate	fishing	mortality	across	the	

widest	possible	range	of	species,	stocks,	and	demographics	in	an	ecosystem	in	

proportion	to	their	natural	productivity	could	reduce	the	negative	effects	of	selective	

fishing	on	biodiversity	and	population	productivity	(Zhou	et	al.	2010;	Garcia	et	al.	

2012).		This	‘balanced	harvest’	approach	has	gained	traction	as	ecosystem-based	

strategies	to	fisheries	management	become	more	popular,	but	the	purported	necessity	

and	benefits	of	a	blanket	balanced	harvest	approach	continue	to	be	debated	(Jacobsen	

et	al.	2013;	Froese	et	al.	2015;	Breen	et	al.	2016;	Anderson	et	al.	2016;	Froese	et	al.	

2016;	Kolding	et	al.	2016).		There	is,	however,	strong	evidence	that	at	least	sex-selective	

harvesting	can	have	a	negative	impact	on	reproductive	rates	and	stock	productivity,	as	

well	as	alter	sex	ratio	and	life	history	(Clark	and	Tait	1982;	Orensanz	et	al.	1998;	Alonzo	

and	Mangel	2004;	Hamilton	et	al.	2007;	Hutchings	and	Rowe	2008).		When	feasible,	

fishing	regulations	that	promote	exploitation	of	male	and	female	fish	in	equal	
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proportions	are	therefore	often	preferred	over	those	that	result	in	a	female-biased	

harvest.	

					Summer	Flounder,	Paralichthys	dentatus,	support	important	recreational	and	

commercial	fisheries	along	the	northeast	and	mid-Atlantic	coasts	of	the	USA.		In	2015,	

an	estimated	12.5	million	summer	flounder	were	caught	in	the	recreational	fishery	

alone	(Terceiro	2016).		In	this	sector,	management	efforts	to	constrain	harvest	below	

the	maximum	allowable	catch	have	typically	involved	increasing	the	minimum	landing	

size;	however,	Summer	Flounder	are	sexually	dimorphic.		Females	grow	faster	and	

mature	at	a	larger	size	than	males	(Poole	1961;	Morse	1981;	Packer	et	al.	1999).		Thus,	

reliance	on	increased	minimum	size	limits	as	a	management	strategy	has	resulted	in	

approximately	90%	of	the	recent	recreational	landings	being	female	fish	(Morson	et	al.	

2012,	2015).		Furthermore,	the	female	fish	that	are	targeted	are	also	the	largest,	and	

therefore	potentially	the	most	fecund	fish	in	the	population	(Morse	1981;	Berkeley	et	al.	

2004;	Birkeland	and	Dayton	2005;	Hixon	et	al.	2013;	Shelton	et	al.	2015;	Stige	et	al.	

2017).			

					Slots	limits	offer	an	alternative	management	approach	to	traditional	minimum	size	

limits	in	that	they	restrict	landings	to	some	intermediate	range	of	sizes	while	large	and	

small	fish	are	released	(Gwinn	et	al.	2013).		In	the	Summer	Flounder	recreational	

fishery,	it	was	previously	demonstrated	that	slot	limits	have	the	potential	to	increase	

landings	in	numbers	under	a	fixed	fishing	exploitation	rate	by	weight	(Bochenek	et	al.	

2010;	Powell	et	al.	2010).		If	smaller	males	are	vulnerable	to	recreational	fishing	effort,	

a	similar	approach	that	redirects	some	fraction	of	the	fishing	mortality	toward	smaller-

sized	fish	may	also	balance	the	fishing	mortality	with	respect	to	sex.		However,	the	only	
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information	available	on	the	sex	composition	of	the	Summer	Flounder	recreational	

catch	comes	from	fish	that	were	landed	and	are	therefore	larger	than	the	minimum	size	

limit	(Morson	et	al.	2012,	2015).		Without	an	estimate	of	the	sex	composition	for	fish	

below	the	minimum	landing	size,	it	is	not	possible	to	evaluate	the	sex-specific	outcomes	

of	such	alternative	management	options.	

					Given	the	highly	sex-biased	catch	composition	identified	in	Chapter	1	for	the	

recreational	Summer	Flounder	fishery,	in	this	chapter	I	evaluate	the	potential	for	slot	

limits	to	produce	a	more	sex-balanced	harvest.		To	estimate	the	full	size-	and	sex-

specific	vulnerability	I	sampled	additional	landings,	as	well	as	all	discarded	fish,	caught	

by	recreational	anglers	on	select	party	boats	from	New	Jersey	to	Rhode	Island	during	

the	2016	recreational	fishing	season.		I	then	examined	the	performance	of	a	wide	array	

of	slot	limits	to	estimate	which	would	have	promoted	a	more	sex-balanced	harvest	

while	maintaining	a	fixed	fishing	mortality	given	the	observed	catch	composition.	

	

Materials	and	Methods	

Field	program	

					Data	collection	focused	on	three	states:	New	Jersey,	New	York,	and	Rhode	Island;	and	

one	fishing	mode:	for-hire	mode.	 	In	2016,	these	states	accounted	for	82%	of	the	total	

catch	by	 state;	however,	 the	 for-hire	 fishing	mode	accounted	 for	only	5%	of	 the	 total	

catch	by	mode.		While	the	for-hire	mode	accounted	for	only	a	small	fraction	of	the	total	

catch,	 the	 private	mode,	 which	 accounted	 for	 89%,	 operated	 across	 a	 similar	 spatial	

scale.	 	 In	 2016,	 34%	 and	 31%	 of	 the	 total	 catch	 in	 the	 for-hire	 and	 private	 modes,	

respectively,	came	from	open	ocean	waters	 less	than	or	equal	 to	three	miles	 from	the	
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coast.	 	 In	 the	 same	 year,	 42%	 and	 54%	of	 the	 total	 catch	 in	 the	 for-hire	 and	 private	

modes,	 respectively,	 came	 from	 inland	 waters	 (personal	 communication	 from	 the	

National	 Marine	 Fisheries	 Service,	 Fisheries	 Statistics	 Division,	 5/25/17).	 	 Given	 the	

two	fishing	modes	access	the	same	areas,	data	collection	focused	on	the	for-hire	mode.		

The	larger,	for-hire	vessels	had	space	for	up	to	75	anglers	which	significantly	increased	

the	sample	size	potential	on	any	one	sampling	trip.	

					Data	 collection	 spanned	 one	 entire	 recreational	 fishing	 season	 from	May	 23,	 2016	

through	 September	 16,	 2016.	 	 Fish	 were	 collected	 bi-weekly	 aboard	 participating	

fishing	vessels	from	Cape	May	(8	trips)	and	Atlantic	Highlands	(8	trips),	NJ,	Captree	(9	

trips)	and	Montauk	(10	trips),	NY,	and	Point	Judith,	RI	(6	trips)	(Figure	2.1).		The	total	

length	 of	 every	 Summer	 Flounder	 caught,	whether	 landed	 or	 discarded,	 on	 each	 trip	

was	 measured.	 	 In	 addition,	 the	 sex	 for	 all	 landed	 Summer	 Flounder	 was	 recorded.		

Since	 Summer	 Flounder	must	 be	 dissected	 to	 determine	 sex,	 ten	 discarded	 fish	were	

also	sacrificed	within	predetermined	fish	length	and	water	depth	bins	on	each	sampling	

trip	 (Table	 2.1).	 	 A	 sex	 ratio,	 by	 depth	 bin,	 length	 bin,	 and	 trip,	 was	 applied	 to	 any	

unsexed	discarded	fish	to	assign	sex	to	the	entire	discarded	portion	of	the	catch	(Table	

2.1).	

Analysis		

					To	estimate	the	effect	of	different	slot	limits	on	three	performance	metrics,	the	total	

number	of	dead	fish	(landings	+	dead	discards),	 the	biomass	of	dead	females,	and	the	

ratio	 of	 dead	 discards	 to	 total	 number	 dead,	 I	 simulated	 outcomes	 from	 twenty-one	

potential	 slot	 limits.	 	 The	 smallest	 lower	 size	 limit	 evaluated	 was	 14	 inches,	 the	

minimum	size	limit	in	the	commercial	fishery,	and	the	largest	upper	size	limit	evaluated	
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was	21	inches,	the	largest	minimum	size	ever	implemented	in	the	recreational	Summer	

Flounder	 fishery.	 	 The	width	of	 the	 slots	 limits	 varied	 from	a	minimum	width	of	 two	

inches	to	a	maximum	width	of	seven	inches.			

					A	slot	limit	can	be	defined	several	ways,	but	here	I	am	referring	to	a	regulation	where	

only	fish	within	a	minimum	and	maximum	size	limit	could	be	kept	while	all	fish	that	are	

greater	than	the	maximum	size	or	less	than	the	minimum	size	must	be	discarded.		Since	

I	did	not	record	catch-rate-per-angler,	and	could	therefore	not	evaluate	alternative	bag	

limits	 within	 a	 given	 slot	 limit,	 all	 fish	 between	 the	 minimum	 retention	 size	 and	

maximum	retention	size	of	a	slot	 limit	were	assumed	 to	be	kept	 (no	bag	 limit).	 	Each	

slot-limit	was	 imposed	 on	 the	 observed	 catch	 and	 catch	 composition	 data	 overall,	 as	

well	as	by	location	and	depth	category,	assuming	effort	was	fixed	at	what	was	observed.		

Finally,	 10%	 mortality	 was	 applied	 to	 all	 discarded	 fish	 in	 conformity	 with	 the	

recreational	 discard	 mortality	 rate	 currently	 applied	 in	 the	 Summer	 Flounder	 stock	

assessment	(Terceiro	2016).			

To	convert	observed	 individual	 fish	 lengths	 (in	 inches)	 to	estimated	 individual	

fish	weights	 (in	pounds)	 I	 applied	 sex-specific	parameters	 from	Morse	 (1981)	 for	 the	

equation,	

	! " = $"%	  	

					The	total	number	dead,	Nd,	for	each	simulated	slot	limit	s,	was	calculated	as:	

	

!"# = 	!&# + (0.10 ∗ 	!-#) 	
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where	NL	is	the	total	number	of	fish	that	were	landed	and	ND	is	the	total	number	of	fish	

that	were	discarded.		The	biomass	of	dead	females,	Fd,	was	calculated	as:	

	

!"# = %&'()

*

&+,
+	 0.10	×	 3&4()

*

&+,
 
	

	

where	w	is	the	weight	in	pounds	of	fish	i	and	f	denotes	female	fish.		Finally,	the	ratio	of	

dead	discards	to	total	dead	was	calculated	as:	

	

!"# =
0.10 ∗ 	*+#

*"#
 
	

	

					The	influence	of	each	slot	limit	on	these	metrics	was	evaluated	separately	using	the	

observed	catch	composition	at	each	sampling	location.		For	each	slot	limit,	I	calculated	

the	proportional	change	from	the	observed	metric	at	an	18-inch	minimum	retention	

size	to	the	calculated	metric	given	the	slot	limit.		Slot	limits	that	produced	a	10%	or	less	

change,	whether	negative	or	positive,	in	the	total	number	of	dead	fish,	were	deemed	

suitable	alternatives	in	that	they	would	not	have	resulted	in	a	significant	change	in	

fishing	mortality	given	total	catch	and	total	effort	was	fixed	at	what	was	observed.		In	

other	words,	only	slot	limits	that	kept	fishing	exploitation	rate	near	constant	were	

viewed	as	potential	alternatives	to	the	18-inch	minimum	retention	size.		

	

Results	
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Observed	catch	composition	

					Under	an	18-inch	minimum	size	restriction,	I	observed	a	total	catch	of	3,290	Summer	

Flounder	by	recreational	anglers	on	forty-one	directed	party	boat	trips	(Table	2;	Figure	

2).		Of	the	total	catch,	2,645	(80%)	were	discarded,	however	the	proportion	of	the	catch	

that	was	discarded	varied	by	region	and	by	depth	category	(Table	2).		The	discard	

proportion	was	lower	in	deeper	water	and	in	more	northern	ports	(Table	2)	where	

smaller	fish	occurred	less	frequently	(Figures	3,	4).		The	proportion	female	increased	

with	size	resulting	in	87%	(n=558)	of	the	landings	and	38%	(n=1,011)	of	the	discards	

being	female	overall	(Figure	2).		However,	the	sex	ratio	at	length	varied	by	location	and	

by	depth	category.		At	a	given	length,	the	sex	ratio	was	more	heavily	skewed	toward	

female	fish	in	shallower	water	and	in	more	southern	ports	(Table	2;	Figures	3,	4).			

Simulated	catch	composition	

					Slot	limits	that	kept	the	total	number	dead	at	or	near	that	observed	under	the	18-

inch	minimum	size	limit,	herein	referred	to	as	“suitable”,	were	all	narrow,	ranging	from	

two	to	four	inches	wide.		Of	the	suitable	slot	limits,	most	contained	18	inches	within	the	

slot	limit	and	only	once	did	the	bottom	of	the	slot	limit	fall	below	16	inches,	when	a	15-	

to	17-inch	slot	limit	was	suitable	in	Atlantic	Highlands,	NJ.		All	suitable	slot	limits	

reduced	the	total	biomass	of	dead	females,	one	of	which,	referred	to	herein	as	“optimal”,	

produced	the	greatest	reduction	in	total	biomass	of	dead	females.		Few	suitable	slot	

limits	had	a	significant	impact	on	the	proportion	of	the	total	dead	made	up	of	dead	

discards	(Table	3).		

					No	single	optimal	slot	limit	minimized	dead	female	biomass	at	every	location.		

Variation	in	length	frequency	and	sex	ratio	at	length	observed	across	the	different	
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sampling	locations	produced	varying	suitable	and	optimal	slot	limits	at	each	sampling	

location	(Figure	3;	Table	3).	In	Cape	May,	New	Jersey	a	17-	to	19-inch	slot	would	have	

been	optimal,	reducing	dead	female	biomass	by	31%	(from	262.37	lb	to	181.59	lb),	

while	in	the	same	state,	in	Atlantic	Highlands,	a	15-	to	17-inch	slot	would	have	been	

optimal,	producing	a	58%	reduction	in	dead	female	biomass	(from	537.85	lb	to	226.89	

lb).		Similarly,	in	New	York,	the	catch	composition	from	Captree	would	have	generated	a	

21%	reduction	in	dead	female	biomass	(from	181.1	lb	to	143.93	lb)	at	an	18-	to	20-inch	

optimal	slot	limit,	while	in	Montauk,	the	optimal	slot	limit	was	16	to	18	inches,	which	

would	have	produced	a	55%	reduction	(from	533.27	lb	to	238.04	lb).		Finally,	in	Pt.	

Judith,	Rhode	Island,	among	slot	limits	deemed	suitable,	a	three-inch	slot	from	17	to	20	

inches	would	have	been	optimal,	generating	a	55%	reduction	in	dead	female	biomass	

(from	222.94	lb	to	100.48	lb).		At	some	sampling	locations,	the	potential	to	reduce	dead	

female	biomass	came	primarily	from	males	being	more	accessible	at	lower	sizes,	for	

example	in	Atlantic	Highlands,	NJ	(Figure	3b)	and	in	Montauk,	NY	(Figure	3d),	while	in	

other	sampling	locations	it	came	primarily	from	the	protection	of	larger	females,	for	

example	in	Cape	May,	NJ	(Figure	3a)	and	in	Captree,	NY	(Figure	3c)	and	less	from	

accessing	smaller	males	at	lower	sizes.			

	

Discussion	

					The	overall	sex	composition	and	the	spatial	and	depth-dependent	trends	in	sex	ratio	

of	large	fish	matched	what	has	been	previously	reported	for	the	recreational	Summer	

Flounder	fishery	(Morson	et	al.	2012,	2015).		Furthermore,	the	overall	discard	rate,	

80%,	is	similar	to	the	79%	discard	rate	estimated	for	the	entire	for-hire	fishing	mode	in	
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2016	(personal	communication	from	the	National	Marine	Fisheries	Service,	Fisheries	

Statistics	Division,	5/25/17).		The	proportion	female	in	the	larger	size	classes	is	higher	

than	that	observed	in	the	commercial	catch	or	on	the	NMFS-NEFSC	trawl	survey	

(Morson	et	al.	2015).		However,	while	the	observed	sex	ratio	pattern	for	the	larger	fish	

suggests	large	males	do	not	come	inshore	and	are	therefore	not	available	to	the	

recreational	fishery	when	and	where	it	takes	place,	I	show	here	that	smaller-sized	

males	are	both	available	inshore	and	show	up	in	the	recreational	catch	at	smaller	sizes.		

This	is	an	important	finding	for	two	reasons.		First,	it	suggests	that	any	sex-specific	

movement	or	habitat	use	that	produces	such	a	highly	skewed	sex	ratio	in	the	landings	

must	also	be	size-specific.		That	is,	while	large	male	fish	may	remain	offshore	where	

they	are	less	likely	to	be	accessible	to	the	recreational	fishery,	smaller	males	do	move	

inshore	in	the	spring/summer	where	they	are	available	to	the	recreational	fishing	

effort.		Sex-	and	size-dependent	separation	in	space	and	time	has	been	well	documented	

in	other	sexually	dimorphic	flatfishes	(Swain	1997;	Swain	and	Morin	1997;	Sahin	and	

Gunes	2010;	Loher	and	Hobden	2012),	so	the	occurrence	of	this	behavior	in	Summer	

Flounder	is	not	surprising	and	ecological	theory	for	intraspecific	partitioning	of	

resources	along	a	life	history	is	well	established	(Schoener	1968).		Second,	the	

availability	of	male	fish	at	lower	sizes	enables	changes	in	size	regulations	to	influence	

the	sex	composition	of	the	catch.		This	second	point	is	especially	important	given	how	

much	of	the	fishing	mortality	is	being	directed	at	the	female	portion	of	the	stock	in	this	

fishery	under	the	current	minimum	size	restrictions	and	the	desire	to	evaluate	

alternative	management	options	that	could	promote	a	more	sex-balanced	harvest	

(Morson	et	al.	2012,	2015).		
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					Slot	limits	have	been	demonstrated	to	produce	higher	harvest	numbers,	maintain	

natural	age	structure	in	the	population,	reduce	discard	mortality,	positively	influence	

recruitment	potential,	and	conserve	biomass	across	a	variety	of	fish	life	histories	

(Birkeland	and	Dayton	2005;	Powell	et	al.	2010;	Koehn	and	Todd	2012;	Law	et	al.	2012;	

Gwinn	et	al.	2013;	Sanchez-Hernandez	et	al.	2016).		Here	I	add	additional	support	to	a	

growing	body	of	literature	that	suggests	slot	limits	can	simultaneously	achieve	a	

number	of	desired	management	goals	and	demonstrate	that,	for	fish	with	sexually-

dimorphic	growth,	slot	limits	have	the	potential	to	distribute	sex-biased	fishing	

exploitation	more	evenly	across	both	sexes.		In	the	Summer	Flounder	recreational	

fishery,	there	is	an	obvious	trade-off	available	to	managers	where	the	catch	of	large,	

heavy,	female	fish	could	be	replaced	by	a	similar	number	of	smaller,	lighter,	male	and	

female	fish.			

					One	important	consideration	in	the	evaluation	of	any	slot	limit	relative	to	a	minimum	

size	limit	is	whether	the	lifetime	spawner	reproductive	potential	is	negatively	affected.		

Since	nearly	all	of	the	lower	ends	of	the	slot	limits	prescribed	here	as	optimal	are	only	

an	inch	or	two	smaller	than	the	current	18-inch	size	limit,	both	the	current	18-inch	size	

limit	and	the	prescribed	optimal	slot	limits	would	allow	fish	the	opportunity	to	spawn	

multiple	times	before	recruiting	to	the	fishery.		Nevertheless,	to	fully	evaluate	the	long-

term	impacts	of	varying	slot	limits	on	stock	productivity,	a	spawning	stock	biomass	per	

recruit	analysis	would	be	necessary	(Haddon	2011).		A	more	appropriate	method	for	

evaluating	viable	slot	limit	options	and	potential	outcomes	therefore	is	a	management	

strategy	evaluation	that	links	annual	management	decisions	on	slot	limits	with	a	stock	

assessment	model	and	includes	annual,	seasonal,	and	spatial	dynamics	in	the	
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population,	the	catch	composition	given	the	prescribed	slot,	and	the	fishing	effort	(Punt	

et	al.	2014).		Such	an	evaluation	is	beyond	the	scope	of	this	work,	however	the	sex	

composition	data	now	exist	for	the	full	range	of	sizes	available	to	the	recreational	

fishery	so	the	development	of	such	a	model	is	an	obvious	next	step.	

					Several	important	limitations	are	inherent	in	the	data	and	analysis	I	present	herein.		

First,	my	approach	assumes	effort	would	have	remained	constant	under	alternative	

management	scenarios.		If,	for	example,	a	given	slot	limit	would	encourage	more	

anglers	to	participate	in	the	fishery	than	participated	in	it	under	an	18-inch	minimum	

size	limit,	the	total	catch	under	any	alternative	scenario	may	have	increased,	resulting	

in	a	higher	total	catch,	and	mortality,	relative	to	the	observed.		Second,	this	work	

focused	on	the	catch	of	the	for-hire	mode	and	did	not	sample	the	private	or	shore-based	

modes.		It	is	possible	the	catch	size	and	catch	length	and	sex	composition	vary	across	

these	other	fishing	modes,	which	would	alter	the	observed	catch	as	well	as	the	

simulated	outcomes	of	different	slot	limits.		Finally,	the	observed	catch	is	only	

representative	of	the	catch	in	the	year	in	which	it	was	collected.		Having	observed	a	

catch	composition	that	appears	to	support	a	specific	slot	limit	this	year	does	not	

guarantee	the	same	measure	would	be	appropriate	in	any	other	year.		For	this	reason,	

slot	limits	as	a	general	strategy	have	the	potential	to	be	highly	successful	in	achieving	

multiple	management	goals,	particularly	relative	to	a	sex-balanced	harvest	in	the	

recreational	Summer	Flounder	fishery,	but	should	be	viewed	as	optimal	given	the	

observed	catch	composition	for	the	year,	locations,	and	mode	I	sampled	and	further	

evaluation	of	interannual,	spatial,	and	mode-specific	dynamics	is	warranted.	
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					In	conclusion,	the	availability	of	male	fish	to	the	recreational	fishing	effort	at	smaller	

sizes,	identified	here	for	the	first	time,	suggests	the	conservation	of	large,	female	fish	is	

achievable	in	this	fishery	with	prescribed	management	actions.		I	demonstrate	a	few	

viable	options	that	would	have	achieved	either	a	more	sex-balanced	harvest	or	a	

reduction	in	dead	female	biomass	under	the	catch	conditions	in	the	mode,	location,	and	

time	I	observed.		However,		a	more	robust,	spatially-	and	temporally-dynamic	

management	strategy	evaluation	could	be	used	to	estimate	how	alternative	

applications,	including	slot	limits	and	trophy	limits,	would	perform	for	this	fishery	in	

any	given	year	so	that	multiple	management	goals,	including	limiting	mortality	of	large	

females,	increasing	angler	satisfaction,	and	balancing	harvest	sex	ratio	under	a	fixed	

harvest	rate	might	be	achieved	simultaneously.	
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TABLES	–	CHAPTER	2	

	
Table	2.1.		Length	and	depth	categories	for	sub-sampling	the	sex	of	discarded	fish.		

Length	bins	(inches)	 Depth	bins	(feet)	

8.0	-	9.9	 0-25.4	

10.0	-	11.9	 25.5-50.4	

12.0	-	13.9	 50.5-75.4	

14.0	-	15.9	 75.5+	

16.0	-	17.9	
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Table	2.2.		Total	number	of	summer	flounder	sampled	by	port,	depth	range,	outcome	
(landed/discarded),	and	sex.	A	dash	indicates	a	given	cell	was	not	sampled	while	a	zero	
indicates	there	were	zero	fish	for	that	cell.	

State	 Port	
Depth	
Range	(ft)	 Outcome	 Female	 Male	

New	Jersey	
	 	 	 	 	

	
Cape	May	

	 	 	 	
	 	

0-25	
	 	 	

	 	 	
Landed	 -	 -	

	 	 	
Discarded	 -	 -	

	 	
25-50	

	 	 	
	 	 	

Landed	 -	 -	

	 	 	
Discarded	 -	 -	

	 	
50-75	

	 	 	
	 	 	

Landed	 60	 4	

	 	 	
Discarded	 144	 229	

	 	
75+	

	 	 	
	 	 	

Landed	 28	 0	

	 	 	
Discarded	 37	 138	

	
Atlantic	Highlands	

	 	 	
	 	

0-25	
	 	 	

	 	 	
Landed	 0	 0	

	 	 	
Discarded	 9	 24	

	 	
25-50	

	 	 	
	 	 	

Landed	 166	 16	

	 	 	
Discarded	 150	 209	

	 	
50-75	

	 	 	
	 	 	

Landed	 8	 2	

	 	 	
Discarded	 75	 118	

	 	
75+	

	 	 	
	 	 	

Landed	 -	 -	

	 	 	
Discarded	 -	 -	

New	York	
	 	 	 	 	

	
Captree	

	 	 	 	
	 	

0-25	
	 	 	

	 	 	
Landed	 42	 2	

	 	 	
Discarded	 163	 169	

	 	
25-50	

	 	 	
	 	 	

Landed	 13	 0	

	 	 	
Discarded	 53	 74	

	 	
50-75	

	 	 	
	 	 	

Landed	 8	 5	

	 	 	
Discarded	 70	 85	
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75+	

	 	 	
	 	 	

Landed	 0	 0	

	 	 	
Discarded	 0	 1	

	
Montauk	

	 	 	 	
	 	

0-25	
	 	 	

	 	 	
Landed	 9	 0	

	 	 	
Discarded	 9	 6	

	 	
25-50	

	 	 	
	 	 	

Landed	 120	 12	

	 	 	
Discarded	 214	 390	

	 	
50-75	

	 	 	
	 	 	

Landed	 38	 9	

	 	 	
Discarded	 48	 62	

	 	
75+	

	 	 	
	 	 	

Landed	 -	 -	

	 	 	
Discarded	 -	 -	

Rhode	Island	
	 	 	 	

	
Point	Judith	

	 	 	 	
	 	

0-25	
	 	 	

	 	 	
Landed	 4	 8	

	 	 	
Discarded	 0	 2	

	 	
25-50	

	 	 	
	 	 	

Landed	 0	 0	

	 	 	
Discarded	 1	 1	

	 	
50-75	

	 	 	
	 	 	

Landed	 31	 13	

	 	 	
Discarded	 26	 50	

	 	
75+	

	 	 	
	 	 	

Landed	 31	 16	
		 		 		 Discarded	 12	 70	
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Table	2.3.		Observed	(18-inch	minimum	size	limit,	top	row)	and	simulated	incremental	
slot	limit	performance	metrics,	including	total	number	dead	(Nd),	dead	female	biomass	
(Fd),	and	ratio	of	dead	discards	to	total	dead	(Rd).		In	parentheses	are	the	percent	
changes	in	a	given	performance	metric	relative	to	the	observed	(18-inch	minimum	size	
limit).		Slot	limits	in	bold	are	within	+/-10%	of	the	observed	total	number	dead.	

State	 Port	

Bottom	
of	Slot	
Limit	

Top	of	
Slot	
Limit	

Total	Number	
Dead	

Dead	Female	
Biomass	

Ratio	of	Dead	
Discards	to	
Total	Dead	

New	
Jersey	

	 	 	 	 	 	
	

Cape	May	 18.00	 -	 147	 262.37	 0.37	

	 	
14.00	 15.99	 321	(118%)	 117.35	(-55%)	 0.11	(-70%)	

	 	
14.00	 16.99	 411	(180%)	 187.01	(-29%)	 0.06	(-84%)	

	 	
14.00	 17.99	 447	(204%)	 244.6	(-7%)	 0.05	(-86%)	

	 	
14.00	 18.99	 487	(231%)	 321.34	(22%)	 0.03	(-92%)	

	 	
14.00	 19.99	 506	(244%)	 369.87	(41%)	 0.03	(-92%)	

	 	
14.00	 20.99	 519	(253%)	 409.91	(56%)	 0.03	(-92%)	

	 	
15.00	 16.99	 273	(86%)	 153.98	(-41%)	 0.15	(-59%)	

	 	
15.00	 17.99	 310	(111%)	 211.57	(-19%)	 0.12	(-68%)	

	 	
15.00	 18.99	 349	(137%)	 288.31	(10%)	 0.09	(-76%)	

	 	
15.00	 19.99	 368	(150%)	 336.84	(28%)	 0.08	(-78%)	

	 	
15.00	 20.99	 382	(160%)	 376.88	(44%)	 0.08	(-78%)	

	 	
16.00	 17.99	 190	(29%)	 174.52	(-33%)	 0.26	(-30%)	

	 	
16.00	 18.99	 230	(56%)	 251.26	(-4%)	 0.2	(-46%)	

	 	
16.00	 19.99	 249	(69%)	 299.79	(14%)	 0.18	(-51%)	

	 	
16.00	 20.99	 262	(78%)	 339.83	(30%)	 0.16	(-57%)	

	 	
17.00	 18.99	 141	(-4%)	 181.59	(-31%)	 0.4	(8%)	

	 	
17.00	 19.99	 159	(8%)	 230.13	(-12%)	 0.34	(-8%)	

	 	
17.00	 20.99	 173	(18%)	 270.17	(3%)	 0.3	(-19%)	

	 	
18.00	 19.99	 123	(-16%)	 172.54	(-34%)	 0.47	(27%)	

	 	
18.00	 20.99	 136	(-7%)	 212.58	(-19%)	 0.41	(11%)	

	 	
19.00	 20.99	 96	(-35%)	 135.84	(-48%)	 0.63	(70%)	

	

Atlantic	
Highlands	 18.00	 -	 251	 537.85	 0.23	

	 	
14.00	 15.99	 301	(20%)	 154.23	(-71%)	 0.18	(-22%)	

	 	
14.00	 16.99	 411	(64%)	 259.93	(-52%)	 0.1	(-57%)	

	 	
14.00	 17.99	 466	(86%)	 327.79	(-39%)	 0.07	(-70%)	

	 	
14.00	 18.99	 545	(117%)	 461.88	(-14%)	 0.05	(-78%)	

	 	
14.00	 19.99	 575	(129%)	 539.13	(0%)	 0.04	(-83%)	

	 	
14.00	 20.99	 602	(140%)	 616.99	(15%)	 0.03	(-87%)	

	 	
15.00	 16.99	 277	(10%)	 226.89	(-58%)	 0.2	(-13%)	

	 	
15.00	 17.99	 332	(32%)	 294.75	(-45%)	 0.15	(-35%)	

	 	
15.00	 18.99	 411	(64%)	 428.84	(-20%)	 0.1	(-57%)	
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15.00	 19.99	 441	(76%)	 506.09	(-6%)	 0.08	(-65%)	

	 	
15.00	 20.99	 467	(86%)	 583.95	(9%)	 0.07	(-70%)	

	 	
16.00	 17.99	 242	(-4%)	 254.37	(-53%)	 0.25	(9%)	

	 	
16.00	 18.99	 322	(28%)	 388.46	(-28%)	 0.16	(-30%)	

	 	
16.00	 19.99	 352	(40%)	 465.71	(-13%)	 0.13	(-43%)	

	 	
16.00	 20.99	 378	(51%)	 543.57	(1%)	 0.12	(-48%)	

	 	
17.00	 18.99	 212	(-16%)	 282.76	(-47%)	 0.3	(30%)	

	 	
17.00	 19.99	 242	(-4%)	 360	(-33%)	 0.25	(9%)	

	 	
17.00	 20.99	 269	(7%)	 437.86	(-19%)	 0.21	(-9%)	

	 	
18.00	 19.99	 188	(-25%)	 292.14	(-46%)	 0.35	(52%)	

	 	
18.00	 20.99	 214	(-15%)	 370	(-31%)	 0.29	(26%)	

	 	
19.00	 20.99	 134	(-47%)	 235.91	(-56%)	 0.53	(130%)	

New	York	
	 	 	 	 	 	

	
Captree	 18.00	 -	 132	 181.1	 0.47	

	 	
14.00	 15.99	 285	(116%)	 162.17	(-10%)	 0.16	(-66%)	

	 	
14.00	 16.99	 366	(177%)	 243.48	(34%)	 0.1	(-79%)	

	 	
14.00	 17.99	 393	(198%)	 283.12	(56%)	 0.08	(-83%)	

	 	
14.00	 18.99	 436	(230%)	 357.99	(98%)	 0.06	(-87%)	

	 	
14.00	 19.99	 445	(237%)	 380.35	(110%)	 0.06	(-87%)	

	 	
14.00	 20.99	 454	(244%)	 406.74	(125%)	 0.06	(-87%)	

	 	
15.00	 16.99	 213	(61%)	 175.18	(-3%)	 0.25	(-47%)	

	 	
15.00	 17.99	 240	(82%)	 214.82	(19%)	 0.21	(-55%)	

	 	
15.00	 18.99	 283	(114%)	 289.7	(60%)	 0.16	(-66%)	

	 	
15.00	 19.99	 292	(121%)	 312.05	(72%)	 0.15	(-68%)	

	 	
15.00	 20.99	 301	(128%)	 338.45	(87%)	 0.14	(-70%)	

	 	
16.00	 17.99	 177	(34%)	 167.65	(-7%)	 0.32	(-32%)	

	 	
16.00	 18.99	 219	(66%)	 242.53	(34%)	 0.24	(-49%)	

	 	
16.00	 19.99	 228	(73%)	 264.88	(46%)	 0.22	(-53%)	

	 	
16.00	 20.99	 237	(80%)	 291.28	(61%)	 0.21	(-55%)	

	 	
17.00	 18.99	 138	(5%)	 161.22	(-11%)	 0.44	(-6%)	

	 	
17.00	 19.99	 147	(11%)	 183.57	(1%)	 0.41	(-13%)	

	 	
17.00	 20.99	 156	(18%)	 209.97	(16%)	 0.38	(-19%)	

	 	
18.00	 19.99	 120	(-9%)	 143.93	(-21%)	 0.52	(11%)	

	 	
18.00	 20.99	 129	(-2%)	 170.33	(-6%)	 0.48	(2%)	

	 	
19.00	 20.99	 87	(-34%)	 95.45	(-47%)	 0.77	(64%)	

	
Montauk	 18.00	 -	 261	 533.27	 0.28	

	 	
14.00	 15.99	 404	(55%)	 207.19	(-61%)	 0.14	(-50%)	

	 	
14.00	 16.99	 529	(103%)	 312.22	(-41%)	 0.08	(-71%)	

	 	
14.00	 17.99	 573	(120%)	 361.73	(-32%)	 0.07	(-75%)	

	 	
14.00	 18.99	 627	(140%)	 448.41	(-16%)	 0.05	(-82%)	

	 	
14.00	 19.99	 656	(151%)	 511.83	(-4%)	 0.04	(-86%)	

	 	
14.00	 20.99	 699	(168%)	 635.37	(19%)	 0.03	(-89%)	

	 	
15.00	 16.99	 326	(25%)	 249.51	(-53%)	 0.2	(-29%)	
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15.00	 17.99	 370	(42%)	 299.03	(-44%)	 0.16	(-43%)	

	 	
15.00	 18.99	 424	(62%)	 385.71	(-28%)	 0.13	(-54%)	

	 	
15.00	 19.99	 453	(74%)	 449.13	(-16%)	 0.11	(-61%)	

	 	
15.00	 20.99	 496	(90%)	 572.66	(7%)	 0.09	(-68%)	

	 	
16.00	 17.99	 261	(0%)	 238.04	(-55%)	 0.28	(0%)	

	 	
16.00	 18.99	 315	(21%)	 324.71	(-39%)	 0.21	(-25%)	

	 	
16.00	 19.99	 344	(32%)	 388.13	(-27%)	 0.19	(-32%)	

	 	
16.00	 20.99	 387	(48%)	 511.67	(-4%)	 0.15	(-46%)	

	 	
17.00	 18.99	 190	(-27%)	 219.69	(-59%)	 0.43	(54%)	

	 	
17.00	 19.99	 219	(-16%)	 283.11	(-47%)	 0.35	(25%)	

	 	
17.00	 20.99	 262	(0%)	 406.64	(-24%)	 0.28	(0%)	

	 	
18.00	 19.99	 175	(-33%)	 233.59	(-56%)	 0.47	(68%)	

	 	
18.00	 20.99	 218	(-16%)	 357.13	(-33%)	 0.36	(29%)	

	 	
19.00	 20.99	 164	(-37%)	 270.45	(-49%)	 0.51	(82%)	

Rhode	Island	
	 	 	 	 	

	
Point	Judith	 18.00	 -	 119	 222.94	 0.14	

	 	
14.00	 15.99	 86	(-28%)	 35.75	(-84%)	 0.23	(64%)	

	 	
14.00	 16.99	 135	(13%)	 57.61	(-74%)	 0.11	(-21%)	

	 	
14.00	 17.99	 162	(36%)	 76.54	(-66%)	 0.07	(-50%)	

	 	
14.00	 18.99	 201	(69%)	 110.67	(-50%)	 0.04	(-71%)	

	 	
14.00	 19.99	 215	(81%)	 130.69	(-41%)	 0.03	(-79%)	

	 	
14.00	 20.99	 232	(95%)	 168.04	(-25%)	 0.02	(-86%)	

	 	
15.00	 16.99	 104	(-13%)	 54.87	(-75%)	 0.17	(21%)	

	 	
15.00	 17.99	 132	(11%)	 73.8	(-67%)	 0.11	(-21%)	

	 	
15.00	 18.99	 171	(44%)	 107.93	(-52%)	 0.06	(-57%)	

	 	
15.00	 19.99	 184	(55%)	 127.95	(-43%)	 0.05	(-64%)	

	 	
15.00	 20.99	 201	(69%)	 165.3	(-26%)	 0.04	(-71%)	

	 	
16.00	 17.99	 103	(-13%)	 68.2	(-69%)	 0.17	(21%)	

	 	
16.00	 18.99	 142	(19%)	 102.33	(-54%)	 0.1	(-29%)	

	 	
16.00	 19.99	 155	(30%)	 122.34	(-45%)	 0.08	(-43%)	

	 	
16.00	 20.99	 172	(45%)	 159.7	(-28%)	 0.06	(-57%)	

	 	
17.00	 18.99	 93	(-22%)	 80.46	(-64%)	 0.21	(50%)	

	 	
17.00	 19.99	 107	(-10%)	 100.48	(-55%)	 0.17	(21%)	

	 	
17.00	 20.99	 124	(4%)	 137.83	(-38%)	 0.13	(-7%)	

	 	
18.00	 19.99	 79	(-34%)	 81.55	(-63%)	 0.26	(86%)	

	 	
18.00	 20.99	 96	(-19%)	 118.9	(-47%)	 0.2	(43%)	

		 		 19.00	 20.99	 57	(-52%)	 84.78	(-62%)	 0.4	(186%)	
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FIGURES	–	CHAPTER	2	

	

	
	
Figure	2.1.		Map	of	sampling	locations.	
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Figure	2.2.		Total	number	(A)	and	weight	(B)	of	male	and	female	Summer	Flounder	
collected	at	each	1-inch	length	bin.		Solid	black	line	represents	proportion	female-at-
length.		Vertical	dashed	line	represents	the	18-inch	minimum	landing	size	in	2016.	
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Figure	2.3.		Total	number	of	male	and	female	Summer	Flounder	collected	at	(A)	Cape	
May,	NJ,	(B)	Atlantic	Highlands,	NJ,	(C)	Captree,	NY,	(D)	Montauk,	NY,	and	(E)	Pt.	Judith,	
RI	in	each	1-inch	length	bin.		Solid	black	line	represents	proportion	female-at-length.		
Note	differences	in	primary	y-axis	for	each	panel.	
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Figure	2.4.		Total	number	of	male	and	female	Summer	Flounder	collected	in	(A)	0-25	
feet	(B)	25-50	feet	(C)	50-75	feet,	and	(D)	75+	feet	of	water	at	each	1-inch	length	bin.		
Solid	black	line	represents	proportion	female-at-length.		Note	differences	in	primary	y-
axis	for	each	panel.	
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CHAPTER	3	

DENSITY-DEPENDENT CAPTURE EFFICIENCY OF A SURVEY DREDGE AND 

ITS INFLUENCE ON THE STOCK ASSESSMENT OF EASTERN OYSTERS 

CRASSOSTREA VIRGINICA IN DELAWARE BAY 

	

Abstract	

A	reliable	measure	of	gear	capture	efficiency	is	required	to	calculate	unbiased	estimates	

of	population	size	and	fishing	mortality	from	survey	data	in	a	stock	assessment.		

However,	capture	efficiency	can	vary	spatially	and	temporally	due	to	changes	in	

abundance,	stock	area,	the	environment,	and	the	sampling	gear	itself.		Therefore,	

periodic	reassessment	of	this	parameter	is	necessary	to	ensure	that	the	catchability	

coefficients	being	applied	accurately	reflect	the	capture	efficiency	of	the	survey	

sampling	gear,	especially	when	catchability	is	being	estimated	outside	of	the	stock	

assessment	model.		Using	data	from	field	experiments	conducted	in	1999,	2000,	2003,	

and	2013,	I	evaluated	spatial	and	temporal	variability	in	capture	efficiency	for	a	

commercial	dredge	used	to	conduct	a	fishery-independent	survey	of	the	eastern	oyster	

(Crassostrea	virginia)	population	in	Delaware	Bay,	USA.		A	spatial	gradient	in	capture	

efficiency	was	detected,	but	no	temporal	trend.		Capture	efficiency	was	a	function	of	the	

density	of	oysters	in	the	sampled	area.		To	my	knowledge	this	is	the	first	time	density-

dependent	capture	efficiency	has	been	identified	for	a	sessile	invertebrate	stock	survey.		

Since	density	dependence	in	capture	efficiency	leads	to	hyperstable	catch-per-unit-

effort,	caution	is	advised	when	deriving	oyster	abundance	from	dredge	survey	catch-
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per-effort	data,	especially	at	low	oyster	density	and	when	high	spatial	resolution	

estimates	of	survey	dredge	capture	efficiency	are	not	available.		

 

Introduction	

					Stock	assessment	of	oyster	populations	is	typically	done	using	data	collected	from	

surveys	that	employ	one	of	three	types	of	sampling	gear.		Diver	quadrat	sampling	and	

patent	tongs	are	nearly	100%	efficient	for	collecting	oysters	within	the	area	sampled	

(Chai	et	al.	1993;	Mann	et	al.	2004).		However,	patent	tongs	can	be	destructive	to	the	

reef	and	can	only	sample	a	small	area	per	unit	of	effort;	therefore,	some	have	advocated	

against	their	long-term	use	for	surveying	natural	resources	(Rothschild	et.	al	1994).		

Diver	sampling	suffers	from	the	same	limitation	in	sample	size	and	typically	also	suffers	

from	limited	sample	numbers	due	to	the	time	required	per	sample.		Alternatively,	a	

commercial	dredge	can	be	used	to	sample	a	large	area,	providing	a	high	sample	density	

at	relatively	low	cost,	but	is	also	inefficient	(Powell	et	al.	2002;	Mann	et	al.	2004;	Powell	

et	al.	2007;	Marenghi	et	al.	2017).		When	the	sampling	gear	captures	less	than	100%	of	

the	individuals	in	the	sampled	area,	it	is	important	to	estimate	the	efficiency	of	the	gear	

and	to	account	for	this	when	converting	survey	catch-per-unit-effort	(CPUE)	data	to	an	

index	of	population	size	(Hilborn	and	Walters	1992;	Arreguin-Sanchez	1996).			

					The	capture	efficiency	of	survey	gear,	and	the	catchability	coefficient	derived	from	

capture	efficiency,	can	be	estimated	within	the	stock	assessment	model	(Fournier	et	al.	

1998)	or	can	be	explicitly	defined,	either	as	a	fixed	value	(Powell	et	al.	2007),	or	by	

some	functional	relationship	(Wilberg	et	al.	2010).		Field	and	experimental	

observations	from	depletion	experiments	(Lasta	and	Iribarne	1997;	Gedamke	et	al.	
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2004;	Rago	et	al.	2006;	Hennen	et	al.	2012;	Wilberg	et	al.	2013)	and	simultaneous	

sampling	of	survey	gear	and	gear	that	is	100%	efficient	(Powell	et	al.	2002;	Mann	et	al.	

2004;	Powell	et	al.	2007;	Singh	et	al.	2014)	have	been	used	to	estimate	catchability	of	

shellfish	survey	dredges	directly.		Often	the	capture	efficiency	will	vary	spatially	

(Powell	et	al.	2002,	2007;	Doray	et	al.	2010;	Marenghi	2017)	and	temporally	(Walters	

and	Martell	2004;	Powell	et	al.	2007),	likely	due	to	changes	in	abundance,	stock	area,	

the	environment,	and	the	sampling	gear	(Wilberg	et	al.	2010).		For	this	reason,	periodic	

reassessment	of	survey	dredge	capture	efficiency	has	been	advised	(Powell	et	al.	2007;	

Marenghi	et	al.	2017).	

					The	dredge	survey	used	in	the	annual	stock	assessment	for	the	eastern	oyster	

Crassostrea	virginica	in	Delaware	Bay	dates	back	to	1953	and	provides	one	of	the	

longest	continuous	abundance	records	of	any	shellfish	population	(Powell	et	al.	2008).		

Field	experiments	conducted	in	1999,	2000	and	2003	identified	spatial	and	temporal	

trends	in	the	capture	efficiency	of	the	dredge	used	for	this	survey	(Powell	et	al.	2002,	

2007).		To	account	for	these,	time-	and	location-specific	catchability	coefficients	have	

been	applied	in	the	stock	assessment	to	estimate	an	index	of	abundance	from	survey	

CPUE	(Ashton-Alcox	et	al.	2015).		However,	Powell	et	al.	(2007)	suggest	that	capture	

efficiency	of	this	survey	gear	may	change	rapidly,	over	only	a	few	years	at	any	one	

location.		If	the	catchability	coefficients	currently	being	applied	in	the	Delaware	Bay	

oyster	stock	assessment	no	longer	accurately	reflect	the	capture	efficiency	of	the	

sampling	gear,	this	will	lead	to	biased	estimates	of	population	size	and	exploitation	rate	

(Pope	and	Shepherd	1985;	Wilberg	and	Bence	2006)	with	the	magnitude	of	the	bias	

linked	directly	to	the	magnitude	of	the	error	in	the	estimate	of	capture	efficiency	used.	
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					In	this	chapter	I	use	data	from	a	set	of	field	experiments	to	update	estimates	of	

capture	efficiency	for	the	survey	dredge	used	to	estimate	abundance	in	the	stock	

assessment	of	the	Delaware	Bay	eastern	oyster	population.		I	evaluate	whether	the	

time-	and	location-specific	coefficients	calculated	from	earlier	experiments	(1999,	

2000,	and	2003),	which	have	been	applied	in	the	stock	assessment,	are	still	appropriate	

given	new	data	collected	during	an	experiment	in	2013.	

	

Methods	

	 Field	sampling	 	

					Capture	efficiency	was	estimated	at	twelve	oyster	reef	locations	in	Delaware	Bay	in	

1999,	2000,	2003,	and	2013	(Figure	3.1).		At	each	location,	three	measurements	of	

capture	efficiency	were	collected	within	a	0.2’	latitude	by	0.2’	longitude	grid	

(approximately	25	acres).		For	the	1999-2003	experiments,	measurements	consisted	of	

paired	dredge	tows	and	diver	transect	samples.		Paten	tongs	and	divers	are	equally	

efficient	at	sampling	oysters	(Chai	et	al.	1992).		Since	patent	tongs	were	more	readily	

available	at	the	time,	measurements	from	the	2013	experiment	consisted	of	paired	

dredge	tows	and	patent	tong	transect	samples.		For	each	replicate,	a	one-minute	tow	

was	conducted	by	the	F/V	Howard	W.	Sockwell	using	a	standard	1.27-m	commercial	

dredge	and	twelve	haphazardly	placed	0.25	m2	diver	quadrats	or	six	haphazardly	

placed	0.89	m2	patent	tong	samples	were	taken	by	a	second	boat	in	a	transect	parallel	

to	but	not	in	the	dredge	path.		The	time	and	GPS	coordinates	were	recorded	when	the	

dredge	tow	began	and	ended.		The	total	volume	caught	in	each	tow	was	measured	as	

37-L	bushels	in	a	pre-calibrated	hopper.		If	the	dredge	was	full	after	the	1-minute	tow,	



	

	

74	

the	tow	time	was	reduced	to	45s	so	that	the	total	number	of	bushels	of	material	

collected	in	the	swept	area	could	be	determined.		A	single	bushel	was	collected	from	

each	tow	as	a	representative	sub-sample	of	the	catch	and	the	remaining	catch	was	

discarded	overboard.		The	entire	tong	or	diver	quadrat	sample,	minus	the	sediment,	

were	retained	for	analysis.		Both	dredge	and	tong	or	diver	samples	were	sorted	into	

oysters,	cultch	(oyster	shell),	and	boxes	(dead	oysters	with	the	hinge	still	intact).		

Volumes	and	weights	of	each	component	of	the	catch	were	recorded	and	all	oysters	and	

boxes	in	each	sample	were	counted	and	measured.			 	

	 Data	analyses	

	
	 	 Deriving	capture	efficiency	 	

					The	swept	area,	sa,	for	each	dredge	tow,	in	square	meters,	was	calculated	as	

	 	 	

	 	 	 	 (1)	 sa = d *w 	

where	d	is	the	distance	towed	in	meters	determined	by	tallying	the	distances	between	

GPS	coordinates	every	10	seconds	during	the	tow,	and	w	is	the	dredge	width	in	meters.		

The	apparent	density,	ad,	of	oysters	on	the	bottom	for	a	given	tow	was	calculated	as	

	 	 	 	

	 	 	 	 (2)		 ad = (o*b) / sa 	

where	o	is	the	total	number	of	oysters	present	in	the	bushel	sample	from	a	given	tow	

and	b	is	the	total	number	of	bushels	caught	in	that	tow.		The	correct	density,	cd,	of	

oysters	on	the	bottom	for	a	given	tow	was	calculated	as	
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(3)						
cd = ( od

i=1

n=6

∑ ) / (n* ta)
  	

	

where	od	is	the	total	number	of	oysters	collected	by	patent	tong	or	diver	sample	taken	

along	a	given	tow	path,	n	is	the	total	number	of	patent	tong	or	diver	samples	taken	

along	that	same	tow	path,	and	ta	is	the	area	sampled	by	the	patent	tong	or	diver	

quadrat.		Oyster	dredge	capture	efficiency,	e,	was	calculated	as	

	 	 	 	 (4)						 e = ad / cd 	.	

					Preliminary	evaluation	of	e	suggested	that	at	values	of	cd	below	25	oysters/m2,	e	was	

commonly	estimated	to	be	greater	than	1	and	sometimes	greater	than	2.		Since	the	

tong/diver	samples	cover	a	much	smaller	spatial	area	than	the	dredge,	the	low	

abundance	at	these	locations	likely	lead	to	tong/diver	undersampling	bias	(Powell	et	al.	

2017)	and	therefore	an	overestimate	of	capture	efficiency.		Therefore,	I	did	not	include	

any	capture	efficiency	estimates	in	subsequent	analyses	that	were	derived	from	cd	

observations	below	25	oysters/m2.			

					Finally,	catchability,	q,	was	calculated	as	

(5)						q	=	1/e		.	

	 	 Evaluating	size-specific	retention	probability	

					I	evaluated	the	size-dependent	retention	probability	of	the	survey	dredge	using	a	

logistic	model	that	was	fit	to	selectivity	at	a	given	length	s(l)	calculated	as		

(6)	 s(l)	=	Dl,d	/	(Dl,t	+	Dl,d),	

where	Dl,d	was	the	experiment-wide	density	of	oysters	at	a	given	length	collected	in	the	

dredge	and	Dl,t	was	the	experiment-wide	density	of	oysters	at	that	same	length	
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collected	in	the	tong/diver	samples.		Given	the	results	of	this	analysis	(no	size	

selectivity),	I	used	the	full	range	of	sizes	for	oysters	in	all	further	analyses.			

	 	 Evaluating	spatial	and	temporal	variation	in	capture	efficiency	

					Logistic	regression	was	applied	to	assess	spatial	and	temporal	effects	on	the	capture	

efficiency	of	the	survey	dredge.		To	evaluate	temporal	variability,	the	dataset	was	

truncated	to	include	only	locations	that	were	sampled	in	all	years.		Given	the	results	of	

this	analysis	(no	temporal	variability),	the	decision	was	made	to	include	data	from	all	

years	in	subsequent	spatial	analyses.			

					Spatial	analyses	identified	three	statistically	significant	groups	of	oyster	reef	

locations	relative	to	capture	efficiency.	Additionally,	these	groups	were	different	from	

those	identified	in	the	2003	experiment	(Powell	et	al.	2007)	which	have	been	applied	in	

the	stock	assessment	since	2005	(Ashton-Alcox	et	al.	2016).		To	evaluate	the	impact	of	

changing	the	capture	efficiency	of	the	survey	gear,	and	the	catchability	coefficients	

derived	from	capture	efficiency,	on	the	stock	assessment,	mean	catchability	coefficients	

were	derived	separately	from	capture	efficiency	based	on	analyses	conducted	by	Powell	

et	al.	(2007)	and	on	analyses	conducted	with	this	work.		Powell	et	al.	(2007)	analyzed	

capture	efficiency	separately	for	different-sized	oysters	and	while	they	found	no	change	

over	time	in	capture	efficiency	for	all	oysters,	a	significant	effect	was	detected	for	

market-sized	oysters.		Therefore,	time-specific	catchability	coefficients	have	been	

applied	in	the	stock	assessment	and	the	most	recent	part	of	time	series	uses	regional	

mean	catchability	coefficients	derived	from	data	collected	during	the	2003	experiment	

only	to	convert	CPUE	to	abundance.		However,	since	I	detected	no	size	selectivity	of	the	

dredge,	and	no	temporal	trend	in	capture	efficiency,	I	derived	regional	mean	



	

	

77	

catchability	coefficients	from	the	full	set	of	experimental	data	(1999,	2000,	2003,	and	

2013)	and	calculated	regional	means	based	on	the	statistically	significant	reef	

groupings	from	this	work.		The	proportional	change	in	abundance	or	exploitation	rate	P	

from	the	previously	applied	catchability	coefficients	for	the	stock	assessment	(Powell	et	

al.	2007;	Ashton-Alcox	2015)	to	the	application	identified	as	most	appropriate	with	this	

work	was	calculated	as	

	 	 	 	 (7)		 P	=	[(dnew	-	dold)	/	dold]	*	100	

where	d	represents	abundance	or	exploitation	rate,	new	represents	the	application	of	

catchability	coefficients	identified	with	this	work	as	most	appropriate	and	old	

represents	the	application	of	catchability	coefficients	that	have	been	used	in	the	stock	

assessment	(Ashton-Alcox	2015),	based	on	previous	analyses	by	Powell	et	al.	(2007).	

	 	 Estimating	uncertainty	in	capture	efficiency	and	modeling	density-

dependence	

					Uncertainty	in	the	estimate	of	e	can	be	defined	by	the	variation	in	intra-tong/diver	

quadrat	density	used	to	estimate	cd	for	a	given	sample.		For	each	estimate	of	e,	six	tong	

density	measurements	or	twelve	quadrat	density	measurements	were	drawn	at	

random	with	replacement	from	the	set	of	observed	densities	and	cd	and	e	were	

recalculated	using	these	random	draws.		This	was	repeated	1,000	times	in	a	bootstrap	

simulation	and	the	variance,	!  2,	of	the	simulated	distribution	of	e	was	used	

subsequently	as	a	measure	of	uncertainty.	

					A	power	function	is	commonly	used	to	describe	density-dependence	in	catchability	

for	many	fisheries	(Wilberg	et	al.	2010)	and	has	been	used	to	describe	density-

dependence	in	survey	capture	efficiency	for	trawl	surveys	in	at	least	one	instance	
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(Kotwicki	et	al.	2014).		Therefore,	to	determine	whether	e	of	the	survey	dredge	was	

density-dependent	here,	I	modeled	e	as	a	power	function	of	cd	

	 	 	 	 (8)	 e	~	a	*	cd	-f,	

where	a	and	f	are	model	parameters,	using	weighted	non-linear	least	squares	

regression.		The	weights	wt	for	each	observation	of	e	were	the	reciprocal	the	!  2			

	 	 	 	 (9)		 wt	=	1/	"  2	

where	!  2	was	estimated	by	bootstrap	simulation	as	described	above.			

	

Results						 	 	

					The	patent	tongs	and	diver	samples,	assumed	to	have	collected	100%	of	the	oysters	

in	the	sampled	area,	had	the	same	size	frequency	distribution	as	the	commercial	oyster	

dredge	(Figure	2).		Hence,	oyster	length	was	not	a	significant	(p	=	0.82)	predictor	of	

retention	probability	and	all	subsequent	analyses	were	conducted	without	separating	

oysters	by	size	class	or	correcting	for	size-specific	retention	probability.			

					When	data	were	truncated	to	include	only	experiments	done	at	reefs	sampled	in	all	

three	years,	year	was	not	a	significant	predictor	of	capture	efficiency	(p	=	0.29),	and	

neither	was	the	interaction	between	year	and	reef	(p	=	0.44),	but	reef	was	significant	(p	

=	0.003).		Capture	efficiency	was	nearly	constant	across	all	three	years	sampled	(Figure	

3).			

					For	the	full	set	of	data,	reef	(p	=	0.004)	remained	a	significant	predictor	of	capture	

efficiency.		Efficiency	is	more	variable,	and	higher	in	the	lower	bay,	decreases	and	

becomes	less	variable	in	the	middle	section	of	the	bay,	and	increases	in	the	upper	bay	

(Figure	4).		Reefs	formed	statistically	significant	groups	relative	to	capture	efficiency	
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and	these	groups	were	different	from	those	estimated	by	Powell	et	al.	(2007),	who	used	

data	collected	during	the	set	of	experiments	conducted	in	2003	only.	

					When	updated	location-specific	catchability	coefficients	that	included	data	from	all	

experiments	(1999,	2000,	2003,	and	2013)	were	applied	to	calculate	2015	abundance	

and	exploitation	rate,	the	proportional	change	varied	with	region	(Table	1).		For	

instance,	on	the	Very	Low	Mortality	region	and	on	the	Round	Island	reef	in	the	Low	

Mortality	region,	the	estimated	abundance	of	oysters	decreased	by	67%;	however,	on	

the	Shell	Rock	region,	the	estimated	abundance	of	oysters	increased	by	166%	and	the	

estimated	exploitation	rate	decreased	by	62%.		Overall,	the	2015	estimated	abundance	

decreased	by	9%	and	the	exploitation	rate	increased	by	11%.	

					Uncertainty	in	estimates	of	capture	efficiency	increased	with	decreasing	oyster	

density	(Figure	5).		Oyster	density	significantly	influenced	the	capture	efficiency	of	the	

survey	dredge.		A	two-parameter	power	function	described	the	relationship	between	

capture	efficiency	and	oyster	density	(Table	2).		Capture	efficiency	declined	with	

increasing	oyster	density	but	at	a	slower	rate	at	oyster	densities	greater	than	

approximately	100	oysters/m2	(Figure	5).		

	

Discussion	

Density-dependent	capture	efficiency	

						Density-dependent	capture	efficiency	or	catchability,	and	the	

hyperstability/hyperdepletion	of	CPUE	that	results	from	density-dependence,	are	

typically	thought	to	be	processes	that	make	fishery	catch	data	disproportionate	to	

abundance	because	of	the	interaction	between	organism	and	fisher	behavior	(Hilborn	



	

	

80	

and	Walters	1992).		CPUE	data	collected	from	fishery-independent	surveys,	however,	

were	traditionally	thought	to	provide	reliable	indices	of	abundance	because	survey	

design	is	standardized	(Godo	1994).		More	recently,	though,	evidence	for	density-

dependent	catchability	in	fishery-independent	bottom-trawl	surveys	has	been	

described	as	well	(Godo	et	al.	1999;	Kotwicki	et	al.	2013,	2014).		To	my	knowledge	this	

is	the	first	time	density-dependent	capture	efficiency	has	been	identified	and	modeled	

for	a	sessile	invertebrate	stock	survey.		For	bottom-trawl	fishery-independent	surveys,	

density-dependence	likely	results	from	fish	reacting,	such	as	schooling	or	gear	

avoidance	behaviors	at	high	density,	to	the	survey	gear	(Godo	et	al.	1999;	Hoffman	et	al.	

2009).		Oysters	are	sessile	and	immobile,	so	density-dependent	capture	efficiency	is	not	

manifested	in	behavioral	responses	to	survey	gear.		For	oysters,	density	dependence	

may	be	explained	by	their	gregarious	setting	behavior	and	the	three-dimensional	

structure	of	reefs	that	become	consolidated	and	cemented	at	high	density.		When	oyster	

density	is	low,	the	dredge	is	likely	to	capture	most	oysters	in	the	dredge	path,	but	as	

density	increases,	the	vertical	relief	of	the	reef,	cementation,	and	consolidation	likely	

increase	as	well	making	it	more	difficult	for	the	dredge	to	capture	100%	of	the	oysters	

in	the	dredge	path.					

					Since	the	efficiency	of	the	survey	gear	evaluated	here	is	density-dependent,	one	must	

caution	against	biased	interpretation	of	survey	data	due	to	the	likelihood	of	

hyperstability	in	survey	CPUE.		Hyperstability	describes	a	situation	where	CPUE	

remains	stable	while	true	density	or	abundance	declines	(Hilborn	and	Walters	1992).		

Density-dependence	in	capture	efficiency	and	catchability	have	been	shown	to	cause	

hyperstability	in	CPUE	for	fisheries	and	for	fishery-independent	surveys	(Hilborn	and	
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Walters	1992;	Rose	and	Kulka	1999;	Godo	et	al.	1999;	Wilberg	et	al.	2010;	Ward	et	al.	

2013;	Kotwicki	et	al.	2013,	2014).		As	true	density	or	abundance	declines,	if	the	

efficiency	of	a	fishing	fleet	or	of	a	survey	gear	increases,	CPUE	will	remain	stable.		For	

the	oyster	population	in	Delaware	Bay	this	means	increases	or	declines	in	oyster	

density	are	likely	to	be	difficult	to	detect,	especially	at	low	densities,	because	capture	

efficiency	increases	rapidly	with	declining	density.		Interpreting	temporal	trends	from	

survey	CPUE	may	be	particularly	problematic	for	reefs	in	the	lower	bay	where	heavy	

disease	pressure	keeps	oyster	density	low.			

					Interestingly,	above	100	oysters/m2	the	capture	efficiency	declines	at	a	much	lower	

rate.		Since	density-dependent	capture	efficiency	of	survey	gear	has	not	been	modeled	

for	other	sessile	invertebrates	it	is	difficult	to	speculate	on	the	broader	ecological	

significance	of	this	inflection	point.		However,	it	is	possible	that	much	of	the	change	in	

density	above	100	oysters/m2	comes	from	recruitment	of	small	oysters	that,	due	to	

limitations	on	space	and	resources	within	a	square	meter	of	habitat,	do	not	survive	to	

larger	sizes.		If	this	is	the	case,	then	these	oysters	would	not	contribute	substantially	to	

increasing	vertical	relief	of	the	reef,	cementation,	and	consolidation,	which	I	suggest	

might	be	influencing	the	capture	efficiency	of	the	survey	gear.		As	similar	information	

becomes	available	for	oyster	reefs	in	different	regions	with	different	resource	

availability,	it	will	be	informative	to	compare	how	parameters	of	the	power	model	I	

used	to	model	capture	efficiency	vary.	

Size-selectivity	and	spatiotemporal	variability	in	capture	efficiency	

					In	many	cases,	the	size	of	the	organism	being	surveyed	provides	an	accurate	estimate	

of	capture	probability	because	survey	and	fishing	gears	are	designed	to	retain	



	

	

82	

individuals	above	a	certain	size	threshold	(Millar	1992).		The	lack	of	any	size	selectivity	

here,	however,	is	in	agreement	with	previous	work	that	evaluated	capture	efficiency	

separately	for	different	sized	oysters	(Powell	et	al.	2007;	Marenghi	et	al.	2017).		Size-

dependent	retention	should	be	rare	because	oysters	grow	in	aggregations	with	the	

larvae	cementing	onto	existing	oyster	substrate.			

The	probability	that	a	given	clump	of	oysters	will	be	retained	by	the	dredge	is	therefore	

a	function	of	the	size	of	the	entire	clump	and	not	of	the	size	of	any	one	oyster	in	that	

clump.			

					No	temporal	change	in	capture	efficiency	was	detected,	but	reefs	formed	statistically	

significant	regional	groups	within	Delaware	Bay	along	the	salinity	gradient	in	the	lower,	

middle,	and	upper	bay.		The	same	was	true	when	an	earlier	subset	of	these	data	were	

evaluated	(Powell	et	al.	2007),	though	the	specific	reefs	in	each	group	changed	slightly.		

Since	I	have	identified	a	strong	density-dependence	in	capture	efficiency,	this	suggests	

that	density	at	each	of	the	sampled	locations	has	changed	relatively	little	from	1999,	

when	the	first	experiment	was	conducted,	to	2013,	when	the	last	experiment	was	

conducted.		In	fact,	relative	to	the	long-term	time	series,	the	oyster	population	in	

Delaware	Bay,	NJ	has	been	stable	over	this	time	period	(Ashton-Alcox	2016).		While	

spatial	and	temporal	variability	in	survey	gear	capture	efficiency	can	create	biased	

estimates	of	abundance	and	exploitation	rate	(Pope	and	Shepherd	1985;	Wilberg	and	

Bence	2006),	progress	continues	to	be	made	on	innovative	ways	to	deal	with	both	

(Wilberg	et	al.	2010;	Cadrin	et	al.	2016),	and	the	region-specific	mean	catchability	

coefficients	being	applied	in	the	stock	assessment	of	Delaware	Bay	oysters	appear	to	

adequately	account	for	the	spatial	variation	in	oyster	density	and	catchability.		
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However,	as	has	been	recommended	by	others	(Powell	et	al.	2007;	Marenghi	et	al.	

2017),	periodic	re-evalution	of	spatial	patterns	in	density	is	advised	to	detect	and	

correct	for	any	temporal	changes	in	survey	gear	catchability.	Alternatively,	coupled	

acoustic	methods	have	the	potential	to	accurately	map	different	forms	of	oyster	habitat	

(Allen	et	al.	2005;	Legare	and	Mace	2017).		Advancement	in	these	and	other	acoustic	

methods	may	allow	oyster	density	estimation	without	the	need	to	correct	for	capture	

efficiency	or	catchability	of	dredge	survey	gears.		

Stock	assessment	implications	for	updating	catchability	coefficients	

					The	catchability	coefficients	derived	from	the	2003	experimental	data	using	

statistically	significant	regional	group	means	(Powell	et	al.	2007),	herein	referred	to	as	

old-q,	differed	from	those	derived	from	the	present	analysis,	herein	referred	to	as	new-

q.		Given	that	the	exploitation	rate	is	fixed	at	the	number	of	oysters	harvested	divided	

by	the	estimated	population	size	at	that	time,	the	only	variables	that	can	change	from	

updating	catchability	coefficients	from	old-q	to	new-q	are	the	estimate	of	what	the	

population	size	is	and/or	the	estimate	of	how	heavily	the	population	is	being	exploited.		

For	instance,	on	the	Shell	Rock	region	if	the	total	number	of	oysters	harvested	was	5	

million,	it	remains	5	million	whether	the	exploitation	rate	(Table	1)	was	calculated	to	be	

0.069	at	a	population	size	of	78	million	oysters	or	0.026	at	a	population	size	of	208	

million	oysters.		Therefore,	the	management	implications	for	updating	to	new-q	values	

may	appear	inconsequential	because	the	harvest	remains	fixed.		However,	there	is	

inherent	value	in	knowing,	with	as	much	certainty	as	possible,	both	the	actual	

abundance	of	the	population	on	which	the	fishery	is	prosecuted,	and	how	heavily	that	

population	is	being	exploited.		This	is	because	sustainable	rates	of	exploitation	for	C.	
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virginica	populations	in	one	system,	e.g.	Delaware	Bay,	can	influence	how	a	fishery	is	

managed	in	another	system.		In	the	case	of	Shell	Rock	in	particular,	a	7%	exploitation	

rate	would	appear	suitable	to	sustain	the	population	there	based	on	old-q	values,	

however,	the	exploitation	rate	there	is	much	closer	to	2.5%,	based	on	new-q	values.		

Given	that	recent	simulation	modeling	suggests	oyster	populations	can	sustain	

exploitation	rates	of	approximately	2%,	and	that	this	is	robust	across	different	systems	

and	fisheries	(Powell	et	al.	in	press),	the	7%	exploitation	rate	was	likely	artificially	high	

and	an	artifact	of	a	misspecified	catchability	coefficient.		Hence,	as	has	been	identified	in	

other	fisheries	(Pope	and	Shepherd	1985;	Wilberg	and	Bence	2006),	inaccurate	

catchability	coefficients	can	lead	to	biased	estimates	of	abundance	and	exploitation	rate	

in	oyster	fisheries.	

					Applying	new-q	values	to	2015	stock	assessment	survey	data	resulted	in	a	9%	

reduction	in	total	abundance	and	an	11%	increase	in	exploitation	rate.		However,	it	is	

important	to	recognize	that	the	change	in	catchability	is	not	unidirectional	for	all	

regions	evaluated;	whether	the	effect	of	the	new-q	values	results	in	an	increase	or	a	

decrease	in	total	stock	size	depends	on	the	relative	contribution	of	any	one	region	to	

the	total	stock	size	in	any	given	year.		For	years	and	regions	where	catchability	is	now	

estimated	to	be	higher	and	the	region	makes	up	a	larger	relative	portion	of	the	total	

stock,	the	result	will	be	an	overall	increase	in	stockwide	abundance,	and	associated	

decrease	in	exploitation	rate,	not	an	increase.	



	

	

85	

	

Acknowledgements	

I	thank	Russell	Babb,	Jason	Hearon,	and	Craig	Tomlin	of	the	New	Jersey	Division	of	Fish	

and	Wildlife	Bureau	of	Shellfisheries	and	Jim	Wesson,	Vernon	Rowe,	and	Kyle	Jones	of	

the	Virginia	Marine	Resources	Commission	for	vessel	support	and	field	assistance.		I	am	

also	grateful	to	the	staff	at	the	Haskin	Shellfish	Research	Laboratory	for	helping	in	the	

field	and	processing	samples	in	the	lab.		Funding	for	this	work	was	provided	by	the	

Army	Corp	of	Engineers.	

	

Literature	Cited	–	Chapter	3	
	
Allen,	Y.	C.,	C.	A.	Wilson,	H.	H.	Roberts,	and	J.	Supan.		2005.		High	resolution	mapping	and	
classification	of	oyster	habitats	in	nearshore	Louisiana	using	sidescan	sonar.		Estuaries	
28	(3):	435	0	446.	
	
Arreguin-Sanchez,	F.		1996.		Catchability:	a	key	parameter	for	fish	stock	assessment.		
Reviews	in	Fish	Biology	and	Fisheries	6	(2):	221-242.	
	
Ashton-Alcox,	K.,	D.	Bushek,	J.	Gius,	J.	Morson,	and	D.	Munroe.		2015.		Report	of	the	2014	
Stock	Assessment	Workshop	(14th	SAW)	for	the	New	Jersey	Delaware	Bay	Oyster	Beds.		
Haskin	Shellfish	Research	Laboratory,	Port	Norris,	NJ.	112pp.		
	
Ashton-Alcox,	K.,	D.	Bushek,	J.	Gius,	J.	Morson,	and	D.	Munroe.		2016.		Report	of	the	2015	
Stock	Assessment	Workshop	(14th	SAW)	for	the	New	Jersey	Delaware	Bay	Oyster	Beds.		
Haskin	Shellfish	Research	Laboratory,	Port	Norris,	NJ.	158pp.		
	
Cadrin,	S.	X.,	G.	R.	DeCelles,	and	D.	Reid.		2016.		Informing	fishery	assessment	and	
management	with	field	observations	of	selectivity	and	efficiency.		Fisheries	Research	
184:	9-17	
	
Chai,	A.,	M.	Homer,	C.	Tsai,	and	P.	Goulletquer.	1992.	Evaluation	of	oyster	sampling	
efficiency	of	patent	tongs	and	an	oyster	dredge.	North	American	Journal	of	Fisheries	
Management	12:	825-832.	
	



	

	

86	

Doray,	M.,	S.	Mahevas,	and	V.	M.	Trenkel.		2010.		Estimating	gear	efficiency	in	a	
combined	acoustic	and	trawl	survey,	with	reference	to	the	spatial	distribution	of	
demersal	fish.		ICES	Journal	of	Marine	Science	67:	668	–	676.	
	
Ellis,	N.	and	Y.-G.	Wang.		2007.		Effects	of	fish	density	distribution	and	effort	distribution	
on	catchability.		ICES	Journal	of	Marine	Science	64:	178-191.	
	
Gedamke,	T,	W.	D.	DuPaul,	and	J.	M.	Hoenig.	2004.	A	spatially	explicit	open-ocean		
DeLury	analysis	to	estimate	gear	efficiency	in	the	dredge	fishery	for	sea	scallop	
Placopecten	magellanicus.	North	American	Journal	of	Fisheries	Management	24(2):	
335-351.	
	
Godo,	O.	R.		1994.		Factors	affecting	reliability	of	groundfish	abundance	estimates	from	
bottom	trawl	surveys.		In	Marine	fish	behavior	in	capture	and	abundance	estimation,	
pp.	45-68.		Eds.	A.	Gerno	and	S.	Olsen.		Fishing	News	Books,	Oxford.	
	
Godo,	O.	R.,	S.	J.	Walsh,	and	A.	Engas.		1999.		Investigating	density-dependent	
catchability	in	bottom-trawl	surveys.		ICES	Journal	of	Marine	Science	56:	292-298.			
			
Hennen,	D.,	L.	Jacobson,	and	J.	Tang.		2012.		Accuracy	of	the	patch	model	used	to		
estimate	density	and	capture	efficiency	in	depletion	experiments	for	sessile		
invertebrates	and	fish.	ICES	Journal	of	Marine	Science	69:240-249.	
	
Hilborn,	R.	and	C.	J.	Walters.		1992.		Quantitative	fisheries	stock	assessment:	choice,	
dynamics,	and	uncertainty.		Chapman	and	Hall,	New	York,	NY.	
	
Hoffman,	J.	C.,	C.	F.	Boznek,	and	R.	J.	Latour.		2009.		Estimation	of	bottom	trawl	catch	
efficiency	for	two	demersal	fishes,	Atlantic	croaker	and	white	perch,	in	Chesapeake	Bay.		
Marine	and	Coastal	Fisheries:	Dynamics,	Management,	and	Ecosystem	Science	1:	255-
269.	
	
Kotwicki,	S.,	A.	De	Robertis,	J.	N.	Ianelli,	A.	E.	Punt,	and	J.	K.	Horne.		2013.		Combining	
bottom	trawl	and	acoustic	data	to	model	acoustic	dead	zone	correction	and	bottom	
trawl	efficiency	parameters	for	semi-pelagic	species.		Canadian	Journal	of	Fisheries	and	
Aquatic	Sciences	70:	208-219.	
	
Kotwicki,	S.,	J.	N.	Ianelli,	and	A.	E.	Punt.		2014.		Correcting	density-dependent	effects	in	
abundance	estimates	from	bottom-trawl	surveys.		ICES	Journal	of	Marine	Science	71(5):	
1107-1116.	
	
Latsa,	M.	L.	and	O.	O.	Iribarne.		1997.		Southwestern	Atlantic	scallop	(Zygochlamys	
patagonica)	fishery:	assessment	of	gear	efficiency	through	a	depletion	experiment.		
Journal	of	Shellfish	Research	16:	59-62.	
	



	

	

87	

Legare,	B.	and	C.	Mace.		2017.		Mapping	and	classifying	eastern	oyster	(Crassostrea	
virginica)	habitat	in	Copano	Bay,	Texas,	by	coupling	acoustic	technologies.		Journal	of	
Coastal	Research	33(2):	286-294.	
	
Mann,	R.,	M.	Southworth,	J.	M.	Harding,	and	J.	Wesson.	2004.	A	comparison	of	dredge	
and	patent	tongs	for	estimation	of	oyster	populations.		Journal	of	Shellfish	Research	
23(2):287-390.		
	
Marenghi,	F.,	K.	A.	Alcox,	R.	Wong,	B.	Reynolds,	and	G.	Ozbay.		2017.		Dredge	efficiency	
on	natural	oyster	grounds	in	Delaware	Bay	and	its	application	in	monitoring	the	
Eastern	oyster	(Crassostrea	virginica)	stock	in	Delaware	Bay,	USA.		Fisheries	Research	
186:	292	–	300.	
	
Millar,	R.	B.		1992.		Estimating	the	size-selectivity	of	fishing	gear	by	conditioning	on	the	
total	catch.	Journal	of	the	American	Statistical	Association	87:	962-968.	
	
Pope,	J.	G.	and	J.	G.	Shepherd.		1985.		A	comparison	of	the	performance	of	various	
methods	for	tuning	VPAs	using	effort	data.		ICES	Journal	of	Marine	Science	42	(2):	129-
151.	
	
Powell,	E.	N.,	K.	A.	Ashton-Alcox,	J.	A.	Dobarro,	M.	Cummings,	and	S.	E.	Banta.	2002.	
The	inherent	efficiency	of	oyster	dredges	in	survey	mode.	Journal	of	Shellfish	Research	
21:	691-695.	
	
Powell,	E.	N.,	K.	A.	Ashton-Alcox,	and	J.	N.	Kraeuter.	2007.		Reevaluation	of	eastern	
oyster	dredge	efficiency	in	survey	mode:	application	in	stock	assessment.	North	
American	Journal	of	Fisheries	Management	27:	492-511.	
	
Powell,	E.	N	.,	K.A.	Ashton-Alcox,	J.N.	Kraeuter,	S.E.	Ford	and	D.	Bushek.	2008.	Long	
term	trends	in	oyster	population	dynamics	in	Delaware	Bay:	Regime	shifts	and	
response	to	disease.	Journal	of	Shellfish	Research	27:	729-755.	
	
Powell,	E.	N.,	R.	Mann,	K.	A.	Ashton-Alcox,	K.	M.	Kuykendall,	and	M.	Chase	Long.		2017.		
Can	we	estimate	molluscan	abundance	and	biomass	on	the	continental	shelf?		Estuaries,	
Coastal,	and	Shelf	Sciences	198:	213-224.	
	
Powell,	E.	N.,	E.	E.	Hofmann,	and	J.	M.	Klinck.		In	press.		Oysters,	sustainability,	
management	models,	and	the	world	of	reference	points.		Journal	of	Shellfish	Research.	
	
Rago,	P.J.,	J.R.	Weinberg,	and	C.	Weidman.		2006.		A	spatial	model	to	estimate	gear	
efficiency	and	animal	density	from	depletion	experiments.		Canadian	Journal	of	
Fisheries	and	Aquatic	Science	63:	2377-2388.	
	
Rose,	G.	A.	and	D.	W.	Kulka.		1999.		Hyperaggregation	of	fish	and	fisheries:	how	catch-
per-unit	effort	increased	as	the	northern	cod	(Gadus	morhua)	declined.		Canadian	
Journal	of	Fisheries	and	Aquatic	Sciences	56:	118-127.	



	

	

88	

	
Rothschild,	B.	J.,	J.	S.	Ault,	P.	Goulletquer,	and	M.	Heral.	1994.	Decline	in	Chesapeake	
Bay	oyster	poplation:	a	century	of	habitat	destruction	and	overfishing.	Marine	
Ecology	Press	Series	111:	29-39.	
	
Sing,	W.,	E.	B.	Ornolfsdottir,	and	G.	Stefansson.		2014.		A	small-scale	comparison	of	
Iceland	scallop	size	distributions	obtained	from	a	camera	based	autonomous	
underwater	vehicle	and	dredge	survey.		Plos	One	9(10):	1-10.			
	
Walters,	C.	J.	and	S.	J.	D.	Martell.		2004.		Fisheries	ecology	and	management.		Princeton	
University	Press.			
	
Ward,	H.	G.	M.,	P.	J.	Askey,	and	J.	R.	Post.		2013.		A	mechanistic	understanding	of	
hyperstability	in	catch	per	unit	effort	and	density-dependent	catchability	in	a	
multistock	recreational	fishery.		Canadian	Journal	of	Fisheries	and	Aquatic	Sciences	70	
(10):	1542–1550.	
	
Wilberg,	M.	W.	and	J.	R.	Bence.		2006.		Performance	of	time-varying	catchability	
estimators	in	statistical	catch-at-age	analysis.		Canadian	Journal	of	Fisheries	and	
Aquatic	Sciences	63:	2275-2285.		
	
Wilberg.	M.	W.,	J.	T.	Thorson,	B.	C.	Linton,	and	J.	Berkson.		2010.		Incorporating	time-
varying	catchability	into	population	dynamic	stock	assessment	models.		Reviews	in	
Fisheries	Science	18	(1):	7-24.	
	
Wilberg,	M.	W.,	J.	M.	Robinson,	S.	A.	M.	Rains,	J.	L.	Humphrey,	and	R.	N.	Lipcius.	2013.	
Effects	of	location	errors	on	estimates	of	dredge	catchability.		Fisheries	Research	
148:	1-8.	
	



	

	

89	

	

TABLES	–	CHAPTER	3	
	
Table	3.1.		Oyster	abundance	and	exploitation	rate	calculated	using	different	
catchability	coefficients	for	each	of	the	managed	regions	in	2015	(See	Figure	3.1).		The	
proportional	change	in	abundance	from	the	catchability	coefficients	using	2003	data	
only,	to	the	application	identified	with	this	work	as	being	most	appropriate	(1999,	
2000,	2003,	and	2013	data),	is	given	in	parentheses	next	to	each	abundance	estimate	in	
the	lower	half	of	the	table.	*	The	Low	Mortality	region	was	split	out	into	separate	
sections	(Arnolds	/	Upper	Arnolds	and	Round	Island)	based	on	the	results	of	analysis	
for	spatial	trends	in	capture	efficiency	(see	Results	section	and	Figure	3.4).	
	

		

Experimental	Data	Used	To	

Calculate	Catchability	

Coefficient	 Oyster	Abundance	

Exploitation	

Rate	

Catchability	

Coefficients	

	 	 	 	 	All	 2003	 1,701,095,858	 0.018	 -	

Very	Low	Mortality	 2003	 485,588,439	 0	 7.3	

Low	Mortality*	-	Round	Island	 2003	 57,480,614	 0	 7.3	

Low	Mortality*	-	Arnolds/Upper	Arnolds	 2003	 182,871,268	 0.025	 7.3	

Medium	Mortality	Transplant	 2003	 412,269,327	 0.024	 7.3	

Medium	Mortality	Market	 2003	 234,268,474	 0.017	 7.3	

Shell	Rock	 2003	 78,433,103	 0.069	 3.11	

High	Mortality	 2003	 250,184,633	 0.03	 3.11	

	 	 	 	 	All	 1999,	2000,	2003,	2013	 1,552,939,034	(-9%)	 0.02	(11%)	 -	

Very	Low	Mortality	 1999,	2000,	2003,	2013	 160,310,704	(-67%)	 0	(0%)	 2.41	

Low	Mortality*	-	Round	Island	 1999,	2000,	2003,	2013	 18,976,477	(-67%)	 0	(0%)	 2.41	

Low	Mortality*	-	Arnolds/Upper	Arnolds	 1999,	2000,	2003,	2013	 206,920,093	(13%)	 0.022	(-12%)	 8.26	

Medium	Mortality	Market	 1999,	2000,	2003,	2013	 466,485,568	(13%)	 0.021	(-13%)	 8.26	

Medium	Mortality	Transplant	 1999,	2000,	2003,	2013	 265,076,384	(13%)	 0.015	(-12%)	 8.26	

Shell	Rock	 1999,	2000,	2003,	2013	 208,314,288	(166%)	 0.026	(-62%)	 8.26	

High	Mortality	 1999,	2000,	2003,	2013	 226,855,520	(-9%)	 0.033	(10%)	 2.82	
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Table	3.2.		Power	function	model	parameters	describing	density-dependent	capture	
efficiency.			

	 	 	 	 	 	
Model	 Parameter	 Coefficient	

Standard	
error	

T	
statistic	 P	value	

Power	function;	density-dependence	
	 	 	 	

	 	 	 	 	 	
	

a	 1.9104	 0.3252	 4.12	 0.0013	

	
f	 0.5190	 0.0781	 5.012	 <0.0001	
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FIGURES	–	CHAPTER	3	

	

	

Figure	3.1.		Map	of	sampling	locations.	
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Figure	3.2.		Length	frequency	(A)	and	probability	density	length	distribution	(B)	for	
oysters	collected	at	the	same	locations	with	a	commercial	oyster	dredge	and	patent	
tongs.	
	

	

A 

B 
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Figure	3.3.	Box	and	whiskers	plot	of	mean	capture	efficiency	of	a	commercial	oyster	
dredge	estimated	in	2000,	2003,	and	2013	at	the	same	sampling	locations.	Bold	
horizontal	lines	represent	the	mean,	boxes	encompass	the	interquartile	range,	black	
whiskers	extend	to	the	5th	and	95th	percentiles,	and	dots	are	outliers.	
	
	

	

	

	

	

	

	



	

	

94	

	

	

Figure	3.4.	Box	and	whiskers	plot	of	mean	capture	efficiency	of	a	commercial	oyster	
dredge	at	different	oyster	reef	locations	along	the	Delaware	Bay,	USA.		Reef	locations	
are	organized	on	the	x-axis	from	the	lower	bay	(left	side)	to	the	upper	bay	(right	side).		
Empty	black	boxes	around	the	reef	names	represent	the	regional	grouping	of	bed-
specific	catchability	coefficients	applied	in	the	2015	Delaware	Bay	oyster	stock	
assessment	based	on	data	collected	from	the	2003	experiments	(Powell	et	al.	2007).		
Shaded,	offset	boxes,	represent	the	regional	groupings	of	bed-specific	catchability	
coefficients	identified	as	statistically	appropriate	with	this	work.		Bold	horizontal	lines	
represent	the	mean,	boxes	encompass	the	interquartile	range,	black	whiskers	extend	to	
the	5th	and	95th	percentiles,	and	dots	are	outliers.	
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Figure	3.5.		Survey	gear	capture	efficiency	as	a	function	of	true	oyster	density.		Error	
bars	represent	the	standard	deviation	from	1,000	bootstrap	simulations.		Line	indicates	
the	best	fit	power	model	estimated	by	weighted	nonlinear	least	squares.		See	methods	
section	for	details.	
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CHAPTER	4	

ALTERNATIVE	MODELS	TO	ESTIMATE	DENSITY	OF	EASTERN	OYSTERS	

CRASSOSTREA	VIRGINICA	USING	A	HYDRAULIC	DREDGE		

	

Abstract	

Catchability	(q)	is	a	parameter	used	in	stock	assessments	to	describe	how	much	of	the	

population	is	caught	by	a	single	unit	of	fishing	or	survey	effort.		In	some	cases,	q	can	be	

density-dependent,	causing	survey	CPUE	to	be	hyperstable	across	a	range	of	animal	

densities.		In	these	instances,	CPUE	can	be	an	unreliable	proxy	for	true	density	in	the	

sampled	area.		In	Delaware	Bay,	USA,	there	is	a	natural,	along-bay	gradient	in	the	

density	of	eastern	oysters	Crassostrea	virginica.		In	addition,	the	q	of	the	survey	dredge	

used	in	the	assessment	of	the	oyster	population	there	is	density-dependent.		Using	data	

collected	during	two	separate	field	experiments,	one	in	2003	and	one	in	2013,	I	

evaluated	three	potential	methods	for	estimating	true	oyster	density	in	an	area	sampled	

with	an	oyster	dredge.		For	the	first	model,	CPUE	was	corrected	for	by	applying	

spatially-explicit	q	coefficients	that	account	for	the	along-bay	gradient	in	density.		In	the	

second,	CPUE	was	corrected	for	by	estimating	q	in	situ	for	each	tow	using	a	logistic	

model	fit	to	catch	composition	and	tow	covariates.		For	the	third	model,	CPUE	data	were	

ignored	entirely	and	a	model	that	accounted	for	the	proportion	of	the	sample	

composition	that	was	made	up	of	oysters	was	applied	to	estimate	oyster	density	in	situ	

for	each	tow.		Models	were	trained	on	one	set	of	experimental	data	and	tested	on	an	

independent	set.		The	mean	square	error	(MSE)	was	calculated	for	each	train-test	

pairing	and	the	modeling	approach	with	the	lowest	average	MSE	score	was	chosen	as	
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the	best	approach.		The	model	that	utilized	the	proportion	of	the	total	catch	that	was	

made	up	of	oysters	to	estimate	the	oyster	density	performed	best.		Where	time	and	

financial	constraints	prevent	a	more	quantitative	approach	that	measures	CPUE	and	

estimates	q	for	the	sampling	gear,	or	where	q	varies	at	fine	spatial	and	temporal	scales,	

a	simpler	evaluation	of	the	relative	components	that	comprise	a	tow	may	adequately	

describe	the	density	of	oysters	in	the	sampled	area.	

	

Introduction	

					Catchability	(q)	is	a	parameter	used	in	stock	assessments	to	describe	how	much	of	

the	population	is	caught	by	a	single	unit	of	fishing	or	survey	effort	(Arreguin-Sanchez	

1996).		Fishery	and	survey	q	can	vary	in	space	and	time,	sometimes	due	to	changes	in	

the	density	of	the	sampled	organism	(e.g.,	Rose	and	Kulka	1999;	Godo	et	al.	1999;	

Kotwicki	et	al.	2014).		In	such	instances,	interpreting	survey	or	fishery	catch-per-unit	

effort	(CPUE)	is	difficult	because	they	are	rarely	proportional	to	the	actual	abundance	

(Hilborn	and	Walters	1992;	Maunder	et	al.	2006).	

					The	conditions	that	produce	density-dependent	q	in	observations	collected	from	

fishing	data	are	well	established	(Hilborn	and	Walters	1992;	Rose	and	Kulka	1999).		For	

example,	as	abundance	declines,	fish	may	aggregate	in	a	behavioral	response	to	

declining	abundance,	and	fishermen	will	likely	aggregate	around	the	fish,	causing	CPUE	

to	remain	constant	while	abundance	declines.		This	makes	abundance	especially	

difficult	to	estimate	from	fishery-dependent	data	because	it	can	result	in	fishery	CPUE	

being	hyperstable	at	different	levels	of	abundance	(Erisman	et	al.	2011).		
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					Evidence	for	density-dependent	q	is	now	becoming	more	prominent	in	fishery-

independent	survey	data	as	well	(Godo	et	al.	1999;	Kotwicki	et	al.	2013,	2014).		While	

the	behavior	of	the	survey	gear	may	be	standardized,	reducing	or	eliminating	the	

influence	of	human	behavior,	the	surveyed	animal	may	still	respond	to	that	gear	

differently	at	varying	densities	(Kotwicki	et	al.	2014).		This	can	make	relative	

abundance	or	CPUE	indices	generated	from	a	fishery-independent	survey	unreliable	as	

well.	

					The	q	for	commercial	dredges	used	to	survey	oyster	reefs	in	Delaware	Bay	varies	

spatially	and	temporally	(Powell	et	al.	2002,	2007)	likely	due	to	changes	in	oyster	

density	(Chapter	3).		Furthermore,	density-dependent	q	leads	to	survey	CPUE	being	

hyperstable	at	low	oyster	density	(Chapter	3).			This	raises	the	question	then,	how	does	

one	confidently	estimate	the	density	of	oysters	in	an	area	sampled	with	a	dredge?								

					Highly	variable	dredge	q	has	been	identified	for	other	oyster	populations	(Fu	et	al.	

2016;	Marenghi	et	al.	2017).		One	recommended	course	of	action	to	account	for	this	is	

to	treat	oyster	resource	surveys	as	relative	indices	with	prior	probabilities	that	

incorporate	uncertainty	in	dredge	efficiency	(Fu	et	al.	2016).		However,	this	approach	

generates	highly	uncertain	abundance	estimates,	making	it	difficult	to	interpret	how	an	

oyster	resource	is	responding	to	prescribed	management	actions	or	environmental	

drivers	(Ashton-Alcox	2016).			

					In	this	chapter,	given	the	density-dependence	in	q	of	the	survey	gear	used	to	assess	

the	oyster	population	in	Delaware	Bay,	described	in	Chapter	3,	I	evaluate	the	accuracy	

of	three	different	approaches	to	estimating	true	oyster	density	(td)	in	the	sampled	area	

from	a	survey	dredge	tow.		In	the	first	approach,	herein	referred	to	as	the	average	
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model	(AM),	the	estimated	density	(ed)	was	calculated	by	multiplying	the	sample	CPUE	

by	a	region-specific,	mean	q.		The	AM	approach	is	what	is	used	to	calculate	ed	in	the	

sampled	area	for	the	stock	assessment	of	oysters	in	Delaware	Bay	(Ashton-Alcox	2016)	

and	is	supported	by	statistical	analyses	of	the	spatial	trend	in	oyster	density	along	the	

bay	gradient	(Powell	et	al.	2002,	2007;	Chapter	3).		However,	the	AM	approach	depends	

on	having	an	independent,	experimentally-derived	estimate	of	q,	and	since	q	is	density-

dependent	(Chapter	3),	this	approach	requires	q	estimates	be	periodically	updated	to	

account	for	any	temporal	changes	in	density	in	a	given	region.			

					In	the	second	approach,	herein	referred	to	as	the	logistic	model	(LM),	a	tow-specific	q	

was	modeled	by	logistic	regression	using	a	list	of	tow	and	catch	composition	variables,	

and	applied	to	CPUE	to	calculate	ed.		When	catch	composition	and	variables	that	

describe	the	conditions	of	the	tow	explain	some	of	the	variability	in	q,	this	information	

can	potentially	be	used	to	estimate	q	in	situ	for	each	individual	tow	(Powell	et	al.	2007).			

Since	the	LM	approach	estimates	catchability	directly	for	each	tow	in	situ,	this	method	

does	not	require	periodic	reassessment	of	q.			

					The	third	approach	evaluated,	herein	referred	to	as	the	power	model	(PM),	does	not	

utilize	survey	CPUE	data,	but	rather	models	ed	in	the	sampled	area	directly	as	a	power	

function	of	the	proportion	of	the	survey	dredge	tow	that	was	made	up	of	oysters.		Since	

the	PM	approach	relies	only	on	an	estimate	of	the	contents	in	a	given	tow,	it	does	not	

require	an	estimate	of	CPUE	for	the	tow	or	independent	estimates	of	q.	This	approach	is	

akin	to	an	historic	management	rule	called	the	“40%	rule”	used	in	the	management	of	

the	Delaware	Bay	oyster	fishery	from	1953	to	1996,	before	q	had	been	estimated.	Under	
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this	rule,	if	the	average	survey	dredge	catch	in	a	given	area	was	comprised	of	less	than	

40%	oysters,	the	fishery	in	that	area	would	close	(Ford	1997).	

	

Material	and	Methods		

Field	sampling	 	

					Survey	dredge	CPUE	and	true	oyster	density,	td,	were	estimated	at	twenty-four	

locations	in	Delaware	Bay	in	2003	and	2013	(Figure	4.1).		Detailed	protocol	for	

estimating	CPUE	and	td	can	be	found	in	Chapter	3,	but	briefly,	the	F/V	Howard	W.	

Sockwell	was	used	to	tow	the	survey	dredge	for	1-minute	at	each	sampling	location.		If	

the	dredge	was	full	after	the	1-minute	tow,	the	tow	time	was	reduced	to	45s	so	that	the	

total	number	of	bushels	of	material	collected	in	the	swept	area	could	be	determined.		

Swept	area	and	an	estimate	of	the	total	number	of	oysters	caught	in	the	dredge	were	

used	to	calculate	CPUE	as	oysters/m2	for	each	tow.		To	estimate	td,	six,	0.89	m2	patent	

tong	grabs,	assumed	to	be	100%	efficient,	were	collected	parallel	to,	but	not	inside,	the	

tow	track	and	td	was	estimated	as	total	oysters/m2	from	these	six	grabs.	

					For	each	dredge	tow,	a	one	bushel	subsample	was	collected,	brought	back	to	the	lab,	

and	sorted	into	catch	component	classes	of	oysters,	cultch	(oyster	shell),	boxes	(dead	

oysters	with	the	hinge	still	intact),	and	debris.		Volumes	and	weights	of	each	catch	

component	were	recorded	and	all	oysters	and	boxes	in	each	sample	were	counted	and	

individual	lengths	measured.			In	addition,	wire	scope,	swept	area,	total	catch	in	bushels,	

and	change	in	bottom	depth	were	recorded	for	each	tow.	

					For	each	tow,	this	approach	resulted	in	an	observation	of	survey	dredge	CPUE	(or	

apparent	density	(ad)),	an	estimate	of	td	adjacent	to	the	survey	tow,	and	a	record	of	tow	
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and	catch	composition	data	that	could	be	evaluated	for	their	effect	on	survey	dredge	

performance.	

Data	Analysis	–	Model	Descriptions	 		

Average	Model	(AM)	

					The	model	estimated	density	!"#$%   	for	each	test	data	set	t,	region	r,	and	tow	i	was	

!"#$%   =	!"##   	*		!"#$%   	,	 (1)	

where	for	each	tow	i,	the	apparent	density,	or	CPUE,	!"#   	of	oysters	in	the	tow	track	was	

!"# 	= &'()	*	()
+,)

	  		 (2)	

where	opb	represents	the	number	of	oysters	collected	in	a	37-L	bushel	subsample,	b	

represents	the	total	number	of	bushels	in	the	tow,	and	sa	represents	the	swept	area	

(m2)	covered	by	the	tow.		The	mean	catchability	parameter	!"##   	for	each	training	data	

set	tr	and	region	r	was	

!"## 	= 	
&
' 	 ('

)*&
&
+)"##

)  		 			(3)	

where	for	each	tow	i		

!" = $%&
'%&

  																						(4)	

Finally,	the	density	of	oysters	tdi	collected	parallel	to	tow	track	i	was	

!"# = 	
&'(

')*
+.-.   		 		(5)	

where	j	represents	a	0.89	m2	tong	sample	collected	parallel	to	tow	i	and	o	represents	

the	number	of	oysters	collected	in	each	tong	sample	j.	

	 Logistic	Model	(LM)	



	

	

102	

					Powell	et	al.	(2007)	used	data	from	the	2003	experiment	to	evaluate	whether	

information	collected	during	the	tow,	information	from	the	catch	composition,	and	

information	about	the	fishing	intensity	in	the	sampled	area	could	be	used	to	model	tow-

specific	q	of	the	dredge	in	situ.		This	approach	is	attractive	because	it	does	not	rely	on	

having	independent	observations	of	q	or	require	periodic	reevaluation	of	q.		In	addition,	

it	takes	advantage	of	the	available	information	that	describes	the	tow	and	catch	

conditions.		Finally,	it	allows	for	q	to	be	estimated	at	the	individual	tow	level,	instead	of	

being	a	fixed,	region-specific	coefficient.		With	the	LM	approach,	I	build	on	this	previous	

work	by	reevaluating	the	influence	of	the	same	set	variables	used	in	the	Powell	et	al.	

(2007)	analysis,	but	by	including	data	from	the	2013	experiment	as	well,	by	including	

additional	independent	catch	and	tow	composition	variables,	and	by	altering	the	

modeling	approach	from	estimating	q	with	linear	multiple	regression	to	estimating	the	

probability	of	capture	e	with	multiple	logistic	regression.			

					In	many	cases,	the	size	of	the	organism	being	surveyed	provides	an	accurate	estimate	

of	capture	probability	because	survey	and	fishing	gears	are	designed	to	retain	

individuals	above	a	certain	size	threshold	(Millar	1992).		However,	this	is	not	true	for	

oysters	(Powell	et	al.	2007;	Marenghi	et	al.	2017;	Chapter	3),	likely	because	oysters	

grow	in	interconnected	reefs	and	the	probability	that	a	given	clump	of	oysters	will	be	

retained	by	the	dredge	is	a	function	of	the	size	of	the	entire	clump	and	not	of	the	size	of	

any	one	oyster	in	that	clump.		For	this	reason,	the	mean	length	of	oysters	caught	in	the	

dredge	tow	was	not	included	as	a	potential	variable	in	the	LM	analyses.		Catch	

composition	variables	that	were	evaluated	included	the	proportion	of	the	37-L	bushel	

sub-sample	that	was	made	up	of	cultch,	the	area	(length*width	in	mm)	of	the	ten	largest	
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clumps	in	each	sub-sample,	where	clump	refers	to	a	particle	of	material	in	the	

subsample,	and	the	total	haul	volume	(in	bushels).		Variables	evaluated	that	were	

related	to	the	tow	included	the	change	in	depth	from	the	beginning	to	the	end	of	the	

tow,	the	wire	scope,	calculated	as	the	amount	of	chain	let	out	by	the	boat	divided	by	the	

average	depth	for	the	tow,	the	total	swept	area	covered,	and	a	variable	that	measures	

the	relationship	between	the	direction	of	the	tow	and	the	direction	and	intensity	of	the	

tide,	herein	referred	to	as	the	tow-tide	variable.		The	tow-tide	variable	tti		for	each	tow	i	

was	calculated	as	

!!" = $%&"	*!%$)"	, (6) 	
where	the	adjusted	tow	direction	diri	for	tow	i	was		

!"#$ = 45 − )!"#$	, (7) 	

for	actual	tow	direction	tdiri	<	136,	and	

!"#$ = &!"#$-225	, (8) 	

	

for	136	≤	tdiri		≤	315,	and	

!"#$ = 405 − *!"#$		, (9) 	

for	tdiri	>315.		The	magnitude	of	the	tide	tidei	for	equation	(6)	was	calculated	as	

!"#$% = '%-6		, (10) 	

for	ebbing	tides,	and	

!"#$% = '%	, (11) 	

for	flooding	tides,	where	Ti	represents	the	time	in	hours	since	slack	tide	at	the	time	and	

location	of	tow	i.		The	final	variable	evaluated	was	weighted	industry	coverage	in	the	
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sampled	area.		This	was	estimated	as	a	weighted	average	of	the	fishing	effort	on	the	reef	

from	the	three	years	prior	to	when	a	given	tow	was	conducted.	

					For	each	test	data	set	t,	the	estimated	density	!"#$   	was	calculated	separately	for	each	

tow	i.		This	transforms	equation	(1)	to	

!"#$	  =	!"#   	*		!"#$   	,	 (12)	

where	apparent	density	!"#$   ,	or	CPUE,	is	still	estimated	by	equation	(2),	but	where	!"#   	

is	now	estimated	separately	for	each	individual	tow	i	and	test	data	set	t	in	situ	by	

!"# =
%
&"#
						,				  (13)	

and	

!"# =
%&'	(*+,-.	*/,-0/,1.	*2,-02,1…	*4,-04,1)

6.%&'	(*+,-.	*/,-0/,1.	*2,-02,1…	*4,-04,1)
  			,		(14)	

	

where	!"#   	is	the	estimated	y-intercept	parameter	for	test	data	set	t,	!"#   	is	a	vector	of	

catch	composition,	tow,	and	industry	effort	variables,	as	described	above,	j	for	test	data	

set	t,	and	!"#$   	is	a	vector	of	j	estimated	parameters	for	each	!"#   	in	training	data	set	tr.		

For	each	training	data	set	tr	the	best	set	of	variables	for	vector	!"#   	was	estimated	using	

backward,	stepwise	Akaike	Information	Criteria   

	

		 	 Power	Model	(PM)	

					A	preliminary	analysis	of	oyster	density	across	different	variables	measured	during	

the	field	experiments	revealed	that	oyster	density	increased	in	a	non-linear,	predictable	

fashion,	with	the	proportion	of	the	37-L	bushel	sub-sample	from	each	tow	that	was	



	

	

105	

made	up	of	oysters.		Therefore,	the	oyster	volume	relative	to	the	total	volume	ovi	in	the	

bushel	sub-sample	was	used	to	calculate	the	estimated	oyster	density	!"#$   	for	each	test	

data	set	t	in	the	sampled	area	for	tow	i	directly	with	

!"#$ 	= 	'#(*	*+#$,-.  			(15)	

where	atr	and	qtr	are	estimated	parameters	for	training	data	set	tr.	

Data	Analysis	–	Evaluating	Model	Performance	

					To	evaluate	the	accuracy	of	each	approach	in	estimating	td	in	the	sampled	area,	I	split	

the	experimental	data	up	six	ways,	creating	three	pairs	of	training	and	test	data	sets.		In	

the	first	pairing,	the	2003	experimental	data	served	as	training	data	and	the	2013	

experimental	data	served	as	test	data.		In	this	case,	the	2003	experimental	data	were	

used	to	estimate	the	parameters	of	the	models.		The	models	parameterized	with	the	

2003	data	were	then	used	calculate	ed	in	the	sampled	area	for	the	2013	data	and	this	

model-estimated	density	was	evaluated	against	td	for	the	2013	data.		For	a	second	

pairing,	this	process	was	repeated	using	the	2013	data	as	training	data	and	the	2003	

experimental	data	as	test	data.		For	the	final	pairing,	24	of	the	48	observations	

(including	data	from	both	the	2003	and	2013	experiments),	were	drawn	at	random	and	

labeled	as	the	training	data	set,	while	the	remaining	24	observations	were	labeled	as	

the	test	data	set.		For	each	training-test	combination,	the	mean	squared	error	!"#$   	for	

each	model	m	was	calculated	as,	

!"#$ 	= 	 '( 	 ((
*+' ,-*-	/-$*)1  	 ,	 (16)	

where	!"#  	represents	what	was	estimated	to	be	the	true	density	in	the	sampled	area	

from	the	tongs	for	tow	i	and	!"#$   	represents	the	density	estimated	by	model	m	for	tow	
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i.		The	approach	with	lowest	average	MSE	score	across	all	three	training-test	data	

combinations	was	selected	as	the	best	modeling	approach.	

	

Results	

					The	parameters	for	each	modeling	approach	varied	across	the	three	training	data	

sets	(Table	4.1).		For	the	AM	approach,	mean	q	coefficients	calculated	from	experiments	

conducted	in	the	lower	bay	were	always	lower	than	those	from	experiments	conducted	

in	the	upper	bay	and	q	varied	in	the	upper	bay	across	the	different	training	data	sets.			

					For	the	LM	approach,	the	variables	that	contributed	significantly	to	the	capture	

efficiency	(e)	varied	with	the	training	data	set	(Table	4.1).		Only	two	variables,	total	haul	

volume	and	the	proportion	of	the	subsample	made	up	of	cultch,	were	significant	

predictors	of	e	for	all	three	training	data	sets.		A	higher	proportion	cultch	in	the	sub-

sample	and	a	higher	total	catch	volume	resulted	in	a	higher	capture	efficiency,	and	this	

was	consistent	across	all	three	training	data	sets	(Figure	4.2).			

					The	PM	approach	achieved	the	lowest	mean	MSE	score	and	outperformed	all	other	

models	in	all	but	one	pairing,	the	AM	2003	training/2013	test	data	combination	(Table	

4.2).		The	mean	MSE	score	for	the	AM	approach	was	inflated	by	a	high	2013	

training/2003	test	pairing	MSE	score	(Table	4.2).		The	LM	approach	achieved	a	

consistently	poorer	fit	than	either	the	AM	or	PM	approach.			The	LM	2003	training/2013	

test	pairing,	in	particular,	resulted	in	an	order	of	magnitude	poorer	fit	(131,440)	than	

any	training-test	pairing	of	any	of	the	three	modeling	approaches.		The	LM	approach	

typically	produced	large	overestimations	of	ed	relative	to	td,	while	the	AM	approach	

produced	a	disproportionate	number	of	underestimates	(Figure	4.3).	
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					The	td	in	the	sampled	area	increased	with	an	increase	in	the	proportion	of	the	bushel	

subsample	that	was	made	up	of	oysters	(Figure	4.4).		PM	parameters	estimated	from	a	

random	draw	of	observations	from	the	2003	and	2013	experiments	performed	best	in	

estimating	the	td	in	the	sampled	area	(Table	4.2,	Figure	4.4).					

	

Discussion	

					Fishery-independent	surveys	of	natural	resources	are	historically	believed	to	provide	

indices	that	are	proportional	to	abundance	(Godo	1994;	Kotwicki	et	al.	2014)	and	these	

indices	are	utilized	regularly	in	stock	assessments	and	models	of	population	and	

community	dynamics.		However,	we	know	now	that	even	when	collected	using	a	

standardized,	fishery-independent	survey	design,	CPUE	may	still	not	be	proportional	to	

abundance	because	q	of	the	survey	gear	can	be	highly	variable	in	space	and	time	

(Hoffman	et	al.	2009;	Wilberg	et	al.	2010;	Kotwicki	et	al.	2014;	Chapter	3).			

					Density-dependence	in	survey	q	offers	an	interesting	challenge	because	to	convert	

CPUE	or	ad	in	the	sampled	area	to	td,	one	would	need	to	know	td	a	priori	since	q	is	

density-dependent.		However,	with	an	estimate	of	the	td	in	the	sampled	area,	there	

would	be	no	need	for	q	or	ad.		Since	oyster	td	cannot	be	estimated	directly	in	an	area	

sampled	with	an	oyster	dredge	because	the	dredge	is	not	100%	efficient	(Powell	et	al.	

2003,	2007;	Marenghi	et	al.	2017),	and	since	the	capture	efficiency	of	the	dredge	varies	

with	density	(Chapter	3),	with	this	work	I	evaluated	three	alternative	approaches	to	

applying	a	singular	q	coefficient	to	estimate	td	of	oysters	in	an	area	sampled	with	a	

dredge.		In	the	first,	I	attempted	to	control	for	density-dependence	in	q	in	a	direct	way	

with	spatially-explicit	q	coefficients	(the	AM	model).		In	the	second	I	use	an	indirect	
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application	to	estimate	q	for	each	tow	in	situ	using	available	information	about	the	tow	

and	catch	composition	(the	LM	model).		In	the	final	application,	I	ignored	CPUE	data	all	

together	and	adapted	a	version	of	a	historically-applied	method	to	estimate	td	in	situ	

from	the	proportion	of	the	bushel	sub-sample	that	was	made	up	of	oysters	(the	PM	

model).			

					I	expected	the	LM	model	to	perform	best	because	it	utilized	a	suite	of	variables	that	

described	the	tow	conditions	and	catch	composition,	as	well	as	the	exploitation	history	

in	the	sampled	area,	to	estimate	q.		This	fine	scale	information,	however	detailed,	

turned	out	to	be	uninformative	relative	to	the	information	contained	in	the	competing	

models.		Not	only	did	the	LM	approach	not	perform	best,	but	it	performed	significantly	

worse	than	either	of	the	alternative	approaches.		Tow	and	environmental	conditions,	as	

well	as	catch	composition,	are	known	to	influence	survey	catchability	for	marine	and	

freshwater	species	with	a	variety	of	life	histories	(Hoffman	et	al.	2009;	Somerton	et	al.	

2013;	Sagarese	et	al.	2016;	Korman	and	Yard	2017),	and	this	is	true	for	surveys	of	

oyster	reefs	as	well	(Powell	et	al.	2007).		However,	since	q	is	density-dependent,	and	

since	neither	density	nor	some	proxy	for	density	are	included	as	independent	variables	

in	the	LM	approach,	perhaps	the	poor	performance	of	this	method	relative	to	the	other	

two	should	not	have	been	surprising.			

					The	AM	model,	which	outperformed	the	LM	model	by	a	large	margin,	also	did	not	

include	density	as	a	model	parameter,	however,	by	utilizing	regional	mean	q	

coefficients	for	a	population	where	density	varies	in	a	predictable	way	along	the	bay	

gradient,	this	model	did	contain	a	proxy	for	density.		The	regional	q	coefficients	could	be	

viewed	as	pseudo-density-dependent	since	density	varies	by	region.		While	the	
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application	of	spatially-explicit	q	coefficients	appear	to	be	rare	in	the	assessment	of	

oyster	populations	(but	see	Ashton-Alcox	2016),	this	approach	likely	has	widespread	

application	to	other	dredge	surveys	where	oyster	density	occurs	non-randomly	in	

space.		

					Since	CPUE	is	not	proportional	to	true	abundance	when	q	is	density-dependent,	it	

should	probably	not	be	surprising	that	the	one	application	that	ignores	CPUE	data	

entirely,	the	PM	model,	performed	best.		While	one	could	devise	a	situation	where	this	

model	would	generate	highly	biased	estimates	of	td,	such	situations	occurred	at	low	

enough	frequency	that	the	mean	MSE	for	the	PM	model	was	lower	than	either	of	the	

other	two	applications	evaluated.			For	instance,	if	a	given	tow	covered	a	100	m2	area	

and	the	only	thing	the	dredge	picked	up	over	that	tow	was	1	oyster,	the	apparent	

density	would	be	0.01	oysters/m2	and	the	proportion	of	the	sample	made	up	of	oysters	

would	be	100%.		Depending	on	the	training	data	set	used	in	the	estimation,	this	would	

have	resulted	in	an	ed	of	between	142	and	362	oysters/m2.		This	estimate	would	almost	

certainly	be	biased	extremely	high	given	that	a	single	oyster	was	collected	over	a	100	

m2	area.	

					To	my	knowledge,	there	are	no	other	instances	where	a	PM	approach,	or	even	

something	similar,	has	been	used	to	estimate	oyster	density	for	a	survey.		The	Delaware	

Bay	oyster	fishery	used	to	be	managed	on	a	single	reference	point.		If	40%	or	more	of	

the	average	catch	was	made	up	of	oysters,	then	the	fishery	in	that	area	would	remain	

open,	but	if	the	catch	composition	fell	below	40%	oysters,	it	would	close	(Ford	1997).		

For	all	four	PM	models	this	suggests	40%	and	lower	would	have	equated	to	50	

oysters/m2	and	lower.		While	the	“40%	rule”	was	a	relative	index	of	the	catch	
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composition,	perhaps	it	worked	well	because	it	provided	and	accurate	and	quantitative	

proxy	for	when	td	fell	below	the	50	oysters/m2	threshold.			

					Where	q	varies	at	fine	spatial	and	temporal	scales,	the	PM	model	may	offer	

advantages	over	more	traditional	applications	for	estimating	oyster	density	in	an	area	

sampled	with	a	dredge.		First,	a	significant	amount	of	additional	time	and	effort	is	

needed	to	quantify	both	the	swath	area	and	the	number	of	oysters	for	a	given	tow	to	

calculate	CPUE.		Since	both	the	AM	and	LM	models	require	a	measure	of	CPUE,	and	

since	both	performed	more	poorly	relative	to	the	PM	method,	the	dedicated	time	and	

resources	spent	to	estimate	CPUE	may	not	be	necessary.		In	addition,	while	the	AM	

model	performed	nearly	as	well	as	the	PM	model,	it	requires	some	independent	and	up-

to-date	estimate	of	td	over	a	coarse	region.		With	increasing	spatial	shifts	in	density	

along	the	bay	gradient	over	time,	the	application	of	the	AM	model	will	become	

progressively	poorer.		Since	the	PM	model	does	not	require	independent	knowledge	of	

td,	similar	shifts	in	density	along	the	bay	gradient	should	not	affect	the	accuracy	of	the	

AM	approach.		
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TABLES	–	CHAPTER	4	
	

Table	4.1.		Coefficients	for	model	parameters	for	average	(AM),	logistic	(LM),	and	
power	(PM)	models.		In	parentheses	next	to	each	coefficient	is	the	p-value	associated	
with	that	parameter.		NS	=	not	selected	by	backward	stepwise	AIC	(see	Methods).	

		 		 Parameters	 2003	Training	Data	 2013	Training	Data	
Random	Training	

Data	

	 	 	 	 	 	Average	Model	
	 	 	 	

	
Lower	Bay	 	q	 3.04	 3.30	 3.15	

	
Upper	Bay	 q	 6.48	 10.55	 6.97	

	 	 	 	 	 	Logistic	Model	
	 	 	 	

	
Intercept	 b0	 -2.021	 -1.981	 1.425	

	
Total	Haul	Volume	(bushels)	 b1	 0.5307	(<0.001)	 0.6257	(<0.001)	 0.0817	(0.007)	

	
Prop.	of	Subsample	Made	of	Cultch	 b2	 0.0441	(<0.001)	 0.0270	(<0.001)	 0.0253	(<0.001)	

	
Average	Clump	Area	in	Subsample	 b3	 NS	 -0.0001	(0.003)	 0.0001	(0.002)	

	
Change	in	Depth	 b4	 NS	 0.2965	(<0.001)	 0.0923	(0.01)	

	
Scope	 b5	 -1.8471	(<0.001)	 0.3109	(<0.001)	 NS	

	
Swept	Area	 b6	 NS	 -0.0264	(<0.001)	 -0.0392	(<0.001)	

	
Tow-Tide	 b7	 -0.0008	(<0.001)	 NS	 -0.0012	(<0.001)	

	
Weighted	Industry	Coverage	 b8	 0.2105	(<0.001)	 -0.2764	(<0.001)	 NS	

	 	 	 	 	 	Power	Model	
	 	 	 	

	 	
a	 362.43	(0.03)	 142.95	(0.003)	 264.15	(0.05)	

		 		 q	 2.22	(0.01)	 1.39	(0.009)	 2.16	(0.03)	
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Table	4.2.		Model	performance	estimated	using	the	mean	squared	error	(MSE)	for	each	
modeling	approach	(average,	logistic,	and	power)	and	each	training-test	data	
combination.		The	overall	reported	mean	for	each	method	is	the	mean	of	the	MSE	scores	
for	each	training-test	combination.			
	

		 Average	 Logistic	 Power	

	    2003	Training	/	2013	Test	 1,389	 18,599	 2,074	
2013	Training	/	2003	Test	 18,119	 131,440	 4,218	

Random	Training	/	Random	Test	 2,312	 12,421	 1,935	

	    Mean	 7,273	 54,153	 2,742	
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FIGURES	–	CHAPTER	4	
	
	

	
	
	
Figure	4.1.		Map	of	sampling	locations.	
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Figure	4.2.		Capture	efficiency	as	a	function	of	two	variables,	total	haul	volume	(left	
panels)	and	proportion	of	the	sub-sample	that	was	made	up	of	cultch	(right	panels)	for	
all	three	training-test	pairs	of	data	(A	=	2003	training	data,	B	=	2013	training	data,	C	=	
random	training	data).	
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Figure	4.3.		Residuals	(model-estimated	density	ed	–	true	density	td)	calculated	from	
three	approaches,	a	logistic	model	(LM)	,	a	power	model	(PM),	and	an	average	model	
(AM),	to	estimating	true	density	in	the	sampled	area.		See	Methods	for	model	
descriptions.	
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Figure	4.4.		The	true	density	(td)	of	oysters	in	the	sampled	area	as	a	function	of	the	
proportion	of	the	sample	that	was	made	up	oysters.		(A)	2003	data	were	used	to	train	
and	estimate	power	model	(PM)	parameters	for	the	predicted	line	while	the	points	
plotted	are	the	2013	observations,	(B)	2013	data	were	used	to	train	and	estimate	
power	model	parameters	for	the	predicted	line	while	the	points	represent	the	2003	
data,	and	(C)	a	random	draw	of	24	of	the	48	experimental	observations	(2003	and	2013	
experimental	data)	were	used	to	train	and	estimate	parameters	for	the	predicted	line	
while	the	points	represent	the	remaining	24	data	points.	
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CONCLUSIONS	
	

		

					Our	ability	to	evaluate	the	response	of	a	fished	population	to	changes	in	the	

ecosystem	or	changes	in	fishing	exploitation	rate	is	dependent	on	how	confident	we	are	

in	stock	assessment	results.		Output	from	stock	assessments,	including	abundance	and	

biological	reference	points,	are	highly	sensitive	to	misspecification	of	fishery	and	survey	

catchability	and	selectivity	(Harley	et	al.	2001;	Chen	et	al.	2003;	Francis	2011;	Jonsson	

et	al.	2013;	Butterworth	et	al.	2014;	Cadrin	et	al.	2016).		Despite	this,	the	processes	that	

drive	patterns	in	selectivity	and	catchability	remain	poorly	understood	for	many	

fisheries	(Sampson	2013;	Maunder	and	Piner	2014;	Wang	and	Maunder	2017).			

					Traditionally,	selectivity	and	catchability	are	parameters	that	are	estimated	inside	

the	stock	assessment	model	where	they	conform	with	the	model	input	data	and	

assumptions.		However,	since	catchability	and	selectivity	can	be	highly	correlated	with	

other	model	parameters	(Arreguin-Sanchez	1996)	and	can	be	highly	variable	in	space	

and	time	(Wilberg	et	al.	2010),	more	recently	a	call	for	experimental	and	field	

observation-based	approaches	to	estimates	of	selectivity	and	catchability	are	becoming	

common.		For	example,	Somerton	et	al.	(1999)	state,	“Cooperative	studies	by	

experimentalists	and	modelers	are	needed	to	derive	a	better	understanding	of	the	

situations	in	which	experimentally	derived	estimates	of	catchability	can	improve	

knowledge	of	stock	size	or	fishing	mortality	rates”,	and	Cadrin	et	al.	(2016)	suggest,	

“Considering	the	sensitivity	of	stock	assessments	to	the	assumed	form	of	selectivity	and	

estimates	of	catchability,	as	well	as	their	importance	for	fishery	management	advice,	we	
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suggest	that	the	selection	pattern	and	catchability	(or	relative	efficiency)	should	be	

evaluated	from	a	field	experiment	whenever	possible	to	reduce	uncertainties	in	stock	

assessments.”			

					One	could	view	this	dissertation,	in	part,	as	an	answer	to	these	calls.		However,	I	

suggest	that	we	not	only	endeavor	to	derive	estimates	of	catchability	and	selectivity	

through	experimentation	and	observation,	but	that	we	should	attempt	to	understand	

the	underlying	ecology	that	drives	variability	in	these	parameters	so	that	we	can	better	

understand	and	predict	how	shifts	in	life	history,	distribution,	and	behavior	will	

influence	perceived	dynamics	of	a	population.			Wang	and	Maunder	(2017),	state	in	

reference	to	assessment	model	misspecification,	“Therefore,	we	recommend	that	more	

work	be	done	to	ensure	that	models	are	correctly	specified.		Unfortunately,	there	is	a	

lack	of	understanding	and	uncertainty	in	the	fundamental	biological	and	fishing	

processes	of	most,	if	not	all,	fish	stocks,	making	the	removal	of	model	misspecification	

difficult.”		The	unique	characteristics	of	a	species	require	similarly	unique	applications	

and	an	understanding	of	the	underlying	ecological	processes	that	make	them	unique.		

While	it	is	likely	not	feasible,	nor	necessary,	to	develop	a	unique	stock	assessment	

modeling	approach	for	every	species,	research	on	the	underlying	ecology	of	each	

individual	species	could	lead	to	species-level	applications	of	parameters	like	selectivity	

and	catchability	that	account	for	unique	life	history	within	more	general	modeling	

frameworks.												

					My	work	is	not	the	only	research	attempting	to	intersect	underlying	ecological	

processes	with	parameters	used	in	stock	assessments,	of	course.		For	instance,	the	most	

recent	butterfish	(Peprilus	triacanthus)	stock	assessment	used	a	thermal	niche	model	to	
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develop	temperature-dependent	estimates	of	catchability	that	account	for	the	

availability	of	butterfish	to	the	survey	gear	in	the	water	temperature	where	it	was	

deployed	(Adams	et	al.	2014).		In	this	application,	the	organisms’s	unique	thermal	niche	

is	being	used	to	develop	realistic	estimates	of	survey	catchability	when	and	where	the	

survey	occurred.		Additional	examples	exist	for	temperature-	and	density-dependent	

catchability,	predator-dependent	catchability,	and	selectivity	patterns	that	account	for	

unique	migration	patterns	(Wilberg	et	al.	2010;	Chakraborty	et	al.	2012;	O’Boyle	et	al.	

2016).		Each	method	is	similar	in	that	the	knowledge	of	the	underlying	ecology	of	the	

organisms	is	used	to	define	direct	estimates,	or	estimate	bounds,	for	catchability	and	

selectivity.	

						In	Chapter	1	I	identified	a	selectivity	pattern	in	the	recreational	summer	flounder	

fishery	that	was	significantly	skewed	toward	female	fish	relative	to	the	selectivity	

patterns	in	the	commercial	fishery	or	the	survey.		As	discussed,	this	pattern	likely	

results	from	sex-	and	age-specific	movement	and	habitat	use.		In	Chapter	2,	given	the	

identified	selectivity	pattern	in	the	recreational	fishery	and	its	influence	on	the	catch	

composition,	I	evaluated	alternative	management	actions	that	could	reduce	fishing	

pressure	on	large,	fecund	female	fish.		The	unique	characteristics	of	summer	flounder,	

that	they	likely	separate	out	by	sex	and	age	in	space	and	time,	require	a	separate	

selectivity	pattern	be	modeled	for	this	fishery	than	for	the	commercial	catch	or	the	

survey.		Furthermore,	given	this	behavior	results	in	a	highly	biased	female	catch	in	the	

recreational	fishery,	management	action	may	need	to	be	taken	to	evaluate	alternatives	

measures	that	could	reduce	fishing	pressure	on	female	fish.		
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					In	Chapter	3	I	discovered	that	we	cannot	treat	oysters	as	we	would	surf	clams	or	

scallops	relative	to	survey	gear	catchability.		Oysters	have	a	unique	catchability	

characteristic	such	that	changes	in	density	lead	to	changes	in	gear	performance,	and	

this	is	likely	related	directly	to	their	need	to	grow	in	a	three-dimensional	reef	

structure.		One	of	the	unique	ecological	characteristics	of	oysters,	that	they	grow	in	

three-dimensional	reefs,	requires	a	unique	application	to	how	we	sample,	assess,	and	

manage	them.		In	Chapter	4,	I	worked	on	developing	these	applications	and	evaluating	

the	performance	of	each	so	that	a	method	that	accounts	for	density-dependence	in	

catchability	could	be	incorporated	into	the	stock	assessment	of	oysters	in	Delaware	

Bay.			

					Without	an	understanding	of	summer	flounder	availability	relative	to	fishing	effort,	

one	would	never	reevaluate	the	sex-	and	age-specific	selectivity	patterns	in	the	

recreational	fishery.		Similarly,	without	knowing	how	oysters	interact	with	an	oyster	

dredge	at	high	density,	one	would	never	seek	to	develop	density-dependent	models	of	

catchability	for	that	survey.		Hare	(2014)	calls	for	“a	multi-hypothesis,	integrative	and	

multidisciplinary	approach	to	fishery	assessment	and	management”	and	Able	(2016)	

states,	“The	development	of	our	understanding	of	fish	and	other	marine	fauna,	

including	my	own	over	several	decades,	has	proceeded	from	basic	natural	history	to	

ecology	and	evolution,	but	we	often	need	to	return	to	natural	history	to	address	

deficiencies	in	our	attempts	to	manage	fisheries,	conserve	habitats,	and	model	

ecosystems“.		I	agree	with	both	sentiments	and	I	hope	this	work	contributes	evidence	in	

support	of	the	notion	that	accurate	assessment	and	sustainable	management	of	marine	

resources	depends	on	our	ability	to	collaborate	as	fishermen,	stock	assessment	
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scientists,	ecologists,	ocean	modelers,	resource	managers,	biologists,	and	natural	

historians.			
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