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ABSTRACT OF THE DISSERTATION

Biomarkers of Response to Immune Checkpoint Therapy

By ANSHUMAN PANDA

Dissertation Director:

Prof. Gyan Bhanot

Immune checkpoint therapy leads to durable objective response in a subset of patients with metastatic

cancer in many di↵erent cancer types, but the mechanisms and biomarkers of response to immune

checkpoint therapy is not fully understood. Through pan-cancer analysis of the Cancer Genome

Atlas, we have so far identified 2 types of predictors of immune activation and checkpoint pathway

upregulation in a total of 10 solid cancer types (skin melanoma, lung adenocarcinoma, colon, endome-

trial, gastric, cervical, ER+ HER2� breast, bladder, clear-cell kidney, and head-neck squamous-cell

cancer): (1) hyper-mutation in tumor due to DNA proofreading defect (Chapter 2) or some other

etiologies (Chapter 3), and (2) expression of exogenous (Chapter 4) or endogenous (Chapter 5) viral

RNA in tumor. We also validated these predictors as biomarkers of response to immune checkpoint

therapy in some of the above 10 cancer types where we had access to good quality data, using

published datasets of patients treated with immune checkpoint therapy for retrospective validation,

and de-identified data of patients treated with immune checkpoint therapy at the Rutgers Cancer

Institute of New Jersey and the Vanderbilt Ingram Cancer Center for prospective validation.
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Chapter 1

Biomarkers of response to immune checkpoint therapy

1.1 Motivation

According to a 2016 report released by the Centers for Disease Control and Prevention (CDC) and

acknowledged by the American Heart Association (AHA), cancer will soon surpass heart disease as

the leading cause of death in the United States. The American Cancer Society (ACS) estimates

that in 2017, three people were diagnosed with cancer and one person died of cancer every minute

in the United States. Worldwide, 14 million were diagnosed with cancer and 8 million died of cancer

in 2012, and these numbers are projected to rise to 21 million and 13 million respectively by 2030.

The vast majority (over 90%) of cancer deaths are from metastasis [4, 5], which had led to the view

that once a cancer metastasizes, the prognosis is poor and treatment options are limited. This is

the reason for the intense focus on early detection, because of the belief that only cancers identified

before metastasis are curable. Recently however, there has been a breakthrough in the treatment of

metastatic cancers, because of a novel type of treatment called immune checkpoint therapy which

has demonstrated unprecedented response in many patients with metastatic cancers from many

di↵erent tissues of origin. Immune checkpoint therapy not only shrinks tumors but also has led to

long term response in several cancers [6].

In spite of these substantial advances, durable response to immune checkpoint therapy is seen in

only a subset of patients [6], and the mechanisms of response are not well understood. This was the

motivation for my doctoral research. Some of the key questions I try to answer in this thesis are: Is

it possible to analyze large public datasets, such as The Cancer Genome Atlas (TCGA), to identify

potential biomarkers of response to immune checkpoint therapy? Can these potential biomarkers be
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validated using data from patients treated with immune checkpoint therapy? Can these results be

translated into clinical use? Do the clinically validated biomarkers reveal underlying mechanisms of

response? Can this understanding be translated into improvements in standard of care?

1.2 Basic concepts

1.2.1 Immune recognition of tumor

The primary task of our immune system is to distinguish cells that are self from those that are

non-self (e.g. pathogens, cells infected by pathogens etc.), and to destroy the non-self cells. There

are many ways in which a tumor cell can be recognized as non-self by the immune system. For

example, as we will see in Chapter 4, virally mediated tumors can be recognized by the immune

system as non-self, probably because they express exogenous viral protein fragments on their cell

surface which can make them look like virus infected cells to the immune system. Similarly, as we

will see in Chapter 5, tumors expressing endogenous retroviruses (viral elements that are present in

our own genome but are suppressed in normal somatic tissues) can also be sometimes recognized by

the immune system as non-self. In addition to these, there are several other mechanisms that can

lead to immune recognition of the tumor as non-self.

Some mutations (non-synonymous) in DNA can change the mRNA sequences when the DNA is

transcribed, and subsequently the amino acid sequences of the protein when the mRNA is translated

(panel A in Figure 1.1). Thus, tumor cells that have non-synonymous mutations in their DNA (i.e.

mutations that change the amino acid sequence) will make proteins that are di↵erent from those in

normal cells that lack these mutations. Whether the immune system can detect these novel non-self

protein fragments (neo-antigens) or not, i.e. whether a neo-antigen is immunogenic or not, depends

on a variety of complex biological factors. However, it seems logical to expect that the higher the

number of non-synonymous mutations in a tumor, the higher the number of neo-antigens in the

tumor, and the higher the probability that the tumor harbors immunogenic neo-antigens that the

immune system can identify. So, hyper-mutation in a tumor, due to various causes (etiologies), may

be a mechanism of immune recognition, as we will see in Chapters 2 and 3.
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Figure 1.1: A mechanism of response to immune checkpoint therapy.

(A) Non-synonymous mutation in the DNA changes the sequence of the resulting mRNA, making
the resulting protein di↵erent from its normal counterpart (figure reprinted from [7] with permission
from American Association for Cancer Research). Thus a su�ciently high non-synonymous mutation
burden in a tumor can make the tumor su�ciently non-self, leading to immune recognition. (B)
Binding of CTLA-4 with CD80/CD86 (after immune recognition) or (C) binding of PD-1 with PD-
L1/PD-L2 (after immune infiltration) can block the anti-tumor immune response led by CD8+ T
cells, preventing CD8+ T cells from killing tumor cells (figures reprinted from [8] with permission
from American Association for Cancer Research). (D) CTLA-4 blockade drugs bind with CTLA-4
preventing it from binding with CD80/CD86, whereas (E) PD-1 blockade drugs bind with either
PD-1 or PD-L1 preventing them from binding with each other (figures reproduced with permission
from [9], c�Massachusetts Medical Society). In this way, immune checkpoint therapy (e.g. CTLA-4
/ PD-1 blockade) frees the blocked immune response, allowing CD8+ T cells to kill the tumor cells.
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1.2.2 Immune checkpoint pathways

The immune system is composed of many di↵erent cell types, which includes cells like CD8+ T

cell that can kill cells that it perceives as non-self. To prevent auto-immunity, i.e. to protect our

normal cells from being accidentally killed by CD8+ T cells, there exist specific pathways, called

immune checkpoint pathways, that are used as brakes on CD8+ T cells. Thus, CD8+ T cell response

is regulated by multiple stimulatory and inhibitory signals [10]. Following immune recognition of

tumor as non-self, tumors sometimes hijack the immune checkpoint pathways to block the anti-tumor

immune response, thereby preventing CD8+ T cells from killing tumor cells. For example, in the

early stage of immune activation, when CD8+ T cells are being trained to identify the specific neo-

antigen that caused immune recognition, the immune checkpoint receptor CTLA-4 (expressed on the

surface of CD8+ T cells) can bind to its ligands CD80 or CD86 (expressed on the surface of dendritic

cells), which would send an inhibitory signal to CD8+ T cells, thereby preventing immune response

(panel B of Figure 1.1). Alternatively, in later stage of immune activation, i.e. after CD8+ T cells

have travelled to and infiltrated the tumor cells, the immune checkpoint receptor PD-1 (expressed

on the surface of CD8+ T cells) can bind to its ligands PD-L1 or PD-L2 (expressed on the surface

of tumor cells), which will send an inhibitory signal to CD8+ T cells preventing them from killing

tumor cells (panel C of Figure 1.1).

1.2.3 Immune checkpoint therapy

As explained above, several mechanisms such as hyper-mutation in tumor due to various etiologies,

and expression of exogenous or endogenous viral RNA in tumor, can cause immune recognition of

a tumor, leading to anti-tumor immune response spearheaded by CD8+ T cells. Such tumors often

co-opt the immune checkpoint pathways, whose normal function is to prevent auto-immunity, to

block the immune response and to prevent CD8+ T cells from killing tumor cells. However, the

same block also makes these tumors vulnerable to immune checkpoint disruption. In other words,

if we can find a way to prevent the tumor from blocking the immune response, CD8+ T cells will

eliminate the tumor cells. This is the idea behind immune checkpoint therapy. The mechanism of
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action of immune checkpoint therapy is to disrupt this block on the immune response. For example,

in CTLA-4 blockade (panel D of Figure 1.1), the drug binds to the receptor CTLA-4 expressed

on the surface of CD8+ T cells, preventing CTLA-4 from binding with its ligands CD80 or CD86.

Similarly, in PD-1 blockade (panel E of Figure 1.1), the drug binds to either the receptor PD-1

expressed on the surface of CD8+ T cells, or the ligand PD-L1 expressed on the surface of tumor

cells, preventing the binding between PD-1 and PD-L1. By preventing the binding between immune

checkpoint receptors and their ligands, immune checkpoint therapy undoes the tumor induced block

on the immune response, allowing CD8+ T cells to kill the tumor cells.

1.3 Context of my research

Tumors from responders to PD-1 blockade in skin melanoma [11] were known to have a robust CD8+

T cell infiltration in the tumor as well as over-expression of immune checkpoint protein PD-L1 (a

ligand of the receptor PD-1). This suggested the hypothesis that some mechanism in the tumor cells

leads to immune recognition of these tumors causing CD8+ T cell infiltration in the tumor, which is

then blocked by the tumor by over-expressing PD-L1, which in turn makes the tumors vulnerable to

PD-1 blockade. It was subsequently shown that tumors from responders to CTLA-4 blockade in skin

melanoma [12, 13] have significantly higher non-synonymous mutation burden compared to tumors

from non-responders, implicating hyper-mutation in tumor as the mechanism of immune activation

in skin melanoma. This finding was subsequently also corroborated by clinical data of PD-1 blockade

in skin melanoma [14]. Apart from skin melanoma, mutation burden in the tumor was also found

to be associated with response to PD-1 blockade in non-small cell lung cancer [15], colorectal cancer

[16], and bladder urothelial cancer [17]. However, the mutation burden threshold that is necessary

for immune activation and checkpoint pathway up-regulation in these cancer types was unknown.

Knowledge of this threshold is essential to identify patients likely to respond to immune checkpoint

therapy. It was also not known whether a similar mutation burden threshold exists in other solid

cancer types which can identify patients with a blocked immune response, who are likely to benefit

from immune checkpoint therapy. These questions will be addressed in Chapters 2 and 3.
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Apart from such hyper-mutation related response, certain virally mediated tumors, such as

Merkel cell polyoma virus (MCPyV) in Merkel cell cancer [18, 19] and Epstein-Barr virus (EBV)

in NK/T cell lymphoma [20], were known to respond to PD-1 blockade, in spite of having a low

mutation burden. However, it was unknown whether other virally mediated tumors are also likely

to respond to immune checkpoint therapy. In addition, it was also unknown whether tumors ex-

pressing specific endogenous retrovirus (hERV) may also respond to immune checkpoint therapy in

some cancer types. These questions will be addressed in Chapters 4 and 5.

1.4 Summary of the results

Using TCGA (a dataset of >10,000 tumors from >30 cancer types) as discovery dataset, recently

published datasets of patients treated with immune checkpoint therapy for retrospective validation,

and data of patients treated with immune checkpoint therapy at the Rutgers Cancer Institute of New

Jersey (R-CINJ) and the Vanderbilt Ingram Cancer Center (VICC) for prospective validation, we

identified two potential biomarkers of response to immune checkpoint therapy, as briefly described

below, and then elaborated in subsequent chapters.

1.4.1 Hyper-mutation in tumor due to various etiologies

A. Hyper-mutation due to POLE proof-reading defect (Chapter 2)

(Previously published work: Mehnert JM, Panda A, Zhong H, et al. Immune activation and response

to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 2016; 126(6):2334-40 [1])

Analysis of the TCGA endometrial cancer dataset showed that a POLE mutation in tumor was

associated with an ultra-mutator phenotype, elevated CD8+ T cell infiltration, over-expression of

immune response genes, and up-regulation of immune checkpoint pathways. This suggested that

hyper-mutation in tumor due to POLE proof-reading defect is a potential biomarker of response to

immune checkpoint therapy. This prediction was supported by the case of a patient with POLE-

mutant metastatic endometrial cancer at R-CINJ who had an exceptional response to PD-1 blockade.
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B. Hyper-mutation due to other mutational etiologies (Chapter 3)

(Previously published work: Panda A, Betigeri A, Subramanian K, et al. Identifying a clinically

applicable mutation burden threshold as a biomarker of response to Immune Checkpoint Therapy

in solid tumors. JCO Precision Oncology 2017 [2])

9,472 tumors in 33 solid cancer types from TCGA were analyzed to determine whether an immune

Checkpoint Activating Mutation burden threshold (iCAM) associated with evidence of immune

activation and checkpoint pathway upregulation exists in any of these cancers. This analysis showed

that, in addition to the 4 known cancers mentioned above, such a threshold exists in 4 more cancers:

endometrial, gastric, cervical, and ER+ HER2� breast cancer. Blinded pathological evaluation

confirmed the presence of a robust lymphocytic infiltration in iCAM+ tumors (tumors with mutation

burden above the threshold) in the TCGA dataset. In publicly available datasets of CTLA-4 blockade

in skin [12, 13], and PD-1 blockade in lung [15] and colon [16] cancer, the iCAM threshold was able

to distinguish between responders and non-responders with high accuracy. ROC analysis in TCGA

dataset showed that iCAM+ tumors can be identified with high accuracy using routine clinical

sequencing assays (e.g. FoundationOne). Finally, analysis of 113 skin melanoma sequenced using

the FoundationOne clinical assay showed that iCAM+ patients had significantly better response to

PD-1 blockade. In the TCGA dataset, iCAM+ tumors had mutational etiologies [21, 22] associated

with UV exposure or smoking in skin and lung cancer respectively, mismatch repair defect or POLE

proof-reading defect in colon / endometrial / gastric cancer, and aberrant APOBEC activity (an

enzyme whose function is to mutate and disable viruses that infect cells, but can accidentally mutate

host genome as well) in bladder / cervical / ER+ HER2� breast cancer. In contrast, iCAM� tumors

had a stronger contribution from deamination of 5-methylcytosine, indicative of aging [23].

1.4.2 Expression of exogenous or endogenous viral RNA in tumor

A. Expression of exogenous virus in tumor (Chapter 4)

(Previously published work: Panda A, Mehnert JM, Hirshfield KM, et al. Immune activation and

benefit from avelumab in EBV-positive gastric cancer. J Natl Cancer Inst. 2018; 110(3) [3])
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Immune checkpoint therapy is known be e↵ective in a subset of gastric cancer patients with low

tumor mutational burden. To understand the mechanism underlying this, we analyzed gene expres-

sion and mutation data from the TCGA gastric cancer cohort and found that tumors expressing EBV

had elevated CD8+ T cell infiltration, over-expression of immune response genes, and up-regulation

of immune checkpoint pathways. This suggested that EBV+ gastric cancer may respond to immune

checkpoint therapy. This prediction was supported by the case of a patient with EBV+ metastatic

gastric cancer at R-CINJ who had durable clinical benefit from PD-1 blockade.

B. Expression of endogenous retroviruses in tumor (Chapter 5)

(Unpublished work: manuscript is currently under preparation)

Analysis of TCGA clear-cell renal cancer (ccRCC) dataset using published hERV expression data

[24] identified 20 hERVs whose expressions were correlated with immune activation and checkpoint

pathway up-regulation. Analysis of 20 more cancer types from TCGA showed similar evidence of

hERV-associated immune checkpoint activation in ER+ HER2� breast, colon, and head-neck squa-

mous cell cancers. Only two hERVs, ERVK-2 and ERV3-2, were associated with immune checkpoint

activation in all 4 cancer types. ERV3-2 expression was correlated with immune checkpoint activa-

tion in 7 more cancer types (i.e. >10 solid cancer types in total). Clinical validation of ERVK-2 and

ERV3-2 expressions as biomarkers of response to PD-1 blockade in ccRCC is currently in progress.

1.5 Basic methods

1.5.1 Processing of gene expression data

RNAseqV2 scaled estimates were obtained from Broad GDAC (http://gdac.broadinstitute.org)

and TCGA data portal (https://tcga-data.nci.nih.gov). Scaled estimates were then median-

adjusted to eliminate systematic error, so that median scaled estimate is 1 in every sample. This

median-adjusted RNA-seq data was used as input for ESTIMATE [25] and CIBERSORT [26] al-

gorithms, to quantify the level of immune infiltration in tumor, and the composition of tumor

infiltrating leukocytes (respectively). Only un-ambiguous (P < 0.05) CIBERSORT outputs were

http://gdac.broadinstitute.org
https://tcga-data.nci.nih.gov
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used in the analyses. For ease of visualization, the median-adjusted RNA-seq data (x) was then

log-transformed to y = log2(1+ 1023 x) so that x = 0 maps to y = 0 and the median expression is y

= 10 in each sample. The factor 1023 (i.e. 210 � 1) was chosen because the distribution of positive

x values in log2 scale was mostly in the range (�10, 10).

1.5.2 Processing of somatic mutation data

For Chapter 2, all Mutation Annotation Format (MAF) files for endometrial cancer as of 30th

September 2015 were downloaded (https://wiki.nci.nih.gov/display/TCGA/TCGA+MAF+Files),

re-annotated using Oncotator [27], merged and de-duplicated. For subsequent Chapters, all MAF

files (both public and protected) current as of 31st January 2016 were downloaded, mapped from

hg18 to hg19 using liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) if necessary, re-

annotated using Oncotator [27], merged and de-duplicated.

1.5.3 Collection of clinical data

Clinical data, including microsatellite status and human papillomavirus (HPV) status, were obtained

from TCGA data portal. Luminal-A/B status of breast cancer samples, and EBV status of gastric

cancer samples were obtained from corresponding TCGA publications [28, 29]. ERBB2 focal copy

number data and ESR1 mRNA expression data from Broad GDAC were used to classify breast

cancer into clinical subtypes (ER+ HER2�, ER� HER2�, HER2+) that were analyzed separately.

1.5.4 Software and statistical tests used

MATLAB and R were used for all analysis. Apart from CIBERSORT [26] P-values, Fisher’s test

and log-rank test were used to compare response rates and survival data respectively, and Wilcoxon

rank-sum test was used for all other comparisons. Spearman rho was used for all test of correlation.

In all cases, statistical significance was assessed at P < 0.05 using two-sided tests.

https://wiki.nci.nih.gov/display/TCGA/TCGA+MAF+Files
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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Chapter 2

Hyper-mutation due to proofreading defect as a biomarker

Published as: Mehnert JM, Panda A, Zhong H, et al. J Clin Invest. 2016; 126(6):2334-40 [1]

2.1 Introduction

The human body consists of tens of trillions of cells, and each cell has billions of base pairs of

DNA. When cells divide, this DNA is copied (replication), and mistakes (mutations) can be made

in this copying process. Various DNA repair machineries, such as proofreading (corrections during

copying) and mismatch repair (corrections after copying), are in place to ensure that the copying is

as accurate as possible. However, if these DNA repair machineries are compromised, the mutation

rate will skyrocket, as mutations will accumulate each time a cell divides.

Proofreading is done in general by a group of enzymes called DNA polymerase, but 2 specific

polymerases (polymerase epsilon and polymerase delta) are responsible for proofreading of DNA

in eukaryotes, where the genes POLE (DNA polymerase epsilon, catalytic subunit) and POLD1

(DNA polymerase delta 1, catalytic subunit) play key roles by virtue of their exonuclease domain.

Therefore, non-synonymous mutations in POLE or POLD1, especially those in the exonuclease

domain, can lead to proofreading defect in a cell, causing extremely high mutation burden.

2.2 An exceptional response in endometrial cancer

A patient with metastatic endometrial cancer recently had an exceptional response to PD-1 blockade

(panel A and B of Figure 2.1) in an IRB approved phase I clinical trial (pembrolizumab at 10 mg/kg

every 2 weeks) at R-CINJ. The patient experienced rapid clinical improvement, with an objective
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(partial) response after only 8 weeks of treatment, and the response was still ongoing at 14 months

(her last follow-up). She tolerated the therapy well (only mild rash and liver function test elevation),

and a moderate fever early in the course of treatment that resolved spontaneously.

2.2.1 Robust lymphocyte infiltration and over-expression of PD-L1

The patient was originally diagnosed with stage IB grade III endometrioid type endometrial adeno-

carcinoma at the age of 53, and histologic assessment of the primary tumor showed robust immune

infiltration in the tumor (panel D of Figure 2.1). She initially deferred radiation therapy, but was

treated with chemotherapy and radiotherapy after a rapid recurrence of cancer. Metastasis was

detected 2 years after that, and histologic assessment of the metastatic tumor showed strong PD-L1

expression (panel E of Figure 2.1). She was then enrolled in this phase I trial of PD-1 blockade.

2.2.2 Ultra-mutator phenotype associated with proofreading defect

With her informed consent, her pre-treatment tumor samples (both primary and lymph node metas-

tasis) were sent for clinical sequencing of all exons of 315 cancer-related genes (FoundationOne assay).

The sequencing showed that both tumors had an ultra-mutator phenotype (panel C of Figure 2.1):

32 likely pathogenic variants and 116 variant of unknown significance (VUS) in the primary tumor,

and 33 likely pathogenic variants and 159 VUS in the metastatic tumor, with 28 likely pathogenic

variants and 83 VUS common to both, which are unusually high as endometrial tumors usually have

only 7-8 likely pathogenic variants and 10-15 VUS. None of the likely pathogenic variants, and only

3 of the VUS were detected in sequencing of germline DNA, confirming most of the above variants to

be somatic. Both primary and metastatic tumors harbored a mutation (V411L) in the exonuclease

domain of POLE that a↵ects DNA proofreading function of this gene, and a nonsense mutation

(R114*) in POLE suggesting inactivation of the other copy. Query of POLE mutation in cBioPortal

[30, 31] showed that V411L is a mutation hotspot in POLE (panel C of Figure 2.1). 23 out of 252

(9.1%) advanced endometrioid type endometrial tumors sequenced using FoundationOne assay had

mutation in POLE, and POLE-mutant tumors had 21.2 ± 4.1 likely pathogenic variants and 82.2
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Figure 2.1: An exceptional response to PD-1 blockade in metastatic endometrial cancer

A patient with metastatic endometrial cancer (A) had an exceptional response to PD-1 blockade (B)
at the Rutgers Cancer Institute of New Jersey. Sequencing of 315 cancer-related genes in primary
and metastatic tumor of the patient showed >100 non-synonymous somatic mutations (C), including
a hotspot mutation in the exonuclease domain of POLE, a gene that plays a crucial role in DNA
proofreading. Histologic assessment showed that the tumor had robust lymphocyte infiltration (D;
T: tumor, L: lymphocyte), and was strongly positive for PD-L1 (E; left: IHC staining, right: negative
control). This figure was reprinted with permission from our previously published work [1].
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± 25.0 VUS compared to 7.5 ± 0.5 likely pathogenic variants and 12.8 ± 2.6 VUS in POLE-wild-

type tumors, suggesting an association between POLE mutation and ultra-mutator phenotype in

advanced endometrial cancer. Similar associations has been reported in primary endometrial cancer

[32], and yeast models have shown that mutations in exonuclease domain of POLE can indeed cause

a mutator phenotype [33].

2.3 Results from TCGA endometrial cancer cohort

2.3.1 Operating hypothesis

The genomic and histologic observations in this case of exceptional response suggested the follow-

ing hypothesis regarding the mechanism of response to immune checkpoint therapy in endometrial

cancer: since POLE plays an important role in proofreading of DNA, tumors with POLE mutation

have a proofreading defect that causes an ultra-mutator phenotype, as observed in the exceptional

responder. The extremely high non-synonymous mutation burden in these tumors causes immune

recognition of these tumors as non-self, leading to a robust immune infiltration in these tumors, as

observed in the exceptional responder. To survive this anti-tumor immune response led by CD8+ T

cells, these tumors are forced to use immune checkpoint pathways (e.g. PD-1 pathway) to block the

immune response, consistent with the PD-L1 overexpression observed in the exceptional responder.

Since these tumors depend on immune checkpoint pathways for survival, they are vulnerable to

immune checkpoint disruption (e.g. PD-1 blockade), as observed in the exceptional responder.

2.3.2 Study design

Motivated by the above hypothesis, we analyzed the TCGA endometrial cancer dataset to find

supporting evidence. Endometrial cancer has 2 histological subtypes, serous and endometrioid,

where the former has an abundance of copy number alterations that the latter lacks. Due to this

di↵erence in patterns of alteration, and also because the exceptional responder had endometrioid type

endometrial cancer, we excluded serous samples from the analysis and focused on the endometrioid

samples only. A subset of endometrial cancer was known to have microsatellite instability [32], and
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tumors with microsatellite instability was known to respond to PD-1 blockade in colorectal cancer

[16], which suggested the possibility that tumors with microsatellite instability may respond to PD-

1 blockade in endometrial cancer as well. Therefore, we classified the endometrioid samples into 3

groups: (i) POLE (samples with non-synonymous somatic mutation in POLE; N = 27), (ii) MSI

(samples with microsatellite instability but no non-synonymous somatic mutation in POLE; N =

64), (iii) MSS (microsatellite stable samples with no non-synonymous somatic mutation in POLE;

N = 104), and compared these groups pairwise for various immunological markers of interest.

2.3.3 Mutation burden

MSI tumors are known to have mismatch repair defect, and consistently MSI tumors had significantly

higher non-synonymous mutation burden compared to MSS tumors in TCGA endometrial cancer

cohort. Interestingly, POLE mutant endometrial tumors had a significantly higher non-synonymous

mutation burden compared to even MSI tumors (panel A of Figure 2.2). This was consistent with

the hypothesis that POLE mutation is associated with an ultra-mutator phenotype.

2.3.4 Immune activation

POLE mutant tumors also had significantly higher mRNA expression of CD8A, a marker of CD8+ T

cells, not just compared to MSS tumors, but even compared to MSI tumors, suggesting an abundance

of CD8+ T cell infiltration in POLE mutant tumors (panel B of Figure 2.2).

For a more comprehensive evaluation, we compared the expression of around 700 immune-related

genes among the 3 groups. Of these 16 genes were di↵erentially expressed between POLE mutant

tumors and MSI tumors at a 25% false discover rate (Benjamini Hochberg), and 111 genes were

di↵erentially expressed between POLE mutant tumors and MSS tumors at a 5% false discover rate

(Benjamini Hochberg). The heatmap (panel C) in Figure 2.2 shows the relative expression of these

di↵erentially expressed immune-related genes (rows) in the tumors (column), where the top quartile

is colored gold and the bottom quartile is colored cyan. This demonstrated that POLE-mutant

tumors (red) had high expression of a large set of immune-related genes compared to MSS tumors
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Figure 2.2: Comparison of POLE-mutant, MSI, MSS tumors in TCGA endometrial cancer cohort.
(A) Number of non-synonymous mutations. (B) mRNA expression of cytotoxic T cell marker CD8A,
and PD-1 checkpoint pathway genes. (C) Heatmap of relative expression of di↵erentially expressed
immune-related genes (gold: high, cyan: low). (D) Distribution of pathology based lymphocyte
infiltration scores (in 12 POLE, 10 MSI, 10 MSS tumors; 1: low, 3: high). (E) Fractional composition
of tumor-infiltrating leukocytes. ** both POLE vs MSI and POLE vs MSS di↵erences are statistically
significant, * POLE vs MSS di↵erence is statistically significant, at P < 0.05 in two-sided Wilcoxon
ranksum test. This figure was reprinted with permission from our previously published work [1].
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(blue), while MSI tumors (green) had an intermediate phenotype.

As a consistency check, high resolution digital images of hematoxylin and eosin (H&E) stained

formalin-fixed para�n-embedded (FFPE) sections of 12 POLE mutant, 10 MSI, 10 MSS tumors

from TCGA endometrial cancer cohort were evaluated by a pathologist, blinded to genomic data.

The pathologist scored each image on a scale of 1 (minimal) to 3 (robust) for the presence of

tumor infiltrating lymphocytes. The distribution of this pathology based lymphocyte infiltration

score in the 3 groups (panel D of Figure 2.2) showed that POLE-mutant tumors had a significantly

higher lymphocytic infiltration compared to MSS tumors, while MSI tumors had an intermediate

phenotype, which was consistent with our findings from RNA-seq data. This was also consistent with

the findings of a recent pathological study that reported lymphocyte infiltration in POLE mutant

endometrial cancer [34].

These results confirmed that in agreement with our hypothesis, POLE mutation is indeed asso-

ciated with immune activation in endometrial cancer.

2.3.5 Checkpoint pathway up-regulation

Compared to MSS tumors, POLE mutant tumors also had a significantly higher mRNA expression of

the immune checkpoint receptor PD-1 and its two ligands PD-L1 and PD-L2 (panel B of Figure 2.2),

indicating up-regulation of the PD-1 pathway in POLE mutant tumors. Moreover, POLE mutant

tumors had a significantly higher mRNA expression of the ligand PD-L1 compared to even MSI

tumors (panel B of Figure 2.2). Since higher PD-L1 expression in solid tumors is associated with

better response to PD-1 blockade [35], this particular result suggests that POLE mutant endometrial

tumors may respond to PD-1 blockade even better than MSI endometrial tumors. These results

further confirmed our expectation of POLE mutations being associated with checkpoint pathway

up-regulation in endometrial cancer.
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2.3.6 Immune microenvironment

Additional analysis of the 3 groups showed that tumors in each group had di↵erent compositions

of tumor infiltrating leukocytes. CD8+ T cells constituted a significantly higher fraction of tumor

infiltrating leukocytes in POLE mutant tumors (N = 12) compared to MSS tumors (N = 28), while

MSI tumors (N = 20) had an intermediate phenotype. This showed that a POLE mutation is

associated with elevated CD8+ T cell infiltration in endometrial cancer, which is also consistent

with the above hypothesis. This was also consistent with the finding of a recent study that reported

robust CD8+ T cell response in an independent cohort of 47 POLE mutant endometrial cancer [36].

The relative abundance of follicular helper T cells was also significantly higher in POLE mutant

tumors compared to MSS tumors, with MSI tumors having an intermediate phenotype. This was

consistent with the finding of a recent study that POLE mutation induces robust tumor-specific

CD4+ T cell response in endometrial cancer [37]. Apart from T cells, interesting patterns were also

observed for natural killer (NK) cells and macrophages. The relative abundance of activated NK cells

was significantly higher in POLE mutant tumors compared to MSS tumors, but the relative abun-

dance of resting NK cells was significantly lower in POLE mutant tumors compared to MSS tumors,

which suggest that POLE mutation in tumor is associated with activation of NK cells. Similarly, the

relative abundance of M1 polarized macrophages was significantly higher in POLE mutant tumors

compared to MSS tumors, but the relative abundance of M0 polarized macrophages was significantly

lower in POLE mutant tumors compared to MSS tumors, which probably suggests that POLE mu-

tation in tumor is associated with M0 to M1 transition of tumor infiltrating macrophages. Since

NK-cells have important anti-tumor activity [38] and M1-macrophages can curtail tumor growth

by suppressing angiogenesis and inducing apoptosis [39], these results suggest that POLE mutant

tumors may have a more favorable immune microenvironment. Hence, in such tumors, if the brake

on the immune system is removed via immune checkpoint therapy, it may more e↵ectively eliminate

the cancer cells.
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2.3.7 Conclusion

To summarize, the results from TCGA endometrial cancer cohort showed that POLE mutations in

tumor are associated with an ultra-mutator phenotype, immune activation, and checkpoint pathway

up-regulation in endometrial cancer. A recent study reached the same conclusion in an independent

cohort of 63 endometrial cancer patients [40]. These results support the above hypothesis, and

suggests that POLE mutant tumors that constitute around 10% of endometrial cancer may be

sensitive to immune checkpoint therapy, possibly even more sensitive than MSI tumors in endometrial

cancer. Cases of exceptional response to PD-1 blockade in POLE mutant hyper-mutant tumors have

recently also been reported in colorectal cancer [41], glioblastoma [42], and pediatric glioblastoma

[43]. Thus, hyper-mutation in tumor due to POLE proofreading defect may be a biomarker of

response to immune checkpoint therapy in endometrial cancer and other solid cancer types.
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Chapter 3

Hyper-mutation due to some other etiologies as a biomarker

Published as: Panda A, Betigeri A, Subramanian K, et al. JCO Precision Oncology 2017 [2]

3.1 Introduction

Tumors from responders to CTLA-4 blockade in melanoma [12, 13] and PD-1 blockade in lung [15],

colorectal [16], urothelial [17] cancers have significantly higher mutation burden than tumors from

non-responders. This observation has led to the hypothesis that a su�ciently high non-synonymous

mutation burden in a tumor may lead to immune recognition of the tumor as non-self, triggering

an anti-tumor immune response spearheaded by CD8+ T cells. Some of these tumors block this

response using immune checkpoint pathways, which makes these tumors vulnerable to immune

checkpoint therapy. Although an association between mutation burden and response to immune

checkpoint therapy was previously known in the above cancer types, it was not clear whether or

not this relationship exists in other solid cancer types. Moreover, an immune checkpoint activating

mutation burden threshold (iCAM) that can optimally identify patients likely to respond to immune

checkpoint therapy in each cancer type was also unknown. Using RNA-seq based expression data and

whole exome sequencing (WXS) based somatic mutation data for all solid cancer types in TCGA, we

asked the following questions: (1) In which cancer types there is a mutation burden threshold above

which tumors display a signature of immune activation and checkpoint pathway up-regulation? (2)

Can this threshold distinguish responders from non-responders to immune checkpoint therapy? (3)

Can this threshold be identified using routine clinical sequencing assays that interrogate only a

few hundred genes? (4) Do tumors above and below this threshold have di↵erent mutational and

immunological properties?
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3.2 Methods

3.2.1 Determination of iCAM threshold in TCGA

If a non-synonymous mutation burden is associated with immune checkpoint activation in a cancer

type, it should be possible to find a mutation burden threshold above which tumors have immune

activation (led by CD8+ T cells) and checkpoint pathway upregulation. Figure 3.1 shows the method

used to find the threshold. We used 3 sub-criteria – (a) mRNA level of CD8A (a marker of CD8+

T cells), (b) overall immune infiltration in tumor (quantified using ESTIMATE algorithm [25]), and

(c) CD8+ T cell fraction in infiltrating leukocytes (quantified using CIBERSORT algorithm [26])

– to identify immune activation; and 6 sub-criteria – mRNA level of (d) checkpoint receptor PD-1

and its ligands (e) PD-L1 and (f) PD-L2, and (g) checkpoint receptor CTLA-4 and its ligands (h)

CD80 and (i) CD86 – to identify checkpoint pathway upregulation.

In a cancer type with N + 1 unique non-synonymous mutation burden values ({x0, x1, ..., xN}

in ascending order), for each xi in {x1, ..., xN}, we checked whether tumors with mutation burden

� xi had significantly stronger immune activation and checkpoint pathway up-regulation compared

to tumors with mutation burden < xi (as explained in Figure 3.1). In 8 solid cancer types, both

criteria were simultaneously satisfied for one or more x-values, confirming an association between

mutation burden and immune checkpoint activation in those cancer types. As shown in Figure 3.1

for 3 known cancer types, the x-values that satisfied a maximum number of sub-criteria were selected

and ranked by the P-value of each satisfied sub-criterion, and the optimal x-value (i.e. the iCAM

threshold) was identified by minimizing the sum of ranks over these sub-criteria.

3.2.2 Projection of iCAM threshold from TCGA to validation studies

To stratify tumors into iCAM+ and iCAM� in validation datasets, it was necessary to project the

iCAM threshold from TCGA dataset to validation datasets. Distribution of the non-synonymous

mutation burden (in log10 scale) in TCGA and a WXS based study (S) of the same cancer type

were first aligned as follows: For unimodal distributions with peaks at x1 and y1 in TCGA and S
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score each threshold   :   score(x)  =  a(x) + b(x) + c(x) + d(x) + e(x) + f(x) + g(x) + h(x) + i(x) 
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Figure 3.2: Protocol for projecting iCAM threshold from TCGA dataset to validation datasets.
For threshold projection, mode(s) of WXS datasets are aligned with mode(s) of corresponding TCGA
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interpolation (D) before alignment. For clinical sequencing assays, translation + scaling, using the
mode and a reference point (e.g. 10 percentile), is needed to align even unimodal distributions (E).
This figure was reprinted with permission from our previously published work [2].
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respectively, the mutation axis of S was translated by (x1�y1), as shown in panel A and B of Figure

3.2. For bimodal distributions with peaks at (x1, x2) and (y1, y2) in TCGA and S respectively, the

mutation axis of S was translated by �b and then scaled by 1/a, where the line y = ax + b passes

through (x1, y1) and (x2, y2), as shown in panel C of Figure 3.2. With the distributions aligned,

the iCAM threshold (the black vertical line) can be mapped from TCGA data to S. This alignment

requires that both datasets have the same number of peaks. If S had more peaks than TCGA

(possibly due to small sample sizes), then S was smoothed using interpolation before alignment

(panel D of Figure 3.2). When the mutation burden scale in S was very di↵erent from TCGA

(e.g. O(102) genes in clinical assays vs O(104) genes in WXS), scaling was required in addition to

translation even for unimodal distributions. In such cases, the distributions were aligned using the

locations (x1, y1) of the peaks and the locations (x2, y2) of the 10th percentiles in the two datasets,

using the procedure described above for bimodal distributions (panel E of Figure 3.2).

3.3 Results

3.3.1 Identification of the iCAM threshold

Using WXS based somatic mutation data and RNA-seq based gene expression data for 33 solid

cancer types from TCGA, we looked (Figure 3.1) for a non-synonymous mutation burden threshold

(iCAM), such that iCAM+ tumors (i.e. tumors with mutation burden above this threshold) had

evidence of immune activation and checkpoint pathway upregulation. The top panel of Figure

3.3 shows the result of this analysis, where the sub-criteria satisfied are marked in gold in each

cancer type. This analysis detected the presence of a robust iCAM threshold in 8 solid cancer

types, which included the 4 known cancer types (skin melanoma [12, 13], lung adenocarcinoma [15],

colon adenocarcinoma [16], and bladder urothelial cancer [17]) and 4 novel cancer types, namely

endometrial cancer, stomach adenocarcinoma, cervical cancer, ER+ HER2� breast cancer. 3 other

cancer types, namely serous ovarian cancer (OV), head-neck squamous cell cancer (HNSC), and

prostate adenocarcinoma (PRAD), were also flagged in this analysis. However, these were not

analyzed further because iCAM+ ovarian cancer had mutation burdens too low to be identified
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accurately by clinical sequencing assays (that typically interrogate only a few hundred genes), and

iCAM+ head-neck squamous and prostate cancers were too rare to be verified in clinical datasets

(that typically have limited sample sizes).

The distribution of non-synonymous mutation burdens (in log10 scale) in the 8 cancer types,

with the tumors stratified into iCAM+ and iCAM� classes, are shown in Figure 3.3 (middle). It

should be noted that these thresholds are for the TCGA dataset, and specific to our use of the union

of mutation calls from TCGA centers as the definition of mutation burden. For di↵erent definitions

of mutation burden or di↵erent depths of sequencing, the thresholds would need to be recomputed.

On a log10 scale, the iCAM threshold was 2.284 ± 0.205 in these cancer types. As a consistency

check, high resolution images of H&E stained histological sections of 15 iCAM+ and 15 iCAM�

tumors for each cancer type were pathologically evaluated in a blinded fashion for the presence

of tumor infiltrating lymphocytes. Figure 3.3 (bottom) shows the distribution of pathology based

lymphocyte infiltration scores in iCAM+ and iCAM� tumors in the 8 cancer types. As expected,

iCAM+ tumors had significantly higher lymphocyte infiltration in all 8 cancer types.

3.3.2 iCAM status predicts response to PD-1 and CTLA-4 blockade in published data

To test whether iCAM status predicts response to immune checkpoint therapy in published clinical

dataset, the iCAM threshold was projected from TCGA data to published datasets of patients treated

with CTLA-4 blockade in skin melanoma [12, 13] (panel A of Figure 3.2), and PD-1 blockade in

lung adenocarcinoma [15] (panel B of Figure 3.2) and colon adenocarcinoma [16] (panel C of Figure

3.2). In each dataset, tumors were stratified as iCAM+ or iCAM� based on this projected iCAM

threshold. For consistency with the TCGA dataset, uveal melanoma samples were excluded from

the Snyder [12] dataset, mucosal melanoma samples were excluded from the Van Allen [13] dataset,

lung squamous samples were excluded from the Rizvi [15] dataset, and small bowel and ampulla of

vater samples were excluded from the Le [16] dataset, before the threshold projection.

For CTLA-4 blockade in melanoma, in the Snyder dataset (panel A of Figure 3.4), around 60%

(27/46) of iCAM+ patients had long-term benefit, compared to none (0/17) of iCAM� patients.
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Figure 3.3: Mutation burden threshold associated with immune checkpoint activation in 8 cancers.
Pan-cancer analysis of the TCGA dataset (top) identified iCAM threshold in 8 cancer types (middle).
Gold: significantly higher in iCAM+ compared to iCAM�. Blinded assessment of 15 iCAM+ and
15 iCAM� tumors of each cancer type by a pathologist confirmed the presence of strong lymphocyte
infiltration in iCAM+ tumors (bottom). * di↵erence between iCAM+ and iCAM� is statistically
significant at P< 0.05 in two-sidedWilcoxon ranksum test. This figure was reprinted with permission
from our previously published work [2].
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Figure 3.4: iCAM status predicts response to immune checkpoint therapy in published datasets.

Comparison of response by iCAM status: for CTLA-4 blockade in skin melanoma (A[12], B[13]),
and PD-1 blockade in colorectal (C[16]) and lung (D[15]) adenocarcinoma. (D)CB: (durable) clinical
benefit, CR/PR: complete/partial response, PD: progressive disease. * di↵erence between iCAM+
and iCAM� is statistically significant at P < 0.05 in two-sided Fisher’s/logrank/ranksum test. This
figure was reprinted with permission from our previously published work [2].
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Compared to iCAM� patients, iCAM+ patients had significantly longer overall survival (hazard

ratio 0.33 [95% CI: 0.14 to 0.78]), and considerably longer duration of response (median 66 weeks

vs 22 weeks). In the Van Allen dataset (panel B of Figure 3.4), > 35% (23/63) of iCAM+ patients

had clinical benefit compared to < 10% (4/43) of iCAM� patients (odds ratio 5.6 [95% CI: 1.8 to

17.7]). Objective (i.e. complete or partial) response rate was also considerably higher (odds ratio

3.5 [95% CI: 0.9 to 13.1]) for iCAM+ patients (14/62) compared to iCAM� patients (3/39).

For PD-1 blockade, in the Le et al colon adenocarcinoma dataset (panel C of Figure 3.4), objec-

tive response rate was higher in iCAM+ patients (3/7) compared to iCAM� patients (0/6), and the

fraction of patients with progressive disease was significantly lower in iCAM+ patients (0/7) com-

pared to iCAM� patients (4/6). Radiographic and biochemical response were significantly better

in iCAM+ patients than iCAM� patients (median �28.0 vs +34.5, �94.0 vs +62.5 respectively;

Positive: the tumor is growing, Negative: the tumor is shrinking). In the Rizvi dataset for lung

adenocarcinoma (panel D of Figure 3.4), around 80% (11/14) of iCAM+ patients had durable clin-

ical benefit compared to < 15% (2/14) of iCAM� patients (odds ratio 22.0 [95% CI: 3.1 to 157.3]),

and > 60% (10/16) of iCAM+ patients had partial response compared to < 10% (1/14) of iCAM�

patients (odds ratio 21.7 [95% CI: 2.2 to 210.1]). Progression free survival was significantly longer

for iCAM+ patients compared to iCAM� patients (hazard ratio 0.13 [95% CI: 0.05 to 0.36]).

3.3.3 iCAM+ tumors are identifiable using FoundationOne or StrandAdvantage assays

To test whether iCAM+ tumors can be identified using routine clinical assays that sequence only a

few hundred genes instead of the exome (about 20,000 genes), mutation burden of the tumors from

TCGA was recomputed by restricting the WXS data to only the genomic regions assayed by two com-

mercially available assays, FoundationOne (315 genes, https://www.foundationmedicine.com/

genomic-testing/foundation-one) and StrandAdvantage (selected regions of 152 genes, https:

//www.strandcenters.com/strand-advantage). Panel A of Figure 3.5 shows the receiver operat-

ing characteristic (ROC) curves for iCAM+ versus iCAM� class prediction of tumors from TCGA

using only mutations in the regions sequenced by FoundationOne and StrandAdvantage assays. This

https://www.foundationmedicine.com/genomic-testing/foundation-one
https://www.foundationmedicine.com/genomic-testing/foundation-one
https://www.strandcenters.com/strand-advantage
https://www.strandcenters.com/strand-advantage
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Figure 3.5: Routine clinical sequencing assays can identify iCAM+ tumors with high accuracy.

(A) ROC curves for iCAM status determination of TCGA samples using only the exons assessed
by FoundationOne and StrandAdvantage assays. Area under ROC curve: melanoma (0.98, 0.94),
lung (0.94, 0.86), colon (0.99, 0.96), endometrial (0.98, 0.95), stomach (0.99, 0.98), cervical (0.88,
0.78), ER+ HER2� breast (0.85, 0.78), and bladder (0.90, 0.86). Comparison of response rates (B),
progression free survival (C), and overall survival (D) in 113 patients with metastatic melanoma
treated with single agent PD-1 blockade, stratified by iCAM status using the FoundationOne as-
says. CR/PR: complete/partial response, SD/PD: stable/progressive disease. * di↵erence between
iCAM+ and iCAM� is statistically significant at P < 0.05 in two-sided Fisher’s/logrank test. This
figure was reprinted with permission from our previously published work [2].
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analysis showed that routine clinical assays like FoundationOne (AUC: 0.85-0.99) and StrandAd-

vantage (AUC: 0.78-0.98) can identify iCAM+ tumors with high accuracy.

3.3.4 iCAM status predicts response to PD-1 blockade in melanoma

For prospective validation of iCAM status as a biomarker of response to immune checkpoint therapy,

mutation and clinical data of 196 de-identified melanoma (111 from R-CINJ, 85 from VICC) were

obtained under IRB approved protocols. These samples were sequenced using the FoundationOne

assay, which sequenced either 236 or 315 genes. Non-synonymous mutation burden was defined as

the number of known or likely mutations + the number of VUS (note: copy number alterations and

structural rearrangements did not count towards mutation burden). The iCAM threshold for the

FoundationOne assay was estimated to be 9 and 14 non-synonymous mutations respectively for the

236 and 315 genes versions (panel E of Figure 3.2).

113 of the above patients (28 from R-CINJ, 85 from VICC) were treated with single agent PD-1

blockade. Analysis of response data (panel B of Figure 3.5) showed that iCAM+ patients (44/76)

had significantly higher (odds ratio 7.10 [95% CI: 2.65 to 19.04]) objective response rate compared

to iCAM� patients (6/37). iCAM+ patients also had significantly longer progression free survival

(hazard ratio 0.32 [95% CI: 0.18 to 0.57]) and overall survival (hazard ratio 0.37 [95% CI: 0.20

to 0.69]) compared to iCAM� patients, as shown in panel C and D of Figure 3.5. These results

are consistent with an earlier observation [14] that mutation load per megabase, as estimated by

FoundationOne assay, is predictive of response to PD-1 blockade in a subset (N = 65) of this cohort.

3.3.5 Significantly mutated genes in iCAM+ tumors

The MutSigCV [44] algorithm was used to identify significantly mutated genes in iCAM+ and

iCAM� classes in each cancer type at a false discovery rate < 0.1. In colon adenocarcinoma (Figure

3.6), mutations in APC, KRAS, TP53 were frequently observed in iCAM� tumors, consistent with

the Vogelstein model of carcinogenesis [47]; but neither APC nor TP53 were significantly mutated in

iCAM+ tumors. Instead, iCAM+ tumors had mutations in a set of genes not significantly mutated in
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Figure 3.6: iCAM+ and iCAM� tumors of the same tissue have di↵erent sets of driver genes.

Columns are tumors, and rows are a subset of significantly mutated genes (MutSigCV [44], false
discovery rate < 0.1). White: gene not significantly mutated in that class, gray: gene significantly
mutated in that class but not mutated in that particular tumor, red / blue: gene significantly
mutated in iCAM+ / iCAM� class and mutated in that particular tumor. This figure was reprinted
with permission from our previously published work [2].
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Figure 3.7: Sequence specific hotspots in iCAM+ tumors in colon, endometrial, stomach cancer.

Analysis using cBioPortal [30, 31] showed that iCAM+ tumors in colon adenocarcinoma, endometrial
cancer, and stomach adenocarcinoma have mutation hotspots in RNF43, ACVR2A, RPL22, and
MBD6. Inspection using IGV [45, 46] showed that the hotspots are located in repeats of length 7-8.
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iCAM� tumors, such as RNF43, ACVR2A, RPL22, and MBD6. These 4 genes were also significantly

mutated in iCAM+ tumors in endometrial cancer and stomach adenocarcinoma, but rarely mutated

in iCAM� tumors (Figure 3.6). Analysis using cBioPortal [30, 31] showed that iCAM+ tumors in

colon adenocarcinoma, endometrial cancer, and stomach adenocarcinoma have mutation hotspots

in these 4 genes. Inspection of these regions of the genome using IGV [45, 46] showed that all these

hotspots are located in repeats of length 7-8. Thus, iCAM+ tumors have sequence specific hotspots

in colon adenocarcinoma, endometrial cancer, and stomach adenocarcinoma (Figure 3.7). It should

be noted that RNF43 [48], ACVR2A [49], and RPL22 [50] are tumor suppressor genes. In lung

adenocarcinoma, EGFR was significantly mutated in iCAM� tumors, but not in iCAM+ tumors.

Similarly, several genes were significantly mutated in iCAM+ but not iCAM� tumors or vice versa

in the other 4 cancer types. These results suggest that iCAM+ and iCAM� tumors have di↵erent

sets of driver mutations.

3.3.6 Mutational etiology of iCAM+ tumors

Various etiologies cause mutations in the genome of a cancer cell, but since each etiology has a distinct

mutation signature, the mutation pattern present in a tumor can reveal the etiologies that caused

that tumor. For each tumor, we estimated the fractional contribution of 30 mutation signatures

from COSMIC [21, 22] (http://cancer.sanger.ac.uk/cosmic/signatures) using non-negative

least squares (Figure 3.8). Analysis of this data showed that iCAM+ tumors had a significantly

stronger contribution from UV signature in skin melanoma (SKCM) and smoking signature in lung

adenocarcinoma (LUAD) compared to iCAM� tumors (panel A of Figure 3.9), consistent with the

known role of exogenous mutagenic exposure in skin [51] and lung [52] carcinogenesis. Molecular

signature and history of smoking were also associated with iCAM+ status in lung adenocarcinoma

(panel C of Figure 3.9).

In colon adenocarcinoma (COAD), endometrial cancer (UCEC), and stomach adenocarcinoma

(STAD), iCAM+ tumors were enriched in either mismatch repair defect or proofreading defect (panel

A of Figure 3.9). Consistently, most iCAM+ tumors had either microsatellite instability or POLE

http://cancer.sanger.ac.uk/cosmic/signatures
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mutation in colon adenocarcinoma, endometrial cancer, and stomach adenocarcinoma (panel D of

Figure 3.9). It should be noted that mismatch repair defect was known to be associated with response

to PD-1 blockade in colorectal cancer [16], and was subsequently shown (in an independent cohort)

to be associated with response to PD-1 blockade in other solid cancer types [53]. Proofreading defect

may also be associated with response to PD-1 blockade, as discussed in details in Chapter 2.

In cervical cancer, ER+ HER2� breast cancer, and bladder urothelial cancer, iCAM+ status was

associated with APOBEC mutation signatures (panel A of Figure 3.9). The presence of APOBEC

mutagenesis has recently been reported in these cancer types [54]. Of note, in ER+ HER2� breast

cancer, around 25% of Luminal-B tumors were iCAM+, compared to < 10% of Luminal-A tumors.

This suggests that Luminal-B tumors, which have a relatively poor prognosis under conventional

treatment [55], are more likely to respond to immune checkpoint therapy compared to Luminal-A

tumors.

In all 8 cancer types, iCAM� tumors had a significantly stronger contribution from deamination

of 5-methyl cytosine, indicative of aging [23], compared to iCAM+ tumors (panel B of Figure 3.9).

3.3.7 Immune micro-environment of iCAM+ tumors

In most of the 8 cancer types, natural killer cells constituted a significantly higher fraction of

leukocytes, M1 macrophages constituted a significantly higher fraction of macrophages, and reg-

ulatory T cells constituted a significantly lower fraction of T cells, in iCAM+ tumors compared to

iCAM� tumors (Figure 3.10). Since natural killer cells have important anti-tumor activity [38],

M1 macrophages curtail tumor growth by suppressing angiogenesis and inducing apoptosis [39], and

regulatory T cells suppress immune response [56], this shows that iCAM+ tumors have a more

favorable immune microenvironment.

61 genes were significantly over-expressed in iCAM+ tumors compared to iCAM� tumors in

all 8 cancer types, and about 70% of these genes were immune system related, including genes

associated with the interferon-gamma pathway (IFNG, CXCL9, CXCL10, CXCL11) and CD8+ T

cells (CD8A, PRF1, GZMA, GZMB). Thus, immune response was the most important di↵erence
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between iCAM+ and iCAM� tumors. The immune checkpoint gene LAG-3 was significantly over-

expressed in iCAM+ tumors in all 8 cancers types, and may also be a good target for immune

checkpoint therapy.

3.4 Discussion

In summary, in 8 out of 33 solid cancer types in TCGA, a mutation burden threshold (iCAM) can

identify tumors with signatures of immune checkpoint activation. Analysis of published datasets in

melanoma, lung adenocarcinoma and colon cancer showed that patients with iCAM+ tumors have

better response to immune checkpoint therapy. iCAM+ tumors can be identified using clinical se-

quencing assays, and iCAM status determined using the FoundationOne assay can predict response

to single agent PD-1 blockade in melanoma. Although the FoundationOne and StrandAdvantage

assays were used in this study, any hybrid-capture based assay that identifies mutations in a substan-

tial portion of the exome could be used instead. The thresholds we found could be further refined

using higher sequencing depth, and detailed analysis of tumor purity and mutant allele frequency.

Although a clinically significant subset of patients respond to immune checkpoint therapy in

several other cancer types, such as triple negative breast cancer [57] and clear-cell renal cancer

[58], an iCAM threshold could not be identified in these cancer types. This indicates that some

other mechanisms of immune activation may be operative in those cancer types. Furthermore,

not all iCAM+ patients responded to PD-1 or CTLA-4 blockade in our 8 cancer types, possibly

because here too, other mechanisms of immune-evasion may be operative, such as mutations in class

I HLA genes [59] or abundant MDSC [60]. Similarly, some iCAM� patients did respond to PD-1 or

CTLA-4 blockade, possibly because the immune response was triggered by mechanisms other than

a high mutation burden (e.g. expression of exogenous viruses [18, 19, 20], expression of endogenous

retrovirus due to hypo-methylation [61, 62]). Low tumor purity may also have a↵ected the ability

to detect mutations accurately. Hence, the iCAM status should only be considered as one of several

potential biomarkers of response to immune checkpoint therapy.
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Chapter 4

Expression of exogenous virus in tumor as a biomarker

Published as: Panda A, Mehnert JM, Hirshfield KM, et al. J Natl Cancer Inst. 2018; 110(3) [3]

4.1 Introduction

Hyper-mutation in tumor due to a proofreading defect, or some other etiologies, is a potential

biomarker of response to immune checkpoint therapy in several solid cancer types, as we have

noted in previous chapters. However, hyper-mutation can not be the only biomarker of response to

immune checkpoint therapy, since tumors with low mutation burden, such as in MCPyV+ Merkel-

cell cancers, have recently been shown to respond to PD-1 blockade [18, 19]. Since one of the

functions of the immune system is to identify cells infected by pathogens, it is plausible that there

is immune recognition of tumors that express viral element. If this is true, some virally mediated

tumors should also trigger an anti-tumor immune response spearheaded by CD8+ T cells, that the

tumors may block using immune checkpoint pathways, which again may make the tumors vulnerable

to immune checkpoint therapy. Motivated by this hypothesis, we analyzed the following virally

mediated tumors: EBV+ gastric cancer, HPV+ cervical and head-neck squamous-cell cancer, and

HBV+ or HCV+ (hepatitis B/C virus) liver cancer for evidence of immune checkpoint activation.

4.2 Results from TCGA gastric cancer cohort

4.2.1 Study design

A subset of advanced gastric cancer is known to respond to PD-1 blockade [63], and EBV-associated

NK/T cell lymphoma has recently been shown to respond to PD-1 blockade [20], which suggests the



39

possibility that EBV+ gastric cancer may also respond to immune checkpoint therapy. Notably, a

substantial subset of gastric cancers have microsatellite instability (as noted in Chapter 3), and may

also be sensitive to immune checkpoint therapy by virtue of hyper-mutation due to a mismatch repair

defect [53]. Since EBV+ and MSI status were mutually exclusive in the TCGA gastric cancer cohort,

we classified the TCGA gastric cancer samples into 3 groups: (a) known EBV+ tumors (EBV), (b)

tumors with known microsatellite instability (MSI), and (c) the rest of the tumors (MSS).

4.2.2 Mutation Burden

Analysis of WXS based somatic mutation data (panel A of Figure 4.1) showed that EBV+ tumors

(N = 25) had a non-synonymous mutation burden comparable to that of MSS tumors (N = 277),

an order of magnitude lower than the non-synonymous mutation burden of MSI tumors (N = 69).

Thus, EBV status may be a predictor of immune checkpoint activation in iCAM� gastric cancer.

4.2.3 Immune Activation

In spite of a low mutation burden, EBV+ gastric tumors (N = 25) had significantly higher immune

infiltration (ImmuneScore) and mRNA expression of CD8A (a marker of CD8+ T cell), not just

compared to MSS tumors (N = 310), but even compared to MSI tumors (N = 80), suggesting the

presence of immune activation spearheaded by CD8+ T cells (panel B of Figure 4.1).

For a more comprehensive evaluation, we compared the expression of about 700 immune-related

genes among the 3 groups pairwise, and found that approximately two thirds of these genes were

di↵erentially expressed, at 1% false discovery rate (Benjamini Hochberg). The heatmap (panel C) in

Figure 4.1 shows the relative expression of these di↵erentially expressed immune-related genes (rows)

in the tumors (column), where the top quartile is colored gold and the bottom half is colored cyan.

This demonstrated that EBV+ tumors (red) had high expression of a large fraction of immune-

related genes compared to MSS tumors (blue), whereas MSI tumors (green) had an intermediate

phenotype.

As a consistency check, high resolution digital images of H&E stained FFPE sections of 17
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Figure 4.1: Comparison of EBV+, MSI, and MSS tumors in TCGA gastric cancer cohort.

(A) Number of non-synonymous mutations. (B) Overall immune infiltration, mRNA level of CD8+
T cell marker CD8A, and immune checkpoint genes of PD-1/CTLA-4 pathways. (C) Heatmap of
relative expression of di↵erentially expressed immune-related genes (gold: high, cyan: low). (D)
Pathology-based lymphocyte infiltration scores (in 17 EBV+, 13 MSI, 16 MSS tumors; 1: low, 3:
high). (E) Fractional composition of tumor-infiltrating leukocytes, and proportion of regulatory T
cells (T-regs) among all T cells. ** both EBV+ vs MSI and EBV+ vs MSS di↵erences are statistically
significant, * EBV+ vs MSS di↵erence is statistically significant, at P < 0.05 in two-sided Wilcoxon
ranksum test. This figure was reproduced from our previously published work [3].
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EBV+, 13 MSI, 16 MSS tumors from TCGA gastric cancer cohort were evaluated by a pathologist

who was blinded to the results from genomic analysis. The pathologist scored each image on a scale

of 1 (minimal) to 3 (robust) for the presence of tumor infiltrating lymphocytes. The distribution of

this pathology based lymphocyte infiltration score in the 3 groups (panel D of Figure 4.1) showed

that EBV+ tumors had a significantly higher lymphocytic infiltration compared to MSS tumors,

whereas MSI tumors had an intermediate phenotype, consistent with the findings from RNA-seq

data. This was also consistent with the findings of 2 pathological studies that reported lymphocyte

infiltration in 2 independent cohorts of EBV+ gastric cancer [64, 65]. In summary, these results

confirmed the presence of immune activation in EBV+ gastric cancer.

4.2.4 Checkpoint pathway up-regulation

EBV+ tumors (N = 25) had a significantly higher mRNA expression of the checkpoint receptors

PD-1 and CTLA-4, and their ligands (PD-L1, PD-L2; CD80, CD86) compared to MSS tumors (N

= 310); and significantly higher mRNA expression of the checkpoint receptors PD-1 and CTLA-4,

and their ligands PD-L2 and CD86 (but not the ligands PD-L1 and CD80) compared to MSI tumors

(N = 80), as shown in panel B of Figure 4.1. These results confirmed the up-regulation of both

PD-1 and CTLA-4 immune checkpoint pathways in EBV+ gastric cancer. These results are also

consistent with the findings of 3 recent immunohistochemistry studies [66, 67, 68] that reported

PD-L1 expression in a large fraction of EBV+ gastric cancer in 3 independent cohorts.

4.2.5 Immune microenvironment

As shown in panel E of Figure 4.1, CD8+ T cells and resting dendritic cells constituted a significantly

higher fraction of tumor infiltrating leukocytes in EBV+ tumors (N = 23) compared to both MSI

tumors (N = 58) and MSS tumors (N = 189). The relative abundance of activated memory CD4

T cells and M1 macrophages were also significantly higher, and the relative abundance of resting

memory CD4 T cells and M0 macrophages were significantly lower, in EBV+ tumors compared

to both MSI tumors and MSS tumors (panel E of Figure 4.1). This suggests M1 polarization of
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macrophages and activation of memory CD4 T cells in EBV+ tumors. Additionally, compared to

MSS tumors, follicular helper T cells constituted a significantly higher fraction of leukocytes, and

regulatory T cells constituted a significantly lower fraction of T cells in EBV+ tumors. Since M1

macrophages can curtail tumor growth [39], and regulatory T cells suppress immune response [56],

this suggests that EBV+ tumors have a more favorable immune microenvironment; i.e. they are

primed to respond if the block on the immune response is removed, as is the case with immune

checkpoint therapy.

4.2.6 Prediction

To summarize, as we describe in [3], analysis of the TCGA gastric cancer cohort showed that in spite

of low non-synonymous mutation burden, EBV+ gastric cancers showed strong evidence of immune

activation (led by CD8+ T cells) and checkpoint (both PD-1 and CTLA-4) pathway up-regulation.

Also, although EBV+ and MSI tumors represented 2 distinct mechanisms of immune activation (via

expression of exogenous virus in tumor and hyper-mutation in tumor respectively), MSI tumors had

an intermediate phenotype for almost all immunological factors. These results suggest that EBV+

gastric cancer, a subset of low mutation burden gastric cancer, may respond to immune checkpoint

therapy even better than MSI gastric cancer.

4.3 Results from other virally mediated cancers

Motivated by the evidence of EBV associated immune checkpoint activation in gastric cancer, we

subsequently analyzed other virally mediated tumors from TCGA. We also extended the analysis

beyond PD-1 and CTLA-4 pathways, to include other genes in immune checkpoint pathways [10].

Analysis of TCGA cervical cancer (CESC) dataset (Figure 4.2) showed that HPV� tumors had

significantly lower immune infiltration (ImmuneScore) and mRNA expression of CD8A (a marker

of CD8+ T cells) compared to HPV+ tumors, suggesting the absence of immune activation led by

CD8+ T cells in HPV� cervical cancer. mRNA expression of checkpoint receptors PD-1 and CTLA-

4, their ligands (PD-L1, PD-L2; CD80, CD86), as well as other genes of immune checkpoint pathways
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Figure 4.2: Immunological comparison between HPV+ and HPV� tumors in TCGA dataset.

* HPV+ vs HPV� di↵erence is statistically significant at P < 0.05 in two-sided ranksum test.
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(e.g. BTLA and HVEM, LAG-3, KIR) were significantly lower in HPV� tumors compared to HPV+

tumors, suggesting the absence of checkpoint pathway up-regulation in HPV� cervical cancer. These

results suggest that HPV� cervical cancers are unlikely to respond to immune checkpoint therapy.

Analysis of TCGA head-neck squamous cell cancer (HNSC) dataset (Figure 4.2) showed that

HPV+ tumors had significantly higher immune infiltration (ImmuneScore) and mRNA expression

of CD8A (a marker of CD8+ T cells) compared to HPV� tumors, suggesting the presence of immune

activation led by CD8+ T cells in HPV+ HNSC. Although mRNA expression of checkpoint receptors

PD-1 and CTLA-4 were significantly higher, mRNA expression of their ligands were NOT signifi-

cantly higher in HPV+ tumors compared to HPV� tumors. Hence HPV status alone is unlikely to

predict response to PD-1 blockade or CTLA-4 blockade in HNSC. However, mRNA expression of

other immune checkpoint genes, such as BTLA and HVEM, LAG-3, KIR, A2aR were significantly

higher in HPV+ tumors compared to HPV� tumors in HNSC. Thus, in HNSC, HPV status may

be a biomarker of response to immune checkpoint therapies other than PD-1 or CTLA-4 blockade

(e.g. treatment with the novel drug that target LAG-3).

Finally, analysis of the TCGA liver hepatocellular cancer cohort showed that neither HBV+

nor HCV+ status was associated with immune activation and checkpoint pathway up-regulation

(data not shown). Hence other mechanism(s) of immune checkpoint activation is operative in liver

hepatocellular cancers that respond to immune checkpoint therapy. This negative result also shows

that not all virally mediated tumors are immunogenic.

4.4 Validation in an EBV+ gastric cancer patient

4.4.1 Response to PD-1 blockade in a gastric cancer patient at R-CINJ

A 53-year-old patient [3] was diagnosed with Stage IIIC gastric cancer, and underwent chemotherapy,

followed by surgery, followed by radiotherapy and chemotherapy. She had local and distant disease

recurrence within 16 months after surgery, and received more chemotherapy, but was hospitalized

15 months later after her condition worsened. She was then enrolled in an IRB-approved Phase I

trial of PD-1 blockade (avelumab at 10 mg/kg every 2 weeks) at R-CINJ with informed consent,
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Pre-treatment

after 2 months

after 10 months

A B

C

D

Figure 4.3: Clinical benefit from PD-1 blockade in a patient with metastatic EBV+ gastric cancer.

(A) PET-CT images taken before and after (2, 10 months) treatment. (B) Staining of primary
tumor for EBV-encoded RNA (EBER) in red showed that the tumor is EBV+ (internal negative
control: normal gastric mucosa). (C) Gastric biopsy showed intense lymphocyte infiltration in the
tumor. (D) Staining of gastric biopsy for PD-L1 expression showed that the tumor cells (in left) are
strongly positive for PD-L1, but the benign gastric mucosa (in right) is negative for PD-L1. This
figure was reproduced from our previously published work [3].
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and had remarkable clinical and radiographic response to PD-1 blockade (panel A of Figure 4.3).

4.4.2 Staining for EBV-encoded RNA confirmed that the tumor is EBV+

With informed consent, her primary tumor was sequenced using FoundationOne assay. The result

showed a PIK3CA hotspot mutation (E545K), an ARID1A frameshift mutation (N1203fs*3), PTEN

loss, and no HER2 amplification. It should be noted that co-mutation of PIK3CA and ARID1A,

as observed in this patient’s tumor, is frequently observed in EBV+ gastric adenocarcinoma [29].

The mutation burden of the tumor was low, and not consistent with the presence of a mismatch

repair or proofreading defect in the tumor. Therefore, I suggested that the tumor be tested for

EBV, which was carried out. Staining for EBV-encoded RNA (EBER) showed that the tumor was

strongly positive for EBV, as shown in panel B of Figure 4.3.

4.4.3 Pathology confirmed lymphocyte infiltration and PD-L1 overexpression

Histologic assessment of the tumor showed an abundance of infiltrating lymphocytes in the tumor

(panel C of Figure 4.3), and strong expression of PD-L1 in tumor cells (panel D of Figure 4.3).

Tumor infiltrating lymphocytes in the same sample also showed expression of PD-1 (not shown).

These observations supported our results from TCGA dataset that EBV+ gastric cancers show

evidence of immune activation and checkpoint pathway upregulation.

4.4.4 Study conclusions

The remarkable clinical benefit observed in this patient with metastatic EBV+ gastric cancer, and

the histologic evidence of immune activation and PD-1 pathway up-regulation in this patient’s

tumor, support the prediction that, in spite of a low mutation burden, EBV+ gastric cancers may be

sensitive to immune checkpoint therapy. EBV+ tumors are frequently found also in nasopharyngeal

cancer and Hodgkin’s/Burkitt’s lymphoma, and it should be investigated whether EBV+ tumors of

these cancer types are also likely to respond to immune checkpoint therapy. Recent data showing

response to PD-1 blockade in EBV-associated NK/T cell lymphoma also support this concept [20].
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Chapter 5

Expression of endogenous retrovirus in tumor as a biomarker

5.1 Introduction

As discussed in the previous chapter, expression of certain exogenous viruses in tumors is a potential

biomarker of response to immune checkpoint therapy in some cancer types. This suggests the possi-

bility that expression of certain endogenous retroviruses (hERVs) in tumors may also be associated

with response to immune checkpoint therapy in some solid cancer types.

Endogenous retroviruses are viral elements that constitute 8% of human genome [69], but are not

expressed in normal somatic tissues (for comparison, protein coding regions constitute only 1% of

the human genome [70]). They are also abundant in the genome of non-human mammals, and it is

not entirely clear whether they are the remnants of ancient retroviral infections or are precursors of

exogenous retroviruses. Epigenetic alterations in tumor may lead to expression of hERVs in tumors,

but since these hERVs are usually not expressed in normal somatic tissues, the immune system

may be able to recognize tumor cells expressing certain hERVs as non-self. If so, tumors expressing

these immunogenic hERVs may trigger an anti-tumor immune response led by CD8+ T cells, that

the tumors may block using immune checkpoint pathways, which makes these tumors vulnerable to

immune checkpoint therapy.

Motivated by this hypothesis, we analyzed the TCGA dataset to search for evidence of hERV as-

sociated immune checkpoint activation in solid tumors. A recent study [24] quantified the expression

of 66 transcribed [71] hERVs in thousands of tumors from TCGA by re-mapping the raw RNA-seq

data of these tumors. In this dataset, both mRNA expression data and hERV expression data were

available for 4,910 tumors of 21 solid cancer types, whose analysis will be the focus of this chapter.
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5.2 Results

5.2.1 Identification of potentially immunogenic hERVs in solid cancer types

In each cancer type, we looked for hERVs whose expressions were significantly correlated with

immune activation (immune infiltration in tumor, and expression of CD8A) and expression of check-

point (PD-1/CTLA-4) pathway genes. Such potentially immunogenic hERVs were frequent in 3

cancer types: 20 in clear-cell renal cancer (panel A of Figure 5.1), 12 in ER+ HER2� breast cancer

(panel B of Figure 5.1), and 9 in colon adenocarcinoma (panel C of Figure 5.1). Although some

potentially immunogenic hERVs in colon cancer (3/9) were from the hERV-H family, most of the

potentially immunogenic hERVs were from the hERV-K family (18/20, 10/12, and 4/9 in clear-cell

renal cancer, ER+ HER2� breast cancer, and colon adenocarcinoma respectively). This is probably

because hERV-K is the most recently integrated [72] and best-preserved [72] family of hERV that has

retained a non-defective gag gene [73] and ORFs in pol and env genes [73], and its simian equivalent

is known to induce an immune response in Indian rhesus macaque [74]. It should also be noted that

expression of some members of the hERV-K family has been reported [24] to be correlated with

expression of cytotoxins granzyme-A and perforin in clear-cell renal cancer and breast cancer.

5.2.2 Classification of tumors by expression of potentially immunogenic hERVs

Hierarchical clustering of tumors using expression (percentile) of potentially immunogenic hERVs

stratified the tumors into 3 groups in clear-cell renal cancer (panel D of Figure 5.1), ER+ HER2�

breast cancer (panel E of Figure 5.1), and colon cancer (panel F of Figure 5.1): tumors with high/

intermediate/low expression of potentially immunogenic hERVs. As mentioned above, in clear-cell

renal cancer and ER+ HER2� breast cancer, potentially immunogenic hERVs were mostly members

of the hERV-K family, and these members were strongly co-expressed, making the 3 clusters visually

obvious (panel DE of Figure 5.1). In colon cancer however, potentially immunogenic hERVs included

members of both hERV-K and hERV-H family, and members of hERV-K and hERV-H family were

weakly co-expressed making the 3 clusters less obvious (panel F of Figure 5.1). This is consistent

with a recent report [75] that hERV-K and hERV-H expression are weakly correlated in colon cancer.
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Figure 5.1: Three cancer types with strong evidence of hERV-associated immunogenicity in TCGA.

(A-C) Correlation (Spearman) between expression of potentially immunogenic hERVs (rows) and
level of immune markers (columns). Color scheme: discrete, gold: correlated, cyan: anti-correlated,
ivory: un-correlated. (D-F) Hierarchical clustering of tumors (columns) by expression (percentile)
of potentially immunogenic hERVs (rows). Color scheme: continuous, from cyan (0) to ivory (50)
to gold (100). Clusters: red/green/blue = high/intermediate/low group.
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5.2.3 Immune activation and checkpoint pathway up-regulation in the high group

In all 3 cancer types, tumors of the high hERV expression (hERV+) group had significantly higher

overall immune infiltration into the tumor (panel A of Figure 5.2), higher CD8+ T cell fraction in

the infiltrating leukocytes (panel A of Figure 5.2), and higher mRNA expression of CD8A (panel B of

Figure 5.2), compared to tumors of the low hERV expression (hERV�) group, showing clear evidence

of immune activation. In all 3 cancer types, hERV+ tumors also had significantly higher mRNA

expression of checkpoint receptors PD-1 and CTLA-4, and their ligands PD-L1 and CD80 (respec-

tively) compared to hERV� tumors (panel B of Figure 5.2), showing clear evidence of checkpoint

(PD-1/CTLA-4) pathway up-regulation. Since hERV+ tumors showed evidence of both immune ac-

tivation and checkpoint pathway up-regulation, patients with such tumors might respond to immune

checkpoint therapy [11].

5.2.4 Immune signatures present in tumor micro-environment of the high group

In addition to CD8+ T cells, M1 macrophages constituted a higher fraction of infiltrating leukocytes

in hERV+ tumors compared to hERV� tumors in all 3 cancer types (panel C of Figure 5.2). This

relatively increased abundance of M1 macrophage was accompanied by relatively decreased abun-

dance of M0 macrophage in colon cancer and M2 macrophage in clear-cell renal cancer and ER+

HER2� breast cancer (panel C of Figure 5.2). Since M1 macrophages inhibit tumor growth [39] and

M2 macrophages promote tumor growth [39], we conclude that hERV+ tumors have a more favor-

able immune microenvironment. The results also suggest that expression of immunogenic hERVs

may induce M1-polarization in tumor infiltrating macrophages. It should be noted that we previ-

ously observed such enrichment of M1-polarization in macrophages in case of both hyper-mutation

associated immunogenicity and exogenous virus associated immunogenicity.

Additionally, there were some cancer type specific immune signatures: in clear-cell renal cancer,

follicular-helper T cells, gamma-delta T cells, activated Natural-Killer cells, resting dendritic cells,

and plasma cells constituted a higher fraction of leukocytes in hERV+ tumors compared to hERV�

tumors (panel D of Figure 5.2). In colon cancer, activated memory-CD4 T cells constituted a higher
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Figure 5.2: Comparison of immune markers between tumors of the high and low groups.

(A) overall immune infiltration in tumor, and CD8+ T-cell fraction in tumor-infiltrating leukocytes.
(B) mRNA expression of CD8A and immune checkpoint genes. (C) M1, M2, and M0 macrophages as
fraction of leukocytes. (D) Fractional composition of tumor-infiltrating leukocytes, and proportion
of T-regs among T cells. * di↵erence is statistically significant (Wilcoxon ranksum test).
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fraction of leukocytes, and regulatory T cells constituted a lower fraction of T cells in hERV+

tumors compared to hERV� tumors (panel D of Figure 5.2). Consistent with this observation, anti-

correlation between hERV-H expression and intra-tumoral regulatory T-cell density was observed in

an independent cohort of colon cancer [75]. Some immune checkpoint genes were also over-expressed

in hERV+ tumors compared to hERV� tumors in a cancer type specific manner (panel B of Figure

5.2): examples include BTLA, HVEM, and LAG-3 in clear-cell renal cancer; PD-L2 in ER+ HER2�

breast cancer; PD-L2, CD86, and LAG-3 in colon cancer.

5.2.5 Cause of hERV expression in cancers with hERV-associated immunogenicity

To identify the cause of hERV expression in the 3 cancer types, we defined overall hERV expression

as the total fraction of RNA-seq reads mapping to 66 transcribed hERVs [71], and searched for genes

whose expressions are significantly correlated with overall hERV expression in tumors. 657 genes

satisfied this criterion in all 3 cancer types, and enrichment analysis [76] of these genes implicated

methyltransferase activity and methylation as the key molecular function and biological process

(respectively) associated with overall hERV expression. Figure 5.3 shows the most significantly

enriched Gene Ontology (GO) terms from each GO category, where methyl (methyltransferase and

methylation) and histone are the most frequent phrases (note the phrases highlighted in blue). These

results suggest that epigenetic alteration is the cause of hERV expression in these cancer types. The

underlying mechanisms leading to such epigenetic changes remain elusive.

5.2.6 hERV-associated immunogenicity in head-neck squamous-cell cancer

Head-neck squamous-cell cancer (HNSC) showed considerable evidence of hERV-associated immuno-

genicity (panel A of Figure 5.4). 9 hERVs seemed to be immunogenic, as their expressions were

significantly correlated with immune activation (immune infiltration and CD8A expression) and

BTLA-HVEM checkpoint pathway expression. Hierarchical clustering of tumors using expression

(percentile) of these hERVs stratified the tumors into 2 groups: tumors with high/low expression of

potentially immunogenic hERVs (aka hERV+/hERV� tumors). Consequently, hERV+ tumors had
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# ID Name FDR

1 GO:0018024 histone-lysine N-methyltransferase activity 4.80E-06
2 GO:0042054 histone methyltransferase activity 4.17E-05
3 GO:0001071 nucleic acid binding transcription factor activity 4.17E-05
4 GO:0003700 transcription factor activity, sequence-specific DNA binding 4.17E-05
5 GO:0003723 RNA binding 4.17E-05
6 GO:0016279 protein-lysine N-methyltransferase activity 1.82E-03
7 GO:0016278 lysine N-methyltransferase activity 1.82E-03
8 GO:0042800 histone methyltransferase activity (H3-K4 specific) 1.82E-03
9 GO:0033038 bitter taste receptor activity 5.89E-03

10 GO:0008170 N-methyltransferase activity 5.89E-03
11 GO:0008276 protein methyltransferase activity 5.89E-03
12 GO:0008527 taste receptor activity 1.75E-02

1 GO:0006397 mRNA processing 5.44E-06
2 GO:0008380 RNA splicing 5.44E-06
3 GO:0018022 peptidyl-lysine methylation 1.78E-05
4 GO:0034968 histone lysine methylation 1.78E-05
5 GO:0016571 histone methylation 1.78E-05
6 GO:0006479 protein methylation 2.93E-05
7 GO:0008213 protein alkylation 2.93E-05
8 GO:0016071 mRNA metabolic process 1.84E-04
9 GO:0031124 mRNA 3'-end processing 1.84E-04

10 GO:0016570 histone modification 2.02E-04
11 GO:0016569 covalent chromatin modification 3.56E-04

12 GO:0000377
RNA splicing, via transesterification reactions with bulged 
adenosine as nucleophile

3.56E-04

1 GO:0005813 centrosome 2.87E-06
2 GO:0044450 microtubule organizing center part 2.87E-06
3 GO:0005815 microtubule organizing center 3.17E-06
4 GO:0016607 nuclear speck 3.17E-06
5 GO:0005814 centriole 6.19E-06
6 GO:0044451 nucleoplasm part 3.35E-05
7 GO:0035097 histone methyltransferase complex 1.03E-04
8 GO:0015630 microtubule cytoskeleton 9.24E-04
9 GO:0034708 methyltransferase complex 9.24E-04

10 GO:0005681 spliceosomal complex 2.44E-03
11 GO:0097539 ciliary transition fiber 5.90E-03
12 GO:0044441 ciliary part 5.90E-03

GO: Biological Process

GO: Molecular Function

GO: Cellular Component

Figure 5.3: Enrichment analysis of genes whose expressions are correlated with hERV expression.
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Figure 5.4: Evidence of hERV-associated immunogenicity in other solid cancer types from TCGA.

(A) Evidence in head-neck squamous-cell cancer. Top: identification of potentially immunogenic
hERVs, and classification of tumors into high (red) and low (blue) group by expression (percentile)
of these hERVs. Bottom: comparison of overall immune infiltration, leukocyte composition, CD8A
expression, and expression of immune checkpoint genes between high and low group. (B) hERVs
that are potentially immunogenic in multiple cancer types. Left: Venn diagram of potentially
immunogenic hERVs, Right: correlation between ERV3-2 expression and level of various immune
markers (columns) in 11 solid cancer types (rows). * di↵erence is statistically significant.
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significantly higher immune infiltration, CD8+ T cell fraction, CD8A expression, and expression

of BTLA and HVEM (and LAG-3) compared to hERV� tumors. Thus, hERV+ HNSC tumors

show evidence of both immune activation and checkpoint pathway up-regulation, and may be sen-

sitive to immune checkpoint therapy [11], especially the ones targeting the BTLA-HVEM pathway

or LAG-3. However, although PD-1 is over-expressed in hERV+ tumors, neither of its ligands are

over-expressed in hERV+ HNSC tumors, making it unclear whether hERV+ HNSC tumors are good

candidates for PD-1 blockade.

5.3 Discussion

To summarize, in clear-cell renal cancer, ER+ HER2� breast cancer, colon cancer, and possibly

head-neck squamous-cell cancer there is clear evidence of hERV-associated immune activation and

checkpoint pathway up-regulation, and hence hERV+ tumors in these cancers may be sensitive to

immune checkpoint therapy. 2 hERVs, ERVK-2 and ERV3-2, were found to be immunogenic in all 4

cancer types; and ERV3-2 seemed immunogenic in 7 more solid cancer types (panel B of Figure 5.4).

Hence, ERVK-2 and ERV3-2 are the most likely candidates for biomarkers of response to immune

checkpoint therapy. Clinical validation is in progress for PD-1 blockade in clear-cell renal cancer.

It should be noted that the results of this analysis do not necessarily suggest the absence of hERV-

associated immune checkpoint activation in other cancer types as it was limited by the availability

of hERV expression data (only 7 out of 35 cancer types in TCGA had �250 tumors with both hERV

and mRNA expression data). Since the 4 cancer types discussed above all belong to this group of

7 cancer types, there remains the possibility that insu�cient sample size prevented the detection of

hERV-associated immunogenicity in some of the remaining cancer types.
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Chapter 6

Future directions

We have seen that several mechanisms can lead to immune recognition of a tumor resulting in an

anti-tumor immune response. If the tumor blocks this response using immune checkpoint pathways,

it makes the tumor vulnerable to immune checkpoint therapy. We have discussed two general

mechanisms of response to immune checkpoint therapy in the last 4 chapters: (1) hyper-mutation in

tumor due to exogenous mutagenic exposure, or intrinsic defect in proofreading or mismatch repair

of DNA, or aberrant APOBEC activity; (2) expression of exogenous or endogenous viral RNA in

tumor. Using new data from various public data sources and clinical data from patients treated with

immune checkpoint therapy at R-CINJ and VICC, the next step would be to extend these studies

to address several questions that remain open, as explained in the next 3 sections.

6.1 Questions related to hyper-mutation

6.1.1 Is a defect in homologous recombination by itself a potential biomarker?

Defects in homologous recombination (HR), found in 31% ovarian cancer, 27% breast cancer, 7.5%

pancreatic cancer, and 7% gastric cancer [77], can lead to hyper-mutation in tumors. But while

the etiologies mentioned above cause an abundance of single base substitutions and small indels,

HR defects cause an abundance of large indels and structural rearrangements in tumors, with few

small indels and single base substitutions. In TCGA whole exome sequencing dataset and various

whole genome sequencing datasets, it is interesting to test whether this type of hyper-mutation is

also associated with immune checkpoint activation, and may be a potential biomarker of response

to immune checkpoint therapy.
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6.1.2 What are the driver genes in hyper-mutant tumors of above etiologies?

Given the large number of genes that are mutated in hyper-mutant tumors, computational algorithms

often find it di�cult to identify driver alterations in hyper-mutant tumors. For example, analysis

using the commonly used MutSigCV [44] algorithm was unable to identify driver mutations in POLE

mutant endometrial cancer. Using high depth clinical sequencing data recently made available by

Memorial Sloan Kettering Cancer Center and Foundation Medicine, it should be possible to identify

and validate both tissue type specific and tissue type independent driver genes in hyper-mutant

tumors of each etiology mentioned above.

6.2 Questions related to viral mechanisms

6.2.1 Is over-expression of LINE/SINE elements associated with response to immune

checkpoint therapy?

As a follow-up of immune checkpoint activation from hERVs, which are Long Terminal Repeats

(LTR) retrotransposons, it will be of interest to perform a pan-cancer analysis of the TCGA dataset

to test whether expression of any non-LTR retrotransposons in tumor is associated with immune

checkpoint activation in any cancer type. Non-LTR retrotransposons include long interspersed el-

ements (LINEs) and short interspersed elements (SINEs), that constitute 21% and 13% of human

genome respectively [69], but are not expressed in normal somatic tissues (for comparison, protein

coding regions constitute only 1% of the human genome [70]). Using clinical and experimental data

from collaborators at R-CINJ and VICC, it should also be possible to validate expression of the

identified LINE/SINE element as a biomarker of response to immune checkpoint therapy in the

identified cancer type.

6.2.2 Is hypo-methylation a relevant functional mechanism in this context?

Hypo-methylation is a potentially functional mechanism responsible for retrotransposon expression

in tumors. Consequently, a pan-cancer analysis of the TCGA dataset to identify the cancer types
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where hypo-methylation is associated with immune checkpoint activation is of interest. If evidence

of hypo-methylation-associated immunogenicity is found in a cancer type where clinical data from

patients treated with immune checkpoint therapy is available, methylation burden can be tested

as a biomarker of response to immune checkpoint therapy in that cancer type. In addition, the

association between hypo-methylation and over-expression of hERVs, LINEs, SINEs, and lincRNAs

can be tested to see if these two are cause and e↵ect.

6.3 Questions related to the basic hypothesis

6.3.1 Is it possible to develop a small assay for early prediction of eventual response?

Exploiting the concept that CD8+ T cell infiltration in tumor induces upregulation of immune

checkpoint pathways, it may be possible to construct a small assay (15 genes) and apply it to a

recently published dataset [78] of patients undergoing immune checkpoint therapy. The goal would

be to test whether, during the initiation phase of immune checkpoint therapy (after 1-2 month of

treatment), such an assay can reliably distinguish patients who will eventually respond to continued

treatment from those who will not.

6.3.2 Investigate mechanisms of constitutive PD-L1 expression or constitutive loss of

PD-L1 expression, and their clinical implication on response or resistance

In addition to CD8+ T cell infiltration in tumor, several other causes of PD-L1 expression have

recently been proposed [79]. A pan-cancer analysis of the TCGA dataset would determine which of

these proposed genetic processes (if any) are associated with constitutive PD-L1 expression. Using

data from 2,000 tumors sequenced in the Precision Medicine Initiative (PMI) at R-CINJ, it should be

possible to identify tumors that display those genetic characteristics, followed by clinical testing by

our pathology colleagues, who can quantify PD-L1 expression and lymphocyte infiltration in those

tumors. If some of these patients received PD-1 blockade, it will also be possible to test therapeutic

implication of constitutive PD-L1 expression or constitutive loss of PD-L1 expression on response

or resistance to PD-1 blockade.
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