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ABSTRACT OF THE DISSERTATION

Learning Disentangled Representations in Deep Visual Analysis

By XI PENG

Dissertation Director:
Dimitris N. Metaxas

Learning reliable and interpretable representations is one of the fundamental challenges

in machine learning and computer vision. Over the last decade, deep neural networks

have achieved remarkable success by learning conditional distributions on the data for the

purposes of solving different tasks. However, representations learned by deep models do

not always manifest consistent meaning along variations: many latent factors are highly

entangled. This may significantly impair the representative power, even though large-scale

labeled data and sophisticated learning skills have been applied in training.

In this work, we are interested in learning disentangled representations that encode

distinct aspects of the data separately. The objective is to decouple the latent factors in a

representation space, where factorizable structures are obtained and consistent semantics

are associated with different variables. The disentanglement can be learned in an either

supervised or self-supervised manner. Especially, we investigate three different visual

analysis tasks: viewpoint estimation, landmark localization, and large-pose recognition.

We show that, by learning disentangled representations, deep models are efficient to train

and robust to variation, achieving state-of-the-art performance in the wild.
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Chapter 1

Introduction

Building machines that possess human intelligence is a dream of scientists and engineers

lasting for centuries. It comes even close to fulfillment since artificial intelligence (AI) was

founded as an academic discipline in 1950s and many research fields remain hot spots for

decades, which include perception and representation, reasoning and planning, motion and

manipulation, creativity and generation [112].

Perception and representation, which are the first step to built up intelligent agents, attract

intensive research interest in recent years [32]. Generally speaking, perception is the ability

to use input from sensors, such as camera, microphone, sonar and others, to deduce aspects

of the world and generate knowledge representation. The knowledge representation is then

served as observations for following higher-level intelligent activities, such as reasoning

and planning.

It is well known that vision plays an important role in human perception as more than

80% information are obtained by our eyes. From the engineering perspective, making

machines to gain high-level understanding from visual inputs, such as digital images or

videos, is the foundation of many artificial intelligence applications. Therefore, computer

vision, which is an interdisciplinary field of mathematics, artificial intelligence, machine

learning, signal processing, becomes an important research area with broad applications.
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Learning reliable and interpretable representations is one of fundamental challenges.

Image Space 1D feature vector

2D feature map

manifold

Representation
Space

Target Space
• classification label; 
• detection location; 
• segmentation boundary; 
• …

f(·) g(·)

noisy; 
high-dimensional; 
extensive variations;

low-dimensional; 
reduced variations; 
concise and interpretable;

Remapping & Recoveringg(·):Concentration & Extractionf(·):

Computer Vision: two mappings

Figure 1.1: Illustration of the two mappings in many computer vision systems. f (·) concentrates information from the image space to
achieve abstract embeddings in the representation space; while g(·) aims to project the learned embeddings into the target space for
designed objectives. The embedding modality could be 1D vectors, 2D maps, or multi-dimensional manifolds.

1.1 Dilemmas in Representation Learning

Generally speaking, many computer vision systems can be summarized as using two map-

pings to bridge three different domains. Figure 1.1 illustrates this idea. The first mapping

f (·) projects pixels in the image space into a representation space to achieve low-dimensional

embeddings, which could be 1D vectors, 2D maps, or multi-dimensional manifolds. Then,

the second mapping g(·) remaps the embedded representation into a target space to ac-

complish target objectives, such as classification labels, detection locations, segmentation

boundaries, and etc.

In image classification [61], the first mapping extracts image features which are then

projected into a one-hot vector to represent the image class label. In object detection [31],

the first mapping learns spatial-dependent feature maps which are followed by a second

mapping to generate region proposals for object localization. In semantic segmentation

[72], a encoder is applied on the image to achieve low-dimensional embeddings, which are

then fed into a decoder to recover a set of heatmaps that present pixel-wise class information.



3

Table 1.1: Configurations of training datasets used to train three recently proposed face recognition networks. A large amount of labeled
subjects and images are used, which is not only very expensive but also time-consuming.

Method DeepFace [131] FaceNet [118] VggFace [90]
Training datasets SFC WebFace VggFace

# of images 4.4M 200M 2.6M
# of subjects 4K 8M 2.6K

Table 1.2: Rank-1 face recognition accuracy with respect to different head pose on MultiPIE dataset [34]. The recognition accuracy
drops significantly when the head pose changes from frontal to profile.

Head Pose 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

VggFace [90] 97.2% 96.1% 92.6% 84.7% 62.8% 34.2%

There are extensive variations engaged in the image space. First, a single pixel may

have a degree of freedom of 2563 in a typical RGB image, which results in a extremely

high-dimensional space. Second, the imaging conditions can hardly be perfect due to the

sensor noise or hardware limitations. Third and most importantly, the imaged contents

usually involve extensive intra-class variations and may varies a lot due to many underlining

factors. For example, the appearance of a car may look very different depending on if it is

imaged in the morning sunshine or a midnight street light; the shape of a chair may look

very dissimilar if it is imaged from different viewpoints.

The representation space is usually designed as low-dimensional with restricted varia-

tions on purpose. The embeddings in this space are preferred to be informative, concise and

interpretable to finial targets. To this end, the first mapping that projects from the image

space, which is high-dimensional and filled up with variations, to the representation space,

which is relatively low-dimensional and purified for interpretation, is extremely important in

vision based perception. In other words, learning reliable and interpretable representations

is a crucial and fundamental task in computer vision.

However, learning reliable representations is not only very expensive but also very hard.

Table 1.1 lists training datasets used in three recently proposed face recognition systems:

DeepFace [131] developed by Google, FaceNet [118] developed by Facebook, and VggFace



4

0�

30�

60�

90�

Figure 1.2: Illustration of the feature entanglement. Two subjects (in different colors) from MultiPIE dataset [34] are mapped into the
learned representation space of VGGFace [90]. Images in a similar head pose are embedded closer to each other even they belong to
different subjects. In other words, generic data-driven features for face recognition might confound images of the same identity with
others in large pose conditions.

.

[90] developed by the VGG group. We can see that 2.6 million and 4.4 million labeled

images are used to train VggFace and DeepFace, respectively. An astonishing large dataset

of 200 million labeled images of 8 million different subjects are used to train FaceNet.

Undoubtedly, annotating such a large amount of images is an extremely expensive, time

consuming and tedious work, no matter manually or automatically.

The cost is just one aspect of the challenging. An even more frustrating fact is reveled in

Table 1.2. As we can see, even after feeding the VGGFace network with 2.6 million labeled

images, the performance is still hardly satisfying. For instance, the verification accuracy

drops drastically to as low as 34.2% on profile faces (yaw > 75◦), although it achieves a

high accuracy of 97.2% on frontal faces (yaw < 15◦).

It has been demonstrated in many works that the aforementioned challenges are mainly

caused by the difficulty of learning reliable representations [61, 109, 72]. If we simply

categorize underlining factors as target-related and target-unrelated, we would find that in

many applications, the latter may dominate over the formal due to the factor entanglement
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in the representation space. Figure 1.2 illustrates the dilemma in representation learning.

Two subjects (in different colors) from MultiPIE dataset [34] are mapped into the learned

representation space of VGGFace [90]. We can see that generic data-driven features for

face recognition might confound images of the same identity with others in large poses

settings: images of the same subjects may be far away from each other in the representation

space because of different head poses; while images of different subjects may be close

to each other in the representation space because of similar head poses. In other words,

target-unrelated factors such as head pose may dominate over target-related factors such as

identity in representation learning of face recognition.

1.2 Learning Disentangled Representations

Generally speaking, a favorable representation learned from the image space should be

compact, interpretable, and most importantly, exclusively related to the final target. As

we mentioned, the image space is usually high-dimensional and noisy. Target-unrelated

factors may confound target-related ones due to the nature of massive entanglement in the

representation space. To achieve reliable representations, the first mapping, which maps

from the image space to the representation space, should be capable to factorize and further

decouple the latent factors to split target-related and target-unrelated representations. To

this end, how to learn a reliable mapping from the image space to the representation space

becomes a fundamental goal of many computer vision problems.

The factorization and disentanglement can be achieved either explicitly or implicitly.

For instance, in the MNIST handwritten digit recognition [67], the latent variables can

be explicitly categorized as style factors (who wrote the digit) and content factors (which

number it is). By decoupling style and content, we can identify not only which number the

written digit is but also who wrote the digit. In the multi-view perceptron problem [162],

we can explicitly split the latent factors into object factors (what the object is) and viewpoint
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factors (from which angle the image is taken). The disentangled representations can be

used to recognize the subject consistently no matter how the viewpoint changes. In the face

generation task [71], multiple latent factors can be implicitly learned and decoupled from

each other, such as wearing eyeglasses, having mustache, black hair, and etc. Then these

decoupled factors can be reorganized together to guid the generation of a novel face image

that satisfies all required descriptions but never presents in the training dataset.

In this study, we investigate learning disentangled representations and its applications

in deep visual analysis. More specifically, we explicitly model three major latent factors in

face representations: head pose (P) [98], subject identity (I) [93], and facial expression (E)

[43]. We carefully design strategies to factorize and disentangle the aforementioned PIE

factors, in order to satisfying different facial analysis tasks. For instance, the variant factors

in head pose estimation is undoubtedly the pose (P), while the invariant factors could be

both the identity (I) and expression (E) [98, 99, 97]. Similarly, the variant factors are pose

(P) and expression (E) while the invariant factors are identity (I) in facial landmark tracking,

since a 3D face shape of the same person is tracked [96, 100, 94, 103, 95]. In large-pose face

recognition, we are trying to achieve reliable representations that are variant to identity (I)

but totally invariant to pose (P) and expression (E) [93, 101, 89]. We show that by learning

disentangled representations, reliable and robust performance can be achieved in visual

analysis, such as view-point estimation, key point tracking, and large-pose recognition.

The essential idea in learning disentangled representation is to distinguish target-related

and target-unrelated factors in the representation space. In other words, we intend to

factorize the latent factors into variant and invariant categories according to the objective,

and then decouple factors in the two categories to eventually purify embeddings in the

representation space. The distilled representations is exclusively correlated to the target,

while unrelated factors are significantly suppressed at the same time.

In Section 2, we decouple pose-related and pose-unrelated factors in a latent instance

parametric space [97], where 3-dimensional head pose can be estimated accurately nomatter
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the changes of pose-unrelated factors such as identity, expression, illumination, and etc. In

Section 3, we split the identity embedding, which is invariant to facial landmark locations as

the same subject are tracked, from the pose and expression embedding, which determines the

displacements of facial landmark locations frame to frame, in the bottleneck of a recurrent

encoder-decoder network [94]. The additional identity supervision significantly improves

the tracking accuracy and robustness especially in large pose and partial occlusions. In

Section 4, we leverage the disentanglement of identity and pose factors by designing a novel

feature reconstruction task [101]. The disentangled identity representation guarantees

accurate face recognition in large head pose up to 90◦. In Section 5, we conclude the whole

work and discuss plans of future work to further extend the ongoing research.
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Chapter 2

Head Pose Estimation

Three-dimensional head pose estimation from a single 2D image is a challenging task with

extensive applications. Numerous of approaches have been proposed using various machine

learning methods such as classification, regression, deformable model, manifold, and deep

neural network. In this work, we leverage manifold embedding to decouple pose-related

factors and pose-unrelated factors, such as identity, expression, and illumination, in the

representation space. Specifically, we propose a coarse-to-fine pose estimation framework,

where a circle and a three-sphere are used to model the manifold topology on the coarse

and fine layer, respectively. Out-of-sample instances are first approximated in the latent

space, which is then used to refer 3D head pose by alternating search. Our approach can

uniformly factorize multiple factors in the proposed instance parametric subspace, where

novel inputs can be synthesized under a generative framework. Moreover, our approach can

effectively avoid the manifold degradation problem when 3D pose estimation is performed.

The results on both experimental and in-the-wild databases demonstrate the validity and

superior performance of our approach compared with the state-of-the-arts. 1

1The project page: https://sites.google.com/site/xipengcshomepage/cviu2015

https://sites.google.com/site/xipengcshomepage/cviu2015
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Figure 2.1: Examples from different databases. The first two rows show examples of experimental databases (CMU-MultiPIE [35]
and BU-4DFE [149]). The third row show examples of Faces in-the-wild database (AFW [158]). There exist extensive variations of
pose-unrelated factors such as identity, facial expression, illumination and etc.

2.1 Introduction

The task of inferring the orientation of human head is defined as head pose estimation.

In the computer vision context, head pose estimation is specified as processing steps to

transform a pixel-based digital image representation of a head into a high-level concept of

direction [83]. Many tasks related to face analysis rely on accurate head pose estimation.

For instance, a multi-pose face recognition system can carry out head pose estimation first

and then select face images with similar poses for matching; a 3D face tracker can use

head pose information to render the face model for the optimal fitting. Other applications

of head pose estimation include inferring human gaze direction in the human-computer

interaction (HCI) system, monitoring driver awareness for safety driving [84] and inferring

the intentions of people in both verbal, and nonverbal communication environments [78].

It is often assumed that the human head is a rigid object and three Euler angles, pitch,

yaw and roll, can be used to depict the head orientation [27]. Estimating the three angles

from a single 2D image is a challenging task, since there exists extensive variations among

pose-unrelated factors such as identity, facial expression, illumination condition and other
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latent variables. Figure 2.1 shows the examples of the variations. In many cases, these

pose-unrelated factors play a more significant role on the appearance variations than pose

changes do [5, 7, 44]. Therefore, extracting information that ensures pose changes can

dominate over pose-unrelated factors is a crucial point in designing the head pose estimator.

Numerous of approaches have been proposed over the past decades for head pose esti-

mation. We arrange existing methods into four categories: classification-based approaches

[46, 143], regression-based approaches [106, 75, 107, 44, 36], deformable-model-based

approaches [155, 117, 158] and manifold-embedding based approaches [42, 29, 5, 7].

Classification-based approaches are limited to estimate 1-dimensional (only yaw angle)

discrete head pose. Regression-based approaches can predict 3-dimensional continu-

ous pose efficiently, but they are extremely sensitive to noise and pose-unrelated factors.

Deformable-model-based approaches rely on the localization of facial landmarks, which

limits their capability to handle extensive instance variations especially in low resolution

images. Manifold-embedding-based approaches assume that facial imageswith consecutive

head poses can be viewed as nearby points lying on a low-dimensional manifold embedded

in the high-dimensional feature space. Head pose angles can be recovered by measuring

the points’ distribution in the manifold embedding space.

Although manifold-embedding-based approaches have achieved great success in the

former research, they still suffer from multiple limitations. First, there is no guarantee that

pose-related factors can dominate over pose-unrelated factors in the manifold embedding

process, since pose-unrelated factors will distort the manifold building process and result

in geometry deformation across instance manifolds (different combinations of identity,

expression and illumination) [83]. Though various approaches [42, 5, 7] have been proposed

to partially solve this problem, they either focus on single pose-unrelated factor like identity

while ignoring the others [42], or cannot handle multiple pose-unrelated factors in a uniform

way [7]. Second, former methods tries to learn the mapping from the high-dimensional

feature space to the low-dimensional manifold embedded representation. This mapping
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direction would cause manifold degradation (highly folded or self-intersection) [25] when

the manifold topology is complicate (in the case of 3-dimensional pose estimation). Hence,

most manifold-embedding-based estimators are limited to provide only 1-dimensional yaw

estimation while ignoring the pitch and roll variations. Third, the projections from the

image feature space to the low-dimensional manifold are defined only on the training space

[1]. The entire embedding procedure has to be repeated since they lack of the ability to

depict the out-of-sample inputs in an efficient way [5].

To address the limitations of existingmethods, we propose a manifold-embedding-based

coarse-to-fine framework for 3-dimensional head pose estimation. This approach employs

the unit circle and 3-sphere to model the uniform manifold topology on the coarse and fine

layer respectively. By learning the instance-dependent nonlinear mappings from the unit

circle or 3-sphere to every instance manifold (certain person with certain expression under

certain illumination condition), the pose-related and -unrelated factors can be decoupled in a

latent instance parametric subspace. The basic idea is that pose-unrelated factors dominate

the geometry deformations across different instance manifolds. Hence, we can factorize

the instance variations, which are encoded in the geometry deformations, in the instance

parametric subspace.

There are several merits of our approach. First, the coarse-to-fine framework guarantees

the efficient and accurate 3-dimensional continuous head pose estimation. Second, it

can uniformly parameterize multiple pose-related and -unrelated factors under a uniform

framework in the latent space. Third, the designed mapping direction of the manifold

embedding, which is completely different from the existing methods, can effectively avoid

the manifold degradation problem when 3-dimensional pose estimation is performed. Last

but not least, the out-of-sample data can be effectively synthesized in the instance parametric

subspace, which guarantees the generative ability of our approach.
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2.2 Related Work

Head pose estimation using visual perception has been a broad and diverse research field

for decades. We summarize existing methods and briefly review the most representative

and related works to our approach.

2.2.1 Taxonomy of Head Pose Estimation

There exists a large amount of literatures on the topic of head pose estimation in the

scope of computer vision area. Based on the type of data relied on, existing methods can be

coarsely classified as 2D image-based verse 2.5D image-based. 2D image-based approaches

carry out head pose estimation based on features extracted from 2D image. While 2.5D

image-based approaches take advantage of the rapid development of depth/range sensing

technology [33] to design head pose estimators. They rely on both standard 2D image

information and reliable depth/range information.

It has been demonstrated that the additional depth/range information can effectively

overcome limitations which are inherent with methods relied on only 2D images [12, 26],

such as illumination changes and extracting feature from texture-less face regions. However,

approaches solely rely on standard 2D image attract muchmore attention than ones requiring

additional depth/range sensing, when considering the extensive application and affordability

of the 2D cameras. In the rest part of this section, we focus on the taxonomy of the

2D image-based methods. Broadly speaking, the evolutionary taxonomy of head pose

estimation approaches can be outlined as following categories

• Classification based approaches split the pose variation space into discrete intervals

and apply classifiers learned in a unsupervised or supervised way to assign the pose

label to the query image.
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• Regression based approaches try to learn a linear or nonlinear mapping from the fea-

ture space to the pose variation space and use this mapping to predict pose parameters

given the testing sample.

• Deformable model based approaches fit a flexible face shape model composed

by sparse landmarks onto the object facial image and estimate head pose from the

configuration of landmarks.

• Manifold embedding based approaches seek low-dimensional manifolds of pose

variation embedded in the high-dimensional feature space and pose can be estimated

by embedding a new image into the learned manifolds.

2.2.2 Review of Existing Methods

We follow the taxonomy and briefly review representative methods in each category. We

focus on more recent approaches to provide an overview of the up-to-date status on the head

pose estimation topics.

Classification based approaches in the simplest form are template matching methods.

These methods compare testing image with all exemplars in the training set under defined

distance metrics, and assigned pose label to the required image with the label of the most

similar template. Other supervised learning based tools such as Support Vector Machines

(SVMs) [69] and Kernel Linear Discriminant Analysis (KLDA) [9] are demonstrated to

estimate head pose from single image. These methods split training images into several

groups by specifying discrete pose labels, and train multiple binary classifiers for all groups

under one-to-all framework [46, 143]. The pose label of testing image can be acquired by

the classifiers with the most confidence.

There are many disadvantages with classification based approaches: first, they can

only provide coarse head pose estimation results due to the discrete labeled groups in the

training set; second, they can only handle 1-dimensional yaw variations and extensions to
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3-dimensional pose changes including pitch, yaw and roll would encounter great obstacle;

third, they suffer from over-fitting problems which result in sensitiveness to pose-unrelated

variations like facial expression and illumination changes.

Regression based approaches use the mapping learned from the image feature space to

the pose space to recover the pose in the testing image. Regressors such as Support Vector

Regressors (SVRs) [75] and Gaussian Processes Regression (GPR) [107] can be employed

to construct the pose estimator. Framework like Artificial Neural Networks (ANN) [9] is

also shown the capability to recognize pose orientation from images [106]. More recently,

Huang et al. [44] use Supervised Local Subspace Learning (SL2) to learn a local linear

model which shows prominent potential to provide accurate head pose estimation when the

training data is pretty sparse and non-uniformly sampled. Haj et al. in [36] apply Partial

Least Squares (PLS) regression to alleviate the negative effect on pose estimation when

there exists misalignment of head location in the image.

Regression based methods are characterized with fast prediction speed and capability

to output continuous pose angles, thus they attract lots of research interest in previous

literatures. However, they also suffer from obvious drawbacks. There is no guarantee

that the learned mapping under regression framework can properly reflect the connection

between the image feature and the pose label, since pose-unrelated factors would also affect

the mapping process. Another weakness of regression based methods is they are highly

sensitivity to noise, which limits their capability to handle the extensive variations among

pose-related and -unrelated factors.

Deformable model based approaches take advantage of different types of flexible

facial model to refer head pose. Usually the facial model is constituted by both the shape

model (specific facial points and their 2D coordinates in an image) and the appearance

model (2D texture of corresponding facial points) [151]. The specific facial points, such

as the corners of eyes, mouth and nose tip, are notated as landmarks. By fitting landmarks

to the correct responding positions in a facial image, the head pose can be estimated from
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the geometric shape formatted by the landmarks. For instance, Active Shape Model (ASM)

[20] find the primary modes of shape variation among all the training faces and use the

largest principal component to recover the facial shape of the testing face. Then the pose

parameters can be estimated by applying Bayesian inference [155]. Saragih et al. [117]

employ Constrained Local Model (CLM) to estimate global (scale, pose and face location)

and local (identity and expression) parameters simultaneously. Mean-Shift algorithm is

applied on the response map of each landmark to find the local optimal under the global

constraint. Zhu et al. [158] employ tree structured deformable part model [60] to locate

facial landmarks and use view-based models to describe the topological changes caused

by head pose variations. The main challenge of these approaches is how to effectively

incorporate domain knowledge into traditional models [47], and how to efficiently solve

them [48].

There are multiple limitations for deformable model based methods when regarding

pose estimation task. First, the pose prediction accuracy of flexible model based methods

extremely relies on the precision of the landmark locations, in other word, they are quite

sensitive to the location error/noise; second, pose-unrelated factors such as identity and facial

expression will affect the aligned shape, which contaminates the positional information of

landmarks for predicting pose; third, these methods need to fit all the landmarks before

inferring the head pose, while solving the optimization problem for landmarks localization

is fairly time-consuming regarding the efficiency.

Manifold embedding based approaches try to acquire a low-dimensional manifold

where data points with consecutive poses lies on. Either linear embedding techniques like

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) [9] or non-

linear embedding methods such as Isomap [42, 125], Locally Linear Embedding (LLE) [5]

and Local Embedded Analysis (LEA) [29] can be employed to find the low-dimensional

space. Head pose estimation can be carried out in this space using classification [42, 29] or

regression [5] strategies.
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The key challenge of manifold embedding based approaches is how to ensure pose

variations can dominate over pose-unrelated factors during the embedding process. To

address this problem, Hu et al. [42] apply Isomap embedding to model each individual

manifold as an ellipse. The ellipses from different individuals can be normalized to a unified

embedding by carrying out an ellipse fitting process. However, this approach is designed

based on the classification framework and it does not utilize the pose label informationwhich

are available in the training set in a supervised way. Balasubramanian et al. [5] propose the

biased manifold embedding method for person-independent head pose estimation. They

define a distance metric based on pose angles. This metric is applied to bias the distance

between data points in high-dimensional feature space. And the effect of identity variations

can be eliminated by removing pose-unrelated dimensions. However, these approaches

mainly focus on identity variations and they still have the tendency to build manifolds for

other pose-unrelated factors as well as pose. Besides, they have limited representation

ability for out-of-sample data that results from the descriptive model used. Moreover, they

can only handle at most 2-dimensional pose estimation due to the manifold degradation

issue. It is not a trivial task to extend them to 3-dimensional pose estimation.

2.3 Method

This section describes our approach in details. First, we discuss themotivation of the coarse-

to-fine pose estimation framework. Then we propose the instance parametric subspace and

the uniform geometry representation. The instance parameterization can be achieved by

conducting instance-dependent mappings and pose-related/unrelated factorization in the

subspace. Finally, an efficient pose referring solution is provided to estimate head pose in

the testing image. An overview of our approach is illustrated in Figure 2.2.
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Figure 2.2: Illustration of the training and learning procedure of our approach. We take 1D yaw estimator for example. The 3D head pose
estimation have a similar framework but replace the circle with a 3-sphere for the uniform geometry representation. a). Learn the instance
dependent mappings from the uniform geometry representation to each instance manifold; b). Arrange the set of instance dependent
mapping coefficients matrix as a tensor and carry out tensor decomposition along the instance direction to decouple the pose-related and
-unrelated factors; c). Given a single testing image, parameterize the testing instance in the instance parametric space and search the
space of the uniform geometry representation to find the pose solution.

2.3.1 Coarse-to-fine Pose Estimation Framework

The appearance of human head is almost symmetrical with respect to the yaw angle varia-

tions, for example the left profile is almost the same as the right profile. Taking advantage

of this fact, we propose a cascade pose estimation approach in a coarse-to-fine framework:

1D yaw estimator on the coarse layer and 3D pose estimator on the fine layer.

The single estimator on the coarse layer only needs to provide a fast and rough prediction

of the yaw angle. Based on the coarse prediction, the 1D yaw variation space can be divided

into multiple discrete intervals. Each 3D pose estimator on the fine layer is responsible for

one interval. Once the testing image is categorized into one of the intervals based on the

coarse estimation of yaw angle, the corresponding 3D pose estimator in the fine layer is

activated to estimate pitch, yaw and roll simultaneously.

This coarse-to-fine framework can reduce the trained model size of the estimators on the

fine layer, since it only needs to train pose estimators for left profile. A testing image with

right profile can be processed by left profile pose estimators with flip operation. Besides,

splitting the yaw variation space into multiple intervals can shrink the solution space for

the 3D pose estimator to find the true pose, which can accelerate the prediction speed in
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the testing phase. Moreover, a reduced searching space can make it easier to find the global

optimum when inference method, which is prone to local optimal, is employed.

2.3.2 Instance Parametric Subspace

Suppose there are K instances (a certain combination of pose-unrelated factors, i.e. identity,

expression, illumination and etc.) in the training data set. For the k-th instance Ik , we

have a sequence of images Y k = {yk
i ∈ R

D, i = 1, · · · , Nk}, and their corresponding head

pose angles Θk = {θk
i ∈ R

d, i = 1, · · · , Nk}, where RD and Rd are D-dimensional image

feature space and d-dimensional pose variation space respectively (e.g. d = 1 represents

the 1D yaw angle, d = 3 represents the 3D pose angle including yaw, pitch and roll).

Notice that image sequences for different instances do not need to have the same length.

These high-dimensional multiple views are expected to lie on a low-dimensional manifold

Mk ∈ Re.

The allure of manifold embedding techniques is that the pattern of head movement

can be preserved during the dimension reduction in the high-dimensional feature space.

However, as we discussed in Section 2.2, the most significant drawback of existing manifold

embedding based methods is that they have the tendency to build manifolds for pose-

unrelated factors as well as pose [83, 5]. For example, consider the cases that two images of

different persons in the same pose and two images of the same person in slightly different

poses. The fist pair of images would have a larger metric distance than the second pair in the

embedding space since the identity factor can dominate over pose when the pose variation

is small.

To address this problem, we resort to Homeomorphic Manifold Analysis (HMA) [126,

25] to formulate our framework. Research in [83, 42, 5] indicates that manifolds arise

from head pose variation should have similar geometry in viewing space. Pose-unrelated

factors, such as identity, facial expression, illumination and other latent variables, will

result in geometric deformation across instance manifolds. The key idea of our approach
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is that different instance manifolds can be viewed as points distributed in a latent instance

parametric space, where the spacial distribution of a point (represents a manifold) is

dominated by the manifold deformation.

Considering the fact that all the instance manifolds are topologically equivalent (with

similar geometry in the viewing space), we can define a uniform geometry representation

M̃ ∈ Re in the viewing space, which is homeomorphic to each instance manifoldMk . In

other words, eachMk is a deformed instance of M̃. To construct the instance parametric

space, we can learn an instance-dependent nonlinearmapping from M̃ toMk . Themapping

coefficientCk encodes all the pose-unrelated factors of the k-th instance. We get K mapping

coefficient matrices {C1, · · · ,CK} for all the K instances in the training data. By arranging

them as a tensor and carrying out tensor decomposition along the instance dimension, we

can find K instance bases to span the instance parametric space.

There are several benefits to introduce the instance parametric space. First, we can

handle multiple pose-unrelated factors simultaneously under a uniform framework since all

instance factors are factorized in the space. Second, the space guarantees the generative

ability of our approach. We can directly synthesize new instances to approximate the out-

of-sample testing data without repeating the whole embedding process. Moreover, we can

use L instead of K (L < K) instance bases to span a more compact subspace, which can

significantly improve the computational efficiency in terms of both time and space without

sacrificing the prediction accuracy.

2.3.3 Uniform Geometry Representation

The geometry of M̃ is important for manifold embedding since it provides prior information

to model the topology of the instance manifold Mk . It should faithfully represent the

structure of the head motion as well as simple enough for fast computing.

Let θ = (α, β, γ)T ∈ R3 denotes the 3D head pose, where α, β, γ refer pitch, yaw and

roll respectively. To find a faithful structure of M̃, we consider the case that the head is
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stationary where the camera is moving around to simulate the head pose variations. The

camera should moves along a circle to simulate the 1D yaw variations β. In this case, the

motion trajectory of the camera is a partial viewing circle centered at the head. Similarly,

when pitch variations α is involved, the motion trajectory should be upgraded to a partial

viewing sphere to simulate the 2D head movement. To get the 3D pose variations, we

can image that at each point on the surface of the viewing sphere, the camera has another

freedom to move along a tangent partial circle to obtain the roll movement γ. The geometry

of the motion trajectory is a 3-sphere embedded in R4.

Recall here we only need to preserve the topology of the instance manifold not the

metrical measurement, we use a partial unit circle and a partial unit 3-sphere to model

the uniform representations of the 1D (yaw) and the 3D (pitch, yaw and roll) head pose

variations respectively in our coarse-to-fine framework.

1D yaw estimator on the coarse layer. It provides discrete yaw prediction to categorize

the testing image into one of several yaw intervals. We use a half unit circle to model

the uniform geometry representation for yaw varies from −90◦ to 90◦. The embedding

coordinates x ∈ R2 on the unit circle is:

x =


cos β

sin β

 , where β ∈ [−
π

2
,
π

2
]. (2.1)

The output of the 1D yaw estimator on the coarse layer is a discrete label, which indicates

the corresponding interval. Since most head movement occurs within the yaw interval from

−45◦ to 45◦ and face appearance is symmetrical regarding yaw variations, we split the yaw

range into 4 intervals, [−90◦,−45◦), [−45◦, 0◦], (0◦, 45◦] and (45◦, 90◦], to best balance the

trade off between the estimation accuracy and the computational complexity.

3D head pose estimators on the fine layer. It output continuous estimation result

for pitch, yaw and roll simultaneously. There should be four estimators on the fine layer

regarding four discrete intervals. However, considering the fact that the left and right
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head profiles are symmetric, we only need two estimators on the fine layer: one for β ∈

[−90◦,−45◦) and the other for β ∈ [−45◦, 0◦]. Testing image with β ∈ (0◦, 90◦] can be

horizontally flipped to use the fine estimators for pose prediction. We use a partial 3-sphere

to model the uniform geometry representation. The embedding coordinates x ∈ R4 on the

partial 3-sphere is:

x =



cosα

sinα cos β

sinα sin β cos γ

sinα sin β sin γ


, (2.2)

where β ∈ [− π4, 0] or [−
π
2,−

π
4 ], α ∈ [−

π
3,

π
3 ] and γ ∈ [−

π
3,

π
3 ].

During the testing, we first conduct the 1D yaw estimation to narrow the solution

space. Then the corresponding fine estimator is activated to provide a continuous 3D pose

estimation.

2.3.4 Instance Dependent Nonlinear Mapping

In former manifold embedding based approach, the dimension reduction is conducted

by mapping from the high-dimensional feature space to the low-dimensional manifold

embedding space. However, this strategy suffers from manifold degradation issue when

dealing with complicate manifold topology. In the case of 3D pose estimation, there

is no guarantee that the embedding procedure can obtain the faithful 3-sphere structure

since the embedded manifold would be highly folded or self-intersected. To overcome

this problem, we follow the HMA and learn the mapping in the reverse direction [24]:

from the low-dimensional uniform geometry representation to the high-dimensional feature

space. See Figure 2.2 for an illustration. This completely different mapping direction has

significant advantages: it can not only avoid the manifold degradation problem but also

greatly simplified the instance factorization in instance parametric space since the uniform

manifold topology is preserved.
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Giving the fact that each of {M1, · · · ,MK} is homeomorphic to M̃ and the geometry

deformation from M̃ toMk is resulted from pose-unrelated variations, we can obtain the

factorization by learning a set of nonlinear mapping from M̃ toMk . Let us consider the

k-th instance with input image sequence Y k and the corresponding head pose Θk . The

embedding coordinates for the image sequence on the uniform geometric representation are

X k = {xk
i ∈ R

e, i = 1, · · · , Nk} following the definitions in Equation (2.1) and Equation

(2.2). We select m mapping centers {z j ∈ R
e, j = 1, · · · , M} evenly spaced along M̃ . A

nonlinear mapping function [s : Re → R] can be learned by using Radial Basis Function

(RBF) interpolation [105]. This function maps from e dimensional embedding space to 1

of the D dimensional image feature space:

s(xi) =

M∑
j=1

λ jφ(| |xi − z j | |) + P(xi), xi ∈ R
e, (2.3)

where | |xi − z j | | is the Euclidean distance defined in the manifold embedding space, λ j are

coefficients, φ is the RBF with popular choices including:

φ(r) =


r biharmonic

e−cr Gaussian

(r2 + c2)1/2 multiquadric

The linear polynomial for positive semi-definite kernels is needed to span the null space for

regularization and defined as:

P(xi) = ω0 + ω1xi . (2.4)

The full mapping [S : Re → RD] can be organized as:

S(xi) = Ck

©«
ψ(xi)

1

xi

ª®®®®®¬
, xi ∈ R

e, (2.5)
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where the mapping coefficient matrix Ck and the nonlinear kernel mapping ψ(x) have the

following form:

Ck =

©«
λ11 · · · λ1m ω10 ω11

...

λD1 · · · λDm ωD0 ωD1

ª®®®®®¬
and ψ(x) =

©«
φ(|x − z1 |)

...

φ(|x − zm |)

ª®®®®®¬
.

The dimension of Ck is D × (M + 1 + e). All of the Nk images in the sequence of the

k-th instance should satisfy the mapping Ck . To ensure the orthogonality of the RBF

interpolation, we add the constraint:

M∑
j=1

λ jQ(z j) = 0, (2.6)

where Q(z j) = (1, z j)
>. By arranging Equation (2.4)-(2.6) together, we can obtain a linear

system for the k-th instance: ©«
Φ P>

Q 0

ª®®¬Ck> =
©«
Y k

0

ª®®¬ , (2.7)

where Φ is a Nk × M matrix:

Φ =

©«
φ(|x1 − z1 |) · · · φ(|x1 − zM |)

...
. . .

...

φ(|xNk
− z1 |) · · · φ(|xNk

− zM |)

ª®®®®®¬
.

Block P has the dimensions of (1 + e) × Nk with the i-th column is (1 x>i )
>, while Q is a

(1 + e) × M matrix with the j-th column is (1 z>j )
>. Y k is the Nk × D dimensional image

feature matrix, which is arranged as (y>1 · · · y
>
Nk
)> with yi is the D dimensional image feature

for the i-th image in the k-th instance sequence. The linear system in Equation (2.7) has a
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closed-form solution:

Ck> =
©«
Φ P>

Q 0

ª®®¬
∖ ©«

Y k

0

ª®®¬ . (2.8)

The instance nonlinear mapping can effectively avoid the manifold degradation issue.

The faithful manifold geometry representation can be expected even when the topology is

complicate. Moreover, the nonlinear mapping Ck is easy to train, which guarantees the

instance parametric space can be constructed in a very efficient way.

2.3.5 Separating Pose-related and -unrelated Factors

Instance manifolds are distributed in the instance parametric space while the mapping

coefficients encode manifold deformations from the uniform geometry representation to

every instance manifold. We can learn an array of corresponding mapping coefficients

{C1 · · ·CK} for all of the K instances in the training data. It is worth emphasizing that

this coefficients array encodes both within-manifold pose variations (pose-related) and

across-manifold instance variations (pose-unrelated).

The array of coefficients can be arranged as a tensor C with the dimensions of D× (M +

1 + e) × K . Following the tensor decomposition in [64], the pose-related and -unrelated

factors can be separated by carrying out tensor decomposition:

C = A ×3 I, (2.9)

where A is a D × (M + 1 + e) × J tensor containing all the bases of the RBF space, which

can be used to refer pose. And I = (I1 · · · IK) is a J ×K matrix containing all the bases that

span the instance parametric space.

We flatten the tensor C to matrix C with D(M +1+ e) rows and K columns by reshaping

eachCk into a D(M+1+e)×1 vector. Singular Value Decomposition (SVD) can be carried
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out to decouple row bases and column bases:

C = (US)D(M+1+e)×KV>K×K . (2.10)

The columns of US are bases of pose variation. The columns of VT = {I1, . . . , IK} are

bases of instance parametric space where I k is the k-th instance basis.

We can expect a full instance parametric space by using {I1, . . . , IK}. A new testing

instance can be approximated by a linear combination of all the bases. However, it is not

necessary to employ all of the K bases to achieve the approximation. Ignoring instance bases

with trivial eigenvalues will have little effect on generating new instance parameterization

since most instance variation directions have been preserved among the bases with signifi-

cant eigenvalues. From the SVD decomposition, we have S = diag(σ1, · · · , σK) containing

K eigenvalues σ1 > · · · > σK . The object is to find a subset {I1, . . . , IL} ⊂ {I1, . . . , IK}

satisfying: ∑L
k=1 σ

k∑K
k=1 σ

k
> δ, (2.11)

where δ is set to 0.6 ∼ 0.7 to best balance the trade-off between the computational efficiency

and the estimation accuracy.

{I1, . . . , IL} span the instance parametric subspace. The size of the offline trained

model is greatly compacted to reduce both the space requirement and the computational

complexity, which can significantly boost the online speed.

2.3.6 Solving for Pose

Given a single testing input y, suppose the instance parameterization in the instant parametric

subspace is I and the embedding coordinates of pose is x. From Equation (2.5) and (2.9),



26

Algorithm 1 Pose Referring by Alternating Search
1: Uni f ormly or randomly initialize w = (w1 · · ·wL)

2: ct ← 0
3: repeat
4: w0 ← w
5: I∗ ←

∑L
l=1 w

l · I l

6: C∗ ← USI∗>

7: Reshape C∗ into D × (M + 1 + e) matrix

8: ŷ← C∗ ©«
ψ(x)

1
x

ª®¬
9: Search x∗ along M̃ to minimize ‖y − ŷ‖2
10: for l ← 1→ L do
11: error ← ‖y − ŷ‖2
12: wl ← exp(−error

2σ2 )

13: ct ← ct + 1
14: end for
15: w = (w1 · · ·wL)/

∑L
l=1 w

l

16: until ‖w − w0‖ < ε or ct > max_iter
17: return x∗

the estimation of y is:

ŷ = S(I, x) = A ×3 I ×2

©«
ψ(x)

1

x

ª®®®®®¬
. (2.12)

The head pose estimation problem is equivalent to find both I∗ and x∗ ∈ Re to minimize the

loss function:

J = ‖y − A ×3 I ×2

©«
ψ(x)

1

x

ª®®®®®¬
‖2. (2.13)

We employ an two-step alternative iterative optimization procedure to find I∗ and x∗

that minimize the J. In the first step, we linearly combine instance bases {I1, . . . , IL} with

coefficients {w1, · · · ,wL} to generate the new instance I∗. wl is re-weighted based on the

reconstruction error:

wl = exp(
‖y − ŷ‖2

2σ2 ), l = 1, · · · , L. (2.14)
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In the next step we fix I∗ and search along M̃ to find x∗ that minimize the reconstruction

error given I∗ fixed. The alternative updating of I∗ and x∗ continues until convergence or

maximal iteration times reached. Algorithm 1 show details of the pose inference process.

2.4 Experiments

In this section, we carry out a series of experiments to demonstrate the validity of our

approach and evaluate its performance. Several state-of-the-art approaches are compared

with our approach on both experimental and faces in-the-wild databases.

2.4.1 Databases and Settings

Most pubic face databases come without accurate pose annotations due to the difficulty of

manual or automatic pose labeling. Three widely used databases with pose annotations are

used in our experiments:

• CMU-MultiPIE database [35] contains head images of 336 subjects (identity) il-

luminated by 15 light directions under 6 expressions. The yaw angles vary from

−90◦ (left profile) to 90◦ (right profile) spaced by 15◦, so there are 13 images in the

sequence for each instance.

• BU-4DFE database [149] has 100 subjects and each subject performs 6 expressions

in front of the 3D face scanner. We render the 3D face model to synthesize head

images under different poses. The yaw angle variations are from −90◦ to 90◦ while

the pitch angles vary from −30◦ to 30◦ and the roll vary from −30◦ (left bent) to 30◦

(right bent). 15◦ is set as the interval for all the three pose dimensions.

• Annotated Face In-the-wild database (AFW) [158] collects 205 images with 468

faces (multiple faces in a single image) from Flickr.com. There are discrete pose
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annotations for yaw from −90◦ to 90◦ with 15◦ spacing in the database labels, which

can be used for quantitative evaluations.

Databases constructed under a experimental environment (CMU-MultiPIE and BU-

4DFE) can provide accurate pose labels, which facilitates model training and quantitative

evaluation of general performance. However, they have limited coverage of variations among

identity, facial expression and illumination condition in the perspective of both reality and

extensiveness compared to faces in-the-wild database (AFW). In contrast, the limitation

of faces in-the-wild database is that it lacks detailed pose labels for model training and

performance testing, thus we employ experimental databases to train the estimator and test

it on faces in-the-wild database to demonstrate the generalization ability of our approach on

the challenging real-world data. See Figure 2.1 for examples of the three different databases.

All the images are pre-processed before the training and testing procedure. First, head

images are cropped from the background manually (CMU-MultiPIE), or automatically

according to facial landmarks annotations (BU-4DFE, AFW). All the cropped images

are resized to 64 × 64 pixels for features extraction. We choose the Histogram of Oriented

Gradients (HOG) features with the consideration of the well balance between computational

efficiency and robust performance. Mean Absolute Error (MAE) and Standard Deviation

(SD) are used as the performance measurement.

To best evaluate the performance, we compare our method with multiple approaches

that are the most representative ones in the corresponding categories:

• Biased Manifold Embedding Estimator (BME) [5] biases traditional Isomap, LLE

and LE toward unified manifold embedding to handle pose-unrelated factor. The

BME estimator can provide 1D yaw estimation with continues result.

• Supervised Local Subspace Learning Estimator (SL2) [44] has the potential to

handle sparse and non-uniformly sampled training set for head pose estimation. It

can estimate full 3D pose variations and output continuous result.
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• Partial Least Squares Estimator (PLS) [36] demonstrates the capability to handle

misalignment that would place a negative effect on the pose estimation performance.

The PLS estimator provides 2-dimensional (pitch and yaw) continues result.

• Tree Structured Part Model Estimator (TSPM) [158] aligns facial feature points

first by fitting a tree structured facial deformable model. Then head pose estimation

is conducted bases on the locations of facial landmarks.

• Hybrid Estimator [9, 107] use the same coarse-to-fine framework as our approach.

On the coarse layer, we use the multi-class Support Vector Machine (SVM) [9]

to provide discrete yaw estimation. On the fine layer, we use Gaussian Process

Regression (GPR) [107] to predict continuous 3D pose given a yaw interval.

2.4.2 Evaluation on Controlled Datasets

The controlled databases, CMU-MultiPIE and BU-4DFE, have accurate pose annotations.

We carry out quantitative experiments to compare the performance of different methods.

For the training instances, we randomly pick out 20 subjects under 3 light directions

(45◦, 90◦, 135◦) and 6 facial expressions with a total of 20 × 3 × 6 = 360 instances from

CMU-MultiPIE to compose dataset (i), and 60 subjects under 6 facial expressions totally

60×6 = 360 instances from BU-4DFE to compose dataset (ii). For the testing instances, 10

instances are randomly picked out from CMU-MultiPIE and BU-4DFE to compose dataset

(iii) and dataset (iv) respectively. There is no overlap between the training and testing

instances.

Since CMU-MultiPIE and BU-4DFE are experimental data, to best evaluate the gen-

eralize ability to faces in-the-wild data of different approaches, we carry out experiments

with both it intra-database (training and testing in the same database) and inter-database

(training and testing in different databases) settings:
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• Experiment A uses dataset (i) from CMU-MultiPIE for training, and dataset (iii)

from CMU-MultiPIE for intra-database testing.

• Experiment B uses dataset (ii) from BU-4DFE for training, and dataset (iv) from

BU-4DFE for intra-database testing.

• Experiment C uses dataset (i) from CMU-MultiPIE for training, and dataset (iv)

from BU-4DFE for inter-database testing.

• Experiment D uses dataset (ii) from BU-4DFE for training, and dataset (iii) from

CMU-MultiPIE for inter-database testing.

For our approach, we use dataset (i) from CMU-MultiPIE to train the 1D yaw estimator

on the coarse layer. The number of the mapping centers is empirically set to m = 5 since

only discrete angle need to be predicted. We use dataset (ii) from BU-4DFE to train the 3D

pose estimators on the fine layer. The numbers of themapping centers are set tom = {7, 9, 7}

for pitch, yaw and roll. Especially, the output of the 1D yaw estimator on the coarse layer

is discretized as:

cyaw =



1, when θ < −45◦

2, when − 45◦ 6 θ 6 0◦

3, when 0◦ ≤ θ 6 45◦

4, when θ > 45◦

(2.15)

where labels cyaw = {1, 2, 3, 4} represent left profile, left frontal face, right frontal face

and right profile respectively. We train two 3D estimators on the fine layer: one for left

profile and the other for left frontal face. Our approach has the same prediction accuracy

on Experiment A and D, and same prediction accuracy on Experiment B and C since the

combinations of the training and testing are the same.

The comparative results in Table 2.1 shows that our method outperforms others with

substantial margins in all the four different experimental settings. It needs to be emphasized

that in Experiment C and D, the superiority of our approach is extremely obvious when
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Table 2.1: Comparisons of the prediction accuracy (mean absolute error in degree) of different methods. (i) and (ii) are training datasets
from CMU-MultiPIE and BU-4DFE. (iii) and (iv) are testing datasets from CMU-MultiPIE and BU-4DFE. For our approach, we use (i)
to train the 1D yaw estimator on the coarse layer and (ii) to train two 3D pose estimators on the fine layer. The results shows that the
superiority of our approach is more obvious compared with others in C and D where the training and testing are carried out in different
datasets. This fact highlights the strong generative capability of our approach to deal with out-of-sample testings inputs.

Method Experiment A Experiment B
MAE±SD Train on (i), Test on (iii) Train on (ii), Test on (iv)
BME-Isomap [5] 8.5 ± 6.3◦ 12.5 ± 8.7◦
BME-LLE [5] 7.7 ± 5.4◦ 12.4 ± 8.1◦
BME-LL [5] 7.1 ± 5.1◦ 10.9 ± 7.6◦
SL2 [44] 4.9 ± 3.7◦ 6.3 ± 5.2◦
PLS [36] 6.2 ± 4.6◦ 7.3 ± 5.1◦
GPR [107] 7.2 ± 5.6◦ 9.7 ± 8.4◦
SVM [9] + GPR [107] 6.7 ± 5.1◦ 7.8 ± 6.4◦
Ours 4.6 ± 3.9◦ 5.8 ± 5.4◦

Method Experiment C Experiment D
MAE±SD Train on (i), Test on (iv) Train on (ii), Test on (iii)
BME-Isomap [5] 15.4 ± 10.1◦ 10.4 ± 7.8◦
BME-LLE [5] 14.3 ± 9.6◦ 10.1 ± 6.6◦
BME-LL [5] 12.6 ± 9.1◦ 9.0 ± 6.3◦
SL2 [44] 9.0 ± 6.5◦ 7.2 ± 4.9◦
PLS [36] 8.7 ± 5.3◦ 7.5 ± 6.2◦
GPR [107] 11.4 ± 9.8◦ 8.1 ± 6.0◦
SVM [9] + GPR [107] 9.5 ± 7.1◦ 6.5 ± 4.4◦
Ours 5.8 ± 5.4◦ 4.6 ± 3.9◦

the training and testing are performed on distinct databases, see Figure 2.3 for a more

clear comparison. This fact highlights the strong capability of our approach to handle

extensive instance variations and its prominent generative ability, which is a merit of

instance parameterization. Considering the fact that there are only limited number of

images with annotations available during training which can not cover the huge instance

variations in testing cases, the generative capability is important for robust performance on

faces in-the-wild data. We will explain this point soon in next section.

The results shows that the cascade of multi-class SVM + GPR can boost the prediction

accuracy compared with the case where only GPR is employed. Multi-class SVM that

divides the pose variation space into more compact intervals, can significantly alleviate

the ambiguity during the procedure of the non-linear mappings. However, the cascade



32

Figure 2.3: The fraction of estimation accuracy of Experiment C and D on CMU-MultiPIE and BU-4DFE. The x- and y-axis represent
the Mean Absolute Error (MAE) and the fraction of images in the testing set. In Experiment C, all the compared methods except ours
are trained in CMU-MultiPIE and tested in BU-4DFE. While in Experiment D, all the compared methods except ours are trained in
BU-4DFE and tested in CMU-MultiPIE. Notice our method outperforms others with a steepest curve and fastest converging rate to 100%.
It proves the better generalization ability of our approach regarding cross-database training and testing procedure.

Table 2.2: Comparisons of the performance of different approaches on AFW. The database contains only discrete pose annotations with
15◦ interval. We use CMU-MultiPIE and BU4DFE to train the estimators of all the methods expect TSPN. TSPN indep. and share.
represent TSPN with indepedent model and fully shared model respectively. The continuous yaw predicitons are bucketed with discrete
error tolerance (6 15◦ and 6 30◦). Our method has the best performance in the terms of the fraction of testing images with prediction
errors less then given tolerances.

Algorithm M AE 6 15◦ M AE 6 30◦
Fraction (%) Fraction (%)

BME [5] 56.3 73.1
SL2 [44] 73.5 81.4
PLS [36] 78.7 86.2
Multi-class SVM [9] 65.9 78.3
TSPM indep. [158] 81.0 84.0
TSPM share. [158] 76.9 83.0
Ours 86.3 92.7

performance is still inferior to ours due to the sensitiveness to noise and instance variations.

We also notice that BMEs have very limited performance especially when the testing is

performed on BU-4DFE (Experiment B and C) where 3D pose variations and multiple

pose-unrelated factors exist. The manifold degradation in this case adversely affects the

manifold embedding process, which highlights the significance of the proposed uniform

geometry representation and mapping directions to effectively factorize pose-related and

-unrelated factors.
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2.4.3 Evaluation on Faces In the Wild

Experiments on faces in the wild are conducted to demonstrate the performance of different

approaches on real-world data. The experiments on AFW are carried out as follows. We

use the annotations of facial landmarks as face detector to crop faces out. Faces that are

larger than 64 × 64 are preserved for experiments. This leaves totally 205 images with

459 faces in the testing set. Since there are only 1D discrete yaw annotations available in

AFW, we use dataset (i) from CMU-MultiPIE and dataset (ii) from BU-4DFE together to

train pose estimators for BME, SL2, PLS, Multi-class SVM and our approach. For these

estimators, the results of continuous yaw predictions are bucketed with a 15◦ or 30◦ spacing

for performance evaluation. For TSPM, we use the reported results in [158] for both the

independent model and the fully shared model.

Experimental results of different methods are compared in Table 2.2. It shows that

our method outperforms other approaches in terms of the fraction of testing images with

prediction errors less then given tolerances. The uniform factorization framework and the

generative ability of our approach guarantees the robust and accurate pose prediction on the

challenging unconstrained data, where drastic variations among identity, facial expression,

illumination and other latent factors exists. Another significant advantage of our approach is

that, unlike other estimators that can provide only 1- or 2-dimensional pose estimation, our

estimators can provide full 3D pose prediction by the 3-sphere manifold embedding. Please

refer to Figure 2.4 for examples of pose estimation results when applying our approach on

AFW dataset in uncontrolled settings.

2.4.4 Validity of Instance Parametric Subspace

Wecarry out experiments to verify the validity of the proposed instance parametric subspace.

100 instances from CMU-MultiPIE are randomly selected to train a 1D yaw estimator. Each

instance contains 13 images for a certain subject (identity) with one of the 6 facial expression

under certain illumination condition. Since the estimator needs to provide continuous pose
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Figure 2.4: Examples of the pose prediction of our approach on AFW. There are extensive variations on the identity, facial expression,
illumination and background clutters. The robust performance proves the effectiveness of the proposed instance parameterization to
handle multiple pose-unrelated instance variations in uncontrolled settings.

prediction, the number of mapping centers is set to m = 15. We increase the number of

instance bases {I1, · · · , IL} incrementally with the order of decreasing eigenvalues. 10 new

testing instances are picked out to evaluate the performance of the pose estimation.
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Figure 2.5: The relation between the prediction accuracy (y) and the number of instance bases (x). We can use the value of δ as
a threshold to truncate instance bases with trivial eigenvalues. The remaining eigen instance bases can efficiently span the instance
parametric subspace. The magenta dash line shows an example when δ = 0.7, 40 out of all the 100 eigen instance bases are employed to
span the subspace, and the MAE on the testing instances is 3.26◦.

The relationship between the size of instance bases and prediction accuracy for the yaw

estimator is showed in Figure 2.5. Quantitative results are given in Table 2.3. It shows

that the MAE decreases fast when adding the first a few instance bases with significant

eigenvalues. The MAE converges as instance bases with trivial eigenvalues are added. At

the same time, the testing time and the trained model size grows linearly as the number of

instance bases increased. We use δ as a threshold to truncate instance bases with trivial

eigenvalues. For instance, δ = 0.6 ∼ 0.7 can best balance the trade-off between the

prediction accuracy and the trained model size and testing time. This experiment proves

that the eigen instance bases can effectively span the instance parametric subspace, which

can significantly reduce the computational cost without sacrificing the accuracy.
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Table 2.3: Quantitative results of Figure 2.5. The first column is the number of instance bases used to span the instance parametric
space. The second column indicates the ration of space variation defined in 2.11. The third and the fourth columns show the average
trained model size and testing time per image. The last column is prediction accuracy. We can refer that the instance parametric subspace
spanned by 30 ∼ 40 instance bases can best balance the prediction accuracy and the computational cost.

Bases Ratio Model Testing MAE
Number δ Size (KB) Time (ms) ±SD (◦)

1 0.216 1.1 18.5 7.04 ± 6.24
10 0.407 7.9 26.1 4.20 ± 4.15
20 0.529 15.5 32.7 3.69 ± 3.72
30 0.625 23.2 42.9 3.45 ± 3.54
40 0.704 29.4 56.3 3.26 ± 3.31
50 0.773 38.6 70.9 3.20 ± 3.26
60 0.832 45.2 91.3 3.12 ± 3.20
70 0.884 54.9 102.6 3.07 ± 3.11
80 0.929 67.2 124.0 3.04 ± 3.09
90 0.968 78.4 135.8 3.00 ± 3.07
100 1.000 85.9 158.3 2.96 ± 2.99

2.5 Discussion

In this study, we presented a novel head pose estimation approach. We propose the instance

parametric subspace to handle multiple instance variations in a generative way. The coarse-

to-fine framework, which employs a unit circle on the coarse layer and a 3-sphere on the

fine layer to model the uniform geometry representation, can significantly alleviate the

manifold degradation problem by learning instance-dependent nonlinear mappings in an

unconventional direction. Experiments on both experimental and in-the-wild databases

demonstrate the superior performance of our approach compared with state-of-the-arts in

terms of prediction accuracy. A limitation of our approach is that our current approach

relies on an external face detector to locate the face. In future work, we plan to combine the

face detection and pose estimation together in a unified system for complete face detection

and head pose estimation.
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Chapter 3

Facial Landmark Tracking

We propose a novel method for real-time face alignment in videos based on a recurrent

encoder-decoder network model. Our proposed model predicts 2D facial point heat maps

regularized by both detection and regression loss, while uniquely exploiting recurrent

learning at both spatial and temporal dimensions. At the spatial level, we add a feedback

loop connection between the combined output responsemap and the input, in order to enable

iterative coarse-to-fine face alignment using a single network model, instead of relying on

traditional cascaded model ensembles. At the temporal level, we first decouple the features

in the bottleneck of the network into temporal-variant factors, such as pose and expression,

and temporal-invariant factors, such as identity information. Temporal recurrent learning

is then applied to the decoupled temporal-variant features. We show that such feature

disentangling yields better generalization and significantly more accurate results at test

time. We perform a comprehensive experimental analysis, showing the importance of each

component of our proposed model, as well as superior results over the state of the art and

several variations of our method in standard datasets. 1
1The project page: https://sites.google.com/site/xipengcshomepage/eccv2016

https://sites.google.com/site/xipengcshomepage/eccv2016
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3.1 Introduction

Face landmark detection plays a fundamental role in many computer vision tasks, such

as face recognition/verification, expression analysis, person identification, and 3D face

modeling. It is also the basic technology component for a wide range of applications like

video surveillance, emotion recognition, augmented reality on faces, etc. In the past few

years, many methods have been proposed to address this problem, with significant progress

being made towards systems that work in real-world conditions (“in the wild”).

Multiple lines of research have been explored for face alignment in last two decades.

Early research includes methods based on active shape models (ASMs) [19, 81] and active

appearance models (AAMs) [30]. ASMs iteratively deform a shape model to the target

face image, while AAMs impose both shape and object appearance constraints in the

optimization process. Recent advances in the field are largely driven by regression-based

techniques [145, 15, 153, 63, 154]. These methods usually take advantage of large-scale

annotated training sets (lots of faces with labeled landmark points), achieving accurate

results by learning discriminative regression functions that directly map facial appearance

to landmark coordinates. The features extracted for regressing landmarks can be either

hand-crafted features [145, 15], or features extracted from convolutional neural networks

[153, 63, 154]. Although these methods can achieve very reliable results in standard

benchmark datasets, they still suffer from limited performance in challenging scenarios,

e.g., involving large face pose variations and heavy occlusions.

A promising direction to address these challenges is to consider video-based face align-

ment (i.e., sequential face landmark detection) [121], leveraging temporal information and

identity consistency as additional constraints [139]. Despite the long history of research in

rigid and non-rigid face tracking [10, 88, 21, 91], current efforts have mostly focused on face

alignment in still images [113, 153, 136, 156]. When videos are considered as input, most

methods perform landmark detection by independently applying models trained on still

images in each frame in a tracking-by-detection manner [140], with notable exceptions such
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as [2, 102], which explore incremental learning based on previous frames. These methods

do not take full advantage of the temporal information to predict face landmarks for each

frame. How to effectively model long-term temporal constraints while handling large face

pose variations and occlusions is an open research problem for video-based alignment.

In this work, we address this problem by proposing a novel recurrent encoder-decoder

deep neural network model (see Figure 3.1), named as RED-Net. The encoding module

projects image pixels into a low-dimensional feature space, whereas the decoding module

maps features in this space to 2D facial point maps, which are further regularized by a

regression loss.

Our encoder-decoder framework allows us to explore spatial refining of our landmark

prediction results, in order to handle faces with large pose variations. More specifically,

we introduce a feedback loop connection between the aggregated 2D facial point maps and

the input. The intuition is similar to cascading multiple regression functions [145, 153] for

iterative coarse-to-fine face alignment, but in our approach the iterations are modeled jointly

with shared parameters, using a single network model. It provides significant parameter

reduction when compared to traditional methods based on cascaded neural networks. A

recurrent structure also avoids the effort to explicitly divide the task into multiple stage

prediction problems. This subtle differencemakes the recurrentmodelmore elegant in terms

of holistic optimization. It can implicitly track the prediction behavior in different iterations

for a specific face example, while cascaded predictions can only look at the immediate

previous cascade stage. Our design also shares the same spirit of residual networks [39].

By adding feedback connections from the predicted heatmap, the network only needs to

implicitly predict the residual from previous predictions in subsequent iterations, which is

arguably easier and more effective than directly predicting the absolute landmark locations.

For more effective temporal modeling, we first decouple the features in the bottleneck

of the network into temporal-variant factors, such as pose and expression, and temporal-

invariant factors, such as identity. We disentangle the features into two components,
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where one component is used to learn face recognition using identity labels, and the

other component encodes temporal-variant factors. To utilize temporal coherence in our

framework, we apply recurrent temporal learning to the temporal-variant component. We

used Long Short Term Memory (LSTM) to implicitly abstract motion patterns by looking

at multiple successive video frames, and use this information to improve landmark fitting

accuracy. Landmarks with large pose variation are typically outliers in a landmark training

set. By looking at multiple frames, it helps to reduce the inherent prediction variance.

We show in our experiments that our encoder-decoder framework and its recurrent

learning in both spatial and temporal dimensions significantly improve the performance of

sequential landmark localization. In summary, ourworkmakes the following contributions:

• We propose a novel recurrent encoder-decoder networkmodel for real-time sequential

face landmark detection. To the best of our knowledge, this is the first time a recurrent

model is investigated to perform video-based facial landmark detection.

• Our proposed spatial recurrent learning enables a novel iterative coarse-to-fine face

alignment using a single network model. This is critical to handle large face pose

changes and a more effective alternative than cascading multiple network models in

terms of accuracy and memory footprint.

• Different from traditionalmethods, we apply temporal recurrent learning to temporal-

variant features which are decoupled from temporal-invariant features in the bottle-

neck of the network, achieving better generalization and more accurate results.

• We provide a detailed experimental analysis of each component of our model, as well

as insights about key contributing factors to achieve superior performance over the

state of the art.
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3.2 Related Work

Face alignment has a long history of research in computer vision. Here we briefly discuss

face alignment works related to our approach, as well as advances in deep learning, like the

development of recurrent and encoder-decoder neural networks.

Regression-based face landmark detection. Recently, regression-based face landmark

detection methods [3, 128, 145, 15, 153, 2, 156, 136, 52, 144, 159] have achieved significant

boost in the generalization performance of face landmark detection, compared to algorithms

based on statistical models such as Active shape models [19, 81] and Active appearance

models [30]. Regression-based approaches directly regress landmark locations based on

features extracted from face images. Landmark models for different points are learned

either in an independent manner or in a joint fashion [15]. When all the landmark locations

are learned jointly, implicit shape constraints are imposed because they share the same

or partially the same regressors. This paper performs landmark detection via both a

classification model and a regression model. Different from most previous methods, this

work deals with face alignment in a video. It jointly optimizes detection output by utilizing

multiple observations from the same person.

Cascaded models for landmark detection. Additional accuracy improvement in face

landmark detection performance can be obtained by learning cascaded regression models.

Regression models from earlier cascade stages learn coarse detectors, while later cascade

stages refine the result based on early predictions. Cascaded regression helps to gradually

reduce the prediction variance, thus making the learning task easier for later stage detec-

tors. Many methods have effectively applied cascade-like regression models for the face

alignment task [145, 128, 153]. The supervised descent method [145] learns cascades of

regression models based on SIFT features. Sun et. al. [128] proposed to use three levels of

neural networks to predict landmark locations. Zhang et. al. [153] studied the problem via

cascades of stacked auto-encoders which gradually refine the landmark position with higher

resolution inputs. Compared to these efforts which explicitly define cascade structures, our
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method learns a spatial recurrent model which implicitly incorporates the cascade structure

with shared parameters. It is also more "end-to-end" compared to previous works that

divide the learning process into multiple stages.

Face alignment in videos. Most face alignment algorithms utilize temporal information

by initializing the location of landmarks with detection results from the previous frame,

performing alignment in a tracking-by-detection fashion [140]. Asthana et. al. [2] and

Peng et. al. [102] proposed to learn a person specific model using incremental learning.

However, incremental learning (or online learning) is a challenging problem [132], as the

incremental scheme has to be carefully designed to prevent model drifting [133]. In our

framework, we do not update our model online. All the training is performed offline and

we expect our LSTM unit to capture landmark motion correlations.

Recurrent neural networks. Recurrent neural networks (RNNs) are widely employed

in the literature of speech recognition [80] and natural language processing [79]. They

have also been recently used in computer vision. For instance, in the tasks of image

captioning [56] and video captioning [147], RNNs are usually employed for text generation.

RNNs are also popular as a tool for action classification. As an example, Veeriah et.

al. [138] use RNNs to learn complex time-series representations via high-order derivatives

of states for action recognition.

Encoder-decoder networks Encoder and decoder networks are well studied in machine

translation [17] where the encoder learns the intermediate representation and the decoder

generates the translation from the representation. It is also investigated in speech recogni-

tion [74] and computer vision [4, 41]. Yang et. al. [146] proposed to decouple identity units

and pose units in the bottleneck of the network for 3D view synthesis. However, how to fully

utilize the decoupled units for correspondence regularization [73] is still unexplored. In this

work, we employ the encoder to learn a joint representation for identity, pose, expression as

well as landmarks. The decoder translates the representation to landmark heatmaps. Our

spatial recurrent model loops the whole encoder-decoder framework.
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3.3 Method

The task is to locate facial landmarks in sequential images using an end-to-end deep neural

network. Figure 3.1 shows an overview of our approach. The network consists of a series

of nonlinear and multi-layered mappings, which can be functionally categorized as four

modules: (1) encoder-decoder fenc and fdec, (2) spatial recurrent learning fsrn, (3) temporal

recurrent learning ftrn, and (4) constrained identity disentangling fcls. Details of the novelty

are described in following sections.

3.3.1 Encoder-Decoder

The input of the encoder-decoder is a single video frame x ∈ RW×H×3 and the output is a

response map z ∈ RW×H×Cz which indicates landmark locations. Cz = 7 or 68 depending

on the number of landmarks to be predicted.

The encoder performs a sequence of convolution, pooling and batch normalization [50]

to extract a low-dimensional representation e from both x and z:

e = fenc
(
x, z; θenc

)
, fenc : RW×H×C → RWe×He×Ce, (3.1)

where fenc
(
·; θenc

)
denotes the encoder mapping with parameters θenc. We concatenate x

and z along the channel dimension thus C = 3 + Cz. The concatenation is fed into the

encoder as an updated input.

Symmetrically, the decoder performs a sequence of unpooling, convolution and batch

normalization to upsample the representation code to the response map:

z = fdec(e; θdec), fdec : RWe×He×Ce → RW×H×Cz, (3.2)
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Figure 3.1: Overview of the recurrent encoder-decoder network: (a) encoder-decoder (Section 3.3.1); (b) spatial recurrent learn-
ing (Section 3.3.2); (c) temporal recurrent learning (Section 3.3.3); and (d) supervised identity disentangling (Section 3.3.4).
fenc, fdec, fsrn, ftr n, fcls are potentially nonlinear and multi-layered mappings.

where fdec
(
·; θdec

)
denotes the decoder mapping with parameters θdec. z has the same

W ×H dimension as x but Cz channels for Cz landmarks. Each channel presents pixel-wise

confidences of the corresponding landmark.

The encoder-decoder design plays an important role in our task. First, the decoder’s

output z has the same resolution (but a different number of channels) as the input image

x. Thus it is easy to directly concatenate z with x along the channel dimension. The

concatenation provides pixel-wise spatial cues to update the landmark prediction by the

proposed spatial recurrent learning ( fsrn). We will explain it soon in Section 3.3.2.

Second, the encoder-decoder network can achieve a low-dimensional representation

e in the bottleneck. We can utilize the domain prior to decouple e into two parts: the

identity code ei, which is temporal-invariant as we are tracking the same person; and the

non-identity code ep, which models temporal-variant factors [97, 96] such as head pose,

expression, illumination, and etc.

In Section 3.3.3, we propose the temporal recurrent learning ( ftrn) to model the changes

of ep. In Section 3.3.4, we show how to speed up the network training by carrying out the

supervised identity disentangling ( fcls) on ei.

Third,the encoder-decoder network enables a fully convolutional design. The bottleneck

embedding e and output response map z are feature maps instead of fully-connected neurons
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that are often used in ordinary convolutional neural networks. This design is highlymemory-

efficient and can significantly speed up the training and testing [72], which is preferred by

video-based applications.

3.3.2 Spatial Recurrent Learning

The purpose of spatial recurrent learning is to pinpoint landmark locations in a coarse-to-fine

manner. Unlike existing approaches [128, 153] that employ multiple networks in cascade,

we accomplish the coarse-to-fine search in a single network in which the parameters are

jointly learned in successive recurrent steps.

The spatial recurrent learning is performed by iteratively feeding back the previous

prediction, stacked with the image as shown in Figure 3.2, to eventually push the shape

prediction from an initial guess to the ground truth:

zk = fsrn
(
x, zk−1; θsrn

)
, k = 1, · · · ,K (3.3)

where fsrn
(
·; θsrn

)
denotes the spatial recurrent mapping with parameters θsrn. z0 is the

initial response map, which could be a response map generated by the mean shape or the

output of the previous frame.

In our conference version [94], detection-based supervision is performed in every re-

current step. It is robust to appearance variations but lacks precision, because pixels within

a certain radius around the ground-truth location are labeled using the same value. To ad-

dress this limitation, motivated by [13], we propose to further explore the spatial recurrent

learning by performing detection-followed-by-regression in successive steps.

Specially, we carry out a two-step recurrent learning by setting K = 2. The first step

performs landmark detection that aims to locate 7 major facial components (i.e. C = 7 in

Equation (3.2)). The second step performs landmark regression that refines all 68 landmarks



46

x

zd zr

z0 Detection

Regression

fsrn fsrn

Figure 3.2: An unrolled illustration of spatial recurrent learning. The response map is pretty coarse when the initial guess is far away
from the ground truth if large pose and expression exist. It eventually gets refined in the successive recurrent steps.

positions (i.e. C = 68). For clarity, we use Cd and Cr to denote the number of channels

output by the detection and the regression steps, respectively.

The landmark detection step guarantees fitting robustness especially in large pose and

partial occlusions. The encoder-decoder aims to output a binary map of Cd channels, one

for each major facial component. The detection step outputs:

zd = fdec
(
fenc(x, z0; θenc); θdec

)
, zd ∈ R

W×H×Cd, (3.4)

where the detection task can be trained using pixel-wise sigmoid cross-entropy loss function:

`d =
1

Md

Cd∑
c=1

W∑
i=1

H∑
j=1

zc
i j logy

c
i j + (1 − zc

i j)log(1 − yc
i j) (3.5)

where Md = Cd ×W × H. Here zc
i j denotes the sigmoid output at pixel location (i, j) in zd

for the c-th landmark. yc
i j is the ground-truth label at the same location, which is set to 1 to

mark the presence of the corresponding landmark and 0 for the remaining background.

Note that this loss function is different from the N-way cross-entropy loss used in our

previous conference paper [94]. It allows multiple class labels for a single pixel, which

helps to tackle the landmark overlaps.
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The landmark regression step improves the fitting accuracy from the outputs of the

previous detection step. The encoder-decoder aims to output a heatmap of Cr channels, one

for each landmark. The regression step outputs:

zr = fdec
(
fenc(x, zdet ; θenc); θdec

)
, zr ∈ R

W×H×Cr, (3.6)

where the regression task can be trained using pixel-wise L2 loss function:

`r =
1

Mr

Cr∑
c=1

W∑
i=1

H∑
j=1
‖zc

i j − yc
i j ‖

2
2, (3.7)

where Mr = Cd ×W × H. Here zc
i j denotes the heatmap value of the c-th landmark at pixel

location (i, j) in zr for the c-th landmark. yc
i j is the ground-truth value at the same location,

which obeys a Gaussian distribution centered at the landmark with a pre-defined standard

deviation.

Now the spatial recurrent learning (Equation (3.3)) can be achieved by minimizing the

detection loss (Equation (3.5)) and the regression loss (Equation (3.7)), simultaneously:

argmin
θenc,θdec

`d + λ`r, (3.8)

where λ balances the loss between the two tasks. Note that the spatial recurrent learning

do not introduce new parameters but sharing the same parameters of the encoder-decoder

network, i.e. θsrn = {θenc, θdec}.

The spatial recurrent learning is highly memory efficient. It is capable of end-to-end

training, which is a significant advantage compared with the cascade framework [13]. More

importantly, the network can jointly learn the coarse-to-fine fitting strategy in recurrent

steps, instead of training cascaded networks independently [128, 153], which guarantees

robustness and accuracy in challenging conditions.
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3.3.3 Temporal Recurrent Learning

In addition to the spatial recurrent learning, we also propose a temporal recurrent learning

to model factors, e.g. head pose, expression, and illumination, that may change over time.

These factors affect the landmark locations significantly. Thus we can expect improved

tracking accuracy by modeling their temporal variations.

As mentioned in Section 3.3.1, the bottleneck embedding e can be decoupled into two

parts: the identity code ei and the non-identity code ep:

ei ∈ R
We×He×Ci, ep ∈ R

We×He×Cp,Ce = Ci + Cp, (3.9)

where ei and ep model the temporal-invariant and -variant factors, respectively. We leave

ei to Section 3.3.4 for additional identity supervision, and exploit variations of ep via the

recurrent model. Please refer to Figure 3.3 for an unrolled illustration of the proposed

temporal recurrent learning.

Mathematically, givenT successive video frames {xt ; t = 1, · · · ,T}, the encoder extracts

a sequence of embeddings {et
i, e

t
p; t = 1, · · · ,T}. Our goal is to achieve a nonlinear mapping

ftrn, which simultaneously tracks a latent state ht and updates et
p at time t:

ht = p(et
p, h

t−1; θtrn), t = 1, · · · ,T

et∗
p = q(ht ; θtrn), (3.10)

where p(·) and q(·) are functions of ftrn
(
·; θtrn

)
with parameters θtrn. et∗

p is the update of et
p.

The temporal recurrent learning is trained using T successive frames. At each frame,

the detection and regression tasks are performed for the spatial recurrent learning. The

recurrent learning is performed by minimizing Equation (3.8) at every time step t:

argmin
θenc,θdec,θtrn

T∑
t=1

`t
d + λ`

t
r, (3.11)
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Figure 3.3: An unrolled illustration of temporal recurrent learning. Ci encodes temporal-invariant factor which subjects to the same
identity constraint. Cp encodes temporal-variant factors which is further modeled in ftr n .

where θtrn denotes network parameters of the temporal recurrent learning, e.g. parameters

of LSTM units. It is worth mentioning that, we perform recurrent learning in both spatial

and temporal dimensions by jointly optimizing {θenc, θdec, θtrn} in Equation (3.11).

The temporal recurrent module is memorizing as well as modeling the changing pattern

of the temporal-variant factors. Our experiments indicated that the offline learned model

can significantly improve the online fitting accuracy and robustness, especially when large

variations or partial occlusions happen.

3.3.4 Supervised Identity Disentangling

There is no guarantee that temporal-invariant and -variant factors can be completely de-

coupled in the bottleneck by simply splitting the bottleneck representation e into two parts.

More supervised information is required to achieve the disentangling. To address this is-

sue, we propose to apply a face recognition task on the identity code ei, in addition to the

temporal recurrent learning applied on non-identity code ep.

The supervised identity disentangling is formulated as an N-way classification problem.

N is the number of unique individuals present in the training sequences. In general, we

associate the identity representation ei with a one-hot encoding zi to indicate the score of
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each identity:

zi = fcls(ei; θcls), fcls : RWe×He×Ci → RN, (3.12)

where fcls(·; θcls) is the identity classification mapping with parameters θcls. The identity

task is trained using N-way cross-entropy loss:

`cls =
1
N

N∑
n=1

znlogyn + (1 − zn)log(1 − yn), (3.13)

where zn denotes the softmax activation of the n-th element in zi. yn is the n-th element of

the identity annotation yi, which is a one-hot vector with a 1 for the correct identity and all

0s for others.

Now we can jointly train all the three tasks, i.e. fsrn, ftrn, and fcls. Based on Equation

(3.11) and (3.13), we simultaneously minimize the detection and regression loss together

with the identity loss at every time step t:

argmin
θenc,θdec,θtrn,θcls

T∑
t=1

`t
det + λ`

t
reg + γ`

t
cls, (3.14)

where γ weights the identity constraint. An obvious advantage of our approach is that the

whole network can be trained end-to-end by optimizing all parameters {θenc, θdec, θtrn, θcls}

simultaneously, which guarantees an efficient learning.

It has been shown in [154] that learning the face alignment task together with correlated

tasks, e.g. head pose, can improve the fitting performance. We have a similar observation

when adding face recognition task to the alignment task. More importantly, we find that the

additional identity task can effectively speed up the training of the entire encoder-decoder

network. In addition to more supervision, the identity task helps to decouple the identity

and non-identity factors more completely, which facilitates the training of the temporal

recurrent learning.
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3.4 Network Architecture

We present the architecture details of proposed modules: fenc/dec, fsrn, ftrn, and fcls. All the

four modules are designed in a single network that can be trained end-to-end. We introduce

two variant designs of fenc/dec, based on which fsrn, ftrn, and fcls are designed accordingly.

3.4.1 The Design of fenc and fdec

To best evaluate the proposed method, we investigate two variant designs of the encoder-

decoder: VGGNet [122] based and ResNet [39] based. The VGGNet-based design has a

symmetrical structure between the encoder and decoder; while the ResNet-based design

has an asymmetrical structure due to the usage of the residual modules.

VGGNet-based design. Table 3.1 presents the network specification. Figure 3.4 (left)

shows the network architecture. The encoder is designed based on a variant of the VGG-16

network [122, 57]. It has 13 convolutional layers of constant 3×3 filters. We can, therefore,

initialize the training process fromweights trained on large datasets for object classification.

We remove all fully connected layers in favor of a fully convolutional manner [72], which

can effectively reduce the number of parameters from 117M to 14.8M [4]. The bottleneck

feature maps are split into two parts for the identity and non-identity codes, respectively.

This design preserves rich spatial information in 3D feature maps rather than 1D feature

vectors, which is important for landmark localization.

We use max-pooling to halve the feature resolution at the end of each convolutional

block. The pooling window size is 2×2 and the stride is 2. Although max-pooling can help

to achieve translation invariance, it would cause a considerable loss of spatial information

especially when multiple max-pooling layers are applied in a cascade. To solve this issue,

we use a 2-bit code to record the index of the maximum activation selected in a 2 × 2

pooling window [152]. As illustrated in Figure 3.4 (right), the memorized index is then

used in the corresponding unpooling layer to place each activation back to its original
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Table 3.1: Specification of the VGGNet-based fenc/dec design: block name (Top), feature map dimension (Middle), and layer
configuration (Bottom).

[
3 × 3, 64

]
means there are 64 filters (channels), each has a size of 3 × 3. Pooling or unpooling operations are

performed after or before each module. The pooling window is 2 × 2 with a stride of 2.

A0 A1 A2 A3 A4
128 × 128 64 × 64 32 × 32 16 × 16 8 × 8
2× conv 2× conv 3× conv 3× conv 3× conv[
3 × 3, 64

] [
3 × 3, 128

] [
3 × 3, 256

] [
3 × 3, 512

] [
3 × 3, 512

]
pooling pooling pooling pooling -

B4 B3 B2 B1
16 × 16 32 × 32 64 × 64 128 × 128
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Figure 3.4: Left: the architecture of the VGGNet-based fenc/dec design. The encoder (A0−4) and the decoder (B4−1) are nearly
symmetrical except that fenc has one more block A0. A0 downsamples the input image from 256 × 256 to 128 × 128. So x and z have
the same resolution and can be easily concatenated along the channel dimension. Right: an illustration of the pooling/unpooing with
indices. The corresponding pooling and unpooling share pooling indices using a 2-bit switch in each 2 × 2 pooling window.

location. This strategy is particularly useful when the decoder recovers the input structure

from highly compressed feature maps. Besides, it is more efficient to store spatial indices

than to memorize entire feature maps of float precision as indicated in FCNs [72].

The decoder is nearly symmetrical to the encoder with a mirrored configuration but

replacing all max-pooling with unpooling layers. The encoder is slightly deeper than the

decoder with one more covolutional block A0 at the beginning. A0 downsamples the input

image from 256 × 256 to 128 × 128. So x and z have the same resolution and can be

easily concatenated along the channel dimension. We find that batch normalization [50]

can significantly boost the training speed since it reduces internal shifting in the mini batch.

Thus, we apply batch normalization as well as rectified linear unit (ReLU) [85] after each

convolutional layer.

ResNet-based design. Table 3.2 presents the network specification. Figure 3.5 (left)

shows the network architecture. The encoder is designed based on a variant of the ResNet-
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Table 3.2: Specification of the ResNet-based fenc/dec design: block name (Top), feature map dimension (Middle), and layer
configuration (Bottom). We use conv/decov layers with a stride of 2 to halve or double the feature map dimensions. Thus no
pooling/unpooling layer is used. The skip connections E1−3 are specified in Table 3.3.

C0 C1 C2 C3 C4
128 × 128 64 × 64 32 × 32 16 × 16 8 × 8
1× conv 3× conv 8× conv 36× conv 3× conv[
7 × 7, 64
strid, 2

] 
1 × 1, 64
3 × 3, 64
1 × 1, 256



1 × 1, 128
3 × 3, 128
1 × 1, 512




1 × 1, 256
3 × 3, 256
1 × 1, 1024




1 × 1, 512
3 × 3, 512
1 × 1, 2048


D4 D3 D2 D1

16 × 16 32 × 32 64 × 64 128 × 128
1× dconv 1× dconv 1× dconv 1× dconv
2 × 2, 512
stride, 2

1 × 1, 1024



2 × 2, 256
stride, 2

1 × 1, 512



2 × 2, 128
stride, 2

1 × 1, 256




2 × 2, 64
stride, 2

1 × 1, 128
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1 ⇥ 1, 256

3 ⇥ 3, 64
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Figure 3.5: Left: the architecture ofResNet-based fenc/dec design (Left). The encoder (C0−4) and the decoder (D4−1) are asymmetrical.
fenc is much deeper than fdec , i.e. 151 vs. 4 layers. C0 downsamples the input image from 256 × 256 to 128 × 128. Skip connections
(E1−3) are used to bridge hierarchical spatial information at different resolutions. Right: an example of residual unit used in C1. 1 × 1
convolutional layers are used in the residual unit to cut down the number of filter parameters.

152 [39], which has 50 residual units of totally 151 convolutional layers. Figure 3.5 (right)

shows a residual unit used in C1. 1×1 convolutional layers are used to cut down the number

of filter parameters. According to [39], the residual shortcut guarantees efficient training

of the very deep network, as well as improved performance compared with vanilla design

[122]. Stride-2 convolutions instead of max poolings are used to halve the feature map

resolution at the end of each block.

Different from the VGGNet-based design, the encoder and decoder are asymmetrical.

The encoder is much deeper than the decoder, and the decoder has only 4 upsampling blocks

of totally 4 convolutional layers. A practical consideration behind this design is that the

encoder has to tackle a complicated task, e.g. understand the image and translate it to a
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Table 3.3: Specification of the skip connections. Note that E3 andC1, E2 andC2, E1 andC1 share the same configurations. The bridged
features are directly added to the outputs of D4−1 at the corresponding resolutions.

E3 E2 E1
16 × 16 32 × 32 64 × 64
3× conv 3× conv 3× conv

1 × 1, 256
3 × 3, 256
1 × 1, 1024



1 × 1, 128
3 × 3, 128
1 × 1, 512




1 × 1, 64
3 × 3, 64
1 × 1, 256


low-dimensional embedding, while the decoder’s task is relatively simpler, e.g. recover a

set of response maps to mark landmark locations from the embedding. We use stride-2

de-convolutions to double the feature map resolution in each block. Similar to the VGGNet-

based design, an additional convolutional block C0 is used to downsample the inpuy image

from 256× 256 to 128× 128. So x and z have the same resolution for an easy channel-wise

concatenation.

Another difference between the ResNet-based design and the VGGNet-based design

is the usage of skip connections E3−1 [87] as shown in Figure 3.5 and specified in Table

3.3. These skip connections are used to bridge hierarchical spatial information between the

encoder and decoder at different resolutions. They provide shortcuts of the gradient flow in

backpropagation for efficient training. Besides, they also enable us to use a shallow decoder

design since rich spatial information can be delivered through the shortcuts.

3.4.2 The Design of fsrn and ftrn

The design of the proposed fsrn and ftrn aims to tradeoff between network complexity and

training or testing efficiency.

Spatial recurrent learning. We perform a two-step spatial recurrent learning. Partic-

ularly, the first step performs landmark detection to locate 7 major facial components that

are robust to variations, i.e. four corners of left/right eyes, one nose tip, and two corners of

the mouth. The second step performs landmark regression to refine the predicted locations



55

01 11

00 10

A
ve

ra
ge

P
o
ol

1
⇥

1,
25

6

1
⇥

1,
25

6

U
p

S
am

p
li
n
g

L
S
T

M
,2

56

D
ro

p
ou

t,
0.

6

A
ve

ra
ge

P
o
ol

1
⇥

1,
25

6
1
⇥

1
,6

4

1
⇥

1
,2

5
6

3
⇥

3
,6

4

ep ei Ziep

Figure 3.6: Left: the architecture of ftr n . We use average pooling to cut down the input dimension of LSTM and recover the dimension
by upsampling. Right: the architecture of fcls . We set zi ∈ R256 to achieve a compact identity representation.

of all 68 landmarks. This coarse-to-fine strategy guarantees efficient and robust spatial

recurrent learning.

As mentioned in Section 3.3.2, the landmark detection task outputs a binary map of

Cd = 7 channels, in which the values within a radius of 5 pixels around the ground truth are

set to 1 and the values for the remaining background are set to 0. The landmark regression

task outputs a heat map of Cr = 68 channels, in which the correct locations are represented

by Gaussian with a standard deviation of 5 pixels. The two tasks share the weights of the

entire encoder-decoder except for the last convolutional layer, which uses 1×1 convolutional

layers to adapt to either the binary map or the heat map.

In either landmark detection or regression, the foreground pixels are much less than

the background ones, which lead to highly unbalanced loss contributions. To solve this

issue, we enlarge the foreground loss defined in Equation (3.8) and (3.11) by multiplying a

constant weight (15 in most cases) to focus more on foreground pixels.

Temporal recurrent learning. We specify the configuration of ftrn in Figure 3.6 (left).

A Long Short Term Memory (LSTM) module [40, 87] is used to model the temporal

variations of the identity code. There are 256 hidden neurons are used in LSTM. We

empirically set the number of successive frames as T = 10 in Equation (3.11). The

prediction loss is calculated at each time step. Directly feeding the non-identity code ep into

LSTM layers would lead to a slow training as it needs a large number of neurons for both

the input and output. Instead, we apply average pooling to compress ep to a 256d vector

before inputting to the LSTM and recover it by unpooling with indices. Please check Figure

3.4 (left) for details.
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3.4.3 The Design of fcls

The design of fcls is shown in Figure 3.6 (right). The purpose of fcls is to apply additional

identity constraint on ei, so the identity and non-identity codes can be decoupled more

completely. Specially, fcls takes ei as the input and output a 256d feature vector for the

identity representation. Instead of using a very long feature vector in former face recognition

networks [131], e.g. 4096d, we use a compact one, e.g. 256d, to reduce the computational

cost for efficient training [118, 130]. We apply 0.6 dropout on the 256d vector to avoid

overfitting. The vector is then followed by a fully-connected layer of N neurons to output

an one-hot vector for the identity prediction, where N is the number of different subjects in

training sequences. We use the cross-entropy loss defined in Equation (3.13) to train the

identity task.

3.5 Experiments

We first introduce the datasets and settings. Then we carry out comprehensive module-wise

study to validate the proposed method in various aspects. Finally, we compare our method

with state-of-the-arts on both controlled and in-the-wild datasets.

3.5.1 Datasets and Settings

Datasets. We conduct our experiments on both image and video datasets. These datasets

are widely used in face alignment and recognition. They present challenges in multiple

aspects such as large pose, extensive expression, severe occlusion and dynamic illumination.

Totally 7 datasets are used:

• Annotated Facial Landmarks in the Wild (AFLW) [59]

• Labeled Faces in the Wild (LFW) [66]

• Helen facial feature dataset (Helen) [65, 113]
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Table 3.4: The image and video datasets used in training and evaluation. We split AFLW and 300-VW into two parts for training and
evaluation, respectively. LFW, Helen, LFPW, TF, and FM are used for training only. Note that LFW, TF, FM and 300-VW have both
landmark and identity annotations; while the others have only landmark annotations.

Method in-the-wild img # vid # lmk # sub # train # test #
AFLW [59] yes 21,080 - 21pt - 16,864 4,216
LFW [66] yes 12,007 - 7pt 5,371 12,007 0
Helen [65] yes 2,330 - 194pt - 2,330 0
LFPW [6] yes 1,035 - 68pt - 1,035 0
TF [28] no 500 5 68pt 1 0 500
FM [102] yes 2,150 6 68pt 6 0 2,150

300-VW [121] yes 114,000 114 68pt 105 90,000 24,000

• Labeled Face Parts in the Wild (LFPW) [6, 113]

• Talking Face (TF) [28]

• Face Movies (FM) [102]

• 300 face Videos in the Wild (300-VW) [121]

We list configurations and setups of each dataset in Table 3.4. Different datasets have

different landmark annotation protocol. For Helen, LFPW, TF, FM and 300-VW, we follow

[113, 115] to obtain both 68- and 7-landmark annotation. ForAFLW,we generat 7-landmark

annotations using the original 21 landmarks. The landmark annotation of LFW is given by

[66]. For identity labels, we manually label all videos in TF, FM, and 300-VW. It is easy

since the identity is unique is a given video.

AFLW and 300-VW have the largest number of labeled images. They are also more

challenging than others due to the extensive variations. Therefore, we use them for both

training and evaluation. More specifically, 80% of the images in AFLW and 90 out of 114

videos in 300-VW are used for training, and the rest are used for evaluation. We sample

videos to roughly cover the three different scenarios defined in [18], i.e. "Scenario 1",

"Scenario 2" and "Scenario 3", corresponding towell-lit, mild unconstrained and completely

unconstrained conditions.
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We perform data augmentation by sampling ten variations from each image in the image

training datasets. The sampling was achieved by random perturbation of scale (0.9 to 1.1),

rotation (±15◦), translation (7 pixels), as well as horizontal flip. To generate sequential

training data, we randomly sample 100 clips from each training video, where each clip has

10 frames. It is worth mentioning that no augmentation is applied on video training data to

preserve the temporal consistency in the successive frames.

Compared methods. We compared the proposed method with both regression based

and deep learning based approaches that reported state-of-the-art performance in uncon-

strained conditions. Totally 8 methods are compared:

• Discriminative Response Map Fitting (DRMF) [3]

• Explicit Shape Regression (ESR) [15]

• Supervised Descent Method (SDM) [145]

• Incremental Face Alignment (IFA) [2]

• Coarse-to-Fine Shape Searching (CFSS) [156]

• Deep Convolutional Network Cascade (DCNC) [128]

• Coarse-to-fine Auto-encoder Network (CFAN) [153]

• Deep Multi-task Learning (TCDCN) [154]

For image-based evaluation, we follow [3] to provide a bounding box as the face detection

output. For video-based evaluation, we follow [?] to utilize a tracking-by-detection protocol,

where the face bounding box of the current frame is calculated according to the landmark

of the previous frame.

Training strategy. Our approach is capable of end-to-end training. However, there are

only 105 different subjects presented in 300-VW,which hardly provide sufficient supervision

for the identity constraint. Tomake full use of all datasets, we conducted the training through
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three steps. First, we pre-train the network without ftrn and fcls using image-based datasets,

i.e., AFLW [59], Helen [65] and LFPW [6]. Then, fcls is engaged for identity constraint

and fine-tuned together with other modules using image-based LFW [66]. Finally, ftrn is

triggered and the entire network is fine-tuned using video-based dataset, i.e. 300-VW [121].

Experimental Settings. In every frame, the initial response map z0 (Equation (3.2)) is

generated using the landmark prediction of the previous frame. Parameter λ and γ (Equation

(3.14)) are empirically set so the ratio of `det : `reg : `cls is roughly equal to 1 : 10 : 1.

For training, we optimize the network parameters by using stochastic gradient descent

(SGD) with 0.9 momentum. We use fixed learning rate started at 0.01 and manually de-

creased it to an order of magnitude according to the validation accuracy. fenc is initialized

using pre-trained weights of VGG-16 [122] or ResNet-152 [39]. Other modules are initial-

ized with Gaussian initialization [51]. The training clips in a mini-batch have no identity

overlap to avoid oscillations of the identity loss. We perform temporal recurrent learning

in both forward and backward direction to double the usage of the sequential corpus.

For testing, we split 300-VW so that the training and testing videos do not have identity

overlap (16 videos share 7 identities) to avoid overfitting. We use the inter-ocular distance to

normalize the root mean square error (RMSE) [113] for accuracy evalutaion. A prediction

with larger than 10% mean error is reported as a failure [121].

3.5.2 Validation of Encoder-decoder Variants

In Section 3.4.1, we proposed two different designs of encoder-decoder: (1)VGGNet-based

design with symmetrical encoder and decoder, which has been mainly investigated in our

former conference paper [94]; and (2) ResNet-based design with asymmetrical encoder,

i.e., the encoder is much deeper than the decoder. In particular, skip connections are

incorporated in bridging the encoder and decoder with hierarchical spatial information at

different resolutions.
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Table 3.5: Performance comparison ofVGGNet-based andResNet-based encoder-decoderVariants. Network configurations are described
in Section 3.4.1. Row 1-2: image-based results on AFLW [59]; Row 3-4: video-based results on 300-VW [121].

Mean (%) Std (%) Time Memory
VGGNet-based 6.85 4.52 43.6ms 184Mb
ResNet-based 6.33 3.61 54.9ms 257Mb

VGGNet-based 5.16 2.57 42.5ms 184Mb
ResNet-based 4.75 2.10 56.2ms 257Mb

We compared the performance of two encoder-decoder variants on AFLW [59] and

300-VW [121]. The results are reported in Table 3.5. The results show that the ResNet-

based design outperforms the VGGNet-based variant with a substantial margin in terms of

fitting accuracy (mean error) and robustness (standard deviation). Much deeper layers, as

well as the proposed skipping shortcuts, contribute a lot to the improvement. In addition,

the ResNet-based encoder-decoder has very close computational cost to the VGGNet-based

variant, e.g. the average fitting time per image/frame and the memory usage of a trained

model, which should be attributed to the custom residual module design and the proposed

asymmetrical encoder-decoder network.

3.5.3 Validation of Spatial Recurrent Learning

We validated the proposed spatial recurrent learning on the validation set of AFLW [59].

To better investigate the benefits of spatial recurrent learning, we partitioned the validation

set into two image groups according to the absolute value of the yaw angle: (1) Common

settings where yaw ∈ [0◦-30◦); and (2) Challenging settings where yaw ∈ (30◦,90◦]. The

training sets are ensembles of AFLW [59], Helen [65] and LFPW [6] as shown in Table 3.4.

Validation of detection-followed-by-regression. To validate the proposed recurrent

detection-followed-by-regression, we investigated four different network configurations:

• Single-step prediction using loss defined in Equation (3.5);

• Single-step prediction using loss defined in Equation (3.7);
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Table 3.6: Comparison of single-step detection or regressionwith the proposed recurrent detection-followed-by-regression onAFLW [59].
The proposed method (Last Row) has the best performance especially in challenging settings.

Common (%) Challenging (%)
Error Failure Error Failure

Single-step Detection 6.05 4.62 8.14 12.4
Single-step Regression 5.92 4.75 7.87 14.5
Recurrent Det.+Det. 5.86 3.44 7.33 8.20
Recurrent Det.+Reg. 5.71 3.30 6.97 8.75

Table 3.7: Comparison of cascade and recurrent learning in the challenging settings of AFLW [59]. The latter improves accuracy with a
half memory usage of the former.

Mean (%) Std (%) Memory
Cascade Det. & Reg. 6.81 4.53 468Mb
Recurrent Det. & Reg. 6.33 3.61 257Mb

• Two-step recurrent detection-followed-by-detection;

• Two-step recurrent detection-followed-by-regression.

The mean fitting errors and failure rates are reported in Table 3.6. First, the results show

that the two-step recurrent learning can instantly decrease the fitting error and failure rate,

compared with either the single-step detection or regression. The improvement is more

significant in challenging settings with large pose variations. Second, though landmark

detection is more robust in challenging settings (low failure rate), it lacks the ability to

predict precise locations (small fitting error) compared to landmark regression. This fact

proves the effectiveness of the proposed recurrent detection-followed-by-regression.

Validation of recurrent learning. We also conducted comparisons between the pro-

posed spatial recurrent learning and the cascade models that are widely used in former

approaches [128, 153]. For a fair comparison, we implemented a two-step cascade variant

to perform detection-followed-by-regression. Each network in the cascade has exactly the

same architecture as the recurrent version. But there is no weight sharing among cas-

cades. We fully trained the cascade networks using the same training set and validated the

performance in challenging settings.
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Table 3.8: Validation of temporal recurrent learning on 300-VW [113]. ftr n helps to improve the tracking robustness (smaller std and
lower failure rate), as well as the tracking accuracy (smaller mean error). The improvement is more significant in challenging settings of
large pose and partial occlusion as demonstrated in Figure 3.7.

Common Challenging
Mean (%) Std (%) Fail (%) Mean (%) Std (%) Failure (%)

w/o ftrn 4.52 2.24 3.48 6.27 5.33 13.3
ftrn 4.21 1.85 1.71 5.64 3.28 5.40

The comparison is shown in Table 3.7. Unsurprisingly, the spatial recurrent learning

can improve the fitting accuracy. The underlying reason is taht the recurrent network

learns the step-by-step fitting strategy jointly, while the cascade networks learn each step

independently. It can better handle the challenging settings where the initial guess is usually

far away from the ground truth. Moreover, the recurrent network with shared weights can

instantly reduce the memory usage to one-half of the cascaded model.

3.5.4 Validation of Temporal Recurrent Learning

Wevalidate the proposed temporal recurrent learning on the validation set of 300-VW [121].

To better study the performance under different settings, we split the validation set into two

groups: (1) 9 videos in common settings that roughly match "Scenario 1"; and (2) 15 videos

in challenging settings that roughly match "Scenario 2" and "Scenario 3". The common,

challenging and full sets were used for evaluation.

We implemented a variant of our approach that turns off the temporal recurrent learning

ftrn. It was also pre-trained on the image training set and fine-tuned on the video training

set. Since there was no temporal recurrent learning, we used frames instead of clips to

conduct the fine-tuning which was performed for the same 50 epochs. We showed the result

with and without temporal recurrent learning in Table 3.8.

For videos in common settings, the temporal recurrent learning achieves 6.8% and

17.4% improvement in terms of mean error and standard deviation respectively, while the

failure rate is remarkably reduced by 50.8%. Temporal modeling produces better prediction
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Figure 3.7: Examples of temporal recurrent learning on 300-VW [113]. The tracked subject undergoes intensive pose and expression
variations as well as severe partial occlusions. ftr n substantially improves the tracking robustness (less variance) and fitting accuracy
(low error), especially for landmarks on the nose tip and mouth corners.

by taking consideration of history observations. It may implicitly learn to model the motion

dynamics in the hidden units from the training clips.

For videos in challenging settings, the temporal recurrent learning won with even bigger

margin. Without ftrn, it is hard to capture the drastic motion or changes in consecutive

frames, which inevitably results in higher mean error, std and failure rate. Figure 3.7

shows an example where the subject exhibits intensive pose and expression variations

as well as severe partial occlusions. The curve showed our recurrent model obviously

reduced landmark errors, especially for landmarks on nose tip and mouth corners. The less

oscillating error also suggests that ftrn improves the prediction stability over frames.

3.5.5 Benefits of Supervised Identity Disentangling

The supervised identity disentangling is proposed to better decouple the temporal-variant

and -invariant factors in the bottleneck of the encoder-decoder. This facilitates the temporal

recurrent training, yielding better generalization and more accurate fittings at test time.
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Figure 3.8: Fitting accuracy of different facial components with respect to the number of training epochs on 300-VW [121]. The proposed
supervised identity disentangling helps to achieve a more complete factor decoupling in the bottleneck of the encoder-decoder, which
yields better generalization capability and more accurate fitting results.

To study the effectiveness of the identity constraint, we removed fcls and follow the

exact training steps. The testing accuracy comparison on the 300-VW [113] is shown in

Figure 3.8. The accuracy was calculated as the ratio of pixels that were correctly classified

in the corresponding channel(s) of the response map.

The validation results of different facial components show similar trends: (1) The

network demonstrates better generalization capability by using additional identity cues,

which results in a more efficient training. For instance, after only 10 training epochs,

the validation accuracy for landmarks located at the left eye reaches 0.84 with identity

loss compared to 0.8 without identity loss. (2) The supervised identity information can

substantially boost the testing accuracy. There is an approximately 9% improvement by

using the additional identity loss. It worth mentioning that, at the very beginning of the

training (< 5 epochs), the network has inferior testing accuracy with supervised identity

disentangling. It is because the suddenly added identity loss perturbs the backpropagation

process. However, the testing accuracy with identity loss increases rapidly and outperforms

the one without identity loss after only a few more training epochs.
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Table 3.9: Mean error comparisonwith state-of-the-arts on video-based validation sets: TF, FM, and 300-VW [113]. The top performance
in each dataset is highlighted. Our approach achieves the best fitting accuracy on both controlled and unconstrained datasets.

.

7 lmks TF [28] FM [102] 300-VW [121]
DRMF [3] 4.43 8.53 9.16
ESR [15] 3.81 7.58 7.83
SDM [145] 4.01 7.49 7.65
IFA [2] 3.45 6.39 6.78

DCNC [128] 3.67 6.16 6.43
RED-Net (Ours) 2.89 5.14 5.29

68 lmks TF [28] FM [102] 300VW [121]
DRMF [3] 3.49 6.74 7.09
ESR [15] 3.80 7.38 7.25
SDM [145] 3.31 6.47 6.64
IFA [2] 3.45 6.92 7.59

DCNC [128] 3.04 5.67 6.13
RED-Net (Ours) 2.77 4.93 5.15

3.5.6 General Comparison with the State of the art

We compared our framework with both traditional approaches and deep learning based

approaches. The methods with hand-crafted features include: (1) DRMF [3], (2) ESR

[15], (3) SDM [145], (4) IFA [2], and (5) PIEFA [102]. The deep learning based methods

include: (1) DCNC [128], (2) CFAN [153], and (3) TCDCN [154]. All these methods

were recently proposed and reported state-of-the-art performance. For fair comparison, we

evaluated these methods in a tracking protocol: fitting result of current frame was used as

the initial shape (DRMF, SDM and IFA) or the bounding box (ESR and PIEFA) in the next

frame. The comparison was performed on both controlled, e.g. Talking Face (TF) [28],

and in-the-wild datasets, e.g. Face Movie (FM) [102] and 300-VW [121].

We report the evaluation results for both 7 and 68 landmark setups in Table 3.9. Our

approach achieves state-of-the-art performance under both settings. It outperforms others

with a substantial margin on all datasets under both 7-landmark and 68-landmark protocols.

The performance gain is more significant on the challenging datasets (FM and 300-VW)

than controlled dataset (TF). Our alignment model runs fairly fast, it takes around 40ms to
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Figure 3.9: Examples of 7-landmark (Row 1-6) and 68-landmark (Row 7-10) fitting results on FM [?] and 300-VW [121]. The proposed
approach achieves robust and accurate fittings when the tracked subjects suffer from large pose/expression changes (Row 1, 3, 4, 6, 10),
illumination variations (Row 2, 8) and partial occlusions (Row 5, 7).

process an image using a Tesla K40 GPU accelerator. Please refer to Figure 3.9 for fitting

results of our approach on FM [102] and 300-VW [121], which demonstrate the robust and

accurate performance in wild conditions.
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3.6 Discussion

In this study, we proposed a novel recurrent encoder-decoder network for real-time sequential

face alignment. It utilizes spatial recurrent learning to train an end-to-end optimized

coarse to fine landmark detection model. It decouples temporal-invariant and temporal-

variant factors in the bottleneck of the network, and exploits recurrent learning at both

spatial and temporal dimensions. Extensive experiments demonstrated the effectiveness

of our framework and its superior performance. The proposed method provides a general

framework that can be further applied to other localization-sensitive tasks, such as human

pose estimation, object detection, scene classification, and others.
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Chapter 4

Large-pose Face Recognition

Deep neural networks (DNNs) trained on large-scale datasets have recently achieved im-

pressive improvements in face recognition. But a persistent challenge remains to develop

methods capable of handling large pose variations that are relatively under-represented

in training data. This paper presents a method for learning a feature representation that

is invariant to pose, without requiring extensive pose coverage in training data. We first

propose to generate non-frontal views from a single frontal face, in order to increase the

diversity of training data while preserving accurate facial details that are critical for identity

discrimination. Our next contribution is to seek a rich embedding that encodes identity

features, as well as non-identity ones such as pose and landmark locations. Finally, we

propose a new feature reconstruction metric learning to explicitly disentangle identity and

pose, by demanding alignment between the feature reconstructions through various com-

binations of identity and pose features, which is obtained from two images of the same

subject. Experiments on both controlled and in-the-wild face datasets, such as MultiPIE,

300WLP and the profile view database CFP, show that our method consistently outperforms

the state-of-the-art, especially on images with large head pose variations. 1

1Detail results and resource are referred to: https://sites.google.com/site/xipengcshomepage/
iccv2017.

https://sites.google.com/site/xipengcshomepage/iccv2017
https://sites.google.com/site/xipengcshomepage/iccv2017
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Figure 4.1: (a) Generic data-driven features for face recognition might confound images of the same identity under large poses with
other identities, as shown two subjects (in different colors) from MultiPIE are mapped into the learned feature space of VGGFace [90].
(b) We propose a feature reconstruction metric learning to disentangle identity and pose information in the latent feature space. (c) The
disentangled feature space encourages identity features of the same subject to be clustered together despite of the pose variation.

4.1 Introduction

The human visual system is commendable at recognition across variations in pose, for

which two theoretical constructs are preferred. The first postulates invariance based on

familiarity where separate view-specific visual representations or templates are learned

[23, 104]. The second suggests that structural descriptions are learned from images that

specify relations among viewpoint-invariant primitives [49]. Analogously, pose-invariance

for face recognition in computer vision also falls into two such categories.

The use of powerful deep neural networks (DNNs) [61] has led to dramatic improvements

in recognition accuracy. However, for objects such as faces where minute discrimination

is required among a large number of identities, a straightforward implementation is still

ineffective when faced with factors of variation such as pose changes [97]. Consider the

feature space of the VGGFace [90] evaluated on MultiPIE [34] shown in Figure 4.1, where
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examples from the same identity class that differ in pose are mapped to distant regions of

the feature space.

An avenue to address this is by increasing the pose variation in training data. For

instance, 4.4 million face images are used to train DeepFace [131] and 200 million labelled

faces for FaceNet [118]. Another approach is to learn amapping from different view-specific

feature spaces to a common feature space through methods such as Canonical Correlation

Analysis (CCA) [37]. Yet another direction is to ensemble over view-specific recognition

modules that approximate the non-linear posemanifold with locally linear intervals [77, 55].

There are several drawbacks for the above class of approaches. First, conventional

datasets including those sourced from the Internet have long-tailed pose distributions [76].

Thus, it is expensive to collect and label data that provides good coverage for all subjects.

Second, there are applications for recognition across pose changes where the dataset does

not contain such variations, for instance, recognizing an individual in surveillance videos

against a dataset of photographs from identification documents. Third, the learned feature

space does not provide insights since factors of variation such as identity and pose might

still be entangled. Besides the above limitations, view-specific or multi-view methods

require extra pose information or images under multiple poses at test time, which may not

be available.

In contrast, we propose to learn a novel reconstruction based feature representation

that is invariant to pose and does not require extensive pose coverage in training data. A

challenge with pose-invariant representations is that discrimination power of the learned

feature is harder to preserve, which we overcome with our holistic approach. First, inspired

by [160], Section 4.3.1 proposes to enhance the diversity of training data with images under

various poses (along with pose labels), at no additional labeling expense, by designing a

face generation network. But unlike [160] which frontalizes non-frontal faces, we generate

rich pose variations from frontal examples, which leads to advantages in better preservation

of details and enrichment rather than normalization of within-subject variations. Next, to
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achieve a rich feature embedding with good discrimination power, Section 4.3.2 presents a

joint learning framework for identification, pose estimation and landmark localization. By

jointly optimizing those three tasks, a rich feature embedding including both identity and

non-identity information is learned. But this learned feature is still not guaranteed to be

pose-invariant.

To achieve pose invariance, Section 4.3.3 proposes a feature reconstruction-based struc-

ture to explicitly disentangle identity and non-identity components of the learned feature.

The network accepts a reference face image in frontal pose and another image under pose

variation and extracts features corresponding to the rich embedding learned above. Then,

it minimizes the error between two types of reconstructions in feature space. The first

is self-reconstruction, where the reference sample’s identity feature is combined with its

non-identity feature and the second is cross-reconstruction, where the reference sample’s

non-identity feature is combined with the pose-variant sample’s identity feature. This en-

courages the network to regularize the pose-variant sample’s identity feature to be close

to that of the reference sample. Thus, non-identity information is distilled away, leaving a

disentangled identity representation for recognition at test.

Section 4.5 demonstrates the significant advantages of our approach on both controlled

datasets and uncontrolled ones for recognition in-the-wild, especially on 90◦ cases. In

particular, we achieve strong improvements over state-of-the-art methods on 300-WLP,

MultiPIE, and CFP datasets. These improvements become increasingly significant as we

consider performance under larger pose variations. We also present ablative studies to

demonstrate the utility of each component in our framework, namely pose-variant face

generation, rich feature embedding and disentanglement by feature reconstruction. To

summarize, our key contributions are:

• To the best of our knowledge, we are the first to propose a novel reconstruction-based

feature learning that disentangles factors of variation such as identity and pose.
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• A comprehensively designed framework cascading rich feature embedding with the

feature reconstruction, achieving pose-invariance in face recognition.

• A generation approach to enrich the diversity of training data, without incurring the

expense of labeling large datasets spanning pose variations.

• Strong performance on both controlled and uncontrolled datasets, especially for large

pose variations up to 90◦.

4.2 Related Work

Face recognition is a popular topic involving large amount of research works. We only

focus on the most relevant ones in this part. Literally we cover the three major components

discussed in our method, namely face synthesization, deep face recognition, pose-invariant

face recognition, and disentangle factors of variation.

Face synthesization Blanz and Vetter pioneered 3Dmorphable models (3DMM) for high

quality face reconstruction [11] and recently, blend shape-based techniques have achieved

real-time rates [14]. For face recognition, such techniques are introduced in DeepFace

[131], where face frontalization is used for enhancing face recognition performance. As an

independent application, specific frontalization techniques have also been proposed [38].

Another line ofwork pertains to 3D face reconstruction fromphoto collections [111, 70, 141]

or a single image [76, 160, 134], where the latter have been successfully used for face

normalization prior to recognition. While most of the methods apply the framework of

aligning 3DMM with the 2D face landmarks [103] and conduct further refinement. In

contrast, our use of 3DMM for face synthesis is geared towards enriching the diversity of

training data.
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Deep face recognition Several frameworks have recently been proposed that use DNNs

to achieve impressive performances [90, 118, 127, 129, 131, 142, 148]. DeepFace [131]

achieved verification rates comparable to human labeling on large test datasets, with further

improvements from works such as DeepID [129]. Collecting face images from the Internet,

FaceNet [118] trains on 200 million images from 8 million subjects. The very deep network

can only be well stimulated by the huge volume of training data. The VGGNet [90] achieves

competitive performance on the VGG face database and the recent feature learning approach

of [142] reports top performance on the large scale MegaFace challenge [82].

We also use DNNs, but adopt the contrasting approach of learning pose-invariant

features, since large-scale datasets with pose variations are expensive to collect, or do not

exist in several applications such as surveillance.

Pose-invariant face recognition Early works use Canonical Correlation Analysis (CCA)

to analyze the commonality among different pose subspaces [37, 86]. Further works

consider generalization across multiple viewpoints [120] and multiview inter and intra

discriminant analysis [54]. With the introduction of DNNs, prior works aim to transfer

information from pose variant inputs to a frontalized appearance [135, 150], which is then

used for face recognition [161]. The frontal appearance reconstruction usually relies on

large amount of training data and the pairing across poses is too strict to be practical.

Stacked progressive autoencoders (SPAE) [53] map face appearances under larger non-

frontal poses to those under smaller ones in a continuous way by setting up hidden layers.

The regression based mapping highly depends on training data and may lack generalization

ability. Hierarchical-PEP [68] employs probabilistic elastic part (PEP) model to match

facial parts from different yaw angles for unconstrained face recognition scenarios. The 3D

face reconstruction method [160] synthesizes missing appearance due to large view points,

which may introduce noise. Rather than compensating the missing information caused by

severe pose variations at appearance level, we target learning a pose-invariant representation

at feature level which preserves discrimination power through deep training.
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Disentangle factors of variation Contractive discriminative analysis [110] learns dis-

entangled representations in semi-supervised framework by regularizing representations

to be orthogonal to each other. Disentangling Boltzmann machine [108] regularizes rep-

resentations to be specific to each target task via manifold interaction. These methods

involve non-trivial training procedure, and the pose variation is limited to half-profile views

(±45◦). Inverse graphics network [62] learns an interpretable representation by learning

and decoding graphics codes, each of which encodes different factors of variation, but has

been demonstrated only on the database generated from 3D CAD models. Multi-View

Perceptron [163] disentangles pose and identity factors by cross-reconstruction of images

synthesized from deterministic identity neurons and random hidden neurons. But it does not

account for factors such as illumination or expression that are also needed for image-level

reconstruction. In contrast, we use carefully designed embeddings as reconstruction targets

instead of pixel-level images, which reduces the burden of reconstructing irrelevant factors

of variation.

4.3 Method

We propose a novel pose-invariant feature learning method for large pose face recognition.

Figure 4.2 provides an overview of our approach. Pose-variant face generation utilizes a 3D

facial model to augment the training data with faces of novel viewpoints, besides generating

ground-truth pose and facial landmark annotations. Rich feature embedding is then achieved

by jointly learning the identity and non-identity features using multi-source supervision.

Finally, disentanglement by feature reconstruction is performed to distill the identity feature

from the non-identity one for better discrimination ability and pose-invariance.
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Figure 4.2: An overview of the proposed approach. (a) Pose-variant face generation utilizes a 3D facial model to synthesize new
viewpoints from near-frontal faces. (b) Rich feature embedding is then achieved by jointly learning the identity and non-identity features
using multi-source supervisions. (c) Finally,Disentangling by reconstruction is applied to distill the identity feature from the non-identity
one for robust and pose-invariant representation.

4.3.1 Pose-variant Face Generation

The goal is to generate a series of pose-variant faces from a near-frontal image. This choice

of generation approach is deliberate, since it can avoid hallucinating missing textures due to

self-occlusion, which is a common problemwith former approaches [38, 22] that rotate non-

frontal faces to a normalized frontal view. More importantly, enriching instead of reducing

intra-subject variations provides important training examples in learning pose-invariant

features.

We reconstruct the 3D shape from a near-frontal face to generate new face images. Let χ

be the set of frontal face images. A straightforward solution is to learn a nonlinear mapping

f (·; θs) : χ → R3N that maps an image x ∈ χ to the N coordinates of a 3D mesh. However,

it is non-trivial to do so for a large number of vertices (15k), as required for a high-fidelity

reconstruction.

Instead, we employ the 3DMorphableModel (3DMM) [11] to learn a nonlinearmapping

f (·; θs) : χ → R235 that embeds x to a low-dimensional parameter space. The 3DMM

parameters p control the rigid affine transformation and non-rigid deformation from a 3D
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mean shape S to the instance shape S. Please refer to Figure 4.2 for an illustration:

S(p) = sR(S + Φidαid + Φexpαexp) + T, (4.1)

where p = {s, R,T, αid, αexp} including scale s, rotation R, translationT , identity coefficient

αid and expression coefficient αexp. The eigenbases Φid and Φexp are learned offline using

3D face scans to model the identity [92] and expression [14] subspaces, respectively.

Once the 3D shape is recovered, we rotate the near-frontal face by evenly manipulating

the yaw angle in the range of [−90◦, 90◦]. We follow [160] to use a z-buffer for collecting

texture information and render the background for high-quality recovery. The rendered face

is then projected to 2D to generate new face images from novel viewpoints.

4.3.2 Rich Feature Embedding

Most existing face recognition algorithms [76, 77, 118, 142] learn face representation using

only identity supervision. An underlying assumption of their success is that deep networks

can “implicitly" learn to suppress non-identity factors after seeing a large volume of images

with identity labels [118, 131].

However, this assumption does not always hold when extensive non-identity variations

exist. As shown in Figure 4.1 (a), the face representation and pose changes still present

substantial correlations, even though this representation is learned throught a very deep

neural network (VGGFace [90]) with large-scale training data (2.6M).

This indicates that using only identity supervision might not suffice to achieve an

invariant representation. Motivated by this observation, we propose to utilize multi-source

supervision to learn a rich feature embedding er , which can be “explicitly" branched into

an identity feature ei and a non-identity feature en, respectively. As we will show in the next

section, the two features can collaborate to effectively achieve an invariant representation.
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Figure 4.3: Pose-variant faces are used to fine-tune an off-the-shell recognition network θr to learn the rich feature embedding er , which
is explicitly branched into the identity feature ei and the non-identity feature en . Multi-source supervisions, such as identity, pose and
landmark, are applied for joint optimization.

More specifically, as illustrated in Figure 4.3, en can be further branched as ep and

el to represent pose and landmark cues. For our multi-source training data that are not

generated, we apply the CASIA-WebFace database [148] and provide the supervision from

an off-the-shelf pose estimator. Therefore, we have:

ei = f (x; θr, θi), en = f (x; θr, θn),

ep = h(en;wp) = f (x; θr, θn,wp),

el = h(en;wl) = f (x; θr, θn,wl),

where mapping f (·; θ/w) : χ → Rd takes x and generates an embedding vector f (x)

and θ/w denotes the mapping parameters. Here, θr can be any off-the-shelf recognition

network. h(·; θ) is used to bridge two embedding vectors. We jointly learn all embeddings

by optimizing:

argmin
θr,i,n,wi,p,l

∑
image

− λi [yi log so f tmax(wiT ei))
]

+ λp‖yp − ep‖22 + λ
l ‖yl − el ‖22, (4.2)
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where yi, yp and yl are identity, pose and landmark annotations and λi, λp and λl balance

the weights between cross-entropy and l2 loss.

By resorting to multi-source supervision, we can learn the rich feature embedding

that “explicitly” encodes both identity and non-identity cues in ei and en, respectively.

The remaining challenge is to distill ei by disentangling from en to achieve identity-only

representation.

4.3.3 Disentanglement by Feature Reconstruction

The identity and non-identity features above are jointly learned under different supervision.

However, there is no guarantee that the identity factor has been fully disentangled from the

non-identity one since there is no supervision applied on the decoupling process. This fact

motivates us to propose a novel reconstruction-based framework for effective identity and

non-identity disentanglement.

Recall that we have generated a series of pose-variant faces for each training subject

in Section 4.3.1. These images share the same identity but have different viewpoints. We

categorize these images into two groups according to their absolute yaw angles: near-frontal

faces (≤ 5◦) and non-frontal faces (> 5◦). The two groups are used to sample image pairs

that follow a specially designed configuration: a reference image randomly selected from

the near-frontal group and a peer image randomly picked from the non-frontal group.

The next step is to obtain the identity and non-identity embeddings of two faces that

have the same identity but different viewpoints. As shown in Figure 4.4, a pair of images

{xk : k = 1, 2} are fed into the network to output the identity and non-identity features:

ei
k = f (er

k ; θi) = f (xk ; θr, θi),

en
k = f (er

k ; θn) = f (xk ; θr, θn).

Note that θ is not indexed by k as the network shares weights to process the image pair.
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Figure 4.4: A genuine pair {x1, x2 } that share the same identity but different pose is fed into the recognition network θr to obtain the rich
embedding er1 and er2 . By regularizing the self and cross reconstruction, er11 and er21, the identity and non-identity features are eventually
disentangled to make the non-frontal peer ei2 to be similar to its near-frontal reference ei1.

Our goal is to eventually push ei
1 and ei

2 close to each other to achieve a pose-invariant

representation. A simple solution is to directly minimize the l2 distance between the two

features in the embedding subspace. However, this constraint only considers the identity

branch, which might be entangled with non-identity, but completely ignores the non-

identity factor, which provides strong supervision to purify the identity. Our experiments

also indicate that a hard constraint would suffer from limited performance in large-pose

conditions.

To address this issue, we propose to relax the constraint under a reconstruction-based

framework. More specifically, we firstly introduce two reconstruction tasks:

er
11 = g(ei

1, e
n
1; θc), er

21 = g(ei
2, e

n
1; θc),

where er
11 denotes the self reconstruction of the near-frontal rich embedding; while er

21

denotes the cross reconstruction of the non-frontal rich embedding. Here, g(·, ·; θc) is the

reconstruction mapping with parameter θc.
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The identity and non-identity features can be rebalanced from the rich feature embedding

by minimizing the self and cross reconstruction loss under the cross-entropy constraint:

argmin
θi,θn,θc

∑
pair

− γi [yi
1 log so f tmax(wiT ei

1)
]

+ γs‖er
11 − er

1‖
2
2 + γ

c‖er
21 − er

1‖
2
2, (4.3)

where γi, γs and γc weigh different constraints. Note that compared to (4.2), here we only

finetune {θi, θn} (as well as θc) to rebalance the identity and non-identity features while

keeping θr fixed, which is an important strategy to maintain the previously learned rich

embedding.

In (4.3), we regularize both self and cross reconstructions to be close to the near-frontal

rich embedding er
1. Thus, portions of er

2 to ei
2 and en

2 are dynamically rebalanced to make

the non-frontal peer ei
2 to be similar to the near-frontal reference ei

1. In other words, we

encourage the network to learn a normalized feature representation across pose variations,

thereby disentangling pose information from identity.

The proposed feature-level reconstruction is significantly different from former methods

[118, 38] that attempt to frontalize faces at the image level. It can be directly optimized

for pose invariance without suffering from artifacts that are common issues in face frontal-

ization. Besides, our approach is an end-to-end solution that does not rely on extensive

preprocessing usually required for image-level face normalization.

Our approach is also distinct from existing methods [77, 76] that synthesize pose-

variant faces for data augmentation. Instead of feeding the network with a large number of

augmented faces and letting it automatically learn pose-invariant or pose-specific features,

we utilize the reconstruction loss to supervise the feature decoupling procedure. Moreover,

factors of variation other than pose are also present in training, even though we only use

pose as the driver for disentanglement. The cross-entropy loss in (4.3) plays an important

role in preserving the discriminative power of identity features across various factors.
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4.4 Implementation Details

In this section, we introduce the details of our designs for the three proposed functions: pose-

variant face generation, rich feature embedding, and disentanglement by reconstruction.

Pose-variant face generation. A deep network is employed to predict 3DMM pa-

rameters of a near-frontal face as shown in Figure 4.2 (a). The network has a similar

architecture as VGG16 [123]. We use pre-trained weights learned from ImageNet [61] to

initialize the network instead of training from scratch. To further improve the performance,

we make two important changes: (1) we use stride-2 convolution instead of max pooling

to preserve the structure information when halving the feature maps; (2) the dimension of

3DMM parameters is changed to 66-d (30 identity, 29 expression and 7 pose) instead of

235-d used in [157]. To guarantee fast convergence and less overfitting, we apply principal

component analysis to cut down the dimension of identity parameters from 199-d to 30-d,

which preserves 90% of the variance and significantly reduces the complexity. We evenly

sample new viewpoints in every 5◦ from near-frontal faces to left/right profiles to cover the

full range of pose variations. We apply Z-Buffer algorithm [160] to prevent the ambiguous

pixel intensity due to same image plane position but different depths.

We use the same number of convolutional layers as VGG16 but replacing all max

pooling layers with stride-2 convolutional operations. The fully connected (fc) layers are

also different: we first use two fc layers, each of which has 1024 neurons, to connect with

the convolutional modules; then, a fc layer of 30 neurons is used for identity parameters, a

fc layer of 29 neurons is used for expression parameters, and a fc layer of 7 neurons is used

for pose parameters. Different from [160] uses 199 parameters to represent the identity

coefficients, we truncate the number of identity eigenvectors to 30 which preserves 90% of

variations. This truncation leads to fast convergence and less overfitting. For texture, we only

generate non-frontal faces from frontal ones, which significantly mitigate the hallucinating

texture issue caused by self occlusion and guarantee high-fidelity reconstruction. We apply
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the Z-Buffer algorithm used in [160] to prevent ambiguous pixel intensities due to same

image plane position but different depths.

Rich feature embedding. The network is designed based on CASIA-net [148] with

some improvements. As illustrated in Figure 4.3, we change the last fully connected

layer to 512-d for the rich feature embedding, which is then branched into 256-d neurons

for the identity feature and 128-d neurons for the non-identity feature. To utilize multi-

source supervision, the non-identity feature is further forked into 7-d neurons for the pose

embedding and 136-d neurons for the landmark coordinates. Three different datasets are

used to train the network: CASIA-WebFace, 300WLP and MultiPIE. We use Adam [58]

stochastic optimizer with an initial learning rate of 0.0003, which drops by a factor of 0.25

every 5 epochs until convergence. Note that we train the network from scratch on purpose,

since a pre-trained recognition model usually has limited ability to re-encode non-identity

features.

During training, CASIA+MultiPIE or CASIA+300WLP are used. As shown in Figure

3 of the main submission, after the convolutional layers of CASIA-net, we use a 512-d FC

for the rich feature embedding, which is further branched into a 256-d identity feature and

a 128-d non-identity feature. The 128-d non-identity feature is further connected with a

136-d landmark prediction and a 7-d pose prediction. Notice that in the face generation

network, the number of pose parameters is 7 instead of 3 because we need to uniquely depict

the projection matrix from the 3D model and the 2D face shape in image domain, which

includes scale, pitch, yaw, roll, x translation, y translation, and z translations.

Disentanglement by reconstruction. Once {θr, θi, θn} are learned in the rich feature

embedding, we freeze θr and finetune θi and θn to rebalance the identity and non-identity

features as explained in Figure 4.4 and Equation (4.3). The network takes the concatenation

(384-d) of ei and en and outputs the reconstructed embedding (512-d). The mapping is

achieved by rolling though two fully connected layers and each of them has 512-d neurons.

We have tried different network configurations but get similar performance. The initial



83

learning rate is set to 0.0001 and the hyper-parameters γi,s,c are determined via 5-fold cross-

validation. We also find that it is import to do early stopping for effective reconstruction-

based regularization. In Equation (4.2) and (4.3), we use the cross-entropy loss to preserve

the discriminative power of the identity feature. Other identity regularizations, e.g. triplet

loss [118], can be easily applied in a plug-and-play manner.

To disentangle the identity and pose factors, we concatenate the identity and non-identity

features and roll though two 512-d fully connected layers to output a reconstructed rich

embedding depicted by 512 neurons. Both self and cross reconstruction loss are designed

to eventually push the two identity features close to each other. At the same time, a cross-

entropy loss is applied on the near-frontal identity feature to maintain the discriminative

power of the learned representation. The disentanglement of the identity and pose is finally

achieved by the proposed feature reconstruction based metric learning.

The training of recognition network involves two steps. First, the multi-source multi-

task training is applied with reconstruction objectives in Equation (4.3). We train from

scratch usingAdam [58] stochastic optimizationwith learning rate 0.0003 until convergence.

Second, based on the same network structure, freezing all the convolution layers and the first

fully connected layer, we specifically train the Siamese reconstruction network to optimize

the identity related and unrelated network parameters, as shown in Figure 4.4. Identity loss

is also applied for the reconstruction task. We find that it is important to do early stopping

for the second step training. Relevant hyper-parameters, such as γ or maximum number of

training iterations, are determined via 5-fold cross-validation.

4.5 Experiments

We evaluate our feature learning method on three main pose-variant databases, Multi-

PIE [34], 300WLP [157] and CFP [119]. We also compare with two top general face

recognition frameworks, VGGFace [90] and N-pair loss face recognition [124], and three
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Method 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg
VGGFace [90] 0.972 0.961 0.926 0.847 0.628 0.342 0.780
N-pair [124] 0.990 0.983 0.971 0.944 0.811 0.468 0.861
MvDA [54]† 1.000 0.979 0.909 0.855 0.718 0.564 0.837
GMA [120]† 1.000 1.000 0.904 0.852 0.725 0.550 0.838
MvDN [55]† 1.000 0.991 0.921 0.897 0.810 0.706 0.887
Ours (P1) 0.972 0.966 0.956 0.927 0.857 0.749 0.905
Ours (P2) 1.000 1.000 0.995 0.982 0.931 0.817 0.954

Table 4.1: Rank-1 recognition accuracy on MultiPIE at different yaw angles. The numbers in the entry with † are obtained from [55].
We evaluate our method using gallery set composed of 2 frontal face images per subject (P1) as well as entire frontal face images (P2).

state-of-the-art pose-invariant face recognition methods, namely, MvDA [54], GMA [120]

and MvDN [55]. Further, we present an ablation study to emphasize the significance of

each module that we carefully designed and a cross-database validation demonstrates the

good generalization ability of our method.

4.5.1 Evaluation on MultiPIE

MultiPIE [34] is composed of 754,200 images of 337 subjects with different factors of

variation such as pose, illumination, and expression. There are 15 different head poses

set up, where we only use images of 13 head poses with yaw angle changes from −90◦ to

90◦, with 15◦ difference every consecutive pose bin in this experiment. We split the data

into train and test by subjects, of which the first 229 subjects are used for training and the

remaining 108 are used for testing. This is similar to the experimental setting in [55], but

we use entire data including both illumination and expression variations for training while

excluding only those images taken with top-down views. Rank-1 recognition accuracy of

non-frontal face images is reported. We take ±15◦ to ±90◦ as query and the frontal faces

(0◦) as gallery, while restricting illumination condition to be neutral. To be consistent with

the experimental setting of [55], we form a gallery set by randomly selecting 2 frontal face

images per subject, of which there are a total of 216 images. We evaluate the recognition

accuracy for all query examples, of which there are 619 images per pose. The procedure is

done with 10 random selections of gallery sets and mean accuracy is reported.
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(a) VGGFace Feature Space (b) Disentangled Feature Space

Figure 4.5: t-SNE visualization of VGGFace [90] feature space (left) and the proposed reconstruction-based disentangling feature space
(right), with 10 subjects from MultiPIE [34]. The same marker color indicates the same subject. Different marker shapes indicate
different head poses. Our approach shows better results in disentangling pose factors from identity representations.

Evaluation is shown in Table 4.1. The recognition accuracy at every 15◦ interval of yaw

angle is reported while averaging its symmetric counterpart with respect to the 0-yaw axis.

For the two general face recognition algorithms, VGGFace [90] and N-pair loss [124], we

clearly observe more than 30% accuracy drop when the head pose approaches 90◦ from

75◦. Our method significantly reduces the drop by more than 20%. The general methods

are trained with very large databases leveraging across different poses, but our method has

the additional benefit of explicitly aiming for a pose invariant feature representation.

The pose-invariant methods, GMA, MvDA, and MvDN demonstrate good performance

within 30◦ yaw angles, but again the performance starts to degrade significantly when

yaw angle is larger than 30◦. When comparing the accuracy on extreme poses from 45◦

to 90◦, our method achieves accuracy 3 ∼ 4% better than the best reported. Besides

the improved performance, our method has an advantage over MvDN, since it does not

require pose information at test time. On the other hand, MvDN is composed of multiple

sub-networks, each of which is specific to a certain pose variation and therefore requires

additional information on head pose for recognition.

Figure 4.5 shows t-SNE visualization [137] of VGGFace [90] feature space and the

proposed reconstruction-based disentangling feature space of MultiPIE [34]. For visual-



86

Method 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg
VGGFace [90] 0.994 0.998 0.996 0.956 0.804 0.486 0.838
N-Pair [124] 1.000 0.996 0.993 0.962 0.845 0.542 0.859

Ours 1.000 0.999 0.995 0.994 0.978 0.940 0.980

Table 4.2: Recognition performance on 300WLP, the proposed method with two general state-of-the-art face recognition frameworks,
i.e. VGG Face Recognition Network (VGGFace) and N-pair loss face recognition (N-pair).

ization clarity, we only visualize 10 randomly selected subjects from the test set with 0◦,

30◦, 60◦, and 90◦ yaw angles. Figure 4.5 (a) shows that samples from VGGFace feature

embedding have large overlap among different subjects. In contrast, Figure 4.5 (b) shows

that our approach can tightly cluster samples of the same subject together which leads to

little overlap of different subjects, since identity features have been disentangled from pose

in this case.

4.5.2 Evaluation on 300WLP

We further evaluate on a face-in-the-wild database, 300 Wild Large Pose [157] (300WLP).

It is generated from 300W [114] face database by 3DDFA [157], in which it establishes a 3D

morphable model and reconstruct the face appearance with varying head poses. It consists

of overall 122,430 images from 3,837 subjects. Compared to MultiPIE, the overall volume

is smaller, but the number of subjects is significantly larger. For each subject, images are

with uniformly distributed continuously varying head poses in contrast toMultiPIE’s strictly

controlled 15◦ head pose intervals. The lighting conditions as well as the background are

almost identical. Thus, it is an ideal dataset to evaluate algorithms for pose variation.

We randomly split 500 subjects of 8014 images as testing data and the rest 3337 subjects

of 106,402 images as the training data. Among the testing data, two 0◦ head pose images per

subject form the gallery and the rest 7014 images serves as the probe. Table 4.2 shows the

comparison with two state-of-the-art general face recognition methods, i.e. VGGFace [90]

and N-pair loss face recognition [124]. To the best of our knowledge, we are the first to apply
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(a) VGGFace Feature Space (b) Disentangled Feature Space

Figure 4.6: t-SNE visualization of VGGFace [90] feature space (left) and the proposed reconstruction-based disentangling feature space
(right), with 10 subjects from 300WLP [157]. The same marker color indicates the same subject. Different marker shapes indicate
different head poses. Our approach shows better results in disentangling pose factors from identity representations.

our pose-invariant face recognition framework on this dataset. Thus, we only compare our

method with the two general face recognition frameworks.

Since head poses in 300WLP continuously vary, we group the test samples into 6 pose

intervals, (0, 15◦), (15◦, 30◦), (30◦, 45◦), (45◦, 60◦), (60◦, 75◦) and (75◦, 90◦). For short

annotation, we mark each interval with the end point, e.g., 30◦ denotes the pose interval

(15◦, 30◦). From Table 4.2, our method achieves consistently better accuracy especially

when pose angle approaches 90◦, which is clearly contributed by our feature reconstruction

based disentanglement.

We also conduct experiments on the Labeled Faces-in-the-Wild (LFW) dataset [45]. We

note that the dataset is particularly biased towards frontal poses. Among 6,000 verification

image pairs, only 358 pairs are with large pose variations, of which at lease one image is

with pose greater than 30◦. The numbers are only to illustrate the potential of our framework

for recognition in-the-wild under large poses. On the above subset of non-frontal images,

we achieve 96.37% verification accuracy using the MSMT baseline model, which improves

to 96.93% using our reconstruction-based disentanglement. This demonstrates that our

method also applies to unconstrained scenarios. The VGGFace model achieves 97.49%
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Method Frontal-Frontal Frontal-Profile
Sengupta et al. [119] 96.40 84.91
Sankarana et al. [116] 96.93 89.17

Chen et al. [16] 98.67 91.97
DR-GAN [135] 97.84 93.41

Human 96.24 94.57
Ours 98.67 93.76

Table 4.3: Verification accuracy comparison on CFP dataset.

accuracy on the same subset. However, it is trained on a dataset much larger than our

combination of CASIA and MultiPIE.

Figure 4.6 shows t-SNE visualization [137] of VGGFace [90] feature space and

the proposed reconstruction-based disentangling feature space, with 10 subjects from

300WLP [157]. Similar to the results of MultiPIE [34], the VGGFace feature embedding

space shows entanglement between identity and the pose, i.e., the man with the phone in

45◦ view is overlapped with the frontal view image of other persons. In contrast, feature

embeddings of our method are largely separated from one to another, while embeddings of

the same subject are clustered together even there are extensive pose variations.

4.5.3 Evaluation on CFP

The Celebrities in Frontal-Profile (CFP) database [119] focuses on extreme head pose face

verification. It consists of 500 subjects, with 10 frontal images and 4 profile images for each,

in a wild setting. The evaluation is conducted by averaging the performance of 10 randomly

selected splits with 350 identical and 350 non-identical pairs. Our MSMT+SR finetuned

on MultiPIE with N-pair loss is the model evaluated in this experiment. The reported

human performance is 94.57% accuracy on the frontal-profile protocol and 96.24% on the

frontal-frontal protocol, which shows the challenge of recognizing profile views.

Results in Table 4.3 suggest that our method achieves consistently better performance

compared to state-of-the-art. We reach the same Frontal-Frontal accuracy as Chen et al. [16]
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while being significantly better on Frontal-Profile by 1.8%. We are slightly better than DR-

GAN [135] on extreme pose evaluation and 0.8% better on frontal cases. DR-GAN is a

recent generative method that seeks the identity preservation at the image level, which is not

a direct optimization on the features. Our feature reconstruction method preserves identity

even when presented with profile view faces. In particular, as opposed to prior methods,

ours is the only one that obtains very high accuracy on both the evaluation protocols.

4.5.4 Control Experiments

We extensively evaluate recognition performance on various baselines to study the effec-

tiveness of each module in our proposed framework. Specifically, we evaluate and compare

the following models:

• SS: trained on a single source (e.g., CASIA-WebFace) using softmax loss only.

• SS-FT: fine-tuned on a target dataset (MultiPIE or 300WLP) using softmax loss only.

• MSMT: trained on multiple data sources (CASIA + MultiPIE or 300WLP) using

softmax loss for identity and L2 loss for pose.

• MSMT+L2: fine-tuned on MSMT models using softmax loss and Euclidean loss.

• MSMT+SR: fine-tuned on MSMT models using softmax loss and Siamese recon-

struction loss.

• MSMT†: trained on the same multiple data sources as MSMT, using N-pair [124]

metric loss for identity and L2 loss for pose.

• MSMT†+SR: finetuned on MSMT† models with N-pair loss and reconstruction loss.

The SS model serves as the weakest baseline. From Table 4.4 we observe that simul-

taneously training the network on multiple sources of CASIA and MultiPIE (or 300WLP)

usingmulti-task objective (i.e., identification loss, pose or landmark estimation loss) is more
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Method MultiPIE
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

SS 0.908 0.899 0.864 0.778 0.487 0.207 0.690
SS-FT 0.941 0.936 0.919 0.883 0.799 0.681 0.860
MSMT 0.965 0.955 0.945 0.914 0.827 0.689 0.882

MSMT+L2 0.972 0.965 0.954 0.923 0.849 0.739 0.900
MSMT+SR 0.972 0.966 0.956 0.927 0.857 0.749 0.905
MSMT† 0.993 0.989 0.982 0.959 0.903 0.734 0.927

MSMT†+SR 0.994 0.990 0.982 0.960 0.906 0.745 0.929

Method 300WLP
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

SS 0.945 0.934 0.884 0.753 0.567 0.330 0.679
SS-FT 1.000 0.999 0.992 0.973 0.934 0.839 0.944
MSMT 1.000 0.993 0.993 0.986 0.968 0.922 0.971

MSMT+L2 1.000 0.997 0.996 0.991 0.973 0.933 0.977
MSMT+SR 1.000 0.999 0.995 0.994 0.978 0.940 0.980
MSMT† 1.000 0.998 0.997 0.994 0.981 0.922 0.977

MSMT†+SR 1.000 0.998 0.999 0.997 0.988 0.953 0.986

Table 4.4: Recognition performance of several baseline models, i.e., single source trained model on CASIA database (SS), single source
model fine-tuned on the target database (SS-FT), multi-source multi-task models (MSMT), MSMTwith direct identity feature `2 distance
regularization (MSMT+L2), the proposed MSMT with Siamese reconstruction regularization models (MSMT+SR), MSMT with N-pair
loss instead of cross entropy loss (MSMT†) and MSMT† with SR, evaluated on MultiPIE (P1) and 300WLP.

effective than single-source training followed by fine-tuning. We believe that our MSMT

learning can be viewed as a form of curriculum learning [8] since multiple objectives in-

troduced by multi-source and multi-task learning are at different levels of difficulty (e.g.,

pose and landmark estimation or identification on MultiPIE and 300WLP are relatively

easier than identification on CASIA-WebFace) and easier objectives allow to train faster

and converge to better solution. As an alternative to reconstruction regularization, one may

consider reducing the distance between the identity-related features of the same subject

under different pose directly (MSMT+L2). Learning to reduce the distance improves the

performance over the MSMT model, but is not as effective as our proposed reconstruction

regularization method, especially on face images with large pose variations.

Further, we observe that employing the N-pair loss [124] within our framework also

boosts performance, which is shown by the improvements from MSMT to MSMT† and

MSMT+SR to MSMT†+SR. We note that the MSMT† baseline is not explored in prior
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Method MultiPIE
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

SS 0.908 0.899 0.864 0.778 0.487 0.207 0.690
SS-FT 0.941 0.936 0.919 0.883 0.799 0.681 0.860
MSMT 0.965 0.955 0.945 0.914 0.827 0.689 0.882

MSMT+L2 0.972 0.965 0.954 0.923 0.849 0.739 0.900
MSMT+SR (ours) 0.972 0.966 0.955 0.927 0.857 0.749 0.905

Method MultiPIE
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

SS 1.00 0.998 0.985 0.892 0.563 0.250 0.781
SS-FT 0.999 0.993 0.981 0.951 0.874 0.753 0.925
MSMT 1.00 1.00 0.993 0.982 0.908 0.753 0.939

MSMT+L2 1.00 999 0.990 0.978 0.911 0.800 0.946
MSMT+SR (ours) 1.00 0.999 0.995 0.982 0.931 0.817 0.954

Table 4.5: Rank-1 recognition accuracy comparisons under P1 (top) and P2 (bottom) testing protocol on MultiPIE [34] dataset.

works on pose-invariant face recognition. It provides a different way to achieve similar

goals as the proposed reconstruction method. Indeed, a collateral observation through

the relative performances of MSMT and MSMT† is that the softmax loss is not good at

disentangling pose from identity, while metric learning excels at it. Indeed, our feature

reconstruction metric might be seen as achieving a similar goal, thus, improvements over

MSMT† are marginal, while those over MSMT are large.

In Table 4.5, we report the standard deviation of our method as a more complete

comparison. From the results, the standard deviation of our method is also very small,

which suggests that the performance is consistent across all the trials. We also compare

the cross database evaluation on both mean accuracy and standard deviation in Table 4.6.

We show the models trained on 300WLP and tested on MultiPIE with both P1 and P2

protocol. Please note that with P2 protocol, our method still achieves better performance

on MultiPIE than MvDN [55] with 0.7% gap. Further, across different testing protocols,

the proposed method consistently outperforms the baseline method MSMT, which clearly

shows the effectiveness of our proposed Siamese reconstruction based regularization for

pose-invariant feature representation.
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Method MultiPIE
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

MultiPIE MSMT 0.965 0.955 0.945 0.914 0.827 0.689 0.882
Ours 0.972 0.966 0.956 0.927 0.857 0.749 0.905

300WLP MSMT 0.941 0.927 0.898 0.837 0.695 0.432 0.788
Ours 0.945 0.933 0.910 0.862 0.736 0.459 0.808

Method 300WLP
15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

MultiPIE MSMT 1.000 0.996 0.988 0.953 0.889 0.720 0.904
Ours 0.994 0.995 0.992 0.958 0.901 0.733 0.910

300WLP MSMT 1.000 0.993 0.993 0.986 0.968 0.922 0.971
Ours 1.000 0.999 0.995 0.994 0.978 0.940 0.980

Table 4.6: Cross database evaluation on MultiPIE and 300WLP. The top two rows show the model of MSMT and our method trained
on CASIA and MultiPIE, while tested on both MultiPIE and 300WLP. The bottom two rows show the model of MSMT and our method
trained on CASIA and 300WLP, while tested on both MultiPIE and 300WLP.

The P2 testing protocol utilizes all the 0◦ images as the gallery. The performance is

expected to be better than that reported on P1 protocol in the main submission since more

images are used for reference. There is no standard deviation in this experiment as the

gallery is fixed by using all the frontal images. The results are shown in Table 4.5, which

confirms the conclusion that the proposed feature reconstruction based regularization is

effective in obtaining pose-invariant and highly discriminative feature representations for

face recognition.

4.5.5 Cross Database Evaluation

We evaluate our models, which are trained on CASIA with MultiPIE or 300WLP, on the

cross test set 300WLP or MultiPIE, respectively. Results are shown in Table 4.6 to validate

the generalization ability. There are obvious accuracy drops on both databases, for instance,

a 7% drop on 300WLP and 10% drop on MultiPIE. However, such performance drops are

expected since there exists a large gap in the distribution between MultiPIE and 300WLP.

Interestingly, we observe significant improvements when compared to VGGFace. These

are fair comparisons since neither networks is trained on the training set of the target

dataset. When evaluated on MultiPIE, our MSMT model trained on 300WLP and CASIA
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(a) Gallery Samples (b) Probe Samples

(c) Gallery Samples (d) Probe Samples

Figure 4.7: The gallery and probe samples adopted in the testing from MultiPIE [34] and 300WLP [160]. (a) The gallery samples of
MultiPIE. (b) The probe samples of MultiPIE. (c) The gallery samples of 300WLP. (d) The probe samples of 300WLP.

database improves 0.8% over VGGFace and the model with reconstruction regularization

demonstrates stronger performance, showing 2.8% improvement over VGGFace. Similarly,

we observe 6.6% and 7.2% improvements for MultiPIE and CASIA trained MSMT models

and our proposed MSMT+SR, respectively, over VGGFace when evaluated on the 300WLP

test set. This partially confirms that our performance is not an artifact of overfitting to a

specific dataset, but is generalizable across different datasets of unseen images.

4.5.6 Probe and Gallery Examples

In Figure 4.7, we show examples of gallery and probe images that are used in testing. Fig-

ure 4.7 (a) shows the gallery images in 0◦ from MultiPIE. Each subject only has one frontal

image for reference. Figure 4.7 (b) shows probe images of various pose and expression from

MultiPIE. Each subject presents all possible poses and expressions such as neutral, happy,

surprise, etc. The illumination is controlled with plain front lighting. Figure 4.7 (c) shows

the gallery images from 300WLP, with two near-frontal images of each subject randomly

selected. Figure 4.7 (d) shows all poses of the same subject from 300WLP. The pose angle
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(a) MultiPIE failure cases

(b) 300WLP failure 

Figure 4.8: Some failure cases in MultiPIE [34] and 300WLP [160]. Each case consists of a pair of images. The gallery image is on
the left and the probe image is on the right. In both (a) and (b), the first row shows cases of 15◦ and 30◦, the second row shows cases of
45◦ and 60◦, and the third row shows cases of 75◦ and 90◦. (b) follows the same layout as (a). In MultiPIE, most failures result from
extensive expressions. In 300WLP, most failures results from the large pose and illumination changes. Images in most failure pairs are
visually similar.

variations are continuous as they are generated by 3DMM [11], which could generate face

images under arbitrary head poses.

In Figure 4.8, we show the typical failure cases generated by the proposed method

on both MultiPIE and 300WLP. For MultiPIE, the most challenging cases come from

exaggerated expression variations, e.g. Figure 4.8 (a), the second row. For 300WLP, the

challenge mostly come from head pose variations and illumination variations. However,

images in most failure pairs are visually similar.
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4.6 Discussion

In the work, we propose a new reconstruction loss to regularize identity feature learning

for face recognition. Such regularization method is portable to other deep face recogni-

tion frameworks without extra effort. We also introduce a data synthesization strategy to

enrich the diversity of pose, requiring no additional training data. Rich embedding has

already shown promising effects revealed by our control experiments, which is interpreted

as curriculum learning. To construct the Siamese reconstruction, a multi-source multi-task

network is set up for both preparing the identity and non-identity features and improving

the feature discrimination ability. The self and cross reconstruction regularization achieves

successful disentanglement of identity and pose, to show significant improvements on both

MultiPIE, 300WLP and CFP with 2% to 12% gaps. Cross-database evaluation further

verifies that our model generalizes well across databases. Future work will focus on closing

the systematic gap among databases and further improve the generalization ability.
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Chapter 5

Conclusion and Future Work

In this study, learning reliable and interpretable representations is one of the fundamental

challenges in machine learning and computer vision. Specially, we investigate why and

how to factorize the latent factors and decouple embeddings to achieve reliable and robust

representations in a supervised or weekly supervised manner. We also investigate learning

disentangled representations and its applications in deep visual analysis, which guarantees

state-of-the-art performance on multiple tasks including viewpoint estimation, landmark

localization, and large-pose recognition. In the future, we plan to further explore the

factorization and disentanglement of representation learning in machine learning and deep

learning domain to design vision-based perception systems with higher-level intelligence.
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5.1 Conclusion

Representations learned by deep models do not always manifest consistent meaning along

variations: many latent factors are highly entangled. As a result, tremendous data annota-

tions and sophisticated training skills are required, even though flawed representations with

undesirable characteristics are still produced from time to time.

Our objective is to decouple the latent factors in a representation space, where factoriz-

able structures are obtained and consistent semantics are associated with different variables.

The disentanglement can be learned in an either supervised or self-supervised manner. Es-

pecially, we investigate three different visual analysis tasks: head pose estimation, facial

landmark tracking, and large-pose pose recognition.

By factorizing and disentangling latent factors of face embeddings, such as Pose (P),

Identity (I), Expression (E), and illumination, we can learn various reliable representations

with respect to target perspectives: head pose estimation (pose/non-pose modeling), facial

landmark tracking (shape-dependent/-independent factorization), and deep face recognition

(identity-related/-unrelated disentanglement).

Head Pose Estimation. Three-dimensional head pose estimation from a single 2D

image is a challenging task with extensive applications. Different from existing approaches

that lack the capability to deal with multiple pose-related and -unrelated factors in a uniform

way. To address these problems, We propose a coarse-to-fine manifold embedding frame-

work to model pose and non-pose factors for robust head pose estimation [97]. Specially, we

define a unit circle and 3-sphere to model the manifold topology on the coarse and fine layer

respectively. It can uniformly factorize multiple factors in the proposed instance parametric

subspace, where novel inputs can be synthesized in a generative manner. Moreover, our

approach can effectively avoid the manifold degradation problem when 3D pose estimation

is performed. The results on both experimental and in-the-wild databases demonstrate the

strong performance of our approach.
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Facial Landmark Tracking. Face alignment, especially on real-time or large-scale

sequential images, is a challenging task with broad applications. Both generic and joint

alignment approaches have been proposed with varying degrees of success. However, many

generic methods have limited performance on sequential images with extensive variations.

To address these limitations, one the one hand, we propose to exploit sparse coding based

incremental learning for personalized ensemble alignment [102]. We samplemultiple initial

shapes to achieve image congealing within one frame, which enables us to incrementally

conduct ensemble alignment by group-sparse regularized rank minimization. At the same

time, personalized modeling is obtained by subspace adaptation under the same incremental

framework, while correction strategy is used to alleviate model drifting.

On the other hand, we propose a novel recurrent encoder-decoder network model for

real-time video-based face alignment [94]. Our proposed model predicts 2D facial point

maps regularized by a regression loss, while uniquely exploiting recurrent learning at both

spatial and temporal dimensions. At the spatial level, we add a feedback loop connection

between the combined output response map and the input, in order to enable iterative

coarse-to-fine face alignment using a single network model. At the temporal level, we first

decouple the features in the bottleneck of the network into temporal-variant factors, such as

pose and expression, and temporal- invariant factors, such as identity information. Temporal

recurrent learning is then applied to the decoupled temporal-variant features, yielding better

generalization and significantly more accurate results at test time.

Large-Pose Face Recognition. Deep neural networks (DNNs) trained on large-scale

datasets have recently achieved impressive improvements in face recognition. But a persis-

tent challenge remains to develop methods capable of handling large pose variations that are

relatively under-represented in training data. We presents a method for learning a feature

representation that is invariant to pose, without requiring extensive pose coverage in training

data [101]. We first propose to generate non-frontal views from a single frontal face, in order

to increase the diversity of training data while preserving accurate facial details that are
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critical for identity discrimination. Our next contribution is to seek a rich embedding that

encodes identity features, as well as non-identity ones such as pose and landmark locations.

Finally, we propose a new feature reconstruction metric learning to explicitly disentangle

identity and pose, by demanding alignment between the feature reconstructions through

various combinations of identity and pose features, which is obtained from two images of

the same subject. Experiments on both controlled and in-the-wild face datasets show that

our method consistently outperforms the state-of-the-art, especially on images with large

head pose variations.

The experiments in all the three investigations indicate that, by learning disentangled

representations, deep models are efficient to train and robust to variations, achieving state-

of-the-art performance in challenging conditions.

5.2 Future Work

Following the current work, we plan to further extend the ongoing investigation to gener-

ative modeling in 3D structure recovering. Understanding 3D structure from a monocular

view is a challenging task due to the ill-posted nature of 2D-to-3D mapping. How to

incorporate prior knowledge to complement the missing information and eventually reduce

the uncertainty becomes a crucial shortcut to learn the mapping successfully.

Weekly Supervised Factor Manipulation. By investigating the relation of latent

factors, we aim to achieve the disentanglement in a weekly supervised or even unsupervised

manner. The advantage is obvious. We can exploit real-world data, which are nearly

unlimited in volume but extremely expensive in labeling, to learn better representations

with disentangled nature. More importantly, by utilizing the learned representations, we

can manipulate latent factors for attribute editing and novel data generation to reveal deep

understandings of perceptions.
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Adversarial Hard Sample Mining. Given the fact that 3D annotated data are usually

collected in laboratory environmentwith limited volume, an encouragingway to improve the

2D-to-3D mapping is to deeply exploit the training data by mining hard samples. Specially,

we extend adversarial learning from the image distribution domain to variation parametric

domain, and therefore we can generate not only novel samples but also knowledge about

variations to provide hard samples for network training.
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