
 

 

 

 

 

 

 

 

© 2018 

Maria J. Qadri 

ALL RIGHTS RESERVED



Phase Plane Analysis & Morphological Simulation of Intracranial Pressure 

Variability for Physiological Monitoring of Acute Severe Brain Injury 

By 

MARIA JAMAL QADRI 

A dissertation submitted to the 

School of Graduate Studies 

Rutgers, The State University of New Jersey 

In partial fulfillment of the requirements 

For the degree of 

Doctor of Philosophy 

Graduate Programs in Biomedical Engineering & Quantitative Biomedicine 

Written under the direction of 

William Craelius 

And approved by 

_____________________________ 

_____________________________ 

_____________________________ 

_____________________________ 

New Brunswick, New Jersey 

January 2018 

 



 
 

ii 
 

ABSTRACT OF THE DISSERTATION 

Phase Plane Analysis & Morphological Simulation of Intracranial Pressure 

Variability for Physiological Monitoring of Acute Severe Brain Injury 

By MARIA JAMAL QADRI 

Dissertation Director: William Craelius, Ph.D. 

 

 

 

 

After severe acute brain trauma, cerebrovascular autoregulation (AR) can 

be impaired, but the performance of this homeostatic mechanism cannot be 

interrogated directly due to the complexity of the vascular system and existing 

challenges in assessing cerebrovascular phenomena. When indicated by the 

severity of brain trauma, clinicians continuously monitor intracranial pressure 

(ICP) to assess cerebral perfusion as a proxy measure for neural tissue 

oxygenation. The Monroe-Kellie doctrine states that the sum of the brain tissue, 

blood in the cerebrovascular bed, and cerebrospinal fluid in the ventricles is held 

constant within the cranial cavity; the resultant pressure of these volumes within 

the cranial cavity is ICP which fluctuates during a single cardiac cycle. Where 

ABP presents two peaks corresponding to systole and diastole, ICP presents 

three distinct peaks that correspond to cardiac systole (peak 1), cerebrovascular 

compliance (peak 2), and cardiac diastole (peak 3). Recent research on the 
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morphology of individual intracranial pressure beats indicates the potential to use 

transient morphological changes in ICP between cardiac cycles in the time 

domain to gain greater insight into physiological performance of AR and near-

future ICP.  

In order to highlight fluctuations in ICP behavior between successive 

cardiac cycles, this dissertation presents a novel method to analyze ICP 

morphology by transforming this cerebral pressure data from the time-domain to 

the phase-domain. Since existing mathematical models of the cerebrovascular 

performance focus on longer time-scale ICP behavior and clinically measured 

ICP morphology during cardiac cycles is often erratic, this dissertation 

demonstrates a novel morphological simulation of ICP to test a phase domain 

metric, the phase area ratio (PAR) in application to ICP monitoring.  

An additive Gaussian simulation of ICP was developed to specifically 

examine the behavior of ICP Peak 2 that represents cerebral compliance, which 

is the component of AR that cannot be assessed directly using other existing 

physiological measures. This dissertation tests the hypothesis that phase domain 

analysis of ICP is useful as a forecasting tool for intracranial hypertension (IH) 

after severe acute brain trauma and post-surgical intervention. To test this 

hypothesis, 300 simulated ICP cycles and over 1 million clinical ICP cycles from 

7 patients were analyzed. The simulated data were analyzed in a linear model 

that showed an R-squared value of no more than 0.76 for PAR and peak 2 

amplitude, and the model showed a 0.93 R-squared value or higher between 
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mICP and peak 2 behavior. The Spearman’s correlation presented weak positive 

correlations between PAR and ICP ranging from 0.4 for the 1-hr time span to -0.1 

for the 0.1-hr time span in time segments preceding intracranial hypertension 

(preIH). Overall in the clinical data examination, PAR was successfully able to 

differentiate between time periods of intracranial normotension and preIH time 

periods ranging from 1 to 0.1 hours using a Kolmogorov-Smirnov test for 67.9% 

of time periods tested in the seven patients. PAR performed with a lower area 

under the curve (0.53) than the time domain metric, Sample Entropy (SE) (0.71), 

when tested as a threshold classifier using receiver operator characteristic 

analysis for all time points in the exemplar patient. When analyzing all patient 

data, the area under the curve for PAR came out to 0.43 for a 1-hr window. A 

confusion matrix analysis of all patient data that yielded similar results as the 

receiver operator curve analysis. Using a logistic regression approach for 

prediction measurement, the results showed that PAR adds value to the 

performance of the model, where a longer amount of prior information yields 

better predictions for shorter times into the future. When PAR was used in 

conjunction with other metrics in a classifier, PAR-based metrics were more 

valuable that PAR itself. Overall PAR is a parameter that (1) requires less data 

for calculation than existing metrics, (2) has a bounded range between 0 to 1, 

and (3) does not have discontinuities like comparable complexity metrics. 

Ultimately, this work shows that PAR contributes unique information to existing 

multi-parameter prediction algorithms to forecast IH.  
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CHAPTER 1. INTRODUCTION 

1.1 Neurotrauma Incidence, Classification, and Treatment 

According to the United States Centers for Disease Control, in 2010 there 

were approximately two and half million emergency visits that included trauma to 

the head [1, 2]. After initial assessment and treatment, those visits led to over 

280,000 hospitalizations and more than 50,000 traumatic brain injury (TBI) 

related deaths. Of the 130,000 hospitalizations not resulting in death, 85,000 

resulted in long-term disabilities. As of 2010, more than five million people in the 

U.S. live with TBI-related disabilities. In order to reduce the incidence of TBI-

related disability and the cost associated with care, this dissertation focuses on 

neuromonitoring methods immediately after surgical intervention with the mission 

of reducing secondary injury, which is a subsection of these cases. 

Severity of neurotrauma is gauged clinically on the Glasgow coma scale 

that is the summation of scores for visual, motor, and eye opening assessments 

on a scale that ranges from 3 to 15 [3, 4]. A lower score is indicative of a more 

severe injury. Patients on the lower half of the scale that yield a severe 

classification are typically unconscious and intubated. In the case of severe TBI, 

a greater risk of elevated intracranial pressure (ICP) exists that corresponds to 

decreased cerebral perfusion and subsequent inflammatory cascades driven by 

hypoxic-ischemia [5]. For optimal recovery after a TBI, ICP regulation is 

maintained to ensure adequate oxygenation of tissues and limiting the risk of 

secondary injury from inflammation. 

For healthy individuals, homeostatic cerebrovascular autoregulatory (AR) 
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mechanisms control ICP by adjusting the levels of cerebral blood flow and by 

varying the resistance of blood vessels in response to changes in blood pressure 

in order to maintain adequate oxygenation of the brain [6]. Positive feedback is a 

common indicator of impaired AR: ICP elevation can quickly trigger cerebral 

edema and ischemic tissue damage; therefore, current treatments are focused 

on maintaining safe levels of ICP in the absence of thorough understanding of 

the highly complex cerebrovascular AR mechanisms related to cerebral 

perfusion.  

In the presence of capricious cerebrovascular AR mechanisms and the 

absence of reliable detection of AR status, post-trauma and post-surgical 

protocols focus on ICP management approaches to reduce immediate ICP 

hypertension (IH) in order to limit swelling and ensure adequate cerebral 

perfusion [7-9]. IH impairs cerebral blood flow resulting in ischemic damage and 

requires immediate physical or chemical intervention [7-10]. The current gold-

standard for detecting IH uses continuous monitoring of ICP during post-surgical 

care and alerts care providers when the value of ICP exceeds a fixed threshold, 

typically between 20 and 25 mmHg [12,13]. Evidence suggests that reducing IH 

incidence during in-patient hospital stays will reduce the likelihood of long-term 

disability after trauma and hypothetically reduce the cost of long-term disability 

care and rehabilitation [12,13]. Thus, several research laboratories are searching 

for predictive indices of AR function by focusing on ICP behavior and ensuring 

longer periods of ICP normotension (IN).  

With these factors and existing research in mind, this work lays the 
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foundation for using a novel approach to identify upcoming IH events by focusing 

on morphological changes in individual ICP cycles. The ultimate direction of this 

research is to maintain IN via proactive treatment to prevent IH instead of the 

modern approach of reactive IH treatment, which risks secondary inflammation.  

1.2 Cardiac Cycle: Vascular and Cerebrovascular Phenomena 

Intracranial pressure (ICP) is a resultant pressure based on fluctuations in 

the volume of neural tissue, cerebrospinal fluid, and cerebrovascular blood within 

the fixed space of the cranial cavity, which is formally referred to as the Monroe-

Kellie Doctrine [7]. 

Equation 1. Monroe-Kellie Doctrine 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑉𝑇𝐼𝑆𝑆𝑈𝐸 + 𝑉𝐵𝐿𝑂𝑂𝐷 + 𝑉𝐶𝑆𝐹 

Based on this doctrine, ICP can be identified as a resultant pressure of 

fluctuations in volume in any of the three components. In TBI cases, contusion is 

the primary cause of changes in tissue, and infections are the leading cause of 

over-production of CSF [7]. The overwhelming component to homeostatic ICP 

fluctuations particularly in relation to AR is the volume of the blood in the cerebral 

cavity, which is driven by arterial blood pressure (ABP) fluctuations within each 

cardiac cycle. Figure 1 demonstrates the previously researched relationship 

between the vascular and cerebrovascular systems that function in similar but 

distinct manners: only Peak 2 of ICP cannot be explained by the systolic and 

diastolic fluctuations in ABP. Note that absent in Figure 1 is a noted delay of 

approximately half a second that exists between the onset of an ABP cycle and 

ICP cycle, which is also of interest to TBI researchers. 

Figure 1. Representation of Relationship between Vascular and 
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Cerebrovascular Cycles. Left: Closed-loop circulation between heart and 
brain. Top Right: Arterial Blood Pressure Cycle. Bottom Right: Intracranial 

Pressure Cycle  

 

 

A single ICP cycle, which is approximately the duration of a heartbeat, 

exhibits three distinct peaks that relate to different physiological processes, as 

summarized in Table 1: a percussive peak, Peak 1, corresponding to the influx of 

blood driven by the ABP impulse during systole after a transit delay; a tidal peak, 

Peak 2, relating to the compliance of the cerebrovascular bed, and a dicrotic 

peak, Peak 3, which mirrors the dicrotic notch and rebound seen during diastole 

of ABP [7]. These fluctuations are of interest because Cerebral Perfusion 

Pressure, which is a proxy measure of oxygen to the brain, is calculated as the 

difference between mean ABP and mean ICP [7-13]. Note that while ABP can be 

easily measured with non-invasive sphygmomanometers or mildly-invasive 

catheters using the vessels of the arm, ICP can only be measured continuously 

via invasive probe in the cranial cavity.  

Normalized 
time 

 



5 
 

 

Table 1. ICP Cycle Components 

Peak 
1 

Percussive Peak 
Arterial Blood Pressure Impulse 

during Systole 
 

 

Peak 
2 

Tidal Peak 
Cerebrovascular Compliance 

Peak 
3 

Dicrotic Peak 
Arterial Blood Pressure Impulse 

during Diastole 

 

Previous studies indicate that ICP waveform complexity decreases as the 

risk of IH increases; these decreases in complexity are implicated as the cause 

to decreased neural vessel compliance, which can indicate dysfunction of 

cerebral autoregulation [6-15,19-22]. One research team found, “as early as 6 h 

into monitoring, complexity measures from easily attainable vital signs, such as 

[heart rate] and [mean arterial pressure], in addition to ICP, can help triage those 

who require more intensive neurological management at an early stage” [39]. 

Furthermore, the behavior of these peaks and other morphological features of 

the ICP pulse have been used to predict rises in ICP up to an hour before the 

event by using a rule-based clustering and analysis algorithm [15-18]. This 

forecasting method used a multi-parameter feature vector including up to 24 

metrics per cycle that focuses on signal amplitudes, relative position, radius of 

curvature, and proportional time-domain measures occurring at selected points 

within the individual ICP cycle [41].  

1.3 Models of Intracranial Pressure 

The difficulties of modeling intracranial pressure are related to the 

Time (s) 
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difficulties in assessing a resultant pressure within an enclosed cavity in the 

human body [7, 10-14, 20, 21]. Human rights and ethics concerns have limited 

cerebrovascular studies to retrospective investigations of individuals with brain 

injuries or in prospective animal studies. Consequently, only two models of 

intracranial pressure have dominated the field since the 1980s: Takamae and 

Ursino.  

The Takamae model (1987) was based on clinical data [23]. Currently, the 

threshold for clinical IH is between 20 and 25 mmHg and for the Takamae data, 

the threshold was set at 50 mmHg. The model was based on an electrical circuit 

called the Agarwal circuit and included resistors for vessel wall stress and 

capacitors to accommodate the compliance of the arterioles and capillaries 

leading back to veins. A limitation to implementing this model in this research is 

the input data – Takamae used cerebral blood flow and CSF flow data which 

require additional equipment in the ICU beyond the traditional ICP monitors.  

The Ursino models are the more comprehensive models and were 

published in 3 iterations [24, 25]. The first iteration was the most comprehensive 

and the last was the most simplified. Ursino also include components for the 

arterioles and arteries and includes many additional variables of vascular and 

cerebrovascular behavior. The most recent utilitarian version of the model 

demonstrates appropriate long-term ICP morphology, with the major limitation 

that the model is non-representative of ICP morphology during cardiac cycles. 

Figure 2 is an example of ICP during four cardiac cycles and when compared to 

Figure 1, the waveform morphology shows two peaks akin to the input signal of 
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ABP instead of three peaks as expected in ICP. This major limitation to the 

preeminent ICP model necessitates a simulation of ICP morphology during 

cardiac cycles as presented later in this work. 

Figure 2. Sample Ursino Model Output during 5-level Bolus Infusion Study.  
Each trace is resultant ICP after successive 2 mmHg CSF infusions to 

model starting from 13mmHg (Blue =13, Red=14, Yellow=15, Purple=16, 
Green=17) 

 
 

1.4 Intracranial Hypertension Metrics 

There exist several metrics of cerebrovascular AR performance and IH 

that operate on long timescales [7, 11-15]. The most commonly used metric is 

pressure reactivity index, PRx, which is calculated as the correlation between the 

mean arterial pressure and the mean intracranial pressure of over 5 minutes to 

several hours. Another commonly used method is the correlation coefficient 

between the fundamental amplitude of ICP and the mean ICP over the course of 

a minute to several minutes, abbreviated as RAP. The shortest time analysis is 

sample entropy as a measure of complexity of the ICP signal that has previously 

been taken from 1 to 5 minute timescales [15]. All of these approaches average 

Time (s) 

IC
P

 (
m

m
H

g
) 
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ICP data to ignore the underlying complexity of each individual waveform and 

require large buffers of data to perform the calculations. Hu et al. analyzed 

individual cycle metrics and found significant features of individual cycles 

including mean ICP, ratio of amplitude peak 2 to amplitude peak 1, amplitude 

peak 2, amplitude peak 3,the time offset of peak 2 from the start of the cycle, the 

radius of curvature for peak 2, and the slope of peak 1 [16, 41]. 

1.5 Hypothesis and Approach 

Since changes in ICP sub-peaks from cycle-to-cycle are difficult to discern 

visually during real-time monitoring, this dissertation demonstrates the benefits of 

phase-domain analysis (PDA) techniques in identifying physiologically relevant 

features of cerebrovascular AR. PDA differs fundamentally from temporal domain 

analysis since it focuses on the rate of change of a given signal, more specifically 

in this examination – ICP. This transformation can enhance discrimination of 

subtle differences in waveform morphology, which is analogous to waveform 

complexity.  

The central hypothesis evaluated here is that patterns in the rate of 

change for ICP can be identified by transformation of ICP waves from the time 

domain to the phase domain, particularly Peak 2 which has previously been 

identified as a marker of cerebrovascular compliance, and phase domain metrics 

can forecast IH events. The long-term objective of this body of work is to reduce 

the likelihood of long-term disability in patients suffering acute severe brain 

trauma after surgical intervention by identifying the risk of IH and subsequent 

ischemia proactively; after accomplishing this, future research may elucidate AR 



9 
 

 

mechanisms and develop new proactive and preventative IH treatments.  

A previously established signal processing technique for cyclical behaviors 

that is based on areas observed in the phase domain yields a distinct numerical 

measure of PDA: the phase area ratio (PAR), which is detailed in Chapter 2. To 

test this hypothesis, Peak 2 amplitude and width was modulated within a novel 

morphological simulation of ICP at the scale of individual cardiac cycles; three 

Gaussian pulses were added to produce simulated ICP waves with 

physiologically-relevant morphologies. Chapter 3 captures the simulations and 

analysis of PAR’s response to controlled modulations as well as PAR’s 

performance in the presence of noise. The results of PAR to a comparable time 

domain analysis method, Sample Entropy (SE), in long-duration clinical 

recordings are summarized in Chapter 4. The last chapter of this dissertation 

recapitulates the findings of this work and offers future directions based on this 

research. 

CHAPTER 2. PHASE DOMAIN ANALYSIS 

2.1 Phase Domain Description 

2.1.1. Mathematical Foundation 

Common techniques in mathematical analysis of a waveform are 

distribution analysis, frequency domain analysis, and derivation or integration of 

the waveform. Phase domain analysis focuses specifically on derivatives and 

echoes an aspect extracted from differential calculus: gradient analysis. For 

gradient analysis of differential equations, a gradient plane is created by plotting 

the time domain function on the abscissa (x-axis) and the derivative of the time 
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domain function on the ordinate (y-axis). To extend this principle, phase domain 

plots are created by plotting the signal or its derivative on the abscissa and a 

derivative of one higher order on the ordinate axes. If the signal has regular 

periodicity, the shape created by plotting the points over time will create a closed 

shape which captures the utilized area of the phase plane plotted; in gradient 

analysis, this method is used to find the solutions as well as the sources and 

sinks of the complex differential or partial differential equation. Here, the phase 

domain plots are used to capture information about the impulse-like forces 

driving pressure phenomena inside the complex vessel bed of the brain. 

2.1.2. Previous Applications of Phase-Domain Analysis 

Limitations of time domain processing of physiological signals include both 

the elimination of artefactual features and the lack of information regarding the 

driving impulses motivating the signal set. To solve these issues, previous 

researchers have used phase domain-like analyses in both cardiovascular and in 

human movement domains. 

For several decades, vascular analysis has centered on plotting the 

volume of blood in the left ventricle against the left ventricle pressure; these 

pressure-volume relationships are used in conjunction with optical mapping and 

electrocardiograms to identify weakening muscular components within the heart 

[26, 27]. The pressure-volume curves yield loop features that serve as a proxy for 

the work completed by a pump and system efficiency, which is cardiac 

performance in the case of the heart. Impairment of the left ventricle of the heart 

can often be identified by signal hysteresis; with many cardiac cycles, hysteresis 
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and signal behavior can indicate weaknesses in particular fibrous areas near 

valves, entire chambers of the heart, or even the major and minor vessels that as 

a whole comprise the mechanism for oxygenating the human body. 

In human biomechanics, particularly in human movement of joints and 

limbs, derivative analysis is a common technique to identify impairments that 

cannot otherwise be detected [28- 31]. Previous research with the Biomechanics 

and Rehabilitation Engineering Laboratory exemplified the benefit of quantitative 

assessment of limb movements through derivative analysis and phase-plane 

analyses. [30,31] 

While use of phase plane analysis to illustrate vascular hemodynamics 

and human movement can be clearly interpreted via external validation methods 

like blood flow velocity and optical recordings of human movement, phase plane 

analysis has not been applied to intracranial pressure previously due to absence 

of a validation technique, which will be further addressed in Chapter 3. 

2.2 Definition of Phase Area Ratio 

Moradi previously applied the Phase Area Ratio (PAR) of the acceleration 

versus velocity phase (AVP) plane in a major body of work and demonstrated 

that PAR could successfully capture notable differences in movement within 

recordings of an individual patient and also among multiple patients [31]. While 

the application of phase-plane analyses has successfully been executed in 

movement analysis, this work focuses on evaluating this analytical technique 

specifically upon cerebrovascular phenomena. 

While chapter 3 explores both the acceleration vs velocity phase plane 
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(AVP) and the velocity vs signal phase plane (VSP), this chapter centers on the 

AVP. Below, equations 2 and 3 are used to construct the AVP portrait,  

Equation 2. Velocity Series Calculation 

𝑑𝑃

𝑑𝑡
= ∑

𝑃(𝑠𝑛+1 − 𝑠𝑛)

𝑡(𝑠𝑛+1 − 𝑠𝑛)

𝐶

𝑛

 

Equation 3. Acceleration Series Calculation 

𝑑2𝑃

𝑑2𝑡
= ∑

[
𝑃(𝑠𝑛+2 − 𝑠𝑛+1)
𝑡(𝑠𝑛+2 − 𝑠𝑛+1)

−
𝑃(𝑠𝑛+1 − 𝑠𝑛)
𝑡(𝑠𝑛+1 − 𝑠𝑛)

]

𝑡(𝑠𝑛+2 − 𝑠𝑛+1)

𝐶

𝑛

 

where sn represents the sample, t represents time, and P represents the 

intracranial pressure. n represents each point in the cycle, which goes from 1 to 

length of each cycle, C. Note that the time between successive sample points is 

uniform due to a fixed sampling rate in data acquisition. Because graphical plots 

require that plotting vectors be of identical length, the first point of the first 

derivative is cropped, and the first point of each vector is repeated at the end of 

the vector to create a bounded region. 

To obtain PAR, three separate parameters were computed as shown in 

Figure 3: 1) the phase footprint, AF, that comprised the total area contained 

within the outer perimeter; 2) the loop area, AL, that comprised the total area 

circumscribed by inner loops, including nested loops; and 3) the hull area, AH, 

that comprised the tightest-fitting convex polygon fit to the perimeter of the phase 

portrait. PAR was then calculated as shown in Equation 4. A benefit of this metric 

includes ease of interpretation since the ratio is bounded between 0 and 1. 

 Figure 3. Phase Area Ratio Components 
Left: Idealized ICP Cycle vs Time – approximate time scale of a heartbeat; 

Center: Transformation to the Acceleration-Velocity Phase Domain;  
Right: Each phase area used in the calculation of PAR where AH refers to 
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the area of the Convex Hull, AF refers to the area of the footprint, and AL is 
the sum of the areas of any loops. 

  
 

 
Equation 4. Phase Area Ratio 

𝑃𝐴𝑅 = 1 −  
𝐴𝐹

𝐴𝐿 + 𝐴𝐻
 

When applied to intracranial pressure, phase domains present in three 

major shapes: single loop, bi-loop, or tri-loop. If the time domain is a single peak, 

the Velocity Phase Plane and Acceleration Phase Plane peaks present smooth, 

single-loop shape. As more peaks are introduced, more loops appear and 

overlap as can be seen in Figure 4. This phenomenon dictates that PAR = 1 in 

an ideal case where multiple convex loops were present and overlapping 

whereas if no loops are present PAR ~ 0. Since a specific number of peaks are 

desirable in healthy representations of ICP, lower values of PAR indicate high 

potential for AR impairment; note that the most common impairment is occlusion 

or complete absence of peaks. This phenomenon will be explored further through 

simulating small fluctuations in Peak 2 amplitude and width in Chapter 3. 
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Figure 4. ICP in the Time, Velocity Phase Plane and Acceleration Phase 
Plane for Health and Impaired Signals.  

 
Velocity Phase Plane PAR: Top=0.02; Middle=0.05; Bottom=0.08 

Acceleration Phase Plane PAR: Top=0.09; Middle=0.23; Bottom=0.41 
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CHAPTER 3. MORPHOLOGICAL SIMULATION OF INTRACRANIAL 

PRESSURE 

To interrogate the viability of phase plane analysis in ICP for future clinical 

use, a novel method for simulating ICP cycle morphology using additive 

Gaussian functions was proposed. Both phase domain and time domain 

morphological features were interrogated by modulating the amplitude and width 

of only Peak 2 within the simulation. The simulated ideal ICP wave was also 

tested with added white Gaussian noise in order to test the sensitivity of PAR to 

distortive noise. 

3.1 Simulation: Primary Development 

3.1.1 ICP Gaussian Decomposition 

While many distribution functions could be used including Gamma-, Chi-

square, and Weibull-distributions, Gaussian decomposition modeling inspired the 

approach used in this body of work since the most existing literature was 

available on this type of function [32]. Alternate methods of signal decomposition 

have been used for ICP, as inspired by previous limitations on sampling rates 

that no longer exists with plug-and-play software; similar methods could be 

applied concurrently with the phase plane analysis method presented in this work 

to overcome sampling limitations in less-advanced hardware configurations [33, 

34]. Additionally, Gaussian processes have been previously implemented in 

intracranial pressure analyses; however, these have been applied over longer 

time intervals [35]. Polynomial decomposition may be a viable technique in future 

iterations of this work. 
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In order to identify realistic parameters, Gaussian distribution 

decomposition was used on brief signal recordings available on Physionet and 

abbreviated samples of clinical recordings available from the Rutgers 

Biomechanics and Rehabilitation Laboratory [34]. To decompose individual ICP 

cycle recordings, custom Matlab code was developed to add three Gaussian 

functions and minimize the root mean square error between the clinically 

recorded cycle and the additive Gaussian simulation. Since all ICP recordings in 

humans occur in impaired individuals, values to recreate idealized morphology 

was also empirically derived by iterative testing to recreate shapes as identified 

in literature [7, 9, 12, 16, 41]. Based on a cohort of 50 randomly sampled clinical 

cycles from 2 patients where three peaks could be visually identified and 

recreating literature-based tripartite morphologies, parameters were empirically 

derived through iterative testing to establish an idealized ICP waveform as 

described further in Equation 5 and Figure 6.  

3.1.2 Parameters and Performance 

Artificial ICP signals were synthesized using a finite additive Gaussian 

approach using three separate Gaussian functions to individually emulate each 

of the three-peaks of ICP. The model used is: 

Equation 5. Gaussian Mixture Simulation of ICP for Individual Cardiac 
Cycles  

𝐼𝐶𝑃𝑆𝐼𝑀 = 𝐴1𝑒−𝐵1(𝑡−𝐶1)2
+ 𝐴2𝑒−𝐵2(𝑡−𝐶)2

+ 𝐴3𝑒−𝐵3(𝑡−𝐶3)2
+ 𝐷 

where t represents the time vector used to create the signal, A modulates 

the signal amplitude, B modulates signal width, C modulates the location of the 

Gaussian function relative to the start of the cycle, and D modulates the baseline 
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ICP. While the resulting clear tri-peaked curves are rarely seen in clinical data 

due to noise and physiological impairments, using “normal” ICP phenomena to 

understand phase plane analysis in ideal ICP data will yield insight into the 

interpretation of PAR in clinical settings. 

While the literature includes images of the ideal ICP wave shape by 

identifying relative behavior of the peaks, numerical values for individual ICP 

features were not found; therefore, an idealized ICP was created by empirically 

modifying individual values of the parameters that yield an ICPSIM that mimics the 

shape shown in literature and reflects available clinical recordings [7, 9, 12, 16, 

41]. An exemplar of this technique is shown in Figure 5 with information on the 

parameters used, and the individual Gaussian sub-components are shown. While 

the offset represented by parameter D was necessary for morphological 

characterization in the time domain and the development of an accurate 

simulation necessitates its presence; in the clinical analysis presented in chapter 

4, de-trended data were used to eliminate the role of this parameter. The PAR 

calculation is not affected by the presence or absence of an offset value. For 

these simulations, the offset was set to 11, the width of the cycle was maintained 

at one second, and sampling was simulated at 100 Hz. Given the relationship 

between ICP and ABP, these parameters are physiologically viable for resting 

heart rates of about 60 beats per minute.   
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Figure 5. Exemplar of ICP simulation with Three Gaussian Sub-
Components Shown

 
 
 

In these simulations, Peak 2 width and amplitude (width model and 

amplitude model, respectively) were modulated to deviate from the empirical 

ideal, while Peak 1 and Peak 3 parameters remained fixed at the idealized 

conditions presented in Figure 5. The simulations were physiologically 

constrained to yield realistic morphologies. Peak 2 amplitudes were tested at 

values from [2.9452 - 4.5232] mmHg, and Peak 2 width was modulated between 

[571.2 - 1031.2] milliseconds.  

The data were classified a priori into three levels: high, medium, and low 

for both width and amplitude models. The parameters used to define the 

boundaries in both models for each level are presented in Table 2. Within each 

level, 50 cycles were simulated for a total of 150 simulated cycles for each of the 

two models tested. For each of the resulting 300 simulated ICP wave cycles, 

peak 2 was identified and its width was measured using the MATLAB signal-
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processing toolbox function “findpeaks” (‘WidthReference’ parameter set to 

‘halfheight’) as shown in Figure 6. Visual exemplars of the ICP cycle for the 

lowest and highest parameter value for each modulation type are shown in 

Figures 7 & 8. As the width narrows, the AVP footprint and loop area both grow 

whereas as when the amplitude increases, only the loop area grows noticeably. 

Figure 6. Exemplar @findpeaks with ICP simulation for Individual Peak 
Amplitudes and Widths 

 
 

Table 2. Study Design Parameters 

LEVEL MODEL 1:  
Width Modulation 

MODEL 2:  
Amplitude Modulation 

Step Size 0.01500 0.00015 

Low [57.12000, 63.12000] [2.94520, 3.00520] 

Medium [72.12000, 78.12000] [3.54320, 3.60320] 

High [97.12000, 103.12000] [4.46320, 4.52320] 

Total Samples 150 150 
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Figure 7. Simulated ICP Width Modulation Exemplars for Low 
(Red)[PAR2=0.43], Medium (Black)[PAR2=0.46], High (Blue)[PAR2=0.57] 

Time Domain, 1st & 2nd Derivatives, and Acceleration-Velocity Phase Plane 
 

 
 

 
 

Figure 8. Simulated ICP Amplitude Modulation Exemplars for Low 
(Red)[PAR2=0.31], Medium (Black)[PAR2=0.46], High (Blue)[PAR2=0.44] 

Time Domain, 1st & 2nd Derivatives, and Acceleration-Velocity Phase Plane 
 

 
 

 

3.2 Simulation: Experimental Design 
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3.2.1 Extraction of Time-Domain Features: 

A total of eight features were extracted from each of the simulated ICP 

pulses: six time-domain and two phase-domain. The calculation of each feature 

is summarized in Table 3. Note that feature selection was based on earlier 

findings within the field as specified in Chapter 1. An established test of subtle 

variation in physiological signal data is sample entropy (SE), which is used here 

as a time-domain calculation that yields PAR-like information. The calculation of 

SE used here was based on an open-source algorithm from the Physionet 

database:  

Equation 6. Sample Entropy 
𝑆𝐸(𝑘, 𝑟, 𝑁) = −𝑙𝑛(𝐴(𝑘)/𝐵(𝑘 − 1) 𝑓𝑜𝑟 𝑘 = 0,1, . . . , 𝑚 − 1 𝑤𝑖𝑡ℎ 𝐵(0) = 𝑁 

with the following parameters: N (epoch length) = 50 samples; r (tolerance) = (0.2 

x standard deviation of epoch); and m (maximum template length) = 3 [36-38].  
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Table 3. Summary of features extracted from ICP pulses 

Feature Domai
n 

Description 

1. VSP [dICP vs ICP] 
PAR (PAR1) 

Phase 1. OUT1=Equation 5: ICP Simulation  
2. OUT2=Equation 2 (OUT1): dICP 
3. PAR1=Equation 4 (OUT1, OUT2) 

2. AVP [ddICP vs 
dICP] PAR (PAR2) 

Phase 1. OUT3=Equation 2 (OUT1): dICP 
2. OUT4=Equation 3 (OUT1): ddICP 
3. PAR2=Equation 4 (OUT3, OUT4) 

3. Peak 2 Amplitude 
(A) 

Time 1. Matlab R2016b function:  
[A(1:3),~,~,~]=findpeaks(OUT1)  

2. A=A(2) 

4. Peak 2 Width (W) Time 1. Matlab R2016b function: 
[~,~,W(1:3),~]=findpeaks(OUT1) 

2. W=W(2) 

5. ICP Cycle 
Arithmetic Mean 
(mICP) 

Time 𝑚𝐼𝐶𝑃 = (∑𝑛
𝑖=1 𝑂𝑈𝑇1𝑖)/𝑛 where n=100 

6. ICP Cycle 
Geometric Mean 
(gmICP) 

Time 𝑔𝑚𝐼𝐶𝑃 = [∏𝑛
𝑖=1 𝑂𝑈𝑇1𝑖]

1/𝑛 where n=100 

7. Amp. Peak 2/ Amp. 
Peak1 Ratio (S) 

Time 1. Matlab R2016b function:  
[A(1:3),~,~,~]=findpeaks(OUT1) 

2. S=A(2)/A(1) 

8. Sample Entropy (SE) Time 𝑆𝐸(𝑘, 𝑟, 𝑁) = −𝑙𝑛(𝐴(𝑘)/𝐵(𝑘 − 1)𝑓𝑜𝑟 𝑘
= 0,1, . . . , 𝑚 𝑤𝑖𝑡ℎ 𝐵(0) = 𝑁 

where N=50, r=0.2*stdev(1:N),m=3 
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3.2.2 Linear Modeling of Features 

3.2.2.1. Amplitude of Peak 2 

To analyze the results, five linear models were created with Amplitude of 

Peak 2 as the predicted output since this parameter has the most evidenced 

relationship to cerebral compliance and AR: 

1. All Features 

A~gmICP+mICP+W+S+SE+PAR1+PAR2 

2. Time Domain Features 

A~gmICP+mICP+W+S+SE 

3. Phase Domain Features 

A~PAR1+PAR2  

4. Only Velocity Phase Feature 

A~PAR1 

5. Only Acceleration Phase Feature 

A~PAR2 

6. Only mean ICP Feature 

A~mICP 

Additionally, each feature was modeled independently: the full model 

results including scatter plots are included in the Appendix IV.  

3.2.2.2. Mean ICP 

Since the most commonly used clinical metric of ICP fluctuations is mean 

ICP and identifying individual peaks in clinical data is difficult, six linear models 

were created with mean ICP as the predicted output: 
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1. All Features 

mICP~gmICP+A+W+S+SE+PAR1+PAR2 

2. Time Domain Features 

mICP~gmICP+A+W+S+SE 

3. Phase Domain Features 

mICP~PAR1+PAR2  

4. Only Velocity Phase Feature 

mICP~PAR1 

5. Only Acceleration Phase Feature 

mICP~PAR2 

6. Only Amplitude Feature 

mICP~A 

Additionally, each feature was modeled independently: the full model 

results including scatter plots are included in the Appendix IV.  

3.3 Simulation Results 

The results of the 6 simulation conditions designed above are presented in 

two approaches. The first presentation demonstrates the mean, range, and 

quartiles, and outliers of the data sets using boxplots. The second presentation 

focuses on the linear model results from the two models to identify the strength of 

linear relationship between Peak 2 amplitude or mean ICP with the specified 

features. 

3.3.1 Boxplots of Results 

Figures 9 and 10 demonstrate the measured Amplitude and Width of Peak 
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2 for each specified level defined in Table 2 for each modulation case. When 

modulating the Width of Peak 2 artificially from wide to narrow, the interference 

from the adjacent and fixed Gaussians for Peak 1 and Peak 3 likely causes the 

overlap between the Low and Medium groups in width. While the Width is 

modulated, the measured Amplitude only fluctuates over a tiny range. Peak 2 

Amplitude linearly relates to width, as expected. When modulating the Amplitude 

of the Peak 2, the measured amplitude and width both increase across all three 

levels in an expected fashion.  

Figure 9. Measured Amplitude and Width for Model 1: Width Modulation
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Figure 10. Measured Amplitude and Width for Model 2: Amplitude 
Modulation

 
 

Figures 11 and 12 present the two major time domain and phase domain 

parameters: mICP, gmICP, ratio P2/P1 (S), SE, PAR 1, and PAR 2. In the case 

of width modulation, except for PAR 1, the time domain features present a similar 

linear tendency from high to low whereas PAR 1 demonstrates a convex 

parabolic phenomena and PAR 2 demonstrates the opposite linear trend. For 

amplitude modulation, PAR 2 follows the linearly increasing trend demonstrated 

by arithmetic and geometric means while spanning a broader range of values 

than PAR 1. This is ultimately a trait that is more versatile as a singular ratio 

based metric that can be used to set thresholds for clinical alarms; as a reminder, 

the current gold standard for clinical care alarms for severe neurotrauma post-

surgical intervention is only exceeding 25 mmHg. A full plot of metric versus 

metric behavior is available in Appendix IV. 

 
Figure 11. Results from Simulated Width Modulation at Three Levels for 
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Time Domain Features and Phase Domain Features

 
 
 

Figure 12. Results from Simulated Amplitude Modulation at Three Levels 
for Time Domain Features and Phase Domain Features 

 
 

The results above demonstrate that PAR 2 demonstrates a negative correlation 

to mICP when modulating Width, whereas PAR 2 demonstrates a similar 

increasing trend when modulating Amplitude. In both cases, PAR 1 exhibits a 

parabolic trend across a narrower range of values.  
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3.3.2 Linear Modeling of Results 

The full results of both sets of linear models are presented in Appendix IV, 

including models for each feature individually.  

3.3.2.1 Amplitude of Peak 2 

All models tested provided statistical significance with p-values below 0.05 

as expected for a noise-free data set. An abbreviated summary of the model 

results is presented in Table 4 for the two models executed. These results 

indicate that all six of the models presented are robust enough to predict 

measured Peak 2 amplitude. PAR 2 alone yields a higher adjusted R-square 

value than PAR 1 alone for amplitude modulation but performs similarly low 

during the width modulation test. Note that Peak 2 and mICP have high 

correlation for both models with the following equations: Width Modulation 

(A=13.50+0.12*mICP) and Amplitude Modulation (A=-49.07+4.87*mICP) 
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Table 4. R-Squared Values for Linear Model Analysis of Peak 2 Amplitude 

Model Class Model 1:  
Width 

Modulation 

Model 2: 
Amplitude 
Modulation 

1. All Features 0.999 1.000 

2. Time Domain Features 0.999 1.000 

3. Phase Domain Features 0.200 0.786 

4. Only PAR1 Feature 0.128 0.036 

5. Only PAR2 Feature 0.127 0.758 

6. Only mICP Feature 0.932 1.000 

 

3.3.2.2 Mean ICP 

All models tested provided statistical significance with p-values below 0.05 

except for SE by itself as a predictor of mean ICP (p-value=0.248). An 

abbreviated summary of the model results is presented in Table 5 for the two 

modulations cases executed in predicting mean ICP. These results indicate that 

all five of the models presented are robust enough to predict mean ICP. There is 

a perfect linear correlation between mean ICP and Peak 2 with an equations of 

(mICP= -105.89 + 7.916 * A) for width modulation and (mICP=10.074 + 0.205 *A) 

for amplitude modulation.  
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Table 5. R-Squared Values for Linear Model Analysis of mean ICP 

Model Class Model 1:  
Width 

Modulation 

Model 2: 
Amplitude 
Modulation 

1. All Features 1.000 1.000 

2. Time Domain Features 1.000 1.000 

3. Phase Domain Features 0.324 0.788 

4. Only PAR1 Feature 0.198 0.037 

5. Only PAR2 Feature 0.215 0.761 

6. Only Peak 2 Amplitude Feature 0.932 1.000 

 

3.4 Signal to Noise Ratio Performance of PAR 

In order to evaluate PAR’s tolerance to noise, the additional presence of 

white Gaussian noise was simulated to experimentally assess how well PAR1 

and PAR2 perform under situations where filtering cannot happen prior to 

calculation. Additive white Gaussian noise presents with uniform power at all 

frequencies, which can be different than clinically recorded noise that can be 

higher at particular frequencies. Three representative samples of the input, 

process and output of the measure and the corresponding derivatives, phase 

domain, and PAR scores are displayed in Figure 13. Since analog methods are 

used to capture the data, after the analog-to-digital conversion is complete, the 

clinical data are appropriately filtered for smoothness that remove such noise 

from signals prior to calculating PAR - this will be discussed further in chapter 4.  
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Figure 13. Experimental SNR Modulation Exemplars for SNR of 20 (top 
row), 40 (middle row), and 80 (bottom row) with time domain (left column), 
derivatives (middle column), and acceleration phase plane (right column) 

with associated PAR 2

 
The experiment was executed at a finer resolution of 50 dB to 100 dB in 

increments of 2 dB (Figure 14). The results of this approach demonstrate that 

both PAR calculations are stable when a 10-point moving average filter is 

applied. Raw calculation of PAR 2 equilibrates at SNRs of greater than 86 dB. 

Raw PAR 1 is less sensitive to noise and equilibrates at 70 dB. 
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Figure 14. SNR Modulation from 50 to 100 dB in increments of 2dB with the 
Raw PAR in Blue and the Filtered PAR in Red  

SNR (Left), PAR1 (Middle), and PAR2 (Right) results

 
 

Overall, as a higher SNR is preferred for reliable PAR calculation, data 

must be filtered prior to calculation of PAR to ensure reliable results. Both PAR1 

and PAR2 metrics are sensitive to added noise. However, as demonstrated in 

Figures 4 and Section 3.3, PAR 2 demonstrates a distinct profile with a triple-

peaked cycle than double-peaked or single-peaked cycle. Given the range of ICP 

simulations tested PAR 1 spans a smaller range of units than PAR 2. Because of 

this evidence, the clinical data in Chapter 4 will be analyzed using AVP and PAR 

2 which hereafter will be referred to as PAR for simplicity.  
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CHAPTER 4. PHASE AREA RATIO PERFORMANCE IN CLINICAL TRAUMA 

RECORDINGS 

The previous chapter demonstrates the benefits of using acceleration-

velocity phase plane (AVP) analysis on simulated ICP data to resolve 

morphological changes between ICP cycles using a single metric, the phase area 

ratio (PAR). Previous studies indicate that ICP complexity measured by entropy 

decreases as the risk of IH increases and identifies decreased brain compliance, 

which can indicate dysfunction of cerebrovascular AR [7, 39]. Using clinical 

recordings from patients with acute and severe brain trauma, this chapter 

compares the performance of PAR against an existing waveform complexity 

measure, sample entropy (SE) that has previously been utilized in similar 

studies. The hypotheses tested here focus on the ability of PAR to predict IH in 

clinical recordings by focusing on PAR’s behavior in the time preceding IH.  

4.1 Sample Population 

The study was approved by the Rutgers-RWJUH IRB in 2014 with one 

revision in 2015 and was conducted solely at Robert Wood Johnson University 

Hospital. The research team was assisted by Surgical Intensive Care Unit 

Nurses and the RWJUH Clinical Engineering Department. Patients who were 

indicated to have subdural bolt monitoring based on surgical assessment and 

who consented to the research study by proxy were collected between 2014-

2017. Data were gathered on a total of 17 patients: 10 patients were excluded for 

ventriculostomy recordings, recording errors, changes in recording method, or 

records that were too short for analysis; this yielded 7 usable patient recordings 
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whose records are summarized in Table 6. All patients presented were placed on 

ventilators while ICP was being recorded. More than 400 hours of clinical data 

were analyzed, yielding over 1 million ICP cycles. The dataset includes 26 IH 

events which were isolated and examined to determine the correlation between 

mean ICP and PAR. In this analysis, 24 hours for one patient (Exemplar) is 

examined in depth for comparison of PAR versus SE. Cumulative test results for 

PAR in all seven patients are presented here; additional individual patient 

summaries are available in the Appendix V where only data on PAR is provided. 

Table 6. Patient Summary Information 

Patient Sex Age Race Hispanic Wt. (kg) Ht. (in) # of 
Events 

Exemplar M 25 W Y 73 67 4 

A F 66 A N 65 61 2 

B M 47 W Y 59 62 1 

C M 55 W N 89 70 2 

D M 50 W N 138 71 1 

E M 30 W Y 80 62 5 

F M 60 A N 62 NA 11 

 

The patients’ ages span a considerable range from 25 to 60 years old. The 

majority of the patients were White and the remainder Asian. Three of the White 

patients were Hispanic. One of the seven patients was female. 

 

4.2 Data Collection & Conditioning 

The data collection process for the following clinical data was described 
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previously, which used a custom data logging system that attached to the output 

of a clinical physiological monitor [34]. Briefly, ICP, ABP, ECG, and several other 

parameters, were recorded at a sampling rate of 50 Hz using software and 

hardware from National Instruments that interfaced with a General Electric TRAM 

Rac data monitor. ICP was measured continuously using a Camino Direct 

Pressure microtransducer that was inserted into the frontal cranium; ABP was 

measured using an Edwards Lifescience’s fluid-filled catheter in the radial artery. 

All analytics presented in this manuscript were performed in Mathworks Matlab 

R2013a to 2016b or R x64 3.2.2. 

Individual ICP beats were identified in raw data through a three-step 

process: Phase 1 cleaned the data by extracting only data that presented with 

variety of quantization (> 5 distinct quanta - exceeding noise in absent signal) 

and content prevalence (>95%) when comparing total, early, and late histograms 

of small windows of data (less than 10 seconds) for numerical variation; Phase 2 

refined the dataset by examining the periodicity of the sample windows and 

performed baseline detrending; and Phase 3 separated the ICP data into 

individual cycles by identifying relative minima of differentiated data and 

confirmation of time-offset minima in a second physiological signal, ABP. The 

results of the individual cardiac cycle identification process is shown in Figure 15 

and Figure 18. Both visual and derivative-zero-crossing analysis verified the 

validity of this approach for cycle identification. 

Figure 15. Abbreviated Sample of ICP Recording  
with Segmented Cardiac Cycles
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A 10-point moving average filter was applied to each individual cycle to 

remove high frequency noise. To justify this approach, using an individual hour of 

clinical data as an exemplar, the frequency profile of the data in Figure 16 was 

identified by completing a Fast Fourier Transform (FFT) of the full vector with no 

zero padding or prior filtering, the results of which are in Figure 17. After zooming 

into the raw data to a 20-second window with individual cycle markers in Figure 

18, the AVP is plotted for an individual cycle exemplar in Figure 19. For the 

exemplar patient presented in this chapter, each cycle was analyzed individually 

as represented in Figure 19.  

The noise observed in Figure 19 is representative of commonly seen 

signals. Possibly because of this noise and possibly because of the clinical 

nature of the patients’ physiologies, the natural three-peak phenomena are rarely 
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seen in clinical data. More often, two-peak and single-peak shapes are observed. 

While empirically selected values based on literature and clinical recordings were 

used to examine “normal” ICP phenomena in Chapter 3, understanding phase 

plane analysis in ideal ICP data yields insight into the interpretation of PAR in 

clinical data that is uncontrolled. As shown in Figure 19, a simple moving 

average filter with a length of 10 samples (equivalent to an analog lowpass filter 

with cutoff frequency = 0.94 Hz) was used to eliminate high frequency noise and 

ensure a smooth cycle prior to calculation of PAR and SE. This filtering method 

successfully reduces the amount of noise transferred from the time domain to the 

phase domain, permitting a more stable calculated PAR.  
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Figure 16. Exemplar Raw Clinical ICP recording for One Hour 

Figure 17. FFT data of the Raw Clinical ICP from Figure 16
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Figure 18. 20-second Window of Raw Clinical ICP Exemplar 

 
 

Figure 19. Clinical Exemplar of Raw (Blue) versus Filtered (Orange) ICP, 
dICP, & ddICP in Time Domain and Phase Domain for a single cardiac cycle 

 
 

4.3 Analysis Methods and Results 

4.3.1 Identifying preIH Timespans 

In order to assess the clinical value of PAR, data were first categorized 

into IN, pre-IH, IH, or postIH data using the following criteria: IH data were 

considered any hour where ICP >25 mmHg; postIH time was set to an hour for all 

cases; pre-IH data were considered the specified time period (evaluated from 1- 

to 0.1-hours) prior to an individual event; two IH events were considered as a 
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unified singular event if a second event occurred during the postIH event time of 

the previous event. All other data not categorized by these conditions were 

considered IN data. Masking the data to identify periods of IN, preIH, IH, and 

postIH data according to the specifications is shown in Figure 20, with different 

time periods color coded.  

Figure 20. Exemplar of Data Masking to Identify Onset of IH events & 
Classify IN (green), preIH (yellow), IH (red), and postIH (pink) time Periods 

 
Pre-IH event data were analyzed at 1.0, 0.5, 0.25, and 0.1 hours scale 

and analyzed in several approaches based on observed trends when zoomed in 

on IH events.  

 
4.3.2 Relationship Between PAR and mICP via Linear Regression  

As with the simulated data, the relationship between PAR and mean ICP 

was evaluated. To identify their relationship, a linear regression of PAR onto ICP 

was conducted using the exemplar patient’s data. For this analysis, the preIH 

data for the exemplar patient was examined for each event separately and 

results are shown in Table 7. This event-wise processing gives us some insight 

into the stability of the relationship at hand and its generality across events 
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(although still limited to within a single patient). 

Table 7. Linear Regression of PAR predicting ICP for Exemplar Patient  

Time 

period R-sq% 

R-sq 

(Adj)% 

R-sq 

(Pred)% 

SE 

Coef P-Val Regression Equation 

1-hr pre 

Event 1 77.1 77.1 76.9 0.39 0.00 ICP = 26.83 - 28.69*PAR 

1-hr pre 

Event 2 1.4 1.09 0.17 1.25 0.00 ICP = 21.68 - 4.51*PAR 

1-hr pre 

Event 3 14.6 14.4 13.7 0.53 0.00 ICP = 22.31 - 7.393*PAR 

1-hr pre 

Event 4 25.1 24.9 24.4 0.72 0.00 ICP = 22.24 - 22.64*PAR 

Full Data 8.3 8.3 8.3 0.20 0.00 ICP = 21.58 - 12.14*PAR 

 

The linear regression for the first event’s data looks promising. The 

regression has a good fit with R-sq value of 77.2%, suggesting that a linear 

relationship between these variables accounts for about 77% of their variation, 

with a p value of 0.000 which show that it is significant (alpha fixed at .05). The 

regression equation for this best-fit linear model shows a negative relationship 

between ICP and PAR suggesting that as PAR increases, ICP decreases. 

Examining these statistics for the remaining events, the amount of variation 

accounted for by the regressions varies down to 1.4%, but the relationship is 

repeatedly suggested to be a negative one. 

The linear regression analyses in summary suggests that ICP and PAR 

have an inverse relationship where PAR increases when ICP decreases. 

However, the magnitude of this relationship varies, from as strong as 77% in first 

event to 1% in the second event.  

4.3.3 Correlation with ICP 
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A limitation of the linear regression analysis is that it assumes that the 

noise in the data specifically follow a Gaussian distribution. In this next analysis, I 

examine the possibility of a relationship that is not based in Gaussian 

distributions by using a non-parametric correlation coefficient, Spearman’s Rho. 

A Spearman’s Ranked Rho correlation coefficient was calculated for the all preIH 

+ IH event data between mICP, PAR, and SE as follows: 

Equation 7. Spearman’s Correlation Coefficient 

𝑟𝑠 = 𝜌𝑟𝑔𝑋𝜌𝑟𝑔𝑌 =
𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋𝜎𝑟𝑔𝑌
 

where ⍴  denotes the Pearson’s correlation coefficient applied to the rank 

variables, cov(rgX,rgY) is the covariance of the rank variables, and 𝜎rgX and 𝜎rgX 

are the standard deviations of the ranked variables. Significance of the 

correlation is assessed by p-values less than 0.05. 

An exemplar of patient recording data with synchronous analysis of ICP, 

PAR, and SE is presented in Figure 21 for 24-hours. SE unlike PAR has 

discontinuities such as infinity and not a number values as seen near the 9 hour 

mark. This patient exemplar yielded 4 IH events and Figure 22 includes zoomed 

in ICP and PAR for two individual ICP elevations, where PAR appears to 

increase 10-30 minutes prior to the increase of ICP. SE behaves similarly to PAR 

with a characteristic increase 30-60 minutes in advance of IH. Based on this, the 

correlations of PAR and SE to ICP during periods of IN and prior to IH were 

examined for four different time scales in order to identify which time windows 

might yield clinical value when using PAR as an IH metric.   

Figure 21. Patient Exemplar Recorded ICP & Analysis for 24 hours 
Top: mICP; Middle: PAR; Bottom: SE  
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Figure 22. Patient Exemplar Zoomed In  

Left: Event 1 at t~4 Hours; Right: Event at t~12 Hours

 
 

Spearman’s rho correlation results on the exemplar patient are presented 

below in Figure 23 for IN segments and Figure 24 for IH segments. The following 

figures show ICP and PAR correlate more strongly than ICP and SE for both IN 

and pre-IH hours with the exception of 0.1-hr time point in preIH analysis. 

Asterisks exemplify statistically significant segments with a p-value < 0.05. 

 
Figure 23. Spearman’s Correlation of PAR (Blue) and SE (Yellow) to ICP 

during IN segments for Exemplar Patient at selected time increments 
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Figure 24. Spearman’s Correlation of PAR (Blue) and SE (Yellow) to ICP 
during preIH segments for Exemplar Patient at selected time increments 

 

Across all 7 patients analyzed, the Spearman’s correlation results in Table 

8 show PAR and mICP during IN hours and preIH hours are shown in Table 9. 

The comparative results indicate the positive correlations found in the exemplar 

are only found in patient E for IN hours. During IN hours and preIH hours, the 

strongest consistent correlations are in patient F, which also has the longest 
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dataset. For preIH hours, statistically significant correlations only occur in the 

Exemplar patient, patient E, and patient F. All correlations are still weak at below 

an absolute value of 0.55. These results indicate an absence of meaningful 

trends between patients, but trends do exist within patients particularly for IN 

hours. 

Table 8. Spearman's Rank Correlation between PAR and mICP during IN 
hours 

Time 
Segment 
(hr) 

Exemplar A B C D E F 

1.00 0.23* -0.05* -0.16* -0.02 -0.23* 0.31* -0.49* 

0.50 0.31* -0.05* -0.16* -0.01 -0.20* 0.31* -0.51* 

0.25 0.34* -0.05* -0.16* -0.01 -0.20* 0.30* -0.50* 

0.10 0.33* -0.04* -0.16* -0.01 -0.21* 0.29* -0.51* 
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Table 9. Spearman's Rank Correlation between PAR and mICP during preIH 
hours 

Time 
Segment 
(hr) 

Exemplar A B C D E F 

1.00 0.40* 0.09 -0.10 0.20 -0.10 0.08* -0.48* 

0.50 0.36* 0.18* -0.12 0.22 -0.12 -0.09* -0.41* 

0.25 0.15* 0.06 -0.30 0.27 -0.30 -0.26* -0.40* 

0.10 -0.05* 0.06 1.00 0.19 1.00 -0.55* -0.42* 

 

4.3.4 Separation of preIH and IN Distributions 

The previous analyses adopted the tactic from the simulations, which is to 

identify if and how PAR and ICP are related. The goal of the rest of the analyses 

is to examine the utility of PAR in predicting upcoming IH events. For this 

purpose, the remaining analyses will try to separate IN data from preIH data. 

First, the separability of preIH and IN PAR data was evaluated using a two-

sample goodness of fit Kolmogorov-Smirnov (KS) test. This test identifies if a 

continuously-valued metrics from two datasets follow the same continuous 

distribution. If these datasets were identical (i.e., if the KS test returns a non-

significant p-value), it would suggest that PAR had little if any usefulness in 

predicting HT events. The density of each set was plotted and fitted with a non-

parametric distribution in Figure 25, and the corresponding cumulative density 

curves were calculated. The KS test evaluates how different these empirical 

cumulative density curves are and the computes the likelihood that they came 

from a single distribution. 

Figure 25. Patient Exemplar KS Test of IN & preIH hours at 1-hour interval;  
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Left: Non-parametric distribution fitting of the density histograms for PAR  
Right: Non-parametric distribution fitting of the density for SE data 

  

 
The KS test results suggest that the pre-IH and IN distributions of PAR, 

SE, and their first-order time derivatives are distinct for all preIH windows. The 

full results of this analysis are presented in Table 10 where H =1 demonstrates 

the null is successfully rejected along with the resulting numeric KS statistic. PAR 

and SE were successfully separated between IN and preIH hours for all four time 

periods.  

Table 10. Results of Two-sided Kolmogorov Smirnov Test for PAR and SE 
at 1.0, 0.5, 0.25, and 0.1 preIH time periods versus IN time periods for 

Exemplar Patient 

 PAR SE 

preIH Time 
(hours) 

H KS Stat H KS Stat 

1.00 1* 0.163 1* 0.346 

0.50 1* 0.109 1* 0.233 

0.25 1* 0.229 1* 0.154 

0.10 1* 0.348 1* 0.120 

 

For the cohort of all 7 patients, the two-sided KS test was repeated to 

evaluate the generality of the results from the exemplar; these results are shown 

in Figure 26 and Table 11. The KS test was able to separate PAR during IN 
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hours from PAR during preIH hours at all 4 time periods for four of seven 

patients. The most separable time period was 1.00 hour and the least separable 

time period was 0.10 hours. The separation indicates higher repeatability than 

the correlations, meaning that while the predictive power may be relatively low, 

PAR still demonstrates an ability to separate between IN and preIH time points 

reliably. 
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Figure 26. Non-parametric distribution fitting of the density histograms for 
PAR for Patients A-F 

Patient A

 

Patient B

 
 

Patient C 

 

 
Patient D

 
 

Patient E 

 

 
Patient F
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Table 11. Hypothesis Result of Two-Sided Kolmogorov-Smirnov Test for 
Patient Cohort. 1= PAR during IN and preIH hours are separable 

Time 
Segment 
(hr) 

Exemplar A B C D E F Mean 

1.00 1* 1* 1* 1* 0 1* 1* 0.86 

0.50 1* 1* 1* 0 0 1* 1* 0.71 

0.25 1* 1* 0 0 0 1* 1* 0.71 

0.10 1* 1* 0 0 0 1* 1* 0.33 

 

Note that although the test suggests that the distributions are separable, it 

does not suggest any metric by which to do so. The KS test is sensitive to 

distribution differences in values (min, max, mean, etc.) and shape (kurtosis, 

skewness, peaks, modes, etc.). Creating a classification scheme of that 

evaluates PAR and determines whether or not the patient is about to have an IH 

event remains. However, this analysis also does not suggest that the differences 

are the same across the patients. A quick examination of all patients’ PAR data 

in Figure 26 shows that in fact some patients do not have the same differences 

between their distributions as the patient exemplar. Some preIH distributions are 

left shifted from IN and some are right shifted, and all are non-normal. 

4.3.5 Receiver Operator Characteristic Curve 

The previous analyses confirm that PAR has some ability to identify 

upcoming HT events. This analysis builds on this ability by identifying the general 

performance of a simple threshold method to identify upcoming IH events. The 

receiver operator characteristic (ROC) curve analysis examines the relationship 

between the true positive and false positive rate as the threshold value changes 
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in a classifier. The area under the curve (AUC) for ROC curves is a ready metric 

for evaluating the effectiveness of the classifier. A perfect classifier would have a 

curve at top of the graph, so that the AUC equaled 1.0. In contrast, a completely 

useless (i.e., random guessing) classifier would have an AUC of 0.5, and the 

curve would closely match the dashed reference line. Therefore, we can use 

AUC for both PAR and SE to determine the performance of each measure as a 

classifier of IH events.  

The ROC curves for the 1-hr preIH window for the Exemplar patient are 

presented in Figure 27. As listed in Table 11, the AUC for PAR was 0.523 and for 

SE was 0.710, demonstrating that when using a simple threshold model, SE is a 

better classifier for separating IN and preIH data as it has a higher AUC (AUCSE - 

AUCPAR = 0.187). The maximum distance from the dashed reference line (e.g. 

maximum separation) occurs at a value of PAR = 0.59 with a False Positive Rate 

of 0.16 and the True Positive Rate for PAR is 0.32 whereas the maximum 

distance for SE occurs at a False Positive Rate of 0.49 and a True Positive Rate 

of 0.83, indicating that SE performs better as a classifier of true IH events for the 

Exemplar patient.  
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Figure 27. Receiver Operator Curves for PAR (left) and SE (right) for 
Exemplar Patient with 1-hr preIH window. Red circle indicates maximum 

distance from dashed line and labeled with corresponding PAR or SE value 

 In Figure 28, the ROC curves for Patients A through F are shown. Patients 

A, E, and F demonstrate classifications where low PAR would be indicative of 

upcoming IH events whereas Patients B, C, and D follow the threshold line 

indicating that PAR performs as well as chance. These results would suggest 

that a patient specific approach should be used to analyzing these data when 

using PAR or SE. Table 12 shows all the AUC values for PAR, SE, and the 

difference between the two. In only two cases, Patient A and Patient C, PAR 

yields a negative value indicating that PAR would be a better classifier. However, 

patient A is one of the three cases where the ROC curve suggests a lower PAR 

and SE value corresponds to the onset of IH. Overall, the mean AUC values 

indicate that PAR and SE perform about the same as single threshold classifiers. 
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Figure 28. Receiver Operator Curves for PAR (left) and SE (right) for 
Patients A-F with 1-hr window. Red circle indicates maximum distance from 

dashed line and labeled with corresponding PAR or SE value 

  

  

  
 

Table 12. Area Under the Curve for PAR, SE, & SE-PAR ROC Curves 

Patient AUC PAR AUC SE AUC SE-PAR 

Exemplar 0.523 0.710 0.187 

A 0.405 0.216 -0.189 

B 0.555 0.714 0.159 

C 0.611 0.451 -0.160 

D 0.453 0.525 0.072 

E 0.382 0.390 0.008 

F 0.371 0.466 0.095 

Mean 0.471 0.496 0.025 

 

The overall ROC curve for all patient data is shown in Figure 29 for the 
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four time points. While the overall AUC approximates 0.4, all of the curve passes 

below the threshold that indicates that a lower bound threshold would be better 

for classification in this patient population. 

Figure 29. ROC Curve for All Patient Data  
PAR AUC = 0.3734 

 

PAR AUC = 0.3901 

 
PAR AUC = 0.4144

 

PAR AUC = 0.4310 

 
 

4.3.6 Classification of Data Across Population 

Also, a confusion matrix analysis was performed on the aggregate data to 

further elucidate the simple threshold classification parameters for PAR. Using 

the classification method outlined in Section 4.3.1, all data that was classified as 

IN or preIH was used to tally true positives, false positives, true negatives, and 

false negatives for the threshold values discovered in Section 4.3.5. Then 

summary statistics were calculated on the contingency tables [40]. 

In Table 13, two confusion matrices have been counted for PAR and for 

SE for the Exemplar patient. The Accuracy of both tests is at about 0.6 and the 

prevalence is 0.3 for both. The true positive rate is higher for SE but the positive 

predictive value is slightly higher for PAR. F1 is a harmonic mean between 
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precision and recall where a value of 1 equals perfect precision and recall - the 

statistic is higher for SE than PAR in the exemplar patient. 

Table 13. Confusion Matrix Analysis for Exemplar Patient 
Left Top: Confusion Matrix for PAR; Left Bottom: Confusion Matrix for SE; 

Right: Summary Statistics 

 

In Table 14, two confusion matrices have been counted for PAR and for 

SE using all the patient data available. The Accuracy for SE stays the same at 

about 0.6 but the accuracy for PAR is as low as 0.4. The prevalence drops to 0.2 

for both. The positive predictive value for both is under 0.2 as well. The F1 

statistic for both is below 0.25 for both indicating poor precision and recall for a 

binary classification of all the patient data. 
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Table 14. Confusion Matrix Analysis for All Patient Data 
Left Top: Confusion Matrix for PAR; Left Bottom: Confusion Matrix for SE; 

Right: Summary Statistics  

 

4.3.7 PAR General Utility in Predicting Hypertensive Events 

The previous analyses focused on the momentary value of PAR for 

predicting upcoming IH events, primarily in a binary approach. For this next and 

final analysis, several modifications were made to this basic design. 

The first modification is to supplement momentary PAR with various 

statistics of PAR over the previous 0.1 hours. This modification allows for more 

features that describe not only the value of PAR but also its recent behavior. For 

this purpose, six statistics were used: mean, median, min, max, range, and 

standard deviation. The standard deviation was computed as a population 

standard deviation, and the remainder followed their usual definitions. These six 

predictors were used in addition to the momentary PAR value for the next 

classifiers. 

The second modification was to supplement PAR statistics with 

information about how PAR interacts with ICP. Specifically, Sections 4.3.1 and 

4.3.2 highlight how the relationship between PAR and ICP can vary from fairly 



57 
 

 

positive to negative and strongly to weakly in different contexts. In this light, the 

Spearman’s Rho Ranked correlation between PAR and ICP was also used as a 

predictor in the next classifiers. Again, this was computed using the data from the 

previous 0.1 hours. A second aspect of how PAR interacts with ICP was 

measured using cross-correlation. The cross-correlation between two signals is 

effectively the amount of correlation as one signal is lagged at different intervals. 

MATLAB’s xcorr function was used to generate the cross correlation, and its 

max, min, their related time offsets, and the sum square cross correlation were 

used as additional predictors. 

The third modification was to use the other values, ICP and SE, as 

predictors in the classifier as well. By including them in the classifier, this analysis 

can determine whether or not PAR has a utility that is not covered by the other 

measures. For example, if high SE is a good predictor of upcoming IH events, 

then it can dominate the classifier. However, if SE indicates an upcoming IH 

event, whether or not PAR also indicates an upcoming IH event can affect the 

decision. Thus, seven additional predictors were included for both ICP and SE 

(momentary value, mean, median, max, min, range, and standard deviation). 

Finally, the fourth modification to this process was to examine the effect of 

changing statistics windows independently of changing the predictive interval. 

The predictive interval values are the same as in Section 4.3.3, at 1.0 hour, 0.5 

hour, 0.25 hour, and 0.1 hour. The statistics windows, as used in the three 

previous modifications, used the same subset of values. This means that the 

mean, median, min, max, range, and standard deviations were computed over 
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these time windows, effectively increasing the scope of the analysis. Previously, 

the analysis would have used the past 0.1 hours to predict an event in the 

upcoming 1.0 hours. With this modification, this analysis will be repeated to 

examine the ability of the previous 0.1 to 1.0 hours of patient statistics to predict 

an IH event in the next 0.1 to 1.0 hours. Note, the statistic windows are not 

combined in a single classifier such that it uses both the 1-hour statistics and the 

0.1 hour statistics in a single classifier simultaneously. 

Given the results from Sections 4.3.4 - 4.3.6, it seems that the exemplar 

patient does not necessarily represent the remaining patients in terms of how 

ICP, PAR, and SE behave during preIH periods. Consequently, the data 

hereafter focuses on averages of overall analysis outcomes using all the patient 

data. This method allows the exemplar patient and the subsets of patients with 

divergent behavior to be well-represented in the results. 

The goal of the current analysis is the same as Section 4.3.3: to 

discriminate preIH data from IN data using PAR and the other predictors 

described above. Up until this section, the assumption was that a simple 

threshold model of PAR would be sufficient to divide the data. For this section, a 

slightly more advanced classifier will be used: logistic regression. Logistic 

regression acts similar to the linear regression from Section 4.3.1, except that the 

“target” is the likelihood that the data belongs to one of two values (in this case, 

that the data comes from the preIH dataset or not). For this reason, logistic 

regression is preferred for problems that require classification between two 

states. The result from the logistic regression model is a function that provides 
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probabilities that a given data point comes from the preIH distribution. Given 

these probabilities, one can then use a simple threshold model on the 

probabilities to extract an ROC curve and evaluate the model. Given the number 

of models being evaluated here, each model will only be summarized using AUC, 

which is a good proxy for model fit. This analysis was conducted in R. 

The first pass of this analysis focuses on establishing a proof-of-value for 

PAR. To complete this, five models were fit. The first three models test the utility 

of PAR, ICP, and SE separately. For these models, the results simply expand on 

the analyses from Section 4.3.4 and act as lower bounds on our understanding of 

how the analyses can function. The next model tests the utility of all predictors 

mentioned above, totaling 27 predictors, to establish an upper bound for the 

predictive ability of the dataset. Finally, the last model uses all 27 predictors less 

the 7 PAR measures, the 5 cross correlation metrics, and the Spearman 

correlation. By evaluating these five models, the raw utility of PAR as a predictor 

can be understood. It should be noted, however, that the idea of lower bounds 

and upper bounds are more conceptual than literal; there is not a strictly 

monotonic relationship between number of predictors and AUC as there is with 

other model evaluation metrics (i.e., R squared).  

Examining the resulting plots in Figure 30 shows that, averaging across all 

the patients, the predictive model without PAR performs below the level of the 

model with all the metrics included. In this multi-paneled figure, each column 

shows the results for using statistics from different window lengths, from 0.1 

hours to 1.0 hours. Within each panel, the data for each of the models is shown 
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across the different predictive intervals, with the error bars depicting standard 

error as computed across subjects. The single metric models cluster towards the 

bottom of the graphs, with ICP-based metrics yielding AUC about 0.71, SE-

based metrics yielding 0.65, and PAR-based metrics yielding 0.62. Using all the 

metric produces a classifier that provides an AUC of about 0.97, but removing 

the PAR values reduces this to 0.91. 

Figure 30. Mean Predictive Model Performance for 0.1, 0.25, 0.5, and 1 Hour 
statistic windows with error bars depicting standard error.  

PAR Only (Green), Entropy Only (Yellow), ICP Only (Purple), No PAR (Red), 
All Features (Blue) 

 

Examining Figure 30 for optimal statistics window values and predictive 

interval lengths, the data suggest that shorter predictive intervals are better, and 

that longer statistics windows are better in terms of AUC values e.g. a longer 

amount of preIH information going in yields better IH predictions for shorter times 

into the future. However, as the statistic window length increases, so does the 

length of the error bars, and therefore the variability in the efficacy of the 
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classifier. As a compromise to these considerations, for the remaining analyses, 

a statistics window length of 0.25 hr and a predictive interval of 0.25 hr will be 

used. 

4.3.8 PAR Specific Features Useful for Predicting Hypertensive Events 

Having established a specific statistics window and predictive interval to 

use, the next issue to resolve is: which parameters are actually assisting in the 

classification problem and which are excessive? To answer this question, 

predictors were removed from the full model in a backwards stepwise regression 

analysis. This analysis determines which predictors contribute the least to the 

model and removes it. If the resulting reduced model performs as well as the 

original, the algorithm repeats the reduction step with the newly reduced model. If 

the reduction reduces the model’s performance, it adds the removed predictor 

and halts the algorithm. For this purpose, the models are evaluated using Akaike 

Information Criterion (AIC) which is an information criterion metric that measures 

the variance in the remaining data after the model’s predictions are accounted 

for, with a penalty included for each parameter included in the model. The 

parameter penalty scheme of AIC is part of its strength as a model evaluation 

metric: it has been shown to reasonably limit overfitting. This process was 

conducted using the stepAIC function in R. One depiction of these results are 

shown in Table 15 where all 28 features tested are presented; if 1 the variable 

was included in the model and if 0, the variable was excluded. Table 16 provides 

an easier summary of the process results.  

 Table 15. Feature Matrix Present in Models for All 7 Patients with 
Average Inclusion Colormap.  
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Green = High Presence and Red = Low Presence 
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Table 16. Features Present in Models by Number of Patients Using Each 
Feature 

Number of Patients Using Feature Features 

6 par.range 
par.min 
ent.stdev 

5  icp.mean 
par.mean 
par.stdev 
par.max 
ent.range 

4 icp.median 
icp.max 
par.median 
ent.mean 

3 xcorr.max 
xcorr.maxlag 
xcorr.min 
xcorr.minlag 
xcorr.sumsq 
icp.val 
icp.stdev 
icp.min 
ent.val 
ent.median 
ent.max 
ent.min 
corr 

2 icp.range 
par.val 

 

The results for each patient are relatively distinct from each other with 

respect to which features are useful reinforcing the need for patient-specific 

classification approaches. Twelve features were found to be used in four of the 

seven patients tested. Three features tied for most used: PAR range, PAR min, 

and SE standard deviation. All of the PAR statistics were effective and included 
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for the majority of the seven patients from PAR, but the momentary PAR value 

was only included for two of the seven patients and was the weakest variable 

tested. For SE, the mean, range, and standard deviation were included, and for 

ICP, the mean, median, and max were included. Notably most of the cross-

feature statistics from correlation and cross correlation were not used by the 

majority of the patients; however, the last row summary for Table 15 also shows 

that all the patients benefitted from the use of some PAR-based features.  

4.3.9 Simulated Prediction of Hypertensive Events 

The previous sections examined how PAR related to ICP, established the 

ability of PAR to help predict IH events, and isolated a set of features that could 

be used moving forward to create an IH alarm. The goal of this section is to 

implement a single such IH alarm based off the features useful for the majority of 

the patients. 

One perspective on limiting the features used would say to include all the 

features in the potential alarm setup so as to provide the most power in the 

analysis. However, limiting the features used to a smaller subset prevents some 

amount of overfitting thus improving classifier generalization. Furthermore, the 

final results of this basic research is to create usable medical devices, and 

requiring large amounts of memory and processing for these devices could also 

increase their liability for errors and intrusions. Therefore, for this simulated IH 

alarm analysis, those features that were included for the majority (>50%) of the 

patients were included here. 

This analysis will be done in three steps. First, the stated features will be 



65 
 

 

included in a logistic regression analysis of the pooled patient data using leave-

one-out-cross-validation on a subject-wise basis. Second, the resulting model’s 

ROC curve will be examined for a cutoff value. Third, the output of these first two 

steps will be used to evaluate the patient data when used as an alarm. 

For the first step, the logistic regression is conducted seven times, each 

time with a single patient's data omitted. This method, known as leave-one-out-

cross-validation (LOOCV), has been shown to be effective in preventing 

overfitting of classifiers in many other contexts [41]. The final classifier will use 

the averages of all the patients’ model parameters. This process yielded the 

following coefficients:  

Table 17. 12 Parameter Logistic Regression Coefficients 

PAR.range 1.082*104 ICP.max 0.186 

PAR.min 1.083*104 ICP.median -0.218 

PAR.mean -32.540 ICP.mean 29.900 

PAR.stdev 37.634 ENT.stdev -21.707 

PAR.max -1.082*104 ENT.range 2.565 

PAR.median 23.112 ENT.mean 1.016 

  Intercept -6.778 

 

The next step evaluated an ROC curve based off the results from this 

setup. The ROC curve associated with this classifier when tested against the 

entire dataset looks as follows: 

Figure 31. ROC of 12 Parameter Classifier 
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 This ROC analysis suggests that a good threshold to use is 0.0717; this 

means that when the classifier exceeds 7% probability that there is an IH event 

upcoming, the alarm will go off. The result of this is shown in Figure 32 and the 

result for all of the other patients is presented in Appendix VI. 

Figure 32. Mock Alarm Results in Exemplar Patient.  
Alarm on (Red Star), preIH (green), IH (cyan), postIH (purple), IN (Black) 

 

This result is not perfect. There are several times when it suggests to alarm that 

are not necessary (false positives), and although not visible in this dataset, there 

are IH events that it does not alarm for as shown in Table 18 (false negatives). 
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Establishing a correct level for the involvement of PAR may be difficult, and will 

require coordination with practitioners to determine acceptable levels of false 

alarms and acceptable procedures for dealing with alarms. 

Table 18. Number of Events with Simulated Alarm before Event 

Patient Number of Events Alarm in 5 minutes before event 

Exemplar 4 4 

A 2 1 

B 1 0 

C 2 1 

D 1 0 

E 5 4 

F 11 10 

 

4.4 Overall Results 

Looking across the patients, there are limited inter-subject trends within 

this set of 7 patients. The issue is further complicated due to the inherent 

physiological variation in age, gender, injury severity, comorbidity, and length of 

stay. Each patient demonstrated variation from the exemplar patient in either KS 

or Spearman’s rank results. The linear regression approach demonstrated 

negative trends between PAR and ICP during preIH periods whereas 

Spearman’s rank correlation demonstrated a positively ranked relationship for the 

exemplar patient at the majority of IN and IH periods; the Spearman’s results 

across the other six patients yielded low agreement between patients and fewer 

demonstrated significant correlations (IN: 85% preIH 46%). The KS test shows 

evidence that preIH and IN timespans are separable for the majority of conditions 
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and patients. Only patient D failed at separation at all four time points and four of 

the seven patients passed at separability at all four time points. Of 28 time points 

tested across 7 patients, 67.9% of time periods tested yielded evidence to reject 

the null hypothesis.  

Overall, these results demonstrate that for the exemplar subject, AVP 

PAR at all time segments correlates marginally better than SE to mean ICP at 

both IN and preIH segments, though significantly for all time periods with the 

exception of 0.1-hr segments for preIH data. SE correlates positively for IN data 

significantly for time periods less than 1-hr and correlates negatively at 1-hr and 

0.1-hr for preIH analysis. These results along with the KS test results establish 

that PAR is comparable to the established cycle variability measure, SE, and can 

be used to identify time periods to focus on within the hour preceding IH when 

designing alarms based on PAR in the future.  

The aggregate patient results also reiterate the need for a patient-specific 

approach to applying a metric like PAR for predictive alarm design. While the 

ROC results indicate that PAR performs poorly as a classifier as a single 

threshold metric, this is likely due to the variability in distribution shape compared 

to normal distributions. Ultimately, PAR requires smaller data buffers than 

several existing metrics and does not yield discontinuous values like sample 

entropy does. The multiple regression analyses confirms that even when 

considering the value of the other predictors such as ICP and SE, including PAR 

enables better prediction of IH events. 

 An important limitation to these analytic methods should also be 
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considered. The methods used here, (regression, correlation, KS-based 

separation, etc.) assume the independence of data points. However, given the 

nature of the data as time-series from a patient(s), this assumption is 

questionable. A further analysis with a style of Monte-Carlo resampling of the 

data could preserve the validity of these analytic methods and provide a refined 

estimation for the predictive value of PAR.  
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CHAPTER 5. FUTURE DIRECTIONS AND CONCLUSIONS 

5.1 Future Directions 

Future directions for PAR analysis include simulations to identify the 

relationship between PAR scores and simulated ICP signals mimicking specific 

known long-term pathologies, to better interpret the behavior of PAR in impaired 

physiologies for longer time periods. Also, by further examining PAR trends in 

segments before and after ICP hypertensive events, the presence of clinically-

relevant and unique patterns in PAR can precede cerebrovascular crisis 

diagnosis. Another avenue for exploration is the implementation of PAR analysis 

on alternative phase planes of other vascular metrics or combinations of multiple 

cerebrovascular metrics. 

5.1.1 Alternative Phase Domain Metrics 

While this body of work focuses on one ratio metric feature in one of two 

tested phase domains, VSP and AVP, several alternative phase domain metrics 

are possible. For instance, phase path length comparing loop path length to total 

path length could be a viable feature for measure in ICP analysis. A similar ratio 

metric feature based on path length would be low for smooth ICP cycles and high 

for ICP cycles where multiple peaks are present. One challenge that arises 

particularly with clinical data is how to analyze figures where multiple-peaks are 

absent, which could be overcome by comparing path length to the path length of 

a convex hull as well.  

5.1.2 Multiparameter Phase Domain Analysis 

To address the complexity of AR, a future approach could focus on 
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analyzing the phase relationships between ICP and ABP. Much of the work in 

cardiovascular physiology focuses on the behavior of pressure-volume curves. A 

persistent challenge with neurovascular analyses is that volume measurements 

are difficult to derive without continuous imaging. A solution to bridge the 

relationship between ABP and ICP is to analyze co-phase domains, e.g. dICP vs 

dABP, ddICP vs ddABP, or even ABP vs dICP. While a known lag exists 

between ABP and ICP wave timing, analyzing the lag is an entirely unique body 

of research. By examining the consistency between adjacent cycles, a combined 

phase domain analysis of these two physiological metrics could magnify 

miniscule timing changes that are integral to AR function. 

5.1.3 Accelerating PAR Score Calculation Time and Increasing SNR 

Since calculating PAR scores has a high computational cost of ~1 minute 

per computation and there are usually ~60 cycles per minute from any given 

patient, a method of compressing data in order to shorten computational time is 

necessary for implementation in clinical monitors; one proposed method 

averages ~10 adjacent cycles prior to calculation of PAR scores. An example of 

the aggregation is displayed in Figure 33. This pre-treatment of data into 

aggregated profile costs significantly less computational time compared to PAR 

score calculation for each cycle individually: the computational time is reduced by 

approximately 70% according to Matlab. 
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Figure 33. Example of Multiple Cycles Aggregated: Individual Cycles (Thin 
Solid), Mean Cycle (Thick Solid), Absolute Maximum and Absolute 

Minimum Values (Thick Dotted)

 
After cycles have been aggregated in approximately 10 second chunks, 

the PDA approach can still be applied on the acceleration-velocity (A-V) phase 

plane of the arithmetic mean of the ICP cycles. For the example data shown in 

Figure 33, the corresponding phase plane is shown in Figure 34. The number of 

loops inside and outside the loop as well as the general shape of the A-V phase 

plane still varies based on prominence of peaks in the cycle; this approach can 

increase the signal to noise ratio without using a digital filter. 
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Figure 34. Acceleration-Velocity Phase Plane of Mean ICP signal from 
Figure 27 (11 Cycles Aggregated Spanning 9 seconds) 

 
 

Other approaches to accelerating the PAR calculation include non-graphical 

calculation methods as well as integrating the digital signal processing 

techniques into the analog-to-digital conversion process at the data collection 

stage.  

5.1.4 Combinatorial Approach to Cerebrovascular AR Monitoring 

The complexity of human physiology and metrics of physiological change 

is that the measured behaviors are time- and frequency-limited. The current state 

of ICP analyses focuses on creating intricate and highly-specific algorithms that 

combine several time- and frequency- domain parameters into a single index for 

treatment and prediction that often focus on long-duration analyses and have 

ignored information available on smaller time scales. While PAR advances 

information about shorter time changes in ICP than other current modalities like 

PRx and RAP, an approach that combines multiple metrics with unique weighting 

factors when applied to the same data set would capture the most information 
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about current and future ICP behavior. 

5.2 Conclusions 

This research advances a novel approach to analyzing intracranial 

pressure monitoring metrics developed on earlier studies on (1) signal 

processing techniques for cyclical waves, (2) physiological variability related to 

the timing of vascular phenomena, and (3) intracranial pressure waveform 

morphology. As previously demonstrated, particularly in ICP monitoring, a 

morphological parameter(s) can address the issue of underscoring subtle time-

domain changes in the sub peaks of ICP between cardiac cycles. Patterns in the 

rate of change for ICP were identified by transformation of ICP waves from the 

time domain to the phase domain for 300 simulated cycles and 7 clinical cases 

spanning over 400 hours.  

For the morphological simulation of ICP cycles, the data demonstrated a 

strong linear correlation of 0.93 or greater between Amplitude of Peak 2 and 

mICP for both cases tested as well as a linear correlation of 0.76 R-Squared 

between acceleration-velocity phase plane PAR for amplitude modulation as 

demonstrated in Chapter 3.2 and 3.3. Signal noise creates notable distortion in 

the phase domain, and accurate PAR calculations demand high SNR or sufficient 

filtering as demonstrated in Section 3.4.  

In the exemplar case study, both SE and PAR demonstrated the ability to 

separate IN from preIH hours according to the two sample Kolmogorov-Smirnov 

test. SE offers a higher area under the curve measure of the receiver operator 

curve (ROC) in the exemplar patient, but not in Patients A or C. These results 
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demonstrate that phase domain analysis can detect IH using PAR to conflicting 

reliability when used as a simple threshold measure. 

Further analysis of PAR classification using multiple PAR-based metrics 

yields better results than classifiers without PAR along with long information 

windows forecasting at short times into the future. PAR was found to add value 

when compared to a classifier without PAR. While a 27 feature parameter vector 

was tested across all seven patients, 15 of the features were found useful in less 

than half the patients and were excluded from further analysis. In simulating the 

prediction of IH events, the classifier was successful in alarming before all four 

events in the exemplar patient but also incorrectly alarmed during periods of IN; 

further refinement of the classifier or incorporation of other existing parameters 

like RAP and PRx may improve the performance as suggested in the future 

directions chapter. 

The invasive and heterogeneous nature of current ICP sensing 

technologies creates a major challenge for research and development of novel 

analytics. Noise and heterogeneity is introduced by variations in: (1) 

neurosurgical sensor types, manufacturers, and sensor placement; (2) recording 

tools and sampling rate; and (3) signal storage, preprocessing, and secondary 

data acquisition. In many existing databases, ICP recordings are noisy, data are 

typically inaccessible, limited to recordings of less than 10 minutes, and recorded 

at too low of a sampling rate to analyze cycle-to-cycle ICP behavior using this 

approach. The simulation based approach demonstrated in Chapter 3 fills this 

existing gap to afford the validation of beat-to-beat metrics. PAR and PAR-based 
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metrics are found to contribute unique information when compared to SE and raw 

ICP metrics during classification as explained in Chapter 4. 

PAR is a single ratio metric unit less feature bounded from 0 to 1 that 

magnifies small changes in timing typically classified by large multi-parameter 

feature vectors that adds unique information to time-domain algorithms. By 

analyzing ICP behavior in the phase domain, PAR showed relationships to ICP 

as shown by the linear regression, Spearman’s rank correlation, Kolmorgorov-

Smirnov test, and Receiver Operator Characteristic Curves as well as predictive 

accuracy with a confusion matrix analysis, logistic regression, and simulated 

alarm models. The above evidence demonstrates that PAR adds value and 

address real-world medical challenges best when using multi-parameter logistic 

algorithms; further investigation is needed to couple the changes in PAR to 

mechanistic physiological drivers of such changes likely using animal models or 

modulation of a driven model of ICP. Ultimately, this body of work quantifies the 

utility of phase domain analysis in simulated and clinical ICP data and shows that 

PAR-based metrics add unique information when classifying preIH correctly 

within the seven patients analyzed in this dissertation in comparison to SE and 

ICP metrics.   



77 
 

 

APPENDIX I. REFERENCES 

1. Taylor et al., “Traumatic Brain Injury–Related Emergency Department 
Visits, Hospitalizations, and Deaths — United States, 2007 and 2013.” 
https://www.cdc.gov/traumaticbraininjury/get_the_facts.html  

2. Brain Trauma Foundation. TBI Statistics: Facts About TBI in the USA.  
www.braintrauma.org/tbi-faqs/tbi-statistics/.  

3. Traumatic Brain Injury.com, LLC. “TBI: Glasgow Coma Scale.” 
http://www.traumaticbraininjury.com/symptoms-of-tbi/glasgow-coma-scale/  

4. Sternbach, “The Glasgow Coma Scale.” J Emerg Med. 2000 Jul;19(1):67-
71. https://www.ncbi.nlm.nih.gov/pubmed/10863122  

5. Ryan M. McAdams and Sandra E. Juul, “The Role of Cytokines and 
Inflammatory Cells in Perinatal Brain Injury,” Neurology Research 
International, vol. 2012, Article ID 561494, 15 pages, 2012. 
doi:10.1155/2012/561494 
https://www.hindawi.com/journals/nri/2012/561494/  

6. Cipolla MJ. The Cerebral Circulation. San Rafael (CA): Morgan & Claypool 
Life Sciences; 2009. Chapter 5, Control of Cerebral Blood Flow. Available 
from: https://www.ncbi.nlm.nih.gov/books/NBK53082/  

7. Le Roux P. Intracranial Pressure Monitoring and Management. In: 
Laskowitz D, Grant G, editors. Translational Research in Traumatic Brain 
Injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2016. 
Chapter 15. Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK326713/ 

8. Rangel-Castillo L, Gopinath S, Robertson CS. Management of Intracranial 
Hypertension. Neurologic clinics. 2008;26(2):521-541. 
doi:10.1016/j.ncl.2008.02.003. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2452989/  

9. AANN Care of the Patient Undergoing Intracranial Pressure Monitoring/ 
External Ventricular Drainage or Lumbar Drainage; American Association 
of Neuroscience Nurses: 2011; pp 1-36. 
http://aann.org/publications/clinical-practice-guidelines  

10. Andrews, P. J.; Citerio, G.; Longhi, L.; Polderman, K.; Sahuquillo, J.; 
Vajkoczy, P., NICEM consensus on neurological monitoring in acute 
neurological disease. Intensive Care Med 2008, 34 (8), 1362-70. 
https://www.ncbi.nlm.nih.gov/pubmed/18398598  

11. Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G., “Novel 
methods to predict increased intracranial pressure during intensive care 
and long-term neurologic outcome after traumatic brain injury: 
development and validation in a multicenter dataset” Critical Care 
Medicine 2013, 41 (2), 688-689. 
https://www.ncbi.nlm.nih.gov/pubmed/23263587  
 
  

https://www.cdc.gov/traumaticbraininjury/get_the_facts.html
http://www.braintrauma.org/tbi-faqs/tbi-statistics/
http://www.traumaticbraininjury.com/symptoms-of-tbi/glasgow-coma-scale/
https://www.ncbi.nlm.nih.gov/pubmed/10863122
https://www.hindawi.com/journals/nri/2012/561494/
https://www.ncbi.nlm.nih.gov/books/NBK53082/
https://www.ncbi.nlm.nih.gov/books/NBK326713/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2452989/
http://aann.org/publications/clinical-practice-guidelines
https://www.ncbi.nlm.nih.gov/pubmed/18398598
https://www.ncbi.nlm.nih.gov/pubmed/23263587


78 
 

 

12. Hawthorne C, Piper I. “Monitoring of Intracranial Pressure in Patients with 
Traumatic Brain Injury.” Frontiers in Neurology. 2014;5:121. 
doi:10.3389/fneur.2014.00121. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100218/  

13. Bullock, M. R.; Povlishock, J. T., “Guidelines for the management of 
severe traumatic brain injury.” 4th ed.; Brain Trauma Foundation: 2016. 
https://braintrauma.org/guidelines/guidelines-for-the-management-of-
severe-tbi-4th-ed#/:guideline/12-intracranial-pressure-monitoring  

14. Czosnyka, M.; Brady, K.; Reinhard, M.; Smielewski, P.; Steiner, L. A., 
“Monitoring of Cerebrovascular Autoregulation: Facts, Myths, and Missing 
Links.” Neurocritical Care 2009, 10 (3), 373-386. 
https://www.ncbi.nlm.nih.gov/pubmed/19127448  

15. Soehle, M.; Gies, B.; Smielewski, P.; Czosnyka, M., “Reduced complexity 
of intracranial pressure observed in short time series of intracranial 
hypertension following traumatic brain injury in adults.” J Clin Monit 
Comput 2013, 27 (4), 395-403. 
https://www.ncbi.nlm.nih.gov/pubmed/23306818  

16. Hu, X.; Xu, P.; Scalzo, F.; Vespa, P.; Bergsneider, M., “Morphological 
Clustering and Analysis of Continuous Intracranial Pressure.” IEEE 
Transactions on Biomedical Engineering 2009, 56 (3), 696-705. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673331/  

17. Kim et al., “Inter-Subject Correlation Exists between Morphological Metrics 
of Cerebral Blood Flow Velocity and Intracranial Pressure Pulses.” 
Neurocrit Care. 2011 Apr;14(2):229-37. doi: 10.1007/s12028-010-9471-x. 
Epub 2010 Dec 7. https://www.ncbi.nlm.nih.gov/pubmed/21136207  

18. Scalzo et al., “Intracranial Pressure Signal Morphology.” IEEE Pulse. 2012 
Mar;3(2):49-52. doi: 10.1109/MPUL.2011.2181024. 
https://www.ncbi.nlm.nih.gov/pubmed/22481746  

19. Tian et al., “Intracranial Pressure Variability Predicts Short-Term Outcome 
after Intracerebral Hemorrhage.” J Neurol Sci. 2013 Jul 15;330(1-2):38-44. 
doi:10.1016/j.jns.2013.04.001. Epub 2013 Apr 28. 
https://www.ncbi.nlm.nih.gov/pubmed/23628469  

20. Le Roux, P., Intracranial pressure after the BEST TRIP trial: a call for 
more monitoring. Current Opinion in Critical Care 2014, 20 (2), 141-147 
https://www.ncbi.nlm.nih.gov/pubmed/24584171  

21. Farahvar, A.; Gerber, L. M.; Chiu, Y.-L.; Carney, N.; Haertl, R.; Ghajar, J., 
Increased mortality in patients with severe traumatic brain injury treated 
without intracranial pressure monitoring Clinical article. Journal of 
Neurosurgery 2012, 117 (4), 729-734. 
https://www.ncbi.nlm.nih.gov/pubmed/22900846  

22. Kirkman, M. A.; Smith, M., Intracranial pressure monitoring, cerebral 
perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of 
care or optional extra after brain injury? Br J Anaesth 2014, 112 (1), 35-
46. https://www.ncbi.nlm.nih.gov/pubmed/24293327  

23. T. Takemae, et al. A Simulation Study of Intracranial Pressure  
Increment Using an Electrical Circuit Model of Cerebral Circulation.” IEEE 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100218/
https://braintrauma.org/guidelines/guidelines-for-the-management-of-severe-tbi-4th-ed#/:guideline/12-intracranial-pressure-monitoring
https://braintrauma.org/guidelines/guidelines-for-the-management-of-severe-tbi-4th-ed#/:guideline/12-intracranial-pressure-monitoring
https://www.ncbi.nlm.nih.gov/pubmed/19127448
https://www.ncbi.nlm.nih.gov/pubmed/23306818
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673331/
https://www.ncbi.nlm.nih.gov/pubmed/21136207
https://www.ncbi.nlm.nih.gov/pubmed/22481746
https://www.ncbi.nlm.nih.gov/pubmed/23628469
https://www.ncbi.nlm.nih.gov/pubmed/24584171
https://www.ncbi.nlm.nih.gov/pubmed/22900846
https://www.ncbi.nlm.nih.gov/pubmed/24293327


79 
 

 

Transactions on Biomedical Engineering. 1987, BME-34, 12: 958-962, 
DOI: 10.1109/TBME.1987.325935 
https://www.ncbi.nlm.nih.gov/pubmed/24584171  

24. Ursino M, Lodi CA. “A simple mathematical model of the interaction 
between intracranial pressure and cerebral hemodynamics.” J Appl 
Physiol (1985). 1997 Apr;82(4):1256-69. 
https://www.ncbi.nlm.nih.gov/pubmed/9104864  

25. Giulioni M, Ursino M. “Impact of cerebral perfusion pressure and 
autoregulation on intracranial dynamics: a modeling study.” Neurosurgery. 
1996 Nov;39(5):1005-14; discussion 1014-5. 
https://www.ncbi.nlm.nih.gov/pubmed/8905758 

26. Drzewiecki, Gary M., Li, John K-J. Analysis and Assessment of 
Cardiovascular Function. Springer. ISBN 978-1-4612-1744-2. 1998. 
http://www.springer.com/us/book/9780387982823  

27. Cheitlin MD. “Cardiovascular physiology-changes with aging.” Am J 
Geriatr Cardiol. 2003 Jan-Feb;12(1):9-13. 
https://www.ncbi.nlm.nih.gov/pubmed/12502909  

28. Diedrich FJ, Warren WH Jr. “Why change gaits? Dynamics of the walk–
run transition” J Exp Psychol Human Percept Perform, 21 (1995), pp. 
183–202. https://www.ncbi.nlm.nih.gov/pubmed/7707029  

29. Varlet M, Richardson MJ. “Computation of continuous relative phase and 
modulation of frequency of human movement.” J Biomech. 2011 Apr 
7;44(6):1200-4. doi:10.1016/j.jbiomech.2011.02.001. 
https://www.ncbi.nlm.nih.gov/pubmed/21329929  

30. Wininger MT. Decomposition and metrical analysis of single-joint 
movement of the hemiparetic upper-limb. Rutgers, The State University of 
New Jersey. 2009. http://dx.doi.org/doi:10.7282/T3SJ1KSG  

31. Moradi MK. Evaluation of Features and Quantitative Assessment of 
Hemiparetic Upper-Limb Movement through Phase Plane Analysis. 
Rutgers, The State University of New Jersey. 2015. 
http://dx.doi.org/doi:10.7282/T31J9CS6  

32. A. Goshtasby and D. Schonfeld, “Signal representation based on a 
Gaussian decomposition,” Conference on Information Sciences and 
Systems, The Johns Hopkins University, pp. 613-618, March 20-22, 1991. 
http://cecs.wright.edu/~agoshtas/ISS91.pdf 

33. Han et al., “An Online Approach for Intracranial Pressure Forecasting 
Based on Signal Decomposition and Robust Statistics.” IEEE Int. Conf. on 
Acoustics, Speech, and Sig. Process. 2013 
http://dx.doi.org/doi:10.1109/ICASSP.2013.6638865 

34. Kim, N., Krasner, A., Kosinski, C. et al. Trending autoregulatory indices 
during treatment for traumatic brain injury. J Clin Monit Comput (2016) 30: 
821. http://dx.doi.org/doi:10.1007/s10877-015-9779-3    

https://www.ncbi.nlm.nih.gov/pubmed/24584171
https://www.ncbi.nlm.nih.gov/pubmed/9104864
https://www.ncbi.nlm.nih.gov/pubmed/8905758
http://www.springer.com/us/book/9780387982823
https://www.ncbi.nlm.nih.gov/pubmed/12502909
https://www.ncbi.nlm.nih.gov/pubmed/7707029
https://www.ncbi.nlm.nih.gov/pubmed/21329929
http://dx.doi.org/doi:10.7282/T3SJ1KSG
http://dx.doi.org/doi:10.7282/T31J9CS6
http://cecs.wright.edu/~agoshtas/ISS91.pdf
http://dx.doi.org/doi:10.7282/T31J9CS6
http://dx.doi.org/doi:10.7282/T31J9CS6
http://dx.doi.org/doi:10.1007/s10877-015-9779-3


80 
 

 

35. Pimentel et al., “Outcome Prediction for Patients with Traumatic Brain 
Injury with Dynamic Features from Intracranial Pressure and Arterial Blood 
Pressure Signals: A Gaussian Process Approach.” Acta Neurochir Suppl. 
2016;122:85-91 http://dx.doi.org/doi:10.1007/978-3-319-22533-3_17  

36. Lake, D. E., J. S. Richman, M. P. Griffin, and J. R. Moorman. 
Sample entropy analysis of neonatal heart rate variability. Am J Physiol 
2002; 283(3):R789-R797; 
http://ajpregu.physiology.org/content/283/3/R789.abstract 

37. Richman, J. S. and J. R. Moorman. 
Physiological time series analysis using approximate entropy and sample 
entropy. Am J Physiol 2000; 278(6):H2039-H2049; 
http://ajpheart.physiology.org/content/278/6/H2039.abstract  

38. Lake DK, Moorman JR, Hanqing C. “Sample Entropy estimation using 
sampen.” Physionet: Physiotools. 
https://physionet.org/physiotools/sampen/  

39. Gao L, Smielewski P, Czosnyka M, Ercole A. Cerebrovascular Signal 
Complexity Six Hours after Intensive Care Unit Admission Correlates with 
Outcome after Severe Traumatic Brain Injury. 
J Neurotrauma. 2016 Nov 15;33(22):2011-2018. Epub 2016 Apr 19. 
https://www.ncbi.nlm.nih.gov/pubmed/26916703  

40. Fawcett, Tom. “An Introduction to ROC Analysis.” Pattern Recognition 
Letters. 2006. 27 (8): 861–874. 
https://doi.org/10.1016/j.patrec.2005.10.010  

41. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. “Forecasting ICP 
elevation based on prescient changes of intracranial pressure waveform 
morphology.” IEEE Trans Biomed Eng. 2010 May;57(5):1070-8. doi: 
10.1109/TBME.2009.2037607. 
  

http://dx.doi.org/doi:10.1007/978-3-319-22533-3_17
http://ajpregu.physiology.org/content/283/3/R789.abstract
http://ajpheart.physiology.org/content/278/6/H2039.abstract
https://physionet.org/physiotools/sampen/
https://www.ncbi.nlm.nih.gov/pubmed/26916703
https://doi.org/10.1016/j.patrec.2005.10.010
https://www.ncbi.nlm.nih.gov/pubmed/20659820
https://www.ncbi.nlm.nih.gov/pubmed/20659820
http://resolver.ebscohost.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&__char_set=utf8&rft_id=info:doi/10.1109/TBME.2009.2037607&rfr_id=info:sid/libx&rft.genre=article


81 
 

 

APPENDIX II. ABBREVIATIONS 

A: Amplitude 

 ABP: Arterial Blood Pressure 

AVP: Acceleration-Velocity Phase Plane [e.g. PAR 2] 

AR: Homeostatic Cerebrovascular Autoregulation 

FFT: Fast Fourier Transform 

ICP: Intracranial Pressure 

IH: Intracranial Hypertension 

IN: Intracranial Normotension 

KS: Kolmorgorov-Smirnov 

PAR: Phase Area Ratio 

PDA: Phase Domain Analysis 

preIH: 1-hour preceding ICP hypertension 

S: Peak 2 to Peak 1 Amplitude Ratio 

SE: Sample Entropy 

TBI: Traumatic Brain Injury 

VSP: Velocity-Signal Phase Plane [e.g. PAR 1] 

W: Width  
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1. Kim NH, Krasner A, Kosinski C, Wininger M, Qadri M, Kappus Z, Danish 

S, Craelius W. “Trending Autoregulatory Indices During Treatment for 

Traumatic Brain Injury.” Journal of Clinical Monitoring and Computing. 

2016 Dec;30(6):821-831. Epub 2015 Oct 7. 

https://www.ncbi.nlm.nih.gov/pubmed/26446002   

In Preparation 

1. MJ Qadri, N.H. Kim, M. Wininger, S. Danish, W. Craelius. “In-Silico Study 

of Time- and Phase-Domain Morphological Features of Intracranial 

Pressure”  

2. MJ Qadri, B. Pineda, C. Kosinski, Z. Kappus, N.H. Kim, M. Wininger, S. 

Danish, W. Craelius. “Multi-scale Time-, Frequency-, and Phase-Domain 

Analysis of Clinical Intracranial Pressure” 

Peer Reviewed Conference Proceedings 

1. Qadri MJ, S Danish, W Craelius. “Creating a Validation Dataset for 

Intracranial Pressure Monitoring Metrics using Gaussian Fitting” BMES 

Annual Meeting 2016; Translation Biomedical Engineers: Models, 

Phantoms and Surrogates for Device Validation, Oct 2016; Minneapolis, 

MN. Poster Presentation. 

http://submissions.mirasmart.com/SecureView/BMESArchive/rad3qleccps.

pdf   

2. Kim NH, Qadri M, Danish S, Craelius W. “Assessing Autoregulatory 

Indices During Traumatic Brain Injury Monitoring.”16th International 

Symposium on Intracranial Pressure and Neuromonitoring; 

Cerebrovascular Autoregulation; Jun 2016 ; Massachusetts Institute of 

Technology, Cambridge, MA. Abstract 123. Poster Presentation. 

http://www.rle.mit.edu/icp2016/programme/   

3. Pineda B, Qadri M, Kosinski C, Kim N, Danish S, Craelius W. “RAP as an 

Index of Cerebral Hemodynamic Stability after Brain Injury.” 16th 

International Symposium on Intracranial Pressure and Neuromonitoring; 

Cerebrovascular Autoregulation; Jun 2016 ; Massachusetts Institute of 

Technology, Cambridge, MA. Abstract 115. Poster Presentation.  

http://www.rle.mit.edu/icp2016/programme/  

4. Qadri MJ, Danish SD, Craelius W. Phase Plane Metric for Quantifying 

Cycle-to-Cycle ICP Fluctuations. 16th International Symposium on 

Intracranial Pressure and Neuromonitoring; Track: Neurocritical Care 

Informatics, Jun 2016; Massachusetts Institute of Technology, Cambridge, 

https://www.ncbi.nlm.nih.gov/pubmed/26446002
http://submissions.mirasmart.com/SecureView/BMESArchive/rad3qleccps.pdf
http://submissions.mirasmart.com/SecureView/BMESArchive/rad3qleccps.pdf
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MA. Abstract 119. Poster Presentation. 

http://www.rle.mit.edu/icp2016/programme/   

5. Qadri MJ, NH Kim, M Wininger, S Danish, W Craelius. "Monitoring 

Cerebrovascular Systems After Traumatic Brain Injury." Rutgers SWE 

Grad Research Symposium. March 2016; Piscataway, NJ. Poster 

Presentation: First Place Winner  

6. Qadri M, Kim NH, Danish S, Craelius W. “A Phase Plane Metric For 

Intracranial Pressure After Traumatic Brain Injury.” Translational 

Biomedical Engineering: Biomedical Device Design in Translational 

Research Posters. Biomedical Engineering Society Annual Meeting 2015; 

Oct 2015, Tampa, FL. Poster Presentation. 

http://submissions.mirasmart.com/SecureView/BMESArchive/radzbdlplh0.

pdf   

7. Qadri MJ, Kim NH, Kosinski C, Danish S., Wininger M., Craelius W. 

“Development of Improved Metric for Traumatic Brain Injury Monitoring.” 

Rutgers Joint Molecular Biosciences Graduate Student Association 

Annual Symposium 2015. Mar 2015; Piscataway, NJ. Selected Oral 

Presentation 
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APPENDIX IV. FULL RESULTS OF SIMULATION LINEAR MODEL 

************************************************************************ 
Width Modulation 

************************************************************************

 
************************************************************************* 

Width variation -- Output:mICP 

************************************************************************* 

Linear regression model: 

    mICP ~ 1 + PAR1 + PAR2 + ratioP1P2 + gmICP + peaks2 + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate         SE         tStat       pValue    

                   __________    __________    _______    ___________ 

    (Intercept)      -0.97058      0.010117    -95.936    5.3407e-131 

    PAR1           1.0072e-05    4.8271e-06     2.0865       0.038724 

    PAR2           5.6709e-06    4.7436e-06     1.1955        0.23389 

    ratioP1P2        -0.18664     0.0019192     -97.25    7.9563e-132 

    gmICP              1.0851    0.00020177     5377.9              0 

    peaks2          0.0095183    0.00050138     18.984     8.5881e-41 

    widths2        2.8644e-08    4.1981e-08    0.68231        0.49616 

    entropy        -0.0013042    0.00016822    -7.7527     1.5782e-12 

Number of observations: 150, Error degrees of freedom: 142 

Root Mean Squared Error: 3.64e-06 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 9.68e+09, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR1 + PAR2 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)      13.322    0.023144     575.62    2.2957e-248 

    PAR1           -0.35866    0.073675    -4.8681     2.8755e-06 

    PAR2           -0.27777    0.053114    -5.2298     5.7351e-07 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.0642 

R-squared: 0.324,  Adjusted R-Squared 0.315 

F-statistic vs. constant model: 35.2, p-value = 3.21e-13 
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************************************************************************ 

Linear regression model: 

    mICP ~ 1 + ratioP1P2 + gmICP + peaks2 + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate         SE         tStat       pValue    

                   __________    __________    _______    ___________ 

    (Intercept)      -0.97675     0.0075379    -129.58     5.677e-151 

    ratioP1P2        -0.18633     0.0016784    -111.02    2.1232e-141 

    gmICP              1.0851    0.00019378     5599.4              0 

    peaks2          0.0099483    0.00035834     27.762     1.1154e-59 

    widths2        3.2258e-08    4.1877e-08    0.77031        0.44238 

    entropy        -0.0013659    0.00016834     -8.114     1.9685e-13 

Number of observations: 150, Error degrees of freedom: 144 

Root Mean Squared Error: 3.68e-06 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 1.32e+10, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR2 + entropy 

 

Estimated Coefficients: 

                   Estimate        SE        tStat       pValue    

                   _________    ________    _______    ___________ 

    (Intercept)        13.98    0.039254     356.15    9.7425e-218 

    PAR2           -0.047958    0.034771    -1.3792        0.16992 

    entropy          -4.4555     0.24546    -18.151     2.2819e-39 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.0384 

R-squared: 0.758,  Adjusted R-Squared 0.754 

F-statistic vs. constant model: 230, p-value = 5.5e-46 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)      13.212    0.010312     1281.3    3.0379e-301 

    PAR1           -0.46478    0.076872    -6.0462     1.1548e-08 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0697 

R-squared: 0.198,  Adjusted R-Squared 0.193 

F-statistic vs. constant model: 36.6, p-value = 1.15e-08 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR2 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)      13.313     0.02478     537.27    2.1411e-245 

    PAR2           -0.34899    0.054835    -6.3643     2.3205e-09 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0689 

R-squared: 0.215,  Adjusted R-Squared 0.21 

F-statistic vs. constant model: 40.5, p-value = 2.32e-09 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + peaks2 

 

Estimated Coefficients: 

                   Estimate      SE        tStat       pValue   
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                   ________    _______    _______    __________ 

    (Intercept)    -105.89      2.6502    -39.953    3.5913e-81 

    peaks2          7.9106     0.17611     44.919     3.949e-88 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0203 

R-squared: 0.932,  Adjusted R-Squared 0.931 

F-statistic vs. constant model: 2.02e+03, p-value = 3.95e-88 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + widths2 

 

Estimated Coefficients: 

                   Estimate         SE        tStat       pValue    

                   _________    __________    ______    ___________ 

    (Intercept)           13     0.0091089    1427.2    3.5479e-308 

    widths2        0.0038398    0.00020295     18.92      2.424e-41 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0421 

R-squared: 0.707,  Adjusted R-Squared 0.706 

F-statistic vs. constant model: 358, p-value = 2.42e-41 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + gmICP 

 

Estimated Coefficients: 

                   Estimate        SE         tStat       pValue    

                   ________    __________    _______    ___________ 

    (Intercept)    -1.2798      0.0026091    -490.52    1.5095e-239 

    gmICP           1.1061     0.00019987     5534.3              0 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.000171 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 3.06e+07, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + ratioP1P2 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)     23.063     0.091159        253    4.7912e-197 

    ratioP1P2      -10.414     0.095853    -108.64    4.9045e-143 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00866 

R-squared: 0.988,  Adjusted R-Squared 0.988 

F-statistic vs. constant model: 1.18e+04, p-value = 4.9e-143 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + entropy 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)     13.988     0.038955     359.08    1.6232e-219 

    entropy        -4.6169       0.2164    -21.335     5.2682e-47 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0385 

R-squared: 0.755,  Adjusted R-Squared 0.753 

F-statistic vs. constant model: 455, p-value = 5.27e-47 

 

 

************************************************************************ 

Width variation -- Output:peaks2 
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************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 + PAR2 + ratioP1P2 + gmICP + mICP + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate          SE         tStat        pValue   

                   ___________    __________    ________    __________ 

    (Intercept)         78.223        3.1809      24.592    4.8625e-53 

    PAR1           -0.00088316     0.0004311     -2.0486      0.042341 

    PAR2             0.0014811    0.00040702       3.639     0.0003824 

    ratioP1P2           13.378       0.84053      15.916    2.2371e-33 

    gmICP              -81.598        4.3125     -18.921    1.2061e-40 

    mICP                75.173        3.9777      18.899    1.3621e-40 

    widths2        -9.8103e-07    3.7529e-06    -0.26141       0.79416 

    entropy            0.11209       0.01522      7.3648    1.3216e-11 

Number of observations: 150, Error degrees of freedom: 142 

Root Mean Squared Error: 0.000325 

R-squared: 0.999,  Adjusted R-Squared 0.999 

F-statistic vs. constant model: 1.81e+04, p-value = 4.62e-206 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 + PAR2 

 

Estimated Coefficients: 

                   Estimate        SE         tStat       pValue   

                   _________    _________    _______    __________ 

    (Intercept)       15.064    0.0030724       4903             0 

    PAR1           -0.035802    0.0097806    -3.6605    0.00035028 

    PAR2            -0.02559     0.007051    -3.6293    0.00039158 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.00852 

R-squared: 0.2,  Adjusted R-Squared 0.189 

F-statistic vs. constant model: 18.3, p-value = 7.78e-08 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + ratioP1P2 + gmICP + mICP + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate          SE         tStat       pValue   

                   ___________    __________    _______    __________ 

    (Intercept)         85.421        2.4741     34.526    1.5485e-71 

    ratioP1P2           15.427       0.64853     23.787    9.7505e-52 

    gmICP              -91.746        3.3211    -27.626    2.0286e-59 

    mICP                84.544        3.0626     27.605    2.2169e-59 

    widths2        -3.9177e-06    3.8766e-06    -1.0106       0.31391 

    entropy            0.12899      0.015432     8.3587    4.9047e-14 

Number of observations: 150, Error degrees of freedom: 144 

Root Mean Squared Error: 0.000341 

R-squared: 0.999,  Adjusted R-Squared 0.999 

F-statistic vs. constant model: 2.29e+04, p-value = 7.35e-207 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR2 + entropy 

 

Estimated Coefficients: 

                    Estimate        SE         tStat       pValue   

                   __________    _________    ________    _________ 

    (Intercept)        15.132    0.0067527      2240.9            0 

    PAR2           -0.0014944    0.0059816    -0.24984      0.80306 

    entropy          -0.46185     0.042226     -10.938    9.581e-21 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.00661 

R-squared: 0.519,  Adjusted R-Squared 0.512 
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F-statistic vs. constant model: 79.2, p-value = 4.66e-24 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 

 

Estimated Coefficients: 

                   Estimate        SE         tStat       pValue   

                   _________    _________    _______    __________ 

    (Intercept)       15.054    0.0013121      11474             0 

    PAR1           -0.045579    0.0097813    -4.6598    6.9977e-06 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00887 

R-squared: 0.128,  Adjusted R-Squared 0.122 

F-statistic vs. constant model: 21.7, p-value = 7e-06 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR2 

 

Estimated Coefficients: 

                   Estimate        SE         tStat       pValue   

                   _________    _________    _______    __________ 

    (Intercept)       15.063    0.0031888     4723.8             0 

    PAR2           -0.032699    0.0070565    -4.6339    7.8092e-06 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00887 

R-squared: 0.127,  Adjusted R-Squared 0.121 

F-statistic vs. constant model: 21.5, p-value = 7.81e-06 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + widths2 

 

Estimated Coefficients: 

                    Estimate         SE        tStat       pValue   

                   __________    __________    ______    __________ 

    (Intercept)        15.031     0.0013457     11170             0 

    widths2        0.00042099    2.9982e-05    14.041    5.2663e-29 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00622 

R-squared: 0.571,  Adjusted R-Squared 0.568 

F-statistic vs. constant model: 197, p-value = 5.27e-29 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + mICP  

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    _________    ______    ___________ 

    (Intercept)     13.499      0.034505    391.22    5.0822e-225 

    mICP           0.11777     0.0026219    44.919      3.949e-88 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00248 

R-squared: 0.932,  Adjusted R-Squared 0.931 

F-statistic vs. constant model: 2.02e+03, p-value = 3.95e-88 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + gmICP 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    _________    ______    ___________ 

    (Intercept)    13.349       0.038153    349.88    7.5199e-218 

    gmICP          0.1302      0.0029227    44.548     1.2363e-87 

Number of observations: 150, Error degrees of freedom: 148 
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Root Mean Squared Error: 0.0025 

R-squared: 0.931,  Adjusted R-Squared 0.93 

F-statistic vs. constant model: 1.98e+03, p-value = 1.24e-87 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + ratioP1P2 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)     16.248     0.016358      993.3    6.9593e-285 

    ratioP1P2      -1.2613       0.0172    -73.333    3.0533e-118 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00155 

R-squared: 0.973,  Adjusted R-Squared 0.973 

F-statistic vs. constant model: 5.38e+03, p-value = 3.05e-118 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + entropy 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue   

                   ________    _________    ______    __________ 

    (Intercept)      15.133    0.0066599    2272.2             0 

    entropy        -0.46688     0.036996    -12.62    3.0187e-25 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00659 

R-squared: 0.518,  Adjusted R-Squared 0.515 

F-statistic vs. constant model: 159, p-value = 3.02e-25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

************************************************************************ 

Amplitude Modulation 
************************************************************************
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************************************************************************ 

Amplitude variation -- Output:mICP 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR1 + PAR2 + ratioP1P2 + gmICP + peaks2 + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate          SE         tStat       pValue   

                   ___________    __________    _______    __________ 

    (Intercept)         9.2768       0.11308     82.037    1.617e-121 

    PAR1            4.4542e-06    3.6702e-06     1.2136       0.22691 

    PAR2           -7.5693e-05    3.5766e-05    -2.1164      0.036059 

    ratioP1P2           4.8859       0.12505     39.072    7.4079e-78 

    gmICP             0.046083      0.011755     3.9201    0.00013718 

    peaks2           -0.090685     0.0053415    -16.977    5.3759e-36 

    widths2         8.9082e-06    8.3226e-07     10.704    5.6964e-20 

    entropy         -0.0043904    0.00044252    -9.9215     5.974e-18 

Number of observations: 150, Error degrees of freedom: 142 

Root Mean Squared Error: 6.05e-06 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 9.36e+09, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR1 + PAR2 

 

Estimated Coefficients: 

                   Estimate       SE       tStat       pValue    

                   ________    ________    ______    ___________ 

    (Intercept)     12.338     0.038332    321.87    2.7669e-211 

    PAR1           0.10902     0.025113    4.3411     2.6244e-05 

    PAR2            2.1048     0.092241    22.819     3.6492e-50 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.0589 

R-squared: 0.788,  Adjusted R-Squared 0.785 

F-statistic vs. constant model: 273, p-value = 3.17e-50 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + ratioP1P2 + gmICP + peaks2 + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate         SE         tStat       pValue    

                   __________    __________    _______    ___________ 
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    (Intercept)        9.2748       0.11239     82.526    3.8486e-123 

    ratioP1P2          4.8789       0.12624     38.648     6.5999e-78 

    gmICP            0.046351        0.0117     3.9617     0.00011667 

    peaks2          -0.090341     0.0053995    -16.731     1.4019e-35 

    widths2        9.3861e-06    7.3146e-07     12.832     1.3053e-25 

    entropy        -0.0042208    0.00044091    -9.5729     4.1947e-17 

Number of observations: 150, Error degrees of freedom: 144 

Root Mean Squared Error: 6.12e-06 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 1.28e+10, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR2 + entropy 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 

    (Intercept)     14.779      0.21086     70.091    7.3888e-115 

    PAR2            2.3211     0.073953     31.386     4.8417e-67 

    entropy        -15.059       1.3396    -11.242     1.5074e-21 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.0459 

R-squared: 0.871,  Adjusted R-Squared 0.87 

F-statistic vs. constant model: 498, p-value = 3.53e-66 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR1 

 

Estimated Coefficients: 

                   Estimate       SE       tStat       pValue    

                   ________    ________    ______    ___________ 

    (Intercept)      13.194    0.016446     802.3    3.6842e-271 

    PAR1           -0.11629    0.049044    -2.371       0.019026 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.125 

R-squared: 0.0366,  Adjusted R-Squared 0.0301 

F-statistic vs. constant model: 5.62, p-value = 0.019 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + PAR2 

 

Estimated Coefficients: 

                   Estimate       SE       tStat       pValue    

                   ________    ________    ______    ___________ 

    (Intercept)    12.426      0.034392     361.3    6.5242e-220 

    PAR2           1.9474       0.08978    21.691     8.2387e-48 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0623 

R-squared: 0.761,  Adjusted R-Squared 0.759 

F-statistic vs. constant model: 470, p-value = 8.24e-48 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + peaks2 

 

Estimated Coefficients: 

                   Estimate        SE        tStat     pValue 

                   ________    __________    ______    ______ 

    (Intercept)     10.074     0.00078092     12901    0      

    peaks2         0.20529     5.1847e-05    3959.5    0      

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.000391 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 1.57e+07, p-value = 0 



92 
 

 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + widths2 

 

Estimated Coefficients: 

                   Estimate         SE        tStat       pValue   

                   _________    __________    ______    __________ 

    (Intercept)       12.948     0.0063674    2033.5             0 

    widths2        0.0065336    0.00016837    38.805    1.8507e-79 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0381 

R-squared: 0.911,  Adjusted R-Squared 0.91 

F-statistic vs. constant model: 1.51e+03, p-value = 1.85e-79 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + gmICP 

 

Estimated Coefficients: 

                   Estimate        SE         tStat       pValue    

                   ________    __________    _______    ___________ 

    (Intercept)    -1.5582      0.0085001    -183.32    2.0967e-176 

    gmICP           1.1276     0.00065099     1732.1    1.2786e-320 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.000895 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 3e+06, p-value = 1.28e-320 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + ratioP1P2 

 

Estimated Coefficients: 

                   Estimate        SE        tStat    pValue 

                   ________    __________    _____    ______ 

    (Intercept)    9.8413      0.00022467    43803    0      

    ratioP1P2      3.4908      0.00023588    14799    0      

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.000105 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 2.19e+08, p-value = 0 

************************************************************************ 

Linear regression model: 

    mICP ~ 1 + entropy 

 

Estimated Coefficients: 

                   Estimate      SE       tStat       pValue   

                   ________    _______    ______    __________ 

    (Intercept)    12.527      0.54838    22.844    2.2185e-50 

    entropy        3.8422       3.3094     1.161       0.24751 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.127 

R-squared: 0.00903,  Adjusted R-Squared 0.00233 

F-statistic vs. constant model: 1.35, p-value = 0.248 

 

************************************************************************ 

Amplitude variation -- Output:peak2 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 + PAR2 + ratioP1P2 + gmICP + mICP + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate          SE         tStat       pValue   

                   ___________    __________    _______    __________ 

    (Intercept)           74.9        3.3106     22.624    6.1831e-49 
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    PAR1            3.6489e-05     3.312e-05     1.1017       0.27244 

    PAR2           -0.00061685     0.0003234    -1.9074      0.058488 

    ratioP1P2           43.787        1.2165     35.993    2.9508e-73 

    gmICP             -0.31916       0.10833    -2.9463     0.0037605 

    mICP               -7.3959        0.4349    -17.006    4.5812e-36 

    widths2         4.8965e-05    9.2193e-06     5.3111    4.1134e-07 

    entropy          -0.020757     0.0048943    -4.2411    3.9883e-05 

Number of observations: 150, Error degrees of freedom: 142 

Root Mean Squared Error: 5.46e-05 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 2.73e+09, p-value = 0 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 + PAR2 

 

Estimated Coefficients: 

                   Estimate      SE       tStat       pValue    

                   ________    _______    ______    ___________ 

    (Intercept)     11.027      0.1875     58.81    4.8613e-104 

    PAR1           0.53562     0.12284    4.3602     2.4299e-05 

    PAR2            10.245      0.4512    22.707     6.4169e-50 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.288 

R-squared: 0.786,  Adjusted R-Squared 0.783 

F-statistic vs. constant model: 270, p-value = 5.87e-50 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + ratioP1P2 + gmICP + mICP + widths2 + entropy 

 

Estimated Coefficients: 

                    Estimate         SE         tStat       pValue   

                   __________    __________    _______    __________ 

    (Intercept)        74.351        3.3201     22.394    9.2373e-49 

    ratioP1P2          43.579        1.2203     35.712    1.9775e-73 

    gmICP            -0.34011       0.10702    -3.1779      0.001816 

    mICP              -7.3184       0.43661    -16.762    1.1785e-35 

    widths2        5.1661e-05    8.6147e-06     5.9968    1.5473e-08 

    entropy         -0.018693     0.0048256    -3.8737    0.00016221 

Number of observations: 150, Error degrees of freedom: 144 

Root Mean Squared Error: 5.5e-05 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 3.77e+09, p-value = 0 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR2 + entropy 

 

Estimated Coefficients: 

                   Estimate      SE        tStat       pValue   

                   ________    _______    _______    __________ 

    (Intercept)     23.006      1.0297     22.342    4.0774e-49 

    PAR2            11.305     0.36115     31.304    6.7762e-67 

    entropy        -73.882      6.5418    -11.294    1.0964e-21 

Number of observations: 150, Error degrees of freedom: 147 

Root Mean Squared Error: 0.224 

R-squared: 0.871,  Adjusted R-Squared 0.869 

F-statistic vs. constant model: 495, p-value = 5.13e-66 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue    

                   ________    ________    _______    ___________ 
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    (Intercept)      15.197    0.080138     189.63    1.4226e-178 

    PAR1           -0.56107     0.23899    -2.3477       0.020213 

 

 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.609 

R-squared: 0.0359,  Adjusted R-Squared 0.0294 

F-statistic vs. constant model: 5.51, p-value = 0.0202 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + PAR2 

 

Estimated Coefficients: 

                   Estimate      SE       tStat       pValue    

                   ________    _______    ______    ___________ 

    (Intercept)    11.461      0.16832     68.09    1.3048e-113 

    PAR2           9.4719      0.43939    21.557     1.6519e-47 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.305 

R-squared: 0.758,  Adjusted R-Squared 0.757 

F-statistic vs. constant model: 465, p-value = 1.65e-47 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + widths2 

 

Estimated Coefficients: 

                   Estimate        SE        tStat       pValue    

                   ________    __________    ______    ___________ 

    (Intercept)      13.998      0.030718     455.7    8.0993e-235 

    widths2        0.031856    0.00081228    39.218     4.4291e-80 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.184 

R-squared: 0.912,  Adjusted R-Squared 0.912 

F-statistic vs. constant model: 1.54e+03, p-value = 4.43e-80 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + mICP  

 

Estimated Coefficients: 

                   Estimate       SE         tStat     pValue 

                   ________    _________    _______    ______ 

    (Intercept)    -49.073      0.016195    -3030.1    0      

    mICP            4.8711     0.0012302     3959.5    0      

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00191 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 1.57e+07, p-value = 0 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + gmICP 

 

Estimated Coefficients: 

                   Estimate       SE         tStat       pValue    

                   ________    _________    _______    ___________ 

    (Intercept)    -56.662      0.059431    -953.41    2.9973e-282 

    gmICP           5.4923     0.0045516     1206.7      2.17e-297 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.00626 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 1.46e+06, p-value = 2.17e-297 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + ratioP1P2 
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Estimated Coefficients: 

                   Estimate       SE         tStat       pValue    

                   ________    _________    _______    ___________ 

    (Intercept)    -1.1353      0.003001    -378.31    7.2569e-223 

    ratioP1P2       17.004     0.0031507       5397              0 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.0014 

R-squared: 1,  Adjusted R-Squared 1 

F-statistic vs. constant model: 2.91e+07, p-value = 0 

************************************************************************ 

Linear regression model: 

    peaks2 ~ 1 + entropy 

 

Estimated Coefficients: 

                   Estimate      SE      tStat       pValue   

                   ________    ______    ______    __________ 

    (Intercept)    12.037      2.6719    4.5052    1.3371e-05 

    entropy         18.18      16.125    1.1275       0.26138 

Number of observations: 150, Error degrees of freedom: 148 

Root Mean Squared Error: 0.618 

R-squared: 0.00852,  Adjusted R-Squared 0.00182 

F-statistic vs. constant model: 1.27, p-value = 0.261 
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APPENDIX V. CLINICAL DATA - PATIENT A-F SUMMARIES 

Patient A: 

Recording Time: 27.38 hours 

Number of Cycles: 1.0902e+05 

Number of Events: 2 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 1 0.0000 0.2206 

0.5 1 0.0000 0.2619 

0.25 1 0.0000 0.2829 

0.1 1 0.0001 0.3200 

 

Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 -0.0478 0.0027 0.0896 0.0605 

0.5 -0.0473 0.0023 0.1762 0.0094 

0.25 -0.0449 0.0034 0.0614 0.5143 

0.1 -0.0440 0.0038 0.0587 0.6846 
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Patient B: 

Recording Time: 49.08 hours 

Number of Cycles: 1.7669e+05 

Number of Events: 1 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 1 0.0186 0.1779 

0.5 1 0.0119 0.3326 

0.25 0 0.1500 0.3611 

0.1 0 0.7957 0.4019 

 

Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 -0.1611 0.0000 -0.1034 0.3799 

0.5 -0.1604 0.0000 -0.1214 0.5891 

0.25 -0.1630 0.0000 -0.3000 0.4366 

0.1 -0.1645 0.0000 1.0000 1.0000 
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Patient C: 

Recording Time: 70.46 hours 

Number of Cycles: 2.5366e+05 

Number of Events: 2 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 1 0.0156 0.2011 

0.5 0 0.1615 0.1768 

0.25 0 0.2354 0.1766 

0.1 0 0.7240 0.2320 

 

Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 -0.0188 0.2882 0.2031 0.1229 

0.5 -0.0118 0.5028 0.2246 0.1692 

0.25 -0.0111 0.5294 0.2729 0.1244 

0.1 -0.0091 0.6061 0.1905 0.6646 
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Patient D: 

Recording Time: 30.28 hours 

Number of Cycles: 1.0900e+05 

Number of Events: 1 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 0 0.2461 0.1244 

0.5 0 0.1834 0.2299 

0.25 0 0.4303 0.2786 

0.1 0 0.9002 0.3547 

 

Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 -0.2341 0.0000 -0.1034 0.3799 

0.5 -0.2018 0.0000 -0.1214 0.5891 

0.25 -0.2049 0.0000 -0.3000 0.4366 

0.1 -0.2076 0.0000 1.0000 1.0000 
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Patient E: 

Recording Time: 186.78 

Number of Cycles: 6.7240e+05 

Number of Events: 5 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 1 0.0000 0.2409 

0.5 1 0.0000 0.2682 

0.25 1 0.0000 0.3103 

0.1 1 0.0000 0.3398 

 
Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 0.3161 0.0000 0.0837 0.0009 

0.5 0.3094 0.0000 -0.0939 0.0092 

0.25 0.3017 0.0000 -0.2631 0.0000 

0.1 0.2926 0.0000 -0.5462 0.0000 
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Patient F: 

Recording Time: 82.51 

Number of Cycles: 2.7997e+05 

Number of Events: 11 

KS Test Results: 

preIH Time (hr) H P KS stat 

1 1 0.0000 0.2508 

0.5 1 0.0000 0.2738 

0.25 1 0.0000 0.3313 

0.1 1 0.0000 0.3378 

 

Spearman’s Ranked Corr. Results: 

preIH Time 
(hr) 

Spearman’s 
Rho for IN 

P for IN Spearman’s 
Rho for preIH 

P for IH 

1 -0.4948 0.0000 -0.4819 0.0000 

0.5 -0.5115 0.0000 -0.4058 0.0000 

0.25 -0.5052 0.0000 -0.3983 0.0000 

0.1 -0.5121 0.0000 -0.4171 0.0000 

 

  



102 
 

 

APPENDIX VI. MOCK ALARM FOR PATIENTS A-F 

 

Patient A 

 

Patient B 

 

 

 

Patient C
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Patient D 
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Patient E 

 

Patient F 

 


