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To evaluate the effectiveness of the FARO 3D handheld LiDAR unit, I determined when 

ambient light affected the LiDAR’s detection capability. I then used standard destructive 

harvest methods combined with LiDAR data to examine the relationship between the 

number of pixels captured by the LiDAR unit with the log transformed dry biomass of 

the harvest fuels in both leaf-on and leaf-off conditions. Using a Bayesian regression 

model with a non-informative prior, the analysis showed a weak relationship between 

pixels and log biomass in leaf-on conditions with an R2 of 0.22 and a moderately strong 

relationship between pixels and log biomass in leaf-off conditions with an R2 of 0.67. 

The results suggest that handheld LiDAR units have the potential to replace destructive 

harvest methods under certain conditions, but may not serve as a tool for fire managers 

to utilize as a regular tool for estimate surface fuel loading. 
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Chapter 1. Introduction 

1.1 Overview  

In recent years, wildfires in the United States have been burning with more 

frequency and more intensity. This trend is only expected to accelerate and intensify 

with changes in global climate (Abatzoglou 2016, Wotton 2017). While wildfires play 

important roles in disturbance regimes, they can also threaten both structures and 

human life – especially in the wildland urban interface (WUI). For ongoing fire spread 

model development and evaluating treatment effectiveness, estimating forest fuel 

loading is crucial. Fuel loading, defined as the total weight of dry surface fuel per unit 

area, is a key factor that regulates fire intensity, as well as rate of spread, during 

wildfires. Surface fuels are those fuels that are no more than two meters above the 

ground surface (Keane 2015).  Many mathematical models use fuel loading as an input 

variable (Rothermal 1972 and Andrews 1986, as examples). Therefore, it is vitally 

important to be able to accurately measure fuel loading. The most accurate method to 

estimate fuel loading used by researchers involves destructive harvesting and laboratory 

analysis of fuels, which is time consuming and is not, by definition, “repeatable” (as the 

plot has been harvested to be dried and measured). One possible way to measure fuel 

loading more quickly and efficiently is by using remote sensing techniques such as LiDAR 

(Light Detection and Ranging).  With LiDAR, a laser beam is used to scan the forest and 

collect data representative of the forest’s three dimensional structure.  This approach 

takes considerably less time than destructive sampling, and is repeatable.  There are 

many types of research-grade LiDAR devices available on the market, however, few 
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consumer-grade devices are available.  However, the recently available FARO Freestyle 

3D laser scanner is one of few consumer-grade LiDAR devices which is also intended to 

be more user-friendly. The purpose of this study is to investigate the effectiveness and 

utility of using a FARO Freestyle 3D LiDAR device to scan surface fuel loads for the 

development of fuel load estimates, using upland pine-oak forests of the New Jersey 

Pinelands National Reserve as a test environment.  In this study, I report on three tests 

in order to evaluate the potential for the FARO Freestyle 3D scanner’s use in measuring 

the fuel loading of surface fuels. 

 

The study had three objectives: 

1) Determine to what extent outside ambient light affects the accuracy of the FARO 

Freestyle scanner and explore ways to mitigate this interference. 

2) Determine if a relationship exists between biomass and pixel counts when scanning 

during leaf-on time periods.  

3) Determine if a relationship exists between biomass and pixel counts when scanning 

during leaf-off time periods  

 

The ultimate objective of the study is to make recommendations as to if and 

when this tool can be used effectively – both in terms of the time of day as well as the 

season (leaf-on vs. leaf-off). 
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1.2 Literature Review 

Understanding fire environment characteristics is crucial for predicting fire 

behavior, estimating risk of catastrophic fire for a given area, and evaluating 

effectiveness of fuel treatments. The need for this is pressing; according to Barbero  et 

al. (2015), recent modeling predicts that climate change will increase the potential for 

“Very Large Fires” (defined as the top 5 or 10% of the largest fires) across much of the 

United States, with the largest increases occurring in the western United States. Some 

researchers have declared that western forests are burning with uncharacteristic 

severity and area burned (e.g. Agee 2005) and that the probability of Very Large 

Wildfires occurring could increase as much as 200 percent through 2060 (Stavros 2014). 

In order to understand why this is occurring, the most basic tenet of wildland fire 

research must be examined: the fire triangle.  

 

 Figure 1.1: The fire triangle1 

The fire triangle explains the three components that fire needs to exist: oxygen, 

heat, and fuel. With regard to the latter, fuel structure and total fuel loading in a forest 

can have a big effect on wildfire intensity and movement (Agee 1996). Since the 1970’s, 

mathematical models have been developed in order to understand and predict the 

                                                           
1 https://www.firesafetyinfo.co.uk/wp-content/uploads/2013/03/Fire-Triangle.png 
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movement of fire across landscapes, such as the model developed by Rothermal (1972). 

Many of these models rely on surface fuel properties as inputs, which are defined by the 

live and dead forest materials that comprise them. These materials can be in many 

different shapes, sizes and spatial arrangements such as twigs, leaf and needle litter, 

branches, and shrubs (Agee 2005). Fuel type and structure effects fire behavior and 

causes wide variation in the intensity and severity of fire (Despain and Sellers 1977). For 

instance, fuel load and depth are significant determinants of the likelihood of ignition, 

the rate of spread, and the intensity of a wildfire (Anderson 1982).  Similarly, Mueller et 

al. (2017) noted that slightly higher values of surface fuel loadings led to a 1.3 times 

increase in fuel consumption and, thus, a greater peak intensity when compared to a 

similar experimental plot. Environmental factors can also modulate the role of fuels on 

fire behavior, and therefore many fire behavior models also include weather and 

topography (Andrews 1986, Andrews 1999).  Therefore, it is fundamentally important to 

accurately estimate fuel properties to ensure realistic predictions of fire behavior. 

Fuels are classified based on their particle type and moisture loss rate, which is 

inferred from a particle’s size classification via timelag categories.  Timelag categories 

relate moisture loss to fuel particle size, based on established standard moisture loss 

relationships (Keane 2015).  More specifically, the timelag categories correspond to the 

size such that fuel particles with diameters in the ranges of [< 0.25 inches], [0.25 – 1.0 

inches], [1.0 – 3.0  inches], and [>3.0] are classified as 1 hour, 10 hour, 100 hour, or 

1,000 hour timelag fuels, respectively (Fosberg 1970). These hour categories reflect the 

rate at which a given dead fuel gains or loses moisture. Fuel moisture plays a significant 
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role in wildfire spread and intensity (Fryer and Johnson 1988). Different fuel classes and 

structures also interact with one another and can influence the fireline intensity (in this 

context, fireline intensity means the same as fire intensity) of a fire (Agee 1996). 

Horizontal and vertical continuity of fuels also affects the movement of fire across a 

landscape, as do other related factors such as the fire return interval of a given 

landscape and time of day. There are different ways of classifying fuel loading as 

outlined by Hiers (2009), but there is no standard procedure for doing so at areas 

smaller than stands or fuel beds (Hiers notes that most studies have focused on fire 

effects and scales of 10 m2 up to 10,000 ha).  

The most accurate method of estimating surface fuel loading is through analysis 

of destructively harvested surface fuel load material.  This method predates remote 

sensing approaches and continues to serve as the standard for surface fuel load 

characterization in the research community (Clark 2015; Hudak 2016; Prichard 2014). In 

this method, all of the surface fuels are harvested down to the duff layer (the layer of 

fine fuel and leaf litter on top of the soil), sorted by type and fuel timelag category, dried 

in a drying oven, and weighed for mass.  Prior to destructive harvesting, structural 

aspects of surface fuels, such as shrub height or litter depth, can be recorded as well.  

While this method is useful, there are certain drawbacks to it. First, it is impossible to 

repeat an experiment or observation in the same plot over time, since the biomass is 

harvested. It is also a time consuming process that inherently takes a minimum of two 

days to complete, considering standard minimum drying times of 48 hours. As result, it 

is difficult to conduct this method over large spatial scales in a time-efficient manner 
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and impossible to generate real-time fuel loading estimates during operational burns. 

Thus, it is important to determine whether technological approaches could mitigate 

these challenges. 

Several remote sensing techniques have been explored for estimating the fuel 

load mass and arrangement in three dimensional space in forested environments. 

Spectral scanners (Keane 2001, Saatchi 2007), orthoimagery (Schmidt 2016, 

Mitsopoulos 2016), and airborne LiDAR units (Skowronski 2007, Garcia 2017), among 

other less common approaches, have tended to focus on canopy fuel loads in particular.  

Most of these studies have used sensors that produce data with a medium spatial 

resolution (see Arroyo 2008 for a list); the drawback is that these reflectance datasets  – 

such as LANDSAT, SPOT, and IKONOS – provide limited information about surface fuel 

loads (Keane 2001).  Studies that have estimated fuel load mass and spatial distribution 

in forested environments with remote sensing have used LiDAR and have had mixed 

success.  One example is Saatchi et al. (2007), who used an airborne multi-frequency 

polarimetric synthetic aperture radar (SAR) unit to examine canopy fuel weight, density, 

and moisture. They found the method resulted in a good agreement with field-based 

canopy fuel measurements, though there were some limitations concerning areas with 

large topographical variations. Additionally, using this technique with small forest plot 

sizes could result in inaccuracies due to errors in geolocation. 

LiDAR provides quantitative information about forest structure where other 

remote sensing approaches don’t, lending it to be a more likely approach to estimating 

fuel loading than reflectance based approaches. Different types of LiDAR devices have 
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been used to measure structure at different spatial scales, such as satellites (Popescu 

2002, Hermosilla 2014), airborne units (Skowronksi 2007), and terrestrial laser scanners 

(TLS) (Rowell 2016, Chen 2017). Popescu (2002) used satellite LiDAR to look at forests at 

the landscape level, particularly with respect to mean tree height.  Skowronski et al. 

(2013) used airborne LiDAR to look at stand level structure and estimate total tree 

biomass and the presence of ladder fuels in combination with forest census data from 

the Forest Inventory and Analysis program to “characterize forest structure and ladder 

fuels in the New Jersey Pinelands”. Ladder fuels are vegetation, either living or dead, 

that allow ground fires to travel into the canopy of trees, thereby creating a dangerous 

crown fire.  Eric Rowell (2016) used a TLS in the RxCADRE project to look at fuels at the 

plot level from a height of 20 meters above the ground and found that fuel height data 

from the TLS corresponds with field measurements of height. 

Surface fuels tend to vary over much smaller spatial scales than canopy fuel 

characteristics. Hiers et al. (2009) used ground based LIDAR units to measure fuel 

variation and categorize them into fuel bed cells, noting that wildland fuel cell heights 

became spatially independent beyond 0.5 m2 and that fuel cells sow a considerable 

heterogeneity of fuels at the sub-meter level. Since many LiDAR units have larger 

resolutions, much of the spatial heterogeneity in the shrub layer is not detected. Keane 

et al. (2001) states that the high variability of fuels across time and space confounds 

accurate fuel mapping.   Clark (2015) noted how the mass of the shrub layer and the 

forest floor was related to the time since fire, with biomass increasing as the time after 



8 
 

 
 

fire increased.  Because this variability occurs at such a fine scale, any review of remote 

sensing techniques must take this spatial heterogeneity into account. 

When evaluating the many methods of remote sensing forest structure, there 

are several factors that need to be considered. Spatial scale is important, as well as the 

complexity of the method, the cost of implementation, and the time required for 

collecting the remotely sensed data. For instance, satellite LiDAR used by Antonarakis et 

al. (2008) had a resolution of 10 meters, making it ideal to quantify forest structure at 

large scales and determine differences in cover types such as forest, water, and gravel. 

However, the high cost and large resolution does not allow for quantifying shrubs and 

surface fuels – a major source of fuels data in prescribed burns (aside from litter and 

duff consumed). Terrestrial laser scanners, as used by Rowell et al. (2015), slightly 

overestimated the height of fuels in small field plots, though it is noted that the long 

data processing time (six months) means that this TLS approach “is not necessarily an 

alternative to field measurements of fuels in terms of time savings”.  

Thus, it is crucial to exploit new technology and instrumentation to improve 

estimation surface fuel load characteristics, and therefore, new handheld LiDAR devices 

that are entering the market should be tested as potential fuel measurement tools.  By 

expanding the “tools in the toolbox”, fire managers and forest researchers can have 

more techniques and methods at their disposal to collect data at relevant scales that 

meet the constraints of field time. The FARO Freestyle is a handheld scanner that has 

recently entered the market at a price manageable by most fire management agencies, 

with the stated ability to quickly and easily create high resolution scans of its 
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environment.  SCENE, FARO’s image processing and analysis interface, comes with the 

software at a modest additional charge with the capability of extracting custom 

information from imagery, making it a strong potential candidate for fuels 

measurements by researchers and fire managers. 

The FARO Scanner Freestyle, produced by FARO Technologies Inc., is a hand 

operated 3D laser scanner. It captures the structure of objects and environments as it is 

moved through space using two infrared cameras, one color camera and LED flash unit, 

and one infrared projector with class 1 laser. The scanner connects to a Microsoft 

Surface tablet via USB and is intended for use at a distance range of 0.5 meters to 3 

meters, though it does have a potential indoor range of up to 10 meters in certain 

instances. It also has an operating temperature range of 0°C to 40° C (32° F to 104° F) 

(FARO 2015). The scanner was originally designed for indoor use; however, when used 

outside, other factors come into play, and, in particular, ambient light can affect the 

scanner’s ability to collect data by making it hard for the scanner to distinguish what is 

being scanned.  

The FARO Freestyle collects data through both a camera on the scanner as well 

as lasers that collect the points and distance of the target area. When the scanner is 

collecting information, the scanning screen shows a green “X” for every reference 

location of material it is receiving a returned laser pulse off of, and a yellow or green 

shading when it is able to collect a camera feed of the target (yellow for low density, 

green for sufficient density). The X’s are important for tracking purposes, especially 

during post processing.  When the record button is hit, the scanning screen will show 
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the camera feed of what is being scanned. It does not, however, begin recording the 

yellow shading and the green X’s unless it can distinguish what is being scanned. 

Once the scan is complete, a point cloud is generated. A point cloud is the 

collection of pixels detected by the scanner and their 3D position (along the x, y, and z 

axes). Post-processing the point cloud data involved the SCENE software provided by 

FARO. This process optimizes the scan points for 3D viewing and helps to remove 

duplicate points, or points that were captured from different scanner positions and have 

similar 3D positions. The process also combined the scanner’s high resolution camera 

images with the point cloud to reducing smearing effects and give more color details. 

Finally, color balancing helps to reduce the differences in color due to lighting (FARO 

2017). 

As the use of LiDAR becomes more common in wildland fire research, handheld 

LiDAR scanners are uniquely positioned to fill an important gap in a researcher’s 

capability – that is, allow the researcher to use LiDAR as a rapid deployment tool to 

cover large spatial scales over short time frames. This has the potential to change how 

fuel loading estimations are utilized in fire behavior models and allow fire managers to 

more accurately quantify the fuel loading of a forest, potentially saving lives and 

property, while also allowing researchers to better understand how fuel is consumed by 

fire as it moves across the landscape. Before handheld LiDAR scanners can be utilized in 

such a manner, however, they must first be tested to determine their fitness for such 

activities. 
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1.3 Site Description 

Objective One in this study was conducted at the Silas Little Experimental Forest 

in New Lisbon, New Jersey, USA located within in Brendan T. Byrne State Forest 

(39.915752, -74.597765). Upland forest vegetation at the Experimental Forest is typical 

of that observed in other upland forests of Pinelands National Reserve, consisting 

mostly of a mix of oak (Quercus), pitch pine (Pinus rigida), and shortleaf pine (Pinus 

echinata) in the overstory. The oaks are a combination of black oak (Q. velutina), white 

oak (Q. alba), chestnut oak (Q. prinus), post oak (Q. stellata), and blackjack oak (Q. 

falcate). The understory, which is the focus of the study, is dense and consists of oak 

and pine saplings, scrub oak (Quercus ilicifolia), and ericaceous shrubs such as lowbush 

blueberry (Vaccinium vacillans) and black huckleberry (Gaylussacia baccata) 

(McCormick 1998). 

 
Figure 1.2:  Map of Silas Little Experimental Forest2 

 
                                                           
2 https://www.nrs.fs.fed.us/ef/local-resources/downloads/nrs_inf_19_12-silaslittle-panels.pdf 

https://www.nrs.fs.fed.us/ef/local-resources/downloads/nrs_inf_19_12-silaslittle-panels.pdf
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Work on Objectives Two and Three in this study was conducted in the 

Greenwood Wildlife Management Area, located approximately 15 miles away from the 

Silas Little Experimental Forest. These locations were chosen due to their fire history, 

which is further explained in the methods section. The vegetation composition is nearly 

identical to the Silas Little Experimental Forest, and the study took place in five separate 

sites within the management area.  

 
Figure 1.3: Site locations of Objectives Two and Three3  

 

In order to get a gradient of cover and biomass levels, we used the fire history of 

the sites to determine the number of years since the last fire had occurred at the site. 

This was a useful proxy because the density and complexity of the shrub layer is related 

to the time since last fire as noted previously in Clark (2015). Using GIS, a layer 

                                                           
3 Numbers represent years since last fire, and sites used in the study are circled 
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containing the 50 year fire history of the Pinelands was imported and analyzed. Once 

the time periods were established, a gradient was chosen of one, two, four, ten, and 

twenty-one years since the last fire occurred.  A map of these sites can be seen in Figure 

1.3. The location of these sites can be seen circled in the image below. 
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Chapter 2.  Time Of Day Influence On FARO 3D Scanner’s Ability To Estimate Biomass 

2.1 Methods 

For Objective One, I tested the degree to which ambient light interfered with 

laser returns and image capture of the FARO Freestyle, which are required for point 

cloud generation. As such, this test was designed to determine if the scanner was able 

to effectively record data at selected times of the day when incident ambient light 

differed. 

Scans of vegetation with the FARO Freestyle were conducted under a variety of 

vegetation and lighting conditions to test the sensor’s accuracy under conditions typical 

in forest census plots.  Five study plots were identified as the focal points of this study, 

by a visual assessment, with the goal of representing a gradient of cover across the five 

sites. Because the test was not being used to generalize to a study area but rather to 

explore if the scanner could simply detect scan objects, there was no need to choose 

the site by stratified random sampling.  Scans were conducted in each plot every other 

hour, from 7:00 AM to 7:00 PM EDT on July 25th, 2016, providing a total of 7 unique 

ambient lighting conditions. The sunlight was occasionally diffused by passing clouds, 

meaning that the level of ambient light often varied both within and between plot 

scans. Sunrise on the test day was 5:50 AM and sunset was 8:16 PM; therefore, all tests 

were conducted with at least some minor ambient light present.   

For each scan, the scanner was mounted on a camera tripod with telescoping 

legs using a metal pipe and zip ties. This allowed for an overhead scan in which the 

scanner was parallel to the ground. Each plot in had three poles marking various angle 
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measurements. These poles were used to ensure that the scanner traversed the same 

route over all plots in roughly the same time. Poles one and three marked off a 120 

degree sector that the scanner would rotate through, and pole two marked off the 

midpoint of that angle at 60 degrees (Figure 2.1).  Each site also had flags placed into 

the ground to mark off the locations that the tripod legs would be placed each time, to 

ensure scans were repeated over the same locations. 

 

Figure 2.1: Overhead diagram of Objective One plot 

For each of the plots, the scanner was tested in four different ways. Preliminary 

usage suggested that the scanner would likely be more effective when moving slowly 

than capturing data from a static location. As such, there were four different conditions: 

a 1 meter high stationary scan, a 1 meter high moving scan, a 1.5 meter high stationary 

scan, and a 1.5 meter high moving scan. Figure 2.2 illustrates the site set-up. For all of 

the stationary scans, the scanner was lined up to pole 2. For all moving scans, the 

scanner was positioned at pole 1 and, upon the start of recording, would slowly 

transverse the 120 degree sector and end at pole 3.  There were a total of 140 
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combinations of time, plot and condition (5 plots x 4 conditions at each x 7 timeslots). 

Each of these timeslots took roughly an hour to complete.  

 
Figure 2.2: Site design, Objective One 

The same process was used for all scanning. The record button would be hit on 

the tablet, and the researcher would wait for the scanner to begin detecting features as 

previously described. If the scanner began to detect features, the scan continued for 60 

seconds (crossing pole 2 and the 30 second mark), then stopped, and the tripod was 

moved into position 2. If, after 15 seconds, the scanner did not pick up any features, the 

scan was stopped and restarted. This was repeated 3 times for a total of 4 attempts. 

After either the first successful attempt or the fourth unsuccessful attempt, the scanner 

was moved into the correct position for the next condition and the process was 

repeated. For the moving scans, the scanner traversed the scanning area for a total of 

60 seconds in a single pass. After all 4 positions were completed, the scanner was 

moved to the next plot. The only data recorded aside from the point clouds of the 

successful scans was whether or not the scanner was able to detect features at each 
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position for that timeslot. This data is a binary pass/fail value. If the scanner was able to 

detect features at any point during the four attempts at that condition (thereby creating 

a point cloud), it was marked as a “success.” If the scanner failed to detect any scanning 

features during the four attempts at that condition, it was marked as a “fail.” The quality 

or pixel counts of the point clouds were not relevant in this Objective – only the ability 

of the scanner to record point cloud data at all.  

2.2 Results 

For Objective One, the results of the test can be seen in Table 2.1. The specific results 

for each plot and scan attempt can be seen in Appendix A. 

Table 2.1: Percent Success Rate of Objective One Scans Performed at Different Timeslots 

Time of 
Day 

1 Meter 
stationary 

1 Meter 
Moving 

1.5 Meter 
Stationary 

1.5 Meter 
Moving 

Total 

 N % N % N % N % N % 
7:00 AM 5 100% 4 80% 5 100% 5 100% 19 95% 
9:00 AM 3 60% 4 80% 4 80% 5 100% 16 80% 
11:00 AM 1 20% 0 0% 0 0% 0 0% 1 2% 
1:00 PM 2 40% 2 40% 1 20% 2 40% 7 35% 
3:00 PM 1 20% 1 20% 1 20% 1 20% 4 20% 
5:00 PM 2 40% 3 60% 3 60% 2 40% 10 50% 
7:00 PM 4 80% 5 100% 5 100% 5 100% 19 95% 

Total 18 51% 19 54% 19 54% 20 57% 76 54% 

 

The overall rate of success for each time period can be seen in Table 2.1. As the 

table makes clear, the most successful times for scanning were 7:00 AM and 7:00 PM 

EST, with the 9:00 AM timeslot a close second. Both the 7:00 AM and 7:00 PM timeslots 

had a success rate of 95%, with 19 of the 20 scans conducted at that time being 

successful. The other times of the day were less successful, and often the only times 

that the scans were successful at 11:00 AM, 1:00 PM, and 3:00 PM was when a cloud 
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bank rolled in and diffused some of the ambient light. Out of the 140 total scans (20 

scans per timeslot multiplied by 7 timeslots), 54% of the scans were able to detect 

features when the scan was active (76/140).  

2.3 Discussion 

It is clear from Table 2.1 that ambient sunlight at sufficient levels will interfere 

with the sensor’s ability to capture data.  The most successful scan times were those 

that had very low to intermediate direct sunlight overhead. The results of the test were 

consistent with what we expected, and thus helped to inform the methods utilized in 

Objectives Two and Three. It is unclear how the test would have been affected if the day 

had been overcast as opposed to partly sunny. The few times that the scanner did 

collect data points around midday were when clouds did cover the direct sunlight, 

causing the light to be more diffuse. Even then, not all of the scans that were performed 

when those clouds were present collected data. This suggests that some other factor, 

such as the shading effect of the forest canopy, worked in conjunction with the cloud to 

absorb or reflect enough light for the scanner to detect data. 
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Chapter 3. Understory Biomass Measurements During Leaf-On And Leaf-Off Period 

3.1 Methods 

In these Objectives, the scanner was tested on both leaf-on and leaf-off shrubs 

at five different sites in the Greenwood Wildlife Management Area. Within each of the 

different sites, six individual plots were chosen to represent a range of cover and 

structure density within each of the fire histories. As such, it was unnecessary to choose 

the site by stratified random sampling since the scanner was simply being calibrated and 

tested.  

Once the plots were chosen and flagged, a 1 meter by 1 meter PVC square was 

placed around the flag. Once the square was placed, a six to twelve inch buffer zone was 

cleared on all sides of the PVC square. This removed all of the biomass that was leaning 

into the scan area. This was necessary in order to make sure that the biomass that was 

harvested in the plot square was the only biomass scanned by the Freestyle scanner. 

Otherwise, extra biomass could have been detected by the scanner and recorded as 

pixels but not harvested and weighed for the biomass reading. Generally, any biomass 

rooted in the square was kept for harvesting.  The rare exceptions occurred where the 

branches of a shrub extended too far past the study square or above the scanner and 

into locations the scanner could not pick up.  This setup can be seen in Figure 3.1 below. 

The tripod used in Objective 1 was only 1.5 meters high and, in order to ensure the 

scanner was 2 meters above the plots, had its’ legs extended using metal piping and 

duct tape. Two meters became the choice height for scanning because it allowed for the 



20 
 

 
 

whole square to be completely scanned, and also accounted for very tall shrubs in some 

of the plots. 

 
Figure 3.1: Scan plot design for Objectives Two and Three 

 
Using the lessons learned in Objective One, each plot was measured using a 

moving scan at a height of 2 meters (as surface fuels are defined as biomass <2m above 

the ground; Keane 2012) that lasted a total of 120 seconds (there were diminishing 

returns on detection past this point). These scans took place between 7:00AM and 8:00 

AM because, as seen in Objective One, the low levels of ambient light allowed for the 

most accurate collection of data. Once the scan was completed, the plot square was 

moved to the next plot and that plot was scanned as described above. Due to time 

constraints related to the ambient light levels in the forest, only one site could be 

scanned per day. The scan setup for Objective Two can be seen in Figure 3.2 below. 

Upon completion of all six scans, the plots were then destructively harvested. All of the 

surface fuels were harvested down to the duff layer and bagged and labeled. These 

materials were then dried in a convection oven for at least 48 hours at 70°C. Once the 

drying was completed, the biomass of each site was weighed and recorded.  
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Figure 3.2: Site design for Objectives Two and Three 

All harvests occurred on the same day as scanning except for one site (Site 2; two years 

since last fire) due to weather. These scans took place between September and October 

2016 as noted in Table 3.1. 

Table 3.1: Time and Date of Objective Two Scans 

Site Date of Scan 
Time of 

Scan 
Date of 
Harvest 

Years Since 
Last Fire 

1 9/14/2016 7:00 AM 9/14/2016 1 

2 9/19/2016 7:00 AM 9/21/2016 2 

3 10/5/2016 7:00 AM 10/5/2016 4 

4 10/17/2016 7:00 AM 10/17/2016 10 

5 9/23/2016 7:00 AM 9/23/2016 21 

 
Objective Three data collection was similar to that of Objective Two, with the key 

difference being the leaf-off conditions. The same five sites were chosen based on the 

fire history in the Greenwood Management Area (i.e. one, two, four, ten and twenty-

one years since last fire). These six plots were prepared identically to the six leaf-on 

plots in each site. All scans and harvests occurred on the same day as scanning except 

for one site (Site 2; two years since last fire). Ambient light interference did not allow for 
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plots 5 and 6 in Site 2 to be scanned the same day as the other four plots. Those scans 

were completed two days later, and all six sites were then harvested on that day. The 

table of scan dates for Objective Three can be seen below in Table 3.2. 

Table 3.2: Time and Date of Objective Three Scans 

Site Date of Scan 
Time of 

Scan 
Date of 
Harvest 

Years Since Last 
Fire 

1 12/14/2016 8:00 AM 12/14/2016 1 

2 12/19/2016 7:30 AM 12/21/2016 2 

3 12/23/2016 7:30 AM 12/23/2016 4 

4 12/22/2016 7:30 AM 12/22/2016 10 

5 12/21/2016 7:30 AM 12/21/2016 21 

 

3.2 Raw Data Post Processing 

Each scan resulted in an unprocessed point cloud of pixels from the scan. These 

scans included the pixels of the shrubs and ground cover in the plot squares as well as a 

fair portion of the shrubs and ground cover outside the square. The first step in post 

processing the data was to refine the point clouds using the FARO SCENE software’s 

automatic post-processing feature. To refine the point clouds, SCENE combined the 

laser scan data with the imagery captured by the onboard camera to create a fuller and 

more accurate scan image. This post process task took approximately 15 minutes per 

scan. An example of a point cloud can be seen in Figure 3.3. 
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Figure 3.3: Point cloud from a scan during Objective Two 

Once the refined point cloud was created, the next step was to eliminate all of 

the excess pixels in the image outside of the square by using a “clipping box” to remove 

any excess pixels. This required orienting the scan correctly along the X, Y, and Z axes. 

Once the scan was aligned, the clipping box was then similarly oriented along the X, Y, 

and Z axes. Using the white PVC square as the boundary, the clipping boxes were moved 

along the X and Y axes and aligned with the inside of the PVC pipe square. Once those 

were in line, the Z axis was raised or lowered to both align with the top of the PVC 

square as well as the top of the shrubs that were scanned. This “clipping box” 

eliminated all of the excess pixels outside of the site as well as any stray pixels captured 
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above the shrub layer. Once the pixels were clipped, the data files were exported from 

Scene and then imported into CloudCompare, an open source 3D point cloud and mesh 

processing software, to perform the pixel counts.  

3.3 Data Analysis 

Data was analyzed using the OpenBUGS software, version 3 (Lunn 2009). The 

biomass data were log transformed using Microsoft Excel. A simple Bayesian regression 

was used to determine if a relationship existed between pixel counts and the log 

biomass, and an r-squared value was used to determine the strength of the relationship 

by examining the 95% credible interval of beta:  

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖,   𝑖 = 1, 2, … , 𝑛  

Where: 
 
𝑒𝑖~𝑁(0, 𝜎2);    𝛼~𝑁(0, 1.0 × 106);     𝛽~𝑁(0, 1.0 × 106);    𝜎~𝑈𝑁𝐼𝐹(0,400) 
 

Non-informative priors were utilized in the model. The model was run using a 

2000 iteration “burn in” to achieve convergence and then run for an additional 20,000 

iterations. Appendix B contains the OpenBUGS syntax used to run the regression 

equation above for determining whether a relationship exists between log biomass and 

pixel counts. 

 The second step in the analysis was to ensure that the results were 

demonstrable over all five categories of time since last fire – one, two, four, ten, and 

twenty one years. For this, the slope and intercept data from the two, four, ten, and 

twenty one year categories were compared to the one year to determine if any 

differences existed between them. The equation and priors used can be seen below.  
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𝑚𝑢𝑖 = 𝛽1 + 𝛽2𝑥1𝑖 + 𝛽3𝑥2𝑖 + 𝛽4𝑥3𝑖 + 𝛽5𝑥4𝑖 + 𝛽6𝑧𝑖 + 

𝛽7𝑥1𝑖𝑧𝑖 + 𝛽8𝑥2𝑖𝑧𝑖 + 𝛽9𝑥3𝑖𝑧𝑖 + 𝛽10𝑥4𝑖𝑧𝑖     𝑖 = 1,2, … , 𝑛 

Where: 

𝛽1~𝑁(0, 1.0 × 106);  𝛽2~𝑁(0, 1.0 × 106);  𝛽3~𝑁(0, 1.0 × 106);  𝛽4~𝑁(0, 1.0 × 106); 

𝛽5~𝑁(0, 1.0 × 106);  𝛽6~𝑁(0, 1.0 × 106);  𝛽7~𝑁(0, 1.0 × 106);  𝛽8~𝑁(0, 1.0 × 106); 

𝛽9~𝑁(0, 1.0 × 106);  𝛽10~𝑁(0, 1.0 × 106);  𝜏~𝛾(0.001, 0.001) 

 

Non-informative priors were utilized in the model. The model was run using a 

2000 iteration “burn in” to achieve convergence and then run for an additional 20,000. 

Appendix C contains the OpenBUGS syntax used to run the slope and intercept 

comparison. 

3.4 Results 

Objective Two 
 
The results of the biomass measurements and pixel counts for Objective Two are 

listed in Table 3.3. Figure 3.4 illustrates a scatter plot of the log biomass vs. pixel count 

data. 

Table 3.3: Biomass (g) and Pixel Counts for Objective Two Plots 

  Plot One Plot Two 
Plot 

Three 
Plot 
Four 

Plot 
Five 

Plot Six 
Average 
Biomass 

St. Dev.  St. Error 

Site 
One 

Biomass 111.85 80.94 271.44 169.08 156.8 35.04 137.53 82.05 33.5 

Pixels 247,631 287,606 215,801 231,926 70,945 146,614 200,087 78,381 31,998.79 

Site 
Two 

Biomass 366.59 297.75 362.23 245.15 208.12 238.14 286.33 67.03 27.37 

Pixels 1,102,368 861,591 808,656 887,457 572,919 670,241 802,205 158,108 64,547.47 

Site 
Three 

Biomass 450.36 417.05 957.24 306.73 234.93 275.71 440.38 266.45 108.78 

Pixels 1,499,290 1,036,666 634,204 528,076 375,596 463,940 756,295 430,823 175,882.80 

Site 
Four 

Biomass 291.25 395.12 607.52 634.72 414.57 467.63 468.47 131.66 53.75 

Pixels 354,012 576,047 315,539 93,694 139,132 847,667 387,682 283,412 115,702.48 

Site 
Five 

Biomass 369.26 626.17 597.98 455.14 256.89 456.08 460.59 138.11 56.38 

Pixels 644,080 917,624 552,781 451,483 408,653 376,065 558,448 201,750 82,364.22 
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For the regression, the 95% credible interval of beta must not include 0 if a relationship 

exists. The 2.5 percent and 97.5 percent values for Objective Two are 0.00015 and 

0.0066, respectively, with the mean value being 0.0033. In this credible interval, 0 is not 

included as a possible value. This indicates that there is a relationship between the 

biomass and the pixel counts for Objective Two because both the 2.5 percent and 97.5 

percent values are above zero. The coefficient values appear low because of the nature 

of the data. 

 
Figure 3.4: A plot of the log biomass vs. pixel counts for Objective Two 

To determine the strength of that relationship, an R-Squared value was 

calculated and the 95% credible interval examined. The 2.5 percent and 97.5 percent 

values of R-Squared are 0.14 and 0.62, respectively, with the mean value being 0.22. The 

low R-Squared mean value indicates that there is a weak relationship between the 

biomass and the pixel counts. 

 A comparison of slope and intercept data was calculated and the 95% credible 

interval examined. The 2.5 percent and 97.5 percent values are illustrated in Table 3.4 
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Table 3.4 Objective Three Credible Intervals of Slope and Intercept Differences   
Mean Value 2.5% 97.5% 

One Year 
Slope 2.01 1.473 2.641 

Intercept 0.0002366 -0.002841 0.002785 

Two Years 
Slope 0.02721 -1.089 1.111 

Intercept 0.0002738 -0.002497 0.003449 

Four Years 
Slope 0.4503 -0.25200 1.125 

Intercept -0.00006429 -0.002618 0.003029 

Ten Years 
Slope 0.6875 -0.007109 1.314 

Intercept -0.0003435 -0.003022 0.002767 

Twenty One Years 
Slope 0.4086 -0.4405 1.154 

Intercept 0.0001673 -0.002468 0.003458 

 

If any of the credible intervals for two, four, ten or twenty one years does not include 

zero as a potential value, it means that there is evidence that the relationship varies by 

fire history. As seen in Table 3.4, every credible interval contain zero as a possible value. 

Thus, the relationship does not vary by  time since last fire. 

Objective Three 
 

The results of the biomass measurements and pixel counts for Objective Three 

are listed in Table 3.5. Figure 3.5 illustrates a scatter plot of the log biomass vs. pixel 

count data. 

Table 3.5: Biomass (g) and Pixel Counts for Objective Three Plots 

  Plot One Plot Two 
Plot 

Three 
Plot 
Four 

Plot 
Five 

Plot Six 
Average 
Biomass 

St. Dev.  St. Error 

Site 
One 

Biomass 130.54 170.69 179.18 179.95 245.14 390.76 216.04 93.17 178.01 

Pixels 30,430 91,630 65,858 72,223 203,454 116,486 97,180 59,357 72,947.66 

Site 
Two 

Biomass 363.88 247.63 146.2 140.06 207.24 158.62 210.61 85.68 175.63 

Pixels 125,066 27,083 12,564 14,542 71,994 64,438 52,605 43,500 34,845.65 

Site 
Three 

Biomass 261.84 322.39 385.71 288.37 300.84 348.43 317.93 44.4 299.8 

Pixels 63,069 86,070 112,467 61,789 62,466 87,009 78,812 20,285 70,530.47 

Site 
Four 

Biomass 218.62 302.62 269.09 413.36 517.02 342.02 343.79 107.51 299.9 

Pixels 55,424 114,754 121,984 131,058 144,912 102,388 111,753 31,134 99,043.05 

Site 
Five 

Biomass 547.96 516.04 1003.31 1482.39 157.71 1340.09 841.25 518.69 629.05 

Pixels 103,874 74,490 124,540 104,486 30,006 175,082 102,080 48,577 82,248.19 

 

For the regression, the 95% credible interval of beta must not include 0 if a relationship 

exists. The 2.5 percent and 97.5 percent values for Objective Two are 0.019 and 0.055, 
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respectively, with the mean value being 0.037. In this credible interval, 0 is not included 

as a possible value. This indicates that there is a relationship between the biomass and 

the pixel counts for Objective Three because both the 2.5 percent and 97.5 percent 

values are above zero. The coefficient values appear low because of the nature of the 

data. 

 
Figure 3.5: A plot of the log biomass vs. pixel counts for Objective Three 

To determine the strength of that relationship, an R-Squared value was 

calculated and the 95% credible interval examined. The 2.5 percent and 97.5 percent 

values of R-Squared are 0.62 and 0.82, respectively, with the mean value being 0.67. 

This indicates that there is a moderately strong relationship between the biomass and 

the pixel counts. 

A comparison of slope and intercept data was calculated and the 95% credible 

interval examined. The 2.5 percent and 97.5 percent values are illustrated in Table 3.6. 
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Table 3.6 Objective Three Credible Intervals of Slope and Intercept Differences   
Mean Value 2.50% 97.50% 

One Year 
Slope 0.001776 -0.0002025 0.003925 

Intercept 2.132 1.887 2.352 

Two Year 
Slope 0.001082 -0.002497 0.004503 

Intercept 0.01462 -0.2751 0.3189 

Four Year 
Slope 0.001009 -0.005753 0.007217 

Intercept 0.1464 -0.3789 0.7228 

Ten Year 
Slope 0.001713 -0.002964 0.00587 

Intercept -0.002578 -0.4825 0.5229 

Twenty One Year 
Slope 0.004616 0.001309 0.007903 

Intercept 0.03955 -0.3241 0.4093 

 

If any of the credible intervals for two, four, ten or twenty one years does not include 

zero as a potential value, it means that there is evidence that the relationship varies by 

fire history. As seen in Table 3.6, the credible interval for the slope of the twenty one 

years since last fire category does not contain zero as a possible value. Thus, the 

relationship does vary by fire history, or time since last fire. 

3.5 Discussion 
 

Given the results of the exploration, there is a demonstrated, albeit weak, 

relationship between the biomass and the pixel counts in Objective Two and a 

moderately strong relationship in Objective Three. This means that the biomass can be 

estimated more accurately with leaves off the plant as compared to the leaves on the 

plant. There were potential issues with the laser penetrating the brush to capture 

hidden features, or that certain branches were hid by the shadows of the plant. 

The r-squared value was much higher for the leaf off scans when compared to 

the leaf on scans (mean of 0.22 vs mean of 0.67, respectively). One potential 

explanation is that the surface area of the leaves blocked some of the smaller branches 

and twigs from being detected by the scanner during leaf on, potentially 
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underestimating the biomass that that branch provides. Additionally, there may be 

some discrepancy given the surface area to biomass ratio of the leaves, since leaves 

provided a lot of pixels comparably given their biomass contribution. This, in turn, could 

make the scans more inaccurate in terms of their pixel to log biomass relationship. 

 Additionally, there is no evidence to suggest that leaf-on scans would vary given 

the fire history of the sire (time since last fire). This is not the case with leaf-off scans, 

however, as the analysis has indicated that the relationship between pixels and log 

biomass could be influenced by time since last fire as a covariate. Given the small 

number of plots per site (six), it would be prudent to repeat the test with more sites per 

plot to see if the analysis yields similar results. 
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Chapter 4. Conclusions           

The aim of this study was to determine if the FARO Freestyle would be a useful 

tool for fire managers to quickly evaluate shrub fuel loading over large areas. The results 

of this study demonstrate that the FARO Freestyle has potential for use in individual 

projects with the objective of estimating shrub mass without destructive sampling. The 

results demonstrated that the scanner is more accurate when no leaves are present on 

the plant, making the FARO Freestyle a potential seasonal tool. Remote sensing is still an 

important way forward for fire managers as it allows them to be able to cover much 

larger geographic areas in shorter time spans. The FARO Freestyle’s utility as a daily tool 

for fire managers is unlikely, however, given the limitations due to ambient light 

interference. There is no doubt in the researcher’s mind that the FARO Freestyle 

definitely fits into that future; other scanners, however, still need to be tested in order 

to determine which is best for the job. More specifically, it may be more useful to use 

remote sensing techniques such as the helicopter borne LiDAR unit used in Skowronski 

et al. (2007) as it allows for a large coverage area. Obvious drawbacks exist, such as the 

potential cost of using such a technique as well as issues surrounding the scale of study. 

There exists some potential to couple the use of helicopter or satellite borne 

technologies in conjunction with handheld scanners to record fine-grain data. 

There are several different avenues forward for future research. First, this study 

only developed the relationship between the biomass and pixel counts of a pine-oak 

forest. It would be interesting to see if different forest types yield different results. For 

example, would forests whose shrubs have, on average, much broader leaves still be 
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good candidates for the Freestyle scanner used as it was in this study? Additionally, 

further research may also be directed at evaluating the predictive power of the 

relationship. While this relationship was determined using real data collected, it would 

be interesting to conduct more scans in the Pine Barrens to increase the predictive 

power and accuracy of the relationship. These scans could then be post processed and 

their pixel counts could be plugged into the relationship developed here. The predicted 

biomass levels could then be compared to the actual biomass weights that were 

harvested to see how accurate the model is at predicting the biomass at the sites. This 

would demonstrate that the relationship has some predictive power, thereby 

eliminating the need for destructive harvests altogether when using the scanner. 

Additionally, the scanner could be utilized in a multidirectional scan as opposed to a top 

down only scan. This could help capture features hidden by leaves and twigs at certain 

angles and give a more robust scan to analyze. 

In a similar vein, the scanner may also prove useful in evaluating the shrub layer 

post fire. By scanning a shrub layer before and after a fire, such as a controlled burn, the 

scanner may be able to give accurate estimates on fuel consumption. This has 

implications both for understanding the intensity of a fire as well as evaluating the level 

of risk mitigation that was accomplished through the treatment. By understanding fuel 

consumption after a fire, researchers may be able to better understand the resiliency of 

different forest types to fire as a disturbance regime. Given the 3D scans, there is also 

potential to look at not just the total biomass of the shrub layer consumed but also the 

structure of the layer as well. It is well documented that the structure of fuels in a forest 
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shrub layer has a large effect on the fire’s intensity and rate of spread (Agee 1996, 

2005). By looking at the structure of the understory, researchers may be able to gain 

valuable insight into how a fire moves through a landscape on a smaller scale. This 

movement may then be scaled up to understand fire on larger scales. This area of 

research may be the strongest use of the FARO Freestyle going forward. 
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Appendix A: Success of Individual Objective One Plots 
An “x” indicates a successful detection of scan features, while an “0” indicates that no 

scan features were detected. Each scan was attempted four times before moving to the 
next plot and/or scan type.  

 

 Start Time 7:00am 9:00am 11:00am 1:00pm 3:00pm 5:00pm 7:00pm 

Site 1 1 Meter 
Moving 

X 0 X 0 0 0 X 

1 Meter 
Stationary 

X 0 0 0 0 X X 

1.5 Meter 
Moving 

X 0 0 0 0 X X 

1.5 Meter 
Stationary 

X X 0 0 X 0 X 

Site 2 1 Meter 
Moving 

X X 0 X X 0 X 

1 Meter 
Stationary 

X X 0 X X 0 X 

1.5 Meter 
Moving 

X X 0 0 X 0 X 

1.5 Meter 
Stationary 

X X 0 0 0 0 X 

Site 3 1 Meter 
Moving 

X 0 0 0 0 0 0 

1 Meter 
Stationary 

X X 0 0 0 0 X 

1.5 Meter 
Moving 

X X 0 0 0 0 X 

1.5 Meter 
Stationary 

X X 0 X 0 0 X 

Site 4 1 Meter 
Moving 

X X 0 0 0 X X 

1 Meter 
Stationary 

X X 0 X 0 X X 

1.5 Meter 
Moving 

X X 0 X 0 X X 

1.5 Meter 
Stationary 

X X 0 0 0 X X 

Site 5 1 Meter 
Moving 

X X 0 X 0 X X 

1 Meter 
Stationary 

0 X 0 0 0 X X 

1.5 Meter 
Moving 

X X 0 0 0 X X 

1.5 Meter 
Stationary 

X X 0 X 0 X X 

 End Time 7:47am 9:47am 11:46am 1:46pm 3:47pm 5:47pm 7:46pm 
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Appendix B: OpenBUGS Syntax for Analysis of Log Biomass and Pixel Count 
Relationship 

 
Objective Two 
 
Model 
{ 
 for (i in 1:N)  
  { 
  mu.bio[i] <- alpha + beta*(y[i] /10000)   
  logbio[i] ~ dnorm(mu.bio[i],tau)            
   } 
   alpha ~ dnorm(0.0,0.000001)      
   beta ~ dnorm(0.0,0.000001)       
   sigma ~ dunif(0,400)        
   tau <- 1/(sigma*sigma)        
 for (i in 1:N) 
  {       
  residual[i] <- logbio[i] - mu.bio[i]   
  num[i] <- (residual[i])*(residual[i]) 
  } 
RSS <- sum(num[]) 
rsq <- (RSS/CTSS) 
} 
 
Data  
list(y = c(247631, 287606, 215801, 231926, 70945, 146614, 1012368, 861591, 808656, 
887457, 572919, 670241, 1499290, 1036666, 634204, 528076, 375596, 463940, 354012, 
576047, 315539, 93694, 139132, 847667, 644080, 917624, 552781, 451483, 408653, 
376065), 
       
logbio = c(2.048635988, 1.9081632, 2.433673847, 2.228092239, 2.195346058, 
1.544564097, 2.564180614, 2.47385177, 2.558984416, 2.389431898, 2.318313817, 
2.376832349, 2.653820101,2.620188126, 2.981020838, 2.486756255, 2.370938479, 
2.440452518, 2.464265934, 2.596729013, 2.78356058, 2.802582183, 2.617597872, 
2.669902365, 2.567332265, 2.796692257, 2.776686659, 2.658145005, 2.413115276, 
2.659041028), 
 CTSS = 2.436774,   
# lb_bar=2.47996,  
       N = 30 ) 
 
Inits 
list(alpha=1,beta=1, sigma=1)  
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Objective Three 
 
Model 
{ 
 for (i in 1:N)  
  { 
  mu.bio[i] <- alpha + beta*(y[i] /10000)   
  logbio[i] ~ dnorm(mu.bio[i],tau)            
   } 
   alpha ~ dnorm(0.0,0.000001)      
   beta ~ dnorm(0.0,0.000001)       
   sigma ~ dunif(0,400)        
   tau <- 1/(sigma*sigma)        
 for (i in 1:N) 
  {       
  residual[i] <- logbio[i] - mu.bio[i]   
  num[i] <- (residual[i])*(residual[i]) 
  } 
RSS <- sum(num[]) 
rsq <- (RSS/CTSS) 
} 
 
Data  
list(y = c(30430, 91630, 65858, 75223, 203454, 116486, 125006, 27083, 12564, 14542, 
71994, 64438, 63069, 86070, 112467, 61789, 62466, 87009, 55424, 114754, 121984, 
131058, 144912, 102388, 103874, 74490, 124540, 04486, 30006, 175082), 
       
logbio = c(2.115743608, 2.232208078, 2.253289532, 2.255151851, 2.389414182, 
2.591910101, 2.560958186, 2.393803258, 2.164947373, 2.146314122, 2.316473584, 
2.200357946, 2.418035992, 2.508381562, 2.586260899, 2.459950077, 2.47833558, 
2.542115541, 2.33968989, 2.480897627, 2.429897559, 2.616328449, 2.713507343, 
2.534051503, 2.738748857, 2.712683367, 3.001435141, 3.170962477, 2.197859232, 
3.127133966), 
 CTSS = 2.130974,   
# lb_bar=2.489228,  
       N = 30 ) 
 
Inits 
list(alpha=1,beta=1, sigma=1)  
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Appendix C: OpenBUGS Syntax for Slope and Intercept Comparison 
 
Objective Two 
 
Model 
{ 
 for (i in 1:N)  
  { 
  y[i] ~ dnorm(mu[i], tau) 
  mu[i] <- b1 + b2*x1[i] + b3*x2[i] + b4*x3[i] + b5*x4[i] + b6*z[i] +   
   b7*x1[i]*z[i] + b8*x2[i]*z[i] + b9*x3[i]*z[i] + b10*x4[i]*z[i] 
  } 
 b1 ~ dnorm(0.0,0.000001) 
 b2 ~ dnorm(0.0,0.000001)  
 b3 ~ dnorm(0.0,0.000001)  
 b4 ~ dnorm(0.0,0.000001)  
 b5 ~ dnorm(0.0,0.000001)  
 b6 ~ dnorm(0.0,0.000001)  
 b7 ~ dnorm(0.0,0.000001)  
 b8 ~ dnorm(0.0,0.000001)  
 b9 ~ dnorm(0.0,0.000001)  
 b10 ~ dnorm(0.0,0.000001)    
 tau ~ dgamma(0.001,0.001)        
} 

    

Data  
  list(x1 = c(0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), 
       x2 = (0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0), 
       x3 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0), 
       x4 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1), 
       z = c(247.631, 287.606, 215.801, 231.926, 70.945, 146.614,           

1012.368, 861.591, 808.656, 887.457, 572.919, 670.241, 1499.290, 
1036.666, 634.204, 528.076, 375.596, 463.940, 354.012, 576.047, 
315.539, 93.694, 139.132, 847.667, 644.080, 917.624, 552.781, 451.483, 
408.653, 376.065), 

      y = c(2.048635988, 1.9081632, 2.433673847, 2.228092239, 2.195346058,  
1.544564097, 2.564180614, 2.47385177, 2.558984416, 2.389431898, 
2.318313817, 2.376832349, 2.653820101,2.620188126, 2.981020838, 
2.486756255, 2.370938479, 2.440452518, 2.464265934, 2.596729013,  
2.78356058, 2.802582183, 2.617597872, 2.669902365, 2.567332265, 
2.796692257, 2.776686659, 2.658145005, 2.413115276, 2.659041028),  

 N = 30) 
 Inits 
 list(b1=1, b2=1, b3=1, b4=1, b5=1, b6=1, b7=1, b8=1, b9=1, b10=1,tau=1) 
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Objective Three 
 
Model 
{ 
 for (i in 1:N)  
  { 
  y[i] ~ dnorm(mu[i], tau) 
  mu[i] <- b1 + b2*x1[i] + b3*x2[i] + b4*x3[i] + b5*x4[i] + b6*z[i] +   
   b7*x1[i]*z[i] + b8*x2[i]*z[i] + b9*x3[i]*z[i] + b10*x4[i]*z[i] 
  } 
 b1 ~ dnorm(0.0,0.000001) 
 b2 ~ dnorm(0.0,0.000001)  
 b3 ~ dnorm(0.0,0.000001)  
 b4 ~ dnorm(0.0,0.000001)  
 b5 ~ dnorm(0.0,0.000001)  
 b6 ~ dnorm(0.0,0.000001)  
 b7 ~ dnorm(0.0,0.000001)  
 b8 ~ dnorm(0.0,0.000001)  
 b9 ~ dnorm(0.0,0.000001)  
 b10 ~ dnorm(0.0,0.000001)    
 tau ~ dgamma(0.001,0.001)         
} 

    

Data  
  list(x1 = c(0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), 
       x2 = (0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0), 
       x3 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0), 
       x4 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1), 

z = c(30.430, 91.630, 65.858, 75.223, 203.454, 116.486, 125.006, 27.083, 
12.564,  

14.542, 71.994, 64.438, 63.069, 86.070, 112.467, 61.789, 62.466, 87.009, 
55.424, 114.754, 121.984, 131.058, 144.912, 102.388, 103.874, 74.490, 
124.540, 104.486, 30.006, 175.082), 

      y = c(2.115743608, 2.232208078, 2.253289532, 2.255151851, 2.389414182,  
2.591910101, 2.560958186, 2.393803258, 2.164947373, 2.146314122, 
2.316473584, 2.200357946, 2.418035992, 2.508381562, 2.586260899, 
2.459950077, 2.47833558, 2.542115541, 2.33968989, 2.480897627, 
2.429897559, 2.616328449, 2.713507343, 2.534051503,  2.738748857, 
2.712683367, 3.001435141, 3.170962477, 2.197859232, 3.127133966),  

 N = 30) 
 Inits 
 list(b1=1, b2=1, b3=1, b4=1, b5=1, b6=1, b7=1, b8=1, b9=1, b10=1,tau=1) 
 
 


