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Proteases are ubiquitous and significant to both normal cellular functioning and disease 

states.  They are generally multispecific, cleaving a set of substrates without recognizing 

other peptides.  Computational methods to predict and design protease multispecificity 

would advance our understanding of the biophysical basis of protease specificity, enable 

the characterization of novel proteases, allow the identification of novel biological roles 

for proteases, elucidate protease specificity landscapes and ultimately further the design 

of custom proteases to serve as therapeutics or protein-level knockout reagents in cell 

culture. 

 

Current methods of computational protease specificity prediction are limited in a variety 

of ways.  Techniques to classify substrates as cleaved or uncleaved are constrained by the 
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quality of the input data, cannot be easily generalized to other proteases, and require large 

training data sets to learn correlations between substrate positions.  Methods that predict 

specificity profiles are computationally expensive and thus unable to be used directly 

within design.  While fitness landscapes have been explored experimentally and via low-

resolution computational models, no methods have yet explored the full fitness landscape 

using chemically realistic atomic-resolution computations. 

  

In this dissertation, we further the understanding of protease multispecificity via a variety 

of experimental and computational techniques that can be generalized to other proteases.  

First, we develop a structure-based classifier that distinguishes robustly between cleaved 

and uncleaved substrates, benchmark the classifier performance for five model proteases, 

and apply the classifier in a blind test to identify novel substrates.  Second, we implement 

a mean-field structure-based algorithm (MFPred) to rapidly and accurately predict 

protease specificity profiles, benchmark MFPred performance on a range of protease and 

protein-recognition domains, and demonstrate that MFPred accurately predicts the impact 

of receptor-side mutations, thus showing putative utility in protease design.  Third, we 

construct a specificity landscape of hepatitis C virus NS3 protease using both 

experimental and computational methods and find evidence for a structural basis of 

mutational robustness.  Finally, we compare the Rosetta and Amber energy functions 

used in the computational prediction of protease multispecificity in a systematic 

benchmark. 
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Chapter 1. Introduction 

1.1. Motivation: Proteases 

1.1.1. Biological relevance 

Proteases, enzymes that cleave the peptide bond, constitute about 2% of the human 

genome1. They are involved in crucial functions in the human body and normal cellular 

functioning, such as apoptosis, digestion, hemostasis, reproduction and the immune 

system2.  Proteolytic cascades play important roles in blood coagulation, complement 

fixation, fibrinolysis, development, matrix remodeling, differentiation, and wound 

healing2,3. Besides their biological significance in humans, proteases often drive viral 

maturation by cleaving the viral polyprotein4.  The specificity of a given protease is 

dictated by its structure and determines its function2,4. 

 

1.1.2. Protease diversity 

1.1.2.1. Structure and binding 

Proteases have a variety of different folded structures, which often relate to their 

mechanism of binding.  Several different interactions mediate the binding of protease to 

substrate, such as shape complementarity5–7, hydrogen bonding8,9, and electrostatics10–14. 

The fold of the protease may affect the mechanism of binding; protease folds that include 

grooves to bind the substrate usually require shape complementarity for binding9, 

whereas exposed active sites often rely on hydrogen bonds to bind protease and substrate.   

Electrostatic-based binding requires the substrate to be enriched in amino acids with the 

charge that is opposite that of the active site residues.  
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As the shape of the binding site pocket is often instrumental in binding, Schechter and 

Berger have developed nomenclature that reflects this importance.  The seven amino 

acids on the N-terminal side of the scissile bond of the substrate are labeled as P7, P6, 

P5…P1, while the seven amino acids on the C-terminal side are labeled P1’…P7’.  

Similar nomenclature is employed for the protease binding site as S7…S1, S1’…S7.  

This convention is used extensively and is used throughout this dissertation. 

 

1.1.2.2. Specificity profile shape 

Proteases often interact with many interaction partners and thus have multispecificity.  

Therefore, protease specificity cannot be expressed as a simple consensus sequence; a 

specificity profile, which gives a probability distribution of amino acids at each substrate 

site, is a more accurate expression of the protease specificity.  The shape of this 

specificity profile varies between proteases.   Some are more stringent, or conserved, and 

the shape of the specificity profile is said to be peaked, while others allow for a range of 

amino acids and are considered as flat in shape.  Often, the fold of the protease and 

related mechanism of binding affect the shape of the binding profile.  Proteases that bind 

based on shape complementarity may only bind a few amino acids that fit the protease 

binding pocket, while those that bind via electrostatics or hydrogen bonding may bind a 

broader range of amino acids.  

 

Beyond multispecificity as recognition for a set of peptides (positive specificity), 

proteases often exhibit non-recognition of another set of interaction partners (negative 

specificity).  This multispecificity is often particularly important for viral proteases.  
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These proteases must recognize and cleave a range of substrates, often sites on the viral 

polyprotein that are necessary to cleave for viral maturation (positive specificity).  

Concurrently, they must not cleave all other sites within the viral polyprotein (negative 

specificity)15.   This multispecificity is maintained despite the high mutational load shared 

by many viruses; the basis for this mutational robustness is not well understood. 

 

1.2. Objective 

In light of the ubiquity and biological significance of protease-peptide interactions, we 

attempt to further the prediction and design of protease multispecificity.   We investigate 

the structural and biochemical rules that form the basis for protease-substrate interactions. 

These rules are then used to implement computational techniques to predict protease 

multispecificity.  These methods include a classifier that predicts whether a given 

substrate is cleaved or uncleaved and a mean-field based algorithm that predicts the 

specificity profile for a given protease.  Additionally, we use both experimental and 

computational techniques to construct a specificity landscape for hepatitis C virus (HCV) 

NS3 protease, which allows us to further our understanding of its specificity and 

mutational robustness. 

 

Greater understanding of protease specificity should enable computational design of both 

proteases and substrates.  The substrate classifier can be used to design novel substrates 

for known proteases, while the rapid mean-field algorithm may be used to design novel 

proteases to cleave a given specificity profile.  Insights gained from the specificity 

landscape can also be used in the design of novel proteases. 
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1.3. Outline of the dissertation 

As mentioned above, our goal is furthering the prediction and design of protease 

multispecificity.  We begin with the development of a discriminatory biophysical 

structure-based scoring function that can be used to classify substrates as cleaved or 

uncleaved by a given protease.  In the process of developing the function, we investigate 

the score-terms that are important to the structural prediction of specificity (Chapter 2). 

Next, we implement a rapid, accurate structure-based algorithm for specificity profile 

prediction (Chapter 3). The score-terms discovered in Chapter 2 are implicit within the 

algorithm.  We then use experimental and computational techniques, including the SVM 

developed in Chapter 2, to explore the specificity landscape of the HCV NS3 protease, 

thus demonstrating the accuracy of our specificity prediction and enabling a deeper 

understanding of mutational robustness (Chapter 4).  One inherent limitation of these 

computational techniques is the energy function used (Rosetta); in fact, to circumvent this 

limitation, we use score-terms from Amber along with the Rosetta energy function in 

Chapter 2.  To further investigate the limitations and strengths of these energy functions, 

we compare Amber and Rosetta in a systematic benchmark (Chapter 5). 
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Chapter 2. Large-scale structure-based prediction and identification of novel 

protease substrates using computational protein design 

 

Note: Reproduced with permission from Pethe MA, Rubenstein AB, Khare SD, Large-
scale structure-based prediction and identification of novel protease substrates using 
computational protein design. 2017. 429(2):220-236.  
© 2017 Elsevier. 
 

2.1. Abstract  

Characterizing the substrate specificity of protease enzymes is critical for illuminating the 

molecular basis of their diverse and complex roles in a wide array of biological 

processes. Rapid and accurate prediction of their extended substrate specificity would 

also aid in the design of custom proteases capable of selectively and controllably cleaving 

biotechnologically or therapeutically relevant targets. However, current in silico 

approaches for protease specificity prediction, rely on, and are therefore limited by, 

machine learning of sequence patterns in known experimental data. Here, we describe a 

general approach for predicting peptidase substrates de novo using protein structure 

modeling and biophysical evaluation of enzyme-substrate complexes. We construct 

atomic resolution models of thousands of candidate substrate-enzyme complexes for each 

of five model proteases belonging to the four major protease mechanistic classes (serine-, 

cysteine-, aspartyl- and metallo-proteases) and develop a discriminatory scoring function 

using enzyme design modules from Rosetta and Amber-MMPBSA. We rank putative 

substrates based on calculated interaction energy with a modeled near-attack 

conformation of the enzyme active site. We show that the energetic patterns obtained 

from these simulations can be used to robustly rank and classify known cleaved and 
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uncleaved peptides and that these structural-energetic patterns have greater 

discriminatory power compared to purely sequence-based statistical inference. 

Combining sequence and energetic patterns using machine-learning algorithms further 

improves classification performance, and analysis of structural models provides physical 

insight into the structural basis for the observed specificities. We further tested the 

predictive capability of the model by designing and experimentally characterizing the 

cleavage of four novel substrate motifs for the Hepatitis C virus NS3/4 protease using an 

in vivo assay. The presented structure-based approach is generalizable to other protease 

enzymes with known or modeled structures, and complements existing experimental 

methods for specificity determination.  

 

2.2. Introduction 

Proteolytic cleavage is a ubiquitous post-translational modification that controls the 

transmission of biological information2,16,17. Proteases encompass a structurally and 

mechanistically diverse class of enzymes that display a range of cleavage specificities 

reflecting their complex and diverse biological roles2,4,18,19. For example, proteases 

involved in digestion and extracellular matrix degradation, e.g. trypsins and matrix 

metalloproteases, respectively, show relatively relaxed specificity profiles20, whereas 

those involved in apoptotic and thrombolytic cascades, e.g. caspases21 and thrombin22, 

respectively, are more selective in their cleavage motifs. In many viruses, protease-

mediated cleavage of the viral polyprotein at specific sites is crucial for viral 

maturation23; as a result, these enzymes are highly selective in cleaving only a small set 

of polypeptide sequences, while not acting on other sequences in the polyprotein. 
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Accordingly, these enzymes have been successful drug targets for developing anti-viral 

therapies24,25. Thus, proteases are exemplars of enzymatic multi-specificity, which have 

likely evolved to act upon and cleave a range of substrates – their specificity profile – 

while simultaneously avoiding the cleavage of other substrates15 (Figure 2.1D). Modeling 

of protease substrate specificity would illuminate the structural and physiochemical basis 

of these observed positive and negative selectivities, and aid protease biology by 

identifying novel substrates and biological roles of proteolysis.  

 

Figure 2.1. Overview of a general, energy-based discriminator  
An illustration of the mechanism of steps leading to the formation of a common 
tetrahedral intermediate (TI) for serine-, cysteine-, threonine (A), aspartic, glutamic (B), 
and metallo-proteases (C). Protease active site cleft is depicted as a dashed arc. (D) 
Generation of atomic resolution models of the near attack conformation using high - 
resolution crystallographic structures and known cleaved and uncleaved sequence 
datasets. (E) The resulting complexes were allowed to relax into a minimum energy 
conformation using the described protocol (FastRelax) and scored using a linear 
combination of (F) the sum of the interface residues’ Rosetta energy, (G) the sum of the 
interface residues’ AMBER MMPBSA electrostatic scores, (H) a score that describes the 
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propensity of the peptide to adopt an extended conformation (reorganization penalty), and 
(I) the deviation of the active cleft residues from the idealized active conformations (a 
pseudo score-term). The linear combination of weighted scores were recombined 
according to this equation: Total_score = w1*Rosetta_Interface_Energy(Protease energy) 
+ w2*Rosetta_Interface_Energy (Peptide energy) + w3* Catalytic constraint penalty + 
w4 *Reorganization Penalty + w5* Electrostatic Binding Energy; where w1 =1, w2 =1, 
w3 = 3.5, w4 = 0.01 ,  w5 = 0.5  
 

Experimental methods to characterize protease specificity26 range from low-throughput 

methods in which individual peptides or mixtures of peptides are assayed for cleavage27–29 

to high-throughput methods that allow identification of substrates on a proteome-wide 

scale30,21,31–33. However, substrate sequence space is large and different proteome-wide 

datasets often have little overlap, suggesting that many substrate sequences remain to be 

identified. Moreover, each experiment is limited to a single enzyme variant (typically the 

wild type). Computational approaches could, in principle, enable more rapid construction 

of specificity profiles, especially for naturally occurring or drug-resistant protease 

variants, and/or assist in library design for experimental specificity determination in a 

specific region of sequence space. Pattern recognition-based approaches have been used 

to predict substrate sequence preferences for various proteases based on machine learning 

from available experimental data34–39. However, these sequence-only approaches are 

constrained by the quality of the input data, and cannot be generalized to other proteases, 

or to variants of the same protease enzyme.  

 

Proteolysis is a multi-step reaction involving the binding of the substrate and subsequent 

nucleophilic attack on the carbonyl group carbon of the scissile peptide bond to yield a 

tetrahedral intermediate (TI; Figure 2.1A-C)17. Steps after TI formation are mechanism-

dependent: in cysteine, serine (and threonine) proteases, the intermediate 
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disproportionates to yield one product and the reaction proceeds via the formation of an 

enzyme-bound intermediate that is deacylated to yield the second product (Figure 2.1A). 

In aspartic (and glutamic), and metallo-proteases, which use a hydroxide nucleophile 

generated from a bound water molecule, the tetrahedral intermediate directly 

disproportionates into both products (Figure 2.1B, C). In principle, different steps could 

determine substrate specificity depending on the substrate and the mechanism under 

consideration. However, for all proteases, regardless of the mechanistic class they belong 

to, the first step, i.e., enzyme nucleophilic attack is required for turnover17. This 

observation led us to hypothesize that a model of the enzyme with the bound substrate 

and catalytic machinery modeled in a near-nucleophilic attack conformation would 

enable us to capture the energetics involved in substrate recognition and specificity. 

 

Here, we develop a predictive biophysical model aimed at uncovering the underlying 

rules that govern protease-peptide molecular recognition and test its ability to classify 

known protease substrates from uncleaved ones. We construct a discriminative scoring 

function that includes descriptors of the energetics (including long-range electrostatic 

interactions) at the interface of the protease–peptide complex, the geometric 

compatibility of the substrate with the catalytically active state of the protease, and the 

reorganization penalty of a given substrate to adopt a favorable conformation in the 

protease active site4. We demonstrate the predictive capacity of this discriminator by the 

recapitulation of known cleavage specificities of five experimentally characterized 

proteases representing all the major mechanistic protease classes18 (serine, cysteine, 

aspartic, and metallo- proteases). We demonstrate an application of our biophysical 
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discriminator by exploring previously uncharacterized, novel sequence motifs cleaved by 

the HCV NS3/4 protease via a yeast surface display-based assay40 to identify novel 

cleaved sequences. Our biophysical structure-based model should allow the prediction of 

substrate specificities of experimentally uncharacterized proteases as well as protease 

variants (e.g. drug-resistant variants) and enable the structure-based design of proteases 

targeted to novel substrates. 

 

2.3. Results 

2.3.1. Rationale for the curation of Benchmark Datasets: 

To develop and test a general structure- and energy-based prediction approach for 

protease specificity, we curated benchmark sequence sets for five diverse proteases. Each 

of these exhibit diverse mechanisms of action, varied folds and biological functions – 

TEV Protease (cysteine proteases), HCV NS3 protease (serine proteases), Granzyme B 

(serine protease), HIV Protease-1 (aspartyl protease) and Matrix Metalloprotease -2 

(Metalloprotease). The sequence sets were composed of cleaved and uncleaved 

sequences identified in experiments or generated by examining naturally occurring 

targets (and non-targets) of each protease (see Methods). We preferentially chose datasets 

in which cleaved and uncleaved sequences were identified in the same experiment. For 

HCV NS3/4 protease, HIV Protease 1 and Granzyme B, we were able to identify 

experiment-derived datasets36,41,42. For TEV protease and MMP2 protease, we were able 

to obtain experimentally cleaved datasets43–45 but uncleaved sequences were not available. 

Therefore, we generated a synthetic dataset of uncleaved sequences using a two-residue 

protein walk approach, utilized in previous computational and experimental work36,41. It is 
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possible that these synthetically generated uncleaved sequences may include a small 

number of cleaved sequences. However, experimental results from Shiryaev et al41 

suggest that misclassification of uncleaved sequences obtained using this approach is 

low. Therefore, in the absence of a directly experimentally determined uncleaved dataset 

for TEV protease and MMP2, we utilized this previously validated approach for 

uncleaved dataset creation.   

 

2.3.2. Developing an energetic discriminatory scoring function based on structural 

simulations:  

We hypothesized that determinants of substrate cleavage include (a) protease-peptide 

interfacial interactions, (b) the adoption of a catalytically competent conformation of the 

protease active site machinery in the bound state (near-attack conformation), and (c) a 

reorganization penalty that captures the propensity of a given substrate to adopt the 

extended conformation required for positioning the scissile bond in a cleavage-prone 

location in the protease active site. We created atomic resolution models for each peptide-

protease complex and computed each of these terms as described below. 

 

To model the conformation of each substrate peptide complexed with the active 

conformation of the protease, we created atomic resolution models within the context of 

the Rosetta macromolecular modeling software. Each known peptide substrate was 

threaded on the respective modeled near-attack conformation generated from the protease 

crystal structures (Figure 2.1D), and the resulting complex was allowed to 

computationally relax into a local energy minimum using Rosetta FastRelax46, followed 
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by scoring this modeled conformation using Rosetta and Amber’s MMPBSA modules 

(Figure 2.1E).  

 

In addition to the interaction energy evaluated using Rosetta (Figure 2.1F), which 

includes a model of electrostatics, (called fa_elec), we also evaluated binding 

electrostatics by using Amber’s MMPBSA module (Figure 2.1G). We reasoned that the 

Rosetta energy function has been weight optimized for all its component terms including 

fa_elec. Thus, we decided to include fa_elec even upon inclusion of the AMBER 

electrostatics score.  We included two other terms in our discriminator scoring function: 

First, we included a term (“reorganization penalty”) that captures the propensity of a 

given substrate to adopt the extended conformation observed in crystal structures of all 

proteases (Figure 2.1H). Second, the deviation of the active site from ideal catalytic 

geometry (a pseudo-energy term) upon energy minimization (Figure 2.1I), which 

captures the fit of a given substrate to the catalytically competent conformation of the 

protease, was included. These scores – energetic descriptors of the peptide-protease 

complex in a near-attack conformation – were combined using a linear weighting 

approach to obtain a discriminatory score function such that lower scores are predicted to 

energetically fit better in the active site (Figure 2.1F-I).  

 

2.3.3. Recapitulation of known protease specificity profiles: 

Each predicted substrate-binding set for each protease consists of a large set of evaluated 

peptide sequences, atomic-resolution bound structures, and predicted binding energies of 

individual peptides to the near-attack state of the enzyme. We compared our predictions 
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with experimentally determined specificity data from peptide library screening. Briefly, 

in these experiments, peptide (or peptide-cDNA fusion) libraries are generated and 

treated with protease of interest, cleaved and uncleaved populations of peptides are 

captured and identified using (deep) sequencing or mass spectrometry, and cleavage 

probability is assigned using Enrichment of a given peptide sequence in the cleaved 

population versus the uncleaved.  

 

We found that for each of the five proteases, the distribution of discriminator scores was 

bimodal and cleaved and uncleaved sequences were separated in a statistically significant 

manner (p-values calculated using the Wilcoxon rank test; Figure 2.2A-E). To quantify 

the performance of the discriminator in the task of separating cleaved from uncleaved 

substrates, we performed a score threshold-based binary classification of the sequences 

into cleaved and uncleaved sets and calculated the area under the resulting receiver-

operator curve (auROC; perfect discrimination would yield an auROC of 1.0; the 

expected auROC for a random ordering of the peptides is 0.5). The auROC values for the 

five proteases ranged between (0.86 for MMP-2 to 0.98 for TEV-PR), demonstrating 

robust discrimination using energetics (Figure 2.2G). The critical point of the auROC plot 

represents the optimal tradeoff between false positive and false negative rates.  We found 

that false positive rates at critical points ranged from 0.04 (TEV-PR) to 0.24 (MMP-2), 

suggesting robust discrimination of the substrates into cleaved and uncleaved sets with a 

small but significant false positive rate (Table 2.1). We note that weights used for 

combining the five score terms were initially optimized to maximize discrimination for 

HCV NS3/4 protease (five weight terms over approximately 2100 data points), yet TEV-
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PR displays the best performance in terms of both auROC and critical point values using 

this weight set. These results demonstrate the generality and robustness of the energy-

based scoring function. 

 

Figure 2.2. Distribution of Discriminator Scores  
Score distributions for cleaved sequences (depicted in black) and uncleaved (depicted in 
dotted bars) for (A) TEV protease (B) Granzyme B (C) HCV (D) HIV (E) MMP2. The 
p–values were calculated using a Wilcoxon rank test. A threshold based binary 
classification of sequences into cleaved and uncleaved sequences using these scores was 
performed and the auROC (F) for the five proteases are indicated. (G) Enrichment of true 
cleaved sequences in the top-ranked pools. Enrichment ratio (black bars) = #true cleaved/ 
# of cleaved sequences in dataset. Background Enrichment (white bars), which represents 
fraction of cleaved sequences in the dataset, and Enrichment obtained from SitePrediction 
model (wavy bars) with 20% of the known cleaved sequences. In each case, the structure-
based discriminator performs comparably to or better than SitePrediction. 
 
Table 2.1. True positive and false positive rates observed for critical point of 
auROC. 

Protease TPR FPR 
HCV 0.92 0.08 
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 To evaluate the ability of the discriminator to identify cleaved sequences from the entire 

pool of sequences – a task that would aid in novel substrate identification – we calculated 

the fraction of truly cleaved sequences in the top-scoring Ncleaved sequences, where Ncleaved 

is the number of cleaved sequences in the dataset. This Enrichment value is compared to 

background Enrichment, i.e. fraction of cleaved sequences in the dataset (reflecting a 

scenario when the ranking is performed by randomly shuffling the list of sequences). We 

find that in all cases a significantly higher fraction of sequences was enriched compared 

to the background with Enrichment ratios ranging from 3-fold (HIV-PR) to 19-fold 

(TEV-PR) (Figure 2.2F).  We compared the Enrichment obtained using our discriminator 

with that obtained using SitePrediction38 – a sequence-based machine learning method 

that relies on training with experimental data. For each protease, we trained a 

SitePrediction model with randomly chosen 20% of the known cleaved sequences and 

used the remaining dataset for testing.  For all proteases, we find that our unbiased, 

biophysics-based approach yielded similar or higher Enrichment values as SitePrediction 

models trained separately on each individual protease. The lack of training on known 

experimental data makes the structure-based discriminator more widely applicable. 

2.3.4. Optimization of scoring and sampling strategies: 

To investigate the contribution of each score term and its weight in the discriminator 

scoring function, we evaluated the discrimination performance of various score term 

combinations.  We found that while much of the discriminatory power could be attributed 

TEV 0.96 0.04 
HIV 0.82 0.18 

Granzyme B 0.93 0.07 
MMP2 0.76 0.24 
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to Rosetta interface residue energies, all five terms do contribute to the observed 

prediction metrics when they are serially included along with the Rosetta energy.  While 

the increases in auROC compared to Rosetta energies-only scoring functions were 

modest, Enrichment values benefited significantly by the inclusion of the additional terms 

e.g., for Granzyme B inclusion of the AMBER electrostatics score and secondary 

structure propensity increases Enrichment from 0.70 to 0.87 (Figure 2.3, Table 2.2). As 

auROC measures the overall difference in the two distributions (cleaved and uncleaved) 

and Enrichment measures the rank ordering of sequences, we conclude that inclusion of 

additional terms serves to subtly alter the calculated energy landscape and “rescue” some 

false negatives (cleaved sequences that score comparably to low-energy uncleaved ones). 

 

Figure 2.3. The additive effect of each energy term to the auROC.  
Each plot shows the representative ROC curve for Rosetta Energy (sum of peptide and 
protease interface energy; depicted in light blue), Rosetta Energy + constraint score 
(Green), Rosetta Energy + constraint score + secondary structure propensity (red), 
Rosetta Energy + constraint score + secondary structure propensity + Electrostatic 
binding energy (dark blue). All score terms are seen to contribute to the discriminative 
efficiency of the score function. 
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Table 2.2. Results of a calculation to investigate the additive effect of each score 
term in the discriminatory score function. 

Protease  RE+CST RE+CST+Ele
c 

RE+CST+Elec+SS 

     
Granzyme B Enrichment 0.70 0.68 0.87 

 Fold increase 4.6 4.5 5.7 
 AUC 0.93 0.93 0.98 
     

HCV Enrichment 0.64 0.76 0.80 
 Fold increase 6.2 7.3 7.6 
 AUC 0.93 0.97 0.97 
     

TEV Enrichment 0.72 0.72 0.80 
 Fold increase 16.68 16.68 18.35 
 AUC 0.98 0.98 0.98 
     

HIV Enrichment 0.69 0.68 0.69 
 Fold increase 3.2 3.2 3.2 
 AUC 0.90 0.90 0.90 

 
 

We next investigated whether optimization of weights of the energetic scoring terms 

could improve performance. We used a grid-based optimization scheme in weight space 

to maximize Enrichment.  While keeping Rosetta protease energy fixed, we optimized 

four free parameters by enumerating all combinations of peptide residue energy (0.3-1.3 

in increments of 0.1, constraints (2.5-3.5 in increments of 0.1), secondary structure 

(0.005-0.02 in increments of 0.005), and electrostatics (0.1-0.3 in increments of 

0.05).  The ranges were chosen after a coarse-grained parameter sweep to find good 

starting parameters, and by considering the orders of magnitudes of raw scores of the 

score terms. For example, the raw score for the Secondary Structure Propensity term 

ranges between 0-200 (number of fragments from the top 200 that have an RMSD greater 

than 3.0 A compared to the crystallographic conformation of the peptide). As the Rosetta 
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residue energy weight was 1, we explored weight ranges of 0.005-0.02 for the secondary 

structure term. The results of this optimization are listed in Table 2.3. 

Table 2.3. Results of a grid-based optimization scheme to maximize enrichment. 
 Enrichment protease peptide cst ss Elec 

TEV 0.8088 1 0.3 2.5 0.005 0.25 
HCV 0.7806 1 1 3.5 0.001 0.5 
HIV 0.7112 1 0.8 3.4 0.013 0.1 
GrB 0.8867 1 0.5 2.5 0.005 0.3 
MMP2 0.6747 1 0.7 2.6 0.007 0.1 
 

We next examined the impact of sampling flexibility of the backbone and side chain 

degrees of freedom at the protease-peptide interface (Figure 2.4) and found that limiting 

the backbone degrees of freedom of the protease, while sampling the full backbone DOFs 

of the peptide, yielded the highest Enrichment values. Previous studies with 

farnesyltransferase enzyme similarly observed that greater sampling of the peptide 

degrees of freedom increased performance47. When the protease backbone was allowed to 

move in an unconstrained manner, several uncleaved sequences adopted energetically 

favorable conformations. While some of these false positives can be attributed to 

limitations of the simulation force fields and sampling strategies, these results indicate 

that side chain flexibility in the protease pockets coupled to peptide backbone flexibility 

are key contributors to the molecular recognition observed at these interfaces.  
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Figure 2.4. Impact of sampling flexibility of the protease backbone and sidechain 
degrees of freedom.  
The peptide backbone and sidechains were flexible in all the simulations depicted in the 
figure. “bb” refers to the backbone of the protease such that bb=0 indicates that the 
backbone was not allowed to relax, bb=1 that the backbone was allowed to relax. “j” 
refers to the rigid body freedom of the peptide with respect to the protease. j=0 means 
that rigid body freedom was constrained during the simulation; j=1 rigid body flexibility 
allowed during simulation. The highest efficiency of discrimination was observed when 
the protease backbone was not allowed to relax, and the protease sidechains were flexible 
during the simulation. 
 

Finally, we explored the contribution of maintaining, during each simulation, the scissile 

peptide bond in a near-attack conformation with respect to the protease catalytic 

machinery using geometric constraints, by performing simulations without these 

geometric constraints, and/or removing the constraint scores from the discriminator 

scoring function. In each case, a decrease in Enrichment was observed (Figure 2.5), 

providing further support for our rationale that specificity in protease-peptide molecular 

recognition is not simply a ground state binding phenomenon, but is contingent upon the 
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relative energetics of the near attack substrate conformation during the nucleophilic 

attack step.  

 
Figure 2.5.  Contribution of maintaining near attack conformation with respect to 
protease catalytic machinery.  
Three FastRelax protocols were performed to compare the effect of the presence of 
catalytic constraints during the FastRelax and scoring stage. Scores (white bars) depict 
enrichment values obtained when enzymatic constraints were excluded in the FastRelax 
step but were included in the scoring step. Scores_wocst (blue) depict experimental 
results where constraints were excluded from the FastRelax step as well as from the 
scoring calculation. Original_wcst (black) depict experimental results where FastRelax 
was performed with constraints and the constraint score was included in calculation of 
Enrichment. Highest enrichment is observed when catalytic constraints are included in 
both the FastRelax as well as scoring steps. 
 

2.3.5. Combining sequence and energetic signatures using machine learning leads to 

higher discriminatory power  
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Figure 2.6. Combining sequence and energy signatures leads to higher 
discriminatory power  
(A) The energetic features were used to train an SVM using a radial based function, 
which yielded higher auROC values for all proteases as compared to a linear combination 
of optimized weights.  (B) auROCs obtained from support vector machines (SVMs) 
trained with sequence only (blue), energetic only (gray) and both sequence and energetic 
features (wavy) in a 5-fold cross-validation test.  Black bars indicate auROC for the 
linear combination of weighted score terms. The combination of sequence and energy 
features consistently results in higher auROC values. (C) Accuracy as a function of 
training set size used for training for the (C) sequence, (D) energetic features, and (E) 
both sequence and energetic features. The accuracy values are not altered appreciably 
when a significantly smaller training dataset is used. In-set classification and 
generalization curves converge as a progressively higher fraction of the dataset is used 
for training. The classification curve is shown in red whereas the generalization curve is 
depicted in blue.  
 

Current approaches for protease specificity prediction, including the SitePrediction tool 

discussed above, PCSS server36 and PROSPER35, use machine learning of sequence 

patterns in known experimental data. To more extensively compare our structure-based 

specificity prediction with current sequence-based approaches we trained support vector 

machines (SVMs) with sequence-only, energetic-only and both sequence and energetic 

features (Methods). For the energy-based SVM, the (unweighted) energy terms described 

above were treated as features (“interface protease residue energy”, “interface peptide 
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residue energy”, “constraints energy”, “reorganization penalty” and “MMPBSA 

electrostatic binding energy”), whereas sequence-based features were generated using a 

protocol described by Barkan et al.36. We found robust discrimination of the substrate 

sequences using energy-based SVMs trained individually on each protease in 5-fold 

cross-validation test (Figure 2.6A). The values of auROC obtained using these SVMs are 

higher than those obtained with scoring using a linear weighting scheme (Figure 2.6B, 

black and gray bars), due likely to the use of a non-linear kernel function and training on 

individual datasets. When compared to a purely sequence-based SVM, the energy-based 

SVM consistently leads to higher auROC values for all datasets, and an SVM constructed 

based on sequence and energy features displays a high AUC value when compared to 

solely sequence-based and energy-based based SVMs (Figure 2.6B). These results 

indicate that structural/energetic features contribute information that is orthogonal to that 

obtained from sequence-only features.  

 

To ensure that the increased discriminatory ability observed upon combining sequence- 

and energy-based features is not a result of data over-fitting, we performed a cross-

validation procedure where in-set training (classification) and out-of-set testing 

(generalization) was performed by randomly splitting the datasets into training and test 

subsets48 . We find that the performance of the method as indicated by the accuracy of 

prediction, does not appreciably alter when a significantly smaller training dataset is used 

for the energy-based SVMs, and the classification and generalization performance 

converge as the training set size increases (Figure 2.6C-E, Figure 2.7). The convergence 

between classification and generalization occurs at higher training set fraction for the 
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sequence-based SVMs than energy-based ones, demonstrating that the key energetic 

signatures underlying discrimination can be captured with a smaller dataset compared to 

the corresponding sequence signatures (Figure 2.7). Thus, energetic feature-based SVMs 

can outperform sequence-based ones, and the two sets of features can be combined to 

obtain more accurate classification than either set of features independently. 

 
 
Figure 2.7. Accuracy versus Training Data size plots for Sequence, Structure and 
Combination SVMs.  
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To avoid over-fitting we performed a jack-knifing procedure where classification and 
generalization was performed by randomly splitting the datasets into training and test.  
(A) TEV (B) HIV (C) HCV (D) Granzyme B (E) MMP2 
 
2.3.7. Multi-body interaction networks at the interface underlie improved 

discrimination  

 

To investigate the underlying reasons for the observed increase in prediction efficiency 

when structural features are used, we identified several peptide sequences that are 

consistently misclassified by the sequence-based approach but are correctly classified by 

the structure-based approach. In several cases, we find that the increased classification 

ability could be attributed to interaction networks composed of multiple substrate and 

protease residues. A sequence-only approach would require a significantly larger training 

data than a relatively unbiased energy-based approach to directly “learn” multi-body 

correlations (interactions). 

   

Three examples of these interaction networks are described below: 

 

1. The structure-based discriminator can identify context-dependence of the substrate 

residue interactions more readily than a sequence-based approach, especially in cases 

where sequence preference at a given substrate site is not pronounced. For example, for 

the HIV protease, cleavage occurs between small non-polar amino acids and sequence 

preference at any other site is not particularly pronounced. Thus, GPGTASRP (Figure 

2.8A) is misclassified as “cleaved” by the sequence-based SVM for HIV protease-1. 

There are no pronounced sequence preferences at position P3’ (Figure 2.10). The 
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structural model of this sequence, however, shows that the guanidinium group of the 

arginine sidechain (P3’) is packed in the vicinity of R8, a key residue, whose interaction 

with D29 is critical for HIV protease structural (dimer) stability 49. Thus, the presence of 

an arginine at this P3’ position would lead to lack of cleavage of the substrate, unless a 

secondary interaction relieves the electrostatic repulsion between the substrate arginine 

sidechain and the guanidinium group of R8. The subtle balance of these protease-

substrate interactions can be captured by the electrostatics calculations in our approach.  

 

Figure 2.8. Multi-body interaction networks at the interface underlie improved 
discrimination.  
Several sequences are misclassified by the Sequence-Based Discriminator whereas they 
are correctly classified when the Structure based Discriminator is used. (A) The sequence 
‘GPGTARSP’ is misclassified by the sequence based SVM as ‘cleaved’ for the HIV 
protease sequence set.  Residue P3’ of the peptide is packed in the vicinity of ARG 8; 
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which is involved in a key interaction with ASP 29 necessary in maintaining the dimer 
interface. The P3’ –ARG 8 repulsion leads to a destruction of one of the key interactions 
involved in dimer interface stabilization. One half of dimer surface is shown as a cartoon 
representation and the other as a charged surface to highlight the dimer interface of the 
HIV protease. This electrostatic repulsion is captured by the energy-based approach but 
not the sequence based approach, leading to a misclassification by the latter (B) 
‘SQAYPIVQ’ is misclassified as an uncleaved sequence present in the HIV protease 
sequence set. The P1 tyrosine residue (yellow) along with the serine at P4 forms a 
favorable hydrogen bond network with ARG 8 (green) allowing for substrate cleavage. 
This favorable hydrogen-bonding network is likely not directly recognized by the 
sequence-based approach. (C)‘KPAIIPDR’ belongs to the HCV Protease sequence set 
which is misclassified as cleaved by the sequence-based approach. The presence of 
proline at positions P5 and P1(yellow) bends the substrate chain in an orientation that is 
unfavorable for cleavage. The extended conformation of a peptide, which allows 
hydrogen bond formation, leading to binding of the peptide and eventually cleavage, is 
highlighted (purple).  The Rosetta energies correctly detect this disruption of the 
hydrogen bond network caused by the presence of proline residues between peptide 
(yellow) and protease. 
 
2. The energy-based discriminator is able to detect hydrogen bond networks between 

substrate residues, including those mediated by the protease structure. For example, for 

the sequence SQAYPIVQ (Figure 2.8B), the sidechain of the tyrosine residue at position 

P1 forms a hydrogen bond network with the P4 position on the substrate and the R8 of 

the protease chain. This likely allows the protease to recognize and cleave this substrate.  

 

3. Another set of interactions that our structural approach correctly characterizes are 

those mediated by proline and glycine residues, as these have specific backbone 

preferences that can affect the peptide backbone conformation. Figure 2.8C is an example 

of a sequence, KPAIIPDR, which is experimentally shown to be uncleaved by the HCV 

NS3 protease.  The sequence-only approach misclassifies this sequence as cleaved, likely 

because the non-polar isoleucine residues at the P1, P1’ residues. However, the proline 

residues present at P5 and P1 substrate positions bend the substrate backbone into a 

conformation that results in the disruption of the stabilizing backbone hydrogen bond 
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network, which drives the extended substrate conformation optimal for cleavage. The 

Rosetta energy function detects the disruption of this backbone hydrogen bond network, 

and thus the energy-based approach correctly classifies this sequence as ‘uncleaved’.  

 

2.3.8. Discovering novel sequence specificities HCV NS3 4A Protease  

To further investigate the predictive ability of the energetic-discriminator in a blind test, 

we used our simulations to identify novel cleaved substrates for the HCV NS3/4 protease. 

The residue identities on the substrate peptide at positions P6 through P2 were sampled 

and scored as described in Methods using the structure-based discriminator. A total of 

26,400 candidate sequences were evaluated (out of the possible 205 = 3.2 million) in a 

two-step procedure of sequence sampling as described in Methods, low-scoring 

sequences were clustered and were further pruned to identify sequence motifs that were 

novel (i.e., absent from the dataset used for developing the discriminator). We identified 

four such sequence motifs (Figure 2.9A), whose scores overlapped with the distribution 

of scores obtained from known cleaved sets. At least one peptide sequence was selected 

from three of the four identified motifs, and these were tested experimentally using a 

Yeast Endoplasmic Reticulum Sequestration Screen (YESS system) based assay 40,50 

(Figure 2.9B).  
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Figure 2.9. Discovering novel sequence specificities HCV NS3 4A Protease 
(A) Sequence Logo plots of the identified four novel sequence motifs whose scores 
overlapped with the cleaved sequences in the benchmark dataset (B) Schematic of the 
vector (LY104) used for the YESS assay. The vector contains Aga2 cell surface signaling 
moiety followed by the substrate flanked between HA tag and FLAG tag which can be 
detected on the cell surface by fluorescently tagged antibodies. The protease and 
substrate are co-expressed in the ER of the yeast cell. If cleavage occurs the FLAG:HA 
ratio is 0, if substrate is uncleaved ratio is 1. (C) Results of the YESS assay test of the 
predicted cleaved sequences. Three out of the four tested sequences (predicted cleaved; 
green bar) showed a FLAG:HA ratio <0.5. The positive control (wild type shown in blue) 
showed an expected low FLAG/HA ratio whereas the negative control (known and 
predicted uncleaved sequences, red bars) showed high FLAG:HA ratios >0.85. The 
protease activity knockout mutant S139A (dotted red bars) showed FLAG:HA ratio 
>0.85 for all sequences, confirming that the sequences were cleaved because of the co-
expressed HCV NS3 protease from the assay vector and not an endogenous yeast ER 
enzyme. (D) Cell cytometry histograms of LEEFFCSG, predicted cleaved sequence 
showing a 62.1% cell population signal for HA tag, 11.4% cell population signal for 
FLAG, thus showing a FLAG:HA ratio of 0.18 (E) Cell cytometry histograms for the 
negative control sequence DKNQVEGE, showing a 38.3% cell population signal for HA 
tag, and 34.0% for FLAG tag, thus exhibiting a FLAG:HA ratio of 0.88. 
 
In this assay, the protease and substrate are co-expressed in active forms in the ER of 

yeast, and the substrate is targeted to the cell surface by fusion to the cell surface protein 

Aga2p. Proteolysis is detected using fluorescent antibodies against the HA and FLAG 
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tags that flank the substrate. We confirmed that the cleavage of the wild type substrate 

sequence (DEMEECA - canonical HCV NS3 cleavage sequence present between 

NS4A/4B on the polyprotein) results in the detachment of the FLAG tag from the AGA2 

surface-signaling moiety, thus resulting in a FLAG:HA ratio of zero for complete 

cleavage and a ratio of one for no cleavage when an inactive variant of the protease 

(S139A) is used (Figure 2.9C).  Several previous studies41,51,52 have shown that the HCV 

protease cleaves between C/S or C/A residues (P1/P1’) – however, the specificity at other 

positions can be broad and has not been explored fully. In all our predicted substrates 

(that we tested experimentally) the P1/P1’ positions are still maintained as the known 

canonical sequence C/S, and our goal was prediction of different P6-P2 patterns. We, 

therefore, reasoned that the cleavage position of our substrates would not be altered as 

they retain the canonical P1/P1’ cleavage pattern. The FLAG and HA signals were 

detected using flow cytometry. The observed FLAG/HA ratios (Figure 2.9 C, D) 

demonstrate that three out of four predicted sequences showed cleavage with ratios <0.5, 

whereas control assays with the S139A inactive protease variant showed significantly 

higher (>0.85) ratio, demonstrating that the observed cleavage is not due to a non-specific 

endogenous yeast enzyme.  

 

Out of the four sequences that are predicted as cleaved, one sequence – CEDYFCSG – 

shows a high FLAG/HA ratio, and represents a prediction failure. These results are 

consistent with the ~75% True Positive and ~25% False Positive rates (Figure 2.2F) 

observed in the performance of the discriminator on known cleaved and uncleaved 

datasets, i.e., approximately one out of four sequences identified is expected to be a false 
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positive sequence. We also identified two predicted uncleaved substrates, and these show 

lack of cleavage when co-expressed with either wild type protease or the inactive 

protease variant, as expected. The FLAG:HA ratios for the novel identified substrates are 

higher than positive control LY104, indicating that the substrates identified are 

suboptimal. However, our test for novel substrates is particularly stringent as we chose 

sequence motifs that have previously not been identified in multiple studies of HCV 

NS3/4 protease. Thus, the developed discriminative score function and validating assay 

provide a method to screen for potential novel biological targets of this viral protease that 

is also a drug target. 

 

2.4. Discussion: 

Proteolytic cleavage is a key component of diverse and ubiquitous biological processes 

such as apoptosis, blood clotting, viral maturation, and cancer3. Developing a 

generalizable, predictive model for protease specificity would enable identification of 

potential novel substrates for furthering our understanding of protease biology and 

enhancing our ability to design inhibitor small molecules to chosen proteases. We 

developed a structure-based approach for specificity prediction using Rosetta and Amber 

force fields that provides atomic resolution insights into the molecular recognition at 

protease-substrate interfaces. We found that structural models robustly recapitulate 

known protease specificities for each of the four major protease classes (serine, cysteine, 

aspartic, and metallo-proteases) with little training on experimental data, and in several 

cross-validation tests. When combined with a machine learning algorithm our energy-

based approach outperforms current bioinformatics-based approaches37 on benchmark 
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sets, and a further increase in discrimination is achieved when both structure-based and 

sequence-based approaches are combined. To further test the utility of our approach in a 

blind manner, we used it to predict four novel substrate sequences for HCV NS3/4 

protease, tested these predictions experimentally, and found that three of the four novel 

predicted cleaved sequences were cleaved by the protease; a success rate similar to that of 

the benchmark set was achieved in the blind experimental test. 

 

The value of using energetic information in the discriminator is evident in the protease 

structure-dependent interaction networks that are captured in the energetic signatures. 

These interaction networks are equivalent to pairwise and multi-body correlations in the 

sequence data. Given 20 amino acid types at every substrate peptide position, a relatively 

large number of training sequences are required to “learn” pairwise and higher-order 

correlations between positions, whereas only ~2000 sequences (among them ~200 

cleaved) are available in the experimental benchmark datasets. The structure-guided, 

energy-based discriminator has the advantage of being generalizable, relatively unbiased 

and is able to recapitulate key interactions that stabilize the peptidase – peptide interface 

as well as predict novel interactions not present in the training data.  Success in using 

structure-based energetic signatures and molecular docking for binding partner 

identification has been achieved for several peptide recognition modules such as SH3 and 

PDZ domains53–57, major histocompatibility complex58  and for the enzymes 

methyltransferase59, farnesyltransferase47, and HIV protease60,61. We show here that a 

structure-based approach, guided by the knowledge of mechanism, can be successfully 
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integrated with machine learning to predict substrates for a mechanistically diverse 

enzyme family such as proteases with high accuracy. 

  

Proteolytic sites in full-length proteins are more often found in exposed regions of the 

structure, and more frequently in flexible loops and beta conformations compared to 

buried regions and alpha helices32. A substrate sequence generally adopts an extended 

conformation in the protease active site4, and surface-exposed loops and beta-strand 

regions are likely to pay a smaller reorganization penalty to adopt this extended 

conformation. Therefore, we incorporated the local structure preferences of the substrates 

in our datasets by computing local sequence-structure compatibility – an implicit 

assumption in our approach is that every candidate peptide sequence is equally accessible 

to the protease active site. This assumption is valid when analyzing the extended 

substrate specificity of the protease, but for the task of predicting cleavage sites in a given 

whole protein sequence, additional solvent accessibility and structural information are 

expected to modulate cleavability. Barkan et al. have shown that incorporation of such 

features improved prediction of cleavage sites in whole protein sequences. Furthermore, 

Julien et al.21 found that cleavage efficiencies of protein substrates identified using a high 

throughput mass spectrometry-based approach and their synthetic peptide counterparts 

were correlated. Taken together, it appears likely that local primary sequence specificity 

(modeled here) largely determines the identity of cleavage sites, although the context of 

the cleavage site modulates the kinetics of cleavage. 
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Comparing the performance of the discriminator for the different protease systems 

included in the benchmark set highlights the strengths and limitations of our approach. 

Highest Enrichment of cleaved sequences in the top-ranked population is observed for 

TEV and Granzyme B proteases (Figure 2.2), where the active site is relatively rigid and 

steric effects and hydrogen bond interactions are the major contributors to specificity, 

highlighting the strength of the Rosetta force field in modeling these effects. However, 

performance is more modest for the metalloenzyme MMP-2, which features a zinc ion in 

the active site, and for the HIV protease, in which loop residues mediate molecular 

recognition. For these systems, inaccuracies in the modeling of flexibility of the active 

site conformation, and lack of explicit consideration of entropy changes can lead to 

increased misclassification. More exhaustive sampling of the backbone degrees of 

freedom of the loop structural elements is likely to improve performance as observed in 

other studies of peptide-protein molecular recognition47,62. Finally, while modeling 

catalytic residue conformations using geometric constraints appears to be a reasonable 

approximation for most systems considered here as evidenced by success in 

discrimination, electronic effects may be involved in the vicinity of the active site, 

especially for the metalloenzyme MMP-2. We also investigated alternative protonation 

states of key catalytic residues (nucleophiles serine, cysteine, hydroxyl and bases 

histidine, aspartic acid) in the MM-PBSA pipeline, but these charge changes did not lead 

to any appreciable increase in the performance (data not shown). It is likely that quantum 

mechanical (QM) calculations may be required to model these effects more accurately. 

However, the high computational cost of detailed QM simulations precludes the use of 

such calculations for the thousands of substrate-enzyme pairs considered in our study. 
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Advances in QM simulation methodology63 and computational infrastructure are likely to 

bridge this gap in the future. 

 

In contrast with sequence-based specificity prediction approaches, the unbiased nature of 

the biophysical substrate specificity predictor developed here should allow the modeling 

of specificity of protease variants for which experimental data are not available, such as 

newly emerged drug-resistant variants64 of viral proteases as well as newly-discovered 

and/or uncharacterized proteases, whose sequences are homologous to proteases of 

known structure. Energy-based specificity prediction will also aid in the design of 

protease variants targeted to specific substrates. Current approaches for protease design 

rely on library-based screening/selection40,44,65 in vivo. These directed evolutionary 

trajectories often proceed via incremental “generalist”66 intermediates that display relaxed 

specificity, and are, therefore, toxic to cells (or the proteases undergo self-cleavage) and 

are never identified in the selection. A structure-guided computational design approach 

based on the evaluation of interaction energies of substrates with protease variants should 

allow for multiple simultaneous substitutions (“jumps” in the sequence landscape) to 

allow specificity switching without generating generalist toxic intermediates. Combining 

structural computation using the discriminator described here with directed evolution 

should enable more efficient protease specificity design. 

 

2.5. Methods 

2.5.1. Curation of Benchmark Datasets 
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Each protease used in the study exhibits diverse mechanisms of action, interface 

recognition modes, varied folds and biological functions (Figure 2.10) – e.g. TEV 

Protease (cysteine proteases), HCV NS3 protease (serine proteases), Granzyme B (serine 

protease), HIV Protease-1 (aspartyl protease) and Matrix Metalloprotease -2 

(Metalloprotease). The sequences of cleaved and uncleaved substrate peptides for each 

protease were obtained as detailed below:  
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Figure 2.10. The cleaved and uncleaved dataset distributions, model generation and 
active site geometry of the starting crystal structure and mode of recognition of 
proteases used in the study.  
(A) HCV Protease (PDB ID: 3M5N), a serine protease shows recognition via interfacial 
hydrogen bonding. (B) Granzyme B (PDB ID:1FI8) a serine protease shows an 
electrostatic mode of substrate recognition (C) TEV Protease, (PDB ID:1LVB), a 
cysteine protease displaying extensive hydrogen bonding at the protease-substrate 
interface (E) HIV Protease I (PDB ID: 1MT9), a symmetric aspartyl protease, working 
via proposed recognition mechanism - substrate-envelope hypothesis. (F) MMP2 (PDB 
ID: 3AYU), a zinc catalytic center 
 
HCV protease: We obtained the cleaved and uncleaved sequence sets from a deep 

sequencing study by Shiryaev et al41. Only sequences with signals above a threshold (Z-

score value> 3) at all three time points in their study were considered to avoid noise from 

deep sequencing analyses. We also incorporated sequences from a study by 

Rögnvaldsson et al42. Merging both individual sets generated a set with 196 cleaved and 

1943 uncleaved sequences. 

 

HIV-PR: 374 cleaved and 1251 uncleaved sequences were obtained from Rögnvaldsson 

et al.42 .  

 

TEV protease: The cleaved set of 68 sequences was curated from results obtained by 

Kostallas et al.43 and Boulware et al.44. Due to the absence of a large uncleaved sequence 

dataset for the TEV protease, we synthetically generated the uncleaved dataset using a 

two-residue walk on the TEV polyprotein sequence. The TEV protease is expected to 

cleave only at one specific site in the polyprotein. Half of the sequences were randomly 

discarded to generate a dataset of 1520 uncleaved sequences. We ensured that the 

sequence distribution was not biased toward any specific amino acid type at any peptide 

position (Figure 2.10).  
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Granzyme B:  The cleaved sequence set was obtained and uncleaved sequence set was 

adapted from Barkan et al.36. A subset of the uncleaved sequences was randomly chosen 

and the amino acid identity at P1 was randomly mutated to all amino acid identities 

except aspartate and glutamate. A total of 353 cleaved and 1973 uncleaved sequences 

were chosen. 

  

Matrix Metalloprotease: The cleaved sequence set of 455 sequences was obtained from 

Ratnikov et al.45. To curate the uncleaved sequence set, we scanned the CutDB67 database 

for MMP-2 protein substrates. Excluding the known cut sites in these proteins, the rest of 

the protein sequence was treated as uncleaved using a two-residue walk to generate an 

uncleaved sequence set of 1818 sequences for MMP-2.  

 

2.5.2. Starting model generation for simulations: 

We constructed models of peptide-protease bound complexes using high-resolution 

crystal structures culled from the Protein Data Bank (PDB) (Table 2.4)9,6,68–70. Crystal 

structures were filtered based on the following criteria: a resolution lower than 2.6 Å and 

a peptide or peptidomimetic inhibitor bound in the crystal structure. We remodeled the 

crystallographic conformation of the bound peptide to mimic the near-attack 

conformation for nucleophilic addition step of the proteolysis reaction by enforcing 

catalytic geometries obtained from mechanistic quantum mechanics simulations and/or 

crystal structures of proteases bound to inhibitors during Rosetta FastRelax simulations. 

The selected crystal structures were optimized using a Rosetta FastRelax protocol to find 
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a low energy, stable structure, which was used as a starting point in further calculations. 

Constraints were applied during FastRelax to maintain active site geometry and keep the 

protease in a catalytically active conformation. Co-ordinate constraints were also applied 

to the protease backbone to ensure that the structure does not drift away from the 

crystallographic conformation, while still minimizing energy, as previously described71. 

 

Table 2.4. Details of starting model generation for five proteases. 
Protease PDB 

ID 
Resolution Model Generation 

HCV NS3 
Protease 

3M5L, 
3M5N 

1.9 Å The P’ residues of the bound peptide 
were built by overlaying PDB ID: 
3M5N and PDB ID:3M5L (inhibitor 
bound crystal structure) thus allowing 
us to build a complete substrate bound 
complex 
 

TEV 
Protease 

1LVB, 
1LVM 

2.2 Å Starting model generated from PDB by 
reverting C151A to WT 
 

MMP2 3AYU, 
1BQQ 

2.0 Å Starting model was generated by 
superimposing PDB ID: 1BQQ with 
PDB ID:3AYU(MMP2). The N 
terminal (P side) residues of the 
substrate were extended outward to 
build the complete substrate and were 
then relaxed to find an optimal 
substrate conformation 
 

Granzyme B 1FI8 2.2 Å The interface of the ecotin chain in the 
crystal structure, spanning eight 
residue substrate chain was used as the 
starting point for further calculations 
 

HIV Protease 
1 

1MT9 2.0 Å Starting model generated by inverting 
D25N and V82N from crystal structure 
to native residue identities 
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2.5.3. Calculating Rosetta and Amber energies 

Starting from the relaxed crystal structure described above, we threaded the candidate 

peptide sequences to generate models of the protease-peptide complex corresponding to 

each sequence. The energy of the resulting conformation was minimized with constraints 

using Rosetta FastRelax and ten models were generated for each sequence. During this 

protocol, the protease backbone was constrained, protease side chains were allowed 

complete conformational flexibility, whereas peptide side chains and backbone were 

allowed to sample all degrees of freedom including backbone, sidechain and rigid body 

orientation with respect to the protease. The side chains of the catalytically active 

residues were constrained with respect to the scissile peptide bond of the substrate using 

enzyme design-style Rosetta constraints. This model represents a pre-transition state 

near-attack conformation for each of the peptide substrates for the protease. The resulting 

models were scored with Rosetta’s Talaris2013 energy function.  

 

Total residue energies for protease interface residues were extracted for all ten structures 

representing a single sequence, averaged and stored as “protease energy”. Interface 

residues were defined as those whose C-alpha atom was within 8 Å of any peptide 

residue’s C-alpha atom. We experimented with 8, 10, and 12 Å as the cutoff distance for 

defining the protease shell, but we found that the discriminator performance was robust to 

this cutoff value. The sum of total residue energies over all peptide residues was averaged 

and stored as “peptide energy”. Total interface energy was defined as the sum of protease 

and peptide energies. These models were also scored for “constraint energy” based on the 
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deviation of active site residues geometries from idealized ones. Each energy term was 

used as a feature during machine learning (see below).  

 

Sampling of the peptide backbone and protease and peptide side chains degrees of 

freedom was performed before calculating scores for a given complex structure. We 

optimized the structure sampling protocol by investigating several combinations of 

sidechain and backbone flexibility for the peptide and the protease, and their relative 

rigid-body transform. Allowing peptide backbone and sidechain flexibility, and protease 

sidechain flexibility afforded the highest discriminatory capability (Figure 2.4). All 

calculations were performed with the interface RosettaScripts72,73. Sample xml files used 

can be found in Appendix 1. The AMBER Tools 12 MMPBSA74 application was used to 

calculate the electrostatic contribution to the bound state energy over the unbound energy 

for the protease–peptide complex.  Run scripts are provided in Appendix 1.  

 

2.5.4. Local sequence-structure compatibility 

Rosetta’s FragmentPicker75 Tool was used to analyze the propensity of a peptide 

sequence to adopt an extended conformation that is found in protease active sites. We 

picked 200 fragments for a given peptide sequence, and calculated the RMSD of each 

fragment with the bound conformation of the peptide. The number of fragments with 

RMSD > 2.0 in the set of 200 top fragments compared to the bound conformation was 

used as the score. 

 

2.5.5. Support Vector Machines 
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An SVM constructs a hyper plane between two sets of data points in multi-dimensional 

“feature” space, based on a predefined kernel function to maximally separate the two 

datasets. We used the built-in SVM function (MATLAB 2015) with a radial-based kernel 

function following Barkan et al.36. In the RBF kernel, parameters C and γ need to be 

adjusted: C, also called cost factor, is a regularization parameter that controls the trade-

off between maximizing the margin and minimizing the prediction error, while γ is a 

kernel-type parameter that dominates the generalization ability of SVM by regulating the 

amplitude of the kernel function. We optimized the training parameters of SVM based on 

5-cross-validation tests. C- and γ-values of 10 and 10, respectively, were used. 

 

Sequence features: Each position within the sequence was considered to be one feature. 

The one letter amino acid codes were transformed into an index, which was calculated 

from the rank of the amino acid residue in an alphabetical ordering of all amino acids as 

well as on its position in the sequence from N to C terminus on the substrate chain as in 

Barkan et al.36. All 20 amino acids at each position in the peptide were assigned a number 

using the formula n*20+i, where n represents the position of the residue in the peptide 

sequence and i represents the position of the residue in an alphabetical ordering of amino 

acids by their one letter code.  

 

Structure features: Each contributing discriminator energy score was imported into the 

SVM as an independent feature. The structure-based Rosetta energies (“Interface residue 

peptide energy”, “Interface residue protease energy”, “Reorganization penalty”, 
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“constraint energy”) and Amber energy (“electrostatic energy”) were used as features. 

The SVMs were cross-validated using an 80-20 bootstrap over 1000 iterations.  

 

2.5.6. Generation of a computational library for HCV NS3/4A substrate from P6 

through P2 positions 

The mutational scanning was executed in two parts. We generated models of the 

protease–peptide complex for substrate positions P6 through P4, energy minimized and 

scored them using the computational protocol descried above.  Ten structures were 

generated for each sequence. The models were evaluated using the weighted optimized 

energies as used in the discriminator. The top scoring 66 sequences were identified, and 

26,400 models were generated by sampling P3 and P2 substrate positions for each 

sequence. These 26,400 models were subjected to energy minimization and score 

calculations as previously described. To calculate their final score, Rosetta interface 

energy, constraint energy, and AMBER MMPBSA electrostatic energy were used at the 

optimized Enrichment values. To reduce computational costs, the reorganization penalty 

score was not included in the final score calculation since it did not measurably change 

the auROC value in the benchmark set (Figure 2.3). The sequences that lay in the score 

distribution of the native cleaved sequences were further analyzed. These were filtered to 

be most different from the initial HCV cleaved sequence distribution and clustered using 

Hamming distance into 4 main sequence pools- CED*, LEE*, FED*, YED*. 

Representative sequences from the first three sequence clusters were tested 

experimentally. 
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2.5.7. Flow Cytometry: 

We used the Yeast ER Sequestration and Screening Assay (YESS) for in vivo testing of 

predicted substrates of the HCV protease. The LY104 construct for the assay was a gift 

from Y. Li, B. Iverson, and G. Georgiou (University of Texas at Austin). The sequences 

to be tested were cloned into LY104 using a Restriction Free Cloning method76. Table 2.5 

lists all the primers associated with the cloning protocol. 

 

Table 2.5. Primers used for molecular cloning the sequences to be tested in the 
YESS assay into the assay (LY104) vector using RF cloning. 
Sequence Primers 
LEEFFC
SG 

FOR:  
CGGTAGCGGAGGCGGAGGGTCGTTGGAAGAATTCTTCTGTTCAGG
C 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACAGA
AGAATTCTTCC 

LEEYQC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTTGGAAGAATATCAATGTTCAG
GCG 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACATT
GATATTCTTCCAA 

CEDYFC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTGTGAAGATYMTTTCTGTTCAG
GCG 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACAGA
AAKRATCTTCACA 

FEDFQC
SG 

FOR: 
CGGTAGCGGAGGCGGAGGGTCGTTCGAAGATTTCCAATGTTCAGG
C 

 REV: 
CTGCCTTTATCATCATCATCTTTATAATCACTGCCGCCTGAACATT
GGAAATCTTCG 

 

The positive control and test plasmids were then transformed into the EBY100 competent 

yeast strain. They were plated on selective complete (SC) media (20 g/L glucose) with a 
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selective amino acid mix (-Trp, - Ura). After two days of growth, a single colony was 

transferred to a 2 mL SC media culture tube supplemented with 2 μL of 1000x antibiotics 

(carbenicillin, kanamycin). The growth cultures were incubated for ~24h (OD600 2.0 – 

3.0) in a 30 oC shaking incubator. 1.5 x 107 cells(OD600 ~0.5) were pelleted and 

resuspended in 2 mL induction media (20 g/L galactose, 2 g/L glucose) supplemented 

with 2 μL each of 1000x antibiotics (carbenicillin, kanamycin). The induction cultures 

were grown overnight at 30 oC to an OD600 of 1-1.5. All spins in the protocol were done at 

3000 r.c.f for 5 min. The induced cultures were pelleted and washed with 500 μL PBS 

followed by 500 μL PBS+ 0.5% BSA.  1 μL of each antibody stain (anti-FLAG, anti-HA) 

was incubated with 107 cells for 30 min at 4 oC. The samples were resuspended by 

vortexing and incubated at RT for an additional 30 min. The cells were washed with 

100μL PBS with 0.5% BSA, pelleted and then resuspended in 500 μL PBS. Samples 

were diluted to achieve a final concentration of 106 cells/mL and then FITC (anti-HA) 

and PE(anti-FLAG) intensities were detected using a Flow Cytometer (Beckman Coulter 

Gallios). 
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Chapter 3. MFPred: Rapid and Accurate Prediction of Protein-peptide Recognition 

Multispecificity Using Self-Consistent Mean Field Theory 

 

Note: Reproduced with permission from Rubenstein AB, Pethe MA, Khare SD, MFPred: 
Rapid and accurate prediction of protein-peptide recognition multispecificity using self-
consistent mean field theory. 2017. 
© 2017 PLOS Computational Biology. 
  

3.1. Abstract 

Multispecificity – the ability of a single receptor protein molecule to interact with 

multiple substrates – is a hallmark of molecular recognition at protein-protein and 

protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform 

structure-based prediction of multispecificity would aid in the identification of novel 

enzyme substrates, protein interaction partners, and enable design of novel enzymes 

targeted towards alternative substrates. The relatively slow speed of current biophysical, 

structure-based methods limits their use for prediction and, especially, design of 

multispecificity.  Here, we develop a rapid, flexible-backbone self-consistent mean field 

theory-based technique, MFPred, for multispecificity modeling at protein-peptide 

interfaces. We benchmark our method by predicting experimentally determined peptide 

specificity profiles for a range of receptors: protease and kinase enzymes, and protein 

recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe 

robust recapitulation of known specificities for all receptor-peptide complexes, and 

comparison with other methods shows that MFPred results in equivalent or better 

prediction accuracy with a ~10-1000-fold decrease in computational expense. We find 

that modeling bound peptide backbone flexibility is key to the observed accuracy of the 
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method. We used MFPred for predicting with high accuracy the impact of receptor-side 

mutations on experimentally determined multispecificity of a protease enzyme. Our 

approach should enable the design of a wide range of altered receptor proteins with 

programmed multispecificities. 

 

3.2. Introduction 

Many natural proteins, including signal transduction hubs and enzymes that process 

biological information, have evolved to be multispecific – they participate in specific 

interactions with several interaction partners77,78. Evolution of multispecificity includes 

selection for both positive and negative specificity, involving recognition and non-

recognition, respectively, of sets of interaction partners15. Most multispecific interactions 

arise when the active site of a single receptor protein interacts with multiple binding 

partners of differing sequence79. Nature uses structurally conserved protein-recognition 

domains (PRDs), e.g., SH2, SH3 and PDZ domains, to mediate many multispecific 

interactions80–85. Thus, it is crucial that methods that model and modulate PRD specificity 

are able to accurately recapitulate their multispecific nature. 

 

Similar to cascades composed of multispecific PRDs like SH3, SH2 and PDZ domains 

that mediate signal transduction, proteolytic cascades are ubiquitous in the post-

translational transduction of biological information1. Protease activity and selectivity is 

involved in a diverse range of biological processes including digestion, blood clotting, 

apoptosis and cancer86–89.  Proteases are inherently multispecific such that they recognize 

and proteolyze (or cleave) a range of substrates (positive specificity) while not 
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recognizing others (negative specificity)15. For example, viral proteases such as HCV 

protease that are involved in viral maturation cleave only specific sites in the viral 

polyprotein but do not cleave others90. These proteases may also have evolved the ability 

to cleave specific host proteins91. Prediction of protease multispecificity is, therefore, key 

for identifying their substrates under healthy and disease conditions.  Additionally, 

designed proteases with programmed multispecificity have the potential to be used as 

therapeutics and protein-level knockout reagents in cell culture 92.  The ability to 

manipulate protease specificity computationally would enable the creation of such 

designer proteases with dialed-in recognition specificity, thereby providing tools to 

interrogate and intervene in biological processes.  

 

Rational modulation of protein-protein or protein-peptide interaction multispecificity has 

met with limited success, except in a few notable cases, such as coiled-coil interfaces93,94.  

In principle, computational structure-based modeling methods should be able to 

recapitulate and modulate multispecificity.  In fact, several methods relying on, among 

others, Monte-Carlo (MC) simulations in sequence and conformation space, and genetic 

algorithms (GA) have been developed to predict PRD multispecificity56,59,95–97.  However, 

these methods are limited by the time required to enumerate a sufficiently large number 

of sequences to sample the substrate/peptide sequence space. As multispecific design 

entails additional sampling of (thousands) of receptor variants and modeling the 

multispecificity of each variant separately, using current methods to design receptors for 

and against specificity profiles is not computationally feasible.  
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We have developed a structure-based method that eliminates the expense of explicit 

sequence enumeration in multispecificity modeling. The method uses a self-consistent 

Mean-Field theory-based Prediction (MFPred) approach that expresses specificity as a 

sitewise probability distribution function that can be calculated relatively rapidly.  We 

have benchmarked MFPred on four diverse proteases and compared the results to MC- 

and GA-based methods.  MFPred has comparable accuracy to MC-based and GA-based 

methods and provides a tens- to thousands-fold speedup.  We demonstrate the generality 

of MFPred by obtaining significant multispecificity predictions for five diverse classes of 

protein-recognition domains (PRDs).  Finally, as a proof-of-concept for design, we 

demonstrate that MFPred can recapitulate experimentally determined changes in 

specificity profiles due to receptor-side mutations. 

 

3.3. Results 

3.3.1. Self-Consistent Mean Field Theory-Based Specificity Profile Prediction 

Algorithm 

To predict the specificity profile, we consider an ensemble of peptide backbone 

conformations bound to a receptor. For each peptide backbone conformation, we 

simultaneously sample all rotameric conformations of all amino acids at all peptide 

residue positions while keeping the receptor backbone and sidechains in their 

crystallographic conformations. The sidechain conformations at a given peptide position 

are sampled in the “mean field” of all other sidechain conformations at all other positions 

and (fixed) receptor residues, as described in Methods. Next, the contribution of each 

peptide backbone conformation at each peptide position is accounted for by Boltzmann 
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averaging the mean-field specificity profile solution obtained in the previous step. The 

final specificity profile is constructed by combining these individual predictions. While 

the sequence specificity prediction described here can be performed using any (pairwise 

decomposable) energy function, we implemented our prediction method in the context of 

the Rosetta modeling suite, thus combining its sophisticated energy function with the 

speed of mean-field sampling (Figure 3.1).   

 

Figure 3.1.  MFPred workflow. 
MFPred input is a backbone ensemble of a protein/peptide complex, which is generated 
from a protein structure from the PDB (1CKA here) as described in Methods.  For each 
backbone, Rosetta pre-calculates the interaction graph, which stores intrinsic rotamer 
one-body energies on the vertices (blue circles) and matrices of rotamer-rotamer two-
body energies on the edges (black lines).  A probabilities matrix (P) is initialized. Mean-
field energies (E) are calculated using the interaction graph and P, and a new matrix, P’ is 
generated from E.  If P’ is equal to P, convergence has been reached. If not, the process is 
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repeated by updating P with a combination of P and P’.  Once convergence is reached, 
the final energies matrix and probabilities matrix is used to generate the Boltzmann 
weights of each backbone position, which is then used to average all the backbone 
specificity profiles together.  This specificity profile is divided by the background 
specificity profile to reach the final predicted specificity profile. 
 

3.3.2. Rationale for Choice of Benchmark Datasets 

To test our MFPred method, we sought to first recapitulate experimentally determined 

specificity profiles of a variety of PRDs. We chose PRDs where both structural as well as 

specificity information has been experimentally determined. We focused primarily on 

protease enzymes for methodology development, and tested the generality of our 

approach with previously developed benchmarks for multispecificity prediction on PRDs 

such as a kinase enzyme, and SH3, SH2, MHC, and PDZ domains. 

 

3.3.2.1. Protease set. We benchmarked our method on four protease enzymes that had 

both high-resolution crystal structures with a bound peptide in the Protein Data Bank 

(PDB) and experimental cleavage data (see Methods for details). The chosen proteases 

represent the vast diversity seen in structural fold, biological function, and mechanism of 

action amongst the protease enzyme family (Figure 3.2).  Additionally, there is a mix of 

highly conserved and less specific positions among their specificity profiles, thus 

enabling us to determine how well MFPred performs with regard to varying degrees of 

flatness in the experimental specificity profile. 

 

3.3.2.2. Testing on protein-recognition domains. To test the generality of the MFPred 

method, we curated a dataset consisting of a variety of non-protease PRDs that had high-

resolution crystal structures as protein-peptide complexes in the PDB and experimental 
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binding specificity data available.  We tested fourteen PRDs that comprise five classes of 

PRDs: kinases, SH2 domains, SH3 domains, PDZ domains, and MHC-I proteins.  

Including these diverse domains allows us to test the method on a range of underlying 

recognition modes, binding affinities and specificities; while proteases bind with 

relatively high dissociation constants to their substrates (KM ~10 uM), SH2 domains have 

been known to bind with dissociation constants as low as 0.3 nM98.    

  

Figure 3.2. Protease benchmark specificity profiles, models, active centers, and 
recognition modes.  
(a) Tobacco etch virus (TEV) protease is a cysteine protease displaying extensive 
hydrogen bonding recognizes substrates via interfacial hydrogen bonding at the protease 
substrate interface. (b) Hepatitis C virus (HCV) NS3 protease, a serine protease, 
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recognizes substrates through electrostatic interactions. (c) Granzyme B, a serine 
protease, recognizes substrates through electrostatic interactions. (d) Human 
immunodeficiency virus (HIV) protease I, a symmetric aspartyl protease, has been 
proposed to recognize substrates via the substrate – envelope hypothesis. 
 

The binding specificities and mechanisms for each of these domains are distinct, thereby 

adding to the diversity of the test set. PDZ domains bind up to 7 C-terminal residues in a 

highly specific manner82. SH3 domains bind proline-rich regions that often form PPII 

helices85. SH2 domains show a preference for pTyr-containing peptides99, while the 

context surrounding the pTyr residue determines the specificity of the peptide towards a 

distinct SH2 domain100.  Kinases are one of the largest families in the eukaryotic genome 

and share a common fold that allows for the binding of ATP and a Ser, Thr, or Tyr 

residue-containing substrate101.  Finally, MHC-I domains bind short pathogenic peptides 

to be presented to cytotoxic T lymphocytes (CTLs). MHC-I domains are promiscuous 

and may bind many peptides; generally, one or two substrate positions are conserved, 

while others are tolerant to mutations102. 

 

3.3.3. Choosing Metrics for Evaluation of Prediction Accuracy 

We evaluated the performance of MFPred by quantifying the differences between 

predicted and experimentally determined specificity profiles using several metrics (see 

Appendix 3 for details).  Four of these metrics, the cosine similarity, Frobenius norm, 

average absolute distance (AAD) and Jensen-Shannon divergence (JSD) are correlated, 

as shown in Figure 3.3.  The Frobenius norm and AAD are distance-based metrics that 

have been used previously to compare profiles56,95.  The Frobenius norm is more sensitive 

to flatness in the specificity profile than the AAD (Figure 3.4). Additionally, we 
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evaluated the profiles by their cosine similarity, which is another distance-based metric 

that is less sensitive to flatness than either AAD or Frobenius norm.  It falls between 0 

and 1, where 0 denotes a random prediction and 1 denotes a perfect prediction.  The 

Jensen-Shannon divergence (JSD) has also been used in the past to evaluate profiles95.  

We used cosine distance as the general score of a profile, as it is easy to visualize and 

interpret. We evaluated the significance of each positional JSD score by scoring 100,000 

random profiles against the experimental profile and thus determining the p-value of the 

JSD score (see Appendix 3 for details). 

Figure 3.3. Specificity profile metric correlation   
Correlation coefficients between pairs of metrics are shown in the upper diagonal while 
scatterplots are shown in the lower diagonal. Cosine similarities and AUC values are 
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shown as 1 – cosine and 1- AUC, respectively, so that a lower value represents a better 
prediction. Scatterplot points are colored by the number of bits in the predicted profile, 
with a darker blue representing fewer bits, or more peaked profiles 

 

Figure 3.4. Profile shape affects evaluation metrics differently  
(a) “Experimental” profile to compare to. (b) Each metric is affected differently by the 
shape of the profile (x-axis). Accuracy is normalized for all metrics so that the worst 
value for that metric corresponds to one. Both AUC and cosine are subtracted from 1, as 
well, to make the metrics consistent. Cosine similarity varies slightly with regard to 
flatness of the profile, whether or not the most frequent amino acid is correct. Frobenius 
distance varies more than the cosine similarity; it decreases somewhat consistently with 
the shape of the profile. While AAD does not vary much as a function of flatness when 
the most frequent amino acid is incorrect, it decreases very quickly when the most 
frequent amino acid is correct. JSD also varies more when the most frequent amino acid 
is correct, although to a lesser extent than AAD. AUC is relatively unaffected by flatness 
in the predicted profile; if the most frequent amino acid is incorrect, AUC is ~0.5 (or 
random), and if the most frequent amino acid is correct, it is zero. 
 

We also used a second metric as a general score for each profile: area under the ROC 

(receiver operating characteristic) curve (AUC) is a non-distance-based metric that 

evaluates predictions based on their ranking more tolerated amino acids correctly56.  It is 
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relatively unaffected by flatness (Figure 3.4) but will not evaluate well if either the 

experimental or predicted profile is close to uniform.  It is not correlated with the above 

metrics. Additionally, we developed a new metric, Score Sequence AUC Loss (SSAL), 

which encapsulates the efficacy of the predicted specificity profile in differentiating 

between substrates which are recognized and cleaved by a given protease (cleaved 

sequences) and substrates which are not cleaved by that protease (uncleaved sequences).  

A perfect prediction scores an SSAL of zero.  It does not correlate well with any other 

metric (Figure 3.3). 

 

3.3.4. Recapitulation of protease specificity profiles 

Proteolysis is a multi-step reaction, which involves substrate peptide binding, the 

formation of a tetrahedral intermediate (acylation) and hydrolytic cleavage of the 

tetrahedral intermediate (deacylation). We have previously found that modeling a near-

attack conformation for the acylation step was successful in discriminating between 

known cleaved and uncleaved peptides103. Therefore, starting from structures of protease-

substrate complexes in a near-attack conformation, we performed MFPred-based 

specificity prediction.  

 

We found that MFPred robustly recapitulates protease specificity profiles (Figure 3.5b) in 

our benchmark set.  The cosine similarities of the entire profiles range from 0.66 to 0.89, 

AUC ranges from 0.73 to 0.86, and SSAL ranges from 0.21 to 0.002.  Out of 31 substrate 

positions across the protease dataset, 20 were predicted with a significant JSD p-value. 

The best prediction is obtained for the common biotechnologically used protease TEV-
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PR. The predicted profile has a high cosine similarity of 0.89 (1 would be a perfectly 

accurate prediction). The primarily steric and hydrogen-bonding-based nature of 

molecular recognition at TEV-PR-substrate interfaces is well suited to the strengths of the 

Rosetta energy function underlying MFPred.  Similarly, the profiles of HCV protease and 

granzyme B (GrB) protease are also generally recapitulated with a high degree of 

accuracy, except for positions with no marked preference for specific amino acids (flat 

positions) – positions P5 and P2 in HCV protease and positions P4, P1’, and P2’ in 

granzyme B protease.   We attribute the lack of correlation at these flat positions to small 

errors in energy evaluations being equivalent to the size of the energy gaps being 

modeled, thus leading to erroneous ranking. Challenges in measuring prediction accuracy 

at flat positions have indeed been noted before56. 

 

The worst performance among the proteases in the benchmark set is observed for the 

prediction of HIV protease-1 (HIVPR1) specificity. This protease is known to have a 

relaxed specificity profile, with preference for small hydrophobic residues at P1 and P1’ 

positions. The cavity of HIV protease-1 is large and peptides may adopt large variations 

in backbone conformation depending on their sidechains.  Additionally, substrate binding 

involves flexibility on the protease side, with two loops (“flaps”) that are mobile and 

close over the binding pocket. Incorporation of greater backbone flexibility on both the 

receptor and peptide parts of the HIVPR1-peptide interface may help improve 

predictions, as previously observed by us and others47,62,103. 
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Figure 3.5.  Comparison of backbone ensemble generation methods.   
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(a) Experimental specificity profiles. (b) MFPred on FastRelax backbone ensemble. The 
p-value of the JSD for a given position is represented by the color of the square under 
that position; white denotes a p-value > 0.5 and dark blue denotes a p-value of 0.  A given 
circle to the right of a profile represents the cosine similarity (white) and AUC (black) of 
that profile.  The ROC plots beneath each profile depict the SSAL calculation via the 
experimental ROC (blue) and predicted ROC (red) with their respective AUC values.  (c) 
MFPred on FlexPepDock backbone ensemble. (d) MFPred on Backrub backbone 
ensemble. 
 

3.3.5. Modeling Backbone Flexibility is Key for Prediction Accuracy 

To determine the contribution of modeling backbone flexibility to the accuracy of 

prediction and to investigate if backbone sampling could be optimized for specificity 

prediction, we generated MFPred profiles with different levels of backbone flexibility.  

 

First, we found that predictions generated by starting from a single crystallographically-

determined backbone structure for the peptide led to poor accuracy for HCV and HIV 

proteases (Figure 3.6f, h), indicating that incorporating peptide backbone diversity is a 

key requirement for the observed accuracy of prediction. Second, we generated peptide 

backbone ensembles by threading on a varying number of known substrate (cleaved) 

peptides using three different Rosetta-based backbone sampling protocols (FastRelax46, 

FlexPepDock104, and Backrub105) separately to further diversify the peptide backbone 

ensemble.  In each case, geometric constraints103 were used to limit the scissile peptide 

bond to a near-attack conformation and the catalytic residues to an active conformation. 

The MFPred simulations were then performed on all backbone ensembles and their 

results were compared to each other (Figure 3.5, Table 3.1). 
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Figure 3.6. Number of sequence vs. accuracy and number of backbones vs. accuracy 
for methods of backbone ensemble generation  
(a)- (d) Number of backbones per sequence vs. accuracy for TEV, HCV, Granzyme B 
and HIV, respectively. Each protocol begins with five sequences, which are then relaxed 
using FR, FPD or BR 1,2,5 or 10 times each. (e)-(h) Number of sequences vs. accuracy 
for TEV, HCV, Granzyme B and HIV, respectively. Number of sequences is varied over 
1,5,10 all experimentally derived sequences, which is different for each protease. 
 
Table 3.1. Results of all methods of backbone generation - FastRelax (FR), 
FlexPepDock (FPD), and backrub (BR) - on variously-sized backbone ensembles. 
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Protease Method #Seq Cosine Frob AA
D 

JSD AUC SSAL Bits 
TEV FR 1 0.86 1.06 0.04 0.22 0.87 0.00 0.43 

    5 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
    10 0.88 0.86 0.04 0.20 0.91 0.00 -0.55 
    All 

(68) 
0.89 0.84 0.03 0.20 0.91 0.00 -0.69 

  FPD 1 0.84 1.08 0.04 0.23 0.86 0.00 0.23 
    5 0.80 1.10 0.04 0.27 0.85 0.01 -0.64 
    10 0.84 0.99 0.04 0.24 0.91 0.00 -0.64 
    All 

(68) 
0.88 0.87 0.04 0.20 0.91 0.00 -0.72 

  BR 1 0.82 1.11 0.04 0.25 0.84 0.00 -0.06 
    5 0.82 1.06 0.05 0.26 0.87 0.00 -0.70 
    10 0.77 1.17 0.05 0.29 0.89 0.00 -0.91 
    All 

(68) 
0.82 1.06 0.05 0.27 0.89 0.00 -0.87 

HCV FR 1 0.59 1.37 0.06 0.35 0.77 0.08 -0.51 
    5 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
    10 0.71 1.15 0.05 0.30 0.82 0.02 -1.28 
    All 

(196) 
0.71 1.14 0.05 0.29 0.84 0.02 -1.29 

  FPD 1 0.57 1.45 0.06 0.35 0.76 0.09 -0.39 
    5 0.74 1.10 0.05 0.30 0.83 0.02 -1.29 
    10 0.71 1.14 0.05 0.30 0.80 0.01 -1.29 
    All 

(196) 
0.73 1.12 0.05 0.28 0.87 0.01 -1.35 

  BR 1 0.39 1.67 0.06 0.44 0.69 0.17 -0.83 
    5 0.64 1.23 0.05 0.32 0.80 0.05 -1.20 
    10 0.63 1.25 0.06 0.32 0.81 0.04 -1.22 
    All 

(196) 
0.62 1.26 0.05 0.32 0.81 0.05 -1.31 

GrB FR 1 0.82 0.85 0.04 0.23 0.71 0.20 0.60 
    5 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
    10 0.89 0.60 0.03 0.17 0.80 0.17 0.06 
    All 

(356) 
0.91 0.53 0.03 0.13 0.87 0.15 -0.08 

  FPD 1 0.78 1.04 0.04 0.25 0.72 0.19 0.83 
    5 0.88 0.62 0.03 0.17 0.76 0.18 0.10 
    10 0.90 0.59 0.03 0.15 0.80 0.17 0.02 
    All 

(356) 
0.93 0.49 0.03 0.11 0.83 0.13 -0.08 

  BR 1 0.85 0.74 0.04 0.22 0.71 0.19 0.38 
    5 0.83 0.74 0.04 0.20 0.71 0.22 0.14 
    10 0.85 0.70 0.04 0.19 0.72 0.22 0.09 
    All 

(356) 
0.86 0.68 0.04 0.18 0.72 0.21 0.08 

HIV FR 1 0.47 1.55 0.06 0.42 0.66 0.17 0.96 
    5 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
    10 0.70 0.88 0.04 0.23 0.78 0.08 -0.04 
    All 

(374) 
0.72 0.82 0.04 0.21 0.81 0.05 -0.21 

  FPD 1 0.38 1.78 0.07 0.47 0.69 0.22 1.22 
    5 0.66 0.96 0.05 0.28 0.70 0.13 -0.04 
    10 0.74 0.81 0.04 0.22 0.78 0.07 -0.18 
    All 

(374) 
0.75 0.77 0.04 0.19 0.83 0.05 -0.32 

  BR 1 0.39 1.48 0.06 0.41 0.67 0.23 0.47 
    5 0.57 1.06 0.05 0.30 0.74 0.15 -0.04 
    10 0.62 0.98 0.05 0.27 0.73 0.14 -0.11 
    All 

(374) 
0.62 0.96 0.05 0.27 0.73 0.11 -0.16 

Most Similar   1.00 0.00 0.00 0.00 1.00 0.00 0.00 
Most Different   0.00 Ö(2n)

1 
0.06 1.00 0.00 1.00 4.32 

             1n refers to the number of positions in the profile 
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While the algorithm is relatively robust to the method of backbone generation as long as 

scissile bond geometry is maintained, the FastRelax (FR) protocol has a small 

improvement in overall performance over the FlexPepDock (FPD) protocol, with 20 

significant p-values (out of 31) for FR vs. 19 for FPD, and FPD has a minor increase in 

overall performance over Backrub (BR), with 19 significant p-values for FPD vs. 18 for 

BR.  The profile for TEV-PR is predicted best by FR, due to better prediction of Q at P1 

and S at P1’.  In the case of HIV protease-1, FR recapitulates the profile better than FPD 

and BR do. However, the performance of FPD is marginally better than that of FR and 

significantly more accurate than that of BR in the cases of HCV protease and granzyme B 

protease.  

 

To determine how MFPred accuracy depends on the number and sequences of known 

cleaved substrates used to generate the backbone ensemble, we generated a peptide 

backbone conformational ensemble that was independent of peptide sequence.  For all 

positions on the peptide backbone, we enumerated every combination of phi/psi dihedral 

angles that were x-15, x, and x+15, where x is the dihedral angle of the relaxed crystal 

structure peptide backbone.  The resulting structures were filtered to remove those with 

clashes and to preserve hydrogen-bond interactions.  The remaining structures were 

further clustered by all-heavy-atom RMSD of the peptide residues (see Appendix 2 for 

details) and MFPred was performed on the cluster centers.  The resulting predictions are 

significantly less accurate than those of FR, FPD, or BR (Figure 3.7), indicating that 

successful prediction requires a backbone ensemble that is optimally positioned in the 

binding site for cleavage. 
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Figure 3.7 Incorporating cleaved sequences into backbone ensemble generation 
improves MFPred accuracy.  
(a) Experimental specificity profiles (b) Results of running MFPred on backbone 
ensemble of five cleaved sequences FastRelaxed (c) Results of running MFPred on 
backbone ensemble generated by enumerating combinations of phi/psi angles. (d) Results 
of running MFPred on backbone ensemble of five uncleaved sequences FastRelaxed. 
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As a second test of the dependence of MFPred on the cleaved sequence information, we 

threaded five known uncleaved (i.e., not bound by the protease in a productive 

conformation) sequences on the peptide backbone and then performed FastRelax on the 

resulting structures.  The prediction accuracy of MFPred decreased on these structures 

(Figure 3.7), to the extent that the specificity profiles are almost uniform.  Therefore, 

diversifying the peptide structure in suboptimal sequence space led to worse predictions 

than those obtained while diversifying it without any sequence information. 

 

Next, to determine the impact of starting from bound complexes to generate MFPred 

predictions, we performed MFPred simulations on apo structures of two proteases: HCV 

NS3 protease and HIV protease-1 (Figure 3.8).  As HIV protease-1 has two flaps that can 

assume either a closed or open form106, we used both a ‘closed apo’ structure and an 

‘open apo’ structure for our simulations.  In each case the protease all-atom RMSD 

between bound and open states, as determined by PyMol107, were 1.04 Å, 1.85 Å, and 

2.00 Å. In all three cases, MFPred accuracy was higher when starting from the bound 

complex compared to the apo state.  While the number of significant p-values remains 

similar, the overall cosine similarities, AUC, and SSAL decreased for the apo structure-

based simulations.  Additionally, the information content decreased significantly for the 

apo structures of HIV (0.72-0.74 bits) as opposed to the bound complex (1.18 bits). 

Overall, the prediction accuracies between apo and bound states were more similar for 

the HCV protease where small backbone changes in the protease are incurred upon 

binding, compared to HIV protease where larger differences in prediction accuracy were 

apparent. These results suggest that especially in cases where there is significant 
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backbone conformational change in the receptor upon peptide binding, such as the HIV 

protease, the incorporation of receptor flexibility may be needed for maintaining MFPred 

accuracy.   

 

Figure 3.8. Using structures of receptor peptide complexes vs. apo structures 
improves the accuracy of MFPred.  
(a) Experimental specificity profiles. (b) MFPred prediction on receptor – peptide 
complexes. (c) MFPred prediction on HCV NS3 Protease apo structure (PDB 3KF2). (d) 
MFPred prediction on HIV protease 1 closed form apo structure (PDB: 2HB4). (e) 
MFPred prediction on HIV protease 1 open form apo structure (PDB: 1PCO). 
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Finally, to investigate the dependence of performance accuracy on the number of known 

cleaved (recognized) sequences, we executed MFPred simulations on backbone 

ensembles generated from differing numbers of starting peptide sequences threaded on to 

the crystallographic backbone conformation. We varied the number of sequences used to 

generate the backbone ensemble from one sequence to five sequences to ten sequences to 

all known sequences in the benchmark set.  We found that MFPred is highly dependent 

on N, the number of cleaved sequences used, when N is small (Figure 3.6e-h). However, 

as N increases, this effect is decreased.  For TEV-PR and HCV protease, which have 

relatively few sequences (68 and 198 respectively), the prediction accuracy plateaus after 

ten sequences, although in some cases it may fluctuate slightly from five to ten to all 

sequences.  However, for granzyme B and HIV proteases (356 and 374 cleaved 

sequences respectively), the accuracy of MFPred has a minor increase from ten to all 

sequences.  Thus, there is a near-maximum of accuracy for each system; once that point 

of diminishing returns has been reached, incorporating more cleaved sequences does not 

lead to significant increases in the accuracy.  

 

Besides determining that the level of backbone sampling was optimal for prediction, we 

also optimized sidechain sampling (Table 3.2). Using an older version of the rotamer 

library (2002)108 decreased scores for all systems.  Increasing the fineness of rotamer chi-

angle sampling or removing the starting sidechain conformation from the rotamer 

sampling had little impact on the results.  Packing protease sidechains around the peptide 

(between distances of 4-8 Angstroms) decreased the accuracy of the results.  This may be 

explained by the finding that hot spot residues at protein-protein interfaces often adopt 
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strained rotamer configurations109; packing protease interface sidechains while designing 

peptide residues within MFPred may force protease sidechains to adopt conformations 

that are unfavorable for productive substrate binding. 

Table 3.2. Effect of various Rosetta settings on MFPred predictions on five sequence 
backbones. 
Protease Method Cosine Frob AAD JSD AUC SSAL Bits 
TEV Current 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
  Dun02 0.86 0.97 0.04 0.24 0.86 0.00 -0.14 
  Ex1aro,ex2aro 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
  Ex3,ex4 0.88 0.87 0.04 0.22 0.86 0.00 -0.38 
  No input sc 0.88 0.88 0.04 0.22 0.86 0.00 -0.46 
  Pack prot 4 0.81 1.07 0.04 0.25 0.90 0.00 -0.56 
  Pack prot 6 0.81 1.07 0.04 0.25 0.91 0.00 -0.59 
  Pack prot 8 0.81 1.07 0.04 0.25 0.91 0.00 -0.60 
HCV Current 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
  Dun02 0.64 1.24 0.06 0.35 0.78 0.02 -1.19 
  Ex1aro,ex2aro 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
  Ex3,ex4 0.71 1.14 0.05 0.31 0.77 0.03 -1.27 
  No input sc 0.71 1.15 0.05 0.31 0.78 0.02 -1.29 
  Pack prot 4 0.67 1.20 0.06 0.33 0.73 0.04 -1.21 
  Pack prot 6 0.67 1.20 0.06 0.33 0.74 0.04 -1.21 
  Pack prot 8 0.67 1.20 0.06 0.33 0.74 0.04 -1.20 
GrB Current 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
  Dun02 0.82 0.78 0.04 0.23 0.79 0.22 0.21 
  Ex1aro,ex2aro 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
  Ex3,ex4 0.84 0.73 0.04 0.20 0.76 0.21 0.08 
  No input sc 0.84 0.73 0.04 0.20 0.75 0.22 0.06 
  Pack prot 4 0.81 0.80 0.04 0.23 0.77 0.25 0.22 
  Pack prot 6 0.80 0.82 0.04 0.23 0.75 0.26 0.18 
  Pack prot 8 0.81 0.80 0.04 0.23 0.76 0.25 0.21 
HIV Current 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
  Dun02 0.59 1.08 0.05 0.32 0.68 0.14 0.10 
  Ex1aro,ex2aro 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
  Ex3,ex4 0.65 0.97 0.05 0.27 0.71 0.14 -0.01 
  No input sc 0.63 0.98 0.05 0.28 0.70 0.15 -0.06 
  Pack prot 4 0.63 1.01 0.05 0.30 0.71 0.14 0.08 
  Pack prot 6 0.61 1.04 0.05 0.32 0.71 0.15 0.11 
  Pack prot 8 0.60 1.05 0.05 0.31 0.69 0.15 0.05 
Most 

Similar 

  1.00 0.00 0.00 0.00 1.00 0.00 0.00 
Most Different 0.00 Ö(2n)1 0.06 1.00 0.00 1.00 4.32 
             1n refers to the number of positions in the profile 
 

3.3.6. Comparison of MFPred with Other Structure-Based Approaches 

We compared our results to the two previously developed methods for specificity 

prediction that have been implemented in the Rosetta software. MFPred performed with 
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comparable or greater accuracy than the sequence_tolerance56 and pepspec95 methods 

(Figure 3.9, Table 3.3).  Additionally, MFPred was between 23-fold to 120-fold faster 

than the pepspec method and between 154-fold to 1154-fold faster than the 

sequence_tolerance method, depending on the number of peptide backbone 

conformations and rotamers (Table 3.3).  Furthermore, MFPred is more accurate on 

single backbones and smaller backbone ensembles than the other two methods; when 

performed on a backbone ensemble generated from five substrate sequences, MFPred 

predicts 19 out of 31 positions with a significant p-value, whereas only 11 of the 

positions predicted by sequence_tolerance and 8 of the positions predicted by pepspec 

yield significant p-values (Figure 3.9).  When executed on a single backbone 

conformation, MFPred predicts 12 positions with a significant p-value, while both 

sequence_tolerance and pepspec predict only 8 positions with a significant p-value.  Both 

sequence_tolerance and pepspec are designed to be used with larger peptide ensembles – 

their success is dependent on a diverse backbone ensemble – and, as expected, their 

prediction accuracy increases as the number of backbones in the ensemble rises (Figure 

3.10a-d), with sequence_tolerance predicting 15 significant positions and pepspec 

predicting 16 significant positions on the backbone ensemble generated from all cleaved 

sequences (Figure 3.11).  When performed on this expanded backbone ensemble, 

MFPred prediction accuracy was also higher, with 25 significant predictions. Thus, 

compared to two state-of-the-art existing methods, MFPred-based predictions are of 

comparable or higher accuracy, and can be obtained with 10-1000-fold higher 

computational efficiency. 
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Figure 3.9.  MFPred vs. other Rosetta prediction techniques on ensemble of five 
sequences.   
(a) Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance. 
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Table 3.3. Results of all methods on variously-sized backbone ensembles. 
Protease Method #Seq Time(m-1) Cosine Frob AAD JSD AUC SSAL Bits 
TEV MF 1 0.18 0.86 1.06 0.04 0.22 0.87 0.00 0.43 
    5 0.80 0.89 0.85 0.04 0.21 0.86 0.00 -0.34 
    10 2.08 0.88 0.86 0.04 0.20 0.91 0.00 -0.55 
    All (68) 11.97 0.89 0.84 0.03 0.20 0.91 0.00 -0.69 
  ST 1 195.65 0.84 1.49 0.04 0.28 0.83 0.00 1.82 
    5 923.91 0.84 1.49 0.04 0.28 0.84 0.00 1.79 
    10 1827.32 0.84 1.49 0.04 0.28 0.85 0.00 1.82 
    All (68) 12333.94 0.84 1.44 0.04 0.28 0.84 0.00 1.65 
  PS 1 17.46 0.72 1.50 0.05 0.36 0.81 0.01 0.83 
    5 96.01 0.85 1.06 0.04 0.24 0.92 0.00 0.44 
    10 189.43 0.82 1.17 0.04 0.24 0.85 0.00 0.34 
    All (68) 1290.41 0.86 1.04 0.03 0.21 0.86 0.00 0.27 
HCV MF 1 0.68 0.59 1.37 0.06 0.35 0.77 0.08 -0.51 
    5 3.61 0.72 1.13 0.05 0.31 0.79 0.02 -1.28 
    10 7.14 0.71 1.15 0.05 0.30 0.82 0.02 -1.28 
    All (196) 

(196) 
132.15 0.71 1.14 0.05 0.29 0.84 0.02 -1.29 

  ST 1 115.04 0.30 1.77 0.07 0.53 0.63 0.30 -0.59 
    5 574.01 0.43 1.54 0.06 0.46 0.68 0.21 -0.93 
    10 1101.15 0.44 1.49 0.07 0.44 0.70 0.17 -1.16 
    All (196) 22239.05 0.43 1.51 0.07 0.44 0.67 0.17 -1.08 
  PS 1 17.78 0.24 2.19 0.08 0.63 0.61 0.34 0.66 
    5 91.68 0.37 1.69 0.07 0.55 0.55 0.20 -0.53 
    10 171.30 0.61 1.30 0.06 0.39 0.73 0.05 -0.73 
    All (196) 3462.64 0.63 1.26 0.06 0.36 0.71 0.05 -1.19 
GrB MF 1 0.34 0.82 0.85 0.04 0.23 0.71 0.20 0.60 
    5 2.39 0.84 0.73 0.04 0.20 0.76 0.21 0.07 
    10 5.24 0.89 0.60 0.03 0.17 0.80 0.17 0.06 
    All (356) 145.63 0.91 0.53 0.03 0.13 0.87 0.15 -0.08 
  ST 1 114.80 0.28 2.02 0.07 0.46 0.76 0.26 1.29 
    5 544.28 0.33 1.71 0.06 0.35 0.78 0.26 0.68 
    10 1109.45 0.35 1.62 0.05 0.31 0.82 0.17 0.55 
    All (356) 39036.17 0.34 1.67 0.05 0.32 0.84 0.21 0.53 
  PS 1 19.58 0.62 1.45 0.06 0.51 0.61 0.38 1.59 
    5 101.24 0.63 1.15 0.06 0.39 0.70 0.34 0.68 
    10 203.69 0.76 0.99 0.05 0.29 0.78 0.27 0.61 
    All (356) 6814.15 0.88 0.64 0.03 0.17 0.86 0.18 0.13 
HIV MF 1 0.23 0.47 1.55 0.06 0.42 0.66 0.17 0.96 
    5 1.29 0.65 0.96 0.05 0.27 0.73 0.14 -0.01 
    10 3.15 0.70 0.88 0.04 0.23 0.78 0.08 -0.04 
    All (374) 110.65 0.72 0.82 0.04 0.21 0.81 0.05 -0.21 
  ST 1 92.37 0.40 2.48 0.08 0.64 0.62 0.19 2.78 
    5 453.18 0.41 2.20 0.07 0.57 0.67 0.24 2.14 
    10 907.90 0.45 2.05 0.07 0.51 0.73 0.16 1.93 
    All (374) 34090.45 0.48 1.81 0.06 0.42 0.73 0.14 1.38 
  PS 1 23.05 0.37 2.13 0.07 0.60 0.59 0.22 2.05 
    5 109.77 0.55 1.54 0.06 0.40 0.69 0.11 1.21 
    10 218.41 0.53 1.51 0.06 0.39 0.70 0.16 1.04 
    All (374) 8134.56 0.57 1.23 0.05 0.28 0.76 0.10 0.33 
Most Similar     1.00 0.00 0.00 0.00 1.00 0.00 0.00 
Most Different     0.00 Ö(2n)1 0.06 1.00 0.00 1.00 4.32 

1n refers to the number of positions in the profile 
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Figure 3.10. Number of sequences vs. accuracy and information for methods of 
profile prediction  	
(a)-(d) Number of sequences vs. accuracy for TEV, HCV, GrB, and HIV, respectively.  
Number of sequences is varied over 1-5-10-All experimentally derived sequences, which 
is different for each protease.  (e)-(h) Number of sequences vs. information content 
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difference for TEV, HCV, GrB, and HIV, respectively.  Information difference is equal to 
the predicted bits minus the experimental bits.  An information difference that is close to 
zero approximates the experimental information content well; a positive information 
difference indicates a more peaked predicted than experimental profile while a negative 
information difference denotes a flatter predicted than experimental profile. 

 

Figure 3.11.  MFPred vs. other Rosetta prediction techniques on ensemble of all 
sequences.   
(a) Experimental specificity profiles. (b) MFPred. (c) pepspec. (d) sequence_tolerance. 
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Besides informing us about the accuracy and speed of MFPred relative to existing 

methods, the comparison of MFPred to pepspec and sequence_tolerance allows us to 

categorize inaccuracies in MFPred predictions into those obtained from incorrect 

sequence sampling and those due to the Rosetta energy function or incomplete backbone 

conformational diversity.  For example, MFPred on all cleaved backbones does not 

recover the experimentally determined high frequency for G at P2 of TEV-PR.  Since 

both pepspec and sequence_tolerance also do not recover G at P2 with the same peptide 

backbone conformational ensemble, we attribute this inaccuracy to imperfections in the 

underlying Rosetta energy function and/or an incomplete peptide backbone ensemble 

used for prediction. 

 

Generally, MFPred predicts lower information content (i.e. flatter shape) for the profiles 

than both sequence_tolerance and pepspec (Table 3.3, Figure 3.10e-h).  In the cases of 

granzyme B protease and HIVPR1, the predicted lower information content is reflective 

of the experimentally determined profiles; however, in the case of TEV-PR MFPred 

underestimates the information content relative to pepspec and sequence_tolerance.  All 

protocols underestimate the information content of the profile of HCV protease.  This 

underestimation may be due to an incomplete experimental dataset or sampling/scoring 

inaccuracies as discussed above.  Overall, the difference between the predicted 

information content and the experimental information content was smaller for MFPred 

than for sequence_tolerance and pepspec, especially when performed with smaller 

backbone ensembles. 
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3.3.7. Generalizing MFPred to other Protein-Recognition Domains 

To investigate the generality of our method for specificity prediction, we utilized the 

MFPred method to predict the specificity profiles for a variety of peptide-recognition 

domains: kinase, SH2, SH3, PDZ, and MHC domains. We achieved 17 significant p-

values out of 31 positions and high cosine similarities (0.77-0.85) for three out of five 

PRD classes: PKA (kinase), Src (SH2), and c-Crk (SH3) domains (Figure 3.12).   

However, these three systems had lower AUCs (0.60-0.65).  This may be due to the 

inadequacy of AUC as a metric for scoring positions that have low information content in 

the experimentally-derived profile; if few of the experimental amino acid frequencies are 

greater than 10%, the AUC reveals little about the prediction accuracy.   

 

Figure 3.12.  Generalize MFPred to PRD benchmark.   
(a) Experimental specificity profiles. (b) MFPred prediction.  The p-value of the JSD for 
a given position is represented by the color of the square under that position; white 
denotes a p-value > 0.5 and dark blue denotes a p-value of 0.  A given circle to the right 
of a profile represents the cosine similarity (white) and AUC (black) of that profile.  For 
the PDZ domain, prediction was performed at a kT of 0.6, which was found to be optimal 
for PDZ domains. 
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We predicted the specificity profiles of seven different PDZ domains: NHERF-2 PDZ2, 

PSD-95, AF-6 PDZ, Erbin PDZ, MPDZ-13, ZO-1 PDZ1, and DLG1-2 PDZ (Figure 3.12, 

Figure 3.13). The specificity of NHERF-2 PDZ-2 was already predicted computationally 

by Zheng et al.110, who were able to achieve good prediction via the use of CLASSY and 

FlexPepDock.  King and Bradley previously predicted the specificity profile for PSD-95 

computationally using pepspec95, while the five other PDZ domain specificities were 

previously predicted by Smith and Kortemme via sequence_tolerance56. Six out of seven 

PDZ domains were predicted with medium to high accuracies, with cosine similarities of 

0.63-0.86, AUCs of 0.60 to 0.88, and 25 out of 38 significant p-values. However, the 

prediction accuracy of the final PDZ domain, AF-6 PDZ was much lower, with a cosine 

similarity of 0.43, AUC of 0.59, and no significant p-values.  This low accuracy may be 

due to the flexibility of the AF-6 PDZ domain, which has been known to bind in multiple 

binding modes and can be characterized as belonging to multiple classes of PDZ domain 

specificity111,112.  Like the HIV-PR1 case above, addition of receptor flexibility to MFPred 

may assist in AF-6 specificity profile recapitulation. 

 

Finally, we tested the performance of MFPred on predicting MHC-I peptide recognition 

specificities. We selected four MHC-I domains with crystallographic structure 

availability and a large pool of known peptide binders113.  The experimentally derived 

specificity profiles for the MHCs were highly conserved at one or two positions but 

relatively flat at others (Figure 3.12, Figure 3.14).  The MFPred predictions reflected this 

pattern: while 30 out of 36 positions had p-values that were not significant, due to the 

high tolerance of a diversity of amino acid at those positions, the cosine similarity of the 
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predictions was high (0.63-0.78), reflecting good overall profile recapitulation (Figure 

3.12, Figure 3.14).  These results indicate that robust and accurate predictions of the 

specificity profiles of a variety of peptide-recognition domains can be obtained using the 

MFPred approach, pointing to its wide applicability, especially for cases where receptor 

backbone flexibility is minimal. Improved modeling of backbone conformational 

diversity, an area where methodological improvements are needed114, is likely to improve 

prediction accuracy further. 

 

Figure 3.13. MFPred prediction for six PDZ domains.  
(a, c) Experimental specificity profiles. (b, d) MFPred prediction.  Prediction was 
performed at a kT of 0.6, which was found to be optimal for PDZ domains. 
 

 



76 

	

 

Figure 3.14. MFPred prediction for three MHC-I domains.  
(a) Experimental specificity profiles. (b) MFPred prediction.  
 

Prediction of changes in multispecificity upon receptor mutation 

When used to design receptors for and against specificity profiles, MFPred should be able 

to accurately recapitulate changes in specificity profiles due to protease mutations, when 

simulations are performed on a constant set of backbones. As a proof of concept, we 

predicted the changes in the specificity profiles of two variants of granzyme B protease 

for which altered multispecificity has been experimentally determined (Figure 3.15).  

R192E granzyme B protease and R192E/N218A granzyme B protease have been shown 

to have decreased specificity for glutamic acid and increased specificity for lysine and 

arginine at P310,115.  To investigate whether MFPred can recapitulate mutant specificity 

profiles without changing the peptide backbone, we modeled the variants of granzyme B 

protease by performing the necessary mutations in Rosetta on the five FastRelaxed 

granzyme B protease backbones. 
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Figure 3.15.  Proof-of-concept for design.  Changes in specificity profile upon 
granzyme B protease mutation are recapitulated by MFPred.   
(a) Experimental (bold) specificity (average of Harris et al.10 and Ruggles et al.115) and 
predicted P3 specificity for WT granzyme B protease.  (b)-(c), WT granzyme B protease 
structure.  (d) R192E granzyme B protease active site.  (e) Experimental specificity 
(bold)10 and predicted P3 specificity for R192E granzyme B protease. (f) R192E/N218A 
granzyme B protease active site. (g) Experimental specificity (bold)115 and predicted P3 
specificity for R192E/N218A granzyme B protease.   
 

The MFPred-predicted specificity profile for the mutated structures accurately 

recapitulated the experimentally predicted specificity profile for the mutants.  In the case 

of R192E, the change from a positively-charged arginine to a negatively-charged 

glutamic acid yields an increased frequency of positive amino acids such as lysine and 

arginine and a decreased frequency of the negative amino acid glutamic acid.  MFPred 

predicts the shift toward lysine and arginine and away from glutamic acid correctly, 

although it upweights the frequency of arginine and downweights the frequency of 

glutamic acid relative to the experimental profile.  In the case of R192E/N218A, the shift 

towards arginine and lysine is even more pronounced in the experimentally-derived 

profile.  Sterically, the mutation of N to A may allow for the longer sidechains of R and 

K (relative to E) to fit at P3.  MFPred correctly predicts this shift as well. The sensitivity 
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of MFPred to altered multispecificity at a given position due to a given receptor mutation 

should enable its use in designing for or against a given specificity profile. 

 

3.4. Discussion 

Protein-peptide interactions underlie much of biology, and the ability to computationally 

manipulate these interactions would enable intervention in many biological processes.  

The rational design of receptor proteins, including enzymes that act upon peptide 

substrates, for and against peptide recognition specificity profiles is an open challenge.  

Such design would benefit from a specificity profile prediction technique that is both (i) 

rapid enough to be used in each step of the design process, and (ii) able to predict 

changed specificity for receptor variants with a constant peptide backbone 

conformational ensemble.  The MFPred method developed here represents a step forward 

in achieving in both of these goals. MFPred is able to predict profiles for both proteases 

and a diverse set of PRDs, and it can recapitulate changes in the profile of variant 

granzyme B. This result sets the stage for application of the MFPred algorithm to enable 

the design of proteins for and against specificity profiles, by combining the MFPred 

algorithm with multi-state design116. 

 

The MFPred method, implemented in the context of the Rosetta software, performs 

specificity profile prediction with equivalent or better accuracy when compared to two 

previously developed methods (pepspec, sequence_tolerance) in the Rosetta framework, 

but with a significant decrease in run time (~10- to 1000-fold). Practically, this means 

that given a receptor variant and a peptide backbone ensemble, a specificity profile can 



79 

	

be obtained, on a standard single processor, on a time-scale of seconds vs. hours required 

for other approaches.  While pepspec and sequence_tolerance are less accurate on a 

smaller peptide backbone ensemble, MFPred is relatively robust to the size of the 

backbone ensemble. Additionally, MFPred can predict information content (determined 

from the amino acid frequency distribution at a given peptide position) better than other 

methods (Figure 3.10e-h).  The ability to recapitulate information content should enable 

design for a narrow or wide range of amino acid types at a given peptide position, thereby 

allowing greater control over binding selectivity.  The speed, prediction accuracy on a 

small backbone ensemble, and robust recapitulation of information content of MFPred 

are due to the mean-field approach of MFPred: rather than attempt to enumerate many 

sequences on varying backbones, MFPred predicts a specificity profile by treating amino 

acid energies as a Boltzmann probability distribution.  However, optimal sampling of the 

peptide backbone conformational space by MFPred does require some prior knowledge 

in the form of several (~5) recognized substrates, which is not required for pepspec or 

sequence_tolerance.    

 

While MFPred can rapidly and consistently generate recognition profiles with high 

accuracy compared to experimental data, it was not possible to achieve a perfect 

prediction using MFPred. Several reasons may underlie these limitations of MFPred.  

First, our experimental dataset may be incomplete: it comprises various in vitro and in 

vivo sources in the literature, each of which may have their biases.  In vitro experimental 

profiles vary with the definition of a cleaved sequence; when few sequences are included 

in this definition, the profile will converge on a few optimal sequences.  In vivo 
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experimental profiles are subject to biases due to biological factors95. Second, any 

specificity prediction challenge is composed of several, smaller problems – sampling the 

vast sequence space, sampling the significantly larger conformational space, and scoring 

the structures – each of contributes multiplicatively to the error-rate.  In our study, the 

sequence sampling problem is solved by MFPred itself.  As it is an approximation, 

MFPred may not sample the sequence space effectively; the free parameters, which are 

optimized for overall success, are sub-optimal for each system.  This is especially true in 

the case of the temperature parameter, which we found to be the most system-dependent. 

Thus, application of MFPred to domain families that are not included in our benchmark 

set may require further system-specific optimization of model parameters to achieve 

comparable accuracy.  In terms of structure sampling, our method of utilizing a small 

number of known recognized peptides to generate a backbone ensemble is an attempt to 

more efficiently sample the large backbone conformational space (which also determines 

sidechain sampling due to the use of a backbone-dependent rotamer library117); however, 

this space is so large, especially in the case of a flexible binding pocket such as the HIV 

protease-1, that sampling efficiency is still limited. The sampling of receptor backbone 

flexibility is also required in such cases, as evidenced by a decreased prediction accuracy 

when the apo-structure of the complex is used (Figure 3.8). Finally, we score the 

structures using an empirical energy function (from Rosetta); subtle errors in the energy 

function may also contribute to the observed inaccuracies. As both conformational and 

sequence sampling in the MFPred approach rely on, and are limited by, the underlying 

rotamer library and energy function as implemented in Rosetta, improvements in these 

features117,118 should yield higher accuracy predictions.  
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3.5. Methods 

3.5.1. Inputs 

Table 3.4. Details of model generation for four proteases and fourteen PRDs 
Protein PDB ID Resolution Notes 

HCV NS3 

Protease 

3M5L, 

3M5N 

1.9 Å The P’ residues of the bound peptide were built 

by overlaying PDB ID: 3M5N and PDB 

ID:3M5L (inhibitor-bound crystal structure) thus 

allowing us to build a complete substrate bound 

complex 

HCV NS3 

Protease 

(apo) 

3KF2 2.5 Å PDB ID: 3KF2, the apo structure of HCV NS3 

protease, was superimposed with the complex 

built from 3M5L and 3M5N (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model.  

TEV 

Protease 

1LVB, 

1LVM 

2.2 Å Starting model generated from PDB by reverting 

C151A to WT 

Granzyme B 

(Protease) 

1FI8 2.2 Å The interface of the ecotin chain in the crystal 

structure, spanning eight residue substrate chain 

was used as the starting point for further 

calculations 

HIV Protease 

1 

1MT9 2.0 Å Starting model generated by inverting D25N and 

V82N from crystal structure to native residue 
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identities 

HIV Protease 

1 (apo) 

2HB4 2.15 Å PDB ID: 2HB4, the closed-form apo structure of 

HIV protease-1, was superimposed with the 

complex built from 1MT9 (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model. 

HIV Protease 

1 (apo) 

2PC0 1.4 Å PDB ID: 2PC0, the open-form apo structure of 

HIV protease-1, was superimposed with the 

complex built from 1MT9 (above) and the 

peptide from that model was added to the apo 

structure to generate the starting model. 

c-Crk SH3-N 1CKA 1.5 Å  

cAMP-

dependent 

PKA (kinase) 

1L3R 2.0 Å   

Src SH2 1SPS 2.7 Å  

PSD-95 

PDZ3 

1TP3 1.99 Å  

NHERF-2 

PDZ2 

2HE4 1.45 Å  
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AF-6 PDZ 2AIN (NMR) First model in NMR ensemble was taken. 

Erbin PDZ 1N7T (NMR) First model in NMR ensemble was taken. 

MPDZ-13 

(PDZ) 

2FNE 1.83 Å  

ZO-1 PDZ1 2H2B 1.6 Å  

DLG1-2 

(PDZ) 

2I0L 2.31 Å  

HLA-A*0201 

(MHC) 

1QSF 2.8 Å  

HLA-B*1501 

(MHC) 

1XR9 1.79 Å  

HLA-B*4402 

(MHC) 

1M6O 1.6 Å  

HLA-B*4403 

(MHC) 

1N2R 1.7 Å  
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Structure Preparation. Crystal structures of the four protease-peptide complexes, 

fourteen protein-recognition domains, and three protease apo structures were procured 

from the Protein Data Bank (PDB) (Table 3.4)9,6,69,70,99,106,111,119–129.  Structures were filtered 

for a resolution equal to or lower than 2.8 Å and a bound peptide or peptidomimetic 

inhibitor.  Active site mutations were reverted to the wild-type residues.  

  

The selected crystal structures were optimized using Rosetta FastRelax to find a low 

energy structure, which was used as a starting point in further calculations. In the case of 

the protease enzymes, constraints were applied to catalytic residues during FastRelax to 

maintain active site geometry and keep the protease in a pre-transition-state near-attack 

conformation, and coordinate constraints were applied to the backbone to ensure that the 

enzyme did not unfold; we did not apply constraints in the general PRD benchmark, as 

constraints were found to decrease prediction accuracy in those cases.  Peptide side 

chains and backbone were allowed to sample all degrees of freedom including rotation, 

translation, and rigid body orientation with respect to the protease.  The models were 

scored with Rosetta’s talaris2013 energy function. 

 

The apo crystal structures were aligned with the relaxed models of the protease-peptide 

complexes using PyMol107, and the peptides from the protease-peptide complexes were 

placed within the apo models.  The crystal structures were further optimized using 

Rosetta FastRelax as described above. 
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Experimental Sequence Profiles and Cleaved/Uncleaved Sequences. The sequences of 

cleaved and uncleaved substrate peptides for each protease and bound peptides for each 

PRD were obtained as described in Table 3.5. For further details on the curation of the 

protease datasets, please see our recent study103. To generate a specificity profile for each 

protease, we first removed duplicates from the set of cleaved peptides and then calculated 

the frequency of each amino acid at each position.  We followed the same procedure for 

the PRDs; however, we did not remove duplicates from those sets.  The sequence sets are 

provided in S1 Dataset.  

 

Table 3.5. Substrates for proteases and PRDs. 
Protease # Cleaved # Uncleaved References 
TEV-PR 68 1520 • Kostallas et al.43 

• Boulware et al.44 
 

HCV protease 196 1943 • Shiryaev et al.41 
• Rögnvaldsson et al.42 

Granzyme B 
protease 

353 1973 • Barkan et al.36 

HIV-PR 374 1251 • Rögnvaldsson et al.42 

PRD #Bound in 

vitro 

#Bound in vivo References 

c-Crk SH3-N 13 N/A • Sparks et al.85 
cAMP-dependent 
PKA 

346 19 • PhosphoELM130 
• Schutkowski et al.80 

Src SH2 13 117 • PepCyber131 
• Khati et al.81 

PSD-95 PDZ3 93 2 • PDZBase132 
• Tonikian et al.82 

NHERF-2 PDZ2 132 N/A • Vouilleme et al.83 
• Stiffler et al.84 
• Tonikian et al.82 

AF-6 PDZ 176 N/A • Tonikian et al.82 
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Erbin PDZ 86 N/A • Tonikian et al.82 
MPDZ-13 (PDZ) 91 N/A • Tonikian et al.82 
ZO-1 PDZ1 71 N/A • Tonikian et al.82 
DLG1-2 (PDZ) 58 N/A • Tonikian et al.82 
HLA-A*0201 
(MHC) 

3273 N/A • Vita et al.113 

HLA-B*1501 
(MHC) 

1187 N/A • Vita et al.113 

HLA-B*4402 
(MHC) 

236 N/A • Vita et al.113 

HLA-B*4403 
(MHC) 

207 N/A • Vita et al.113 

 

 

 

 

3.5.2. Backbone Ensemble Generation 

We generated a flexible backbone ensemble by constructing models of the proteins bound 

to several cleaved sequences, and then diversifying those models via FastRelax46, 

FlexPepDock104, or Backrub105 backbone sampling protocols, as described in detail below.  

For each protein, N cleaved sequences were chosen from the dataset by sorting the 

sequences in alphabetical order and then choosing evenly spaced sequences from the 

sorted dataset.  Two alternative methods of picking cleaved sequences - randomly, or at 

even intervals from a set sorted by hamming distance from an arbitrarily chosen cleaved 

sequence - did not impact the results. 

 

Then those N cleaved sequences were threaded onto the original FastRelaxed protein-

peptide complex to create N structure-sequence models. Each model was subjected to 10 

trajectories of FastRelax simulations, 10 trajectories of FlexPepDock refine simulations, 
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or 10 trajectories of Backrub simulations, and the resulting 10 models were considered to 

be the backbone conformational ensemble.  As we found that the FastRelax protocol was 

more accurate than FlexPepDock and Backrub, we used FastRelax alone in the final 

version of the protocol.  The model was constrained to active catalytic geometry for the 

proteases; we did not apply constraints to the PRD systems.  Finally, the x lowest-scoring 

models for each sequence (with x dependent on the protocol in question, and generally set 

as 1) were chosen as the final backbone ensemble. 

 

3.5.3. Mean-Field Algorithm 

Various self-consistent mean-field theory-based methods have been developed for use in 

protein sidechain packing and design133–140. In the canonical self-consistent mean field 

theory-based method for protein sidechain packing as proposed by Koehl and Delarue133, 

the energy landscape is investigated by using an effective energy potential to approximate 

the effects of all possible rotamers at all positions to be modeled.  Thus, the mean-field 

energy of rotamer r occurring at position i is determined by Eq. 3.1:  

𝐸 𝑖, 𝑟 = 	𝑒 𝑖( + 𝑒 𝑖(, 𝑗+ 𝑃 𝑗, 𝑠

./

+01

2

301,345

	

 (3.1) 

𝑒 𝑖( 	represents the one-body energy of the rotamer, or the energy between a residue and 

the fixed components of the protein.  𝑒 𝑖(, 𝑗+ 	represents the two-body energy between a 

rotamer r at position i and a rotamer s at position j.  Energies are truncated at a threshold 

that we optimized as a free parameter.  P(j, s) represents the probability of rotamer s 



88 

	

occurring at position j and is initially given as 1/Kj, where Kj is the total number of 

available rotamers at position j (obtained from a rotamer library).    

 

A probability matrix (P) of size N ´ Kmax , where N is the number of positions to be 

analyzed and Kmax is the maximum number of rotamers at any position, is used to model 

the probabilities of each rotamer occurring.  Once the effective energy of each rotamer is 

determined using Equation 3.1, the probability of each rotamer is: 

𝑃 𝑗, 𝑠 = 	
𝑒678 3,+

𝑒678 3,9./
901

	

 (3.2) 

𝛽 (= 1/kT) is also optimized as a free parameter. The algorithm iterates between the two 

equations until convergence is reached.  We use a pre-calculated interaction graph in 

Rosetta141 to store the one-body and two-body energies, which do not change between 

iterations, so the iteration is rapid. Convergence is improved with the use of a memory in 

the updating of P, so that the probability matrix after iteration x is given by 

𝑃9 	= 	λ𝑃961 +	(1 − λ)𝑃9, where λ is a free parameter between 0 and 1.  Once 

convergence is reached, the probability matrix P can be used to obtain the probability for 

every rotamer.  

 

We extended the algorithm for use with a flexible backbone and with any given amino 

acid alphabet.  Given an ensemble of backbone conformations, the probability matrix P is 

calculated for each backbone using the canonical self-consistent mean field method, 

while allowing each position to take on any amino acid, so that the vector for that 
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position contains all the rotamers for all amino acids at that position.  Paa(bb, i), the 

probability of amino acid aa occurring at position i in backbone bb, is determined for all 

amino acids at all positions in all backbones:   

𝑃@@ 𝑏𝑏, 𝑖 = 	

𝑃BB(𝑖, 𝑟)
.CC
(01

𝐾@@
E

𝑃BB(𝑖, 𝑟)
.F
(01

𝐾9
E

GH
901

	

 (3.3)  

 

where Kaa is the number of rotamers available to amino acid aa at position i, and g is a 

free parameter optimized to 0.8 in our implementation.  Dividing the sum of probabilities 

over all amino acids by 𝐾@@
E  thus corrects for cases where numerous rotamers of an amino 

acid artificially inflate the probability of a specific amino acid occurring (Figure 3.16).  

The probability matrices for all backbones are then averaged together using a Boltzmann-

weighting scheme in a two-step process.  First, Ebb(i,aa), the weighted sum of the 

energies for rotamers of amino acid aa at position i in backbone bb, divided by 𝐾@@
E , is 

calculated (Equation 3.4).  Then Ebb(i,aa) is used to find W(i), the probability of backbone 

bb occurring at position i (Equation 3.5).  M is the number of (peptide) backbones in the 

ensemble. 

𝐸BB 𝑖, 𝑎𝑎 = 	
𝐸BB 𝑖, 𝑟 𝑃BB(𝑖, 𝑟)

.CC
(01

𝐾@@
E  

 (3.4) 

𝑊 𝑖 = 	
𝑒67 8KK(5,@@)LM

CCNO

𝑒67 8P(5,@@)LM
CCNOQ

+01
 

 (3.5) 
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Finally, a weighted average P is determined and taken to be the predicted specificity 

profile for that protease:  

𝑃 𝑖, 𝑎𝑎 = 	 𝑃@@ 𝑏𝑏, 𝑖 𝑊 𝑖
Q

BB01

		

 

 (3.6) 

Thus, MFPred can be used for prediction of multispecificity for both one backbone and 

multiple backbone conformations. 

 

Figure 3.16.  The need for γ in the mean-field algorithm when averaging rotamers of 
an amino acid to find the probability of that amino acid.  
(a) Background amino acid composition as defined in Rosetta database (P_AA).  This is 
the gold-standard which we attempted to match in our background profile generation (see 
Methods).  (b) MFPred background prediction with γ=0, i.e. the rotamer probabilities are 
simply summed to find the amino acid probability.  Serine and threonine are 
overrepresented as the Rosetta Dunbrack library contains many more rotamers for S and 
T, and glycine and alanine are underrepresented due to having only one rotamer each.  (c) 
MFPred background prediction with γ=0.8 (current settings).  This is closest to the P_AA 
distribution (Frobenius distance of 0.24). (d) MFPred background prediction with γ=1.0, 
i.e the amino acid probability is simply the average of the rotamer probabilities.  While 
this is better than γ=0, alanine and glycine are now overrepresented and serine and 
threonine are underrepresented.  Frobenius distance is 0.39. 
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3.5.4. Parameter Optimization of MFPred 

To optimize four free parameters for MFPred (lambda, g, threshold, and kT), we 

enumerated all combinations of lambda (0.25, 0.5, 0.75), g (0, 0.2, 0.4, 0.6, 0.8, 1.0), 

threshold (5, 10, 50, 100, 250, 500), and kT (0.2, 0.4, 0.6, 0.8, 1.0).  We selected 68 

structures from the peptiDB (a peptide-protein complex database)142 that met our criteria 

of having at least eight peptide residues.  The structures were input into MFPred as a 

backbone ensemble and all combinations of the above parameters were tested.  The 

resulting background specificity profiles were compared to the background residue 

distribution in the Rosetta database (Figure 3.16, Figure 3.17) and the combination of 

parameters with the lowest cosine distance from the known background distribution was 

chosen as our final set of parameters.  While varying lambda had little impact on the 

results, all other parameters had a significant, system-dependent impact on the results. 

 

3.5.5. Enrichment over Background 

Since the MFPred predictions did include some noise due to the background distribution, 

we divided its predictions by the background profile to find the final prediction.  The 

background profile was determined by averaging the frequencies of each position in the 

peptiDB profile.  We divided each amino acid frequency in the initial predicted profile by 

the frequency of that amino acid in the background profile to find the final profile (Figure 

3.17). 

 

3.5.6. Software Availability 
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MFPred is available as a RosettaScripts Mover within the master branch of Rosetta. 

Sample cases for how to use MFPred can be found in Appendix 2 and in online Rosetta 

documentation.  

 

Figure 3.17 Enriching specificity profiles over background specificity profile 
improves accuracy.   
(a) Experimental specificity profiles. (b) Initial MFPred-predicted specificity profiles. (c) 
Specificity profiles divided by background specificity profile. (d) Background specificity 
profile. 
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Chapter 4. Biophysical determinants of mutational robustness in a viral molecular 

fitness landscape 

4.1. Abstract  

Biophysical interactions between proteins and peptides are key determinants of genotype-

fitness landscapes, but an understanding of how molecular structure and residue-level 

energetics at protein-peptide interfaces shape functional landscapes remains elusive. 

Combining information from yeast-based library screening, next-generation sequencing 

and structure-based modeling, we report comprehensive sequence-energetics-function 

mapping of the specificity landscape of the Hepatitis C Virus (HCV) NS3/4A protease, 

whose function – site-specific cleavages of the viral polyprotein – is a key determinant of 

viral fitness. We elucidate the cleavability of 3.2 million substrate variants by the HCV 

protease and find extensive clustering of cleavable and uncleavable motifs in sequence 

space indicating mutational robustness, and thereby providing a plausible molecular 

mechanism to buffer the effects of low replicative fidelity of this RNA virus. Specificity 

landscapes of known drug-resistant variants are similarly clustered. Our results highlight 

the key and constraining role of molecular-level energetics in shaping plateau-like fitness 

landscapes from quasi-species theory. 

 

4.2. Introduction 

RNA viruses, e.g., influenza, Hepatitis C virus (HCV) and Human Immunodeficiency 

virus (HIV), are under a heavy mutational load due to the extremely high error-rates of 

their RNA polymerases143–145. As a result of this low replication fidelity, these viruses 

exist as a population of variants called quasispecies146,147, even within a single host 
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individual148. While this genetic diversity and a large population size is believed to 

increase viral adaptive potential against antiviral therapies149–151, low replication fidelity 

may also lead to too many mutations, causing an “error catastrophe” and extinction152,153. 

The underlying biomolecular structures and interactions in the virus must, therefore, be 

robust to genetic variability such that they provide a buffer against the deleterious 

impacts of a high mutational load154,155. Tawfik and co-workers have hypothesized that 

viral proteins possess “gradient robustness” in which individual mutations have small and 

largely additive effects on stability leading to a slower loss of function compared to 

“threshold robustness” exhibited by proteins in general156. It has been argued that 

mutational robustness may itself promote adaptiveness if the number of phenotypes 

accessible to a variant through mutation is smaller than the total number of phenotypes 

possible157,158. How is mutational robustness encoded at the molecular level in RNA 

viruses such as HCV? How is structural integrity and interaction fidelity maintained in 

the face of a large mutational load, and what, if any, are the limits imposed by the 

underlying molecular interactions on mutational robustness and adaptive potential? The 

degeneracy of the genetic code, the thermodynamic and kinetic stabilities of RNA and 

proteins, and the presence of molecular chaperones, may all contribute to the robustness 

of the structures of individual viral biomolecules145. However, how viral protein-based 

interactions, especially those that are critical for viral propagation, encode “fuzziness”156 

leading to mutational robustness at the molecular level is not well understood.  

 

At the molecular level, the balance between mutational robustness and functional 

plasticity is encapsulated in the notion of molecular fitness landscapes159, which are high-
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dimensional maps that relate the sequence of individual biomolecular variants to their 

functional and/or evolutionary fitness160,161. Analysis of mutational trajectories on these 

landscapes provides insight into the constraints placed on evolution by the 

physiochemical properties of biomolecules, allowing, in principle, reconstruction as well 

as forward prediction of molecular evolution162–166. The molecular fitness landscape has 

long been theoretically postulated159 and recent empirically determined sequence-function 

mappings of proteins167–175 have enabled the partial construction of fitness landscapes. 

These reconstructed landscapes permit testing of possible evolutionary scenarios and 

provide insight into properties such as mutational robustness and non-additivity 

(epistasis) of mutational effects176,162,177–182. Empirical sequence-function relationships also 

enable biomolecular engineering for new or improved functions172,183–186.  

 

Typically, sequence-function mapping of proteins and protein-protein interactions 

described above involves partial enumeration of the possible sequence diversity (for 

example, all single mutations and a subset of double mutations at a large number of 

protein residue positions) and high-throughput functional evaluation coupled with deep 

sequencing187–189. Statistical and/or biophysical models can be used to make inferences 

about the regions of sequence space not sampled183,188. However, comprehensive 

construction of the fitness landscape requires enumeration and evaluation of the complete 

sequence diversity (all higher-order mutations at all residue positions). Laub and co-

workers have pioneered studies in which the entire combinatorial diversity is 

experimentally sampled, albeit at a smaller number of positions173,190. The astronomical 

size of sequence space, however, makes the comprehensive experimental evaluation of 
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sequence-function landscapes with any one experimental approach difficult. 

Computational biophysical methods may, in principle, assist in creation and analysis of 

functional and fitness landscapes191.  Indeed, evolutionary landscapes of simple protein 

models, such as lattice models, have been extensively investigated using biophysical 

evolutionary theory and computational simulations192–202, and deep connections with 

population genetics theories have been discovered198,203,204. While pioneering and crucial 

insights have been obtained in these studies, chemically realistic atomic-resolution 

structure-based elucidation of functional landscapes has not been performed so far, due 

both to high computational cost as well as inaccuracies in simulation force fields which 

preclude accurate biophysical evaluation of mutational effects on protein-protein 

interactions.  

 

Here, we use a combination of experimental (biochemical) and computational techniques 

to elucidate the specificity landscape of the interaction between HCV NS3/4A protease 

enzymes and its substrates. This enzyme-substrate interaction is key for viral maturation 

as it cleaves exclusively at four specific sites in the viral polyprotein (Figure 4.1A) to 

release individual non-structural proteins23, and also mediates inactivation of key human 

immunity proteins205. The cleavage specificity of the protease is thus a key determinant of 

viral fitness, and its proper functioning includes negative specificity – the lack of 

cleavage of non-canonical sites on the viral protein and of most host cell proteins (Figure 

4.1A). The molecular interactions underlying both positive and negative specificities 

must be robust to mutations as the HCV virus RNA polymerase has a high error-rate206, 

but how and whether this robustness is encoded in the protease-substrate interactions is 
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not known. Using yeast surface display, next-generation sequencing and a machine-

learning approach which combines features from experimental data and atomistic 

computational simulations (utilizing the Rosetta and Amber force fields) that we recently 

developed103,207, we construct the specificity landscape (with cleavability assignments 

made for 3.2 million substrate pentapeptide sequences) of the HCV NS3/4A protease and 

three of its known drug-resistant variants64. We demonstrate that energetic features of 

protease-substrate interactions inherently encode mutational robustness, and that the 

connectivity patterns in the specificity landscape may act as a “biophysical capacitor” for 

maintaining protease function in the face of high mutational load.  

 

Figure 4.1. Overview of experimental workflow, validation of results 
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(A) The HCV viral polyprotein depicting marked biological cleavage sites for the HCV 
NS3 protease (B) overview of the experimental and computational workflow. (C) 
Validation of FACS gates for cleaved, partially cleaved and uncleaved sequences using 
yeast surface display assay (D) Sequences taken from in vivo samples of HCV patients 
(8726) as compared to (E) sequences determined by our assay as cleaved (7472), (F) as 
partially cleaved (8737), and (G) as uncleaved (14702) 
 
4.3. Results 

HCV NS3/4A protease is known to cleave four canonical cleavage sites on the hepatitis C 

viral polyprotein (Figure 4.1A), causing a cascade of viral assembly and maturation 

events. These cleavages (and a lack of cleavage of other parts of the polyprotein) are 

thus, critical for viral fitness. The high mutational load on the HCV polyprotein can lead 

to sequence variation in both the protease and substrate regions208. At the protein level, 

the distribution of mutational effects in a folded protein (protease) are modulated by both 

the thermodynamic stability and function (binding and cleavage), while the peptide 

substrate regions, which are found in flexible linker regions of the HCV polyprotein and 

connect component proteins, do not have a native tertiary structure. Therefore, we 

reasoned that a more direct sequence-cleavability mapping can be made for diversity in 

the substrate region without the need to additionally deconvolute the contribution from 

stability effects on tertiary structure. Secondly, it is more feasible to enumerate and 

evaluate by sequencing the substrate combinatorial diversity due to its shorter length (~7 

residues) compared to the protease (>200 residues). Therefore, we mapped the viral 

protease-substrate interaction landscape for the HCV NS3/4A protease by considering all 

possible pentapeptide sequence combinations in its sequence recognition site at positions 

P6 through P2 following the Schechter and Berger nomenclature209. Positions P1 and P1’, 

between which the scissile bond is present, were maintained as C and A, respectively, in 

this study. In the rest of this paper, we refer to individual pentapeptide patterns (e.g., the 
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canonical cleavage sites DEMEE, EDVVC, ECTTP, ALVTP) and omit the identity of the 

P1 and P1’ residues. 

 

4.3.1. Exploration of the (P6-P2) specificity landscape of the HCV NS3/4A protease 

reveals a diverse specificity profile  

To mimic the viral intrachain arrangement of substrate libraries and the protease, we 

utilized a modified version of the assay described by Iverson, Georgiou and co-workers40 

as depicted in Figure 4.1B. A mutagenic library was created incorporating degenerate 

codons at P6-P2 specificity defining substrate positions210,211. In our assay, substrates are 

transported to the surface of yeast cells in a cleavage-dependent manner: the degree of 

cleavage is estimated by measuring the relative levels of substrate-flanking FLAG and 

HA tags using fluorescent, labeled antibodies. We have previously used this assay to test 

known and novel substrates of the HCV protease103. A first round of yeast surface display 

assay and Fluorescence Assisted Cell Sorting (FACS) was performed with an inactive 

protease variant (S139A) to select for high expression of library variants, for removing 

sequences containing stop codons in the substrate region, and to deplete substrate 

sequences that are cleaved by yeast ER proteases212.  

 
The resulting substrate variants from the pre-selection were subjected to rounds of yeast 

surface display assay and FACS with an active protease containing construct to select 

cleaved, partially cleaved and uncleaved variants using three sorting gates (Figure 4.1B), 

based on the relative levels of anti-HA and anti-FLAG fluorescence values (FLAG/HA 

ratio, ranging between 0, for completely cleaved, and 1, for completely uncleaved). 

Sorting gates were defined based on the distribution of populations observed for known 
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cleaved and uncleaved sequences103. This procedure was coupled with rounds of growth 

and selection to improve signal:noise for variants in each pool. Sequence profiles of the 

unselected population and isolated functional variants were determined using next-

generation sequencing technology (Illumina NextSeq). Analysis of unique sequences in 

all sequenced pools showed that we identified a total of ~1.3 million sequences 

corresponding to ~30% of the possible amino acid diversity (3.2 million; Appendix 4). 

Analysis of sequencing and technical replicates as well as overlap between the sequence 

pools was used to determine a count threshold (raw count 11) to remove noise from the 

sequencing data (Appendix 4 and Figure 4.2).  Based on these criteria, we identified 

7472, 8737 and 14702 unique pentapeptide sequences in the cleaved, partially cleaved 

and uncleaved pools. In parallel, we performed Rosetta simulations on all 3.2 million 

sequences in the P6-P2 region, and used a Support Vector Machine to predict the 

complete protease-substrate interaction landscape using sequence information procured 

from the aforementioned library and Rosetta-generated energetic features (Figure 4.1B). 

 

Several novel substrates identified from the three variant populations were tested as 

clonal populations in the yeast surface display assay system (Figure 4.1C, Figure 4.3) to 

validate that individual sequences fall into the gates used for selection from the library 

(Figure 4.4A-C). A subset of these sequences was also tested in vitro to ensure that the 

cleavage properties observed in the yeast system were reproduced with purified protease 

and substrates (Figure 4.4D). 

  

 



101 

	

Figure 4.2. Threshold determination  
(A) Threshold vs. percentage of initial overlap between cleaved and uncleaved sequences 
for all variants. The final threshold beyond which all other thresholds have a percentage 
overlap that is <= 10% is marked with an arrow (B) Duplicate population analysis. 
Normalized error is calculated for biological duplicates of cleaved samples by the 
formula: | (counts_S2 - counts_S) | / counts_S2, where sample S and S2 are biological 
duplicates (C) the Area Under the Curve for the ROC plot, when the SVM is used to 
classify cleaved versus uncleaved sequence pools at various count thresholds. 
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Figure 4.3. 2D plots of anti HA and anti-FLAG antibody signals seen in the flow 
cytometry assay  
(A) display controls (B) Epistatic pathway validation (C) Drug resistant mutant validation 
plots 
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Figure 4.4. Flow cytometry 2D plots showing anti HA and anti-FLAG stains for cell 
populations collected after enrichment round three  
(A) plot showing gate and cell population for cleaved (B) partially cleaved and (C) 
uncleaved populations (D) in vitro gel-based assay using an MBP- GST fusion protein 
(70KDa). Upon overnight incubation with increasing concentrations of the protease – 500 
nM, 700 nM, 1uM, 2uM, 3uM, 4uM (wells #1 through #6) results in cleavage for 
substrate TLIIPCASHL whereas HNTSNCASHL displays no cleavage 
 
We next analyzed the profiles of sequences in each pool. For the cleaved sequence pool, 

the obtained substrate sequence ensemble has greater diversity compared to substrates 

identified from viral genomes sequenced from patient populations (Methods, Figure 

3.1D). For example, we observe that a more diverse subset of amino acids is tolerated at 

substrate positions P6 and P5 in our cleaved and partially cleaved pools (Figure 4.1E, F) 

whereas the patient isolated genomes display a high enrichment of Asp and Glu 

specifically at these positions. Another notable difference observed was the enrichment of 

small hydrophilic residues (Figure 4.1E, F), Ser (at P5) and Thr (at P4) in the cleaved and 

partially cleaved populations, in contrast to enrichment at P3 and P2 in the uncleaved 

population (Figure 4.1G). Strikingly, we found prolines enriched at position P2 in the 
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cleaved and partially cleaved populations and at P3 in the uncleaved populations, which 

corresponds well with the fact that 2 out of 4 canonical cleaved sequences have proline at 

P2 (ECTTP, ALVTP). While some of the above trends are also reflected in the sequences 

we tested during our method validation (Figure 4.1C), it is evident that individual 

positional enrichments cannot be directly used to predict the pool assignments of 

individual sequences. For example, His is enriched at P6 in the cleaved sequence pool, 

however the sequence HNTSN is experimentally determined to be in the uncleaved pool 

(Figure 4.1C, Figure 4.4). While individual positional preferences of amino acids are 

useful, these results clearly indicated that molecular recognition between the protease and 

substrate pools is highly (sequence) context-dependent. We concluded that interactions 

between substrate sidechains (mediated possibly via interaction networks in the protease) 

influence the cleavability, thereby motivating the need for an analysis of the determined 

specificity landscape using properties of whole pentapeptide sequences. 

 

4.3.2. Clustering among cleaved, partially cleaved and uncleaved substrates  

To visualize the functionally labeled sequence space of the experimentally derived 

substrates, we generated a force-directed graph213,214 (Figure 4.5A) in which each node 

represents a sequence and is colored according to the functional pool to which it belongs. 

Nodes are connected by an edge if they differ by one amino acid (Hamming distance = 

1). Cleaved substrates exhibit significant clustering in the resulting graph (Figure 4.5A). 

To examine the landscape in greater detail around the cleaved sequences, we generated a 

sub-graph of the cleaved sequences (Figure 4.5B). We identified four clusters in this 

graph using the Gephi213 modularity algorithm and determined corresponding profiles for 
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each cluster.  One identified cluster is clearly related to a canonical substrate, DEMEE.  

The other three clusters appear to have similarities with the other three canonical 

substrates (ALVTP, ECTTP, and EDVVC) but are less distinct from each other compared 

to the DEMEE cluster. These results indicate that the four canonical cleaved sites in the 

viral polyprotein are all members of mutationally robust clusters. Single amino acid 

changes within the cluster lead to other cleaved sequences, thereby buffering the impact 

of the heavy mutational load on the virus. 

 

Figure 4.5. Force directed graph representation of experimental landscape; 
Neighbor analysis 
(A) Force- directed graph of amino acid sequence space. Blue nodes are cleaved, red are 
uncleaved, and black is partially cleaved. Edges connect nodes that are within one 
hamming distance of each other (B) Force- directed graph of cleaved sequence. Colors 
denote clusters which are shown as specificity profiles outlined in the same color as the 
corresponding cluster (C) Frequency of neighbors for cleaved, partially cleaved, and 
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uncleaved sequences denoting cleaved neighbors shown in blue bars, uncleaved 
neighbors depicted in red and partially cleaved neighbors depicted as black. 
 

To determine if this clustering behavior observed in the cleaved sequence pool is also 

found in the partially cleaved and uncleaved pools, we calculated the fraction of 

neighbors for sequences with neighbors that belong to the same functional pool (Figure 

4.5C). We find that similar to cleaved sequences, uncleaved sequences are also most 

frequently surrounded by uncleaved neighbors indicating clustering behavior for this 

functional pool as well. On average, cleaved sequence neighbors are 66.4% cleaved, and 

uncleaved sequence neighbors are 83.3% uncleaved. Partially cleaved sequences are the 

least clustered among the three pools, having on average 53% neighbors belonging to the 

same pool. These distributions indicate that in the specificity landscape, clusters of 

partially cleaved sequences surround clusters of cleaved and uncleaved ones.  

 

To delineate how the three functional populations, which appear to be individually 

clustered in sequence space, are connected to each other, we used the PageRank metric215. 

This metric predicts the likelihood of reaching a node given a random walk on the 

substrate specificity landscape starting from a chosen sequence. Strikingly, partially 

cleaved substrates have higher PageRanks (Figure 4.6A) than either cleaved or uncleaved 

substrates, indicating that they are most likely to be reached on long unbiased 

evolutionary trajectories starting from the canonical cleaved sequence DEMEE, the 

sequence that was used as the template for library generation. These connectivity patterns 

imply that partially cleaved node clusters may act as an evolutionary buffer on the 

substrate landscape, thereby enhancing robustness.  
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Figure 4.6. Graph metrics for WT and mutant protease 
Cleaved (blue), uncleaved (red) and partially cleaved (black) graph metrics for (A) wild 
type HCV (B) randomly generated graph (C) R155K/A156T/D168A triple mutant (D) 
A156T and (E) D168A. Partially cleaved sequences generally have higher pageranks and 
lower eccentricity. Number of mutations vs. fraction cleaved variants reached for (F) 
experimental and (G) SVM-generated graphs. Degree distribution for cleaved sequences 
subset (H) and uncleaved sequences subset (I) of SVM derived graph. 
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The graph generated by the experimentally derived sequences is incomplete (~30,000 

nodes out of the 3.2 million possible). To test if the observed clustering and PageRank 

distributions are an artifact of the limited sampling in the experiment, we generated a 

control random graph (Figure 4.7A) with the same number of nodes and edges, but 

having a randomly rewired connectivity. Both partially cleaved and uncleaved sequences 

are found to have higher pageranks than cleaved sequences in this random graph, 

indicating that the higher pageranks of partially cleaved sequences than cleaved and 

uncleaved sequences in the original experimental graph is significant.  

Figure 4.7 Force – directed graphs for WT and mutant proteases 
 (A) randomly generated graph (B) wild type HCV protease (C) R155K/A156T/D168A 
triple mutant (D) D168A variant (E) A156T mutant 
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4.3.3. Energetic features derived from Rosetta modeling enable reconstruction of the 

complete protease-pentapeptide substrate landscape  

While the experimentally-derived populations of the cleaved, partially cleaved and 

uncleaved sequences revealed striking clustering patterns in sequence space, it is not 

clear if these connectivity patterns would be preserved in a complete graph containing the 

complete diversity at five positions (3.2 million sequences).  Therefore, to predict 

cleavability of all possible 3.2 million sequences in the interaction landscape, we used a 

Support Vector Machine (SVM)-based method that we developed previously103. Briefly, 

each sequence was threaded onto a bound complex based on a modeled near-attack 

conformation a crystal structure of the protease, and the complex was then relaxed to 

maintain favorable catalytic geometry. Energy evaluation of each of the 3.2 million 

complexes was performed using Rosetta and Amber simulation packages. A binary 

classification (cleaved/uncleaved) SVM was trained on a subset of experimentally 

identified sequences that passed a more stringent threshold of enrichment compared to 

the unselected pool in our assay (1817 cleaved and 3605 uncleaved sequences) as well as 

sequences identified by Shiryaev et al.41 for a total of 7342 unique sequences. Training 

features consisted of structure-based features (energies of interaction) and sequence-

based features (see Appendix 4, Figure 4.8A). We initially cross-validated the SVM on 

the training set using an 80:20 split with 100 iterations, which yielded an average auROC 

of 0.96 (Figure 4.8B) indicating high recapitulation of training data (a perfect 

performance would lead to an auROC of 1).  We then used the SVM to predict cleaved 

and uncleaved labels for the remaining 3,192,658 sequences. These predictions have a 

precision of 0.96 at a recall level of 0.91 for an overall accuracy of 0.96 (Figure 4.8B) for 
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all experimental sequences. We experimentally validated cleavage predictions for six 

substrates as clonal populations using the yeast assay and find good agreement with the 

SVM-based predictions (Figure 4.9A). We visualized a sub-graph of predicted cleaved 

sequences present at a distance > 2 from the hyper-plane constructed by the SVM (Figure 

4.8C). The experimentally identified cleaved sequences are recapitulated well, and 

distributed evenly across the predicted cleaved population.  

 

4.3.4. Structural and energetic bases for observed specificity patterns 

Having obtained and validated predictions of cleavability by combining experimental and 

computational data, we turned to structural models of protease-substrate complexes to 

obtain insight into the underlying structural basis of observed specificity patterns. For 

example, a comparative analysis of the partially cleaved substrate ‘TATTA’ and 

canonical substrate ‘EDVVC’ reveals that the former, composed of small residues does 

not completely occupy the substrate cavity volume (Figure 4.9B, C) whereas ‘EDVVC’ 

occupies the entire cavity. The lack of voids at the interface and several hydrogen bonds 

formed by the canonical lead to better binding (Binding interaction energy = -80.2 

Rosetta energy units (Reu), as opposed to -77.5 Reu for TATTA), resulting in better 

cleavage for this substrate. Similarly, models of the uncleaved sequence FWPPM (Figure 

4.9D) reveals that the side chains are found to have steric clashes with the protease side 

chains. Apart from sidechain-based interaction patterns, models also capture backbone 

conformational changes that affect the orientation of the substrate in the active site. For 

example, in the model corresponding to the sequence RPGPG (uncleaved), the proline 

present at P3 in RPGPG (Figure 4.9E) bends the peptide chain away from the protease, 
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resulting in breaking of the crucial backbone hydrogen bond patterns that are 

characteristic of protease-substrate interactions4.  

 

 

Figure 4.8. SVM generation workflow, contingency table and validation results 
(A) Schematic workflow for SVM generation (B) Sub-graph of SVM predicted cleaved 
sequences with a distance > 2 from the hyperplane. Experimental cleaved sequences are 
dark blue and experimental partially cleaved sequences are depicted as black. (C) 
Contingency table for SVM prediction (D) ROC plot of cross-validation on training set 
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for SVM (E) Flow cytometry plot for ECTIP (SVM- predicted cleaved) (F) Flow 
cytometry plot for RPGPG (SVM – predicted uncleaved) 
 

 

Figure 4.9. Structural basis for SVM prediction & validation 
 (A) Validation assay performed for three predicted cleaved and uncleaved sequences 
using a yeast surface display based technique (B) and (C) depict the volume occupied by 
TATTA and EDVVC, EDVVC occupies an optimal volume, making good contacts with 
the protease residue side chains. TATTA fits in the available space but does not make 
optimal contacts, thus resulting in suboptimal interaction energetics making TATTA a 
suboptimal substrate (D) Peptide (surface shown in blue) “FWPPM” sterically clashing 
against the protease chain (E) Structure of two models, ECTIP (cleaved) and RPGPG 
(uncleaved) 
 
 
Structural analysis also allows rationalization of non-additive (epistatic) patterns between 

amino acid substitutions. We detected the presence of both positive and negative epistasis 

in our experimental data, and further investigated two cases (Figure 4.10A). We 

examined a predicted negative epistasis pathway (Figure 4.10B), where single-mutant P 

at position P4 and single-mutant Q at position P3 both result in a cleaved substrate but the 

double-mutant PQ at position P3-P4 is uncleaved. We measured the mutual information 
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(Figure 4.10C; Appendix 4) between positions P3 and P4 in the experimentally derived 

cleaved sequence pool and found that both L at P3 and Q at P4 (corresponding to 

sequence LSLQP) and P at P3 and I at P4 (corresponding to sequence LSPIP) are 

correlated, indicating that these two amino acid preferences are found in the 

experimentally-derived cleaved population at a higher incidence than expected by their 

individual incidence.  However, the correlation for P at P4 and Q at P3 (corresponding to 

sequence LSPQP) is low, suggesting that the PQ pattern is depleted in the cleaved 

sequence population. Structurally, the sequence LSPQP (Figure 4.10D) may have an 

increased PPII (polyproline-II) helix propensity216,217, causing the substrate to twist out of 

a catalysis-competent binding conformation in our models. The PPII helix propensity for 

the sequence LSPIP is lower thus resulting in retention of the extended substrate binding 

conformation that is favorable for catalysis4. Thus, analysis of models of individual 

substrates provides atom-resolution insights into how the underlying biophysics of 

molecular recognition by the protease shapes the observed specificity landscapes, 

including non-additive effects.  

 
Having validated (Figure 4.10E) these examples of double-mutant epistatic networks, we 

enumerated the double mutant epistatic networks present in the experimental data, and 

found that the majority of these epistatic networks (60.7%) involved cleaved and partially 

cleaved sequences only. The preponderance of epistatic networks at the cleaved/partially 

cleaved boundary indicates that the boundary between cleaved and partially cleaved 

sequences is more rugged than the boundary between cleaved and uncleaved sequences, 

further highlighting the role of partially cleaved sequences as a biophysical buffer in 

sequence space, leading to “gradient robustness” proposed by Tawfik and co-workers. 
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Figure 4.10. Structural basis underlying epistasis found on the interaction 
landscape. 
(A) Examples of positive and negative epistasis. Cleaved sequences are highlighted in 
blue, partially cleaved in red. (B) Specificity profiles for entire cleaved set (left), 
sequences with glutamine at P3 (middle), and proline at P4 (right). (C) Heatmap of 
correlations between positions 3 and 4, as measured by mutual information.  (D) 
Polyproline II structure propensity of peptides (see text). (E) Experimental validation of 
the sequences in both positive and negative epistatic pathways, performed using yeast 
surface display. Blue bars indicate sequences that are expected to be cleaved and black 
bars indicate sequences that are expected to be partially cleaved.   
	
 

4.4.5. Mutational robustness and possible evolutionary trajectories in the 

experimentally-determined and computationally reconstructed landscape 

Having computed the entire P6-P2 specificity landscape, we next examined the 

connectivity patterns between cleaved and uncleaved sequences in this reconstructed 

landscape. As with the experimentally determined landscape, the reconstructed landscape 

also shows clear evidence of clustering between cleaved and uncleaved nodes (Figure 

4.6G-I), indicating that mutational robustness extends to regions of sequence space not 
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covered in our library, and is an essential feature of this protease-substrate interface. As 

our SVM-based approach is a binary classification scheme, partially cleaved sequences 

are classified in either cleaved or uncleaved pools. Attempts to build a 3-way classifier 

failed due both to the noise from the experiments as well as difficulty in estimating small 

energy differences in Rosetta simulations. Further improvements in each methodology 

may allow the prediction of partially cleaved sequences. 

  

As the hepatitis C virus is subject to a considerable amount of evolutionary drift, we 

investigated the impact of the pathways of drifting on the landscape on maintaining 

function. For the experimentally determined landscape, we calculated the number of 

mutations from each canonical sequence to the functional boundary and plotted the 

fraction of cleaved substrates that can be reached at each step (Figure 4.6F). The curves 

for both DEMEE and EDVVC reach a small initial plateau and then rise sharply, 

indicating that both are surrounded by a cluster of cleaved sequences and then must 

bridge a largely non-functional region of the graph to reach the rest of the cleaved 

sequences, whereas the curves for both ALVTP and ECTTP rise steadily, indicating that 

the topology surrounding these sequences is less rugged.  

 

Both the reconstructed and experimentally-derived landscapes feature several “novel” 

cleaved sequence patterns (defined as >3 substitutions away from a canonical recognition 

motif). To investigate if these novel sequences can be reached, as an example, we 

generated a sub graph of the sequence space connecting the canonical cleaved sequences 

(DEMEE, EDVVC, ECTTP, ALVTP) with each other as well as the novel cleaved 



116 

	

sequences, e.g., PSTVF (Figure 4.11A). Analysis of all inter-node shortest paths on these 

networks shows that there exist many paths between canonical and novel sequences that 

do not include uncleaved nodes (viable paths) while some paths involve traversal of at 

least one predicted uncleaved node (unviable paths; Figure 4.11B). All canonical 

sequences are more connected to each other than to any of the novel sequence motifs, 

suggesting that the latter may be “kinetically” less accessible during evolutionary drifts.  

 

Figure 4.11. Force directed graph representation between five canonical and novel 
sequences and graph metrics for validation 
(A) Force-directed interaction graph between the five canonical sequences – DEMEE, 
ECTTP, EDVVC, ALVTP and the novel cleaved sequence PSTVF (depicted by large 
blue nodes). The graph depicts neighbors of all intermediate sequences between PSTVF 
and all canonical sequences. The cleaved sequences in the interaction pathways are 



117 

	

denoted by blue nodes and the uncleaved are denoted by red (B) The fraction of 
uncleaved nodes present in the shortest paths from both canonical sequences and novel 
sequences to all canonical sequences (C) Degree vs. fraction of the shortest paths 
uncleaved between all novel sequences and all canonical sequences. 
 
 

We calculated the fraction of non-viable paths between canonical sequences and 

compared it to the fraction of non-viable paths between canonical sequences and novel 

sequences. The latter shows a higher, albeit still small, fraction of non-viable paths 

(Figure 4.11B). We also find that those novel cleaved sequences that have a higher 

fraction of cleaved neighbors (higher degree) are more likely to have a higher fraction of 

viable trajectories to canonical nodes (Figure 4.11C). Thus, it appears that the higher 

single mutational robustness of a given novel sequence is correlated with its ability to be 

reachable from/to canonical sequences that are at least three amino acid substitutions 

away in sequence space. Further contributions from codon usage in the host context may 

modulate the reachability of different substrates by making some amino acid changes 

even less likely. Our analysis above leaves out these contributions to selectively delineate 

the impact of amino acid-level effects. 

 
4.3.5. Protease specificity landscape may contribute to negative selection 

Sequences of patient-derived genomes indicate that the HCV virus is under strong 

negative selection218,219. Although the underlying mechanisms are not well understood, 

several factors have been invoked to explain the observation of a low dN/dS ratio 

(number of non-synonymous to synonymous substitutions in the genome) in the patient-

derived populations including intrahost competition between quasispecies, and immune 

evasion220. Given the centrality of the protease in viral maturation, we asked if 
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maintenance of cleavability (and uncleavability) in different parts of the polyprotein also 

contributes to negative selection, and what, if any, are the limits imposed by the 

recognizability of different polyprotein regions by the protease on their variability. 

 

As our reconstructed landscape provides information on all pentapeptide sequence 

combinations (followed by Cys-Ala), we asked if overlapping pentapeptides in the other 

parts of the polyprotein (apart from the known cleavage sites) are likely to be cleaved, 

especially if they acquired a Cys-Ala pattern in the two immediately downstream residues 

(thereby acquiring the necessary heptapeptide pattern that would be cleaved). If several 

regions of the polyprotein are poised to be cleaved upon acquisition of the Cys-Ala motif, 

an error catastrophe may ensue upon increasing the mutational load. We performed a 

genome-wide comparison of patient derived sequences with sequences predicted as 

cleaved by our SVM classifier. Each viral genome219 was split into overlapping 5-mer 

peptide sequence fragments using a one-residue sliding window method. These 5-mers 

were compared to the pentapeptide sequences predicted by our approach as cleaved. If 

the patient-derived pentapeptide sequence was found in the cleaved pool, we calculated 

the minimum nucleotide mutational distance of the successive two residues from the 

DNA sequences that code for ‘CA’ and ‘CS’ which are known to be the canonical P1-P1’ 

sites favoring cleavage by the HCV NS3/4A protease (Figure 4.1A). The results (Figure 

4.12A, B, Figure 4.13A-H) indicate that the majority (~70%) of patient-derived translated 

pentapeptides are found in the uncleaved pool. Of the remaining (~30%) 5-mer sequences 

that are identified as potentially cleavable (if they acquire a CA or CS as the following 

two amino acids), 74.1% pentapeptides from all genotypes of the virus require more than 
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three nucleotide changes to acquire a ‘CA’ or ‘CS’ at the P1-P1’ sites (Figure 4.13A-H). 

The avoidance of acquisition of a cleavable sequence in other regions of the protein, 

made feasible by codon usage, may thus contribute to the previously described negative 

selection pressure on the HCV genome218, and may be reflected in the measured low 

dN/dS rates in the non-structural regions of the protein219. Additional avoidance of non-

productive cleavage may also result at the structural level from altered dynamics221 and/or 

the post-translational structural context of the potentially cleavable regions – these may 

be buried (inaccessible to the protease) or adopt secondary structures that are 

incompatible with the extended conformation required to fit in the protease active site36,21.   

 

Figure 4.12. Evidence for negative selection of canonical substrate areas 
(A) Bar plot depicting the number of DNA mutations required to mutate from current 
protein sequence to ‘CS’ which is the scissile bond sequence for the HCV NS3/4A 
protease (B) Table depicting the classification of all genotype derived 5-mers as 
classified by our SVM based predictor 
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Figure 4.13. Plot depicting the number of DNA mutation required to mutate from 
current protein sequence to ‘CS’ which is the scissile bond sequence for the HCV 
NS3/4A protease for all genotypes 
(A) strain 1a (B) strain 1b (C) strain 2 (D) strain 3 (E) strain 4 (F) strain 5 (G) strain 6 (H) 
control. Control is the distance from CA/CS for all 2-mers in all genotypes 
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Figure 4.14. Validation, graph metrics and specificity profile for Drug resistant 
mutant proteases 
(A) Drug-resistant variant structures. Mutations are outlined in sticks and WT residues in 
lines. Active site residues are represented as green sticks (B) Validation assay performed 
using yeast surface display for each of the mutants (C-F) Mutant specificity logos for the 
triple mutant, D168A, A156T and wild type showing that the mutants have very similar 
specificity profiles with slight variation as compared to the WT (G-H) Substrate 
sequences that are recognized by a greater number of variants have higher degrees (G) 
and pageranks (H) 
 
4.3.6. Specificity landscapes of Drug Resistant Protease variants  
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As the NS3/4A protease plays a key role in the viral assembly and maturation process, it 

is a target for therapeutics that aim at neutralizing viral activity. However, due to 

prevalence of quasispecies that are lurking at low levels in the population222, several viral 

variants get exposed to the drug. Some of these develop resistance, and propagate to form 

Resistance Associated Variants (RAVs). To investigate how drug-resistant variants of the 

protease affect the mutational robustness, we explored the specificity landscape for three 

RAVs – A156T, D168A, R155K/A156T/D168A (Figure 4.14A). If the connectivity 

patterns of the sequences recognized by the RAVs are dramatically different and less 

clustered, it would indicate that their evolutionary fitness might be more limited under the 

heavy mutational load, as drifts on the substrate side would abolish the molecular 

interaction required for viral maturation. In this scenario, treatment with mutagens may 

be a desirable therapeutic strategy to induce error catastrophes. On the other hand, if 

similar mutationally robust connectivity is detected, the RAVs are likely to have a similar 

evolutionary potential as the wild type, and have an additional selective advantage in the 

population in the presence of the drug. 

 

To obtain the landscapes of the protease variants (Figure 4.5B-E), we generated the 

library using a PCR amplification based strategy; isolated functional variants using 

FACS, deep sequenced the isolated populations and validated mutants (Figure 4.3, Figure 

4.14B) identified from these populations using the yeast surface display assay. We find 

that the RAVs demonstrate a similar sequence profile to each other and to the wild type 

protease (Figure 4.14C-F). Upon comparing the graphical properties of the specificity 

landscapes of the various protease variants, we observe that substrates that are 
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experimentally detected in the cleaved pools of a greater number of protease variants are 

more reachable (higher pageranks) and more connected (higher degree) in each graph 

(Figure 4.14G, H). As our goal was to compare gross features of the specificity 

landscapes for the wild type and variant proteases, we did not perform detailed structure-

based calculations for RAVs. Nonetheless, these data indicate that more recognizable 

substrates appear to be more robust to changes in the protease, and indeed, mutational 

robustness is a key feature of this specificity landscape. 

 

4.4. Discussion 

For RNA viruses, such as HCV, which have a high mutation rate, it has been 

hypothesized that viral evolution occurs via “survival of the flattest”: the most conserved 

viral form is not necessarily the most fit, but instead is the one most robust to mutation – 

thus mutational robustness may provide an evolutionary advantage145,151,153. Our data, 

based on combining information gleaned from library screening in yeast, deep 

sequencing, and structure-based modeling, provide atomic-resolution insight into how 

mutational robustness may be encoded in the molecular recognition landscapes involved 

in viral maturation, and indicate that cleavage specificity of the HCV NS3/4a protease is 

robust to patient-derived mutations in both the substrate regions as well as the protease. 

However, molecular interaction between the protease and substrate, which key for viral 

survival, is but one of the many evolutionary forces at play, especially in the “wild”223. 

Other factors such as the intrahost population size, stability and structure of the viral 

RNA genome, and interactions between the host and viral machineries and other 
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environment dependent factors are also important to consider while considering 

evolutionary demands and trajectories. 

 

We used a yeast surface display based assay that relies on the cleavage of the substrate 

region in the ER of yeast followed by cell sorting into gates and deep sequencing. We 

note that our assay is qualitative, and does not permit association of the detected signal 

from deep sequencing with quantitative cleavability of substrates. Indeed, while we have 

validated that assignments to the three different pools is accurate with at least ~20 

individual sequences, the identified cleaved and partially cleaved substrates may 

represent a wide range of catalytic efficiencies. A limitation of our technique is that it 

flattens this diversity into two pools. On the other hand, the assay construct with the 

protease and substrate on the same chain is a good representation of the situation in the 

virus, where the substrates of the protease are part of the same polyprotein (although both 

cis and trans cleavages occur) leading to high effective concentrations of substrates ([S] 

>> KM) in vivo. Under these saturating conditions in the virus and in our assay, we argue 

that selectivity and catalytic efficiency are both determined to a great extent by the 

goodness of fit of various substrates in the protease active site (i.e. by the relative binding 

between the different substrates).  Similarly, our machine learning approach to combine 

experimental and computational data also is not without errors, showing a false-positive 

rate of ~5-10% on the experimental data. While we have validated several predictions on 

individual sequences (Figures 4.1, 4.9, 4.14), it is possible that some individual sequences 

may be mispredicted. However, the overall trends regarding the connectivity patterns 

observed for the entire landscape should be robust to the misprediction noise. Further 
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ongoing development of the computational and experimental methods that we utilized is 

expected to help increase the accuracy of the approach.  

 

HCV infects ~3% of the world population and the limited number of available viral 

genome sequences show low sequence heterogeneity in the protease and its substrate 

regions. Nevertheless, resistance mutations upon protease inhibitor drug treatment arise 

in a facile manner in the patient population, suggesting that genetic heterogeneity 

(quasispecies) indeed exists, possibly at levels too low for being captured in patient-

derived sequencing. Spontaneous emergence of diverse HCV protease mutations 

(including drug-resistant mutations) was demonstrated recently by Liu and colleagues in 

continuous evolution studies of the protease224, as well as by Sanjuan and colleagues in 

viral replicon assays coupled to ultradeep sequencing208. Our results show how genetic 

heterogeneity is entirely consistent with the robustness of a key protease-peptide 

interaction in the virus, and therefore, provide a biophysical baseline for understanding 

evolvability of HCV, and for evaluating inhibitor drug resistance risks. For example, our 

analysis suggests that viral evolution occurring at the substrate sites on the polyprotein 

could also contribute to drug resistance. Due to the flatness of the specificity landscape 

and high inter-connectedness of partially cleaved and fully cleaved clusters, novel 

sequences that are better substrates of drug-resistant variants may easily arise. Thus, 

considering both substrate and protease variation in evaluating and designing anti-viral 

therapies may be necessary. This mode of substrate coevolution-based drug resistance has 

been observed in HIV-1225. At the same time, our analysis of the dominant HCV 

sequences obtained from patients suggests that the protease substrate interactions may 
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also contribute to negative selection and help limit the acquisition of heterogeneity – the 

sequences of sites in the protease that are potentially cleavable upon acquisition of 

CA/CS at the P1-P1’ junction (Figure 4.12) appear to be mutationally distant from doing 

so. Thus, the protease-substrate interaction landscape reveals that the balance between 

mutational robustness, negative selection and adaptive potential to environmental 

changes may be necessary to consider for understanding and therapeutic interventions. 

 

In summary, our exploration of a viral molecular specificity landscape uncovers novel 

specificities for the HCV NS3/4A protease and data provides a biophysical basis for the 

mutational robustness observed for a key interaction required in HCV propagation. Given 

the widespread prevalence of HCV, insights obtained here may help in better 

understanding, and tackling the evolutionary trajectories of this ever-changing virus. The 

developed specificity landscape enumeration approach is general, and combining 

experimental deep sequencing and Rosetta-based structural modeling at a matching high 

throughput, followed by statistical machine learning, may be useful for elucidating a 

significantly larger space of sequence-function relationships for a variety of other 

systems. 
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Chapter 5. A Pareto-optimal approach for structure evaluation using Amber and 

Rosetta energy functions. 

5.1. Abstract 

An accurate energy function is an essential component of biomolecular structural 

modeling and design.  The comparison of differently derived energy functions enables 

analysis of the strengths and weaknesses of each energy function, and provides 

independent benchmarks for evaluating improvements within a given energy function.  

We compared the molecular mechanics Amber empirical energy function to two versions 

of the Rosetta energy function (talaris2014 and REF2015) in decoy discrimination and 

loop modeling tests. Both Rosetta's talaris2014 and Amber's ff14SBonlySC energy 

functions performed well in scoring the native state as the lowest energy conformation in 

many cases.  In 24/150 cases with Rosetta, and in 2/150 cases using Amber, a false 

minimum is found that is absent in the alternative landscape. In 21/150 cases, both energy 

function-generated landscapes featured false minima. The newest version of the Rosetta 

energy function, REF2015, which has more physically-derived terms than talaris2014, 

performs significantly better, highlighting the improvements made to the Rosetta scoring 

approach. To take advantage of the semi-orthogonal nature of these energy functions, we 

developed a Pareto optimization approach that combines Amber and Rosetta energy 

landscapes to predict the most near-native model for a given protein. This algorithm 

improves upon predictions from either energy function in isolation, and should aid in 

model selection for structure prediction and loop modeling tasks.  

 

5.2. Introduction 
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Computational protein structure prediction is dependent on an accurate energy function.  

The native state of a protein is expected to be found uniquely at the minimum of the 

energy function226; therefore, the energy function must robustly discriminate between 

native and non-native conformations. A variety of energy functions to predict protein 

structure have been implemented over the past forty years227–233.  These potentials largely 

fall into one of two categories: molecular mechanics force fields that rely on the 

combination of various empirical potentials such as Lennard-Jones, torsional energies, 

Coulombic interactions, and desolvation penalties228,229,232 and statistical or knowledge-

based potentials that depend on characteristics of known protein structures227,230,231.  While 

molecular mechanics force-fields are generally parameterized on small molecule 

properties232,234–236, statistical potential parameter optimization is often guided by known 

biomolecular structures117,237,238.   Each approach has its own drawback: since parameters 

in physically derived force-fields are fit based on small molecule properties, they may not 

be suited to macromolecules239,240: for example, force-fields will often display biases 

towards certain secondary structure propensities239,241. On the other hand, statistical 

potentials are trained on specific datasets of large biomolecules, and data sparseness may 

lead to overfitting118.  

 

The Rosetta macromolecular modeling program energy function combines elements of 

both categories; it contains physical force-field terms (Lennard-Jones interactions, 

electrostatic interactions, desolvation penalties, etc.) and statistical potentials (probability 

of amino acid identity given backbone angles, probability of backbone angles given 

amino acid identity, probability of backbone-dependent rotamer, etc.)242.  The most recent 
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Rosetta energy function (REF2015) is parameterized on both small molecule properties 

and large sets of biomolecular structures243,  although previous energy functions were 

generally parameterized on known biomolecular structures alone238.  While efforts have 

been made to compare the performance of various empirical force-fields241,244,245, little 

attention has been focused on the comparison between the Rosetta energy function and 

empirical force-fields.   

 

The Amber ff14SBonlySC force field235 uses a standard fixed-charge molecular 

mechanics potential, with torsion potentials based entirely on fits to quantum chemistry 

data.  It is very like the more commonly-used ff14SB protein force field, but does not 

include the empirical modifications to backbone torsion potentials that are present in 

ff14SB, and which provide an improved balance of secondary structure in explicit solvent 

simulations. Hence, ff14SBonlySC is more "physics-based" than is ff14SB, and it 

arguably better suited for the implicit solvent simulations used here, since the empirical 

backbone torsional potentials in ff14SB might be specific to its use of explicit solvent 

simulations. The ff14SBonlySC force field, in combination with a generalized Born 

implicit solvent model246, has been shown to fold a variety of single-domain proteins 

using unrestrained molecular dynamics simulations247. 

 

Comparing the Amber force-field and Rosetta energy function performance at structure 

prediction elucidates the strengths and areas of improvements for each energy function. 

As Rosetta energy functions have been developed based on improving performance for 

certain modeling datasets, testing their performance on the same macromolecular datasets 
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may result in overfitting of the Rosetta energy function, while comparing their 

performance to that of a physics-based Amber energy function is a relatively unbiased 

comparison for evaluating performance improvements.  Finally, selecting a correct near-

native model for a given sequence is an elementary challenge; the Pareto-optimal 

combination of these two semi-orthogonal energy functions provides a method for model 

selection that is able to select more accurate models.  

 

5.3. Results 

5.3.1. Performance of Amber and Rosetta energy functions in discriminating 

between native and non-native structures 

Protein free energy landscapes involve folding funnels248–250 which enable the folding 

chain to efficiently find the native state226,248, and their existence implies that the higher 

energy of non-native (decoy) structures compared to the native (e.g., crystallographically-

determined) structure drives protein folding.  Therefore, a common test used for 

evaluating247,251 and improving118 energy functions is the decoy discrimination test, in 

which the evaluated scores of decoy structures are compared to that of near-native 

structures. High-RMSD decoys which have comparable energies to near-native structures 

are classified as “false minima”, and are indicative of inaccuracies in the energy function 

(Figure 5.1A-C, black points). The  B metric118, ranging from 0 to 1, quantifies the 

existence of false minima in a set of structures upon evaluation with a given energy 

function, with values close to 1 indicating a smooth folding funnel with no false minima. 

Conversely, a lower B value indicates that one or more false minima exist.   
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Figure 5.1. Energy landscape examples for cases of false minima. 
(A-C) Energy landscapes for 2QY7, 1T2I, and 1SEN respectively.  Each dot on the plot 
represents one decoy conformation.  The x-axis is RMSD from native and the y-axis is 
normalized energy.  False minima (defined as decoys within top 10 energies but with 
RMSD > 5.0 Å) are depicted in black.  The B metric, which represents the efficacy of the 
score-function at differentiating between native and non-native decoys, is shown at the 
top right corner of each plot.  Rosetta plots are to the left, in salmon, and Amber plots are 
to the right, in turquoise.   (D-F) Superimposed native (gray) and Rosetta lowest-ranking 
false minimum decoy (salmon) and/or superimposed native (gray) and Amber lowest-
ranking false minimum decoy (turquoise) for 2QY7, 1T2I, and 1SEN respectively.  
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We compared the performance of the Amber energy function and Rosetta energy function 

at ranking native state structures lower than decoy conformations for a set of 150 

proteins.   Amber ff14SBonlySC generally performed better than Rosetta talaris2014, 

scoring significantly higher B metrics for many systems (Figure 5.2A).  We also 

compared Amber to the newer default Rosetta energy function, REF2015242, and found 

that while Amber did have a higher B metric for several systems, several other systems 

had a higher B metric when scored by REF2015, thus showing the improvement of 

REF2015 over talaris2014 when compared to Amber as an unbiased benchmark. 

Nonetheless, the comparative performance of the two energy functions (Amber and 

REF2015; Figure 5.2B) shows that each has its strengths and limitations (Table 5.1). Our 

analysis was carried out with the talaris2014 energy function, and we refer to it as the 

Rosetta energy function in the remainder of this paper.  

 

Figure 5.2. Comparison of Rosetta and Amber performance. 
Scatterplots to depict general performance of Rosetta talaris2014 scoring function vs. 
Amber scoring function (A) and Rosetta REF2015 scoring function vs. Amber scoring 
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function (B) over entire decoy discrimination set.  Each dot represents the B metric for 
one system.  The black line is x=y and the dashed line represents the 95% prediction 
interval.  Any points that lie outside the 95% prediction interval are annotated with the 
PDB ID of that system. 
 
We examined cases in which either Amber, Rosetta, or both were unable to correctly rank 

high-RMSD decoy conformations, scoring them as low-scoring instead of high-scoring.  

A false minimum is defined as a decoy within the top-10 ranked decoys that has a C-a 

RMSD from native of greater than 5 Å.  Three of these cases are shown in Figure 5.1.  

2QY7 (Figure 5.1A, D) has several false minima for Rosetta but none for Amber.  

Generally, Rosetta alone had at least one false minimum in 16% of structures.  1T2I 

(Figure 5.1B, E) has a false minimum for Amber but none for Rosetta; 1.32% of systems 

have at least one false minimum for Amber alone.  1SEN (Figure 5.1C, F) has false 

minima for both Amber and Rosetta, as do 14% of overall structures (Table 5.1).  

Table 5.1. B metric, false minima, and Pareto summary comparisons for Amber 
ff14SBonlySC, Rosetta talaris2014, and Rosetta REF2015 energy functions. 
 No. 

Cases/Total 
No. Proteins 

Decoy Discrimination  

    ff14SBonlySC B > talaris2014 B by 0.1 54/150 

   talaris2014 B > ff14SBonlySC B by 0.1 0/150 

   ff14SBonlySC B > REF2015 B by 0.1 6/140 

   REF2015 B > ff14SBonlySC B by 0.1 9/140 

   False minima in ff14SBonlySC only (not talaris2014) 2/150 

   False minima in talaris2014 only (not ff14SBonlySC) 24/150 

   False minima in ff14SBonlySC and talaris2014 21/150 

   False minima in REF2015 only (not ff14SBonlySC) 0/140 

   False minima in ff14SBonlySC and REF2015 10/140 
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   Pareto selected RMSD < ff14SBonlySC selected RMSD by 1 Å  10/150 

   Pareto selected RMSD < talaris2014 selected RMSD by 1 Å 21/150 

  Pareto selected RMSD < ff14SBonlySC selected and talaris2014 RMSD 
by 1 Å 

1/150 

Loop Modeling  

   ff14SBonlySC B > talaris2014 B 15/39 

   talaris2014 B > ff14SBonlySC B 7/39 

 

Superimpositions of false minima decoys with native decoys show their distinct non-

native conformations involving both misprediction of secondary structure elements as 

well as their incorrect relative placement in tertiary structures.  In the case of 2QY7, a 

Rosetta false minimum, the four-helical bundle found in the native structure is perturbed 

in the false minimum, as the order of the first two helices is reversed; thus, they do not 

contact the other two helices as tightly as that of the native structure (Figure 5.3E, I-J).  

The difference between the native structure of 1T2I and its Amber false minimum is 

subtler. While the contact maps for the native and false minimum conformations are 

similar, except for a small contact region in the native structure between residues 40 and 

59 that does not appear in the false minimum (Figure 5.3K-L), the false minimum is 

slightly more compact and has a more ordered secondary structure. Two beta sheet 

regions in the false minimum are beta strands/unordered in the native structure and two 

alpha helices in the false minimum are beta strands in the native structure (Figure 5.3F-

G).  

 

The case of 1SEN, which has false minima for both Rosetta and Amber, is like 1T2I in 

that the false minima are more ordered than the native structure, although the native 
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structure forms more contacts than do the false minima (Figure 5.3A-D). Residues 85-96 

form a tight beta hairpin in the false minima, whereas the native residues 85-96 has a 

longer loop between the beta strands, resulting in a shorter, less tight, beta hairpin.  

Additionally, residues 94-109 in the native are entirely disordered, while that of the false 

minimum begins as a beta strand and ends in an alpha helix (Figure 5.3H).  Decoys that 

are predicted as false minima often have the same overall structure and contact maps as 

native structures, yet secondary structure differences may result in large structural 

deviation.  In some cases, false minima contain more ordered secondary structures yet 

fewer contacts than native conformations; the propensity away from disordered loops 

may result in lower energies for these false minima. 
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Figure 5.3. Structural analysis of false minima.  
(A) Residues 1-81 of 2QY7.  Gray is native, salmon is Rosetta false minimum.  (B-C) 
Residues 31-59 and 61-96 of 1T2I respectively. Gray is native, turquoise is Amber false 
minimum. (D) Residues 75-135 of 1SEN.  Gray is native, salmon is Rosetta false 
minimum, and turquoise is Amber false minimum.  (E) Contact map for 2QY7 lowest-
Rosetta scored native structure.  (F) Contact map for 2QY7 Rosetta false minimum.  (G) 
Contact map for 1T2I lowest-Amber scored native structure.  (H) Contact map for 1T2I 
Amber false minimum. (I) Contact map for 1SEN lowest-Rosetta scored native structure.  
(J) Contact map for 1SEN Rosetta false minimum.  (K) Contact map for 1SEN lowest-
Amber scored native structure.  (L) Contact map for 1SEN Amber false minimum.  
Contact maps were generated using the Protein Contact Maps tool at nanoHUB.org252.  
 
5.3.2. Per-residue Rosetta energy decomposition 
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To investigate whether certain residues, structural elements, or energy terms contribute 

more to false minima conformations, we analyzed the per-residue score decomposition 

for Rosetta scores for the three systems outlined above (2QY7, 1T2I, and 1SEN).  We 

were unable to perform the same decomposition for Amber as the GB solvation term is 

not pairwise-decomposable253.  We calculated the Z-scores for each residue over the 

lowest-scoring native and false minimum conformations. We identified residues as 

possibly implicated in false minima if the false minimum residue Z-score score was 

lower than the native residue Z-score by at least one (i.e. the distance between the two 

was greater than one standard deviation).  We have highlighted these residues (Figure 

5.4A-C).  False minima contributing residues were distributed over the conformations 

and did not cluster to any particular region.  Moreover, false minima contributing 

residues were found in various types of secondary structure: alpha helices, beta strands, 

and loops.  It is therefore currently not possible to attribute Rosetta false minima to any 

single per-residue propensity, but as expected, several small errors in energy estimation 

may lead to the observed incorrect scoring.    
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Figure 5.4. Per-residue and per-score-term propensity of score-functions toward 
false minima.  
(A-C) Native (gray) and Rosetta-minimized (salmon) structures of 2QY7, 1T2I, and 
1SEN respectively.  Rosetta-minimized residues that are scored by Rosetta as greater 
than 1 standard deviation away from the corresponding native residue are highlighted in 
red.  Heatmaps of per-structure, score-term contribution to Rosetta-determined (D) and 
Amber-determined (E) false minima and true maxima. The row marked Overall shows 
the percentage of structures that indicate some degree of implication for that score-term. 



140 

	

 
5.3.3. Per-scoreterm contributions of Amber and Rosetta 

We reasoned that insight about the performance and pathologies of each energy function 

could be gained by identifying the energy terms that are responsible for correct and 

incorrect evaluations within the same energy function. For example, we asked which 

terms in the Amber energy function help it avoid mis-scoring a decoy (called Amber true 

maximum) that is identified as a false minimum in the Rosetta landscape (called Rosetta 

false minimum), and vice versa.  

 

We identified terms that contribute to false minima and true maxima by calculating the Z-

scores per decoy set and native set for each protein.  If the lowest native score-term Z-

score is greater than the false minimum score-term by at least one, that term is implicated 

in that false minimum. The reverse (i.e. true maximum score-term Z-score is greater than 

the lowest native score-term Z-score by at least one) is true for identifying true maximum 

contributing score-terms.  The heatmap in Figure 5.4D depicts the fraction of Rosetta 

false minima decoys (top) and true maxima decoys (bottom) that show some degree of 

implication for each score-term.  This is calculated both on a per-protein basis and over 

the entire false minima/true maxima sets. Several score-terms, including hbond_sr_bb, 

fa_dun, fa_rep and omega, are implicated in a majority of false minima in the Rosetta 

talaris2014 energy function. A set of other score-terms contribute to a majority of Rosetta 

true maxima (or Amber false minima), including rama, hbond_bb_sc, hbond_sc, 

p_aa_pp, and fa_elec.  These are score-terms that are not usually implicated in Rosetta 

false minima, thus demonstrating that the score-terms that contribute to the two trends 

(towards false minima and true maxima) are mutually exclusive. Except fa_elec, the other 
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terms identified as helping “rescue” Amber false minima are all PDB-statistics derived, 

and it is not surprising that they are implicated in correcting the errors of the more 

physics-based Amber energy function. 

 

We next performed a similar analysis on Amber score-terms for both Amber false 

minima and Amber true maxima (Figure 5.4E).  We found that bond, angle, and gb are 

responsible for more than 50% of Amber false minima and that dihedral and elec are 

implicated in rescuing Rosetta false minima (Amber true maxima).  We found that score-

terms that are responsible for false minima are not implicated in true maxima and vice 

versa. Similar to the identification of statistically-derived terms in Rosetta as being 

responsible for correctly scoring Amber false minima, we find that physics-based terms, 

i.e., elec (which is counterbalanced by gb) and dihedral potentials, that are orthogonal to 

the talaris2014 Rosetta energy function, are implicated in the rescue of Rosetta false 

minima by Amber.  

 

5.3.4. Pareto-selected decoys improve decoy selection  

Based on the results above indicating that the rescue of false minima in the landscape 

generated by one energy function can be effected using the other energy function due to 

additional terms or different parameterization of terms, we sought to develop an approach 

to productively combine the two landscapes for model selection. In model selection (for 

example in protein structure prediction) the challenge is to select a near-native 

conformation from a set of decoy conformations based on one or more energy values or 

other features. Typically, an energy value obtained from a single energy function is used. 
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In the current benchmark set, if model selection is performed by the Rosetta and Amber 

energy functions individually, the Rosetta lowest-scored decoy has an RMSD of > 5.0 Å 

for thirteen out of 150 systems, while the lowest-scored Amber decoy has an RMSD of > 

5.0 Å for seven systems (four of which overlap with the aforementioned Rosetta 

systems).  We designed a Pareto optimization-based algorithm (see Methods) to select a 

decoy conformation based on both sets of ranks to improve the chances of selecting a 

near-native decoy.   

 

We found that our Pareto algorithm improved model selection for both Rosetta and 

Amber rankings (Figure 5.5D-E, Figure 5.6), although it improved model selection for 

Rosetta to a greater extent.  The Pareto-selected decoy had a lower RMSD than the 

lowest-scoring Rosetta decoy by at least 1 Å for ten out of the thirteen cases mentioned 

above and a lower RMSD than the lowest-scoring Amber decoy by at least 1 Å for four 

out of the seven cases mentioned above.  More generally, the Pareto-selected decoy had a 

lower RMSD than the lowest-scoring Rosetta decoy for 22 out of 150 cases and a lower 

RMSD than the lowest-scoring Amber decoy for 11 out of 150 cases.  
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Figure 5.5. Pareto-optimal decoys.  
(A-C) Scatterplots of Rosetta-rank vs. Amber-rank for all decoys of 2QY7, 1T2I, and 
1SEN respectively.  Each point represents one decoy conformation.  The set of Pareto 
solutions is purple, the top-10 ranked Amber decoys are turquoise, the top-10 ranked 
Rosetta decoys are salmon, and the chosen Pareto solution is black.  Annotations 
represent the RMSD in Å from native for the top-ranked Amber decoy (turquoise), top-
ranked Rosetta decoy (salmon), and chosen Pareto solution (black). Scatterplots that 
show the efficacy of the Pareto solution at minimizing the distance from native relative to 
the top-ranked Rosetta decoy (D) and top-ranked Amber decoy (E).  Each point 
represents one system.  The x-axis is the difference between the Pareto solution RMSD 
from native and the RMSD of the minimal-RMSD decoy conformation, while the y-axis 
is the difference between the Rosetta lowest-ranked conformation (D) or Amber lowest-
ranked conformation (E) RMSD from native and the RMSD of the minimal-RMSD 
decoy conformation.  Points that fall outside the 95% prediction interval are annotated.  
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Figure 5.6. Plot of minimal (All), Pareto-selected, Rosetta-selected, and Amber-
selected RMSD for each system. 
 
We examined the false minima cases described above (2QY7, 1T2I, and 1SEN) and 

found that the Pareto-selected decoy generally had a lower RMSD than that of Rosetta- or 

Amber-selected decoys (Figure 5.5A-C).  However, for 2QY7, which contains a false 

minimum for Rosetta but not for Amber, the Amber-selected decoy had a slightly lower 

RMSD than that of the Pareto-selected decoy (1.7 Å vs. 2.0 Å).  Nevertheless, the Pareto-

selected decoy RMSD is significantly lower than that of the Rosetta-selected decoy (2.0 

Å vs. 7.1 Å).  Thus, a Pareto optimality framework allows combining the two energy 

functions productively to select a near-native model. 

 

5.3.5. Loop Modeling 

The conformational variability of loops plays a multi-functional role in protein structure 

and function. They are implicated in stability and folding pathways254, binding and active 

sites255,256, and binding other proteins257,258.  Efficient sampling algorithms have been 

developed256–259, but loop structure prediction efforts can be limited by energy functions, 

as the energy gaps between loops are smaller and minima are narrow260. Therefore, we 

tested both Amber and Rosetta energy functions on a loop modeling benchmark obtained 
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from T. Kortemme and S. O’Connor. In this benchmark, most of the structure remains the 

same over the set of decoys; the difference lies in a small loop region, which can vary 

highly in RMSD.  The energy gaps between structures are therefore smaller; thus, loop 

modeling provides a more stringent test to distinguish between energy functions. 

 

We found that Amber ranked loops more accurately than did Rosetta (Figure 5.7C).  

Several systems had significantly higher B values with Amber than with Rosetta.  Figure 

5A depicts the energy landscapes for one of these structures (1TCA).  The Amber funnel 

is steeper than that of Rosetta, which is reflected in its higher B (0.86 vs. 0.37).  The 

lowest-energy and highest-energy loop conformations are shown for both Rosetta and 

Amber in Figure 5.7B.  Both Rosetta and Amber rank the lowest-energy and highest-

energy conformations correctly. 

 

Figure 5.7. Loop modeling benchmark.   
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(A) Energy landscape for 1TCA.  Each dot on the plot represents one decoy 
conformation.  The x-axis is RMSD from native and the y-axis is normalized energy.  
The B metric, which represents the efficacy of the score-function at differentiating 
between native and non-native decoys, is shown at the top right corner of each plot.  
Rosetta plots are to the left, in salmon, and Amber plots are to the right, in turquoise.  The 
lowest-energy decoy conformation in each plot is shown in green and the highest-energy 
decoy conformation is shown in red. (B) Native structure of 1TCA (gray) and close-ups 
of loop conformations for lowest-energy decoys (green) and highest-energy decoys (red) 
for Rosetta (salmon box) and Amber (turquoise box).  (C) General performance of 
Rosetta talaris2014 scoring function vs. Amber scoring function over the entire loop 
modeling set.  Each dot represents the B metric for one system.  The black line is x=y and 
the dashed line represents the 95% prediction interval.  Any points that lie outside the 
95% prediction interval are annotated with the PDB ID of that system. 
 
5.4. Discussion 

It can be difficult to systematically compare energy functions derived by different 

methods.  Systematic comparison of Amber ff14SBonlySC (a physically-derived energy 

function) and Rosetta talaris2014 (both physical and statistical based) reveals the 

strengths and weaknesses of each energy function.  Generally, Amber ff14SBonlySC 

performs better than Rosetta talaris2014 at both decoy discrimination and loop modeling. 

However, comparison of Amber ff14SBonlySC to Rosetta REF2015 (the newer, default 

Rosetta energy function) reveals that REF2015, which has more physically-derived terms 

than talaris2014, performs comparably well to Amber ff14SBonlySC.  Examination of 

Rosetta talaris2014 score-terms that rescue Amber ff14SBonlySC false minima and 

Amber ff14SBonlySC score-terms that correct Rosetta talaris2014 false minima reveals 

two possible sources for the performance improvement of REF2015.  While two of the 

Rosetta score-terms and two of the Amber score-terms that contribute to the correction of 

false minima are counterparts to each other (Amber dihedral and Rosetta rama, and 

Amber elec and Rosetta fa_elec), subtle nuances in their derivation and parameterization 

appear to influence the propensity of each energy function toward false minima.   
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Although rama and dihedral both score the propensity of the backbone dihedral angles, 

rama does so in a statistically-derived manner while dihedral is based on fits to quantum 

chemistry data.  Both elec and fa_elec are derived from a Coulombic model, yet they are 

differently parameterized; the Amber elec is parameterized via small-molecule properties, 

whereas fa_elec is optimized on larger biomolecular structures.   The improvement of 

Rosetta REF2015 over Rosetta talaris2014 may be caused by its greater inclusion of 

physical-derived terms (bond, angle, etc.) and/or its parameterization on both small-

molecule properties and larger biomolecular structures. 

 

Model selection, or the ability to select a near-native decoy from a set of decoy 

conformations is a general problem in protein structure prediction.  If low-energy decoys 

exist in false minima in the energy landscape, it is difficult to identify conformations that 

are near-native.  Since Amber and Rosetta provide different, semi-orthogonal 

information, Pareto-optimal solutions enable the identification of near-native decoys.  

The Pareto-based algorithm that we have implemented improves model selection for 15% 

of structures over Rosetta model selection and 7.3% of structures over Amber model 

selection.  The model selection algorithm is extensible to any two sets of energy 

functions or model ranks for one set of models and can thus be used to combine any two 

sources of information to produce meaningful improvements in near-native decoy 

selection. 
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The approach described here should enable comparative analysis and combination of 

future versions of both Amber and Rosetta scoring functions, and enable a variety of 

biomolecular modeling tasks. 

 

5.5. Methods 

5.5.1. Benchmark Sets 

5.5.1.1. Structure Prediction 

To evaluate and compare the performance of Rosetta and Amber energy functions, we 

used two benchmark sets, a structure prediction (decoy discrimination) set and a loop 

modeling set. The decoy discrimination benchmark set includes a total of 150 proteins, a 

combination of two independent decoy sets used in previous studies118,261. The proteins in 

the set are monomeric and have crystallographic native structures available in the RCSB 

PDB262 with resolution < 2.0 Å.  The protein lengths range from 50 to 200 residues and 

have a diverse range of topologies.  The decoy sets were originally generated using 

biased and unbiased ab-initio sampling runs251 followed by parallel loophash sampling 

(PLS)263.  This produced 40,000-200,000 decoys per protein, ~1000 representative low-

energy structures of which were chosen for each protein to cover the range of possible C-

a RMSD values. 

 

5.5.1.2. Loop Modeling 

The loop modeling benchmark set consisted of the 45-PDB dataset for 12-residue loops 

in the monomeric protein loops training set of the 2016 Collaborative Assessment and 

Development of Rosetta Energetics and Sampling (CADRES). This loop modeling 
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benchmark set was obtained from Shane O’Connor and Tanja Kortemme (personal 

communication).   

 

5.5.2. Structure Preparation 

5.5.2.1. Rosetta 

5.5.2.1.1. Structure Prediction 

For each protein, the native structure was downloaded from the RSCB PDB and residues 

were trimmed from the structure to match the sequence of the crystal with the decoy 

structure in the benchmark sets.   Native structures were necessary to evaluate RMSD 

from native for decoy conformations.  Native structures were then relaxed using 

FastRelax251 with the talaris2014238 scorefunction to relieve any clashes. One hundred 

relaxation trajectories were simulated to generate one hundred relaxed native-like decoys. 

These native-like decoys were used for false minima analysis.  Then, these one hundred 

native-like decoys, along with the ~1000 pre-sampled decoys, were subjected to 

backbone and sidechain minimization using talaris2014 and the Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) minimizer implementation with inexact 

line search conditions (lbfgs_armijo_nonmonotone) over a maximum of 2000 iterations 

for convergence.  C-a atom RMSD was calculated for all decoys. 

 

The REF2015 dataset was obtained from F. DiMaio and H. Park118.  For this dataset, each 

decoy was relaxed with 3 cycles torsion-space minimization and 2 cycles Cartesian 

mode261 using the REF2015 energy function242.  Only 140 out of 150 protein systems 

were included in this set due to the lower quality of experimentally determined structures 
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for 10 systems (H. Park and F. DiMaio, personal communication, July 5, 2017). Those 10 

systems are ignored when comparing REF2015 to Amber.  

 

5.5.2.1.2. Loop Modeling 

The native crystal structures for each set were downloaded from the RCSB PDB and 

trimmed of excess residues that were not found in the decoy PDB structures. The 

backbone and sidechain geometries for residues in the loop region of each decoy 

structure were minimized in Rosetta using the talaris2014 scorefunction and the 

lbfgs_armijo_nonmonotone over a maximum of 2000 iterations for convergence. C-a 

RMSDs were calculated with respect to the crystal structure over loop residues only 

without fitting; since the protein scaffold was fixed during optimization, this statistic 

describes the extent of loop deviation.  

 

5.5.2.2. Amber 

5.5.2.2.1. Structure Prediction 

Hydrogens were removed from the crystal structures and decoy PDBs, and initial 

structures were built using the tLEaP module of AmberTools253 with the ff14SBonlySC235 

forcefield parameters. Minimizations were carried out for a maximum of 1000 steps 

under the LBFGS quasi-Newton algorithm264 with a convergence criterion of 0.01 

kcal/mol-A. Solvent effects were treated with a generalized Born implicit solvent model 

(GB-Neck2246) implemented in the Amber16253 package with mbondi3 radii and a cutoff 

value of 999A for nonbonded interactions. Total potential energies of minimized 

structures and C-a RMSDs with respect to the crystal structure were obtained using the 
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pytraj 2.0.0 interactive molecular dynamics simulation data analysis Python package265, 

which is a Python interface for cpptraj in AmberTools16253. 

 

5.5.2.2.2. Loop Modeling 

Initial structures were obtained, prepared, and built as previously described in the 

Structure Prediction Benchmark set, but included the addition of positional restraints on 

all non-loop-residue atoms except for hydrogens with a force constant of 10.0 kcal mol-1 

A-2. Minimization was performed and energies were gathered in a similar fashion to the 

Structure Prediction Benchmark, while C-a RMSDs were calculated over the loop 

residues only as in the Rosetta calculation. Loop residues are defined in Appendix 5. 

 

Six sets of decoy structures were unable to be minimized in Amber due to missing 

residues, and those sets were not considered in subsequent analyses (1cb0, 1dts, 1m3s, 

1ms9, 1t1d, and 2pia). 

 

5.5.3. Energy Landscape Generation 

Energy landscapes (RMSD vs. normalized energy scatterplots) were generated for all 

proteins for both Rosetta and Amber.  The ideal shape of an energy landscape is that of a 

funnel (i.e. Figure 5.1A, turquoise plot) where the lowest-scoring decoy conformations 

are of near-native RMSD.  We use the binned Boltzmann metric (see below) to evaluate 

the funnel shape of each energy landscape. 

 

5.5.3.1. Energy Normalization 
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For each set of energies per scorefunction per protein, energies are normalized so that the 

gap between the 5th percentile of and the 95th percentile is equal to 1.  This is 

accomplished via the following equation: 

𝐸5(RS(T) = 	 (𝐸5 − 𝐸T5R) (𝐸UVWX −	𝐸VWX) 

Ei refers to the raw energy of decoy i.  Emin is the minimum energy value, E95th is the 95th 

percentile energy, and E5th is the 5th percentile energy. 

  

5.5.3.2. Funnel Evaluation Metric 

We use the binned Boltzmann metric, B, for energy landscape evaluation, as described 

previously118.  This metric finds the Boltzmann probability of selecting native-like decoys 

over high-RMSD decoys based on their energy values. As in previous work261, the metric 

is averaged over multiple thresholds for determining native-like status for each decoy.  

𝐵 = 	
( 𝑑53𝑃55 𝑃553 )

𝑁3
 

 

𝑃5 = 	 𝑒6\]8^(_`ab) 

The conformation index is i and j is the native threshold definition index.  Cutoffs are 0.5, 

1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, 5.0, 6.0 Å and Nj is 14.  Ei(norm) is the 

score of decoy i as determined in Rosetta or Amber and normalized as described above.  

The value kT is the Boltzmann temperature of the ensemble and is set to 10.  dij 

determines whether decoy i is considered native at threshold j; it is set to 1 if it is native 

and 0 if it is not. As the sum of the probabilities of the non-native-like conformations 

approaches 0, the numerator ( 𝑑53𝑃55 ) approaches the value of the denominator ( 𝑃55 ), 

so that the value of B approaches to 1.  As mentioned in Park et al.118, the B metric is 



153 

	

better than the previously used S metric261 due to a larger increase in the metric for a poor 

energy landscape vs. a good energy landscape than the increase from an already good 

energy landscape to a steeper energy landscape.  Additionally, it is a smoother metric that 

is less affected by single-decoy outliers. 

 

5.5.4. Pareto Optimization 

For each protein, a Pareto solution was selected by finding the decoy with Pareto-optimal 

Amber and Rosetta ranks.  First, the Amber scores and Rosetta scores were converted 

into ranks so that the rank of decoy a was less than the rank of decoy b if the energy of 

decoy a was less than the energy of decoy b. Second, the Pareto-minimal solutions are 

found as follows.  Decoy a is defined as dominating decoy b if both ranks (Rosetta and 

Amber) of decoy a are <= both ranks of decoy b.  Pareto-optimal decoys are decoys that 

dominate at least one other decoy and are not dominated by any decoys.  From among the 

set of Pareto-optimal decoys, the decoy that has the lowest sum of ranks is chosen as the 

solution.  In the rare case that more than one decoy has a minimal sum of ranks, a decoy 

is arbitrarily chosen from the minimal-sum-ranks decoys. 
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Chapter 6. Conclusion 

6.1. Summary 

Proteolytic cleavage is a crucial mechanism in normal cellular functioning.  The ability to 

predict and manipulate protease specificity has important implications in understanding 

disease, synthetic biology, and drug design.  We developed a structure-based predictive 

model of protease specificity that uses Rosetta and Amber force fields to classify 

substrates as cleaved or uncleaved.  It is accurate, outperforms current machine learning 

approaches, and can be generalized to other proteases.  Additionally, as we have 

demonstrated, it can be used to identify potential novel substrates.  

 

Next, we implemented a mean-field structure-based algorithm (MFPred) to predict 

protease specificity profiles rapidly and accurately.  MFPred is of equivalent or better 

accuracy and ~10-1000-fold faster than current computational specificity prediction 

methods.  It is rapid enough to be used in each step of design and we demonstrate its 

ability to accurately predict the impact of protease mutations on substrate specificity 

without changing the substrate backbone ensemble. 

 

Third, we constructed a comprehensive specificity landscape for HCV NS3 protease 

using a combination of experimental and computational techniques.  The landscape 

provides insights into how mutational robustness may be encoded at a molecular level.  

The method that we use to construct the landscape can be generalized to other proteases 

as well. 
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Finally, we compare the performance of Rosetta and Amber energy functions.  We find 

that while Amber ff14SBonlySC performs better than Rosetta talaris2014, Rosetta 

REF2015 performs comparably to Amber ff14SBonlySC.  The parameterization of 

REF2015 on small-molecule properties, as well as the inclusion of more physical-derived 

terms within REF2015, may contribute to the performance improvement.  We develop an 

algorithm to improve model selection by using semi-orthogonal information from both 

energy functions. 

 

6.2. Strengths 

The methods developed within this dissertation have several strengths over current 

related methods.  One general advantage common to all structure-based approaches is 

that they are easily generalizable to new proteases.  This is especially true in the case of 

our discriminatory scoring function, which can be extended to novel protease variants, 

unlike current pattern-recognition machine-learning techniques.  However, while MFPred 

can be extended to new proteases, it does require several known substrates for accurate 

prediction.  Also, the discriminatory scoring function captures interaction networks and 

pairwise correlations more accurately than do current methods.  Third, it is not biased by 

the quality of the input data and is thus able to predict novel interactions that are not 

present in the training data. 

 

The prediction performance of MFPred is equivalent to or better than existing structure-

based methods and it is rapid enough to be used within design. The performance of 

MFPred is robust to the size of the flexible backbone ensemble; while other current 
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methods require a large backbone ensemble as a prerequisite to accurate specificity 

prediction, MFPred performs well on a small ensemble (<6 backbones).  MFPred also 

predicts information content, or the shape of the specificity profile, more accurately than 

do other current methods, which is important when designing highly selective proteases. 

 

Next, our approach to specificity landscape construction allows for the exploration of the 

full specificity landscape as opposed to a limited subset of sequence space.  Again, this 

approach can be extended to other proteases.  Additionally, insights into the mutational 

robustness of HCV NS3 protease may assist in understanding and preventing drug 

resistance. 

 

Finally, our systematic comparison of Amber and Rosetta score-functions enables 

insights into the strengths and weaknesses of each energy function.  Our model selection 

algorithm allows for a greater likelihood of selecting a native-like decoy from within a 

large decoy ensemble. 

 

6.3. Limitations 

Our structure-based approach to specificity prediction relies on two major, related 

suppositions. First, we assume that binding presumes cleavage and second, we assume 

that every candidate peptide has equal access to the protease active site. Both 

assumptions are not consistently true, especially for cases where a putative substrate is 

found within a folded protein.    
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Additionally, the structure-based approach is less accurate for proteases that are more 

flexible and/or contain loops near the active site, such as MMP2 and HIV-PR 1.  

Increased protease backbone sampling may therefore improve prediction accuracy.  We 

may also be neglecting important electrostatic effects within the active site in the 

prediction of protease multispecificity.   

 

A third general limitation of this approach is that we have tuned the free parameters for 

general good performance for all systems.  While these parameters appear to be optimal 

for most systems in the case of the discriminatory scoring function, in the case of 

MFPred, the temperature parameter appears to be system-dependent and possibly sub-

optimal for individual proteases.  

 

6.4. Implications 

We have developed a toolbox of techniques for computational protease design.  Custom-

designed proteases can be used to interrogate and intervene in biological processes.  

Current protease design approaches rely on directed evolution40,44,65 in vivo, which 

proceed via incremental “generalist”66 intermediates that display relaxed specificity, and 

are, therefore, toxic to cells. Structure-guided computational design, aided by the 

developed substrate classifier, specificity profile prediction, and specificity landscape 

elucidation should allow for multiple simultaneous substitutions to allow specificity 

switching without toxic intermediates. Combining structural computation with directed 

evolution should enable more efficient protease specificity design. 
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Appendix 1. Supplementary Methods for Chapter 2 

The MMPBSA calculation includes the following steps: 

 

1. Preparation of AMBER input .pdb files 

2. Preparation of input parameter and topology files  

3. MMPBSA Calculation 

  

Description of each of the steps below: 

 

In order to transform a pdb file into an AMBER readable format the hydrogens and 

virtual atoms are stripped.  The subsequent file is loaded into AMBER using the 

following script using a tleap interface. 

 

source leaprc.gaff 

source leaprc.ff12SB 

loadamberparams frcmod.ionsjc_tip3p 

d$i = loadpdb "toload_$i.pdb" 

addions d$i Cl- 0 

charge d$i 

saveamberparm d$i d$i.prmtop d$i.inpcrd 

quit 
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The files saved as d$i.prmtop and d$i.inpcrd are inputs to the ante-MMPBSA.py program 

which generates the receptor-ligand, receptor only and ligand only topology files. An 

AMBER topology file is used to specify atom types, charges, etc. The inpcrd / input 

coordinate file is used to build the connections which forms the overall structure of the 

pdb.  

 

ante-MMPBSA.py -p d$i.prmtop -c d_c$i.prmtop -s @Cl- 

ante-MMPBSA.py -p d_c$i.prmtop -r d_r$i.prmtop -l d_l$i.prmtop -n : “residue range” 

 

Residue range: specify the pose numbering of the peptide 

 

The final step involves using the inpcrd and prmtop files to calculate the MMPBSA 

contribution of the complex. This is done by calculating the electrostatic energy of the 

peptide and protease separately as well as in a bound state  

 

 

The following commandline is used for MMPBSA calculation 

MMPBSA.py -O -i mmpbsa.in -o FINAL_RESULTS_MMPBSA.dat -sp d$i.prmtop -cp 

d_c$i.prmtop -rp d_r$i.prmtop -lp d_l$i.prmtop -y *.inpcrd 

 

For MMP2: The pdbs in these cases needed to be analyzed differently because of the 

presence of heteroatoms such as Zinc and Water that are involved in the active sites 

respectively. 
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The water is modeled using the TP5.lib and the following command is added to the prep 

script 

 

 

Sample Scripts: 

 

Sample xml for initial Relax: 

<dock_design> 

      <SCOREFXNS> 

         <myscore weights=enzdes.wts/> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 

         <ProteinInterfaceDesign name=pido design_chain2=0 modify_after_jump=1/> 

         <InitializeFromCommandline name=init/> 

         <ReadResfile name=rrf filename="PATH TO RESFILE"/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 

 

      <MOVERS> 

        <AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 
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        <FastRelax name=fastrelax scorefxn=myscore repeats=8 task_operations=pido,init> 

        <MoveMap name=mm> 

                        <Chain number=2 chi=1 bb=1/> 

                        <Chain number=1 chi=1 bb=1/> 

                        <Jump number =1 setting=1/> 

        </MoveMap> 

        </FastRelax> 

        <TaskAwareMinMover name =min_pro task_operations=rrf scorefxn=myscore 

chi=1 bb=0 jump=0/> 

        <PackRotamersMover name=repack task_operations=rrf/> 

        <ConstraintSetMover name=protease_cst 

cst_file="PATH_TO_PROTEASE_BACKBONE_HEAVY_ATOM_CONSTRAINT_FI

LE"/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name=protease_cst/> 

              <Add mover_name=repack/> 

              <Add mover_name=min_pro/> 

              <Add mover_name=cstadd/> 
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              <Add mover_name=fastrelax/> 

</PROTOCOLS> 

</dock_design> 

 

Command line: 

~<PATH_TO_ROSETTA_BIN> rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

nstruct 20  -parser:protocol <PATH_TO_RELAX_XML> -database 

<PATH_TO_DATABASE> -out::prefix Job_${i}_ -s <PATH_TO_STARTING_PDB> -

run:preserve_header -enzdes::cstfile <PATH_TO_CONSTRAINT_FILE>  -

out:file:output_virtual @<PATH_TO_FLAGS_FILE> 

 

 

Sample Script For Mutate, FastRelax, Scoring 

#MUTATERUN 

<PATH_TO_EXECUTABLE>/rosetta_scripts.static.linuxgccrelease -nstruct 10  -

jd2:ntrials 1 -parser:protocol <PATH_TO_XML> -database <PATH_TO_DATABASE> 

-out::prefix $1_mut_ -s <PATH_TO_STARTING_PDB> -enzdes:cstfile 

<PATH_TO_CSTFILE> -run:preserve_header @<PATH_TO_FLAGSFILE> > 

design.log 

 

find `pwd` -name "$1_mut_*00*pdb" > tlist 

 

cp ~/Rosetta/main/database/scoring/weights/talaris2013 ./ 
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#SCORINGRUN 

~/Rosetta/main/source/bin/rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

parser:protocol <PATH_TO_SCORING_XML> -database <PATH_TO_DATABASE> -

out::prefix Scores_ -l tlist -in:file:native <PATH_TO_STARTINGPDB> -

run:preserve_header @<PATH_TO_FLAGSFILE> -score:weights talaris2013 > 

scoring.log 

 

ls Scores_*.pdb > slist 

 

#CSTRUN 

~/Rosetta/main/source/bin/rosetta_scripts.static.linuxgccrelease  -jd2:ntrials 1 -

parser:protocol <PATH_TO_XML> -database ~/Rosetta/main/database/  -out::prefix 

$1_cst_  -l tlist -enzdes:cstfile <PATH_TO_CSTFILE> -run:preserve_header 

@<PATH_TO_FLAGSFILE> -jd2:enzdes_out > cst.log 

 

Protease Mutate: 

<dock_design> 

      <SCOREFXNS> 

                <myscore weights=enzdes.wts/> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 

         <ProteinInterfaceDesign name=pido design_chain2=0 modify_after_jump=0/> 
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         <InitializeFromCommandline name=init/> 

         <ReadResfile name=rrf filename="PATH_TO_RESFILE"/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 

 

      <MOVERS> 

        <MutateResidue name=mut1 target=Res#1 new_res=DM1/> 

        <MutateResidue name=mut2 target= Res#2 new_res=DM2/> 

        <MutateResidue name=mut3 target= Res#3new_res=DM3/> 

        <MutateResidue name=mut4 target= Res#4 new_res=DM4/> 

        <MutateResidue name=mut5 target= Res#5 new_res=DM5/> 

        <MutateResidue name=mut6 target= Res#6 new_res=DM6/> 

<AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 

        <FastRelax name=fastrelax scorefxn=myscore repeats=8 task_operations=pido,init> 

        <MoveMap name=mm> 

                        <Chain number=2 chi=1 bb=1/> 

                        <Chain number=1 chi=1 bb=0/> 

                        <Jump number =1 setting=1/> 

        </MoveMap> 

        </FastRelax> 

        <TaskAwareMinMover name =min_pro task_operations=rrf chi=1 bb=0 jump=0/> 
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        <PackRotamersMover name=repack task_operations=rrf/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name=mut1/> 

              <Add mover_name=mut2/> 

              <Add mover_name=mut3/> 

              <Add mover_name=mut4/> 

              <Add mover_name=mut5/> 

              <Add mover_name=mut6/> 

<Add mover_name=repack/> 

              <Add mover_name=cstadd/> 

              <Add mover_name=fastrelax/> 

</PROTOCOLS> 

</dock_design> 

 

SCORING XML 

 

CST XML 

<dock_design> 
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      <SCOREFXNS> 

                <myscore weights=enzdes.wts/> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 

        <InitializeFromCommandline name=init/> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

        <EnzScore name="cstenergy" scorefxn=myscore whole_pose=1 score_type=cstE 

energy_cutoff=99999.0/> 

      </FILTERS> 

 

      <MOVERS> 

        <AddOrRemoveMatchCsts name=cstadd cst_instruction=add_new/> 

      </MOVERS> 

 

      <APPLY_TO_POSE> 

      </APPLY_TO_POSE> 

 

      <PROTOCOLS> 

        <Add mover_name=cstadd/> 

        <Add filter_name=cstenergy/> 

      </PROTOCOLS> 
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</dock_design> 

 

 

AMBER MMPBSA  

 

cat >tleap.in <<EOF 

source leaprc.gaff 

source leaprc.ff12SB_manasi 

loadamberparams frcmod.ionsjc_tip3p 

loadamberparams frcmod.ionslrcm_hfe_tip3p 

d$i = loadpdb "toload_$i.pdb" 

charge d$i 

saveamberparm d$i d$i.prmtop d$i.inpcrd 

quit 

EOF 

tleap -f tleap.in 

 

ante-MMPBSA.py -p d$i.prmtop -c d_c$i.prmtop -s @Cl- 

ante-MMPBSA.py -p d_c$i.prmtop -r d_r$i.prmtop -l d_l$i.prmtop -n :199-208 

 

MMPBSA.py -O -i mmpbsa.in -o FINAL_RESULTS_MMPBSA.dat -cp d_c$i.prmtop -

rp d_r$i.prmtop -lp d_l$i.prmtop -y d$i.inpcrd 
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MATLAB  

 

function [test, testlab, ttcleaved, to, ts, train, trainlab,  a, f, X, Y, T, AUC, AUCav, Std, 

Performanceav,Stdp] = coduh(A, LABELS, cleaved, uncleaved, boxconstraint, rbfsigma) 

  

clearvars -except A LABELS cleaved uncleaved boxconstraint rbfsigma TABLE 

  

X = []; 

Y = []; 

T = []; 

AUC = []; 

  

 

 [numberofelements len] = size(A); 

tic 

   

for s = 1:1000 

     

    zcleaved = ceil(0.2%*cleaved);                  

    zuncleaved = ceil(0.2%*uncleaved); 

    ttcleaved = randperm(cleaved,zcleaved);               

%generatingRandomFromNumLength 

    ttuncleaved = randperm((numberofelements - cleaved), zuncleaved) + cleaved; 
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    t = vertcat(ttcleaved',ttuncleaved'); 

    to(:,s) = vertcat(ttcleaved',ttuncleaved'); 

    ts(s) = length(t); 

    z = zcleaved + zuncleaved; 

     

test(:,:,s) = A(t,:); 

testlab(:,:,s) = LABELS(t,:); 

  

    x = numberofelements - z; 

    train(:,:,s) = zeros(x, len); 

    trainlab(:,:,s)= cell(x,1); 

        

    clear n1; 

    n1 = 1; 

     

    for i = 1:numberofelements 

         

        if i ~= t(:) 

            train(n1,:,s) = A(i,:); 

            trainlab(n1,s) = LABELS(i); 

            n1 = n1 + 1; 

        end 

         



170 

	

    end 

     

     

svmrbf =[]; 

svmrbf=svmtrain(train(:,:,s), trainlab(:,s), 'kernel_function', 'rbf', 'boxconstraint', 

boxconstraint, 'rbf_sigma', rbfsigma); 

  

  

%%TEST%%     

V = svmclassify(svmrbf,test(:,:,s)); 

result = transpose(V); 

a(:,s)=transpose(result); 

  

shift = svmrbf.ScaleData.shift; 

scale = svmrbf.ScaleData.scaleFactor; 

Xnew = bsxfun(@plus,test(:,:,s),shift); 

Xnew = bsxfun(@times,Xnew,scale); 

sv = svmrbf.SupportVectors;  

alphaHat = svmrbf.Alpha;     

bias = svmrbf.Bias; 

kfun = svmrbf.KernelFunction; 

kfunargs = svmrbf.KernelFunctionArgs; 

f(:,s) = kfun(sv,Xnew,kfunargs{:})'*alphaHat(:) + bias; 
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[X(:,s),Y(:,s),T(:,s),AUC(s)] = perfcurve(testlab(:,:,s), f(:,s) ,'CLEAVED', 'Xcrit','reca', 

'YCrit', 'prec' ); 

  

AUCav = mean(AUC); 

Std = std(AUC);  

     

%ACCURACY        

tf(:,s) = strcmp (a(:,s), testlab(:,s)); 

Performance(s) = sum(tf(:,s)) / numel(a(:,s)); 

Performanceav = mean(Performance); 

Stdp = std(Performance); 

    

% %TRAIN 

Vtrain = svmclassify(svmrbf,train(:,:,s)); 

resulttrain = transpose(Vtrain); 

      

%clear train end 

atrain(:,s)=transpose(resulttrain); 

      

 

shift = svmrbf.ScaleData.shift; 

scale = svmrbf.ScaleData.scaleFactor; 
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Xnew1 = bsxfun(@plus,train(:,:,s),shift); 

Xnew1 = bsxfun(@times,Xnew1,scale); 

sv = svmrbf.SupportVectors;  

alphaHat = svmrbf.Alpha;     

bias = svmrbf.Bias; 

kfun = svmrbf.KernelFunction; 

kfunargs = svmrbf.KernelFunctionArgs; 

ftrain(:,s) = kfun(sv,Xnew1,kfunargs{:})'*alphaHat(:) + bias; 

display(f(:,s)); 

  

[Xtraintemp,Ytraintemp,Ttraintemp,AUCtrain(s)]= 

perfcurve(trainlab(:,:,s),ftrain(:,s),'CLEAVED'); 

[r] = length(Xtraintemp); 

Xtrain(1:r, s) = Xtrain(1:r, s) + Xtraintemp; 

Ytrain(1:r, s) = Ytrain(1:r, s) + Ytraintemp; 

Ttrain(1:r, s) = Ttrain(1:r, s) + Ttraintemp; 

      

clear Xtraintemp Ytraintemp Ttraintemp                      

              

[Xtrain(:,s),Ytrain(:,s),Ttrain(:,s),AUCtrain(s)]= 

perfcurve(trainlab(:,:,s),ftrain(:,s),'CLEAVED'); 
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AUCtrainav = mean(AUCtrain); 

Stdtrain = std(AUCtrain); 

      

tftrain(:,s) = strcmp (atrain(:,s), trainlab(:,s)); 

Performancetrain (s)= sum(tftrain(:,s)) / numel(atrain(:,s)); 

Performancetrainav = mean(Performancetrain);  

Stdptrain = std(Performancetrain);  

  

s        

end 

toc 
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Appendix 2. Supplementary Software for Chapter 3 

Running Entire MFPred pipeline: 

Inputs 

• Crystallographic pdb of protein-peptide complex  

• List of five substrate sequences to thread on 

Process 

1. Initial Relax 

a. Run on initial crystallographic pdb to get rid of internal clashes 

2. Thread Peptide-FastRelax 

a. Run this step for each substrate sequence 

3. MFPred 

a. Choose the lowest-scoring pdb from 2a for each substrate sequence and 

use a list of paths to these pdbs as the input for MFPred 

4. Distances.py (optional) 

Outputs 

• Transfac file for each pdb and averaged transfac file 

• Distance file (distances per-column and overall) 

 

Initial Relax 

 

Inputs 

 

1. <PATH_TO_XTAL_PDB> Crystallographic pdb of protein-peptide complex 
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Retrieve from pdb 

2. <PATH_TO_ENZDES_CSTFILE> (for proteases only)  

Generate yourself based on protease catalytic geometry 

3. <PATH_TO_COO_CSTFILE> (for proteases only) 

Use a modified version of sidechain_cst_3.py (at 

/source/src/apps/public/relax_w_allatom_cst/sidechain_cst_3.py in the Rosetta source 

code) to generate constraints with settings of 0.1 and 0.5 on the protease atoms. 

4. <RESFILE> 

NATRO all, NATAA peptide residues 

5. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

                <ScoreFunction name="myscore" weights="<SCORE_FUNCTION>".wts/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

               <ProteinInterfaceDesign design_chain2="0" modify_after_jump="1" 

name="pido"/> 

               <InitializeFromCommandline name="init"/> 

               <ReadResfile name="rrf"/> 

        </TASKOPERATIONS> 

        <FILTERS/> 

        <MOVERS> 
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                <AddOrRemoveMatchCsts cst_instruction="add_new" name="cstadd"/> 

                <FastRelax name="fastrelax" repeats="8" scorefxn="myscore" 

task_operations="pido,init"> 

                        <MoveMap name="mm"> 

                                <Chain bb="1" chi="1" number="2"/> 

                                <Chain bb="1" chi="1" number="1"/> 

                                <Jump number="1" setting="1"/> 

                        </MoveMap> 

                </FastRelax> 

                <TaskAwareMinMover bb="0" chi="1" jump="0" name="min_pro" 

scorefxn="myscore" task_operations="rrf"/> 

                <PackRotamersMover name="repack" task_operations="rrf"/> 

                <ConstraintSetMover name="protease_cst"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

                <Add mover_name="protease_cst"/> 

                <Add mover_name="repack"/> 

                <Add mover_name="min_pro"/> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="fastrelax"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 
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6. <PATH_TO_FLAGS> 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

 

Process 

Run on initial crystallographic pdb to get rid of internal clashes. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -jd2:ntrials 1 -nstruct 1000 -

parser:protocol <XML_FILE> -database <ROSETTA_DB> -s 

<PATH_TO_XTAL_PDB> -run:preserve_header -enzdes::cstfile  

<PATH_TO_ENZDES_CSTFILE> -constraints:cst_file <PATH_TO_COO_CSTFILE> -

resfile <PATH_TO_RESFILE> @<PATH_TO_FLAGS> 

 

Outputs 

1000 “relaxed” pdb files. Use lowest scoring pdb file as input for the next step. 

 

Remarks 
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Differences between protease and PRD: 

Protease: 

command line includes: -enzdes::cstfile  <PATH_TO_ENZDES_CSTFILE> -

constraints:cst_file <PATH_TO_COO_CSTFILE> 

<SCORE_FUNCTION>: talaris2013_cst 

PRD: 

command line does not include constraint parameters 

<SCORE_FUNCTION>: talaris2013 

 

Thread Peptide-FastRelax 

Inputs 

 

1. <STARTING_RELAXED_MODEL> Lowest scoring pdb from Initial Relax step. 

2. <PATH_TO_ENZDES_CSTFILE> (for proteases only)  

Generate yourself based on protease catalytic geometry 

3. <RESFILE> 

NATRO all, NATAA peptide residues 

4. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

      <SCOREFXNS> 

      </SCOREFXNS> 

      <TASKOPERATIONS> 
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         <ProteinInterfaceDesign name="pido" design_chain2="0" 

modify_after_jump="1" /> 

         <InitializeFromCommandline name="init"/> 

         <ReadResfile name="rrf" filename=<RESFILE> /> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

      </FILTERS> 

 

      <MOVERS> 

        <MutateResidue name="mut1" target="<PEPT_RES1>" new_res="DM1"/> 

        <MutateResidue name="mut2" target="<PEPT_RES2>" new_res="DM2"/> 

        <MutateResidue name="mut3" target="<PEPT_RES3>" new_res="DM3"/> 

        <MutateResidue name="mut4" target="<PEPT_RES4>" new_res="DM4"/> 

        <MutateResidue name="mut5" target="<PEPT_RES5>" new_res="DM5"/> 

        <MutateResidue name="mut6" target="<PEPT_RES6>" new_res="DM6"/> 

        <MutateResidue name="mut7" target="<PEPT_RES7>" new_res="DM7"/> 

        <AddOrRemoveMatchCsts name="cstadd" cst_instruction="add_new" /> 

        <FastRelax name="fastrelax" repeats="8" task_operations="pido,init"> 

        <MoveMap name="mm"> 

                        <Chain number="2" chi="1" bb="1"/> 

                        <Chain number="1" chi="1" bb="0"/> 

                        <Jump number="1" setting="1"/> 
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        </MoveMap> 

        </FastRelax> 

        <PackRotamersMover name="repack" task_operations="rrf"/> 

 

</MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

              <Add mover_name="mut1"/> 

              <Add mover_name="mut2"/> 

              <Add mover_name="mut3"/> 

              <Add mover_name="mut4"/> 

              <Add mover_name="mut5"/> 

              <Add mover_name="mut6"/> 

              <Add mover_name="mut7"/> 

              <Add mover_name="cstadd"/> 

              <Add mover_name="repack"/> 

              <Add mover_name="fastrelax"/> 

</PROTOCOLS> 

</ROSETTASCRIPTS> 

5. <PATH_TO_FLAGS> 

-mute core.io.database 
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-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

 

Process 

Run on lowest scoring relaxed pdb from Initial Relax one time per substrate sequence.  

Substitute your peptide sequence for <PEPT_RES1>, etc. in xml script.  Add more 

<MutateResidue> movers as needed.  Generates 10 relaxed protease-peptide complexes 

with that substrate sequence threaded on.  Select lowest-scoring complex from these 10 

complexes for MFPred step. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -nstruct 10  -jd2:ntrials 1 -

parser:protocol <XML_FILE> -database /home/arubenstein/Rosetta/main/database/ 

<CONST_ARG> -s <STARTING_RELAXED_MODEL> -run:preserve_header -

overwrite @<PATH_TO_FLAGS> -score:weights <SCORE_FUNCTION> 

 

Outputs 

10 “relaxed” pdb files. Use lowest scoring pdb file as input for the next step. 
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Remarks 

Differences between protease and PRD: 

Protease: 

command line includes <CONST_ARG>: -enzdes::cstfile  

<PATH_TO_ENZDES_CSTFILE> 

<SCORE_FUNCTION>: talaris2013_cst 

PRD: 

command line does not include constraint parameters 

<SCORE_FUNCTION>: talaris2013 

 

MFPred 

Inputs 

 

1. <PATH_TO_INPUT_PDB> Lowest scoring pdb from Initial Relax step. 

2. <LIST_PDB_COMPLEXES>  

List of paths to lowest-scoring pdbs for each of the Thread Peptide runs in the 

previous step. 

3. <RESFILE> 

NATRO all, NATAA peptide residues that should not be designed (flanking residues), 

ALLAA peptide residues for which a specificity profile should be predicted. 

4. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 
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        <TASKOPERATIONS> 

                <InitializeFromCommandline name="init" /> 

                <ReadResfile name="rrf" /> 

        </TASKOPERATIONS> 

        <SCOREFXNS> 

        </SCOREFXNS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

                <GenMeanFieldMover name="boltz" threshold="5" lambda_memory="0.5" 

tolerance="0.0001" temperature="0.8" task_operations="rrf,init"/> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

                <Add mover_name="boltz"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

5. <PATH_TO_FLAGS> 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 
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-packing::ex2 

-out:file::output_virtual 

6. <EXPT_SPEC_PROFILE> (optional) 

Path to known (experimentally-derived) specificity profile.  MFPred protocol will 

output certain distances from this profile in the log if this parameter is given. 

7. <ROT_NORM_PARAM> (optional) 

This is the g parameter described in the paper.  The default is 0.8. 

8. <BB_AVERAGE_PARAM> 

This is the g parameter described in the paper.  The default is 0.8. 

 

Process 

Run on backbone ensemble as generated in Thread Peptide step.  Runs MFPred algorithm 

on residues that are designated as packed/designed in the TaskOperations. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -database <ROSETTA_DB> -

parser:protocol <XML_FILE> -s <PATH_TO_INPUT_PDB> -rot_norm_weight 

<ROT_NORM_PARAM> -bb_average_weight <BB_AVERAGE_PARAM> -

spec_profile <EXPT_SPEC_PROFILE> -bb_list <LIST_PDB_COMPLEXES> -

dump_transfac <PATH_TO_OUTPUT_TRANSFAC> -resfile <RESFILE> -nooutput 

true –score:weights talaris2013 @<PATH_TO_FLAGS> 

 

Outputs 
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Log contains probabilities per rotamer, probabilities per amino acid, and distances from 

experimental specificity profile (if provided).  If <PATH_TO_OUTPUT_TRANSFAC> 

is provided, dumps one transfac file per backbone, file with backbone Boltzmann 

probabilities, and one averaged transfac file for the ensemble as a whole. 

 

Distances.py 

Inputs 

1. Transfac file as output by MFPred 

2. Experimental specificity profile 

Process 

import os 

import sys 

import numpy as np 

import math 

from sklearn import metrics 

import matplotlib.pyplot as plt 

from pylab import * 

 

def binarizeList ( firstList ): 

    binary_freq = [] 

 

    choose_val = 0.10 
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    max_val = max(firstList) 

    if max_val < 0.10: 

        if max_val > 0.09: 

          choose_val = 0.09 

        elif max_val > 0.08: 

            choose_val = 0.08 

        elif max_val > 0.07: 

            choose_val = 0.07 

 

    for val in firstList: 

        if val > choose_val: 

            binary_freq.append( 1 ) 

        else: 

            binary_freq.append( 0 ) 

    return binary_freq 

 

def areaUnderCurve ( firstList, secondList ): 

    binary_freq = binarizeList( firstList ) 

    fpr, tpr, _ = metrics.roc_curve(binary_freq, secondList) 

    auc = metrics.auc(fpr,tpr) 

    return auc 

 

def shannonEntropy( firstList ): 
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    sE = -1.0 * np.sum( [ p * math.log(p,2) for p in firstList if p != 0.0 ] ) 

    return sE 

 

def JSDivergence( firstList, secondList ): 

 

    firstSE = shannonEntropy( firstList ) 

 

    secondSE = shannonEntropy( secondList ) 

 

    combList = [ 0.5 * fL + 0.5 * sL for fL,sL in zip(firstList, secondList) ] 

 

    combSE = shannonEntropy( combList ) 

 

    return combSE - 0.5 * firstSE - 0.5 * secondSE 

 

def cosineDist( firstList, secondList): 

 

    dotP = np.dot(firstList, secondList) 

 

    sqrt_1 = math.sqrt( np.sum( np.power( firstList,2 ) ) ) 

    sqrt_2 = math.sqrt( np.sum( np.power( secondList,2 ) ) ) 

 

    return dotP/(sqrt_1 * sqrt_2) 
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def frobDist( firstList, secondList): 

 

    diff_lists = np.subtract(firstList,secondList) 

    terms = np.power( diff_lists,2) 

    return math.sqrt( np.sum( terms ) ) 

 

def aveAbsDist( firstList, secondList ): 

 

    diff_lists = np.fabs( np.subtract( firstList, secondList) ) 

    return sum( diff_lists ) / len( diff_lists ) 

 

def readSpecProfileList( filename ): 

    with open(filename) as transfac_file: 

        transfac = transfac_file.readlines() 

 

    motifWidth = len(transfac)-2 

 

    aaAlpha = transfac[1].split()[1:] 

 

    freq = [{k: 0.0 for k in aaAlpha} for i in range(motifWidth)] 

 

    t_read = transfac[2:] 



189 

	

 

    for pos,line in enumerate( t_read,0 ): 

        for aa_ind,f in enumerate( line.split()[1:], 0): 

            freq[pos][aaAlpha[aa_ind]] = float(f) 

 

    freqList = [ [ val for key,val in sorted(pos.iteritems()) ] for pos in freq ] 

 

    return freqList 

 

def main(args): 

    infile = args[1] 

    infile_expt = args[2] 

 

 

    expt = os.path.basename(infile_expt).rstrip() 

    expt = expt.rsplit('.',1)[0] 

 

    tokens=infile.rsplit('.',1) 

    file=tokens[0] 

 

    outfile= '%s_dist.txt' % (file) 

    outfile_heat= '%s_heat.png' % (file) 
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    freq_in = readSpecProfileList( infile ) 

    freq_expt = readSpecProfileList( infile_expt ) 

    nda_freq_in = np.array( [ freq_in] ) 

    nda_freq_expt = np.array( [ freq_expt] ) 

    flat_freq_in = np.ndarray.flatten( nda_freq_in ) 

    flat_freq_expt = np.ndarray.flatten( nda_freq_expt ) 

 

    c = [ cosineDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    f = [ frobDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    a = [ aveAbsDist( i, g ) for i,g in zip( freq_in, freq_expt ) ] 

    jsd1 = [ JSDivergence ( i, g ) for i,g in zip( freq_in, freq_expt )]  

    auc = [ areaUnderCurve ( i, g ) for i, g in zip( freq_expt, freq_in )] 

    avg_c = cosineDist( flat_freq_in, flat_freq_expt ) 

    avg_f = frobDist( flat_freq_in, flat_freq_expt ) 

    avg_a = aveAbsDist( flat_freq_in, flat_freq_expt ) 

    avg_jsd = np.sum(jsd1) / len(jsd1) 

    avg_auc = np.sum(auc) / len(auc) 

 

    c.append(avg_c) 

    f.append(avg_f) 

    a.append(avg_a) 

    jsd1.append(avg_jsd) 

    auc.append(avg_auc) 



191 

	

 

    dist_out = open(outfile,"w") 

 

    dist_out.write("Metric\t") 

    dist_out.write("\t".join([ "Col{0}".format(i) for i in xrange(1,len(c)) ])) 

    dist_out.write("\tAvg\nCosine\t") 

 

    dist_out.write("\t".join(map(str,c))) 

    dist_out.write("\nFrobenius\t") 

    dist_out.write("\t".join(map(str,f))) 

    dist_out.write("\nAAD\t") 

    dist_out.write("\t".join(map(str,a))) 

    dist_out.write("\nJSD\t") 

    dist_out.write("\t".join(map(str,jsd1))) 

    dist_out.write("\nAUC\t") 

    dist_out.write("\t".join(map(str,auc))) 

    dist_out.write("\n") 

 

    dist_out.close() 

 

if __name__ == "__main__": 

  main(sys.argv) 

Outputs 
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Distances file: the name of this file is <INPUT_FILE>_dist.txt.  Contains one line per 

metric.  Each line contains one value per column and the last value is the average of the 

columns. 

Non-MFPred pipeline software – used for controls and/or optimization of protocol: 

 

Backbone Ensemble Generation 

 

Thread Peptide Alone (pre-flexpepdock or pre-backrub) 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -nstruct 1 -jd2:ntrials 1 -

parser:protocol <XML_FILE> -database <ROSETTA_DB> <CONST_ARG> -s 

<STARTING_RELAXED_MODEL> -run:preserve_header -overwrite 

@<PATH_TO_FLAGS> 

 

 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS/> 

        <TASKOPERATIONS> 

                <InitializeFromCommandline name="init"/> 

                <ReadResfile filename=”<RESFILE>” name="rrf"/> 

        </TASKOPERATIONS> 

        <FILTERS/> 



193 

	

        <MOVERS> 

                <MutateResidue name="mut1" target="<PEPT_RES1>" new_res="DM1"/> 

                <MutateResidue name="mut2" target="<PEPT_RES2>" new_res="DM2"/> 

                <MutateResidue name="mut3" target="<PEPT_RES3>" new_res="DM3"/> 

                <MutateResidue name="mut4" target="<PEPT_RES4>" new_res="DM4"/> 

                <MutateResidue name="mut5" target="<PEPT_RES5>" new_res="DM5"/> 

                <MutateResidue name="mut6" target="<PEPT_RES6>" new_res="DM6"/> 

                <MutateResidue name="mut7" target="<PEPT_RES7>" new_res="DM7"/> 

              <AddOrRemoveMatchCsts cst_instruction="add_new" name="cstadd"/> 

              <PackRotamersMover name="repack" task_operations="rrf,init"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

                <Add mover_name="mut1"/> 

                <Add mover_name="mut2"/> 

                <Add mover_name="mut3"/> 

                <Add mover_name="mut4"/> 

                <Add mover_name="mut5"/> 

                <Add mover_name="mut6"/> 

                <Add mover_name="mut7"/> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="repack"/> 

        </PROTOCOLS> 
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</ROSETTASCRIPTS> 

Resfile: 

NATRO all, NATAA peptide residues 

 

Flags: 

-mute core.io.database 

-packing::use_input_sc 

-packing::extrachi_cutoff 1 

-packing::ex1 

-packing::ex2 

-linmem_ig 10 

-out:file::output_virtual 

 

FlexPepDock 

Command line: 

<ROSETTA_BIN>_scripts.static.linuxgccrelease -parser:protocol 

~/mean_field/xml/flexpepdock.xml -database <ROSETTA_DB> -s 

<STARTING_THREADED_MODEL>  -ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 -

nstruct 10 -enzdes:cstfile <PATH_TO_ENZDES_CSTFILE> -score:weights 

talaris2013_cst -run:preserve_header -packing:use_input_sc 

 

Sample xml: 

<ROSETTASCRIPTS> 
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        <TASKOPERATIONS> 

        </TASKOPERATIONS> 

        <SCOREFXNS> 

        </SCOREFXNS> 

        <FILTERS> 

        </FILTERS> 

        <MOVERS> 

                <AddOrRemoveMatchCsts name="cstadd" cst_instruction="add_new" /> 

                <FlexPepDock name="fpd" pep_refine="1" /> 

        </MOVERS> 

        <APPLY_TO_POSE> 

        </APPLY_TO_POSE> 

        <PROTOCOLS> 

                <Add mover_name="cstadd"/> 

                <Add mover_name="fpd"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Backrub 

Command line: 

<ROSETTA_BIN>backrub_cst.linuxgccrelease -run:preserve_header -score:weights 

talaris2013_cst -database <ROSETTA_DB> -s <STARTING_THREADED_MODEL> -

ex1 -ex2 -ex1aro -ex2aro -extrachi_cutoff 0 -backrub:minimize_movemap 
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<MOVEMAP_FILE> -backrub:ntrials 10000 -backrub:pivot_residues 215 216 217 218 

219 220 221 222 223 224 -overwrite -enzdes:cstfile <PATH_TO_ENZDES_CSTFILE> -

packing:use_input_sc 

 

Movemap: 

RESIDUE * CHI 

JUMP * YES 

CHAIN 2 BBCHI 

 

Backrub_cst app: 

This app is a version of the general backrub app that includes Enzdes style constraint as a 

mover.  Currently, the general backrub app has been moved to a new Mover called 

BackrubProtocol mover – had this been available at the time of benchmarking, this would 

have been used instead. 

 

Enumerate_dihedral 

Command line: 

<ROSETTA_BIN>enumerate_dihedral.linuxgccrelease -database <ROSETTA_DB> -s 

<STARTING_RELAXED_MODEL> -anchor_res <FIXED_RES_P1> -

run:preserve_header 

 

Enumerate dihedral app: 
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This app is in my pilot apps folder within the Rosetta source code 

(Rosetta/main/source/src/apps/pilot/arubenstein/enumerate_dihedral.cc). 

 

Clustering via AmberTools cpptraj: 

 

Run tleap to convert pdb to topology and coordinate files: 

tleap.in: 

source leaprc.ff14SB 

source leaprc.phosaa10 

loadAmberParams frcmod.ionsjc_tip3p 

pdb = loadpdb <PDB_NAME> 

addions pdb Cl- 0 

addions pdb Na+ 0 

#solvatebox pdb TIP3PBOX 10.0 

saveamberparm pdb <PDB_NAME>.top <PDB_NAME>.crd 

 

Run: 

tleap -f tleap.in 

 

Run cpptraj to cluster: 

cpptraj.in file: 

parm <TOPO_FILE_1> 

trajin <COORD_FILE_1> 
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parm <TOPO_FILE_2> 

trajin <COORD_FILE_2> 

. 

. 

. 

cluster hieragglo clusters <N_CLUSTERS> rms :<PEPT_BEG_RES>-

<PEPT_END_RES> repout <N_CLUSTERS> repfmt pdb 

 

Run: 

cpptraj -i 'cpptraj.in' 

 

Multispecificity Prediction Controls for MFPred 

 

Monte-Carlo (pepspec) 

Command-line: 

<ROSETTA_BIN>mc_no_sa.linuxgccrelease -database <ROSETTA_DB> -

pepspec:pdb_list <BACKBONE_ENSEMBLE_LIST> -save_low_pdbs false -

pepspec:n_peptides 1 -pepspec:use_input_bb true -ex1 -ex2 -extrachi_cutoff 0 -

pepspec:diversify_lvl 50 -pepspec:run_sequential  -use_input_sc 

 

Mc_no_sa app: 

This app is a version of the general pepspec app that includes profiling (necessary to 

extract running times and determine speedup). 
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Genetic Algorithm (sequence_tolerance) 

Command-line: 

<ROSETTA_BIN>sequence_tolerance_control.linuxgccrelease -database 

<ROSETTA_DB> -s <MODEL_FROM_BACKBONE_ENSEMBLE> -ex1 -ex2 -ex1aro 

-ex2aro -extrachi_cutoff 0 -ms:generations 5 -ms:pop_size 2000 -ms:pop_from_ss 1 -

ms:checkpoint:prefix <PREFIX> -ms:checkpoint:interval 200 -ms:checkpoint:gz -

seq_tol:fitness_master_weights 1 1 1 2 -resfile <RESFILE> 

 

Resfile: 

NATAA residues according to seqtol_resfile.py, ALLAA peptide residues 

 

Sequence_tolerance_control app: 

This app is a version of the general sequence_tolerance app that includes profiling 

(necessary to extract running times and determine speedup). 
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Appendix 3. Explanation of Metrics in Chapter 3 

We used several metrics and distances to evaluate specificity profile predictions.   The 

Frobenius distance is defined as: 

𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠(𝐸, 𝑃) = (𝐸5 − 𝑃5

2

501

)G 

where E is a vector of experimentally determined amino acid frequencies and P is a 

vector of predicted frequencies.  To calculate the Frobenius distance of the entire profile, 

we simply flattened the experimental and predicted profiles into one vector each.   Two 

identical probability distributions have a Frobenius distance of 0, while two most 

divergent distributions have a Frobenius distance of (2n)1/2, where n is equal to the 

number of positions in the profile.   

 The Average Absolute Distance (AAD) is defined as: 

𝐴𝐴𝐷(𝐸, 𝑃) =
1
𝑁 𝐸5 − 𝑃5

2

501

 

Again, to calculate the AAD of the entire profile, we flattened each profile to a single 

vector.  AAD ranges between 0 to 1, with 0 as the best score and 1 as the worst score.  

According to Smith and Kortemme, an AAD of less than 6% (or 0.06) is considered to be 

a good prediction. 

 The cosine similarity is defined as: 

  

𝐶𝑜𝑠𝑖𝑛𝑒(𝐸, 𝑃) =
𝐸52

501 𝑃5

𝐸5G2
501 𝑃5G2

501
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We flattened each profile to a single vector.  Two identical specificity profiles have a 

cosine distance of 1 whereas two most divergent profiles have a similarity of 0.   

 Jensen-Shannon Divergence (JSD) is defined as: 

    

 

𝐽𝑆𝐷 𝐸, 𝑃 = 𝐻 0.5𝐸5 + 0.5𝑃5

2

501

− 	0.5 𝐻 𝐸5

2

501

− 0.5 𝐻 𝑃5

2

501

 

 

where H is Shannon entropy, defined as: 

  

𝐻 𝐸 = − 𝐸5 logG 𝐸5

2

501

 

We calculated the JSD of the entire profile by averaging the JSD of each vector (or 

position) in the profile.  A JSD of zero denotes two identical profiles, whereas a JSD of 1 

denotes two entirely divergent profiles.  While JSD is not considered a proper metric, it 

does provide information regarding how divergent two profiles are. 

 Area under the ROC curve, or AUC, as developed by Smith and Kortemme 56, is 

another measure that we used to evaluate the profiles. We plotted an ROC curve for each 

predicted profile based on how well the most frequent experimental amino acids (defined 

as > 10%) are recapitulated in the predicted profile.   We then calculated the area under 

the curve, which denotes the probability that the predicted profile ranks a positive amino 

acid as higher than a negative amino acid.  An AUC of 1 represents a perfect prediction, 

while an AUC of 0.5 is equivalent to a random prediction.  
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 Last, we developed a new distance, referred to as the Score-Sequence AUC Loss 

(SSAL).  This distance also takes advantage of an ROC curve, although this one is 

slightly different.  We use the experimental profile to generate a score for each cleaved 

and uncleaved sequence by taking the sum of the probabilities of each amino acid in the 

sequence occurring at its position: 

𝑆𝑐𝑜𝑟𝑒 𝑆 = 𝐸5(𝑆5)
tuR(v)

501

 

We then plot an ROC curve that demonstrates how well the scores rank the cleaved vs. 

uncleaved sequences and calculate its AUC.  We repeat the entire process with the 

predicted profile, and then subtract the predicted ROC-AUC from the experimental ROC-

AUC.  The result is the SSAL, which denotes how well the predicted profile 

differentiates between cleaved/uncleaved sequences vs. the experimental profile. 

 In order to transform the values of the distances to p-values, we generated 

100,000 random profiles by randomly sampling columns of our protease and PRD 

experimental profile library and randomly shuffling the amino acid identity of their 

frequencies so as to generate profiles with similar information content.  We then 

calculated their per-column and overall distance from each experimental profile for each 

of the six measures.  The ranking of a given predicted profile distance value in its given 

distance list was then used to find the p-value. 
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Appendix 4. Supplementary Methods for Chapter 4 

Two step screening approach to avoid stop codons: 

The LY104 vector was a gift from Y. Li, B. Iverson, and G. Georgiou (University 

of Texas at Austin).  The library was constructed using a two-step screening approach to 

avoid enrichment of false positives. The first step was an expression screen, which was 

done by combining the library with a protease inactive vector (LY104 S139A knockout). 

The recombination was performed by homologous recombination technique in yeast 

EBY100 cells. We modified an electroporation-based method as described in210. The 

transformed library was allowed to grow for 48 hours at 30 C, up to an OD600 of 2.0. 

Dilutions of 1/10, 1/100 and 1/1000th were plated from the initial culture to calculate the 

transformation efficiency and library size. The double positive cell population was 

isolated and enriched using a Fluorescence Assisted Cell Sorting technique. The 

expressible library was then recombined with a vector containing the active protease, 

using the aforementioned homologous recombination technique.  This library of 

functional variants was allowed to grow up to 48 hours at 30 C and then sorted into three 

sequence pools – cleaved, partially cleaved and uncleaved. The gates for the FACS were 

defined using clonal substrates that displayed varying levels of cleavage activities. The 

three sequence pools were enriched via three rounds of successive selection (using 

FACS) and growth. The DNA from the three sequence pools was extracted using the 

Omega E.Z.N.A yeast plasmid kit. Biological duplicates were sequenced to get an 

estimate of error correction necessary for post processing this data. 

 

Library Generation methodology: 
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The library was constructed using a PCR amplification based technique using NNK 

mixed base oligonucleotides (Integrated DNA Technologies). The LY104 vector was 

linearized using DNA oligonucleotides (IDT).  The NNK library insert (~576 bp) and 

linearized vector (~6000 bp) were combined using Homologous Recombination using 

electro-competent EBY100 yeast cells. The transformed EBY100 cells were rescued 

using a YPD medium and allowed to grow in a 250 mL Selective Complete Growth 

Medium (-UW). The media was supplemented with 250 μL of Ampicillin and 

Kanamycin to avoid bacterial contamination.  

 

Library Testing and Enrichment: 

The transformed library was allowed to grow for ~48 hrs (upto OD600 2.0) and then 

induced and tested using Flow cytometry. 1.5 x 107cells(OD600 ~0.5) were pelleted and 

resuspended in 2 mL induction media (20g/L galactose, 2 g/L glucose) supplemented 

with 2 μL each of 1000x antibiotics (carbenicillin, kanamycin). The induction cultures 

were grown overnight at 30 C (225 rpm) to an OD600 of 1-1.5. All spins in the protocol 

were done at 3000 r.c.f for 5 min. The induced cultures were pelleted and washed with 

500 μL PBS followed by 500 μL PBS+ 0.5% BSA. 1 μL of each antibody stain (anti-

FLAG PE from Prozyme, PJ315 and anti-HA FITC from Genscript, A01621) was 

incubated with 107 cells for 30 min at 4 C. The samples were resuspended by vortexing 

and incubated at RT for an additional 30 min. The cells were washed with 100μL PBS 

with 0.5% BSA, pelleted and then resuspended in 500 μL PBS. Samples were diluted to 

achieve a final concentration of 106 cells/mL and then FITC (anti-HA) and PE (anti-

FLAG) intensities were detected using a Flow Cytometer (Beckman Coulter Gallios). 
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The tested cells were then enriched using a MoFlo XDP Cell Sorter (final cell density 

107). Up to 106 cells were collected and grown in the Selective Complete Growth Media 

for 48 Hours. Two rounds of sorting and enrichment were carried out to select for clones 

that were expressed. The selected cells were grown for 48 hours. The DNA from the 

selected cell population was extracted using E.Z.N.A Zymoprep Kit (Omega).  

 

Cell Sorting into Cleaved, Uncleaved, Partially Cleaved Populations: 

The expressible fraction of the library was combined with the active LY104 vector using 

a second round of Homologous recombination following the same protocol as mentioned 

above. Using the MoFlo XDP Cell Sorter we defined Cleaved, Uncleaved and Partially 

cleaved gates for further selection of this population.  These gates were defined based on 

previously experimentally tested sequences.  

 

These cells from the selected population were put through three rounds of enrichment and 

sorting. In the first round of sorting, cells were collected into two gates – Cleaved and 

Uncleaved. The Uncleaved sample was further enriched in the second sorting round 

whereas the Cleaved population was separated into Cleaved and Partially cleaved gates. 

Cells were collected for each sorting round until a cell count of 106 was reached. At the 

culmination of each sorting round, DNA was collected from each population by using a 

Zymoprep Kit (Omega). 

 

Preparation for Illumina Sequencing Run: 
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The DNA samples collected from each of the populations were prepared by 25 cycle 

amplification211 with inner primers (Supplementary Table 3). The samples were then run 

on a 1% Agarose gel to confirm the amplification of a single species. These were further 

amplified using 8 PCR cycles to include the DNA barcode used in the deep sequencing 

protocol and checked for quality using a Bioanalyzer 2100. The Deep sequencing was 

performed on a NextSeq 500 (Illumina) giving a 75 bp paired end read.  

I. Expression Protocols 

II. Protease expression: 

 

Expression and purification protocol was a modification of previously published 

protocols64,266,267.  Transformed BL21 (DE3) E. coli cells were grown at 37°C and induced 

at an optical density of 0.6 by adding 1 mM IPTG. Cells were harvested after 5 hours of 

expression, pelleted, and frozen at −80°C for storage. Cell pellets were thawed, 

resuspended in 5 mL/g of resuspension buffer (50 mM phosphate buffer, 500 mM NaCl, 

10% glycerol, 30 mM imidazole, 2 mM β-ME, pH 7.5) and lysed with a sonicator. The 

soluble fraction was retained, applied to a nickel column (Qiagen), washed with 

resuspension buffer, and eluted with resuspension buffer supplemented with 200 mM 

imidazole. The eluent was dialyzed overnight (MWCO 10 kD) into a protease storage 

buffer (20mM Tris.HCl,pH 8.0, Glycerol 20%, 100 mM KCl, 1mM DTT, 0.2 mM 

EDTA) to remove the imidazole. The purified protein was then flash frozen and stored at 

-80 C. 
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Substrate (MBP-GST construct) expression:  The transformed BL21(DE3) cells were 

grown at 37 C to an optical density of 0.6 and induced using 0.2 mM IPTG. Upon 

induction the cells were grown overnight at 18 C. the cells were harvested and the cell 

pellet was resuspended in a resuspension buffer (50 mM Tris.HCl, pH8.0, 500 mM NaCl, 

30 mM immidazole).  The resuspended cells were lysed via sonication and the soluble 

fraction was applied to a Nickel column (Qiagen). The column was washed using the 

resuspension buffer and then the protein eluted using an Elution buffer- 50 mM Tris.HCl, 

pH8.0, 150 mM NaCl, 300 mM imidazole. The protein was dialyzed overnight to remove 

the imidazole and frozen until use. 

 

Gel based validation assay: The frozen aliquots of substrate solutions were thawed and 

dialyzed overnight into the reaction buffer (50mM HEPES (pH 7.5), 150 mM NaCl, 0.1% 

Triton X-100, 15% Glyecerol, 10mM DTT). 28.5 nM substrate was incubated overnight 

with 500nM, 700nM, 1uM, 2uM, 3uM and 4 uM protease. The resultant reactions were 

run on a SDS PAGE gel to check for cleavage activity. 

III. Sequence Processing 

A. Sequence Alignment and Trimming 

Data was received oriented in the correct orientation and filtered for quality of 20.  Each 

sequence was searched for the presence and location of “TCTTTATAA”, a unique string 

within the WT sequence, to align the sequences.  If the index of “TCTTTATAA” in 

sequence a is less than the index of “TCTTTATAA” in the WT sequence, the beginning 

of sequence a is padded to match the beginning of the WT sequence.   If the index of 



208 

	

“TCTTTATAA” in sequence a is greater than the index of “TCTTTATAA” in the WT 

sequence, the beginning of sequence a is truncated to match the beginning of the WT 

sequence.   If “TCTTTATAA” is not found in sequence a, it is discarded.  If the padded 

or truncated sequence a is shorter than the index of the library region in the WT 

sequence, sequence a is discarded.  If sequence a is longer than the index of the library 

region but shorter than the WT sequence, the end of sequence a is padded to match the 

WT sequence.  Finally, we check that the padded or truncated sequence a matches the 

WT sequence entirely except for the library region.  If it does not match the WT 

sequence, we discard sequence a. 

 

B. Threshold Determination 

After aligning and trimming sequences, we calculate a normalized count of each 

sequence so that the sum of the normalized counts in each population is equal.  This is 

achieved by multiplying each sequence count in population a by a normalization factor 

that is equal to the number of sequences in the largest library divided by the number of 

sequences in library a.  Then, to determine the minimum frequency of each sequence in 

the population above which we are confident of the validity of its representation in the 

library, we used several methods: 

1)  Overlap between cleaved and uncleaved sequences:  

We expect little overlap between the populations of cleaved and uncleaved sequences.  

However, at low counts, there is some overlap between the two populations. For each 

threshold, we calculated the number of sequences that overlapped between cleaved and 

uncleaved sequences, and normalized by the count of unique translated cleaved DNA 
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sequences at that threshold.  We determined the amount of overlap as a percentage of the 

initial overlap between the populations at a threshold of 1, and then found the threshold 

that gave <= 10% of the initial overlap (see Figure 3.2).  We repeated this analysis for all 

four variant populations.  The threshold was less than or slightly greater than 11 for all 

variants.  

2) Duplicate population error:    

We sampled technical duplicates for the third round of enrichment for cleaved, uncleaved 

and partially cleaved sequence pools. As a post - processing step in the pipeline, we 

introduced duplicate population error correction, by plotting the difference in counts for 

common sequences of the technical duplicate samples and plotting against the counts in 

the first sample.  

3) SVM Convergence: 

To select for the threshold that gave us the most distinct populations, we generated 

cleaved and uncleaved sequence sets for thresholds 5,10,11,12,13,14, 15, 16, 25, 50, 75 

and 100. Using an SVM based technique described previously103 we calculated the 

auROC for all cleaved and uncleaved sequence populations for the listed thresholds. This 

enabled us to identify which threshold increases the distinction between the two 

populations.  

 

We decided upon a frequency threshold of 11 as one that satisfies all categories of 

threshold determination.   
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C. Enrich Software 

 We used a modified version of the Enrich software169 to find an enrichment ratio 

(ER) for each sequence.  We only included sequences that had a normalized count (as 

defined above) of greater than or equal to eleven for both the unselected and selected 

populations.  The enrichment ratio of sequence v in population X is defined using 

Equation 1. Fv,X is the frequency of sequence v in population X. 

 

𝐸𝑅x,y = 	 logG
𝐹x,y

𝐹x,5Rz{W
 

           Eq. 1 

D. Population Categorization 

 Sequences were sorted into one of three pools (cleaved, uncleaved and partially 

cleaved), based on the following criteria.  Sequences that had a positive ER for more than 

one pool were discarded.  Sequences that had a positive ER for either or both replicates 

for one pool only were assigned to that pool.  Negative ERs were ignored. 

 We also sorted a second set with more stringent criteria, which was then used for 

training the SVM.  For this set, if a sequence was found in more than one pool (even if it 

had a negative ER in the second pool), it was discarded.  Additionally, only sequences 

with a positive ER > 2.0 were considered. 

 

Computational 

Graph Generation 
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 Graph generation was done using Gephi 0.9.1268.  Nodes were assigned a fitness 

of 2.0 for cleaved nodes, 1.5 for partially cleaved nodes, and 1.0 for uncleaved nodes.  

Edge directionality was determined by distance from DEMEE, the starting sequence for 

library generation; in the case of edge a connecting nodes b and c, the node with a 

smaller hamming distance from DEMEE was chosen as the source for edge a.  Edge 

weight was defined as the ratio of the starting sequence fitness to the ending sequence 

fitness.  The graph layout was run in two steps, starting with a Fruchterman-Reingold 

layout to separate the nodes and then ending with the ForceAtlas2 layout to generate a 

force-directed graph.  All statistics were run with Gephi default settings. 

 

Random Graph 

 The edges in the wild-type HCV graph were randomized using the following 

process.  The source of each edge was kept and a population (cleaved, partially cleaved, 

or uncleaved) was randomly chosen for the target of the edge.  The target of the edge was 

then randomly chosen from among that population. 

 

SVM Sequence Features 

 We used an encoding scheme that included twenty binary features per amino acid 

residue, where one of those features was a one and the rest were zeroes.  The placement 

of the one was dependent on the identity of the amino acid.  With five amino acid 

residues per sequence, this resulted in 100 total sequence features.  

 

Mutual Information 
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 Correlation between residues at different positions was calculated using a mutual-

information based metric (Equation 2), with modifications based on Buslje et al. 

(Equation 3)269 and Gouveia-Oliveira and Pedersen (Equation 4)270.  We begin with MI 

between amino acid a at position i and amino acid b at position j defined as: 

 

𝑀𝐼@^B/ = log
𝑃(𝑎5𝑏3)

𝑃 𝑎5 ∙ 𝑃(𝑏3)
	 

 Eq. 2 

𝑃(𝑎5) and 𝑃(𝑎5𝑏3) are defined with a pseudocount to correct for MSAs with low counts.  

 

𝑃 𝑎5 = 	
𝜆 + 𝑁(𝑎5)
𝜆 + 𝑁(𝑥5)9

 

Eq. 3 

𝑁(𝑎5) is the count of amino acid a appearing at position i.  𝜆 is equal to the length of 

sequences in the MSA divided by 20 for single-amino acid counts (𝑁(𝑎5))	and 400 for 

double-amino acid counts 𝑁(𝑎5𝑏3).  We also modified MI to include row-column 

weighting: 

𝑀𝐼(�� = 	
𝑀𝐼@^B/

( 𝑀𝐼9^B/9 +	 𝑀𝐼@^�/� − 𝑀𝐼@^B/)/19	
 

 Eq. 4 

Obtaining viral genomes from patient populations: The list of complete viral 

polyprotein genomes was accessed and downloaded from NCBI. These genomes were 

checked to ensure that the sequence covered all NS3 substrate regions. We translated the 

DNA sequence that we downloaded from NCBI into a protein sequence and compared 
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the five substrate regions “DLEVVTST”, “DEMEECASHL”, “EDVVCCSM”, 

ECTTPCSGS” and “ALVTPCASH” to discover the diversity found in the substrate 

region for the patient genomes. 

 

The dataset of aligned genomes utilized in Cuypers et al. was used for dN/dS 

measurements and for the mapping of predicted cleaved and uncleaved sequences within 

the genome219. 

 

Supplementary Tables: 
 

1. Genes: 
Gene DNA sequence 
HCV 
protease 
(PDB ID: 
3SV6) 

CGGATAACAA TTCCCCTCTA GAAATAATTT TGTTTAACTT 
TAAGAAGGAG ATATACATATGGGC AGT CAC ATG GCC TCG 
ATG AAA AAG AAA GGC TCT GTG GTG ATC GTG GGG CGC 
ATC AAC CTG TCT GGC GAT ACC GCG TAC GCG CAA CAG 
ACG CGG GGT GAG GAA GGC TGT CAG GAG ACC TCG CAA 
ACG GGT CGT GAT AAA AAC CAG GTA GAG GGT GAA GTG 
CAG ATT GTG AGT ACA GCG ACG CAG ACC TTT CTG GCC 
ACC TCG ATC AAT GGT GTA CTG TGG ACG GTA TAT CAT 
GGT GCT GGC ACA CGT ACT ATT GCG TCG CCG AAA GGC 
CCT GTG ACG CAG ATG TAC ACA AAT GTG GAC AAA GAT 
TTG GTG GGA TGG CAG GCT CCG CAA GGT AGC CGC AGT 
TTG ACT CCT TGT ACG TGC GGT TCG TCA GAT CTG TAT CTT 
GTG ACT CGC CAC GCG GAT GTC ATC CCG GTA CGC CGC 
CGT GGC GAT TCC CGT GGT TCT CTG CTT TCT CCG CGC CCT 
ATC TCA TAT CTT AAA GGT TCA AGT GGA GGA CCA CTG 
TTA TGT CCG GCG GGG CAC GCA GTC GGA ATT TTT CGT 
GCG GCG GTT TCT ACT CGG GGA GTT GCA AAA GCT GTT 
GAC TTC ATT CCG GTT GAA TCT TTG GAA ACA ACC ATG 
CGG TCG CCG CTCGAGCAC CATCACCACC ACCACTGA 
 

 
 

2. Cell sorting statistics: 
 

 Functional pool Sort Round Cell # 
1 CLEAVED 1 420 K 
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UNCLEAVED 109 K 
CLEAVED 2 

 
1.05M 

MIDDLE 105K 
UNCLEAVED 775K + 295K 
CLEAVED  

3 
1.55M 

MIDDLE 89K 
UNCLEAVED 675K 

2 CLEAVED 1 1 M 
UNCLEAVED 205 K 
CLEAVED 2 

 
1.15M 

MIDDLE 300K 
UNCLEAVED 1.05 M 
CLEAVED  

3 
2M 

MIDDLE 262K 
UNCLEAVED 707K 

9 CLEAVED 1 812K + 2.65 M 
UNCLEAVED 359K 
CLEAVED 2 

 
1.4 M 

MIDDLE 94 K 
UNCLEAVED 1.02 M 
CLEAVED  

3 
1.77 M 

MIDDLE 324 K 
UNCLEAVED 1.5 M 

10 CLEAVED 1 2.7 M 
UNCLEAVED 646 K 
CLEAVED 2 

 
1.04M 

MIDDLE 183K 
UNCLEAVED 1.06 M 
CLEAVED  

3 
1.59M 

MIDDLE 1.16M 
UNCLEAVED 1.5M 

 
 
 
 

 
3. List of oligos for next - sequencing library generation 

Primer DNA Sequence 
NNK library 
reverse primer 

TTTCACTGCCTTTATCATCATCATCTTTATAATCACTGCC
CAAATGAGAAGCACAMNNMNNMNNMNNMNNCGACCC
TCCGCCTCCGCTACCGCCTCCACC 

Library insert 
forward primer 

CTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTA
TTAACAGATATATAAATGC 

Vector forward 
primer 

GGCAGTGATTATAAAGATGATGATGATAAAGGCAGTGA
AA 
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Vector reverse 
primer 

GCATTTATATATCTGTTAATAGATCAAAAATCATCGCTT
CGCTGATTAATTACCCCAG 

Insert 
amplification 
post library 
generation 

TTTCACTGCCTTTATCATCATCATCTTTATAATCACTGCC 

 
 

4. List of oligos for Illumina sample prep and sequencing 
 

Primers Sequence 
Illumina Insert 
Amplification Forward  

CGT TCC AGA CTA CGC TCT GCA GGC TA 

Illumina Insert 
Amplification Reverse  

GGC AGT GAT TAT AAA GAT GAT GAT GAT AAA 
GGC AGT G 
 

Sequencing LYSeq_114 GCC GGA CAG GAT GAT TCT GCC TAC GAT TAC 
TAC TGA GCC 

Sequencing P104 GGATATTACATGGGAAAACATGTTGTTTACGGAG 
 

 
5. Deep sequencing processing statistics 

Variant Population 
Initial Post-thresholding Post-

categorization 
Unique 
Counts 

Unique 
Ratios 

Unique 
Counts 

Unique 
Ratios 

Unique 
Sequences 

WT Background 379360  74574   
Cleaved-Rep1 216253 84771 30327 23549 

7472 Cleaved-Rep2 260763 95729 29237 23691 
Partial-Rep1 219368 89829 32354 22689 8737 Partial-Rep2 354252 123572 28630 21985 
Uncleaved-Rep1 587739 183535 39234 32297 14702 Uncleaved-Rep2 473114 160979 39114 32052 

R155K/ 
A156T/ 
D168A 

Background 339048  64405   
Cleaved 139721 50894 16373 10947 3135 
Partial 270662 108407 40601 29623 11562 
Uncleaved 209208 75868 23431 10424 3703 

A156T Background 367895  68198    
Cleaved 140478 52198 18717 9910 3644 
Partial 251273 95065 26347 17150 8461 
Uncleaved 277993 109683 29934 17593 9564 

D168A Background 314941  65786   
Cleaved 197577 65956 19017 10347 4350 
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Partial 336653 108566 30534 16928 5780 
Uncleaved 286783 96577 26992 15154 7514 

 
 

6. List of oligos for testing substrates in yeast surface display 
 

Primers DNA Sequence 
TLIIPCASHL 
forward 

CGGTAGCGGAGGCGGAGGGTCGACATTGATTATTCCTTG
TGC 

TLIIPCASHL 
reverse 

CTTTATAATCACTGCCCAAATGAGAAGCACAAGGAATAA
TCAATGTCGAC 

ASIIPCASHL 
forward 

CGGTAGCGGAGGCGGAGGGTCGGCGTCAATTATTCCTTG
TG 

ASIIPCASHL 
reverse 

CTTTATAATCACTGCCCAAATGAGAAGCACAAGGAATAA
TTGACGCCGA 

TATTA 
forward 

CGGTAGCGGAGGCGGAGGGTCGACAGCGACAACAGCGT 

TATTA reverse CTTTATAATCACTGCCCAAATGAGAAGCACACGCTGTTGT
CGCTGT 

LHTNI forward GGTAGCGGAGGCGGAGGGTCGTTGCAT ACAAATATT 
TGTGCTTCTCATTTG 

LHTNI reverse TTATCATCATCATCTTTATAATCACTGCCCAAATGAGAAG
CACAAATATTTGTATGCAA 

HNTSN 
forward 

GGTAGCGGAGGCGGAGGGTCGCAT AAT ACA TCA AAT 
TGTGCTTCTCATTTG 

HNTSN reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAATTTGATGTATTATG 

SQTGQ 
forward 

GGTAGCGGAGGCGGAGGGTCGTCA CAA ACA GGT CAA 
TGTGCTTCTCATTTG 

SQTGQ reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTGACCTGTTTGTGA 

PSTVL forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA GTG TTG 
TGTGCTTCTCATTTG 

PSTVL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAACACTGTTGAAGG 

PSTTL forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA ACA TTG 
TGTGCTTCTCATTTG 

PSTTL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAATGTTGTTGAAGG 

PSTVF forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA GTG TTC 
TGTGCTTCTCATTTG 

PSTVF reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAGAACACTGTTGAAGG 

PSTTF forward GGTAGCGGAGGCGGAGGGTCGCCT TCA ACA ACA TTC 
TGTGCTTCTCATTTG 
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PSTTF reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAGAATGTTGTTGAAGG 

LSLQP forward GGTAGCGGAGGCGGAGGGTCGTTG TCA TTG CAA CCT  
TGTGCTTCTCATTTG 

LSLQP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGTTGCAATGACAA 

LSPQP forward GGTAGCGGAGGCGGAGGGTCG TTG TCA CCT CAA CCT  
TGTGCTTCTCATTTG 

LSPQP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGTTGAGGTGACAA 

LSLIP forward  GGTAGCGGAGGCGGAGGGTCG TTG TCA TTG ATT CCT   
TGTGCTTCTCATTTG 

LSLIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATCAATGACAA 

LSPIP forward GGTAGCGGAGGCGGAGGGTCG TTG TCA CCT ATT CCT  
TGTGCTTCTCATTTG 

LSPIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATAGGTGACAA 

LTTQA 
forward 

GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA CAA GCG 
TGTGCTTCTCATTTG 

LTTQA reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACGCTTGTGTTGTCAA 

LTTKA 
forward  

GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA AAG GCG  
TGTGCTTCTCATTTG 

LTTKA reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACGCCTTTGTTGTCAA 

LTTQL forward GGTAGCGGAGGCGGAGGGTCG TTG ACA ACA CAA TTG 
TGTGCTTCTCATTTG 

LTTQL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAATTGTGTTGTCAA 

LTTKL forward GGTAGCGGAGGCGGAGGGTCG  TTG ACA ACA AAG TTG  
TGTGCTTCTCATTTG 

LTTKL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAACTTTGTTGTCAA 

ECTIP forward GGTAGCGGAGGCGGAGGGTCG  GAA TGT ACA ATT 
CCTTGTGCTTCTCATTTG 

ECTIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATTGTACATTC 

DTMEE 
forward 

GGTAGCGGAGGCGGAGGGTCG  GAT ACA ATG GAA 
GAATGTGCTTCTCATTTG 

DTMEE reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTCTTCCATTGTATC 

DEMIE forward GGTAGCGGAGGCGGAGGGTCG  GAT GAA ATGATT 
GAA TGTGCTTCTCATTTG 

DEMIE reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
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ACATTCAATCATTTCATC 
ALGTG 
forward 

GGTAGCGGAGGCGGAGGGTCG  GCG TTG GGT ACA 
GGT  TGTGCTTCTCATTTG 

ALGTG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCTGTACCCAACGC 

RPGPG forward GGTAGCGGAGGCGGAGGGTCG CGC CCT GGT CCT GGT 
 TGTGCTTCTCATTTG 

RPGPG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCAGGACCAGGGCG 

ALVTG 
forward 

GGTAGCGGAGGCGGAGGGTCG GCG TTG GTG ACA 
GGT TGTGCTTCTCATTTG 

ALVTG reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAACCTGTCACCAACGC 

EEMIQ forward GGTAGCGGAGGCGGAGGGTCG  GAA GAA ATG ATT CAA 
TGTGCTTCTCATTTG 

EEMIQ reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACATTGAATCATTTCTTC 

QTSEM 
forward 

GGTAGCGGAGGCGGAGGGTCG  CAA ACA TCA GAA ATG 
TGTGCTTCTCATTTG 

QTSEM reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACATTTCTGATGTTTG 

WSAIP forward GGTAGCGGAGGCGGAGGGTCG TGG TCA GCG ATT CCT 
TGTGCTTCTCATTTG 

WSAIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATCGCTGACCA 

STPNK forward GGTAGCGGAGGCGGAGGGTCG TCA ACA CCT AAT AAG 
TGTGCTTCTCATTTG 

STPNK reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACTTATTAGGTGTTGA 

GTTIP forward GGTAGCGGAGGCGGAGGGTCG GGT ACA ACA ATT CCT 
TGTGCTTCTCATTTG 

GTTIP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGAATTGTTGTACC 

HNLAP 
forward 

GGTAGCGGAGGCGGAGGGTCG CAT AAT TTG GCG CCT 
TGTGCTTCTCATTTG 

HNLAP reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAAGGCGCCAAATTATG 

FDTLN forward GGTAGCGGAGGCGGAGGGTCG TTC GAT ACA TTG AAT 
TGTGCTTCTCATTTG 

FDTLN reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACAATTCAATGTATCGAA 

SDYDL 
forward 

GGTAGCGGAGGCGGAGGGTCG TCA GAT TAT GAT TTG 
TGTGCTTCTCATTTG 

SDYDL reverse TATCATCATCATCTTTATAATCACTGCCCAAATGAGAAGC
ACACAAATCATAATCTGA 
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7. Primers to generate Drug Resistant Mutants  

 
Primer Sequence 
A156T forward CGTGGGCATATTTAGGACAGCGGTGTGCACCCG 
A156T reverse CGGGTGCACACCGCTGTCCTAAATATGCCCACG 
D168A forward CTAAGGCGGTGGCGTTTATCCCTGTGGAGAAC 
D168A reverse GTTCTCCACAGGGATAAACGCCACCGCCTTAG 
Triple Mutant forward CGTGGGCATATTTAAGACAGCGGTGTGCACCCG 
Triple Mutant reverse CGGGTGCACACCGCTGTCTTAAATATGCCCACG 
 

8. Vector amplification primers for YESS assay 
Primers DNA Sequence 
Vector 
amplification 
LY104 for- 
Gibson 

CGACCCTCCGCCTCCGCTACC 

Vector 
amplification 
LY104 rev- 
Gibson 
 

TGTGCTTCTCATTTGGGCAGTGATTATAAAGATGATGATGATA
A 

 
9. SVM parameter tuning: grid search for optimal boxconstraint and rbfsigma 

parameters.  Average AUC is for each set of parameters run with an 80:20 split on 
the WT experimental full data set for 100 iterations.  N/A is shown if the SVM 
did not converge with these parameters.  A boxconstraint of 1 and rbfsigma of 10 
was decided on for future calculations. 
 

  boxconstraint 
 AUC 0.01 0.1 1 10 100 1000 

rb
fs

ig
m

a 

0.01 0.5 0.5 0.5 0.5 0.5 0.5 
0.1 0.5 0.5 0.5 0.5 0.5 0.5 

1 0.8715 0.8718 0.872 0.872 0.8723 0.8721 
10 0.9549 0.9811 0.9839 0.9829 0.9809 0.981 

100 0.9695 0.9696 0.975 0.919 0.9825 N/A 
1000 0.9691 0.9691 0.9693 0.9691 0.9748 0.9819 
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Appendix 5. Definitions for the loops in the loop modeling benchmark for Chapter 5 

{ 

    "154l": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 164 ",  

        "PassedFilter": false,  

        "Sequence": 

"NVRSYARMDIGT",  

        "StartResidueID": " 153 " 

    },  

    "1a8d": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 166 ",  

        "PassedFilter": true,  



221 

	

        "Sequence": 

"DLPDKFNAYLAN",  

        "StartResidueID": " 155 " 

    },  

    "1arb": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 193 ",  

        "PassedFilter": true,  

        "Sequence": 

"WQPSGGVTEPGS",  

        "StartResidueID": " 182 " 

    },  

    "1arp": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": " 212 ",  

        "PassedFilter": false,  

        "Sequence": 

"LDSTPQVFDTQF",  

        "StartResidueID": " 201 " 

    },  

    "1bhe": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 132 ",  

        "PassedFilter": true,  

        "Sequence": 

"GQGGVKLQDKKV",  

        "StartResidueID": " 121 " 

    },  

    "1bn8": { 
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        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 309 ",  

        "PassedFilter": true,  

        "Sequence": 

"STSSSSYPFSYA",  

        "StartResidueID": " 298 " 

    },  

    "1c5e": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  79 ",  

        "PassedFilter": true,  

        "Sequence": 

"YEDVLWPEAASD",  

        "StartResidueID": "  68 " 
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    },  

    "1cb0": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  44 ",  

        "PassedFilter": true,  

        "Sequence": 

"YVDTPFGKPSDA",  

        "StartResidueID": "  33 " 

    },  

    "1cnv": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 199 ",  

        "PassedFilter": true,  

        "Sequence": 
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"FYNDRSCQYSTG",  

        "StartResidueID": " 188 " 

    },  

    "1cs6": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 150 ",  

        "PassedFilter": true,  

        "Sequence": 

"NEFPNFIPADGR",  

        "StartResidueID": " 139 " 

    },  

    "1ctm": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": "  20 ",  

        "PassedFilter": false,  

        "Sequence": 

"YENPREATGRIV",  

        "StartResidueID": "   9 " 

    },  

    "1cyo": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  23 ",  

        "PassedFilter": true,  

        "Sequence": 

"IQKHNNSKSTWL",  

        "StartResidueID": "  12 " 

    },  

    "1dqz": { 
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        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 218 ",  

        "PassedFilter": true,  

        "Sequence": 

"CGNGTPSDLGGD",  

        "StartResidueID": " 207 " 

    },  

    "1dts": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  52 ",  

        "PassedFilter": true,  

        "Sequence": 

"SGSEKTPEGLRN",  

        "StartResidueID": "  41 " 
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    },  

    "1eco": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  46 ",  

        "PassedFilter": true,  

        "Sequence": 

"MAKFTQFAGKDL",  

        "StartResidueID": "  35 " 

    },  

    "1ede": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 161 ",  

        "PassedFilter": true,  

        "Sequence": 
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"CLMTDPVTQPAF",  

        "StartResidueID": " 150 " 

    },  

    "1exm": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 300 ",  

        "PassedFilter": true,  

        "Sequence": 

"RGVSREEVERGQ",  

        "StartResidueID": " 289 " 

    },  

    "1ezm": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": " 133 ",  

        "PassedFilter": true,  

        "Sequence": 

"FGDGATMFYPLV",  

        "StartResidueID": " 122 " 

    },  

    "1f46": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  70 ",  

        "PassedFilter": true,  

        "Sequence": 

"MVKPGTFDPEMK",  

        "StartResidueID": "  59 " 

    },  

    "1hfc": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 176 ",  

        "PassedFilter": false,  

        "Sequence": 

"RGDHRDNSPFDG",  

        "StartResidueID": " 165 " 

    },  

    "1i7p": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  46 ",  

        "PassedFilter": true,  

        "Sequence": 

"LPSPQHILGLPI",  

        "StartResidueID": "  35 " 
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    },  

    "1ivd": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 376 ",  

        "PassedFilter": false,  

        "Sequence": 

"TISKDLRSGYET",  

        "StartResidueID": " 365 " 

    },  

    "1m3s": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  79 ",  

        "PassedFilter": true,  

        "Sequence": 



233 

	

"VGEILTPPLAEG",  

        "StartResidueID": "  68 " 

    },  

    "1ms9": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 540 ",  

        "PassedFilter": true,  

        "Sequence": 

"GSTPVTPTGSWE",  

        "StartResidueID": " 529 " 

    },  

    "1msc": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": "  20 ",  

        "PassedFilter": true,  

        "Sequence": 

"LVDNGGTGDVTV",  

        "StartResidueID": "   9 " 

    },  

    "1my7": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 75 ",  

        "PassedFilter": true,  

        "Sequence": 

"TPPYADPSLQAP",  

        "StartResidueID": " 64 " 

    },  

    "1onc": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  33 ",  

        "PassedFilter": true,  

        "Sequence": 

"MSTNLFHCKDKN",  

        "StartResidueID": "  22 " 

    },  

    "1oth": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  47 ",  

        "PassedFilter": true,  

        "Sequence": 

"QKGEYLPLLQGK",  

        "StartResidueID": "  36 " 
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    },  

    "1oyc": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 214 ",  

        "PassedFilter": true,  

        "Sequence": 

"DPHSNTRTDEYG",  

        "StartResidueID": " 203 " 

    },  

    "1pbe": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 140 ",  

        "PassedFilter": true,  

        "Sequence": 
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"LHDLQGERPYVT",  

        "StartResidueID": " 129 " 

    },  

    "1pmy": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  88 ",  

        "PassedFilter": false,  

        "Sequence": 

"KCAPHYMMGMVA",  

        "StartResidueID": "  77 " 

    },  

    "1prn": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": "  26 ",  

        "PassedFilter": false,  

        "Sequence": 

"VEDRGVGLEDTI",  

        "StartResidueID": "  15 " 

    },  

    "1qlw": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  38 ",  

        "PassedFilter": true,  

        "Sequence": 

"ETLSLSPKYDAH",  

        "StartResidueID": "  27 " 

    },  

    "1rcf": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  99 ",  

        "PassedFilter": false,  

        "Sequence": 

"TGDQIGYADNFQ",  

        "StartResidueID": "  88 " 

    },  

    "1rro": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  28 ",  

        "PassedFilter": true,  

        "Sequence": 

"ECQDPDTFEPQK",  

        "StartResidueID": "  17 " 
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    },  

    "1scs": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 210 ",  

        "PassedFilter": false,  

        "Sequence": 

"IKSPDSHPADGI",  

        "StartResidueID": " 199 " 

    },  

    "1srp": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 318 ",  

        "PassedFilter": true,  

        "Sequence": 
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"SDVGGLKGNVSI",  

        "StartResidueID": " 308 " 

    },  

    "1t1d": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": " 138 ",  

        "PassedFilter": true,  

        "Sequence": 

"SGGRLRRPVNVP",  

        "StartResidueID": " 127 " 

    },  

    "1tca": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": " 316 ",  

        "PassedFilter": true,  

        "Sequence": 

"AVGKRTCSGIVT",  

        "StartResidueID": " 305 " 

    },  

    "1thg": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 137 ",  

        "PassedFilter": true,  

        "Sequence": 

"WIYGGAFVYGSS",  

        "StartResidueID": " 126 " 

    },  

    "1thw": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 189 ",  

        "PassedFilter": true,  

        "Sequence": 

"PDAFSYVLDKPT",  

        "StartResidueID": " 178 " 

    },  

    "1tib": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 110 ",  

        "PassedFilter": true,  

        "Sequence": 

"EINDICSGCRGH",  

        "StartResidueID": "  99 " 
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    },  

    "1tml": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 254 ",  

        "PassedFilter": true,  

        "Sequence": 

"STTNTGDPMIDA",  

        "StartResidueID": " 243 " 

    },  

    "1xif": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 214 ",  

        "PassedFilter": true,  

        "Sequence": 
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"IERLERPELYGV",  

        "StartResidueID": " 203 " 

    },  

    "2cpl": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 155 ",  

        "PassedFilter": true,  

        "Sequence": 

"FGSRNGKTSKKI",  

        "StartResidueID": " 144 " 

    },  

    "2cyp": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": " 202 ",  

        "PassedFilter": false,  

        "Sequence": 

"WGAANNVFTNEF",  

        "StartResidueID": " 191 " 

    },  

    "2ebn": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 143 ",  

        "PassedFilter": true,  

        "Sequence": 

"YQTPPPSGFVTP",  

        "StartResidueID": " 132 " 

    },  

    "2exo": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 304 ",  

        "PassedFilter": true,  

        "Sequence": 

"LVWDASYAKKPA",  

        "StartResidueID": " 293 " 

    },  

    "2pgd": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 372 ",  

        "PassedFilter": false,  

        "Sequence": 

"WRGGCIIRSVFL",  

        "StartResidueID": " 361 " 
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    },  

    "2pia": { 

        "chainID": "A",  

        "DOI": 

"10.1002/prot.21990",  

        "EndResidueID": "  41 ",  

        "PassedFilter": true,  

        "Sequence": 

"DPQGAPLPPFEA",  

        "StartResidueID": "  30 " 

    },  

    "2rn2": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 101 ",  

        "PassedFilter": true,  

        "Sequence": 
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"WKTADKKPVKNV",  

        "StartResidueID": "  90 " 

    },  

    "2sil": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 265 ",  

        "PassedFilter": true,  

        "Sequence": 

"ETKDFGKTWTEF",  

        "StartResidueID": " 254 " 

    },  

    "2sns": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": " 122 ",  

        "PassedFilter": false,  

        "Sequence": 

"VAYVYKPNNTHE",  

        "StartResidueID": " 111 " 

    },  

    "2tgi": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  59 ",  

        "PassedFilter": true,  

        "Sequence": 

"CPYLWSSDTQHS",  

        "StartResidueID": "  48 " 

    },  

    "3cla": { 
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        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 182 ",  

        "PassedFilter": true,  

        "Sequence": 

"AKYQQEGDRLLL",  

        "StartResidueID": " 171 " 

    },  

    "3cox": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 489 ",  

        "PassedFilter": false,  

        "Sequence": 

"VPGNVGVNPFVT",  

        "StartResidueID": " 478 " 
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    },  

    "3hsc": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  81 ",  

        "PassedFilter": true,  

        "Sequence": 

"RLIGRRFDDAVV",  

        "StartResidueID": "  70 " 

    }  

    "451c": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": "  27 ",  

        "PassedFilter": false,  

        "Sequence": 
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"HAIDTKMVGPAY",  

        "StartResidueID": "  16 " 

    },  

    "4enl": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  

        "EndResidueID": " 383 ",  

        "PassedFilter": false,  

        "Sequence": 

"SHRSGETEDTFI",  

        "StartResidueID": " 372 " 

    },  

    "4i1b": { 

        "chainID": "A",  

        "DOI": 

"10.1110/ps.9.9.1753",  
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        "EndResidueID": "  55 ",  

        "PassedFilter": true,  

        "Sequence": 

"FVQGEESNDKIP",  

        "StartResidueID": "  44 " 

    } 
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Appendix 6. Supplementary Software for Chapter 5  

Native Relax 

Inputs 

1. <PATH_TO_XTAL_PDB> Crystallographic pdb of protein-peptide complex 

Retrieve from pdb 

2. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

           <ScoreFunction name="myscore" weights="talaris2014.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

           <InitializeFromCommandline name="init"/> 

        </TASKOPERATIONS> 

        <FILTERS/> 

        <MOVERS> 

                <FastRelax name="fastrelax" repeats="8" scorefxn="myscore" 

task_operations="init"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

           <Add mover_name="fastrelax"/> 
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        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Process 

Run on initial crystallographic pdb 100 times to get rid of internal clashes. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -database <ROSETTA_DB> -ex1 -ex2 

-extrachi_cutoff 1 -use_input_sc -s <PATH_TO_XTAL_PDB> -parser:protocol <XML_FILE> -

score:weights talaris2014 

 

Outputs 

100 relaxed pdb files. 

 

Rosetta Minimize 

Inputs 

6. <PATH_TO_DECOY> path to decoy conformation or native-like conformation to 

minimize 

7. <PATH_TO_XTAL_PDB> path to crystallographic native structure from which to 

calculate RMSD 

8. <XML_FILE> 

Sample xml: 
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<ROSETTASCRIPTS> 

      <SCOREFXNS> 

                <ScoreFunction name="myscore" weights”talaris2014” /> 

        </SCOREFXNS> 

      <TASKOPERATIONS> 

      </TASKOPERATIONS> 

 

      <FILTERS> 

        <Rmsd name="rmsd" threshold="100" superimpose="1" > 

        </Rmsd> 

      </FILTERS> 

 

      <MOVERS> 

        <MinMover name="min_sc_bb" scorefxn="myscore" chi="1" bb="1" 

tolerance="0.0001" max_iter="2000" type="lbfgs_armijo_nonmonotone" > 

        </MinMover> 

 

      </MOVERS> 

<APPLY_TO_POSE> 

</APPLY_TO_POSE> 

 

      <PROTOCOLS> 

        <Add mover_name="min_sc_bb"/> 

        <Add filter_name="rmsd"/> 

</PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Process 

Run on all decoy conformations and relaxed native conformations for each protein. 

Command Line: 
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<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -database <ROSETTA_DB> -ex1 -ex2 

-extrachi_cutoff 1 -use_input_sc -s <PATH_TO_DECOY> -parser:protocol <XML_FILE> -

score:weights talaris2014 -in:file:native <PATH_TO_XTAL_PDB> -nblist_autoupdate 

 

Outputs 

1 minimized pdb file and one line in a score file, including total_score and rmsd values 

for each minimized conformation. 

 

Rosetta Relax (REF2015) 

Inputs 

1. <PATH_TO_DECOY> path to decoy conformation 

2. <XML_FILE> 

Sample xml: 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

           <ScoreFunction name="myscore" weights="REF2015.wts"/> 

        </SCOREFXNS> 

        <TASKOPERATIONS> 

           <InitializeFromCommandline name="init"/> 

        </TASKOPERATIONS> 

      <FILTERS> 

        <Rmsd name="rmsd" threshold="100" superimpose="1" > 

        </Rmsd> 

      </FILTERS> 
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        <MOVERS> 

                <FastRelax name="fastrelax" repeats="8" scorefxn="myscore" 

task_operations="init"/> 

        </MOVERS> 

        <APPLY_TO_POSE/> 

        <PROTOCOLS> 

           <Add mover_name="fastrelax"/> 

        <Add filter_name="rmsd"/> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

3. <RELAX_SCRIPT> 

switch:torsion 

repeat 3 

 

ramp_repack_min 0.02  0.01     1.0  50 

ramp_repack_min 0.250 0.01     0.5  50 

ramp_repack_min 0.550 0.01     0.0 100 

ramp_repack_min 1     0.00001  0.0 200 

accept_to_best 

endrepeat 

 

switch:cartesian 

repeat 2 

ramp_repack_min 0.02  0.01     1.0  50 

ramp_repack_min 0.250 0.01     0.5  50 

ramp_repack_min 0.550 0.01     0.0 100 

ramp_repack_min 1     0.00001  0.0 200 

accept_to_best 

endrepeat 
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Process 

Run on all decoy conformations for each protein. 

Command Line: 

<ROSETTA_BIN>rosetta_scripts.static.linuxgccrelease -database <ROSETTA_DB> -s 

<PATH_TO_DECOY> -parser:protocol <XML_FILE> -score:weights REF2015 -relax:script 

<RELAX_SCRIPT> 

 

Outputs 

1 relaxed pdb file and one line in a score file, including total_score and rmsd values for 

each minimized conformation. 

 

Pareto Solution 

Inputs 

 

9. <Amber scores> score-file that contains Amber energies for each decoy for a given 

protein 

10. <Rosetta scores> score-file that contains Rosetta energies for each decoy for a 

given protein 

 

Process 
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Python script that includes the following four methods (dominates and cull taken with 

slight modifications from Yakym Pirozhenko under Creative Commons license 3.0 and 

gen_ranks taken from mjolka under Creative Commons license 3.0): 

 

def dominates(row, rowCandidate): 

    return all(r <= rc for r, rc in zip(row, rowCandidate)) 

 

def cull(pts, dominates): 

    dominated = [] 

    cleared = [] 

    remaining = pts 

    while remaining: 

        candidate = remaining[0] 

        new_remaining = [] 

        for other in remaining[1:]: 

            [new_remaining, dominated][dominates(candidate, other)].append(other) 

        if not any(dominates(other, candidate) for other in new_remaining): 

            cleared.append(candidate) 

        else: 

            dominated.append(candidate) 

        remaining = new_remaining 

    return cleared, dominated 

 

def find_lowest_point( list_pts ): 

    first_rank_list = [ p[0] for p in list_pts ] 

    second_rank_list = [ p[1] for p in list_pts ] 

    min_rank = min(first_rank_list + second_rank_list) 
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    min_point = [ (e1, e2, r) for e1, e2, r in list_pts if min_rank == e1 or 

min_rank == e2 ][0] 

    return min_point 

 

def gen_ranks(list_energies): 

    indices = list(range(len(list_energies))) 

    indices.sort(key=lambda x: list_energies[x]) 

    output = [0] * len(indices) 

    for i, x in enumerate(indices): 

        output[x] = i 

    return output 

 

def main(amber_scorefile, rosetta_scorefile): 

 

    #read in amber_scores and rosetta_scores using external library methods READ 

    amber_scores = READ(amber_scorefile)     

    rosetta_scores = READ(rosetta_scorefile) 

 

    #generate ranks for scores 

    amber_ranks = gen_ranks(amber_scores) 

    rosetta_ranks = gen_ranks(rosetta_scores) 

 

    pts = map(list, zip(d1e_ranks, d2e_ranks)) 

 

    #find the set of Pareto-optimal solutions 

    cleared, dominated = cull(pts, dominates) 

     

    #find the set of solutions that have a minimal sum of ranks 

    pareto_equal_min = min([ e1+e2 for e1,e2 in cleared.items() ]) 

    list_pts =  [ (rosetta,amber) for rosetta,amber in cleared if amber+rosetta ==    

pareto_equal_min ] 
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    #find the subset of solutions that have the lowest rank of all the solutions 

with a minimal sum of ranks 

    pareto_solution = find_lowest_point( list_pts ) 

 

Outputs 

This gives the ranks of the Pareto-optimal solution, which can be used to find the decoy 

name or rmsd or any other information about the decoy. 

 

 

Amber – Generate Initital Structures with tLEaP 

Inputs 

1. <PDB_ID> 

2. <TLEAP_INFILE> 

source leaprc.protein.ff14SBonlysc 

m = loadpdb NoH_<PDB_ID>.pdb 

set default pbradii mbondi3 

saveamberparm m <PDB_ID>.parm7 NoH_<PDB_ID>.rst7 

quit 

 

Process 

Replaces hydrogen atoms and converts PDB files of crystal structures and decoys to one 

topology file (parm7) and individual coordinate files (rst7). 
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Command Line: 

tleap –f <TLEAP_INFILE> 

 

Outputs 

One topology file <PDB_ID>.parm7 and all decoy structures as coordinates files 

<PDB_ID>.rst7 

 

Amber – Minimization 

Inputs 

1. <PDB_ID> 

2a. <MIN_SCRIPT> (without restraints) 

$cntrl 

    imin = 1, maxcyc=1000, 

    ntx = 1, 

    ntxo = 2, 

    ntwr = 100, ntpr = 100, 

    cut = 999.0,  

    ntb = 0, igb = 8, 

    ntr = 1, 

    ntmin=3, drms=0.01, 
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/ 

OR 2b. <MIN_SCRIPT> (with restraints) 

$cntrl 

    imin = 1, maxcyc=1000, 

    ntx = 1, 

    ntxo = 2, 

    ntwr = 100, ntpr = 100, 

    cut = 999.0,  

    ntb = 0, igb = 8, 

    ntr = 1, 

    restraint_wt = 10, 

    restraintmask = "!:<LOOP_RESIDUES> & !@H=", 

    ntmin=3, drms=0.01, 

/ 

 

 

Process 

Run Amber minimization on all decoy conformations and native crystal conformations 

for each protein. 

Command Line:  
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sander -O -i <MIN_SCRIPT> -p <PDB_ID>.parm7 -c <PDB_ID>.rst7 -r 

<PDB_ID>.min.rst7 -ref <PDB_ID>.rst7 -o <PDB_ID>.min.out 

 

 

Amber – Scoring 

Inputs 

1. <PDB_ID> 

2. <OUTPUT_FILE> 

 

Process 

Command Line: python GetEnergies.py –i <PDB_ID> -o <OUTPUT_FILE> 

Sample python script for gathering scores from loop modeling benchmark set: 

import pytraj as pt 

import sander 

import os, sys, getopt 

from glob import glob 

from mpi4py import MPI 

import pandas as pd 

 

loopdef = pd.read_json('loopdefs.json') 
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# create mpi handler to get cpu rank 

comm = MPI.COMM_WORLD 

 

PATH_TO_NATIVES = '<PATH/TO/NATIVES>’ 

PATH_TO_DECOYDISC = "<PATH/TO/DECOYS/>" 

 

def chunks(l,n): 

    n = max(1,n) 

    return [l[i:i+n] for i in range(0, len(l), n)] 

 

def get_ca_rmsd( traj, mask, metric ): 

     

    ca_rmsd = pt.pairwise_rmsd(traj, mask=mask, metric=metric) 

    return ca_rmsd; 

 

def get_energies( traj, igb_value ): 

 

 

    energy_data = pt.pmap_mpi(pt.energy_decomposition, traj, 

igb=igb_value ) 

    return energy_data; 

 

 

def get_energy_term( traj, term ): 

 

    energy_data = pt.pmap_mpi(pt.energy_decomposition, traj, igb=8) 
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    return energy_data[term]; 

 

 

def main(argv): 

    args = sys.argv 

 

    input_pdb = '' 

    outfile = '' 

 

    try: 

        opts, args=getopt.getopt(sys.argv[1:], "ho:i:o:", 

["in:file:i=", "out:file:scorefile="]) 

    except getopt.GetoptError: 

        print('Unknown flag given.\nKnown flags:\n\t-h\n\t-n 

<native>') 

        sys.exit() 

 

    for opt, arg in opts: 

        if opt == '-h': 

            print('GetEnergies.py --in:file:s <input_pdb_id> --

out:file:scorefile <output_filename>') 

            sys.exit() 

        elif opt in ("-i", "--in:file:i"): 

            input_pdb = arg 

        elif opt in ("-o", "--out:file:scorefile"): 

            outfile = arg 
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    if input_pdb == '': 

        print('ERROR: No PDB ID supplied.') 

        sys.exit() 

    elif len(input_pdb) != 4: 

        print("ERROR: Input PDB should be 4 letter PDB code.") 

        sys.exit() 

    input_pdb = input_pdb.lower() 

 

    if outfile == '': 

        outfile = 'Scores.sc' 

 

    

####################################################################

## 

    

####################################################################

## 

 

    print( "===== Native RST7: {PDB} =====".format(PDB=input_pdb) ) 

 

    #Native is crystal structure. 

    native_rst7 = PATH_TO_NATIVES+"/{PDB}.rst7".format( 

PDB=input_pdb ) 

    native_parm = PATH_TO_NATIVES+"/{PDB}.parm7".format( 

PDB=input_pdb ) 

 

    print("Native RST7\t{natrst}".format(natrst=native_rst7)) 
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    print("Native PARM7\t{natparm}".format(natparm=native_parm)) 

 

    os.chdir(PATH_TO_DECOYDISC+"{PDB}/".format( PDB=input_pdb ) ) 

    print(PATH_TO_DECOYDISC+"{PDB}/".format( PDB=input_pdb ) ) 

    min_decoys = glob('min*.rst7')  ## List of rst7s ["<rst7_1>", 

"<rst7_2>", ...] 

 

    print("== Analyzing %i mols==" % len(min_decoys)) 

 

    min_decoys.insert(0, native_rst7) 

 

    print("\t=== Loading Trajectories ===") 

    traj = pt.iterload(min_decoys, native_parm) 

    print(traj) 

 

    print("\t=== Getting RMSDs ===") 

    ca_mask = '@CA & :{loop_start}-

{loop_end}'.format(loop_start=int(loopdef[input_pdb]['StartResidueID

'].strip()), loop_end=int(loopdef[input_pdb]['EndResidueID'].strip() 

)) 

    print ca_mask 

 

    ca_rmsd_nofit = get_ca_rmsd( traj, ca_mask, 'nofit' ) 

    ca_rmsd_fit = get_ca_rmsd( traj, ca_mask, 'rms' ) 

 

    print("\t=== Getting Energy Decomposition ===") 

    energy_data = get_energies( traj, 8 ) 
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    print("\t\tFinished") 

     

    if energy_data: 

 

        energy_data['rmsd'] = ca_rmsd_nofit[0] 

        energy_data['rmsd_suploop'] = ca_rmsd_fit[0] 

 

        ekeys = energy_data.keys() 

        ekeys.sort() 

 

        print("Outfile: " + outfile) 

        with open(outfile,'w') as scorefile: 

            header = 'description\t' 

            for key in ekeys: 

                header += key + '\t' 

            scorefile.write(header+"\n") 

 

            for pdb_index in range(len(min_decoys)): 

                scoreline = min_decoys[pdb_index]+'\t' 

                for key in ekeys: 

                    scoreline += '%s\t' % 

str(energy_data[key][pdb_index]) 

                scorefile.write(scoreline+"\n") 

 

if __name__ == "__main__": 

    main(sys.argv[1:]) 
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Outputs 

One output file with Amber scores and RMSDs for native crystal structure and decoys. 
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