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Ribotoxic stressors such as anisomycin (ANS) and deoxynivalenol (DON) induce apoptosis 

in MAC-T cells. These agents also increase IGFBP-3 expression and knockdown of IGFBP-

3 mitigates the apoptotic effects of these toxins. IGFBP-3 contains both a signal sequence 

and a nuclear localization sequence (NLS) and is thus both secreted and localized to the 

nucleus.  Nuclear IGFBP-3 has been proposed to be important in its apoptotic effect. 

Following treatment with DON and ANS, nuclear IGFBP-3 is glycosylated, a hallmark of 

the secretory pathway. However, how it escapes the secretory pathway to traffic to the 

nucleus is unknown. Some studies have reported that extracellular IGFBP-3 is rapidly 

internalized and delivered to the nucleus, suggesting IGFBP-3 may require secretion and re-

internalization prior to nuclear localization. To study trafficking of the endogenous protein, 

MAC-T cells were treated with ANS or DON. Fluorescent microscopy and Western 

immunoblot analysis demonstrated that ANS and DON induced nuclear localization of 
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IGFBP-3. Treatment of nuclear IGFBP-3 with the deglycosylation enzyme Endoglycosidase 

H (Endo H) resulted in a lower molecular weight band indicating nuclear IGFBP-3 contains 

a mannose or hybrid type glycan. In contrast, the sugar of secreted IGFBP-3 was not 

truncated using Endo H, but was deglycosylated using PNGase indicating complex-type 

glycosylation. Cells treated with Brefeldin A (BFA), an inhibitor of anterograde transport 

from the ER to the Golgi, still showed nuclear movement of IGFBP-3. Glycosylation and 

BFA data indicate that IGFBP-3 is not secreted and re-internalized prior to nuclear 

localization during ribotoxic stress.  
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CHAPTER 1 

REVIEW OF THE LITERATURE 

 

I. INTRODUCTION AND SIGNIFICANCE  

Milk production and the role of apoptosis  

Agriculture has been the sustenance of civilization and the support for an ever-growing 

population for the last 10,000 years. Today the scope of agriculture spans the cultivation of 

animals, plants and fungi for food. In the United States dairy farming is a major aspect of 

agricultural industry with milk production occurring in all 50 states and over 200 billion 

pounds of milk produced from dairy cattle each year. Commonly purchased dairy products 

include cheese, fluid milks, yogurt, butter, ice cream and whey. According to the USDA, 

consumption of dairy products is rising faster than the growth in population, creating a 

growing demand for higher milk yield efficiencies and driving innovations in efficient milk 

production.  

 

Currently a dairy cow yields 23,042 pounds of milk per year, and this number has steadily 

risen over the last few years (22,545 pounds in 2014 and 22,655 pounds in 2015).  Once milk 

production drops below a certain daily output, costs associated with animal maintenance 

outweigh profit from sale of the milk. In the dairy cow, lactation output is a function of the 

mammary epithelial cell number, with a peak in cell number and milk yield approximately 3-6 

weeks after calving (Capuco, et al. 2001). After peak lactation there is a marked decline in 

milk yield attributed to a decrease in secretory cell number. The balance between survival 

and apoptotic signals determines lactation persistency and altering this balance in favor of 

cellular survival has the potential to delay the decrease in milk production. Therefore, 
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understanding the molecular mechanisms that regulate this process is fundamental to 

developing strategies to increase persistency in dairy cows. One promising area of 

investigation that may lead to technologies that promote cell survival is the role of the 

insulin-like growth factor (IGF)-axis, as IGF-I is a known mitogen and anti-apoptotic factor 

for mammary gland cells.  

 

Role of IGFBP-3 and the IGF axis in growth 

The IGF signaling system is crucial to the stimulation of growth and differentiation of 

multiple cell types in the majority of tissues. IGF-I is an integral component of the IGF 

signaling system and considerable data exist to support a role for IGF-I in the regulation of 

lactation in ruminants, though the precise mechanism is unknown (Cohick 1998). Both IGF-

I and IGF-II are abundant in the circulation of lactating ruminants (Vicini, et al. 1991) and 

IGF-I mRNA is expressed in the bovine mammary gland (Sharma, et al. 1994). The 

physiological actions of the IGFs are mediated by a family of transmembrane receptors 

which includes the insulin, IGF-I and IGF-II/mannose-6-phosphate (M-6-P) receptors, with 

a majority of biological function carried out by activation of the IGF-I receptor (IGFIR) 

(Cohick and Clemmons 1993). IGF binding proteins (IGFBPs) are another major 

component of the IGF signaling system. The IGFBPs delicately balance signaling 

interactions by controlling the capacity of IGF-I and IGF-II to access cell surface receptors 

(Firth and Baxter 2002). IGFBPs have higher affinities for IGFs than the type-I IGF 

receptor, and therefore may prolong half-life of circulating IGF, sequester and transport 

IGF from vasculature or localize IGF to specific tissues. IGFBP-3 is the most abundant 

member of the IGFBP family circulating in serum, with levels more than 10-fold higher than 

the other IGFBPs (Baxter 1994). Classically, IGFBP-3 was believed to sequester IGF-I away 
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from its receptor, thereby preventing activation of IGF-stimulated signaling. In serum 

IGFBP-3 forms a ternary complex with IGF-I and acid-labile subunit (ALS) which greatly 

extends the circulating half-life and stability of IGFs (Baxter 1994). 

 

The profuse circulating binding protein IGFBP-3 is known to interact with IGF-I by 

sequestering serum IGFs, effectively inhibiting IGF actions on the cell. IGF-I is a mitogen 

and acts on cells to stimulate proliferation by binding its receptor IGFIR. It differentially 

regulates IGFBP expression in primary bovine mammary fibroblasts and epithelial cells, 

suggesting distinct roles for IGFBPs in the coordination of mammary gland growth 

(Fleming, et al. 2005). In the MAC-T bovine mammary epithelial cell (MEC) line both IGF-I 

and insulin increase IGFBP-3 protein and mRNA levels (Cohick and Turner 1998). IGF-I 

regulates IGFBP-3 expression via phosphatidylinositol-3-kinase (PI3K) and mitogen-

activated protein kinase (MAPK) pathways (Sivaprasad, et al. 2004).  

 

IGF-I independent actions of IGFBP-3  

In addition to IGF-dependent actions, IGFBP-3 is also known to have IGF-independent 

actions. Historically, this stemmed from an experiment in which IGFBP-3 was added to 

IGF1R negative (R(-)) fibroblast cells obtained from IGF1R knockout mice to test if IGFBP-

3 induces apoptosis independently of IGFs and IGF receptors. Both exogenous IGFBP-3 

protein and transfection of the IGFBP-3 gene significantly increased the apoptotic index and 

this effect was partially inhibited by IGFBP-3-specific antibodies (Rajah, et al. 1997). These 

results demonstrated a clear IGF-independent role of IGFBP-3 in pro-apoptotic effects. 

Studies from our laboratory have shown that IGFBP-3 mediates stress-induced apoptosis in 

MECs through a classic intrinsic apoptotic pathway via activation of caspase 3/7 (Grill and 
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Cohick 2000). In addition when IGFBP-3 is mutated to disable IGF binding (GGG-IGFBP-

3) in MCF-7 breast cancer cells, there is an induction of apoptosis through the activation of 

caspases involved in a death receptor-mediated pathway independent of the IGF-IGF1R 

axis, specifically caspase-8 and -7 (Kim, et al. 2004). One report determined the first 95 

residues of the amino-terminal region of IGFBP-3 were sufficient to induce apoptosis in 

MCF-7 cells (Bernard, et al. 2002).  Further this proteolytic fragment of IGFBP-3, which 

fails to bind IGFs, inhibits mitogenic signals due to IGFIR activation or insulin (Lalou, et al. 

1996). These experiments support an IGF-independent role for IGFBP-3 in the balance 

between cell death and proliferation which is further described in the sections below.  

 

II. ROLE OF IGFBP-3 IN APOPTOSIS 

 

Overview of apoptosis  

Apoptosis is the natural process of programmed cell death whereby the balance between 

survival and death factors is skewed toward death. These apoptotic signals are mediated by 

two autonomous and interacting pathways associated with either cell surface death receptors 

or the mitochondria. The two primary pathways of apoptosis are extrinsic and intrinsic 

apoptosis, also referred to as ligand-mediated and ligand-independent apoptosis, respectively.  

 

The extrinsic pathway of apoptosis is initiated when cell surface death receptors are activated 

by their ligands such as Fas-ligand (FasL), tumor necrosis factor (TNF)-α, and TNF-related 

apoptosis inducing ligand (TRAIL) (Thorburn 2004). Ligand-induced cross-link activation of 

intracellular death domains (DD) initiates recruitment of adaptor molecules such as Fas-

associated death domain (FADD) (MacFarlane 2003). Subsequent recruitment and 
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aggregation of procaspase-8 to FADD forms the death inducing signaling complex (DISC), 

promoting auto-activation of caspase-8, which serves to activate downstream effector 

caspases such as caspase-3, -6 and -7 (Thorburn 2004). Caspases are cysteine-dependent 

aspartate-directed proteases known as the principle mediators of the apoptotic cell death 

response, as well as key players in autophagy (Tsapras and Nezis 2017). The effector or 

executioner caspases are named so for their protease activity and role in cellular destruction. 

Active caspases may affect nuclear membrane degradation and DNA fragmentation 

(Weinlich, et al. 2011).  

 

Conversely, intrinsic apoptosis may be triggered by exposure of cells to stressors including 

growth factor withdrawal, UV radiation, heat shock, toxins (including anisomycin and 

deoxynivalenol), chemical stressors (such as chemotherapeutics), or oxidative stress. These 

stimuli lead to mitochondrial outer membrane permeability (MOMP) and the release of pro-

apoptotic proteins (Parsons and Green 2010; Tait and Green 2010). Mitochondrial 

permeability and subsequent release of apoptogenic factors is controlled in part by the Bcl-2 

family of proteins which are known to be critical checkpoints in apoptosis, as they reside 

immediately upstream of irreversible cellular damage (Danial 2007; Youle and Strasser 2008). 

 

The Bcl-2 family consists of around 20 members that generally fall into two categories: 

promoters of apoptosis via increased MOMP (Bax, Bak, Bad, Bid, Bim and Bik) (Edlich 

2017; Pena-Blanco and Garcia-Saez 2017) and protectors from apoptosis by prevention of 

cytochrome c release (Bcl-2, Bcl-XL, Bcl-XS). Cytochrome c functions by associating with 

apoptotic protease activating protein-1 (Apaf-1) and pro-caspase-9 to form the apoptosome, 

thereby triggering the conversion of pro-caspase-9 to active caspase 9 (Hill, et al. 2004). 
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Caspase activation is associated with the onset of apoptosis, as both intrinsic and extrinsic 

apoptosis pathways converge on what is called the execution pathway to execute the final 

stages of cell death (Elmore 2007). Downstream effector caspases (caspase-3, -6, -7) target a 

range of proteins for cleavage, including PARP, cytoskeletal proteins, and cytokeratins.  

 

Ribotoxic stress in apoptosis   

One pathway to induce apoptosis is via ribotoxic stress. Ribotoxic stress involves the 

activation of stress-activated protein kinases (SAPKs), members of the MAPK family, whose 

transduction cascades may lead to cell recovery after damage or apoptotic death (Iordanov, 

et al. 1997). Known potent inducers of ribotoxic stress are ribosome-inactivating proteins 

(RIPs) which enzymatically and irreversibly damage the cell ribosomes, effectively inhibiting 

protein synthesis (Stirpe 2004). Some RIPs impair the ribosome by acting as a rRNA N-

glycosidase to cleave the glycosidic bond of a single adenine residue in the 3’ end of the 28S 

rRNA subunit (Endo, et al. 1987; Narayanan, et al. 2005; Stirpe, et al. 1988).  Trichothecenes 

such as deoxynivalenol (DON) function by binding to a specific adenine residue to prompt a 

conformational change of the ribosome followed by cleavage by internal RNases (He, et al. 

2012; Pestka 2010). The antibiotic anisomycin (ANS) is another ribotoxic stressor which 

inhibits protein synthesis via association with the peptidyl transferase center of the ribosome 

without damage to the ribosomal subunit.  Both ANS and DON are ribotoxins that have 

been used as a model in our lab to investigate the intrinsic apoptotic pathway in the MEC 

line MAC-T.  

 

Published work from our lab shows ANS induces IGFBP-3 expression at both the mRNA 

and protein level, and that IGFBP-3 knockdown via siRNA attenuates ANS-induced 
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apoptosis in MAC-T cells (Leibowitz, et al. 2013). These findings implicate IGFBP-3 as a 

key mediator of intrinsic apoptosis. Unpublished data from our lab has further determined 

DON-induced apoptosis is attenuated with IGFBP-3 knockdown by siRNA in MAC-T cells, 

prompting the query of whether IGFBP-3 is part of a universal mechanism of ribotoxin-

induced intrinsic apoptosis. The work in this thesis delves further into the question of the 

role of IGFBP-3 in ribotoxin-induced apoptosis.  

 

The role of IGFBP-3 in cellular fate and apoptosis  

IGFBP-3 is a multifunctional protein affecting both cell proliferation and survival (Firth and 

Baxter 2002) through both IGF-dependent and IGF-independent mechanisms (Mohan and 

Baylink 2002). Work in MEC has shown both TNF-α, a cytokine produced by immune cells 

to modulate inflammation, and IGF-I, which is a potent mitogen and cell survival factor for 

MECs, increase IGFBP-3 expression (Sivaprasad et al. 2004). This is an interesting 

observation considering TNFα and IGF-I exert opposing effects on MEC growth and 

survival (Cohick, et al. 2000; Leibowitz and Cohick 2009; Thorn, et al. 2008). Leibowitz and 

Cohick reported that endogenous IGFBP-3 is required for both proliferation and cytokine-

induced apoptosis in MECs (Leibowitz and Cohick 2009) solidifying the pluripotent role for 

IGFBP-3 in cell fate and survival. However, a clear pro-apoptotic function of IGFBP-3 

independent of IGF interaction has been demonstrated in addition to its role in modulating 

IGF function (Butt and Williams 2001; Oh, et al. 1995). Work in human breast cancer cells 

has supported an important role for IGFBP-3 in IGF-independent anti-proliferative actions 

(Oh et al. 1995).  In non-small cell lung cancer (NSCLC) cell lines IGFBP-3 is a potent 

inducer of apoptosis in vitro and in vivo (Lee, et al. 2002).  
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How does IGFBP-3 mediate apoptosis? 

IGFBP-3 is a secretory protein and as such may impart its apoptotic effects via death 

receptors on the outer membrane, as was reported for breast and prostate cancer cells 

(Ingermann, et al. 2010). However one study that mutated IGFBP-3 to diminish cell surface 

binding found IGFBP-3 was still growth inhibitory, could elicit cell cycle arrest, and induced 

apoptosis in human breast cancer cells (Butt, et al. 2002), suggesting substitute pathways. 

Alternatively, IGFBP-3 may enter into cell via endocytosis to activate various downstream 

signal transduction pathways (Baxter 2013; Shahjee and Bhattacharyya 2014). For example, 

recent investigations into the IGF-independent anti-angiogenic effects of IGFBP-3 found 

that the binding protein interacted with Erk1/2 and Elk-1 leading to inactivation and 

suppression of downstream transcriptional events necessary for growth (Kim, et al. 2011). 

Work in early differentiated chondrogenic cells showed IGFBP-3 specifically up-regulated 

gene expression of signal transducer and activator of transcription (STAT)-1 and that 

incubation with an antisense STAT-1 oligonucleotide abolished the IGF-independent 

apoptotic effect of IGFBP-3. Overexpression of IGFBP-3 in NSCLC cells inhibited PI3K 

and MAPK pathways, both of which are IGF-induced survival pathways (Lee et al. 2002).  

 

Gene expression of IGFBP-3 is increased due to p53, suggesting p53 may impact the 

IGFBP-3 apoptotic effect. Brimberg et. al. demonstrated that IGFBP-3 mediates p53-

induced apoptosis and is inhibited by treatment with IGF-I to antagonize IGFBP-3 action 

(Grimberg, et al. 2002). Conversely, treatment with TGF-β, a known apoptosis-inducing 

agent, results in induction of IGFBP-3 expression and a dose-dependent increase of 

apoptosis in PC-3 cells (Rajah et al. 1997). PC-3 cells are p53-negative therefore these results 

suggest that IGFBP-3 induces apoptosis through a pathway independent of p53. Butt et. al. 
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further supported a p53-independent mechanism of apoptosis using MCF-7 human breast 

cancer cells where transfection of IGFBP-3 modulated the ratio of pro-apoptotic proteins 

Bax and Bcl-2 to potentiate cell death (Butt, et al. 2000).  

 

Additionally IGFBP-3 may impart its tumor suppressive actions via activation of caspase-

dependent apoptosis (specifically caspase-8 and -3/-7) and cross-talk with the transcription 

factor NF-κB and its modulators (Han, et al. 2011). When IGFBP-3 is mutated to disable 

IGF binding (GGG-IGFBP-3) in MCF-7 breast cancer cells, there is an induction of 

apoptosis through the activation of caspases involved in a death receptor-mediated pathway 

independent of the IGF-IGF1R axis, specifically caspase-8 and -7 (Kim et al. 2004).  Butt et 

al. also reported that caspase inhibition by Z-VAD-FMK treatment significantly blocked 

IGFBP-3 induced apoptosis in T47D human breast cancer cells (Butt et al. 2002).  

 

Nuclear localization of IGFBP-3   

IGFBP-3 contains a nuclear localization signal (NLS) and nuclear localization of IGFBP-3 

has been recognized for nearly two decades. However, clarity on its role in the nucleus and 

mechanism of nuclear transport has been slow to emerge. The role of nuclear IGFBP-3 in 

the IGF-independent actions of IGFBP-3 is at present unclear and thus an important area of 

investigation.   

 

The nuc lear local izat ion sequence   

In 1994 Radulescu et al. decoded a five amino acid motif in the basic carboxy-terminal 

domain of IGFBP-3 that shared strong sequence homology with previously identified 

bipartite nuclear localization sequences (NLS) (Radulescu 1994; Spratt, et al. 1991). Follow-
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up experiments by Schedlich et. al. determined that mutation within the putative NLS of 

IGFBP-3 prevented nuclear uptake in T47D cells (Schedlich, et al. 1998). The same group 

reported the NLS sequence motif directed nuclear translocation of IGFBP-3 by association 

with importin β, a nuclear transport protein (Gorlich, et al. 1995; Kubitscheck and Siebrasse 

2017), and that it was specific and energy dependent, requiring both ATP and GTP 

hydrolysis (Schedlich, et al. 2000). Leibowitz et al. determined IGFBP-3 is directed to the 

nucleus in ANS-treated cells independent of caspase activation, but nuclear movement did 

not occur in IGF-I treated MAC-T cells (Leibowitz et al. 2013). Unpublished work from the 

Cohick laboratory with fluorescent microscopy has shown that nuclear localization of GFP-

tagged IGFBP-3 is also a regulated event and association of IGFBP-3 with importin β is 

required for import in bovine MECs (Agostini-Dreyer 2014b). Interestingly IGFBP-5 

contains a structurally similar bipartite motif and both IGFBP-3 and IGFBP-5 are found to 

translocate to the nucleus (Schedlich et al. 2000; Schedlich et al. 1998). IGFBP-2 (Azar, et al. 

2014) and IGFBP-6 (Han, et al. 2009) have also been shown to localize to the nucleus, while 

the remaining members of the IGFBP family do not.  

 

Actions of nuclear IGFBP-3  

Role o f  nuc lear IGFBP-3 in apoptos is  

While nuclear localization of IGFBP-3 is well documented, it is still largely unknown if 

IGFBP-3 nuclear accumulation is a prerequisite for apoptosis. When the IGFBP-3 NLS was 

mutated in YFP-IGFBP-3 fusion proteins (KGRKR to MDGEA) prior to transfection into 

human prostate cancer cells, neither secretion nor concentration in the nucleus were 

required for the induction of caspase-dependent apoptosis (Bhattacharyya, et al. 2006). 

However another study found IGFBP-3 is able to translocate to the nucleus from the 
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extracellular compartment as a potent anti-proliferative agent where it functions by cell cycle 

blockade and induction of the intrinsic apoptotic pathway (Baxter 2001; Lee, et al. 2004).  

 

In vitro work in osteosarcoma cells demonstrates a role for nuclear IGFBP-3 in inducing 

apoptosis in a caspase-dependent manner, evident by treatment with the broad-spectrum 

caspase inhibitor Z-VAD-FMK which abolishes nuclear IGFBP-3 induced apoptosis 

(Santer, et al. 2006). IGFBP-3 is known to interact with retinoid X receptor-α (RXRα) and 

retinoic acid receptor-α (RARα) to modulate RAR-signaling in the nucleus via residues in the 

N- and C-terminal domains of the binding protein (Schedlich, et al. 2007a). Other reports 

highlight the interaction between Nur77 and IGFBP-3 where IGFBP-3 acts as a trigger for 

Nur77 translocation as a possible mechanism for how IGFBP-3 may induce apoptosis (Wei 

and Li 2015). IGFBP-3 induces mitochondrial translocation of nuclear Nur77 that is 

dependent on RXRα and IGFBP-3 and Nur77 have additive effects on caspase 3/7 

activation, indicating a role for mitochondrial Nur77 in IGFBP-3 induced apoptosis (Lee, et 

al. 2005). Additionally Agostini-Dreyer et. al. recently found that Nur77 plays a role in ANS-

induced apoptosis in MAC-T cells possibly via association between endogenous IGFBP-3 

and Nur77 in the nucleus and subsequent modulation of Nur77 phosphorylation and nuclear 

export (Agostini-Dreyer, et al. 2015).  

 

Role o f  IGFBP-3 as a transcr ipt ion fac tor and general  mechanisms 

A lingering question is whether IGFBP-3 interacts directly with DNA or chromatin, or 

complexes with transcription factors or other components of the genetic machinery. Reports 

indicate that nuclear IGFBP-3 may bind to transcription factors such as RXRα, RAR-α, 

VDR, Nur77 and ribonucleic acid polymerase II binding subunit 3 (Rpb3) to impart its 
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intracellular actions (Lee and Cohen 2002; Oufattole, et al. 2006; Schedlich, et al. 2004). One 

study determined a functional NLS is required to act as the binding domain for Rpb3, which 

recruits the polymerase complex to specific transcription factors for transactivation of genes 

in the nucleus (Oufattole et al. 2006). IGFBP-3 may also interact with histone-DNA 

complex directly or play a role in the DNA damage response via damage-induced apoptosis 

or as a transcriptional target of the tumor suppressor p53 (Baxter 2015). Additional support 

that IGFBP-3 may mediate its anti-proliferative effects via interaction with nuclear 

transcription factors comes from studies on osteoblast differentiation. IGFBP-5, which 

bares structural similarity to IGFBP-3 and is the only other IGFBP to contain a NLS, 

interacts with nuclear vitamin D receptor (VDR), to inhibit heterodimerization with (RXRα) 

and attenuate 1,25(OH)D3-induced expression of bone differentiation markers (Schedlich, et 

al. 2007b).   

 

IGFBP-3 as a mult i - compartmental  s ignal ing molecule 

In addition to playing a nuclear role in apoptotic signaling, there is work supporting the role 

of IGFBP-3 as a multi-compartmental signaling molecule. Paharkova and Lee determined 

there to be a highly conserved leucine-rich nuclear export sequence (NES) in the C-terminal 

region of IGFBP-3 similar to known NESs that fits established criteria (Bogerd, et al. 1996; 

Paharkova-Vatchkova and Lee 2010). Investigations into the role for IGFBP-3 in nucleo-

mitochondrial translocation showed nuclear export to the mitochondria and endoplasmic 

reticulum is crucial to regulate the apoptotic properties of IGFBP-3, as impaired nuclear 

export retained RXR/Nur77 heterodimers in the nucleus and abolished apoptosis 

(Paharkova-Vatchkova and Lee 2010). Further work supporting nuclear export of IGFBP-3 

demonstrated that IGFBP-3 and Nur77 associate in the cytoplasm in prostate cancer cell 
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apoptosis (Lee, et al. 2007). Co-immunoprecipitation and fluorescence 

immunocytochemistry analysis showed that IGFBP-3 and RXRα co-localize in both the 

cytoplasm and the nucleus, and uncovered an association between them. In addition, 

treatment of F9 RXRα knock-out cell lines with IGFBP-3 had no effects on apoptosis in 

comparison to F9 WT cells, indicating RXRα is required for apoptosis (Lee and Cohen 

2002). 

 

 III. ROLE OF GLYCOSYLATION IN IGFBP-3 PHYSIOLOGY  

 

IGFBP-3 contains a signal sequence as well as a NLS and is thus both secreted from the cell 

and found in the nucleus. Due to the heavy glycosylation status of serum IGFBP-3, the 

question of whether IGFBP-3 needs to be secreted prior to nuclear localization for 

apoptosis emerged. Interestingly, nuclear and secreted IGFBP-3 run at different molecular 

weights on SDS-PAGE gels in MAC-T cells (unpublished data). However to my knowledge 

there have been no attempts to classify the type of glycan present in nuclear IGFBP-3 versus 

secreted IGFBP-3 and the potential role glycosylation status plays in its apoptotic 

mechanism. 

  

The secretory pathway  

One-third of all proteins in eukaryotes enter the cellular secretory pathway. N-glycosylation 

begins in the ER with the addition of a core oligosaccharide sugar being placed onto a newly 

synthesized protein as it enters the ER membrane via co-translocation off the ribosome. 

After protein transfer, extensive covalent modifications in the form of trimmed and 

processed glycosylation and deglycosylation ensue by glycosyltransferases and glycosidases 
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(Kellokumpu, et al. 2016). In the ER partial trimming of the precursor oligosaccharide plays 

a role in glycoprotein folding and quality control (Leitman, et al. 2013; Ruddock and 

Molinari 2006). Glycans may serve as tags to control the fate of glycoproteins (Aebi, et al. 

2010; Spiro 2004). Only when the protein is properly folded and tagged can it proceed to the 

Golgi for further processing and packaging. The trafficking of enzymes and proteins through 

the Golgi is acutely regulated to modulate remodeling of proteins and fine tune protein 

function. Enzyme distribution patterns show distinct concentration gradients within the 

Golgi stacks though there are no defined subcompartments (de Graffenried and Bertozzi 

2004; Rabouille, et al. 1995; Schoberer, et al. 2010). Dysregulation of glycosylation in the 

Golgi due to disease has revealed the importance of glycosylation in tethering factors, 

protein sorting, maintaining Golgi pH homeostasis, and membrane fusion (Rivinoja, et al. 

2009; Rosnoblet, et al. 2013). Further modifications may include demannosylation, 

galatosylation, fucosylation and sialylation. It is poorly understood how signaling cascades 

regulate glycan synthesis. One review focuses on how tight regulation of membrane 

trafficking through control of enzyme compartmentalization may be a regulatory mechanism 

of glycosylation, supported by the finding that glycosylation enzymes are usually distributed 

by their order of action (Bard and Chia 2016).  

 

Different  forms o f  g lycosy lat ion 

There are two major types of glycosylation: O-linked where a sugar moiety is attached to an 

oxygen atom of an amino acid residue, and N-linked where the sugar moiety is attached to 

asparagine residues. The later often occurs with soluble, secreted proteins (Varki, et al. 2015). 

N-glycosylation occurs in all domains in life and while the core glycan being transferred may 

differ in prokaryotes, eukaryotes produce a conserved structure (Schwarz and Aebi 2011). 
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There are three types of N-linked glycans: polymannose (high-mannose), complex 

oligosaccharide (different sugars) and hybrid (of polymannose and complex). IGFBP-3 is an 

N-linked glycoprotein with three N-linked sites available for glycosylation at Asn89, Asn109, 

and Asn172 (Firth and Baxter 1999). The two glycoforms of IGFBP-3 commonly seen in 

protein analysis via polyacrylamide gel electrophoresis (PAGE) are from variable 

glycosylation at the N172 residue. It is believed these two occupied sites are important 

glycosylation sites for IGFBP-3 function (Masnikosa, et al. 2010).  

 

N-linked g lycosy lat ion in the ER and the Golg i  

As noted above, protein glycosylation begins in the ER with modifications occurring all 

along the endomembrane system, especially the Golgi apparatus which modifies proteins to 

produce mature glycoproteins. Investigations into the glycosylation status of proteins along 

the component organelles of the endomembrane system have utilized glycosidases and 

trafficking inhibitors to determine if there is differential glycosylation (Lam, et al. 2009; Shen, 

et al. 2017). 

  

IGFBP-3 exists as two glycoforms which reduce to one 29 kDa form upon inhibition of N-

linked glycosylation (Firth and Baxter 1999). Enzymatic deglycosylation is another method 

used to reduce a protein to its non-glycosylated form. Two enzymes used to discern 

glycosylation status are Endoglycosidase H (Endo H) and Peptide-N-Glycosidase F 

(PNGase F). Endo H is capable of deglycosylating only high-mannose glycan forms, while 

PNGase, which cleaves between the innermost GlcNAc and asparagine residues, is able to 

reduce all forms of glycans including the complex type (Schoberer and Strasser 2011; Shen et 
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al. 2017). Interestingly, Endo H sensitivity was found to be an indication that a protein had 

not trafficked to the Golgi yet for packaging or secretion (Tarentino and Maley 1974).  

 

Brefeldin A (BFA) is a fungal macrocyclic lactone commonly used as an inhibitor of protein 

trafficking and secretion in mammalian and plant cells (Jackson and Casanova 2000). In the 

mammalian endomembrane system the target of BFA is a subset of Sec7-type GTPase-

exchange factors (GEFs) that catalyze the activation of a small GTPase called Arf1p 

(Jackson and Casanova 2000). Arf1p is localized to the Golgi apparatus and is responsible 

for the formation of transport vesicles via recruitment of coat proteins such as COPI and 

clathrin. Treatment with BFA results in loss of COPI coats from the Golgi apparatus 

followed by the fusion of Golgi membranes with the ER creating hybrid ER-Golgi stacks 

(Helms and Rothman 1992; Nebenfuhr, et al. 2002), and a complete distribution of Golgi 

enzymes into the ER (Sciaky, et al. 1997). The newly formed BFA compartment inhibits ER 

to Golgi trafficking and consequentially results in an accumulation of high mannose proteins 

(Lam et al. 2009; Takatsuki and Tamura 1985) and a block in protein secretion, while protein 

synthesis is maintained (Misumi, et al. 1986). Proteins of cells treated with Brefeldin A may 

be treated with Endo H to probe for sensitivity, indicating the protein has not been able to 

reach cisternal stacks of the Golgi apparatus that edit sugars to contain complex-type 

glycans.  

 

The role of glycosylation in IGFBP-3 physiology  

Protein glycosylation is potentially involved in all aspects of human growth and development 

and has been shown to confer specific binding sites or modify the stability or function of 

carrier proteins (Kailemia, et al. 2017; Varki 2017).  
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IGFBP-3 is known to form a ternary complex of 150kD with IGF-I and acid-labile subunit 

(ALS) in serum (Baxter and Dai 1994), which is unable to cross into extracellular space due 

to its large size. Therefore the ternary complex must dissociate to enable IGF delivery to 

target tissues, suggesting a role for glycosylation in target protein delivery. One study found 

that IGF ternary complex formation depended on the glycosylation status of ALS, with 

complete deglycosylation abolishing the ability of IGFBP-3 to associate with ALS (Janosi, et 

al. 1999). To assess the role of IGFBP-3 glycosylation in ligand binding, Firth and Baxter 

created seven IGFBP-3 N-glycan mutants in various permutations and expressed the 

cDNAs. Ligand blotting using (125I)IGF-I recovered all seven mutants indicating the ability 

to bind IGF-I was retained (Firth and Baxter 1995). There appeared to be no difference 

between the mutant forms and fully-glycosylated IGFBP-3 in ALS binding. However 

glycosylation status did alter cell binding characteristics, as the fully glycosylated form of 

IGFBP-3 had significantly less cell-surface association than the non-glycosylated mutant 

(Firth and Baxter 1999). While these findings suggest no role for IGFBP-3 glycosylation in 

ligand binding, other data propose glycosylation may change affinity for IGFs, though it is 

not essential for IGF binding (Nedic, et al. 2012). In addition, investigations of IGFBP-

mediated endocytosis of microspheres in human retinal pigment epithelial cells (RPE) found 

a clear role of glycosylation status of IGFBP-3 and IGFBP-5, specifically in heparin binding-

mediated internalization as treatment with heparin abolished phagocytic responses to 

microspheres coated with non-glycosylated IGFBP-3, but only partially inhibited response to 

glycosylated IGFBP-3 (Ainscough, et al. 2009).     
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One possible function of N-glycosylation is to aid in the in vivo folding and assembly of the 

nascent polypeptide chain, which is crucial in maintaining its conformation, directing its 

localization or ultimate secretion from the cell (Winterburn and Phelps 1972), and mediating 

protein-protein interactions. Both glycosylation and sialylation regulate ligand-binding 

equilibrium, though they have opposite effects. However glycosylation did not appear to 

affect IGFBP-3 ability to bind with its ligands IGF-I, IGF-II or ALS (Firth and Baxter 1995, 

1999). IGFBP-3 from patients with diabetes possesses additional sialic acids and increased 

content of complex type N-glycans (Firth and Baxter 1999). These data suggest that 

decreased affinity of IGFBP-3 for its ligand due to sialylation may be a potential mechanism 

by which IGFBP-3 promotes tumor progression. 

 

Differential glycosylation may regulate the half-life and clearance rate, as non-glycosylated 

IGFBP-3 is degraded more rapidly than the glycosylated form. Therefore alteration of 

glycosylation may be an adaptive mechanism to protect IGFBP-3 from degradation as 

IGFBP-3 is subject to cleavage from factors in serum. For example, matrix 

metalloproteinase-3 cleaves IGFBP-3 into six fragments, some containing heparin-binding 

domains. The fragments are capable of selectively binding to glycosaminoglycan moieties 

commonly attached to protein cores (proteoglycans), which may mediate the effects of 

IGFBP-3 at the cellular and extracellular interface (Fowlkes and Serra 1996). Additionally 

other enzymes such as plasmin, thrombin, cathepsin D, prostate-specific antigen, or nerve 

growth factor are also capable of cleaving IGFBP-3 (Nedic et al. 2012). Inhibiting N-linked 

glycosylation using tunicamycin (TM) causes cell death in malignant cells by down-regulating 

IGF-1 receptor at the cell surface (Dricu, et al. 1997).  
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Glycosylation of IGFBP-3 and cancer 

Both in vivo and in vitro models have demonstrated a role for IGFBP-3 as a biological 

mediator of cancer cell apoptosis (see review (Baxter 2014)). In human prostate cancer cell 

lines, IGFBP-3 expression is typically diminished (Schwarze, et al. 2002), and in human and 

mouse models this decrease is associated with advanced disease (Hampel, et al. 1998; 

Kaplan, et al. 1999). The onset of tumorigenesis is dependent on the balance of survival and 

apoptotic factors. An overall shift in the balance toward anti-apoptotic factors leads to 

tumorigenesis. IGFBPs are known to interact with and affect these factors (Baxter 2014). As 

such there is a hazard significance associated with it in breast cancer risk assessment, as high 

levels and low levels have been associated with risk of breast cancer, suggesting IGFBP-3’s 

actions may depend on the cellular environment (Burger, et al. 2005). IGFBP-3 may function 

as a tumor suppressor and is down regulated in some cancer tissues. In breast and prostate 

cancer cells IGFBP-3 mediates anti-tumor effects via cell death receptors (Ingermann et al. 

2010). However many tumor types, including breast cancer, have an overexpression of 

IGFBP-3, implicating IGFBP-3 as a key player in breast cancer cell regulation.  

 

In addition to a mechanistic role for IGFBP-3 in cancer and tumor progression, a pertinent 

role for glycosylation as a biomarker has also been implemented in cancer (Kailemia et al. 

2017). In cancer cells a hallmark of malignancy is enhanced synthesis of highly branched and 

sialylated N-glycans. IGFBP-3 in human serum of breast cancer patients contains highly 

biantennary complex type N-glycans with a bisecting GlcNAc residue and high content of 

terminal sialylation, a common occurrence in metastatic cancer cells (Baricevic, et al. 2010). 

The extent of the changes increased with breast cancer severity. These findings suggest 
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breast cancer progression may cause alterations of IGFBP-3 glycosylation and that 

carcinogenesis may have dramatic transformation of the glycosylation mechanism. 

 

Intriguingly, a high nuclear IGFBP-3 expression phenotype is strongly associated with a 

higher risk of prostate cancer recurrence and is a better predictor of tumor recurrence than 

well known indicators such as tumor margin status or capsular invasion, while cytoplasmic 

IGFBP-3 show no significance as a predictor (Seligson, et al. 2013). However the role of 

IGFBP-3 glycosylation was not examined in this study.  

 

Role of glycosylation in IGFBP-3 nuclear localization and trafficking 

Although there are many accounts of IGFBP-3 nuclear localization as mentioned above, 

little is known about the mechanism by which it localizes to the nucleus including if it first 

has to be secreted, or the role glycosylation plays in movement. Some reports indicate 

IGFBP-3 must be secreted prior to cellular uptake and re-internalization into the nucleus, as 

opposed to trafficking from the ER to the nucleus directly following protein folding as 

described below.  

 

As mentioned above, IGFBP-3 glycosylation status may affect binding affinity. IGFBP-3 

delivery may be accomplished by complex formation between IGFBP-3 with transferrin and 

transferrin receptor 1 (TfR1), as observed in colon cells from both non-cancer and cancer 

tissues (Miljus, et al. 2015). IGFBP-3 contains a transferrin-binding C terminal peptide 

region to allow transferrin binding, which in turn is able to bind the transferrin receptor 

(TfR1) for cellular uptake (Weinzimer, et al. 2001). IGFBP-3 also contains a binding 

sequence for caveolin, a well-known protein involved in vesicular formation for trafficking 
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and cellular uptake. Blocking TfR1-mediated endocytosis and inhibiting caveolae formation 

prevents both endogenous and exogenous IGFBP-3 re-uptake into the cell (Lee et al. 2004). 

Additionally inhibition of receptor-mediated endocytosis via clathrin-coated pits does not 

prevent nuclear uptake of Cy3-labeled IGFBP-3 in T47D cells, suggesting IGFBP-3 may re-

internalize by a mechanism other than classical endocytosis (Schedlich et al. 1998). This same 

report also showed IGFBP-3 and -5 may share a common nuclear transport pathway, as 

saturation with 10-fold non-labeled plasma IGFBP-3 blocked detection of nuclear Cy3-

labeled IGFBP-3 and IGFBP-5 suggesting possible competition for cell surface binding or 

internalization (Schedlich et al. 1998). Another study investigating IGFBP-3 mediated 

endocytosis in RPE cells found uptake of IGFBP-3 coated microspheres was unaffected by 

blockade of the transferrin receptor, relying more on the NLS and heparin binding domains 

(HBD) (Ainscough et al. 2009).  

 

ERAD as an escape from the ER  

As mentioned above, N-glycan processing occurs in the ER, where cellular machinery 

orchestrates quality control mechanisms and delegates proteins toward their proper fate 

(Lederkremer 2009). Misfolded or unassembled multi-subunit proteins are recognized by 

chaperones and associated factors with the help of N-linked glycosylation. Targeted proteins 

are then shuttled through the ER-associated degradation (ERAD) machinery for 

proteasomal degradation in the cytoplasm (Spiro 2004; Vembar and Brodsky 2008). This 

requires retrotranslocation through a Sec61 channel and deglycosylation by PNGase.  

 

Some proteins are known to use ERAD machinery to escape the ER, most notably ricin. 

Ricin is a plant holotoxin that results in protein synthesis inhibition, stress-induced cell 
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signaling cascades and apoptosis. Ricin Toxin A (RTA), the catalytically active subunit of 

Ricin, is capable of inducing ribotoxic stress in mammalian cells even when mutated to have 

less effective enzymatic ribosome depurination (Jetzt, et al. 2012). In mammalian cells RTA 

showed enhanced toxicity due to inhibition of UPR (Wang, et al. 2011).  

 

Ricin is of particular interest due to the manner in which it traffics through the cell (Spooner 

and Lord 2015). The plant toxin enters via endocytosis and passes through the Trans Golgi 

Network (TGN) by retrograde trafficking mechanisms toward the ER where it embeds into 

the ER membrane (Tsai, et al. 2002). The RTA and RTB subunits are reductively separated 

by interaction with protein disulfide isomerase (PDI) which remodels the holotoxin structure 

to allow cleavage. RTA then masquerades as a misfolded protein, effectively hijacking the 

ERAD machinery designed to chaperone proteins to the proteasome for degradation 

(Bellisola, et al. 2004). However RTA is not broken down by proteasomes due to lack of 

lysine residues (Deeks, et al. 2002; Lord, et al. 2003a); instead it refolds in the cytosol and 

inhibits protein synthesis at the ribosome and apoptosis ensues (Lord, et al. 2003b).  

 

As IGFBP-3 is a glycosylated protein that is both secreted and found in the nucleus, we were 

interested in understanding how it escapes the secretory pathway for nuclear localization. 

Glycosylation status may play a role in deciding the fate of IGFBP-3 as a tag to direct 

compartmentalization, specifically toward ERAD machinery in the ER. Additionally, 

glycosylation is known to affect protein folding and may serve to reveal or conceal a NLS or 

secretion signal for IGFBP-3. The objec t ive  o f  this  work was to invest igate  the ro le  o f  

g lycosy lat ion in nuc lear local izat ion o f  r ibotoxin- induced IGFBP-3. Future work will 
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focus on determining whether IGFBP-3 utilizes ERAD machinery as a means of escaping 

the secretory pathway.  
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Figures  

 

 

Fig. 1. Extrinsic vs. intrinsic apoptotic pathways. Ligand binding at cell surface death 

receptors induces downstream signaling, resulting in activation of caspase 8 and effector 

caspases 3/6/7. Intrinsic stressors such as hypoxia and radiation trigger mitochondrial 

membrane permeability, resulting in release of cytochrome c, followed by activation of 

initiator and effector caspases 3/6/7. Extrinsic and intrinsic pathways converge on the same 

effector caspases (Julian 2015).  
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Fig. 2. Endoplasmic reticulum associated degradation (ERAD). Proteins translocate 

across the ER membrane and are shuttled to ERAD machinery by BiP chaperone proteins. 

Unfolded proteins are maintained in the ER by the addition of a mannose sugar until they 

are folded properly. If a protein fails to properly fold, ER manI removes a branch of the 

glycan, inhibiting further mannose addition. This allows the improperly folded protein to 

bind to EDEMs, which shuttle it through ERAD machinery for proteasomal degradation 

(Vembar and Brodsky 2008).  
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CHAPTER 2 

 

IGFBP-3 Induced by Ribotoxic Stress is Not Secreted Prior to Nuclear Localization  

In Mammary Epithelial Cells 
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Introduction  
 
IGF binding protein-3 (IGFBP-3) is proposed to play a role in apoptosis through IGF-

independent mechanisms. In the MAC-T bovine mammary epithelial cell (MEC) line, the 

ribotoxic stressors anisomycin (ANS) and deoxynivalenol (DON) induce apoptosis and 

increase IGFBP-3 expression (Hanke 2017; Leibowitz et al. 2013). Knockdown of IGFBP-3 

mitigates the apoptotic effects of these toxins, supporting a role for IGFBP-3 in the 

apoptotic response (Hanke 2017; Leibowitz et al. 2013). IGFBP-3 contains both a signal 

sequence and a nuclear localization sequence (NLS) and is thus both secreted and localized 

to the nucleus (Lee et al. 2004; Schedlich et al. 1998; Spratt et al. 1991; Xi, et al. 2007).  

Nuclear accumulation of IGFBP-3 has been proposed to be important in its apoptotic 

effect. IGFBP-3 was shown to interact with nuclear transcription factors RARα and RXRα, 

and modulates translocation of nuclear Nur77 to the mitochondria (Agostini-Dreyer et al. 

2015; Schedlich et al. 2007a; Wei and Li 2015). Because nuclear localization of IGFBP-3 

plays a role in intrinsic apoptosis, understanding how IGFBP-3 is trafficked to the nucleus is 

crucial to further delineating the apoptotic mechanism. However, how it escapes the 

secretory pathway to traffic to the nucleus is unknown.  

 

There are conflicting reports describing a mechanism for nuclear accumulation of IGFBP-3. 

Some studies have reported that extracellular IGFBP-3 is rapidly internalized and delivered 

to the nucleus, suggesting IGFBP-3 may require secretion and re-internalization prior to 

nuclear localization. In osteosarcoma cells IGFBP-3 added to growth medium is internalized 

by clathrin- and caveolin-mediated pathways (Micutkova, et al. 2012). Additionally, in 

prostate cancer cells exogenous IGFBP-3 is reported to bind transferrin, and then get 

internalized as a complex with transferrin (Tf) and transferrin receptor (TfR) (Lee et al. 
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2004). Both of these systems rely on addition of exogenous IGFBP-3, so whether they 

represent what occurs when endogenous IGFBP-3 is secreted is uncertain. Experiments 

investigating the role of endogenous or transfected IGFBP-3 are inconsistent. When 

prostate cancer cells are transfected with IGFBP-3 that lacks the signal peptide required for 

secretion, IGFBP-3 is found in the nucleus and can still induce apoptosis (Bhattacharyya et 

al. 2006). In contrast, TGF-β induces production and nuclear localization of IGFBP-3, 

however nuclear accumulation of IGFBP-3 is attenuated by the addition of an anti-IGFBP-3 

antibody indicating that secretion is required (Lee et al. 2004).  

 

Additionally, protein glycosylation may play a role in IGFBP-3 modes of action. 

Endogenous IGFBP-3 present in cell lysates runs as a doublet. The two isoforms are due to 

N-linked glycosylation, where sites N89 and N109 are glycosylated with sugars of 4 kDa and 

4.5 kDa respectively, while N179 has variable occupancy (Firth and Baxter 1999). Previous 

work from the Cohick lab found that exogenous IGFBP-3 that had trafficked to the nucleus 

due to treatment with ANS was glycosylated (unpublished data). One possible function of 

N-linked glycosylation is to assist in folding the polypeptide chain to maintain conformation, 

thus aiding to direct its localization within or ultimate secretion from the cell (Winterburn 

and Phelps 1972).  

 

The objectives of the present study were to extend work using ANS to investigate the role of 

IGFBP-3 in ribotoxic stress to DON, and to further determine how nuclear IGFBP-3 

induced by ribotoxic stress traffics to the nucleus. To study this, we treated MAC-T cells 

with ANS and DON to examine IGFBP-3 expression and nuclear localization. We then 

used deglycosylation enzymes Endoglycosidase H (Endo H) and Peptide-N-glycosidase F 



	
  

	
  

29	
  

(PNGase F) to determine whether IGFBP-3 that has localized to different compartments is 

differentially glycosylated. We also treated with Brefeldin A, an inhibitor of anterograde 

trafficking to the Golgi, which results in blocked secretion (Helms and Rothman 1992). Our 

results demonstrate that IGFBP-3 can traffic to the nucleus independent of COPI-mediated 

retrograde transport. Moreover, nuclear IGFBP-3 contains ER-, but not Golgi-specific 

glycosylation indicating newly synthesized IGFBP-3 enters the ER prior to trafficking to the 

nucleus. Collectively the data support a model that suggests trafficking of ribotoxin-induced 

IGFBP-3 to the nucleus involves transport from the ER, possibly via retrograde 

translocation, in the MEC line.  
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Materials and Methods 
 
Chemical reagents 

Dulbecco’s Modified Eagle Medium (DMEM-H, with high glucose 4.5 g/L D-glucose), 

penicillin, and streptomycin were purchased from Life Technologies (Carlsbad, CA).  Phenol 

red-free (PRF) DMEM-low glucose media, gentamycin, bovine insulin, ANS, and fetal 

bovine serum (FBS) were purchased from Sigma (St. Louis MO).  Recombinant human 

IGF-I (100% identical to bovine IGF-I) was obtained from Peprotech (Princeton, NJ). 

Antibodies against the following proteins were purchased as indicated: HSP60 and importin-

β (Abcam, Cambridge, MA), His-tag (Genscript, Piscataway, NJ), PARP and cleaved 

caspase-3/-7 (Cell Signaling Technology, Danvers MA), lamin AC (Santa Cruz), and anti-

rabbit IgG (GE, Pittsburgh, PA). The anti-bovine-IGFBP-3 antibody was produced in-

house (Agostini-Dreyer 2014a). The enzymes Endo H and PNGase F were purchased from 

New England Biolabs (Ipswich, MA). The following inhibitors were purchased as indicated: 

Importazole (Millipore, Billerica, MA) and Brefeldin A (Sigma Aldrich, St Louis, MO). 

Hoechst 33342 was purchased from Invitrogen. Superfect transfection reagent was 

purchased from Qiagen (Valencia, CA) and deoxynivalenol was from Sigma Aldrich, St 

Louis, MO.  

 

Cell culture 

The bovine MEC line MAC-T (Huynh et al., 1991) was routinely maintained in complete 

media consisting of DMEM containing 4.5 g/liter D-glucose (i.e., DMEM-H), 20 U/ml 

penicillin, 20 µg/ml streptomycin, 50 µg/ml gentamicin, 10% FBS, and 5 µg/ml insulin. For 

experiments, cells were plated at a concentration of incomplete media at 1 x 104 cells/cm2 

and grown to confluence in phenol red-free DMEM-H containing 10% FBS and antibiotics 
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and without insulin. Except where otherwise noted, cells were washed with phosphate-

buffered saline (PBS), and incubated in serum-free (SF) DMEM-H supplemented with 0.2% 

BSA and 30 nM sodium selenite prior to exposure to treatment in PRF SF DMEM-H with 

antibiotics and without insulin. 

 

Construction of GFP-tagged IGFBP-3 (IGFBP-3-GFP) 

A PCR reaction was used to add a 6x-His tag to the C terminus of bovine IGFBP-3.  XhoI 

and BamHI restriction sites were added to the 5’ and 3’ ends of bovine IGFBP-3, 

respectively, producing a 900 bp fragment. The 50 µl PCR reaction contained 20 ng DNA 

template (pRc/RSV IGFBP3, Grill and Cohick, 2000), 20 pmol forward primer 5’-

ATATTACTCGAGTAATGCTGCGGGCACGCCCCGCGCTC-3’, 20 pmol reverse 

primer 5’-ACAAGTGGATCCACCTTGCTCTCCATGCTGTAGCAGTC-3’, 2 mM Mg 

SO4, 0.2 mM of each dNTP, 5% DMSO and 1 unit Platinum Taq High Fidelity DNA 

Polymerase (Life Technologies, Carlsbad, CA).  The cycling parameters were 94˚C 2 min; 30 

cycles of 94˚C 1 min, 50˚C 1 min, 68˚C 1 min; 68˚C 10 min.  The IGFBP-3-GFP fragment 

was purified using Nucleospin Gel and PCR Clean-up kit (Macherey-Nagel, Bethlehem, PA). 

IGFBP-3-GFP was digested with XhoI and BamHI. After vector dephosphorylation with 

Anarctic Phosphatase (New England Biolabs) the insert was purified as described above and 

ligated using T4 DNA Ligase (Invitrogen, Carlsbad, CA).  The ligation reaction was used to 

transform One Shot TOP 10 competent cells (Invitrogen).  After miniprep, colonies were 

screened for positive clones by restriction digestion. Bovine IGFBP3-GFP construction was 

confirmed by sequencing.  
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Transient transfection of IGFBP-3 

MAC-T cells were plated in complete media at 3.5 x 104 cells/cm2.  The next day 

subconfluent cells were transfected with a plasmid encoding cDNA for IGFBP-3-GFP or 

eGFP as a control. Plasmids were prepared using the EndoFree plasmid Maxi Kit (Qiagen, 

Valencia CA). Cells were transfected using SuperFect combined with plasmid in a 1:5 ratio 

for 100 x 25 mm2 dishes and in a 1:10 ratio for 8-well µslides (Ibidi, Martinsried, Germany). 

The transfection mixture was prepared in DMEM-H without additives, vortexed for 10 sec, 

and incubated at RT for 10 min.  Spent media were removed from cells and replaced with 

fresh complete media and the transfection mixture.  Cells were incubated with transfection 

mixture for 3 h then media were removed without PBS washes and replaced with fresh 

complete media. Following a 24 h recovery in serum-containing media, cells were rinsed 

twice in PBS and incubated with fresh SF DMEM-H for 1 h then treated as indicated in the 

figure legends. 

 

Cell lysis and Western immunoblotting  

Cytosolic and nuclear fractionations were obtained by lysing cells in hypertonic buffer (20 

mM Hepes pH 7, 10 mM KCL, 0.1% Triton, 20% Glycerol) supplemented with protease 

inhibitors with 10 strokes of the Dounce homogenizer followed by centrifugation for 5 min 

at 1000 x g.  Pellets were resuspended in buffer C (20 mM HEPES pH 7.9, 0.42 M NaCl, 1.5 

mM MgCl2, 0.2 mM EDTA, 25% glycerol) supplemented with protease inhibitors, incubated 

4°C 30 min, then centrifuged at 13,250 RPM for 10 min to obtain the nuclear fraction. To 

collect whole cell lysates (WCL) cells were washed with ice cold 1X PBS and collected by 

scraping in Complete Lysis Buffer (10 µg/ml aprotinin, 80 mM β-glycerophosphate, 2 mM 

EDTA, 2 mM EDTA, 50mM HEPES, 10 µg/ml leupeptin, 1 mM 
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phenylmethylsulfonylfluoride, 0.1% SDS, 10 mM sodium fluoride, 2 mM sodium 

orthovanadate, 1% Triton X-100, 10 µg/ml trypsin inhibitor). Cell lysates were incubated on 

ice for 30-40 min and then pelleted at 4 °C in a centrifuge for 15 min at 13,000 x g. Lysates 

were assayed for protein content with the BioRad Protein Assay (BioRad, Hercules, CA). 

For cytoplasmic fractions and WCL 50µg of total protein was run, and 30µg for the nuclear 

fraction. Proteins were separated by SDS–polyacrylamide gel electrophoresis (PAGE) on 

12.5% or 15% gels and transferred to nitrocellulose (0.2 µm; Bio-Rad); (Millipore, Bedford, 

MA) membranes.  Membranes were blocked for 1 h at room temperature in Tris buffered 

saline + 0.05% Tween-20 (v/v) (TBS-T) and 5% non-fat dried milk (w/v), then incubated 

with primary antisera at 4°C overnight with gentle agitation.  Membranes were then washed 

in TBS-T and incubated for 1 h at room temperature with appropriate HRP-conjugated 

secondary antibodies. Peroxidase activity was detected with ECL Prime (GE, Pittsburgh, 

PA).  Chemiluminescence was detected with the Fluorchem FC2 (Protein Simple, Santa 

Clara, CA). 

 

Fluorescence microscopy 

MAC-T cells were plated in complete media at 3.5 x 104 cells/cm2 on 8-well Ibidi µ-slides, 

transfected and treated as described above. Cells were then fixed with 10% neutral buffered 

formalin (Fisher Scientific, Waltham, MA). Nuclei were stained with Hoechst (Invitrogen).  

Cells were stored in mounting media (Ibidi) and images were acquired with an Olympus 

FSX100 microscope. 
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Results 

ANS and DON induce nuc lear local izat ion o f  IGFBP-3  

Previous work from our lab has shown that the ribotoxin ANS induces nuclear localization 

of IGFBP-3 (Agostini-Dreyer 2014b). To test whether IGFBP-3 nuclear localization is part 

of a universal ribotoxic stress response, we treated MAC-T cells with ANS or DON, a 

trichothecene that also activates the ribotoxic stress response (Pestka 2010). Cells were 

transfected with IGFBP-3-GFP which carries a molecular weight of approximately 64 kDa 

making it too large for passive diffusion through the nuclear pore (Hoelz, et al. 2011) and 

treated ± ribotoxin. As shown in Fig. 1A, cells incubated in serum-free (SF) conditions 

exhibited punctate staining with IGFBP-3-GFP detected exclusively in the cytosol, 

indicating it was excluded from the nucleus in untreated cells. Treatment with ANS and 

DON both resulted in nuclear import of IGFBP-3-GFP, indicating nuclear localization of 

exogenous IGFBP-3 is specific and inducible with ribotoxins. Hoechst staining indicated the 

nuclei were intact and cells were viable after 2-hour treatment with the ribotoxins.  

 

To test whether ribotoxin-induced endogenous IGFBP-3 localizes to the nucleus, MAC-T 

cells were treated ± ANS or DON and fractionated into nuclear and cytosolic components. 

Treatment with either ribotoxin induced nuclear localization in MAC-T cells, while nuclear 

localization was not observed under untreated SF conditions (Fig. 1B), confirming the 

results obtained with transfected IGFBP-3 and fluorescent microscopy. 

 

Nuclear import  o f  IGFBP-3 is  dependent on import in-  β 

ANS and DON both induced nuclear localization of transfected IGFBP-3-GFP (Fig. 1A) 

and endogenous IGFBP-3 (Fig. 1B) suggesting that nuclear import of IGFBP-3 is a 
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regulated event. Leibowitz et al. determined that IGFBP-3 is directed to the nucleus in ANS-

treated cells independent of caspase activation, but nuclear movement did not occur in IGF-

I treated MAC-T cells (Leibowitz et al. 2013). Co-immunoprecipitation data from the Cohick 

lab has shown ANS promotes association between transfected IGFBP-3-his and importin-β. 

Additional fluorescent microscopy data showed ANS-induced nuclear localization of 

IGFBP-3 is dependent on importin-β. (Agostini-Dreyer 2014b). 

 

To investigate if nuclear import of DON-induced IGFBP-3 is also facilitated by importin-β 

we treated cells ± DON to promote nuclear movement. We then treated with or without 

importazole, a small molecule inhibitor of importin-β. As shown in Fig. 2, under SF 

conditions cells exhibited punctate staining while ANS and DON resulted in nuclear 

accumulation of IGFBP-3-GFP. In the presence of importazole this transport was 

attenuated by importazole, indicating IGFBP-3 does utilize importin-β for nuclear import.  

 

Nuclear and secre ted IGFBP-3 are di f f erent  molecular weights   

IGFBP-3 often is detected as a doublet which has been shown to be due to different 

glycosylation forms (Firth and Baxter 1999). Interestingly, we made the observation that 

when samples of conditioned media containing secreted IGFBP-3 and cell lysates containing 

intracellular IGFBP-3 were run side by side on a gel, the forms of IGFBP-3 clearly migrated 

differently (Fig. 3). To investigate this further, MAC-T cells were treated with the ribotoxin 

ANS or DON for 6 h to induce IGFBP-3. Whole cell lysates were either collected in CLB or 

fractionated to obtain cytoplasmic and nuclear extracts. Conditioned media was also 

collected after 18 h of toxin treatment from duplicate dishes. As shown, IGFBP-3 collected 

from conditioned media of cells treated with ANS or DON migrated as a wide band of 
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approximately 38 to 45 kDa, while cellular IGFBP-3 ran at a doublet of 31-38 kDa. There 

was no difference in molecular weight of IGFBP-3 localized within the cell (whole cell lysate, 

cytoplasmic or nuclear).  

 

Intrace l lu lar and secre ted IGFBP-3 are di f f erent ia l ly  g lycosy lated  

Since IGFBP-3 is glycosylated, we presumed that the differences in molecular weight 

described above were due to differences in glycosylation status. Glycosylation is a hallmark 

of the secretory pathway and may be characterized by both size and type of sugar moiety. To 

determine the types of N-glycans present on IGFBP-3, cells were treated with toxins to 

induce endogenous IGFBP-3 then conditioned media (Fig. 4A) and whole cell lysates (Fig. 

4B) were subjected to enzymatic digestion. PNGase F deglycosylates all glycosylation types 

including complex, while Endo H can only reduce mannose or hybrid glycans. Digestion of 

secreted IGFBP-3 with Endo H did not result in a reduced band, but treatment with 

PNGase F decreased IGFBP-3 to a lesser glycosylated form of approximately 31 kDa. 

Conversely, intracellular IGFBP-3 was reduced with both deglycosylation enzymes to 29 

kDa and 32 kDa respectively. The ability of Endo H to deglycosylate intracellular IGFBP-3 

(nuclear and cytoplasmic) but not IGFBP-3 from conditioned media suggests intracellular 

and secreted IGFBP-3 are differentially glycosylated. Specifically, intracellular IGFBP-3 

contains mannose or hybrid glycans, while secreted IGFBP-3 carries complex glycosylation.  

 

Non-secre ted IGFBP-3 local izes  to the nuc leus  

Previous work in the Cohick lab has determined that preventing re-internalization via 

treatment with Pitstop2, an inhibitor of clathrin-mediated endocytosis (CME), did not 
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reduce nuclear accumulation of ANS-induced IGFBP-3. This suggested nuclear IGFBP-3 is 

not derived from secreted protein (Agostini-Dreyer 2014b).  

 

BFA is an inhibitor of anterograde protein transport from the ER to the Golgi complex and 

thus is used as an inhibitor of protein secretion. Therefore it was used to examine whether 

IGFBP-3 needs to be secreted prior to nuclear localization. MAC-T cells were treated with a 

ribotoxin ± Brefeldin A (BFA), fractionated and immunoblotted. As shown in Fig 6, analysis 

of conditioned media from BFA-treated cells confirmed that BFA successfully inhibited 

IGFBP-3 secretion. As expected, the ribotoxins ANS and DON both stimulated nuclear 

accumulation of endogenous IGFBP-3. Hindering IGFBP-3 secretion with BFA did not 

inhibit ribotoxin-induced nuclear trafficking. These findings suggest non-secreted IGFBP-3 

is able to traffic to the nucleus.  

 

To corroborate these findings cells were transfected with IGFBP-3-GFP and treated with a 

ribotoxin ± BFA. Fluorescent microscopy images (Fig. 7A and 7B) show successful 

transfection of IGFBP-3-GFP with no nuclear accumulation in SF conditions. ANS and 

DON treatments induced nuclear localization of IGFBP-3-GFP. Treatment with secretion 

blocker BFA did not attenuate IGFBP-3 nuclear trafficking suggesting non-secreted IGFBP-

3 localizes to the nucleus.  
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Discussion  

ANS and DON are ribotoxins with similar modes of action (Schmeits, et al. 2014). Both 

ribotoxins are low molecular weight molecules capable of passive diffusion through cell 

membranes, interaction with the ribosome at the peptidyl transfer center of the 28S subunit 

of rRNA, and activation of SAPK signaling pathways that are evolutionarily conserved in all 

eukaryotic cells (Gray, et al. 2008; He et al. 2012; Weber, et al. 1999). Knockdown 

experiments using siRNA to inhibit IGFBP-3 expression determined IGFBP-3 mediates 

both ANS and DON induced apoptosis in MAC-T cells (Hanke 2017).  

 

IGFBP-3 is both secreted and contains a NLS, allowing for multi-compartmental 

localization across the cell. Nuclear localization of IGFBP-3 is associated with its role in 

apoptosis (Lee et al. 2004; Leibowitz et al. 2013; Xi et al. 2007). The Cohick lab previously 

established that ANS induces nuclear localization of IGFBP-3 in MAC-T cells (Leibowitz et 

al. 2013). MAC-T cells were treated with 0.1 µM ANS for 3 h or 8 h. While nuclear 

accumulation of IGFBP-3 was detected at both 3 h and 8 h treatment with ANS, treatment 

for 8 h resulted in greater caspase 3/7 activation indicating apoptosis. Additionally IGFBP-3 

mRNA expression followed a concentration and time-dependent pattern, with the most 

significant increases following 6 h treatment with 0.1 µM ANS. Therefore this work used a 

similar treatment of 0.1 µM ANS for 6 h to induce IGFBP-3 expression. The work in this 

thesis shows that 6 h treatment with DON also resulted in IGFBP-3 nuclear localization in 

MAC-T cells. Previous work from the Cohick lab also demonstrated that nuclear IGFBP-3 

mediates ANS-induced apoptosis through activation and nuclear export of Nur77 in MAC-T 

cells (Agostini-Dreyer et al. 2015). These data establish a nuclear function for IGFBP-3 in 
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intrinsic apoptosis. In light of these findings, we investigated whether ribotoxic stress 

induces a universal effect of IGFBP-3 nuclear localization. 

 

IGFBP-3 has a five amino acid NLS motif in the basic carboxy-terminal domain, which 

allows nuclear uptake in cells (Radulescu 1994) The NLS sequence motif was shown to 

direct nuclear translocation of IGFBP-3 by association with importin-β, a nuclear transport 

protein. This was shown to be a specific and energy dependent reaction, requiring both ATP 

and GTP hydrolysis (Schedlich et al. 2000). Additionally IGFBP-3 has been reported to use 

the importin-β subunit for nuclear import in breast cancer cells (Schedlich et al. 2000). To 

determine if nuclear import of ribotoxin-induced IGFBP-3 uses similar mechanisms, 

IGFBP-3-GFP transfected MAC-T cells were treated with or without ribotoxin, and with or 

without importazole, then monitored for cellular distribution of IGFBP-3. GFP-tagged 

IGFBP-3 is 64 kDa, which surpasses the threshold of 45 kDa for passive diffusion through 

nuclear pores and therefore limits nuclear uptake to regulated translocation using nuclear 

pore complexes (Hoelz et al. 2011).  

 

Fluorescent microscopy data showed that IGFBP-3 shuttled to the nucleus following ANS 

or DON treatment. Additional treatment with importazole inhibited ribotoxin-induced 

nuclear accumulation of IGFBP-3. These data supports that nuclear uptake of IGFBP-3 

during ribotoxic stress is a regulated event mediated by NLS association with importin-β, 

rather than passive diffusion. However, the physiological switch that triggers nuclear 

movement over secretion and the mechanism by which IGFBP-3 traffics from the ER to the 

nucleus remains unclear. 

 



	
  

	
  

40	
  

An interesting observation in the present results was that IGFBP-3 collected from cultured 

media after ribotoxin treatment consistently migrated at a higher molecular weight band than 

intercellular IGFBP-3. Similar direct comparisons are not present in the literature and 

suggest several variations of glycosylation. Work using the deglycosylation enzymes Endo H 

and PNGase F has distinguished N-linked glycosylation types (Shen et al. 2017). Using these 

endoglycosidases, we found that secreted IGFBP-3 in the CM contains complex-type 

glycans, while nuclear and WCL IGFBP-3 contains only mannose or hybrid glycans. 

Unpublished work from the Cohick lab also showed exogenous nuclear IGFBP-3 is 

glycosylated. Digestion of the fractions with Endo H resulted in a single band of 

approximately 29 kDa, indicating that nuclear IGFBP-3 is glycosylated with non-complex 

glycans (high mannose or hybrid). While both enzymes de-glycosylated intracellular IGFBP-

3, the resulting bands varied in size due to the enzyme cleavage site. This is because digestion 

with PNGase F deaminates the asparagine residue to aspartic acid, leaving the 

oligosaccharide intact. However, Endo H cleaves between the N-acetylglucosamine residues 

of the core oligosaccharide, leaving one N-acetylglucosamine residue attached to the 

asparagine of N-linked glycans. 

 

The differential glycosylation exhibited by nuclear and secreted IGFBP-3 may imply 

alternate routes of IGFBP-3 trafficking. Proteins edited with glycosyltransferases in the ER 

are Endo H-sensitive, meaning they can be reduced to a non-glycosylated form with the 

enzyme Endo H because they carry a high-mannose glycan or a hybrid glycan. In contrast, 

proteins edited in the cisternae of the Golgi are unable to be cleaved with Endo H due to 

their complex type glycans. This is because in the Golgi lumen, mannosidase II acts to cleave 

two mannose sugars, rendering the glycoprotein resistant to attack by the highly specific 
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Endo H. All later structures in the pathway are also resistant to Endo H enzymatic activity, 

therefore treatment with this enzyme is used to distinguish complex from high-mannose 

oligosaccharides. This explains how secreted IGFBP-3, which must first pass through the 

Golgi, contains a complex-type glycan that can only be de-glycosylated using PNGase F.  

 

Having established that IGFBP-3 glycoforms differ depending on localization, specifically 

that nuclear and secreted IGFBP-3 contains non-complex and complex sugar moieties 

respectively, we set out to determine if non-secreted IGFBP-3 can localize to the nucleus. 

MAC-T cells treated with ribotoxin and Brefeldin A, which inhibits protein transport from 

the ER to the Golgi apparatus thereby inhibiting secretion, had similar amounts of nuclear 

IGFBP-3 as cells treated with ribotoxin alone. These findings indicate that COPI mediated 

translocation from the ER to the Golgi is not a required step for direction of IGFBP-3 to 

the nucleus. This indicates secretion is not necessary for nuclear localization of IGFBP-3. 

These findings are novel in implying IGFBP-3 exits the secretory pathway prior to reaching 

the Golgi, as anterograde transport from the ER was inhibited by BFA.  

 

The question then emerged of how IGFBP-3 escapes the secretory pathway to traffic to the 

nucleus. It is possible that endogenous IGFBP-3 produced in response to ribotoxins gets 

sent to the ER where its secretion signal gets modified or turned off via glycosylation while 

the NLS is activated, resulting in nuclear accumulation. Future experiments will use 

CRISPR-cas9 genome editing technology to mutate the N-linked glycosylation sites of 

IGFBP-3 from asparagine to alanine. This will determine how inhibition of IGFBP-3 N-

linked glycosylation affects the ability of ribotoxins to induce IGFBP-3 nuclear localization 

in MAC-T cells. However, this does not address why some IGFBP-3 is sent to the nucleus 
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while the rest gets secreted into the cultured media. Our goal for further elucidating the 

mechanism of IGFBP-3 nuclear localization is to determine how ribotoxin induced IGFBP-

3 escapes from the ER. 

 

Ricin is a protein known to escape the ER by hijacking the endoplasmic reticulum associated 

degradation (ERAD) machinery (Spooner and Lord 2015). ERAD is a highly conserved 

process, by which terminally misfolded glycoproteins are targeted and chaperoned by ER 

degradation-enhancing alpha mannosidase-like proteins (EDEM) across the ER membrane 

and into the cytosol for proteasomal degradation (Hosokawa, et al. 2001). This tightly 

regulated pathway is initiated by the oligomerization and autophosphorylation of the ER 

stress-sensor IRE1, which splices an intron from the X-box binding protein 1 (XBP1) 

mRNA (Yoshida, et al. 2001). The spliced XBP1 mRNA is translated into an efficient 

transcription factor that triggers the expression of EDEMs. ERAD also requires the removal 

of certain mannose residues from the misfolded N-linked glycoprotein. Mannosidase 

enzymes in the ER such as mannosidase IA (ManIA) and ER α1,2 mannosidase I 

(ERManI) trim and target misfolded glycoproteins for ERAD (Ogen-Shtern, et al. 2016).  

 

Studies are presently underway using Kifunensine, a potent inhibitor of endoplasmic 

reticulum mannosidase 1 (ERM1). This blocks processing of glycoproteins in the ER by 

obstructing EDEM association with targeted proteins and subsequent protein shuttling 

through Sec61 to the cytoplasm. Treatment with Eeyarestatin 1 (ES1), which interferes with 

the p97-associated deubiquitination process (PAD) at Sec61, could also determine whether 

IGFBP-3 utilizes ERAD machinery to exit the ER (Wang, et al. 2008). An identified 
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pathway of ER escape could explain how nuclear and cytoplasmic IGFBP-3 is glycosylated 

similarly, and how nuclear IGFBP-3 is glycosylated without first being secreted.  

 

An understanding of the mechanism for nuclear import of IGFBP-3 is important in 

establishing how IGFBP-3 exerts its apoptotic effects (Bach 2017). The glycosylation of 

nuclear IGFBP-3 prompted the theory that IGFBP-3 is trafficked through the secretory 

pathway, and expelled from the cell prior to re-internalization and nuclear localization. 

However, in light of the results presented here, this pathway seems unlikely. We determined 

that nuclear and secreted IGFBP-3 carry different types of N-linked glycans, with 

intracellular IGFBP-3 containing simple (high-mannose or hybrid types), and secreted 

IGFBP-3 containing complex glycosylation. Thus it would require energy expenditure for 

removal of the complex glycan prior to nuclear entry. We also established that non-secreted 

IGFBP-3 is capable of nuclear localization in MAC-T cells, and that IGFBP-3 likely escapes 

the secretory pathway from the ER. Work using BFA showed that inhibition of vesicular 

transport between the ER and the Golgi did not hinder nuclear localization, and suggested 

IGFBP-3 escapes the secretory pathway prior to reaching the Golgi. Future work will focus 

on the mechanism of how ribotoxin-induced IGFBP-3 escapes the ER.  
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Figures 
               
 
 
 
                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. ANS and DON induce nuclear localization of IGFBP-3. (A) MAC-T cells 
transfected with IGFBP-3-GFP were treated 2 h ± 0.1 µM ANS or 1 µg/ml DON. Cells 
were fixed in formalin then nuclei were stained with Hoechst. Images were acquired with an 
Olympus FSX100 microscope. Images are representative of two independent experiments. 
(B) MAC-T cells were treated 6 h  ± 0.1 µM ANS or 1 µg/ml DON, then fractionated into 
nuclear and cytoplasmic components and Western immunoblotted for IGFBP-3. Lamin AC 
and HSP60 served as controls for nuclear and cytoplasmic loading, respectively. Results are 
representative of three independent experiments.  
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Fig 2.  Importazole reduces nuclear import of IGFBP-3-GFP. Cells transfected with 
IGFBP-3-GFP were treated 4 h ± 0.1 µM ANS (A) or 1 µg/ml DON (B) ± 40 µM 
importazole. Cells were fixed in formalin then nuclei were stained with Hoechst.  Images 
were acquired with an Olympus FSX100 microscope.  Images are representative of two 
independent experiments. (Fig. 2A from Agostini-Dreyer, unpublished data, 2014) 
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Fig 3. Secreted IGFBP-3 is differentially glycosylated compared to intracellular 
IGFBP-3. MAC-T cells were treated with (A) 0.1 µM ANS or (B) 1 µg/ml DON for 6 h or 
18 h. After 6 h cells were fractionated or whole cell lysates (WCL) were collected then 
Western immunoblotted for IGFBP-3. Conditioned media (CM) were collected following 18 
h incubation with treatments and immunoblotted for IGFBP-3. Gels are representative of at 
least 3 experiments. 
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Fig 4. IGFBP-3 in the conditioned media is not sensitive to Endo H digestion. MAC-
T cells were treated (A) 18 h + 0.1µM ANS or 1 µg/ml DON and conditioned media (CM) 
was collected or (B) 6 h + 0.1µM ANS or 1 µg/ml DON and whole cell lysates (WCL) were 
collected. CM and WCL were treated ± Endoglycosidase H or PNGase F to deglycosylate 
proteins, separated by SDS-PAGE and immunoblotted for IGFBP-3.  
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Fig 5.  Non-secreted endogenous IGFBP-3 localizes to the nucleus.  Cells were treated 
with either (A) ANS or (B) DON ± Brefeldin A.  Conditioned media were collected and 
cells were fractionated. Samples were Western immunoblotted for IGFBP-3. Lamin AC and 
HSP60 served as nuclear and cytosolic loading controls, respectively. Results are 
representative of three independent experiments. 
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Fig 6.  Non-secreted exogenous IGFBP-3 localizes to the nucleus. (A) Cells were co-
treated for 1.5 h with 0.1 µM ANS and 10 µg/ml Brefeldin A. (B) Cells were co-treated for 2 
h with 1 µg/ml DON and 10 µg/ml Brefeldin A. Images are representative of two 
independent experiments.  
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