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Organisms encounter numerous novel sensory signals throughout life. Thus, sensory 

representations in the adult brain, set up during ontogeny through the interaction of early 

experience with innate organizational principles, must undergo dynamic changes to adapt 

to the complexity of the external world. This thesis investigates how passive exposure to 

novel sounds modifies neural representations to facilitate recognition and discrimination, 

using the zebra finch model organism. Zebra finches use complex, learned acoustic 

signals for social communication with many parallels to human speech. Furthermore, the 

neural responses in an auditory structure in the zebra finch brain, Caudal Medial 

Nidopallium (NCM), undergo a long-term form of adaptation with repeated stimulus 

presentation, providing an excellent substrate to probe the neural underpinnings of 

adaptive sensory representations. In Experiment 1, electrophysiological activity in NCM 

was recorded under passive listening conditions as novel natural vocalizations were 

familiarized through playback. Neural decoding of stimuli using the temporal profiles of 

both multi-unit and single-unit neural responses improved dramatically during the first 
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few stimulus presentations. During subsequent encounters, these signals were 

successfully recognized after hearing fewer initial acoustic features. Remarkably, the 

accuracy of neural decoding was higher when different stimuli were heard in separate 

blocks compared to when they were presented randomly in a shuffled sequence. 

Experiment 2 supported and extended these findings by showing that the rapid gains in 

neural decoding of natural vocalizations with passive familiarization were long-lasting, 

maintained for 20 hours after the initial encounter. Experiment 3 investigated how the 

degree of acoustic similarity between sounds related to these rapid dynamic changes in 

stimulus representations, using synthesized vocalizations that vary parametrically along a 

single dimension. Single-unit responses demonstrated that rapid differentiation of the 

temporal profiles of neural responses to different signals were more pronounced for 

stimulus pairs that are acoustically less similar to each other, although these results were 

mixed for multi-unit responses. Finally, in Experiment 4, the effects of passive 

familiarization on subsequent behavioral discrimination of two acoustically similar 

synthesized vocalizations were investigated. Surprisingly, this experiment did not 

indicate an effect of pre-exposure on behavioral responses. Taken together, the 

experiments in this thesis provide valuable insights into the mechanisms by which the 

nervous system dynamically modulates sensory representations to improve discrimination 

of novel complex signals over short and long time-scales. Similar mechanisms may also 

be engaged during processing of human speech signals, and thus may have potential 

translational relevance to elucidate the neural underpinnings of speech perception and 

comprehension difficulties. 
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INTRODUCTION 

 

One of the major challenges the nervous system faces is rapid recognition, 

classification, and discrimination of novel sensory signals. Innate organizational 

principles and early sensory experiences interact during ontogeny to adapt sensory brain 

systems to efficiently process the recurring physical stimulus parameters in the 

environment (White & Fitzpatrick, 2007; Sanes & Bao, 2009). However, throughout life, 

organisms encounter novel sensory signals, whether they are unfamiliar patterns drawn 

from the distribution of familiar stimulus statistics or instances of completely novel 

stimulus features. To cope with this problem, sensory systems retain a considerable 

degree of plasticity in the adult brain (Kourtzi & DiCarlo, 2006; Dahmen & King, 2007). 

This plasticity works at multiple time-scales, from rapid, transient dynamics to signals 

embedded in a context or sequence (Dahmen, Keating, Nodal, Schulz, & King, 2010; 

Adibi, McDonald, Clifford, & Arabzadeh, 2013) to long-lasting changes in neural 

representations (Weinberger, 2004). The neural mechanisms by which sensory 

experiences induce these changes remain largely unknown. This thesis approaches this 

problem by examining how passive exposure to novel sounds modifies neural 
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representations to facilitate recognition and discrimination, using the songbird model 

organism.  

Complex Acoustic Signals in Songbird Vocal Communication 

Songbirds (order Passeriformes, suborder Passeri) are among the few taxa known 

to use a set of complex learned acoustic signals in social communication, which makes 

them excellent model organisms for studying the neurobiological basis of auditory 

perception and vocal production. They learn their vocalizations from conspecific tutors 

during development through a process of vocal imitation with many parallels to human 

speech acquisition (Doupe & Kuhl, 1999). Initially, a young bird cannot produce 

complex vocalizations; however, during development, the bird forms the auditory 

memory of an adult tutor vocalization and gradually learns to imitate that signal using 

vocal practice and auditory feedback (for a review, see Mooney, Prather, & Roberts, 

2008). When the bird reaches adulthood, its vocalizations become highly structured and 

similar to that of the tutor, with subtle differences that are unique to each particular bird. 

Some songbirds sing a fixed song for life, while others show greater adult plasticity 

(Beecher & Brenowitz, 2005). These vocal signals primarily serve territorial defense 

and/or mate attraction in adulthood (Catchpole & Slater, 1995). In addition to vocal 

learning and production, behavioral studies documented that songbirds use individually-

specific complex vocalizations to form auditory memories and recognize familiar 

conspecifics such as tutors (Miller, 1979; Clayton, 1988) and mates (Vignal, Mathevon, 

& Mottin, 2004, 2008). 

This thesis studies the zebra finch (Taeniopygia guttata), which has been the most 

widely investigated songbird species for vocal communication in the laboratory setting 
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due to its relative ease of breeding in captivity and stereotyped song output. Zebra finches 

are not territorial, but live in big colonies in the wild (Zann, 1996). Thus, male zebra 

finches produce learned songs primarily to attract potential mates, rather than defend 

territories, whereas female zebra finches do not sing. In addition, both sexes produce long 

calls for long-distance communication, however only male calls contain learned features, 

while female calls are innately determined (Zann, 1985). Male zebra finches are closed 

learners, that is, their learned vocalizations become crystallized when they reach 

adulthood and remain unchanged thereafter under normal conditions (Immelmann, 1969). 

The male song consists of the sequential repetition of essentially identical motifs, which 

can be further divided into stereotyped syllables comprised of a few notes that show 

complex frequency and temporal modulations (Fig. 1A). A single motif usually lasts 

about 0.5 to 1 second. The long calls, on the other hand, consist of a single syllable and 

usually last about 0.1 to 0.3 seconds (Fig. 1B). Most zebra finch vocalizations have a 

fundamental frequency of 400 to 2000 Hz and contain several harmonics with 

considerable power up to 10 kHz. Furthermore, the acoustic features of these 

vocalizations are modulated by social context (Sossinka & Böhner, 1980). Thus, zebra 

finch vocalizations provide a rich and complex repertoire that encodes several acoustic 

and ethological cues. Thanks to years of anatomical and functional work, we now know 

the detailed brain circuitry that serves the perception of these complex auditory signals. 

Dynamic Responses in the Songbird Auditory Forebrain 

In the songbird brain, the primary ascending auditory pathway carries auditory 

information from the cochlea to the midbrain nucleus mesencephalicus lateralis pars 

dorsalis (MLd, homolog of the inferior colliculus) via the hindbrain relay centers 
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cochlear nucleus, lateral lemniscus, and superior olive (Boord, 1968; Fig. 2). MLd then 

projects to the songbird homolog of the mammalian medial geniculate nucleus, ovoidalis 

(Ov; Karten, 1967). Auditory information is conveyed from Ov to the thalamo-recipient 

field L2 (Vates, Broome, Mello, & Nottebohm, 1996), which is analogous to the layer IV 

of the mammalian primary auditory cortex (Wang, Brzozowska-Prechtl, & Karten, 2010). 

One of the major targets of field L2 is the caudal medial nidopallium (NCM), which 

receives auditory input via field L3. NCM is believed to be analogous to the secondary 

auditory cortex in the mammalian brain (Calabrese & Woolley, 2015). Another high-order 

auditory region is the caudal mesopallium (CM), which also receives projections from 

field L2 via field L1 (Vates, Broome, Mello, & Nottebohm, 1996). NCM and the medial 

portion of CM are also reciprocally connected. 

NCM has attracted much attention due to its interesting auditory response 

characteristics. Electrophysiological responses to pure tones in NCM reveal broader 

tuning functions as compared to field L2 responses (Terleph, Mello, & Vicario, 2007). 

Furthermore, field L2 neurons are highly responsive to simple tone stimuli, whereas 

neurons in NCM are selective towards more complex signals such as noise bands and 

amplitude modulations (Muller & Leppelsack, 1985). Song, but not pure tone, 

presentation elicits an increase in mRNA levels of the immediate early gene ZENK (also 

known as zif-268, egr-1, NGFI-A, or Krox-24) in NCM, as well as in other auditory 

forebrain structures, but not in field L2 (Mello, Vicario, & Clayton, 1992; Mello & 

Clayton, 1994). Most importantly, NCM responses are stronger for conspecific sounds 

than for the vocalizations of other species as indicated by both ZENK (Mello et al., 1992) 

and electrophysiological studies (Chew, Vicario, & Nottebohm, 1996a). We recently 
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showed that electrophysiological responses of different sites in NCM show low levels of 

coherence with each other, but high levels of mutual information for conspecific songs at 

rapid time-scales (Soyman & Vicario, 2017). Taken together, these studies suggest that 

NCM consists of functionally heterogeneous neurons and/or neural subpopulations that 

reliably represent different features of the individually-specific complex vocalizations of 

other conspecifics at fine temporal resolutions. In addition to the physical characteristics 

of acoustic signals, neural responses in NCM are also sensitive to social context (Vignal, 

Andru, & Mathevon, 2005) and acquired predictive value (Thompson & Gentner, 2010; 

Bell, Phan, & Vicario, 2015). 

Auditory responses in NCM are also marked by a long-term form of adaptation. 

Electrophysiological studies documented that neural responses to initial presentations of a 

novel stimulus are robust, but gradually decrease with repeated presentation (Chew, 

Mello, Nottebohm, Jarvis, & Vicario, 1995; Chew, Vicario, & Nottebohm, 1996a, 1996b; 

Stripling, Volman, & Clayton, 1997; Stripling, Kruse, & Clayton, 2001; for a review, see 

Dong & Clayton, 2009; Fig. 3). When another novel sound is then presented, the initial 

responses are again robust and adapt independently from the first stimulus. This is not a 

general habituation effect, but is stimulus-specific, because when the first stimulus is 

presented again after several presentations of other sounds, neural responses do not start 

at initial high magnitudes, but remain at adapted levels (Chew et al., 1996a). In this sense, 

the adaptation process forms neuronal memories that can be detected hours to days after 

the initial induction. Molecular studies also confirmed the process of adaptation in NCM 

and showed that ZENK mRNA induction first increases, then rapidly decreases in 

response to repeated stimulus presentation and this stimulus-specific reduction lasts at 
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least for 1 day (Mello, Nottebohm, & Clayton, 1995). Importantly, this adaptation 

phenomenon is not observed in field L2 (Terleph, Mello, & Vicario, 2006).  

Although different complex acoustic signals show similar immediate adaptation 

profiles, for any given stimulus presentation regime, responses to conspecific 

vocalizations remain at adapted levels for longer durations than responses to other 

complex sounds (Chew et al., 1996b). The adaptation phenomenon can be so pervasive 

for special acoustic signals such that the responses to tutor songs in NCM remain at 

adapted levels even months after the last time those signals were heard (Phan, Pytte, & 

Vicario, 2006). The consolidation of immediate reductions in firing rates requires both 

RNA and new protein synthesis as injections of cycloheximide or actinomycin-D after 

the initial stimulus presentation reinstates the original response levels at later time points 

(Chew et al., 1996b). Furthermore, enabling gene transcription by inhibition of the 

histone deacetylase-3 activity via RGFP966 injections turns subthreshold stimulus 

presentations, which are not consolidated under normal conditions, into long-term 

memories in NCM (Phan et al., 2017). Several other molecular mechanisms such as the 

extracellular receptor kinase (Cheng & Clayton, 2004) and the caspase-3 (Huesmann & 

Clayton, 2006) activity are also implicated in the induction and consolidation of neuronal 

memory for familiar sounds. 

In addition to encoding stimulus familiarity, the process of adaptation in NCM 

may also incorporate contextual information. ZENK induction in response to previously 

familiarized stimuli is reinstated to original levels when presented with flashing colored 

lights (Kruse, Stripling, & Clayton, 2004). Furthermore, presenting those same stimuli at 

a reduced sound level or from a speaker at a different location in the same environment 
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can also reset ZENK adaptation. Chronic electrophysiological recordings from NCM 

corroborated these findings, indicating that the process of adaptation is sensitive to the 

location of the source of the sound in addition to its identity (Smulders & Jarvis, 2013). 

The acoustic context in which a stimulus is embedded also affects the profile of 

immediate adaptation. Electrophysiological responses in NCM to a target stimulus 

follows the predicted adaptation profile in the context of other conspecific signals, 

whereas, in the context of heterospecific sounds, the responses are enhanced, although 

adaptation continues latently and is revealed when the contrasting context is removed (Lu 

& Vicario, 2017). However, in a recent study, we showed that the magnitude of neural 

responses in NCM is not sensitive to the sequence in which the stimuli are presented 

(Soyman & Vicario, 2017). 

Previous studies have successfully documented the dynamics governing the 

process of adaptation in NCM. What remains still unknown is how adaptation affects 

stimulus encoding and decoding. The main reason for this lack of knowledge is because 

the majority of studies that investigated adaptation in NCM based their analyses 

exclusively on spike-count rates or similar measures. With these measures, neural 

discrimination can only be analyzed between novel and familiar, but not between two 

novel or two familiar stimuli. However, going beyond the total amount of activity and 

looking at the temporal profiles of neural responses reveals interesting observations. The 

process of adaptation does not affect neural responses uniformly, but has a temporal 

structure (Fig. 4). Although there is strong adaptation at certain time points along the 

stimulus duration, there is no change in neural response magnitudes at other time points. 

More importantly, these patterns differ between different stimuli. Thus, adaptation in 
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NCM may represent, or reflect, a mechanism by which the nervous system increases the 

contrasts between different signals for rapid and efficient discrimination. This working 

hypothesis represents the core of this thesis and is investigated in detail in the 

experiments presented in the following chapters. However, to provide a foundation for 

these studies, I would like to review the current state of knowledge of the relationship 

between adaptation and neural discrimination in other species. 

Different Forms of Adaptation in the Mammalian Brain 

 Stimulus-specific adaptation (SSA) and deviance detection have been extensively 

studied in the mammalian auditory system using the classical oddball paradigm, in which 

a deviant stimulus is presented with a low probability in a series that also includes a 

standard stimulus with a high probability of occurrence. Neural responses to the same 

stimulus are weaker when that stimulus is standard compared to when it is deviant, 

suggesting that extensive repeated presentation leads to SSA (Ulanovsky, Las, & Nelken, 

2003). This phenomenon is observed in the inferior colliculus (Malmierca, Cristaudo, 

Perez-Gonzalez, & Covey, 2009) and medial geniculate nucleus of the thalamus 

(Anderson, Christianson, & Linden, 2009), as well as in A1 (Ulanovsky et al., 2003), 

although functional anatomy studies suggest that SSA occurs independently in 

subcortical and cortical areas (Nelken, 2014; Pérez-González & Malmierca, 2014). That 

is, the lemniscal pathway that provides the main auditory input to A1 shows little or no 

SSA (Antunes, Nelken, Covey, & Malmierca, 2010; Duque, Perez-Gonzalez, Ayala, 

Palmer, & Malmierca, 2012), while the strong SSA observed in the non-lemniscal 

regions of the inferior colliculus and the medial geniculate nucleus is not abolished by 
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deactivation of A1 (Antunes & Malmierca, 2011; Anderson & Malmierca, 2013; for a 

review, see Malmierca, Anderson, & Antunes, 2015).  

 Although they both can be described as repetition suppression, the forms of 

adaptation typically studied in the mammalian and the songbird auditory system differ 

from each other in certain aspects. SSA in mammals has been studied almost exclusively 

using artificial pure tone stimuli that differ only in the frequency domain, although it is 

also observed in processing of spectro-temporally complex sounds (Nelken, Yaron, 

Polterovich, & Hershenhoren, 2013). Adaptation in the songbird brain, on the other hand, 

is always studied using ecologically relevant, complex conspecific vocalizations. In fact, 

adaptation to pure tone stimuli in NCM is markedly low as compared to complex signals 

(Chew et al., 1996a). Furthermore, SSA in the mammalian brain is typically studied with 

rapid stimulations with interstimulus intervals (ISI) in the order of hundreds of 

milliseconds. In the songbird brain, much longer ISIs, such as 6 or 11 seconds, are used 

and it is shown that longer ISIs lead to more long-lasting adaptation (Chew et al., 1996b). 

Most importantly, the mammalian SSA is transient and only reflects stimulus statistics in 

a relatively local stimulation regime, whereas adaptation in the NCM of the songbird 

brain can last several days (Chew et al., 1996b). There are also anatomical differences 

between the types of adaptation observed in the mammalian and the songbird brain. 

Although SSA in the mammalian A1 is calculated de novo from non-adapting auditory 

inputs, the same SSA as a phenomenon is observed at the level of the auditory midbrain 

and thalamus (Anderson et al., 2009; Malmierca et al., 2009). Nevertheless, the form of 

adaptation described in the NCM of the songbird brain is not seen in field L2, which 

provides the main source of auditory input to the forebrain (Terleph et al., 2006). 
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Adaptation has not yet been tested in the auditory midbrain or thalamus of the songbird 

brain. Taken together, whether the listed differences between the forms of adaptation 

seen in the mammalian and the songbird brain point to completely separate processes or 

reflect only quantitative differences stemming from methodological dissimilarities cannot 

be dissected due to a lack of comparative studies. Regardless, similar to the previous 

studies on adaptation in the songbird brain, neural discrimination has only been assessed 

between a common and a rare stimulus using the experimental and analytical methods 

described in studies of the mammalian SSA. This is significantly different from the 

neural discrimination investigated in this thesis, which compares the temporal profiles of 

neural responses to stimuli with equal probabilities of occurrence as they become 

familiar. 

 Other studies have investigated the effects of neural adaptation to recurrent 

stimulus statistics on receptive fields or after-effects in various regions of the mammalian 

brain. In the guinea pig inferior colliculus, neural responses adapt to the mean, variance, 

and bimodality of sound intensity level distributions to improve the encoding of sounds 

with most probable intensities (Dean, Harper, & McAlpine, 2005). Similarly, adaptation 

to the variance or the higher-order statistics such as the kurtosis of dynamic sounds that 

vary in their modulation depth leads to changes in the receptive fields of the cat inferior 

colliculus neurons (Kvale & Schreiner, 2003). Furthermore, adaptation to incoming 

stimulus statics by rapidly presenting sounds from different locations, but with a fixed 

mean or standard deviation angle along the azimuth, enhances the contrast between those 

recurrent signals and upcoming target stimuli in the ferret inferior colliculus (Dahmen, 

Keating, Nodal, Schulz, & King, 2010). Parallel effects have been documented in other 
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sensory modalities such as for whisker stimulation frequency in the rat barrel cortex 

(Adibi, McDonald, Clifford, & Arabzadeh, 2013) and for orientation  (Ghisovan, Nemri, 

Shumikhina, & Molotchnikoff, 2009) and spatial frequency (Bouchard, Gillet, 

Shumikhina, & Molotchnikoff, 2008) of visual signals in the cat primary visual cortex. 

This form of adaptation may serve to adjust the limited dynamic range of neurons to the 

relevant stimulus statistics in the environment and/or to enhance the detection of changes 

in the incoming stimulus stream. However, the adaptation and neural discrimination 

studied in the present thesis deviate significantly from this form of adaptation since it 

represents long-lasting changes that serve encoding of individual complex auditory 

objects, rather than, or in addition to, transient changes to adjust neural responses to 

incoming stimulus statistics. 

 One concept that is highly relevant to this thesis is sparse coding in sensory 

systems, which refers to a coding scheme that relies on a small fraction of neurons 

(population sparseness) and/or a small amount of neural firing (life-time sparseness) to 

represent any given stimulus (Willmore & Tolhurst, 2001). Sparse coding provides 

several advantages such as expenditure of less metabolic energy and increased storage 

capacity for distinct representations. However, there has been no report up to date as to 

whether sparsening of representations within a structure as multiple novel sensory objects 

are passively familiarized also serves to improve neural discriminations among those 

signals, which is the central question addressed in this thesis. Another line of research 

that is relevant to the approach described here is the established literature on the effects 

of passive exposure on behavioral discrimination of sensory signals in humans. 
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Short-term Adaptive Plasticity in the Human Auditory System 

 The classical oddball paradigm described above has also been widely used to 

study SSA and deviance detection in human auditory processing. The most well-known 

event-related potential marker of this phenomenon is the mismatch negativity (MMN), 

which represents an activity difference between stimuli with high- and low-probability of 

occurrence dominantly in frontal-temporal cortical regions 100-250 ms after stimulus 

onset (Näätänen, Gaillard, & Mäntysalo, 1978). MMN occurs for both simple acoustic 

feature deviations and violations of complex pattern regularities (for a review, see 

Garrido, Kilner, Stephan, & Friston, 2009). However, the latency of MMN is much 

longer than deviance detection responses in the mammalian auditory system reported in 

animal studies using similar paradigms (Grimm, Escera, & Nelken, 2016). Studies 

looking for early markers of SSA in event-related potentials discovered that the mid-

latency response, which peaks around 10-50 ms after stimulus onset, shows the oddball 

effect for acoustic feature repetitions, but not for more complex pattern regularities 

(Cornella, Leung, Grimm, & Escera, 2012; Althen, Grimm, & Escera, 2013). Thus, these 

findings suggest that there might be a hierarchical organization where acoustic feature 

repetitions induce short-term adaptation in early sensory regions, whereas more abstract 

pattern regularities lead to prediction-based suppression of activity in temporal-frontal 

networks to detect complex rule violations. Nevertheless, in terms of the aims of this 

thesis, all of these studies suffer from the same limitation as the studies of SSA in other 

animal studies: while neural discrimination of common and rare stimuli or more complex 
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regularities can be studied, it is not possible to investigate how neural discrimination of 

multiple novel signals are affected while they become equally familiar. 

 There is compelling evidence that passive auditory exposure to distorted speech 

signals improves behavioral measures of recognition and comprehension (for a review, 

see Guediche, Blumstein, Fiez, & Holt, 2014). For instance, passive familiarization with 

foreign-accented speech for few minutes greatly improves comprehension of subsequent 

vocalizations with similar acoustic characteristics (Clarke & Garrett, 2004; Bradlow & 

Bent, 2008). Similar gains in speech recognition are also observed for other distorted 

signals such as time-compressed (Pallier, Sebastian-Gallés, Dupoux, Christophe, & 

Mehler, 1998), dysarthric (Liss, Spitzer, Caviness, & Adler, 2002), and noise-vocoded, 

spectrally shifted speech (Guediche, Fiez, & Holt, 2016). In addition, presenting listeners 

with an artificial accent, which reverses the correlation between two acoustic dimensions 

normally found in English, induces short-term changes in the weight placed on specific 

dimensions in judging ambiguous speech signals (Idemaru & Holt, 2011; Liu & Holt, 

2015). Taken together, these findings are in line with the idea that dynamic sensory 

representations are updated accordingly during passive exposure to improve the mapping 

between the incoming sensory signals and learned linguistic categories, such as 

phonemes. 

 The small number of studies investigating the neural basis of these adaptive 

changes reveal a rather complicated picture (for a review, see Guediche, Blumstein, Fiez, 

& Holt, 2014). Rapid adaptation to time-compressed speech for sentence verification 

induces greater activation in auditory association cortices and the left ventral premotor 

cortex (Adank & Devlin, 2010). Another fMRI study using degraded speech signals 
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indicated that individual differences in adaptation is associated with inferior frontal gyrus 

activity, whereas gains in comprehension are related to activation in inferior parietal 

regions (Eisner, McGettigan, Faulkner, Rosen, & Scott, 2010). In addition, adaptation to 

vocoded speech signals for purposes of vocal repetition is associated with upregulation of 

activity in posterior cingulate and left ventral premotor cortex and downregulation of 

activity in the anteroventral thalamic nucleus, caudate nucleus, frontal, occipital, and 

cerebellar regions (Erb, Henry, Eisner, & Obleser, 2013). The crus I region of the 

cerebellum is also related to adaptive plasticity to distorted signals in a word recognition 

task (Guediche, Holt, Laurent, Lim, & Fiez, 2015).  

In sum, several auditory, motor, and sensorimotor brain regions seem involved in 

underlying the improvements in comprehension of distorted speech signals following 

passive familiarization. However, these studies do not provide information as to how 

neural representations of these novel signals change as they become familiar. This 

problem is due to the fact that the noninvasive brain imaging technologies that are readily 

available in humans lack spatial and/or temporal granularity sufficient to address this 

problem. Methodological tools available for animal studies, on the other hand, provide a 

window into the millisecond range dynamics of individual and populations of neurons 

that is required for investigating adaptive sensory representations in real time. Thus, this 

thesis uses electrophysiological techniques in a brain area specialized for processing 

communication signals in an established animal model. 

Overview of This Thesis 

This thesis investigates the effects of passive familiarization on neural and 

behavioral discrimination of acoustic signals using the zebra finch as a model system. 
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Specifically, Experiment 1 examines how changes in the representation of natural 

vocalizations with passive familiarization affect immediate neural discrimination. This 

experiment also tests whether these rapid changes reflect exposure not only to the target 

stimulus itself, but also to other signals embedded in a sequence, in such a way as to 

improve the neural contrast between signals. Experiment 2 investigates whether 

immediate changes in neural representations caused by passive exposure also produce 

long-term changes that alter processing of sounds at later time-points. Experiment 3 

assesses the relationship between improvements in neural discrimination with passive 

familiarization and the degree of acoustic similarity between stimuli, using synthesized 

vocalizations that vary along a single dimension. Finally, Experiment 4 tests the 

contribution of passive exposure to subsequent behavioral discrimination of signals that 

are acoustically highly similar to each other. A general discussion of all empirical 

findings is presented at the end. The findings of these studies shed light on the 

mechanisms by which experience dynamically modulates sensory representations to 

improve recognition and discrimination of external signals over multiple different time-

scales. 
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EXPERIMENT 1: NEURAL DISCRIMINATION OF NOVEL 

VOCAL SIGNALS AS THEY BECOME FAMILIAR 

 

The primary purpose of this experiment was to test whether passive 

familiarization improves neural discrimination of novel acoustic signals. The process of 

adaptation in NCM represents a reduction in total firing rates in response to the repeated 

presentation of an auditory signal (Chew et al., 1995, 1996a, 1996b). However, a careful 

examination of neural response profiles reveals that, not only the total firing rates, but 

also the temporal patterns of neural responses undergo considerable changes (Fig. 4). 

Most importantly, these temporal profile changes appear to accentuate response 

differences between stimuli. These observations suggest that adaptation in NCM may 

represent a mechanism to increase the contrast between neural responses to different 

signals. Thus, it is hypothesized that stimulus discrimination and decoding improve with 

ongoing adaptation as novel signals become familiar, as reflected in the dynamic 

temporal profiles of neural responses.  
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 A second major goal of this experiment was to assess whether the rapid changes 

in temporal profiles of neural responses with stimulus repetition reflect exposure not only 

to the target stimulus itself, but also to other signals embedded in a sequence, in such a 

way as to improve the neural contrast between them. In addition to stimulus familiarity, 

neural responses in NCM are known to reflect various kinds of relationships among 

signals in a sequence such as transition probabilities (Lu & Vicario, 2014) and acoustic 

category contrasts (Lu & Vicario, 2017). To probe the effects of stimulus context on 

neural discrimination, this experiment used blocked and shuffled presentation sequences. 

The shuffled sequence provides opportunities for pairwise stimulus contrasts as neural 

responses undergo adaptation, whereas, in the blocked sequence, stimuli undergo 

adaptation one by one. Hence, it is hypothesized that neural discrimination and decoding 

of acoustic signals are greater in a shuffled than in a blocked stimulus presentation 

sequence. 

 To test these hypotheses, electrophysiological responses to novel zebra finch 

songs and calls in NCM were recorded under passive listening conditions. One group of 

birds was presented with a sequence where each stimulus was repeated in a block, 

whereas the other group heard a sequence containing all the stimuli in shuffled order. 

Both multi-unit and single-unit responses were quantified by applying several neural 

discrimination metrics that represented the temporal profiles of neural activity, but that 

were explicitly designed to be insensitive to the absolute firing rates. Previous studies 

showed that neurons in the songbird auditory forebrain can be classified based on spike 

waveforms into two clusters, the narrow and wide spike neurons, which differ in their 

response properties (Meliza & Margoliash, 2012; Jeanne, Sharpee, & Gentner, 2013). 
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Thus, these two neuron types were assessed separately to probe their respective roles in 

neural discrimination. 

Methods 

Subjects 

Sixteen naïve adult (>120 days) male zebra finches purchased from a commercial 

supplier (Magnolia Bird Farm, Anaheim, CA) were used in this experiment. All birds 

lived in same-sex cages in a general aviary (LD 12:12, 21-25 Cº) with ad libitum food 

and water throughout the experiment. All procedures were approved by Rutgers 

University Institutional Animal Care and Use Committee (Protocol Number 02-217). 

Stimuli 

Two different stimulus sets from the natural vocal repertoire of the zebra finch 

were used in this experiment. One set consisted of 8 male songs and the other set 

consisted of 8 male long calls. All experimental stimuli were selected from a corpus of 

recorded vocalizations that the experimental birds had never heard before. Within each 

stimulus set, the acoustic similarities between all pairs of stimuli were calculated using 

Sound Analysis Pro software as described in Tchernichovski, Nottebohm, Ho, Pesaran, 

and Mitra (2000). Briefly, four different acoustic features - pitch, frequency modulation, 

spectral continuity, and Wiener entropy - were calculated for each stimulus pair, a 

probability-based goodness of the match measure was estimated for each of these features 

between the two sounds, and these estimations were finally integrated into a global 

percent similarity score. The experimental stimuli were selected from the corpus such 

that all pairwise acoustic similarity scores within a stimulus set captured the natural range 

for that stimulus type with no outliers. This resulted in pairwise percent similarity scores 
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between 39% and 63% (Mean ± SEM = 51 ± 1%) for the song set and between 23% and 

75% (Mean ± SEM = 53 ± 3%) for the call set. The durations of the experimental stimuli 

ranged from 658 to 825 ms (Mean ± SEM = 745 ± 19 ms) and from 148 to 211 ms (Mean 

± SEM = 176 ± 7 ms) for songs and calls, respectively. All stimuli in each set were 

equated for root-mean-square-amplitude. All birds were tested with the same two 

stimulus sets. 

Surgery 

One to 2 days before electrophysiological recordings, birds underwent a surgery 

in which they were anesthetized with isoflurane (2-3% in oxygen; Henry Schein Animal 

Health, Dublin, OH) and placed in a stereotaxic apparatus. A craniotomy was performed 

over the region of interest and a metal pin was attached anterior to this opening with 

dental cement (Dentsply Caulk, Milford, DE) to be used to fix the bird’s head during 

subsequent electrophysiological recordings. All birds were injected with meloxicam (0.01 

ml of 5 mg/ml; Boehringer Ingelheim, Ingelheim am Rhein, Germany) at the end of the 

surgery and recovered within an hour. 

Electrophysiology 

Electrophysiological recordings in awake, restrained birds were conducted in a 

walk-in sound attenuation chamber (Industrial Acoustics Company, Bronx, NY). Two 

silicon probes (NeuroNexus, Ann Arbor, MI), one for each hemisphere, were used for 

recordings. Each probe had 16 recording sites (0.4-1 MΩ impedance at 1 kHz) in a 4-by-

4 grid layout. The probes were implanted in a para-sagittal plane such that the 4-by-4 grid 

layout extended in anterior-posterior and dorsal-ventral axes. Each probe was used for the 

right hemisphere for half of the birds and for the left hemisphere for the other half. Prior 
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to insertion, the probes were dipped into a DiI solution (10% in ethanol; Sigma Aldrich, 

St. Louis, MO) and allowed to dry to label probe insertion tracks for later histological 

analyses. The dura was opened and the probes were placed on the surface of the brain, 

one for each hemisphere, above NCM according to stereotaxic coordinates. Then, the 

probes were lowered by means of hydraulic microdrives, while playing zebra finch songs 

that were different from those to be used as experimental stimuli. When firing patterns 

characteristic of NCM neurons were observed at the majority of the recording sites, the 

experiment started. Multi-unit neural recordings were high- and low-pass filtered (0.3 and 

5 kHz), amplified (10,000x), digitized (25 kHz), and saved to disk using Spike2 software 

(Cambridge Electronic Design, Cambridge, UK). 

Stimulus Presentation 

Birds were divided into two groups based on the type of stimulus presentation 

sequence they would be administered during electrophysiological recordings. For 8 birds, 

the experimental stimuli were presented in a blocked sequence, while a shuffled sequence 

was used for the other 8 birds. Each stimulus was played 25 times at an onset-onset ISI of 

6 s from a speaker located 30 cm in front of the bird at an amplitude of 55 dB SPL (A 

scale) and a sampling frequency of 44.444 kHz. The song and call stimulus sets were 

always presented separately such that half of the birds in each stimulus presentation 

sequence group were presented with songs first and the other half were presented with 

calls first. For a given bird, the two stimulus sets were both presented either in the 

blocked or in the shuffled sequence. In the blocked sequence, the order of stimulus blocks 

was pseudorandomly counterbalanced across birds such that each stimulus within a set 

occurred in each position once. 
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Histology 

After the electrophysiological recordings, birds were deeply anesthetized with an 

overdose of pentobarbital (0.15 ml of 39 mg/ml; Vortech Pharmaceutical, Dearborn, MI), 

transcardially perfused with saline (0.9%, 40 ml) and paraformaldehyde (4%, 40 ml), and 

decapitated. The brains were extracted and post-fixed with paraformaldehyde for at least 

4 days, after which 50-µm sagittal sections were cut on a vibratome. Unstained sections 

were visualized under a fluorescence microscope and grayscale digital images of the 

same sections were collected under 450-490/515-cut-on and 510-560/590-cut-on nm 

excitation/emission filters for anatomical markers and DiI, respectively. Two images 

from the same sections were superimposed to create composite images, and scaled 

drawings of the silicon probes were used to validate the recording sites that fell within the 

boundaries of NCM (Fig. 5). Only recording sites that were at least 200 µm posterior of 

field L, which can be clearly identified by its cytoarchitecture, were included in data 

analyses. 

Data Analysis 

Raw neural recordings were visually assessed by a human operator and trials with 

movement artifacts were excluded. Then, multi-unit spiking activity at each recording 

site was thresholded at 2 standard deviations from the mean amplitude (calculated from 

the whole recording) and the peaks of positive threshold-crossings were marked with 

time-stamps, each representing a spike, with a time window of 1.24 ms. In addition to 

these multi-unit spike trains, single-unit spike trains were also extracted by spike-sorting 
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the raw neural recordings via an unsupervised technique as described in Quiroga, 

Nadasdy, and Ben-Shaul (2004). From the resulting single-unit clusters, only units with < 

2% of their spikes within a 2 ms refractory period and with more than 2000 spikes 

throughout the entire recording were included in the final data set. All further analyses 

were carried out using custom scripts in MATLAB (The Mathworks, Natick, MA) and 

Statistica (Statsoft, Tulsa, OK) software. 

 Response magnitude. To quantify the magnitude of stimulus-driven neural 

responses, the firing rate during each baseline period (500 ms window preceding each 

stimulus presentation, 𝐹𝑅𝑏𝑎𝑠𝑒) and each stimulus period (stimulus duration period plus 

100 ms, 𝐹𝑅𝑠𝑡𝑖𝑚) was calculated as spikes/second. The response magnitude for each 

presentation of each stimulus was calculated as 

𝑅𝑒𝑠𝑝𝑜𝑛𝑒 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝐹𝑅𝑠𝑡𝑖𝑚 − 𝐹𝑅𝑏𝑎𝑠𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅ 

where 𝐹𝑅𝑏𝑎𝑠𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of the baseline firing rates across all repetitions of that 

particular stimulus. To control for between-stimulus and between-unit variability in the 

analysis of adaptation profiles, the response magnitudes to all presentations of a given 

stimulus were calculated as a percent of the response magnitude to the first presentation 

of that particular stimulus. 

 Adaptation rate. To quantify the rate of adaptation of neural responses, stimulus 

presentations 1 to 6 and 6 to 25 were analyzed separately as in previous studies (Phan, 

Pytte, & Vicario, 2006; Bell, Phan, & Vicario, 2015). For each of these two sets of 

presentations, a linear regression analysis between stimulus presentation numbers and 

response magnitudes was conducted for each stimulus separately. The adaptation rate for 

each stimulus was calculated as 
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𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 100 (𝑏  𝑅𝑀̅̅ ̅̅̅ )⁄  

where b is the slope of the linear regression and 𝑅𝑀̅̅̅̅̅ is the average of the response 

magnitudes on the set of stimulus presentations that was used for that analysis. This 

adaptation rate metric provides a normalized measure of adaptation, enabling 

comparisons across stimuli and units with varying average response magnitudes. 

 Neural dissimilarity. To calculate the dissimilarities between the temporal 

profiles of different neural responses, the spike counts during the stimulus-evoked 

response period were first grouped into 10-ms bins since peak mutual information 

estimations in NCM are seen at 5 to 10-ms temporal resolutions (Soyman & Vicario, 

2017). The duration of the response period for each stimulus set was equal to the 

minimum stimulus duration for that particular set plus 100 ms, which gave response 

durations of 750 and 240 ms for songs and calls, respectively. To develop a dissimilarity 

metric that is only sensitive to the temporal profiles, but not to the total firing rates, 

neural responses were standardized via taking the z-score of each bin by normalizing it 

with the average and the standard deviation across all bins within the same trial. Then, 

neural dissimilarity was quantified by calculating the Euclidean distance between these z-

scored response profiles of the same unit to different pairs of stimulus presentations as 

𝑁𝑒𝑢𝑟𝑎𝑙 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = √∑(𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

 

where A and B are the binned response profiles in the two stimulus presentations and n is 

the number of bins. Similar Euclidean distance-based metrics have been widely used as 

measures of spike train dissimilarity (van Rossum, 2001). Within each stimulus set, the 

pairwise dissimilarities between each presentation of a particular stimulus and all 
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presentations of all of the other stimuli were averaged to calculate between-stimulus 

neural dissimilarities. Similarly, the pairwise dissimilarities between each presentation of 

a particular stimulus and all of the other presentations of the same stimulus were 

averaged to calculate within-stimulus neural dissimilarities.  

 Neural decoding accuracy. Neural dissimilarity calculations described above 

were used to decode stimulus identities from the temporal profiles of neural responses. 

The dissimilarities of a particular response to the responses on all presentations of each 

stimulus were averaged, which produced 8 average neural dissimilarities, one for each of 

the 8 stimuli. The response was assigned to the stimulus with the minimal average neural 

dissimilarity. To assess the decoding performance from stimulus onset to any given point 

along the stimulus duration, this decoding procedure was conducted by progressively 

increasing the number of bins that went into the calculation starting from the stimulus 

onset. That is, for the first bin, the decoding was based solely on the neural responses in 

the first bin; for the second bin, the neural responses in the first and second bins were 

used for decoding; responses in bins 1 through 3 were used for decoding in the third bin, 

and so on. For decoding at each bin, the probability of correct decoding was calculated by 

counting how many of the 8 stimuli were correctly classified for a given stimulus 

presentation. The chance level for correct decoding probability was 1/8 = 0.125. In 

addition to the correct decoding probabilities at selected bins, the latencies to reach 

specific probability levels along the stimulus duration were analyzed in detail.  

 Mutual information. The decoding procedure described above was further used 

to calculate the mutual information between stimulus identities and temporal profiles of 

neural responses. For decoding at each bin, the true and the neurally decoded stimulus 
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identities were used to construct a confusion matrix, from which mutual information was 

calculated using Shannon’s formula as 

𝑀𝑢𝑡𝑢𝑎𝑙 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑝(𝑠, 𝑟)𝑙𝑜𝑔2 (
𝑝(𝑠, 𝑟)

𝑝(𝑠)𝑝(𝑟)
)

𝑠,𝑟

 

where s is the true and r is the neurally decoded stimulus identity. The multiplication 

0*log2(0) was equated to 0 and the prior probability p(r) for each stimulus was taken as 

1/8 = 0.125, since all 8 stimuli were presented an equal number of times. The maximum 

possible mutual information was log28 = 3 bits. To correct for the bias in mutual 

information estimations, for every unit, the calculation above was repeated 5 times while 

randomly shuffling the stimulus-response relationships across trials for each iteration. 

The mean across these 5 mutual information calculations was taken as the bias and 

subtracted from the real estimates so that bias-corrected mutual information estimates 

were used for all statistical analyses. 

 Slopes of the neural discrimination metrics. The directions and rates of changes 

in neural discrimination metrics with repeated stimulus presentation were quantified 

using linear regression and normalization methods as described for adaptation rates. 

These calculations were conducted for between-stimulus and within-stimulus neural 

dissimilarities, as well as correct decoding probabilities and latencies, separately. Trends 

for presentations 1 to 6 and 6 to 25 were analyzed separately in conjunction with the 

analysis of adaptation rates. 

 Spike waveform clustering. Following previous studies, single-units were 

divided into two clusters based on their spike waveforms. To do this, first, the average 

waveform of each single-unit was normalized by its peak amplitude. Then, the 

waveforms of single-units from all experiments in this thesis were aligned by their peaks 
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and processed via a principal components analysis. The first two components were used 

in an affinity propagation clustering algorithm (Frey & Dueck, 2007) to classify 

waveforms into two clusters. Similar to previous reports (Meliza & Margoliash, 2012; 

Jeanne, Sharpee, & Gentner, 2013), this method nicely separated single-units into narrow 

and wide spike neurons (Fig. 6). 

Statistical analyses. Parametric statistical tests were preferred for the analysis of 

multi-unit response measures, because they did not deviate significantly from normality. 

Factorial models with interactions were assessed via ANOVAs with designs specified for 

each particular analysis below. Post-hoc comparisons were conducted via Tukey’s HSD 

tests. For testing the difference of a sample from a single value, a one-sample t-test was 

used and, for testing the strength of a pairwise relationship, Pearson’s correlation was 

calculated. Single-unit response measures, on the other hand, deviated severely from 

normality, thus nonparametric statistical tests were used for single-unit analysis. Due to a 

lack of nonparametric ANOVA for assessing factorial designs, Mann-Whitney U and 

Wilcoxon signed-rank tests were used for between-subjects and within-subjects 

comparisons, respectively, in combination to analyze main effects and all pairwise 

comparisons for interactions. When this was done, the significance level was Bonferroni-

corrected for the number of comparisons conducted on the same data set. For the single-

unit response measures, a one-sample Wilcoxon signed-rank test was used for testing the 

difference of a sample from a single value and Spearman’s correlation was used for 

testing the strength of a pairwise relationship. 

Results 

Multi-unit Responses 
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For song playbacks, 184 multi-unit sites in the blocked sequence and 152 multi-

unit sites in the shuffled sequence were histologically verified to be in NCM. For call 

playbacks, the numbers of multi-unit recording sites in NCM were 186 and 157 in 

blocked and shuffled sequences, respectively. Preliminary analyses did not show 

systematic hemispheric differences in any of the basic response properties or the neural 

discrimination metrics in either the blocked or the shuffled sequence. Thus, the two 

hemispheres were combined for all subsequent analyses. 

Multi-unit Adaptation Rates 

Songs. First, to compare the adaptation profiles of song responses between the 

two sequences, a mixed ANOVA with sequence (Blocked, Shuffled) as a between-

subjects variable and presentation (2 through 25) as a within-subjects variable was 

conducted on percent response magnitudes. Overall, there was no significant difference 

between the two sequences (F(1,334) = 0.050, p = 0.821). However, the effect of 

presentation was highly significant (F(23,7682) = 571.65, p < 0.001, Fig. 7A). Post-hoc 

comparisons revealed that there was a significant decrease in percent response 

magnitudes from the 1st until the 20th stimulus presentation, after which there was no 

consistent change. There was also a significant interaction between sequence and 

presentation (F(23,7682) = 12.68, p < 0.001, Fig. 7A). However, post-hoc analyses did 

not reveal any significant difference between the two sequences in corresponding 

presentations and indicated that the interaction was driven by differences in the rates of 

adaptation in the two sequences. 

 Following previous studies, these adaptation rates were analyzed separately for 

stimulus presentations 1 through 6 and 6 through 25 (hereafter referred to as 1-6 and 6-
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25, respectively). A mixed ANOVA using sequence (Blocked, Shuffled) as a between-

subjects variable and presentation (1-6, 6-25) as a within-subjects variable revealed that, 

overall, the adaptation rates in the blocked sequence were significantly more negative 

than those in the shuffled sequence (F(1,334) = 5.82, p = 0.016, Fig. 7B). There was also 

a significant effect of presentation (F(1,334) = 428.09, p < 0.001, Fig. 7B), indicating 

more negative adaptation rates for presentations 1-6 than for presentations 6-25. Most 

importantly, there was a significant interaction between sequence and presentation 

(F(1,334) = 32.22, p < 0.001, Fig. 7B). Post-hoc comparisons showed that, for 

presentations 1-6, adaptation rates were significantly more negative in the blocked than in 

the shuffled sequence (p < 0.001), whereas there was no such difference for presentations 

6-25 (p = 0.595). In both sequences, adaptation rates were more negative for 

presentations 1-6 than for presentations 6-25 (both p < 0.001). Adaptation rates for 

presentations 1-6 in both sequences separately, as well as for presentations 6-25 together, 

were significantly less than 0 (all p < 0.001).  

Summary: These findings indicate that the responses to songs adapted more 

steeply in the blocked than in the shuffled sequence during the first 6 presentations and 

then continued to adapt at similar rates during subsequent stimulus repetitions. 

 Calls. The adaptation profiles and rates of responses to calls were also compared 

between the two sequences using similar ANOVAs. The analysis of percent response 

magnitudes revealed similar results, indicating no overall effect of sequence (F(1,341) < 

0.01, p = 0.985). The effect of presentation was significant (F(23,7843) = 317.71, p < 

0.001, Fig. 7C), such that there was a significant decrease in percent response 

magnitudes from the 1st until the 19th presentation, after which there was no consistent 
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change. There was also a significant interaction between sequence and presentation 

(F(23,7843) = 12.38, p < 0.001, Fig. 7C). However, once again, post-hoc comparisons 

indicated no significant difference between the two sequences in corresponding 

presentations and that the interaction was due to differences in the adaptation profiles of 

the two sequences. 

 The analysis of adaptation rates did not show an effect of sequence (F(1,341) = 

0.79, p = 0.374). Nevertheless, there was a significant effect of presentation (F(1,341) = 

39.21, p < 0.001, Fig. 7D), such that the adaptation rates were in general more negative in 

the blocked than in the shuffled sequence. Similar to the findings in song responses, there 

was also an interaction between sequence and presentation (F(1,341) = 34.00, p < 0.001, 

Fig. 7D). Post-hoc tests demonstrated that the adaptation rates for presentations 1-6 were 

significantly more negative in the blocked than in the shuffled sequence (p < 0.001), 

while there was no significant difference for presentations 6-25 (p = 0.059). Looking at 

the interaction from the other perspective, the adaptation rates were significantly more 

negative for presentations 1-6 than for presentations 6-25 only in the blocked sequence (p 

< 0.001), whereas no such difference was observed in the shuffled sequence (p = 0.991). 

Adaptation rates for presentations 1-6 in both sequences separately, as well as for 

presentations 6-25 together, were significantly less than 0 (all p < 0.001).  

Summary: These analyses showed patterns almost identical to the findings in song 

recordings, indicating that the responses to calls underwent stronger adaptation in the 

blocked than in the shuffled sequence during the first 6 presentations and then continued 

to adapt at similar rates during consequent stimulus repetitions. 

Validation of the Neural Discrimination Metrics 



30 
 

 

Before the analysis of actual neural recordings, the neural discrimination metrics 

developed in this study were first tested to validate that they were only sensitive to the 

temporal profile, but not to the total magnitude, of neural responses. To do this, a 

randomized data set was simulated using the song responses in the shuffled sequence. 

This was done by randomizing the timings of spikes, while keeping the total number of 

spikes for each stimulus presentation constant, so that any change in the neural 

discrimination metrics as a function of stimulus presentation would be solely due to the 

changes in the total number of spike counts across repetitions. As predicted, these 

analyses did not reveal any consistent trend in the neural discrimination metrics with 

repeated stimulus presentation (Fig. 8A-C). That is, none of the slopes of between- and 

within-stimulus dissimilarities, as well those of the correct decoding probabilities and 

latencies, for either presentations 1-6 or 6-25 were significantly different from 0 (all p > 

0.130). In addition, the bias-corrected mutual information estimations in this randomized 

data set were not significantly different from 0 (t(151) = 0.75, p = 0.457, Fig. 8D), 

suggesting that when the temporal profiles of neural responses were disrupted, the neural 

decoding method used throughout this thesis did not yield accurate results. Taken 

together, all of these findings strongly validate that the neural discrimination metrics used 

in this study were exclusively sensitive to the temporal profiles of neural responses and 

were not affected by variations in total firing rates. 

Multi-unit Between-stimulus Neural Dissimilarities 

Songs. First, the dissimilarities between the temporal profiles of neural responses 

to different songs were analyzed via a mixed ANOVA on between-stimulus neural 

dissimilarities using sequence (Blocked, Shuffled) as a between-subjects variable and 
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presentation (1 through 25) as a within-subjects variable. Overall, there was no 

significant difference between the two sequences (F(1,334) = 1.50, p = 0.223). However, 

the effect of presentation was highly significant (F(24,8016) = 102.12, p < 0.001, Fig. 

9A). Post-hoc analyses revealed that the between-stimulus neural dissimilarities 

significantly increased from the 1st until the 15th presentation, after which no consistent 

change was observed. The interaction between sequence and presentation was also 

significant (F(24,8016) = 6.08, p < 0.001, Fig. 9A). However, post-hoc comparisons did 

not show a significant difference between the two sequences in corresponding 

presentations and indicated that the interaction was driven by differences in the rates 

between-stimulus neural dissimilarities changed with stimulus presentation in the two 

sequences. 

 These differences were further analyzed in detail via a mixed ANOVA on the 

slopes of between-stimulus neural dissimilarities using sequence (Blocked, Shuffled) as a 

between-subjects variable and presentation (1-6, 6-25) as a within-subjects variable. 

There was neither an effect of sequence (F1,334) = 2.19, p = 0.140) nor an interaction 

between sequence and presentation (F(1,334) = 0.194, p = 0.660). However, the effect of 

presentation was significant (F(1,334) = 109.44, p < 0.001, Fig. 9B), indicating greater 

slopes for between-stimulus neural dissimilarities for presentations 1-6 than for 

presentations 6-25. These slopes were significantly greater than 0 for both presentations 

1-6 and 6-25 (both p < 0.001).  

Summary: Taken together, these analyses revealed that the dissimilarities between 

the temporal profiles of neural responses to different songs increased markedly during the 

first 6 presentations and then continued to increase more gradually during the following 
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repetitions. There was no difference between blocked and shuffled sequences either in the 

levels of these neural dissimilarities or in the rates at which they changed with stimulus 

repetition. 

 Calls. Between-stimulus neural dissimilarities, as wells as their linear trends as a 

function of stimulus repetition, for call responses were also analyzed via similar 

ANOVAs. Overall, between-stimulus neural dissimilarities were significantly greater in 

the shuffled than in blocked sequence (F(1,341) = 11.48, p < 0.001, Fig. 9C). The effect 

of presentation was also highly significant (F(24,8184) = 55.46, p < 0.001, Fig. 9C). 

Post-hoc tests revealed that between-stimulus neural dissimilarities increased with 

stimulus presentation. Although this increase was less pronounced after the 11th 

presentation, no clear asymptotic level was reached with 25 stimulus repetitions. There 

was also a significant interaction between sequence and presentation (F(24,8184) = 8.34, 

p < 0.001, Fig. 9C). Nevertheless, once again, post-hoc comparisons did not show a 

significant difference between the two sequences in corresponding presentations and 

indicated that the interaction was due to differences in the way between-stimulus neural 

dissimilarities changed with presentation in the two sequences. 

 The analysis of these differences in detail showed that the slopes of between-

stimulus neural dissimilarities were significantly greater in the shuffled than in the 

blocked sequence (F(1,341) = 4.75, p = 0.030, Fig. 9D). There was also a significant 

effect of presentation (F(1,341) = 6.97, p = 0.009, Fig. 9D), such that the between-

stimulus neural dissimilarity slopes were significantly greater for presentations 1-6 than 

for 6-25. There was no significant interaction between sequence and presentation 

(F(1,341) = 0.10, p = 0.748). Finally, the slopes of between-stimulus neural 
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dissimilarities for both sequences and presentations were significantly greater than 0 (all 

p < 0.001).  

Summary: These findings were mostly in line with what was observed in song 

responses and showed that the temporal profiles of neural responses to different calls 

become more and more dissimilar from each other with repeated stimulus presentation. 

These changes were more robust during the first 6 presentations than the more gradual 

changes during the subsequent stimulus repetitions. Furthermore, neural response profiles 

were generally more dissimilar from each other and increased with stimulus repetition 

more robustly in the shuffled than in the blocked sequence. 

Multi-unit Within-stimulus Neural Dissimilarities 

Songs. Next, the dissimilarities between the temporal profiles of neural responses 

to different repetitions of the same songs were analyzed via a mixed ANOVA on within-

stimulus neural dissimilarities using sequence (Blocked, Shuffled) as a between-subjects 

variable and presentation (1 through 25) as a within-subjects variable. The effect of 

sequence was highly significant (F(1,334) = 32.60, p < 0.001, Fig. 10A), indicating 

dramatically greater within-stimulus neural dissimilarities in the shuffled than in the 

blocked sequence. The effect of presentation was also significant (F(24,8016) = 19.86, p 

< 0.001, Fig. 10A). Post-hoc tests demonstrated that within-stimulus neural 

dissimilarities significantly decreased from the 1st until the 6th stimulus presentation, after 

which there was no consistent change. There was also a significant interaction between 

sequence and presentation (F(24,8016) = 8.68, p < 0.001, Fig. 10A); however post-hoc 

comparisons indicated no significant difference between the two sequences in 

corresponding presentations and the interaction was driven by differences in the rates 
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within-stimulus neural dissimilarities changed with stimulus presentation in the two 

sequences. 

 These differences were further examined via a mixed ANOVA on the slopes of 

within-stimulus neural dissimilarities using sequence (Blocked, Shuffled) as a between-

subjects variable and presentation (1-6, 6-25) as a within-subjects variable. Overall, the 

slopes of within-stimulus neural dissimilarities were significantly more negative in the 

blocked than in the shuffled sequence (F(1,334) = 25.11, p < 0.001, Fig. 10B). Moreover, 

the slopes of within-stimulus neural dissimilarities were significantly smaller for 

presentations 1-6 than for presentations 6-25 (F(1,334) = 152.92, p < 0.001, Fig. 10B). 

Most importantly, there was a significant interaction between sequence and presentation 

(F(1,334) = 16.64, p < 0.001, Fig. 10B). Post-hoc comparisons revealed that, for 

presentations 1-6, within-stimulus neural dissimilarity slopes were significantly more 

negative in the blocked than in the shuffled sequence (p < 0.001), whereas no such 

difference was observed for presentations 6-25 (p = 0.888). In both sequences, the slopes 

of within-stimulus neural dissimilarities were significantly more negative for 

presentations 1-6 than for presentations 6-25 (both p < 0.001). Finally, the slopes for 

presentations 1-6 in both sequences were significantly less than 0 (both p < 0.001). 

Conversely, the two sequences together indicated that the slopes of within-stimulus 

neural dissimilarities for presentations 6-25 were slightly, but significantly, greater than 0 

(p = 0.025). 

 Summary: To summarize, these analyses revealed that the dissimilarities between 

the temporal profiles of neural responses to different repetitions of the same songs 

underwent an initial decrease during the first 6 presentations, then slightly increase 
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during the following stimulus repetitions. The initial reduction in these dissimilarities was 

more pronounced in the blocked than in the shuffled sequence. However, the most crucial 

finding was that, across stimulus presentations, neural response profiles in different 

repetitions of the same songs were much more dissimilar to each other in the shuffled 

than in the blocked sequence. 

 Calls. Within-stimulus neural dissimilarities and their linear trends with repeated 

stimulus presentation for call responses were also an analyzed with similar ANOVAs. 

Similar to results in song responses, within-stimulus neural dissimilarities were 

significantly greater in the shuffled than in the blocked sequence (F(1,341) = 15.28, p < 

0.001, Fig. 10C). The effect of presentation was also significant (F(24,8184) = 23.53, p = 

0.001, Fig. 10C), however the post-hoc comparisons did not show a consistent pattern, 

except that the within-stimulus neural dissimilarities in the second half of stimulus 

presentations were generally greater than those in the first half. There was also a 

significant interaction between sequence and presentation (F(24,8184) = 8.65, p < 0.001, 

Fig. 10C); however, once again, there was no difference between the two sequences in 

corresponding presentations and the interaction was due to differences in the rates within-

stimulus neural dissimilarities changed as a function of stimulus presentation. 

 The analysis of these differences revealed that the slopes of within-stimulus 

neural dissimilarities were greater in the shuffled than in the blocked sequence (F(1,341) 

= 11.65, p < 0.001, Fig. 10D). However, there was no effect of presentation (F(1,341) = 

0.98, p = 0.323) or an interaction between sequence and presentation (F(1,341) = 2.67, p 

= 0.103). The slopes of within-stimulus neural dissimilarities were significantly greater 
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than 0 in the shuffled sequence (p < 0.001), whereas no such difference was found in the 

blocked sequence (p = 0.746). 

 Summary: Taken together, these analyses revealed patterns that were partially in 

line with the findings in songs responses. Most importantly, the dissimilarities between 

the temporal profiles of neural responses to different presentations of the same calls were 

much higher in the shuffled than in the blocked sequence. These dissimilarities gradually 

increased with stimulus repetition in the shuffled sequence, but did not change in the 

blocked sequence. 

Multi-unit Correct Decoding Probabilities 

Songs. Having examined how repeated stimulus presentation changed the 

dissimilarities between the temporal profiles of neural responses, the effects of these 

changes on neural decoding of songs were assessed next. Figures 11A and 11B show the 

correct neural decoding probabilities across time points along the stimulus duration and 

across stimulus presentations in the blocked and the shuffled sequence, respectively. 

Visual examination of these figures clearly indicates that the probability of correct neural 

decoding increases with time along the stimulus duration and also with stimulus 

presentation. To analyze these changes in detail, first, several different time points were 

selected and the probabilities across stimulus presentations at each of these time points 

were analyzed separately. These analyses all produced similar findings, thus only the 

results for the 500 ms time point are presented here. The probabilities of correct neural 

decoding were analyzed via a mixed ANOVA using sequence (Blocked, Shuffled) as a 

between-subjects variable and presentation (1 through 25) as a within-subjects variable. 

The effect of sequence was highly significant (F(1,334) = 35.39, p < 0.001, Fig. 11C), 
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such that the probabilities were greater in the blocked than in the shuffled sequence. The 

effect of presentation was also significant (F(24,8016) = 31.88, p < 0.001, Fig. 11C). 

Post-hoc tests showed that there was a significant increase in probabilities during the first 

6 presentations, after which there was no consistent change. There was also a significant 

interaction between sequence and presentation (F(24,8016) = 3.06, p < 0.001, Fig. 11C), 

however post-hoc comparisons did not indicate a significant difference between the two 

sequences in corresponding presentations. The interaction was driven by differences in 

the rates at which probabilities changed with stimulus presentation in the two sequences. 

 These differences were further investigated via a mixed ANOVA on the slopes of 

probabilities using sequence (Blocked, Shuffled) as a between-subjects variable and 

presentation (1-6, 6-25) as a within-subjects variable. Overall, the slopes of probabilities 

did not significantly differ between the blocked and the shuffled sequence (F(1,334) = 

1.45, p = 0.229). Furthermore, there was also no significant interaction between sequence 

and presentation (F(1,334) = 1.38, p = 0.242). However, the effect of presentation was 

highly significant (F(1,334) = 97.72, p < 0.001, Fig. 11D), such that the slopes of 

probabilities for presentations 1-6 were significantly greater than those for presentations 

6-25. Finally, the slopes of probabilities were significantly greater than 0 for both 

presentations 1-6 and 6-25 in both sequences (all p < 0.032). 

 Summary: Taken together, these analyses showed that neural decoding of song 

identities using the temporal profiles of neural responses improved with repeated 

stimulus exposure. These improvements were stronger during the first 6 presentations 

than the more gradual improvements during the subsequent stimulus repetitions. 
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Furthermore, neural decoding of songs across presentations was much more accurate in 

the blocked than in the shuffled sequence. 

 Calls. Correct neural decoding probabilities across time points along the stimulus 

duration and across stimulus presentations for call responses are shown in the blocked 

and the shuffled sequence are shown in Figures 12A and 12B, respectively. Similar to 

the findings in song responses, correct decoding probabilities increased as a function of 

time along the stimulus duration and stimulus presentation. The analysis of probabilities 

across stimulus presentations at different time points revealed similar results, thus only 

the results of 160 ms time point are reported here. These probabilities, as well as their 

slopes as a function of stimulus repetition, in call responses were analyzed via ANOVAs 

similar to the ones described for song responses. Once again, probabilities were 

significantly greater in the blocked than in the shuffled sequence (F(1,341) = 6.03, p = 

0.015, Fig. 12C). The effect of presentation was also significant (F(24,8184) = 7.21, p < 

0.001, Fig. 12C). Post-hoc analysis showed that probabilities gradually increased with 

stimulus repetition. There was no significant interaction between sequence and 

presentation (F(24,8184) = 1.28, p = 0.162) 

 The analysis of the slopes of probabilities for call responses did not indicate a 

significant difference between the two stimulus presentation sequences (F(1,341) = 0.09, 

p = 0.768, Fig. 12D) or between the two presentation parts (F(1,341) = 2.85, p = 0.092). 

There was also no significant interaction between sequence and presentation (F(1,341) = 

0.95, p = 0.331). The slopes of probabilities were significantly greater than 0 for both 

presentations 1-6 and 6-25 in the two sequences together (both p < 0.005). 
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 Summary: These findings were exactly in line with those seen in song responses. 

The accuracy of neural decoding of calls using the temporal profiles of neural responses 

improved strongly during the first 6 and more gradually during the following stimulus 

presentations. Again, the neural decoding performance was much better in the blocked 

than in the shuffled sequence. 

Multi-unit Correct Decoding Latencies 

Songs. Another way of dissecting the neural decoding probabilities shown in 

Figures 11A and 11B, rather than fixing time and allowing probabilities to vary, is to 

keep a probability level constant and focus on the changes in latencies to reach that 

probability level across stimulus presentations. Visual examinations indicate that the 

neural decoding process reached any given probability level sooner and sooner with 

repeated stimulus presentation. The analysis of several different probability levels in song 

responses revealed similar patterns, thus only the 0.75 probability level is presented here. 

A mixed ANOVA on neural decoding latencies using sequence (Blocked, Shuffled) as a 

between-subjects variable and presentation (1 through 25) as a within-subjects variable 

revealed that latencies were significantly greater in the shuffled than in the blocked 

sequence (F(1,334) = 12.90, p < 0.001, Fig. 11E). The effect of presentation was also 

highly significant (F(24,8016) = 14.63, p < 0.001, Fig. 11E). Post-hoc comparisons 

showed that there was a sharp decrease in latencies in the first 3 presentations, after 

which no consistent change was observed. There was also a significant interaction 

between sequence and presentation (F(24,8016) = 2.53, p < 0.001, Fig. 11E), however 

post-hoc tests did not indicate a significant difference between the two sequences in 
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corresponding presentations and the interaction seemed driven by differences in the way 

latencies changed with stimulus presentation in the two sequences. 

These differences were further analyzed in detail via a mixed ANOVA on the 

slopes of latencies using sequence (Blocked, Shuffled) as a between-subjects variable and 

presentation (1-6, 6-25) as a within-subjects variable. There was a significant effect of 

sequence (F(1,334) = 6.23, p = 0.013, Fig. 11F), indicating more negative slopes for 

latencies in the blocked than in the shuffled sequence. Furthermore, the slopes of 

latencies for presentations 1-6 were significantly more negative than those for 

presentations 6-25 (F(1,334) = 55.29, p < 0.001, Fig. 11F). Most importantly, there was 

an interaction between sequence and presentation (F(1,334) = 10.38, p = 0.001, Fig. 

11F). Although the slopes of latencies for presentations 1-6 were significantly more 

negative in the blocked than in the shuffled sequence (p < 0.001), no difference was 

found for presentations 6-25 (p = 0.942). Looking at the interaction from the other 

perspective, the slopes of latencies for presentations 1-6 was significantly more negative 

than those for presentations 6-25 in both the blocked (p < 0.001) and the shuffled 

sequence (p = 0.023). Finally, the slopes of latencies for presentations 1-6 in both 

sequences separately, as well as for presentations 6-25 together, were significantly less 

than 0 (all p < 0.002). 

Summary: Overall, these findings showed that neural decoding of songs using the 

temporal profiles of neural responses reached a certain confidence level sooner and 

sooner with repeated stimulus exposure. These changes were strong during the first 6 

presentations and continued gradually thereafter. In addition, the same confidence level 
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for neural decoding was reached faster along the stimulus duration in the blocked than in 

the shuffled sequence. 

 Calls. Latencies to reach selected correct neural decoding probabilities in call 

responses were analyzed via similar ANOVAs. The analysis of different probability 

levels revealed similar results, thus only the 0.5 probability level is presented here. There 

was no significant difference between the two sequences (F(1,341) = 0.15, p = 0.697, 

Fig. 12E) or across presentations (F(24,8184) = 1.05, p = 0.394). There was also no 

significant interaction between sequence and presentation (F(24,8184) = 0.74, p = 0.820). 

The analysis of the slopes of latencies also showed no effect of sequence (F(1,341) < 

0.01, p = 0.952, Fig. 12F), presentation (F(1,341) = 1.44, p = 0.231), or an interaction 

between sequence and presentation (F(1,341) = 0.16, p = 0.687). The slopes of latencies 

were not significantly different from 0 for either presentations 1-6 or 6-25 (both p < 

0.173). 

 Summary: In contrast to the findings in song responses, the analysis of correct 

neural decoding latencies in call responses did not reveal a change with stimulus 

presentation or a difference between the two sequences. 

Multi-unit Mutual Information 

 Songs. Finally, the mutual information between songs and the temporal profiles 

of neural responses across time points along the stimulus duration was analyzed via a 

mixed ANOVA with the between-subjects variable sequence (Blocked, Shuffled) and the 

within-subjects variable bin (1 to 75). Across bins, mutual information was significantly 

greater in the blocked than in the shuffled sequence (F(1,334) = 29.53, p < 0.001, Fig. 

13A). The effect of bin was also significant (F(74,24716) = 2597.95, p < 0.001, Fig. 
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13A), such that mutual information significantly increased from the 1st until the 68th bin 

(680 ms), after which there was no change. Most importantly, there was a significant 

interaction between sequence and bin (F(74,24716) = 27.26, p < 0.001, Fig. 13A). 

Planned comparisons indicated that mutual information was significantly greater in the 

blocked than in the shuffled sequence between the 2nd and 7th bins (20-70 ms) and again 

from the 28th bin until the end of the stimulus period (280-750 ms).  

Summary: This analysis provided further support for the differences between the 

two sequences in informativeness of the temporal profiles of neural responses for 

decoding songs. Mutual information was greater in the blocked than in the shuffled 

sequence as early as 20 ms after the stimulus onset. 

 Calls. Mutual information between neural responses and calls were also analyzed 

via a similar ANOVA. Again, significantly higher mutual information estimations were 

found in the blocked than in the shuffled sequence (F(1,341) = 5.77, p = 0.017, Fig. 13B). 

There was also a significant effect of bin (F(23,7843) = 414.72, p < 0.001, Fig. 13B), 

indicating significant increases in mutual information estimations from the 1st until the 

21st bin (210 ms) and no change thereafter. The interaction between sequence and bin 

was also significant (F(23,7843) = 10.12, p < 0.001, Fig. 13B). Planned comparisons 

revealed that mutual information estimations were significantly greater in the blocked 

than in the shuffled sequence between the 2nd and 4th bins (20-40 ms) and again from the 

22nd bin until the end of the stimulus period (220-260 ms). 

Summary: The analysis of mutual information in call responses revealed exactly 

the same findings seen in song responses. Mutual information was greater in the blocked 

than in the shuffled sequence as early as 20 ms after the stimulus onset. 
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Multi-unit Adaptation and Neural Discrimination Relationships 

Songs. To assess whether the adaptation of neural responses was responsible for 

changes in the neural discrimination with repeated stimulus presentation, the correlations 

between the adaptation rates and the slopes of each on the neural discrimination metrics 

were analyzed separately for presentations 1-6 and 6-25. Preliminary analyses did not 

reveal systematic differences between the two sequences, so the data was combined for 

subsequent analyses. The analysis of song responses revealed that, for presentations 1-6, 

adaptation rates were negatively correlated with the slopes of between-stimulus neural 

dissimilarities (r(334) = -0.24, p < 0.001, Fig. 14A) and positively correlated with the 

slopes of within-stimulus neural dissimilarities (r(334) = 0.26, p < 0.001, Fig. 14B). 

Furthermore, adaptation rates were negatively correlated with the slopes of probabilities 

(r(334) = -0.14, p = 0.013, Fig. 14C) and positively correlated with the slopes of latencies 

for presentations 1-6 (r(334) = 0.13, p = 0.018, Fig. 14D). For presentations 6-25, 

adaptation to songs were again negatively correlated with the slopes of between-stimulus 

neural dissimilarities (r(334) = -0.26, p < 0.001, Fig. 15A). However, unlike for 

presentations 1-6, there was a negative correlation between adaptation rates and the 

slopes of within-stimulus neural dissimilarities for presentations 6-25 (r(334) = -0.25, p < 

0.001, Fig. 15B). Adaptation rates were not found to be related either to the slopes of 

probabilities (r(334) = 0.03, p = 0.636) or to the slopes of latencies for presentations 6-25 

(r(334) = 0.05, p = 0.323). 

Summary: Taken together, these analyses showed that the changes in neural 

discrimination of songs across stimulus repetitions were associated with adaptation of 

responses. During the first 6 presentations, multi-unit sites that adapted more steeply also 
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displayed stronger increases in the dissimilarities between the temporal profiles of neural 

responses to different songs and decreases in the dissimilarities between the temporal 

profiles of neural responses to the same songs. Thus, multi-units that underwent stronger 

adaptation during the first 6 presentations also showed greater improvements in correct 

decoding probabilities and greater reductions in correct decoding latencies. These 

patterns in neural decoding performance were not observed during the following stimulus 

presentations, however, surprisingly, the links between the adaptation rates and changes 

in within-stimulus neural dissimilarities were reversed. 

 Calls. The same analyses were also conducted on responses to calls. For 

presentations 1-6, adaptation rates were not related to the slopes of between-stimulus 

neural dissimilarities (r(341) = 0.05, p = 0.373), but were positively related to the slopes 

of within-stimulus neural dissimilarities (r(341) = 0.19, p < 0.001, Fig. 16A). Although 

the slopes of probabilities were negatively related to adaptation rates for presentations 1-6 

(r(341) = -0.14, p = 0.012, Fig. 16B), the slopes of latencies were not related to 

adaptation rates for the same presentations (r(341) = -0.10, p = 0.073). For presentations 

6-25, adaptation rates were negatively related to the slopes of both the between-stimulus 

(r(341) = -0.22, p < 0.001, Fig. 17A) and the within-stimulus neural dissimilarities 

(r(341) = -0.21, p < 0.001, Fig. 17B). There was also a negative relationship between 

adaptation rates and the slopes of probabilities for presentations 6-25 (r(341) = -0.15, p = 

0.005, Fig. 17C), whereas there was no relationship between the slopes of latencies and 

adaptation rates for the same presentations (r(341) = -0.08, p = 0.161).  

 Summary: These results were partially in line with the findings in song responses. 

Once again, stronger adaptation was related to stronger decreases in within-stimulus 
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neural dissimilarities during the first 6 presentations; however, during the following 

presentations, the reverse was true. Most importantly, multi-units that underwent stronger 

adaptation during both the first 6 and the subsequent 20 stimulus presentations showed 

greater improvements in correct decoding probabilities. 

Single-unit Responses 

For song playbacks, 106 neurons (61 narrow and 45 wide spike) were recorded in 

the blocked sequence; 113 neurons (53 narrow and 60 wide spike) were recorded in the 

shuffled sequence. For call playbacks, 111 neurons (58 narrow and 53 wide spike) were 

recorded in the blocked sequence; 123 neurons (64 narrow and 59 wide spike) were 

recorded in the shuffled sequence. Chi-square analyses indicated that there was no 

significant difference among the frequencies either in song (X2 = 2.48, p = 0.115) or call 

recordings (X2 = 0.02, p = 0.887). 

Single-unit Response Properties 

 Songs. Firing rates of narrow spike neurons during the silent baseline condition in 

song recordings were significantly greater than those of wide spike neurons (z = 2.92, p = 

0.004, Fig. 18A). There was no overall difference between the blocked and shuffled 

sequences in baseline firing rates (z = 0.06, p = 0.952). The more detailed pairwise 

comparisons of the two neuron types and the two sequences revealed that, in the blocked 

sequence, there was no difference between the baseline firing rates of narrow and wide 

spike neurons (z = 0.046, p = 0.648). However, in the shuffled sequence, narrow spike 

neurons had significantly higher baseline firing rates than did wide spike neurons (z = 

3.75, p < 0.001, Fig. 18A). Looking at the interaction from the other perspective, baseline 
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firing rates did not differ between the two sequences either for narrow (z = 1.67, p = 

0.095) or wide spike neurons (z = 1.31, p = 0.191). 

The analysis of the magnitude of stimulus-driven responses revealed a marked 

difference between the two neuron types such that, on average, narrow spike neurons had 

twice the response magnitude of wide spike neurons (z = 7.40, p < 0.001, Fig. 18B). 

There was also a significant difference between the two sequences, indicating higher 

response magnitudes in the blocked than in the shuffled sequence (z = 3.29, p < 0.001, 

Fig. 18B). Neuron type and sequence also seemed to interact with each other as no 

significant difference was found between the two sequences in the response magnitudes 

of narrow spike neurons (z = 0.94, p = 0.350), whereas wide spike neurons had 

significantly greater response magnitudes in the blocked than in the shuffled sequence (z 

= 3.09, p = 0.002, Fig. 18B). The response magnitudes of narrow spike neurons were 

significantly greater than those of wide spike neurons in both the blocked and the 

shuffled sequence (both p < 0.001, Fig. 18B). 

The analysis of adaptation rates for presentations 1-6 did not show a significant 

difference between the two neuron types (z = 2.33, p = 0.020) or the two sequences (z = 

2.11, p = 0.035). There was also no interaction as indicated by lack of significant 

differences in pairwise comparisons of neuron type and sequence groups (all p > 0.015). 

The adaptation rates of both neuron types together for presentations 1-6 were 

significantly less than 0 (z = 7.26, p < 0.001, Fig. 18C). 

Adaptation rates for presentations 6-25 significantly differed between the two 

neuron types, indicating more negative adaptation rates for wide than for narrow spike 

neurons (z = 4.72, p < 0.001, Fig. 18D). There was no significant difference between the 
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two sequences (z = 0.79, p = 0.427). Neuron type and sequence also did not interact with 

each other as indicated by similarly more negative adaptation rates for wide than for wide 

spike neurons both in the blocked (z = 3.32, p < 0.001) and the shuffled sequence (z = 

3.26, p = 0.001, Fig. 18D). There was no difference between the two sequences in the 

adaptation rates of either narrow (z = 0.38, p = 0.701) or wide spike neurons (z = 1.00, p 

= 0.317). Finally, adaptation rates for presentations 6-25 were significantly less than 0 for 

both narrow (z = 3.48, p < 0.001) and wide spike neurons (z = 6.53, p < 0.001, Fig. 18D). 

Summary: Taken together, these analyses indicated that narrow spike neurons had 

higher baseline firing rates and stronger responses to songs than did wide spike neurons. 

Although there was no difference between the two neuron types in rates of adaptation 

during the first 6 stimulus presentations, wide spike neurons adapted more strongly than 

did narrow spike neurons over subsequent stimulus repetitions. In addition, wide, but not 

narrow, spike neurons had stronger responses to songs in the blocked than in the shuffled 

sequence. 

 Calls. Basic properties of responses to calls in the two neuron types and in the 

two sequences were analyzed similarly. Again, narrow spike neurons had significantly 

greater firing rates during baseline conditions as compared to wide spike neurons (z = 

6.48, p < 0.001, Fig. 19A). The baseline firing rates did not differ between the blocked 

and shuffled sequences (z = 0.54, p = 0.588). There was also no indication of an 

interaction between neuron type and sequence as revealed by significantly higher 

baseline firing rates for narrow than for wide spike neurons in both the blocked (z = 4.92, 

p < 0.001) and the shuffled sequence (z = 4.26, p < 0.001, Fig. 19A). The baseline firing 
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rates did not differ between the two sequences either for narrow (z = 0.75, p = 0.451) or 

wide spike neurons (z = 0.51, p = 0.61). 

The stimulus-driven response magnitudes of narrow spike neurons were markedly 

greater as compared those of wide spike neurons (z = 6.52, p < 0.001, Fig. 19B). There 

was a trend toward higher response magnitudes in the blocked than in the shuffled 

sequence, however it was not statistically significant at the corrected alpha level (z = 

2.39, p = 0.017). There was also no indication of an interaction between neuron type and 

sequence as shown by similarly greater response magnitudes for narrow than for wide 

spike neurons in both the blocked (z = 4.72, p < 0.001) and the shuffled sequence (z = 

4.57, p < 0.001, Fig. 19B). There was no significant difference between the two 

sequences in the response magnitudes of either narrow (z = 2.26, p = 0.024) or wide spike 

neurons (z = 1.34, p = 0.179). 

The analysis of adaptation rates for presentations 1-6 did not reveal a significant 

difference between narrow and wide spike neurons (z = 2.24, p = 0.025). There was also 

no significant difference between the two sequences (z = 0.25, p = 0.802). However, 

there seemed to be an interaction between neuron type and sequence such that, in the 

blocked sequence, wide spike neurons had significantly more negative adaptation rates 

than did narrow spike neurons (z = 2.70, p = 0.007, Fig. 19C), whereas there was no such 

difference in the shuffled sequence (z = 0.65, p = 0.518). The adaptation rates in the two 

sequences did not differ from each other either for narrow (z = 0.87, p = 0.384) or for 

wide spike neurons (z = 0.89, p = 0.371). The adaptation rates for presentations 1-6 were 

significantly less than 0 for both narrow (z = 2.65, p = 0.008) and wide spike neurons (z = 
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3.97, p < 0.001) in the blocked sequence, as well as for the two neuron types together in 

the shuffled sequence (z = 3.75, p < 0.001, Fig. 19C). 

The adaptation rates for presentations 6-25 were significantly more negative for 

wide than for narrow spike neurons (z = 3.08, p = 0.002, Fig. 19D). There was no 

significant difference between the adaptation rates in the two sequences (z = 2.36, p = 

0.018). Neuron type and sequence seemed to interact with each other as shown by 

significantly more negative adaptation rates for wide than for narrow spike neurons in the 

blocked (z = 3.68, p < 0.001, Fig. 19D), but not in the shuffled sequence (z = 1.25, p = 

0.212). Looking at the interaction from the other perspective, the adaptation rates in the 

two sequences did not differ from each other either for narrow (z = 2.25, p = 0.024) or for 

wide spike neurons (z = 1.24, p = 0.214). Finally, the adaptation rates for presentations 6-

25 were significantly less than 0 for both the narrow (z = 4.68, p < 0.001) and wide spike 

neurons (z = 4.99, p < 0.001) in the blocked sequence, as well as for the two neuron types 

together in the shuffled sequence (z = 5.89, p < 0.001, Fig. 19D). 

Summary: Analysis of basic properties of responses to calls revealed patterns 

similar to the findings in song responses. Narrow spike neurons had higher baseline firing 

rates and stronger responses than did wide spike neurons. On the other hand, responses to 

calls adapted more strongly for wide than for narrow spike neurons, however this 

difference was only observed in the blocked sequence. 

Single-unit Between-stimulus Neural Dissimilarities 

Songs. Following the same approach as for multi-unit responses, the 

dissimilarities between the temporal profiles of neural responses to different songs were 

compared between the two sequences in single-units. Across presentations, between-
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stimulus neural dissimilarities were significantly greater for wide than for narrow spike 

neurons (z = 4.44, p < 0.001, Fig. 20A). In addition, there were significantly higher 

between-stimulus neural dissimilarities in the shuffled than in the blocked sequence (z = 

3.24, p = 0.001, Fig. 20A). Neuron type and sequence did not seem to interact with each 

other as indicated by similarly greater between-stimulus neural dissimilarities for wide 

than for narrow spike neurons in both the blocked (z = 2.98, p = 0.003) and the shuffled 

sequence (z = 3.14, p = 0.003, Fig. 20A). There was no significant difference between the 

between-stimulus neural dissimilarities in the two sequences either for narrow (z = 2.37, 

p = 0.018) or for wide spike neurons (z = 1.96, p = 0.051). 

The changes in between-stimulus neural dissimilarities as a function of stimulus 

repetition were analyzed via the slopes for presentations 1-6 and 6-25 as in multi-unit 

responses. The analysis of the slopes of between-stimulus neural dissimilarities for 

presentations 1-6 did not show any difference between the two neuron types (z = 0.57, p 

= 0.567) or the two sequences (z = 0.44, p = 0.660). There was also no interaction as 

indicated by lack of significant differences in pairwise comparisons of neuron type and 

sequence conditions (all p > 0.331). Similarly, the slopes of between-stimulus neural 

dissimilarities for presentations 6-25 were also not different between the two neuron 

types (z = 0.43, p = 0.669) or the two sequences (z = 1.43, p = 0.152). There was also no 

interaction (all p > 0.284). For presentations 1-6, the slopes of between-stimulus neural 

dissimilarities were not significantly different from 0 (z = 0.61, p = 0.540), whereas, for 

presentations 6-25, they were significantly greater than 0 (z = 3.17, p = 0.002, Fig. 20B). 

Summary: These findings in single-units were partially in line with those seen in 

multi-unit responses. Most importantly, the temporal profiles of single-unit responses to 
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different songs were more dissimilar from each other in the shuffled than in the blocked 

sequence. Furthermore, wide spike neurons responded more differently to different songs 

than did narrow spike neurons. Neural dissimilarities for different songs increased after 

the first 6 stimulus presentations, but there was no difference between the two neuron 

types in the two sequences in terms of the rates of these improvements. 

 Calls. The between-stimulus neural dissimilarities and their slopes were also 

analyzed for single-unit responses to calls. Wide spike neurons had significantly greater 

between-stimulus neural dissimilarities than did narrow spike neurons (z = 4.89, p < 

0.001, Fig. 21A). There was no overall difference between the two sequences (z = 1.84, p 

= 0.066). However, there seemed to be an interaction between neuron type and sequence 

such that the between-stimulus neural dissimilarities of wide spike neurons were 

significantly greater than those of narrow spike neurons only in the blocked sequence (z = 

4.77, p < 0.001, Fig. 21A), whereas no such difference was observed in the shuffled 

sequence (z = 2.29, p = 0.022). In parallel, narrow spike neurons showed significantly 

higher between-stimulus neural dissimilarities in the shuffled than in the blocked 

sequence (z = 2.67, p = 0.008, Fig. 21A), however there was no such difference for wide 

spike neurons (z = 0.044, p = 0.965). 

 The slopes of between-stimulus neural dissimilarities for presentations 1-6 were 

not different between the two neuron types (z = 0.81, p = 0.417) or the two sequences (z 

= 0.20, p = 0.840). There was also no interaction between neuron type and sequence (all 

p > 0.404). The analysis of the slopes of between-stimulus neural dissimilarities also did 

not reveal a neuron type (z = 1.43, p = 0.153), a sequence (z = 1.93, p = 0.054), or an 

interaction effect (all p > 0.011). The slopes of between-stimulus neural dissimilarities 
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were not significantly different from 0 for either presentations 1-6 or 6-25 (both p > 

0.067). 

 Summary: These findings were generally similar to the ones seen in single-unit 

responses to songs, but were more mixed. Wide spike neurons responded more 

dissimilarly to different calls than did narrow spike neurons, except that this was only 

seen in the blocked sequence. In addition, between-stimulus neural dissimilarities were 

greater in the shuffled than in the blocked sequence, but only for narrow spike neurons. 

Unlike the multi-unit responses to songs and calls and single-unit responses to songs, the 

temporal profiles of single-unit responses to different calls did not become more and 

more dissimilar from each other with repeated stimulus exposure. 

Single-unit Within-stimulus Neural Dissimilarities 

Songs. Next, the dissimilarities between the temporal profiles of neural responses 

to different presentations of the same songs were compared between the two sequences in 

single-units. Overall, within-stimulus neural dissimilarities were significantly greater for 

wide than for narrow spike neurons (z = 5.99, p < 0.001, Fig. 20C) and in the shuffled 

than in the blocked sequence (z = 5.45, p < 0.001, Fig. 20C). There was no indication of 

an interaction between neuron type and sequence as demonstrated by similarly greater 

within-stimulus neural dissimilarities for wide than for narrow spike neurons in both the 

blocked (z = 2.98, p = 0.003) and the shuffled sequences (z = 3.14, p = 0.002, Fig. 20C). 

Moreover, within-stimulus neural dissimilarities were similarly greater in the shuffled 

than in the blocked sequence both for narrow (z = 3.50, p < 0.001) and wide spike 

neurons (z = 4.05, p < 0.001, Fig. 20C). 
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The analysis of the slopes of within-stimulus neural dissimilarities for 

presentations 1-6 did not show any difference between the two neuron types (z = 0.01, p 

= 0.992) or the two sequences (z = 1.29, p = 0.198). There was also no interaction as 

indicated by lack of significant differences in pairwise comparisons of neuron type and 

sequence conditions (all p > 0.179). The slopes of within-stimulus neural dissimilarities 

for presentations 6-25 also did not reveal a significant difference between the two neuron 

types (z = 1.67, p = 0.095). However, there was a significant difference between the two 

sequences such that the slopes of within-stimulus neural dissimilarities for presentations 

6-25 were greater in the shuffled than in the blocked sequence (z = 2.93, p = 0.003, Fig. 

20D). There was no interaction between neuron type and sequence (all p > 0.021). The 

slopes of within-stimulus neural dissimilarities for presentations 1-6 were significantly 

greater than 0 (z = 6.63, p < 0.001, Fig. 20D). For presentations 6-25, within-stimulus 

neural dissimilarity slopes were significantly greater than 0 in the blocked (z = 2.60, p = 

0.009, Fig. 20D), but not in the shuffled sequence (z = 1.45, p = 0.148). 

Summary: Taken together, these analyses showed that the temporal profiles of 

neural responses to different presentations of the same songs were more dissimilar from 

each other in the shuffled than in blocked sequence, similar to the findings in multi-unit 

responses. In addition, wide spike neurons responded more dissimilarly to different 

presentations of the same songs than did narrow spike neurons. Within-stimulus neural 

dissimilarities increased with stimulus presentation during the first 6 presentations in both 

sequences and during the subsequent repetitions only in the blocked sequence. 

Calls. Within-stimulus neural dissimilarities, as well as their slopes, were 

analyzed similarly for single-unit responses to calls. Within-stimulus neural 
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dissimilarities were significantly greater for wide than for narrow spike neurons (z = 

4.23, p < 0.001, Fig. 21B) and in the shuffled than in the blocked sequence (z = 2.99, p = 

0.003, Fig. 21B). There was no indication of an interaction between neuron type and 

sequence as indicated by similarly greater within-stimulus neural dissimilarities for wide 

than for narrow spike neurons both in the blocked (z = 3.15, p = 0.002) and the shuffled 

sequence (z = 3.14, p = 0.002, Fig. 21B). There was no significant difference between the 

two sequences either for narrow (z = 2.46, p = 0.015) or for wide spike neurons (z = 2.01, 

p = 0.044). 

The slopes of within-stimulus neural dissimilarities for presentations 1-6 were not 

different between the two neuron types (z = 0.41, p = 0.685) or the two sequences (z = 

0.40, p = 0.690). There was also no interaction between neuron type and sequence as 

indicated by lack of differences in pairwise comparisons of neuron type and sequence 

conditions (all p > 0.727). The analysis of the slopes of within-stimulus neural 

dissimilarities for presentations 6-25 also did not reveal a neuron type (z = 0.09, p = 

0.931), a sequence (z = 1.30, p = 0.193), or an interaction effect (all p > 0.257). The 

slopes of within-stimulus neural dissimilarities were significantly less than 0 for 

presentations 1-6 (z = 3.39, p < 0.001, Fig. 21C), but not for presentations 6-25 (z = 1.11, 

p = 0.268). 

Summary: These findings were similar to results in single-unit responses to songs 

in that the temporal profiles of neural responses to different presentations of the same 

calls were more dissimilar from each other in the shuffled than in blocked sequence and 

for wide than for narrow spike neurons. In addition, within-stimulus neural dissimilarities 

decreased only during the first 6 presentations, but not afterwards. 
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Single-unit Correct Decoding Probabilities 

 Songs. Correct neural decoding probabilities across time points along the stimulus 

duration and stimulus presentations in single-unit responses to songs were also analyzed 

similar to the multi-unit responses. There was a marked difference between the neural 

decoding probabilities of the two neuron types such that narrow spike neurons had 

significantly higher probabilities than did wide spike neurons (z = 7.01, p < 0.001, Fig. 

22A). In addition, correct decoding probabilities were significantly greater in the blocked 

than in the shuffled sequence (z = 4.67, p < 0.001, Fig. 22A). There was no indication of 

an interaction between neuron type and sequence as shown by similarly higher 

probabilities for narrow than for wide spike neurons in both the blocked (z = 3.94, p < 

0.001) and the shuffled sequence (z = 5.87, p < 0.001, Fig. 22A). Significantly greater 

probabilities in the blocked than in the shuffled sequence was also observed for both 

narrow (z = 2.55, p = 0.011) and wide spike neurons (z = 3.85, p < 0.001, Fig. 22A). 

The analysis of the slopes of correct decoding probabilities for presentations 1-6 

did not show any difference between the two neuron types (z = 0.54, p = 0.587) or the 

two sequences (z = 0.23, p = 0.819). There was also no interaction as indicated by lack of 

significant differences in pairwise comparisons of neuron type and sequence conditions 

(all p > 0.466). Similarly, the slopes of probabilities for presentations 6-25 were also not 

different between the two neuron types (z = 0.46, p = 0.649) or the two sequences (z = 

0.69, p = 0.490). There was also no interaction (all p > 0.207). The slopes of correct 

decoding probabilities were significantly greater than 0 for presentations 1-6 (z = 2.55, p 

= 0.001, Fig. 22B), whereas, for presentations 6-25, they were not significantly different 

from 0 (z = 1.63, p = 0.103).  
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Summary: Taken together, these analyses in single-unit responses to songs 

strongly supported the findings observed in multi-unit responses. Decoding of songs 

using the temporal profiles of neural responses yielded much more accurate results in the 

blocked than in shuffled sequence. Furthermore, a completely novel finding was that 

decoding accuracy was greater for narrow than for wide spike neurons. The two neuron 

types both showed improvements in neural decoding accuracy in the blocked compared 

to the shuffled sequence, so the differences between the two sequences cannot be 

explained by the differential involvement of the two neuron types. In addition, neural 

decoding accuracy improved at the single-unit level during the first 6 stimulus 

presentations, but did not change during the following repetitions. 

 Calls. Correct neural decoding probabilities of narrow spike neurons were 

markedly greater than those of wide spike neurons in single-unit responses to calls (z = 

6.39, p < 0.001, Fig. 23A). Furthermore, probabilities were significantly higher in the 

blocked than in the shuffled sequence (z = 2.92, p = 0.004, Fig. 23A). There was no 

indication of an interaction between neuron type and sequence as correct decoding 

probabilities of narrow spike neurons were similarly greater than those of wide spike 

neurons in both the blocked (z = 4.73, p < 0.001) and the shuffled sequence (z = 4.53, p < 

0.001, Fig. 23A). The probabilities in the blocked sequence were also significantly 

greater than those in the shuffled sequence both for narrow (z = 2.47, p = 0.014) and wide 

spike neurons (z = 2.06, p = 0.040, Fig. 23A). 

The slopes of correct decoding probabilities for presentations 1-6 were not 

different between the two neuron types (z = 1.00, p = 0.921) or the two sequences (z = 

0.07, p = 0.946). There was also no interaction between neuron type and sequence (all p 
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> 0.218). The analysis of the slopes of probabilities for presentations 6-25 also did not 

reveal a neuron type (z = 0.16, p = 0.875), a sequence (z = 0.57, p = 0.571), or an 

interaction effect (all p > 0.154). Furthermore, the slopes of correct decoding 

probabilities were not significantly different from 0 for either presentations 1-6 or 6-25 

(both p > 0.108). 

Summary: These findings in single-unit responses to calls were exactly in line 

with those observed for songs. Decoding of calls using the temporal profiles of neural 

responses yielded more accurate results for narrow than for wide spike neurons and in the 

blocked than in the shuffled sequence. However, unlike in multi-unit responses to songs 

and calls, and single-unit responses to songs, neural decoding accuracy in single-unit 

responses to calls did not improve with repeated stimulus presentation. 

Single-unit Correct Decoding Latencies 

 Songs. Latencies along the stimulus duration to reach a selected probability level 

in single-unit responses to songs were analyzed as for multi-unit responses. Overall, 

correct decoding latencies were not significantly different between the two neuron types 

(z = 0.94, p = 0.925) and the two sequences (z = 0.34, p = 0.734). There was also no 

indication of an interaction as none of the pairwise comparisons between the two neuron 

types in the two sequences revealed significant differences (all p > 0.038). Furthermore, 

the analysis of the slopes of correct decoding latencies for presentations 1-6 did not show 

any difference between the two neuron types (z = 0.25, p = 0.806) or the two sequences 

(z = 0.64, p = 0.523). There was also no interaction as indicated by lack of significant 

differences in pairwise comparisons of neuron type and sequence conditions (all p > 

0.488). Similarly, the slopes of latencies for presentations 6-25 were also not different 
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between the two neuron types (z = 0.84, p = 0.404) or the two sequences (z = 0.48, p = 

0.634). There was also no interaction (all p > 0.398). The slopes of correct decoding 

latencies were not significantly different from 0 for either presentations 1-6 or 6-25 (both 

p > 0.615). 

 Summary: In contrast to the findings in multi-unit responses to songs, these 

analyses showed that correct neural decoding latencies did not change with repeated 

stimulus presentation and were not different between the two sequences or between the 

two neuron types in single-unit responses to songs.  

Calls. Correct neural decoding latencies in single-unit responses to calls were 

significantly shorter for wide than for narrow spike neurons (z = 3.39, p < 0.001, Fig. 

23B). Latencies in the shuffled sequence were not significantly different from those in the 

blocked sequence (z = 2.57, p = 0.010). The more detailed pairwise comparisons 

indicated an interaction between neuron type and sequence, such that the correct 

decoding latencies of wide spike neurons were significantly shorter than those of narrow 

spike neurons in the shuffled (z = 2.68, p = 0.007, Fig. 23B), but not in the blocked 

sequence (z = 2.16, p = 0.031). There was no significant difference between the two 

sequences for either narrow or wide spike neurons (both p > 0.563). 

The slopes of correct decoding latencies for presentations 1-6 were not different 

between the two neuron types (z = 0.83, p = 0.407) or the two sequences (z = 2.17, p = 

0.030). There was also no interaction between neuron type and sequence (all p > 0.012). 

The analysis of the latency slopes for presentation 6-25 also did not reveal a neuron type 

(z = 0.96, p = 0.336), a sequence (z = 1.25, p = 0.212), or an interaction effect (all p > 
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0.108). The slopes of correct decoding latencies did not significantly differ from 0 for 

either presentations 1-6 or 6-25 (both p > 0.219). 

Summary: Similar to the findings in single-unit responses to songs, these analyses 

did not show a decrease in neural decoding latencies with stimulus repetition. In addition, 

latencies did not differ between the two sequences. The only difference was that the 

correct neural decoding latencies were shorter for wide than for narrow spike neurons 

only in the shuffled sequence.  

Single-unit Mutual Information 

 Songs. Finally, mutual information between songs and the temporal profiles of 

single-unit responses to songs were analyzed. Overall, the responses of narrow spike 

neurons were markedly more informative about song stimulus identities compared to the 

responses of wide spike neurons (z = 7.34, p < 0.001, Fig. 24A). Furthermore, mutual 

information was significantly higher in the blocked than in the shuffled sequence (z = 

4.94, p < 0.001, Fig. 24A). There was no indication of an interaction between neuron 

type and sequence as mutual information estimations of narrow spike neurons were 

similarly greater than those of wide spike neurons in both the blocked (z = 4.80, p < 

0.001) and the shuffled sequence (z = 5.59, p < 0.001, Fig. 24A). Mutual information in 

the blocked sequence was also significantly greater than those in the shuffled sequence 

both for narrow (z = 3.15, p = 0.002) and wide spike neurons (z = 3.80, p < 0.001, Fig. 

24A). 

 Summary: Similar to the findings in correct neural decoding probabilities, 

temporal profiles of single-unit responses to songs for narrow spike neurons were more 

informative about external signals compared to wide spike neurons. Moreover, in parallel 



60 
 

 

with multi-unit findings, mutual information was higher in the blocked than in the 

shuffled sequence at the single-unit level. 

 Calls. The analysis of the mutual information between neural responses and calls 

revealed exactly the same results. Mutual information was significantly greater for 

narrow than for wide spike neurons (z = 3.77, p < 0.001, Fig. 24B) and in the blocked 

than in the shuffled sequence (z = 3.36, p < 0.001, Fig. 24B). However, pairwise 

comparisons indicated that, in shuffled sequence, narrow spike neurons had significantly 

higher mutual information than did wide spike neurons (z = 3.28, p = 0.001, Fig. 24B), 

whereas, in the blocked sequence, the difference between the mutual information 

estimations of narrow and wide spike neurons did not reach significance at the corrected 

alpha level (z = 2.19, p = 0.029). In addition, mutual information was significantly 

greater in the blocked sequence than in the shuffled sequence for wide spike neurons (z = 

2.81, p = 0.005, Fig. 24B), but not for narrow spike neurons (z = 2.15, p = 0.032). 

 Summary: These findings were in line with the patterns observed in single-unit 

responses to songs. That is, temporal profiles of single-unit responses to calls were more 

informative about external signals for narrow spike neurons compared to wide spike 

neurons and in the blocked sequence than in the shuffled sequence. Even though there 

seemed to be interactions between the two neuron types and the two sequences, trends in 

each group were in line with the main effects. 

Single-unit Adaptation and Neural Discrimination Relationships 

 Songs. The analysis of the relationship between adaptation rates and the slopes of 

each one of the neural discrimination metrics in single-unit song responses did not 

revealed any significant correlations for presentations 1-6 (all p > 0.064). However, for 
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presentations 6-25, adaptation rates were negative correlated with the slopes of both the 

between-stimulus (r(205) = -0.16, p = 0.023, Fig. 25A) and the within-stimulus neural 

dissimilarities (r(205) = -0.25, p < 0.001, Fig. 25B). In contrast, adaptation rates were 

positively correlated with both the slopes of correct decoding probabilities (r(205) = 0.16, 

p = 0.002, Fig. 25C) and the latencies (r(205) = 0.09, p = 0.188, Fig. 25D) for 

presentations 6-25. 

 Summary: These analyses revealed mixed patterns. Unlike in multi-unit responses 

to songs, none of the neural discrimination metrics were related to adaptation rates during 

the first 6 presentations in single-units. The neurons that showed stronger adaptation 

during the following 20 presentations also showed stronger improvements in both 

between-stimulus and within-stimulus neural dissimilarities. Surprisingly, in contrast to 

the findings in multi-units, neurons with steeper adaptation profiles also displayed 

stronger reductions in their neural decoding accuracies. 

 Calls. The same correlation analyses were also conducted in single-unit responses 

to calls. Again, for presentations 1-6, adaptation rates were not significantly correlated to 

the slopes of any of the neural discrimination metrics (all p > 0.295). The adaptation rates 

for presentations 6-25 were again positively correlated with the slopes of correct 

decoding probabilities (r(217) = 0.17, p = 0.012, Fig. 26), similar to what was observed 

on song responses. However, the slopes of none of the other neural discrimination 

metrics significantly correlated with adaptation rates for presentation 6-25 (all p > 0.071). 

 Summary: These findings were mainly in line with the results described for 

single-unit responses to songs in that none of the neural discrimination metrics were 
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related to adaptation rates during the first 6 presentations. In addition, neurons that 

underwent stronger adaptation also decreased their neural decoding accuracies more. 

Neuron Type Differences Controlled for Response Magnitude Variations 

 Songs. An ANCOVA with spike width (narrow, wide) as a between-subjects 

variable and response magnitude as a covariate was conducted on correct decoding 

probabilities for single-unit responses to songs. Even after controlling for variation in 

response magnitudes, narrow spike neurons still had significantly greater correct 

decoding probabilities than did wide spike neurons (F(1,216) = 30.15, p < 0.001). The 

analysis of mutual information estimates via a similar ANCOVA also showed that the 

significantly higher mutual information for narrow than for wide spike neurons was not 

due to differing levels of response magnitudes between the two neuron types (F(1,216) = 

27.57, p < 0.001). 

 Summary: These analyses demonstrated that the higher neural decoding 

accuracies observed for narrow as compared to wide spike neurons for songs could not be 

explained by differential absolute firing rates between the two neuron types. 

 Calls. The correct decoding probabilities and mutual information estimations for 

single-unit responses to calls were also subjected to the same analyses. Similar to the 

results for songs, correct decoding probabilities were still significantly greater for narrow 

than for wide spike neurons, even when the variations in response magnitudes were 

controlled (F(1,231) = 8.31, p = 0.004). However, the analysis of mutual information 

estimations showed that, when response magnitudes were partialled out, there was no 

longer a significant difference between the two neuron types (F(1,231) = 1.14, p = 0.287). 
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Summary: These findings suggest that the higher neural decoding accuracies 

observed for narrow as compared to wide spike neurons for calls could not be accounted 

for by the differences in total firing rates between the two neuron types. However, mutual 

information difference between the two neuron types became absent when the absolute 

levels of responding were controlled. 

Discussion 

The results of this experiment provided strong evidence that passive 

familiarization with novel natural vocalizations changes the temporal profiles of neural 

responses in the zebra finch NCM to improve neural decoding. Both multi-unit responses 

to songs and calls and single-unit responses to songs showed this effect, which suggests 

that the changes in the temporal profiles of responses observed in the neural population 

most likely results from modifications in spike timings of individual neurons with 

repeated stimulus presentation. It is thus not simply due to changes in the multi-unit 

population across presentations. In multi-unit responses, the enhancements in neural 

decoding for both songs and calls were robust during the first 6 stimulus presentations 

and then continued at more modest rates during the following repetitions. In single-unit 

responses, neural decoding improved for songs during only the first 6 presentations and 

did not change with further exposure. Interestingly, no consistent change in neural 

decoding accuracies with repeated stimulus exposure were seen in single-unit responses 

to calls. In addition, neural decoding of songs using the temporal profiles of multi-unit 

responses reached a given confidence level sooner and sooner along the stimulus duration 

with repeated stimulus presentation. Nevertheless, this effect was not observed in multi-

unit responses to calls and in single-unit responses to both songs and calls. 
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The changes in the dissimilarities between the temporal profiles of neural 

responses between different presentations of the same stimuli, as well as between 

presentations of different stimuli, were assessed to dissect the dynamics that produced the 

improvements in neural decoding accuracies with repeated stimulus exposure. However, 

these analyses did not reveal clear results. The clearest patterns were observed in the 

multi-unit responses to songs, which indicated that between-stimulus neural 

dissimilarities increased, while within-stimulus neural dissimilarities decreased during 

the first 6 stimulus presentations. This means that the temporal profiles of neural 

responses to any given stimulus became more consistent for that stimulus and more 

differentiated from the temporal profiles of neural responses to other stimuli. These 

dynamics together resulted in the enhancement of neural decoding during these stimulus 

presentations. During the following 20 stimulus presentations, responses to songs 

indicated that both the between-stimulus and the within-stimulus neural dissimilarities 

increased. As the net effect of these changes, gains in neural decoding accuracy 

continued at a much more modest rate. Although the analysis of these two opposing 

dynamics helped to explain the improvements in neural decoding accuracy observed in 

the multi-unit responses to songs, they did not always produce conclusive results. This 

was demonstrated by the multi-unit responses to calls and single-unit responses to both 

songs and calls. In these responses, between-stimulus neural dissimilarities either 

increased or did not change, while within-stimulus neural dissimilarities also tended to 

increase or not change with stimulus repetition. The net effects of these trends were 

increases in neural decoding accuracy in some cases and no changes in others. Thus, 

examination of the directions of changes in between-stimulus and within-stimulus neural 



65 
 

 

dissimilarities separately were not sufficient to understand the more complex interactions 

among neural representations governing the improvements in neural decoding accuracy 

with repeated stimulus presentation. 

Contrary to predictions, neural decoding accuracy and mutual information 

between the temporal profiles of neural responses and natural vocalizations were 

markedly higher in the blocked than in the shuffled stimulus presentation sequence. This 

effect was clear in both the multi-unit and single-unit responses to both songs and calls 

suggesting that the stimulus presentation sequence modulated temporal profiles of neural 

activity at the individual neuron level. This difference between the two stimulus 

presentation sequences was due to the differences in between- and within-stimulus neural 

dissimilarities. In the shuffled sequence, dissimilarities between the temporal profiles of 

neural responses to different stimuli were generally higher than those in the blocked 

sequence, which, under normal conditions, would lead to more accurate neural decoding 

in the shuffled sequence. However, neural dissimilarities between different presentations 

of the same stimulus were strikingly higher in the shuffled than in the blocked sequence, 

which shows that the temporal profiles of neural responses to repeated presentations of a 

particular stimulus were much less consistent (more variable) in the shuffled sequence. 

The net effect of these two opposing factors was that the ability to identify songs or calls 

using the temporal profiles of neural responses was diminished in the shuffled compared 

to the blocked sequence. Taken together, these findings suggest that the more predictable 

context produced by the blocked stimulus presentation sequence, in contrast to the 

unpredictable random stimulus transitions in the shuffled sequence, led to more reliable 
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neural response profiles across repetitions of any given stimulus, which in turn enhanced 

the neural differentiation among different stimuli. 

The direction and the degree of changes in neural discrimination metrics in multi-

unit responses were generally found to be related to rates of adaptation. Neural decoding 

accuracies were negatively correlated with adaptation rates for both stimulus sets and 

during both presentation parts, except for songs after the first 6 presentations. These 

negative correlations mean that multi-units which showed stronger adaptation (more 

negative slope) also showed stronger enhancement in neural decoding accuracy. 

Between-stimulus neural dissimilarities were also all negatively correlated with 

adaptation rates, except during the first 6 presentations of calls. Thus, stronger adaptation 

was associated with stronger increase in the dissimilarity between the temporal profiles of 

neural responses to different stimuli. Within-stimulus neural dissimilarities, on the other 

hand, revealed an interesting effect. For both songs and calls, within-stimulus neural 

dissimilarities were positively correlated with the adaptation rates for the first 6 

presentations and negatively correlated with the following presentations. This suggests 

that stronger adaptation meant more change towards reliability for the neural response 

profiles of any given stimulus during the initial presentations; however, after one point, it 

was related to more reductions in neural response reliability. Despite the abundant 

evidence that the changes in neural discrimination metrics were related to the rates of 

adaptation, even in the strongest case, adaptation rates explained only less than 7% of the 

total variation in the slopes of neural discrimination metrics. Thus, adaptation as 

measured (across the whole response) does not seem to be the main driving factor in 
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improving neural decoding accuracies; there are likely to be other yet unknown 

mechanisms in effect. 

Following previous studies, single-units were clustered based on spike waveforms 

into narrow and wide spike neurons. These two neuron types differed significantly from 

each other in various basic response properties. Narrow spike neurons generally fired at 

much higher rates in silent baseline conditions and responded to auditory stimulation 

much more robustly compared to wide spike neurons. Conversely, wide spike neurons 

generally underwent stronger adaptation with repeated stimulus presentation than did 

narrow spike neurons. Most remarkably, the two neuron types also differed in neural 

discrimination of auditory signals, such that the temporal profiles of neural responses for 

narrow spike neurons more accurately decoded songs and calls and thus had higher 

mutual information compared to those of wide spike neurons. These differences were 

generally not due to the differences in the total response magnitudes between the two 

neuron types. Despite these differences in stimulus representations, the two neuron types 

were not differentially involved in the blocked and the shuffled stimulus presentation 

sequences. That is, both narrow and wide spike neurons had similarly increased neural 

decoding accuracy and mutual information levels in the blocked compared to in the 

shuffled sequence. 

 Narrow and wide spike neurons also did not systematically differ in their 

contributions to the changes in neural discrimination with repeated stimulus presentation. 

The neural decoding accuracy of both neuron types together increased with stimulus 

repetition for songs, but not for calls. Despite the overall similarities to multi-unit 

responses, the analysis of the correlations between the improvements in neural decoding 
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accuracy and adaptation rates indicated puzzling results. For both songs and calls, 

adaptation rates were positively correlated with the changes in neural decoding accuracy 

after the first 6 stimulus presentations, which suggests that the single-units that adapted 

more strongly, also showed bigger reductions in neural decoding performance. There was 

no relationship between adaptation rates and the neural decoding changes during the first 

6 stimulus presentations. 

 In summary, passive familiarization of novel natural vocalizations rapidly updated 

the temporal profiles of neural responses in such a way as to improve discrimination and 

recognition of those signals. Whether these immediate changes in neural representations 

were retained over the long-term to affect the processing of the same auditory stimuli at 

later times was investigated in the following experiment.  
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EXPERIMENT 2: LONG-TERM EFFECTS OF FAMILIARIZATION 

ON NEURAL DISCRIMINATION OF VOCAL SIGNALS 

 

The goal of this experiment was to test whether rapid improvements in neural 

discrimination seen with passive familiarization were long-lasting and could affect 

processing of the same sounds at a later time point. It is well-established that neural 

responses to conspecific vocalizations remain adapted at least 20 hours after the initial 

stimulus presentation (Chew et al., 1996a, 1996b). Accordingly, familiar and novel 

signals can be differentiated by comparing their profiles of adaptation following the 

initial familiarization (Chew, Mello, Nottebohm, Jarvis, & Vicario, 1995; Phan, Pytte, & 

Vicario, 2006). Experiment 1 revealed a relationship between adaptation rates and the 

improvements in neural discrimination. Thus, it is hypothesized that neural 

discrimination, induced during initial exposure to a set of songs, is maintained and can be 

detected during testing 20 hours after that exposure. 

 To assess this hypothesis, electrophysiological responses to zebra finch songs in 

NCM were recorded under passive listening conditions. One group of birds were pre-

exposed to test songs 20 hours before the electrophysiological recordings; the other group 
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was presented with other songs that were unrelated to the test songs. Only shuffled 

presentation sequences were used for both the pre-exposure and the test phase. Neural 

discrimination metrics were calculated and analyzed as in Experiment 1. 

Methods 

Subjects 

All subjects were as in Experiment 1 (16 naïve adult male zebra finches), except 

they lived in the general aviary only until the beginning of the experiment, after which 

they were housed individually in auditory isolation as described below. 

Stimuli 

Two different stimulus sets were used in this experiment. The experimental 

stimulus set consisted of the eight songs described in Experiment 1. The control stimulus 

set included eight other zebra finch songs, also selected from a corpus of unfamiliar 

songs such that the percent acoustic similarity scores between the control and 

experimental stimuli ranged from 36% to 65% (Mean ± SEM = 52 ± 1%). The durations 

of the songs in the control set were between 652 and 840 ms (Mean ± SEM = 781 ± 20 

ms). All birds were naïve to the stimuli in both sets in the beginning of the experiment. 

Surgery 

All surgical procedures were as in Experiment 1, except surgeries were conducted 

one to three days before the passive auditory exposure phase. 

Passive auditory exposure 

Birds were divided into two groups of 8 birds based on the stimulus sets to which 

they would be passively exposed prior to electrophysiological recordings. The eight birds 

in the pre-exposed group were presented with the experimental stimulus set that was also 
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used during electrophysiological recordings, whereas the eight birds in the control group 

were presented with the control stimulus set. Note that the control group was also tested 

with the experimental stimulus set during electrophysiological recordings. Passive 

auditory exposures were conducted individually in the walk-in sound attenuation 

chamber also used for electrophysiological recordings. During auditory exposure, the 

birds were not head-fixed, but were housed in a cage. Each stimulus was played 200 

times in a shuffled sequence at an onset-onset ISI of 6 s from a speaker located 70 cm in 

front of the cage at an amplitude of 60 dB SPL (A scale) and a sampling frequency of 

44.444 kHz. At the end of the auditory exposure, birds were left isolated in the sound 

attenuation chamber until the beginning of electrophysiological recordings. 

Electrophysiology 

All electrophysiological procedures were as in Experiment 1. 

Stimulus presentation 

Electrophysiological recordings of neural responses to experimental stimuli 

started 20 h ± 15 min from the beginning of the passive auditory exposure. Since the 

passive auditory exposure lasted for 2 h 40 min, there was ~17 h 20 min from the last 

stimulus pre-exposure to the beginning of electrophysiological recordings. All birds were 

tested with the experimental stimulus set with which the pre-exposed group, but not the 

control group, was presented 20 h earlier. All other stimulus presentation parameters 

were as in Experiment 1 (25 stimulus repetitions, 6 s ISI), except that only shuffled 

stimulus presentation sequences were used. 

Histology 

All histological procedures were as in Experiment 1. 
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Data analysis 

All data analysis procedures were as in Experiment 1. 

Results 

Multi-unit Responses 

 There were 145 multi-unit sites in the pre-exposed group and 149 multi-unit sites 

in the control group that were histologically verified to be in NCM. Preliminary analyses 

did not show systematic lateral differences, thus the two hemispheres were combined for 

all subsequent analyses. 

Multi-unit Adaptation Rates 

To compare the profiles of adaptation between the two exposure conditions in 

song responses, a mixed ANOVA on percent response magnitudes using exposure (Pre-

exposed, Control) as a between-subjects variable and presentation (2 through 25) as a 

within-subjects variable was conducted. Overall, percent response magnitudes were 

significantly greater in the control than in the pre-exposed condition (F(1,292) = 16.68, p 

< 0.001, Fig. 27A). The effect of presentation was also significant (F(23,6716) = 225.35, 

p < 0.001, Fig. 27A). Post-hoc comparisons revealed that there was a significant decrease 

in percent response magnitudes from the 1st until the 17th presentation, after which there 

was no further change. Most importantly, there was a significant interaction between 

exposure and presentation (F(23,6716) = 13.81, p < 0.001, Fig. 27A). Post-hoc tests 

indicated no difference between the two exposure groups in corresponding presentations, 

however the way percent response magnitudes decreased with stimulus presentation 

differed markedly between the two exposure condition. In the control exposure condition, 

there was a significant decrease in percent response magnitudes from the 1st until the 18th 
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presentation, whereas the pre-exposed group showed significant decreases only until the 

7th presentation and no consistent change thereafter. 

 To further examine these differences in detail, a mixed ANOVA was conducted 

on adaptation rates using exposure (Pre-exposed, Control) as a between-subjects variable 

and presentation (1-6, 6-25) as a within-subjects variable. There was a significant 

exposure effect (F(1,292) = 10.41, p = 0.001, Fig. 27B), such that the adaptation rates in 

the pre-exposed condition were more negative than those in the control exposure 

condition. There was also a significant effect of presentation (F(1,292) = 223.28, p < 

0.001, Fig. 27B), indicating more negative adaptation rates for presentations 1-6 than for 

presentations 6-25. Most importantly, the interaction between exposure and presentation 

was highly significant (F(1,292) = 64.90, p < 0.001, Fig. 27B). Post-hoc analyses 

demonstrated that, for presentations 1-6, adaptation rates were significantly more 

negative in the pre-exposed than in the control condition (p < 0.001), whereas this pattern 

was reversed for presentations 6-25, indicating significantly more negative adaptation 

rates in the control than in the pre-exposed condition (p = 0.031). In both exposure 

conditions, adaptation rates for presentations 1-6 were significantly more negative 

compared to those for presentations 6-25 (both p < 0.001). Finally, adaptation rates in 

both exposure conditions for both presentations 1-6 and 6-25 were significantly less than 

0 (all p < 0.001). 

 Summary: Taken together, these analyses clearly demonstrated a neural memory 

for the test songs in birds that were passively exposed to those stimuli 20 hours earlier. 

Neural responses to songs adapted more rapidly and remained at asymptotic levels in pre-
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exposed birds, whereas the typical gradual adaptation profile for novel signals was 

observed in control birds that were hearing the test songs for the first time.  

Multi-unit Between-stimulus Neural Dissimilarities  

Similar to the analyses in Experiment 1, the dissimilarities between the temporal 

profiles of neural responses to different songs were analyzed. A mixed ANOVA on 

between-stimulus neural dissimilarities using exposure (Pre-exposed, Control) as a 

between-subjects variable and presentation (1 through 25) as a within-subjects variable 

revealed a significant effect of exposure (F(1,292) = 12.35, p < 0.001, Fig. 28A), 

indicating greater between-stimulus neural dissimilarities in the control than in the pre-

exposed condition. There was also a significant effect of presentation (F(24,7008) = 

47.50, p < 0.001, Fig. 28A). Post-hoc comparisons showed that there was a sharp 

increase in between-stimulus neural dissimilarities in the first 4 presentations, followed 

by a more gradual increase until the 15th presentation, and no consistent change 

afterwards. The interaction between exposure and presentation was also significant 

(F(24,7008) = 4.41, p < 0.001, Fig. 28A), however post-hoc comparisons did not show a 

significant difference between the two exposure groups in corresponding presentations 

and the interaction was driven by unsystematic differences in the way between-stimulus 

neural dissimilarities changed with presentation in the two exposure conditions. 

 These differences were further probed via a mixed ANOVA on the slopes of 

between-stimulus neural dissimilarities with exposure (Pre-exposed, Control) as a 

between-subjects variable and presentation (1 through 25) as a within-subjects variable. 

There was neither an effect of exposure (F(1,292) = 1.52, p = 0.218) nor an interaction 

between exposure and presentation (F(1,292) = 1.06, p = 0.304). However, the effect of 
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presentation was significant (F(1,292) = 29.27, p < 0.001, Fig. 28B), showing that the 

slopes of between-stimulus neural dissimilarities for presentations 1-6 were greater than 

those for presentations 6-25. These slopes were significantly greater than 0 for both 

presentations 1-6 and 6-25 (both p < 0.001). 

 Summary: These findings corroborate results from Experiment 1 showing an 

increase in the dissimilarities between the temporal profiles of neural responses to 

different songs as a function of repeated stimulus exposure. These improvements were 

stronger during the first 6 presentations compared to the more gradual changes during the 

following stimulus repetitions. Interestingly, across presentation, the temporal profiles of 

neural responses to different songs were more dissimilar from each other when these 

stimuli were completely novel compared to when they were tested 20 hours after 

familiarization. 

Multi-unit Within-stimulus Neural Dissimilarities 

Next, the dissimilarities between the temporal profiles of neural responses to 

different presentations of the same songs were analyzed via a mixed ANOVA on within-

stimulus neural dissimilarities using exposure (Pre-exposed, Control) as a between-

subjects variable and presentation (1 through 25) as a within-subjects variable. The 

within-stimulus neural dissimilarities in the control exposure condition were markedly 

greater than those in the pre-exposed condition (F(1,292) = 48.94, p < 0.001, Fig. 28C). 

The effect of presentation was also highly significant (F(24,7008) = 41.11, p < 0.001, 

Fig. 28C) and post-hoc analyses indicated a significant decrease in within-stimulus 

neural dissimilarities during the first 6 presentations and no systematic change thereafter. 

There was also a significant interaction between exposure and presentation (F(24,7008) = 
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2.91, p < 0.001, Fig. 28C). Post-hoc tests indicated no significant difference between the 

two exposure conditions in corresponding presentations and the interaction was driven by 

a sharp decrease in within-stimulus neural dissimilarities in the first 5 presentations in the 

pre-exposed condition as compared to a more gradual decrease in the first 4 presentations 

in the control condition. 

 The slopes of within-stimulus neural dissimilarities were further probed in detail 

to examine these differences. A mixed ANOVA on the within-stimulus neural 

dissimilarity slopes using exposure (Pre-exposed, Control) as a between-subjects variable 

and presentation (1 through 25) as a within-subjects variable revealed a significant effect 

of exposure (F(1,292) = 13.35, p < 0.001, Fig. 28D), such that the within-stimulus neural 

dissimilarities in the pre-exposed condition had more negative slopes than did those in 

the control condition. The effect of presentation was also highly significant (F(1,292) = 

187.81, p < 0.001, Fig. 28D), showing more negative slopes for within-stimulus neural 

dissimilarities for presentations 1-6 than for presentations 6-25. Most importantly, there 

was a significant interaction between exposure and presentation (F(1,292) = 7.57, p = 

0.006, Fig. 28D). Post-hoc analyses demonstrated that, for presentations 1-6, the slopes 

of within-stimulus neural dissimilarities were significantly more negative in the pre-

exposed than in the control conditions (p < 0.001), whereas no such difference was 

observed for presentations 6-25 (p = 0.958). In both exposure conditions, within-stimulus 

neural dissimilarity slopes for presentations 1-6 were significantly more negative 

compared to those for presentations 6-25 (both p < 0.001). For presentations 1-6, the 

slopes of within-stimulus neural dissimilarities in both exposure conditions were 
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significantly less than 0 (both p < 0.001), however, for presentations 6-25, they were 

together not different from 0 (p = 0.323). 

 Summary: Taken together, these analyses revealed patterns mostly in line with the 

results found in Experiment 1 for song responses. The temporal profiles of neural 

responses to different presentations of the same songs became less and less dissimilar 

from each other during the first 6 presentations and did not change afterwards. These 

initial changes happened more rapidly in birds that had been passively familiarized with 

these same songs compared to birds that were naïve to them. In addition, across 

presentations, the temporal profiles of neural responses to the same songs were more 

dissimilar from each other when these stimuli were completely novel compared to when 

they were tested 20 hours after familiarization. 

Multi-unit Correct Decoding Probabilities 

The correct neural decoding probabilities across time points along the stimulus 

duration and stimulus presentations for songs are shown in Figures 29A and 29B for the 

pre-exposed and the control exposure condition, respectively. Correct neural decoding 

probabilities at the 500 ms time point across stimulus presentations were analyzed as in 

Experiment 1 via a mixed ANOVA with exposure (Pre-exposed, Control) as a between-

subjects variable and presentation (1 through 25) as a within-subjects variable. Overall, 

probabilities were significantly greater in the pre-exposed than in the control condition 

(F(1,292) = 35.20, p < 0.001, Fig. 29C). The effect of presentation was also highly 

significant (F(24,7008) = 14.77, p < 0.001, Fig. 29C), such that there was a sharp 

increase in probabilities during the first 6 presentations and no systematic change 

afterwards. There was also a significant interaction between exposure and presentation 
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(F(24,7008) = 4.28, p < 0.001, Fig. 29C). Post-hoc comparisons revealed that, in the pre-

exposed condition, probabilities in the first presentation was significantly lower than 

those in most of the other presentations, whereas, in the control exposure condition, 

probabilities increased more gradually in the first 5 presentations. 

 These difference were further examined via a mixed ANOVA on the slopes of 

probabilities using exposure (Pre-exposed, Control) as a between-subjects variable and 

presentation (1 through 25) as a within-subjects variable. There was a significant effect of 

exposure (F(1,292) = 23.24, p < 0.001, Fig. 29D), indicating grater slopes for 

probabilities in the control than in the pre-exposed group. The effect of presentation was 

also highly significant (F(1,292) = 70.15, p < 0.001, Fig. 29D), such that the slopes of 

probabilities for presentations 1-6 were greater than those for presentations 6-25. Most 

importantly, there was a significant interaction between exposure and presentation 

(F(1,292) = 19.16, p < 0.001, Fig. 29D). For presentations 1-6, the probabilities in the 

control condition had significant greater slopes than did those in the pre-exposed 

condition (p < 0.001), whereas there was no difference between the two exposure 

conditions for presentations 6-25 (p = 0.989). Looking at the interaction from the other 

perspective, the slopes of probabilities were significantly greater for presentations 1-6 

than for presentations 6-25 in both the pre-exposed (p = 0.026) and the control condition 

(p < 0.001). The slopes of probabilities for presentations 1-6 were significantly greater 

than 0 in both the pre-exposed and the control condition (both p < 0.001). On the other 

hand, the slopes of probabilities for presentations 6-25 in the two exposure groups 

together were not significantly different from 0 (p = 0.197). 
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Summary: These analyses strongly supported the findings in Experiment 1 for 

song responses and showed that the accuracy of neural decoding using the temporal 

profiles of neural responses improved with repeated stimulus presentations. These 

improvements occurred only during the first 6 presentations and did not continue 

afterwards. Of utmost importance, the rapid gains in neural decoding of songs with 

repeated stimulus exposure lasted for at least 20 hours as indicated by better neural 

decoding performance for the same songs when they were previously familiarized as 

compared to when they were heard for the first time. As a result of already high neural 

decoding accuracy in the pre-exposed condition, rapid improvements were more 

pronounced when the songs were novel as compared to when they were familiar. 

Multi-unit Correct Decoding Latencies 

Latencies along the stimulus duration to reach the correct neural decoding 

probability level of 0.75 in song responses were analyzed as in Experiment 1 via a mixed 

ANOVA with exposure (Pre-exposed, Control) as a between-subjects variable and 

presentation (1 through 25) as a within-subjects variable. The effect of exposure was 

highly significant (F(1,292) = 33.55, p < 0.001, Fig. 29E), showing shorter latencies in 

the pre-exposed than in the control condition. The effect of presentation was also 

significant (F(24,7008) = 15.53, p < 0.001, Fig. 29E) and post-hoc tests revealed that 

there was a significant decrease in latencies during the first 6 presentations and no 

systematic trend afterwards. There was also a significant interaction between exposure 

and presentation (F(24,7008) = 2.87, p < 0.001, Fig. 29E). Post-hoc comparisons 

indicated that there was a clear decrease in latencies during the first 6 presentations in the 
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control condition, whereas, in the pre-exposed condition, latencies decreased more 

gradually in the first 5 presentations. 

 These difference were further probed via a mixed ANOVA on the slopes of 

latencies using exposure (Pre-exposed, Control) as a between-subjects variable and 

presentation (1 through 25) as a within-subjects variable. The slopes of latencies were 

significantly more negative in the control than in pre-exposed condition (F(1,292) = 8.58, 

p = 0.004, Fig. 29F) and also for presentations 1-6 than for presentations 6-25 (F(1,292) 

= 58.03, p < 0.001, Fig. 29F). Most importantly, there was a significant interaction 

between exposure and presentation (F(1,292) = 9.14, p = 0.003, Fig. 29F). Post-hoc 

analyses showed that, for presentations 1-6, the slopes of latencies were significantly 

more negative in the control than in the pre-exposed condition (p < 0.001), whereas no 

difference was observed between the two exposure conditions for presentations 6-25 (p = 

0.999). The slopes of latencies were significantly more negative for presentations 1-6 

than for presentations 6-25 in both the pre-exposed (p < 0.001) and the control condition 

(p = 0.007). Finally, the slopes of latencies for presentations 1-6 were significantly less 

than 0 in both the pre-exposed and the control condition (both p < 0.001). On the other 

hand, the slopes of latencies for presentations 6-25 in the two exposure groups together 

were not significantly different from 0 (p = 0.116). 

Summary: These findings were in line with the results obtained in Experiment 1 

for song responses. Decoding of songs using the temporal profiles of neural responses 

reached a given confidence level sooner and sooner with stimulus exposure during the 

first 6 presentations but did not change during subsequence repetitions. The long-term 

effects of passive familiarization on neural decoding accuracies were paralleled in 
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latencies, showing earlier correct neural decoding latencies for the same songs when they 

were previously familiarized as compared to when they were heard for the first time. 

Again, due to already low levels of neural decoding latencies in the pre-exposed 

condition, rapid changes in latencies were more pronounced when the songs were novel 

as compared to when they were familiar. 

Multi-unit Mutual Information 

Finally, mutual information between the temporal profiles of neural responses and 

songs were analyzed across time points along the stimulus duration via a mixed ANOVA 

with the between-subjects variable exposure (Pre-exposed, Control) and the within-

subjects variable bin (1 to 75). Across bins, mutual information was significantly greater 

in the pre-exposed than in the control exposure condition (F(1,292) = 50.00, p < 0.001, 

Fig. 30). The effect of bin was also significant (F(74,21608) = 3993.78, p < 0.001, Fig. 

30), such that mutual information significantly increased from the 1st until the 66th bin 

(660 ms), after which there was no change. Most importantly, there was a significant 

interaction between sequence and bin (F(74,21608) = 22.03, p < 0.001, Fig. 30). Planned 

comparisons indicated that mutual information was significantly greater in the pre-

exposed than in the control exposure condition starting from the 4th bin until the end of 

the stimulus period (40-750 ms). 

Summary: Analysis of mutual information corroborated the differences in neural 

decoding probabilities of the pre-exposed and control exposure conditions and showed 

that the temporal profiles of neural responses were more informative about songs when 

those songs were passively familiarized 20 hours earlier as compared to when they were 
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heard for the first time. These differences emerged as early as 40 ms after the stimulus 

onset. 

Single-unit Responses 

A total of 52 neurons (27 narrow and 25 wide spike) were recorded in the pre-

exposed condition; a total of 63 neurons (32 narrow and 31 wide spike) were recorded in 

the control condition. A chi-square analysis indicated that there was no significant 

difference between the frequencies of the two neuron types in the two exposure 

conditions (X2 = 0.08, p = 0.772). 

Single-unit Response Properties 

Firing rates of narrow spike neurons during silent baseline conditions were 

significantly greater than those of wide spike neurons (z = 2.65, p = 0.008, Fig. 31A). 

There was no difference between the pre-exposed and the control condition in baseline 

firing rates (z = 2.23, p = 0.026). The analysis of the more detailed pairwise comparisons 

between the two neuron types and the two exposure conditions revealed that, in the 

control condition, narrow spike neurons had significantly higher baseline firing rates than 

did wide spike neurons (z = 3.33, p < 0.001, Fig. 31A), whereas, in the pre-exposed 

condition, there was no difference between the baseline firing rates of the two neuron 

types (z = 0.39, p = 0.694). In addition, the baseline firing rates of wide spike neurons 

were significantly higher in the pre-exposed than in the control condition (z = 3.40, p < 

0.001, Fig. 31A), however, no such difference was found in the baseline firing rates of 

narrow spike neurons (z = 0.26, p = 0.796). 

The magnitude of stimulus-driven responses differed markedly between the two 

neuron types such that narrow spike neurons had significantly greater response 
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magnitudes than did wide spike neurons (z = 5.53, p < 0.001, Fig. 31B). There was no 

difference between the pre-exposed and the control condition in response magnitudes (z = 

0.13, p = 0.897). Neuron type and exposure did not seem to interact as revealed by 

similarly greater response magnitude for narrow than for wide spike neurons in both the 

pre-exposed (z = 3.82, p < 0.001) and the control condition (z = 3.91, p < 0.001, Fig. 

31B). The response magnitudes in the two exposure conditions did not differ from each 

other either for narrow (z = 0.81, p = 0.420) or for wide spike neurons (z = 1.46, p = 

0.145). 

The analysis of adaptation rates for presentations 1-6 revealed that wide spike 

neurons had significantly more negative adaptation rates than did narrow spike neurons (z 

= 4.45, p < 0.001, Fig. 31C). No difference between the two exposure conditions was 

found (z = 2.13, p = 0.033). The analysis of the interaction between neuron type and 

exposure indicated that the adaptation rates of wide spike neurons were significantly 

more negative than those of narrow spike neurons in the pre-exposed (z = 4.23, p < 

0.001, Fig. 31C), but not in the control condition (z = 2.42, p = 0.016). There was no 

significant difference between the two exposure conditions either for narrow (z = 1.05, p 

= 0.294) or for wide spike neurons (z = 2.55, p = 0.011). The adaptation rates of wide 

spike neurons were significantly less than 0 (z = 5.08, p < 0.001, Fig. 31C), whereas 

those of narrow spike neurons were not different from 0 (z = 1.79, p = 0.074). 

The difference between the adaptation rates of the two neuron types for 

presentations 6-25 was highly significant indicating more negative adaptation rates for 

wide than for narrow spike neurons (z = 3.62, p < 0.001, Fig. 31D). The adaptation rates 

for presentations 6-25 did not differ between the two sequences (z = 0.06, p = 0.951). The 
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analysis of the interaction between neuron type and exposure showed that wide spike 

neurons had significantly more negative adaptation rates than did narrow spike neurons in 

the pre-exposed (z = 2.93, p = 0.004, Fig. 31D), but not in the control condition (z = 2.20, 

p = 0.028). The adaptation rates in the two exposure conditions did not differ from each 

other either for narrow (z = 0.20, p = 0.839) or for wide spike neurons (z = 0.22, p = 

0.827). Finally, the adaptation rates of wide spike neurons were significantly less than 0 

for presentations 6-25 (z = 4.55, p < 0.001, Fig. 31D), whereas those of narrow spike 

neurons were not different from 0 (z = 1.58, p = 0.113). 

Summary: Taken together, these analyses supported the results found in 

Experiment 1 in that narrow spike neurons fired more strongly both during silent 

conditions and in response to songs than did wide spike neurons. With repeated stimulus 

presentation, wide spike neurons underwent gradual adaptation, but narrow spike neurons 

did not adapt. Surprisingly, there was no difference in adaptation rates between the pre-

exposed and the control condition. This was not in line with the findings in multi-unit 

responses showing faster adaptation in birds that were passively familiarized with the 

same songs compared to birds that heard those songs for the first time.  

Single-unit Between-stimulus Neural Dissimilarities 

The dissimilarities between the temporal profiles of neural responses to different 

songs in single-unit responses were analyzed similar to the multi-units. Between-stimulus 

neural dissimilarities were not significantly different between the two neuron types (z = 

1.67, p = 0.095) or the two exposure conditions (z = 0.68, p = 0.497). There was also no 

interaction as indicated by lack of significant differences in pairwise comparisons of 

neuron type and exposure conditions (all p > 0.084). 
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 The analysis of the slopes of between-stimulus neural dissimilarities for 

presentations 1-6 did not show a neuron type (z = 1.48, p = 0.138), an exposure (z = 0.56, 

p = 0.578), or an interaction effect (all p > 0.113). Similarly, the slopes of between-

stimulus neural dissimilarities for presentations 6-25 were not significantly different 

between the two neuron types (z = 0.39, p = 0.695) or the two exposure conditions (z = 

1.74, p = 0.083). There was also no interaction between neuron type and exposure (all p > 

0.013). The slopes of between-stimulus neural dissimilarities were not significantly 

different from 0 for either presentations 1-6 or 6-25 (both p > 0.086). 

 Summary: Unlike for multi-unit responses, the dissimilarities between the 

temporal profiles of neural responses to different songs in single-unit responses did not 

change with stimulus repetition and were not different between the two neuron types or 

the two exposure conditions. 

Single-unit Within-stimulus Neural Dissimilarities 

The dissimilarities between the temporal profiles of neural responses to different 

presentations of the same songs in single-unit responses were analyzed similarly. Within-

stimulus neural dissimilarities did not significantly differ between the two neuron types (z 

= 2.47, p = 0.013) or the two exposure conditions (z = 1.06, p = 0.288). However, there 

was an indication of an interaction between neuron type and exposure such that, in the 

pre-exposed condition, wide spike neurons had significantly greater within-stimulus 

neural dissimilarities compared to narrow spike neurons (z = 2.90, p = 0.004, Fig. 32A), 

whereas, in the control condition, there was no difference between the two neuron types 

(z = 0.65, p = 0.518). There was no significant difference between the two exposure 
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conditions either for narrow (z = 1.86, p = 0.063) or for wide spike neurons (z = 0.55, p = 

0.581). 

The slopes of within-stimulus neural dissimilarities for presentations 1-6 were 

also not different between the two neuron types (z = 0.21, p = 0.832) or the two exposure 

conditions (z = 1.20, p = 0.231). There was also no indication of an interaction between 

neuron type and exposure (all p > 0.224). The analysis of the slopes of within-stimulus 

neural dissimilarities for presentations 6-25 also did not reveal a neuron type (z = 1.49, p 

= 0.137), an exposure (z = 0.07, p = 0.942), or an interaction effect (all p > 0.184). The 

slopes of within-stimulus neural dissimilarities were significantly less than 0 for 

presentations 1-6 (z = 5.50, p < 0.001, Fig. 32B), but not for presentations 6-25 (z = 1.33, 

p = 0.182). 

Summary: These findings were mostly in line with the patterns observed in 

between-stimulus neural dissimilarities, showing no robust differences between the 

temporal profiles of neural responses to different presentations of the same songs 

between the two neuron types or the two exposure conditions in single-unit responses. 

Neural responses to the same songs became more similar to each other during the first 6 

presentations, but did not change thereafter. 

Single-unit Correct Decoding Probabilities 

Next, the correct neural decoding probabilities across stimulus presentations in 

single-unit responses to songs were analyzed as in multi-unit responses There was a 

marked difference between the neural decoding accuracies of the two neuron types such 

that narrow spike neurons had significantly higher probabilities than did wide spike 

neurons (z = 5.18, p < 0.001, Fig. 33A). However, correct decoding probabilities were 
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not significantly different between the two exposure conditions (z = 0.89, p = 0.375). 

There was no interaction between neuron type and exposure as indicated by similarly 

higher probabilities for narrow than for wide spike neurons in both the pre-exposed (z = 

4.29, p < 0.001) and the control condition (z = 3.03, p = 0.002, Fig. 33A). Correct 

decoding probabilities were not significantly different between the two exposure 

conditions either for narrow or for wide spike neurons (both p > 0.097). 

The analysis of the slopes of correct decoding probabilities for presentations 1-6 

did not show any difference between the two neuron types (z = 0.74, p = 0.459) or the 

two exposure conditions (z = 0.71, p = 0.475). There was also no interaction as indicated 

by lack of significant differences in pairwise comparisons of neuron type and exposure 

conditions (all p > 0.118). Similarly, the slopes of probabilities for presentations 6-25 

were also not different between the two neuron types (z = 0.39, p = 0.697) or the two 

exposure conditions (z = 1.33, p = 0.184). There was also no interaction (all p > 0.323). 

The slopes of correct decoding probabilities were significantly greater than 0 for 

presentations 1-6 (z = 3.31, p < 0.001, Fig. 33B), whereas, for presentations 6-25, they 

were not significantly different from 0 (z = 0.50, p = 0.615). 

Summary: These analyses revealed that, similar to the findings in Experiment 1, 

neural decoding of songs was more accurate using the temporal profiles of responses of 

narrow as compared to wide spike neurons. Furthermore, in the two neuron types 

together, neural decoding accuracy increased during the first 6 stimulus presentations, but 

did not change during the following repetitions. However, unlike in multi-unit responses, 

neural decoding accuracies were not different in single-units when the same songs were 

passively familiarized 20 hours earlier or when they were completely novel. Thus, in 
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parallel to the lack of evidence of neural memory in single-units for familiar songs, there 

was no evidence of long-lasting improvements in neural decoding performance for 

previously familiarized songs in these single-units. 

Single-unit Correct Decoding Latencies 

 Correct neural decoding latencies were also analyzed in single-unit responses to 

songs as in multi-unit responses. Latencies were significantly longer for wide than for 

narrow spike neurons (z = 3.19, p = 0.001, Fig. 33C). However, there was no difference 

between the two exposure conditions (z = 0.91, p = 0.364). The detailed pairwise 

comparisons indicated an interaction between neuron type and exposure such that the 

correct decoding latencies were significantly longer for wide than for narrow spike 

neurons in the pre-exposed (z = 2.80, p = 0.005, Fig. 33C), but not in the control 

exposure condition (z = 1.71, p = 0.087). Latencies were not different between the two 

exposure conditions either for narrow or wide spike neurons (both p > 0.121).  

 The analysis of the slopes of correct decoding latencies for presentations 1-6 did 

not show a neuron type (z = 1.48, p = 0.138), an exposure (z = 0.05, p = 0.960), or an 

interaction effect (all p > 0.031). Similarly, the slopes of latencies for presentations 6-25 

were also not significantly different between the two neuron types (z = 1.37, p = 0.170) 

or the two exposure conditions (z = 1.86, p = 0.063). There was also no indication of an 

interaction between neuron type and exposure (all p > 0.069). The slopes of correct 

decoding latencies were not significantly different from 0 for either presentations 1-6 or 

6-25 (both p > 0.482). 

 Summary: The latencies along the stimulus duration to reach a given confidence 

level for neural decoding of songs did not change with change with stimulus repetition 
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and were not different between the two exposure conditions. The only difference in 

latencies was that correct neural decoding was attained sooner for narrow than for wide 

spike neurons only in the pre-exposed condition. 

Single-unit Mutual Information 

 Finally, the mutual information between songs and neural response profiles were 

analyzed in single-unit responses to songs. Overall, the responses of narrow spike 

neurons were markedly more informative about songs compared to the responses of wide 

spike neurons (z = 5.17, p < 0.001, Fig. 34). However, there was no significant difference 

between mutual information in the pre-exposed and the control exposure condition (z = 

0.99, p = 0.323). The more detailed analysis of pairwise differences also revealed similar 

results. Narrow spike neurons had significantly higher mutual information in both the 

pre-exposed (z = 4.39, p < 0.001) and the control condition (z = 2.87, p = 0.004, Fig. 34). 

There was no significant difference between the mutual information estimations in the 

two exposure conditions either for narrow (z = 1.66, p = 0.097) or for wide spike neurons 

(z = 0.72, p = 0.473). 

 Summary: Once again, these analyses were in line with findings in Experiment 1 

in that the temporal profiles of narrow spike neuron responses were more informative 

about songs than those of wide spike neurons. However, unlike in multi-unit responses, 

mutual information in single-unit responses did not differ whether the same songs were 

completely novel or familiarized 20 hours earlier. 

Discussion 

The results of this experiment clearly demonstrate that passive familiarization 

with novel natural vocalizations leads to long-lasting changes in the temporal profiles of 
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multi-unit neural responses in the zebra finch NCM that serve improved stimulus 

discrimination and recognition at later time-points. Both the correct decoding 

probabilities and mutual information were greater in the group that was pre-exposed with 

the test stimuli 20 hours earlier as compared to the group that were completely naïve to 

those stimuli. Furthermore, a given level of neural decoding accuracy was reached sooner 

along the stimulus duration in the pre-exposed than in the control condition. The analysis 

of neural dissimilarities for further investigation of the dynamics that brought about the 

improvements in neural decoding with pre-exposure revealed that, although the between-

stimulus neural dissimilarities were slightly greater in the control condition, the within-

stimulus neural dissimilarities were dramatically reduced in the pre-exposed compared to 

in the control exposure condition. This suggests that previous passive familiarization 

increased neural decoding accuracy and mutual information mainly by increasing the 

consistency of the temporal profiles of neural responses to repetitions of any given 

stimulus. Multi-unit responses also showed a neural memory for the test songs as shown 

by an initial more rapid reduction in firing rates during the first 6 presentations followed 

by a relatively flatter adaptation profile during the subsequent stimulus repetitions in the 

pre-exposed than in the control condition. These differences in in the adaptation profiles 

of familiar and novel sounds, especially after the first 6 presentations, are typical markers 

of neural memory as also shown in previous studies (Chew et al., 1995; Phan et al., 

2006). 

 Contrary to findings in multi-unit responses, single-unit responses did not show 

these effects. To begin with, there was no difference between the adaptation rates of 

single-units in the pre-exposed and the control conditions, suggesting no indication of 
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neural memory for previously heard stimuli. All of the studies that investigated long-term 

neural memory in NCM in the past based their analyses exclusively on multi-unit, but not 

on single-unit responses. Thus, it is not clear whether the lack of neural memory effects 

in single-unit responses found in the present experiment is due to methodological 

shortcomings or represents an actual difference between the multi-unit and single-unit 

responses. The former possibility appears more likely because these findings were based 

on a limited number of single-units (n = 52 for pre-exposed; n = 63 for control). The 

yield of single-units was substantially lower in this experiment than in Experiment 1, for 

reasons that are not understood. None of the neural decoding metrics in single-unit 

responses differed between the pre-exposed and control conditions. However, this 

matches the lack of neural memory effects between the two exposure conditions. Taken 

together, more data is necessary to derive conclusive results regarding neural memory 

and long-term effects of passive exposure on neural discrimination in single-unit 

responses. 

 The rapid effects of passive exposure on neural discrimination metrics observed 

in Experiment 1 were largely replicated in the multi-unit response profiles of the control 

condition, for which the test songs were completely novel in the beginning of neural 

recordings. Decoding of songs using the temporal profiles of neural responses improved 

in accuracy during the first 6 stimulus presentations. These improvements were smaller in 

the pre-exposed condition because of already high levels of neural decoding accuracy in 

the beginning of stimulus presentations due to the long-term effect of prior 

familiarization. However, unlike the findings in Experiment 1, neural decoding accuracy 

in both exposure conditions did not increase after the first 6 stimulus presentations. 



92 
 

 

Between-stimulus neural dissimilarities in multi-unit responses generally increased with 

stimulus repetition, while within-stimulus neural dissimilarities decreased only during the 

first 6 presentations and did not change thereafter. These findings suggest that the 

enhancement in neural decoding accuracy during the first 6 presentations in multi-unit 

responses can be explained by the simultaneous convergence of the temporal profiles of 

responses to the same songs and differentiation of neural response profiles to different 

songs with repeated exposure. In addition to these effects, the latencies along the stimulus 

duration to reach a given level of confidence for neural decoding accuracy also decreased 

with stimulus presentation in multi-unit responses. 

 Similar to what was observed in Experiment 1, wide spike neurons had lower 

baseline firing rates and stimulus-driven response magnitudes, but underwent stronger 

adaptation as compared to narrow spike neurons. Moreover, the accuracy of neural 

decoding and mutual information were higher for narrow than for wide spike neurons. 

None of the other neural discrimination metrics or their trends as a function of repeated 

stimulus presentation was consistently different between the two neuron types. However, 

the accuracy of decoding of songs using the temporal profiles of the responses of the two 

neuron types increased during the first 6 stimulus presentations. This, similar to the 

findings in Experiment 1, indicates that the narrow and wide spike neurons in NCM 

contribute similarly to the improvements in neural decoding accuracy with passive 

exposure. 

 In summary, the findings in multi-unit responses clearly showed that rapid 

improvements in neural discrimination with passive familiarization were long-lasting and 

could affect the processing of the same signals 20 hours after the initial encounter. Thus, 
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Experiments 1 and 2 established that repeated stimulus presentation leads to more 

accurate neural decoding of complex natural vocalizations that could be useful in ongoing 

sensory processing. One crucial detail that was left unexamined in these experiments was 

the relationship between the acoustic similarity of the stimuli and the degree of neural 

differentiation with repeated stimulus exposure. Thus, this factor was investigated in the 

next experiment using synthesized vocalizations that parametrically varied along a single 

dimension. 
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EXPERIMENT 3: THE RELATIONSHIP BETWEEN ACOUSTIC  

SIMILARITY AND NEURAL DISCRIMINATION OF VOCAL SIGNALS 

 

The purpose of this experiment was to examine the relationship between acoustic 

similarity and the direction and degree of change in neural discrimination with passive 

familiarization. Although natural songs and calls used in Experiments 1 and 2 allow us to 

investigate the full complexity of neural responses to ecologically-relevant, complex 

sounds, they make it impossible to control the acoustic similarities between different 

stimuli. Synthesized zebra finch calls, generated using natural stimulus parameters, have 

been used widely and produce similar behavioral responses to their natural counterparts 

(Vicario, Naqvi, & Raksin, 2001; Vignal, Andru, & Mathevon, 2005). In addition, zebra 

finches are sensitive in their behavioral responses to variations along different stimulus 

parameters, which validates the use of synthesized vocalizations – whose dissimilarity 

can be accurately quantified - in assessing the effects of acoustic similarity on neural 

discrimination. Experiment 1 demonstrated that passive exposure improves neural 

discrimination and decoding of natural calls. Thus, the hypothesis in this experiment was 
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that passive familiarization improves neural discrimination of synthesized calls and this 

improvement is greater for stimuli that are highly dissimilar from each other. 

 To test this hypothesis, a varied set of male long calls was first analyzed to extract 

the natural distribution of time, frequency, and amplitude parameters that could then be 

used to synthesize calls using mathematical functions. From these analyses, the duration 

of the initial frequency modulation (FM) was selected to create a set of synthesized calls 

that varied only in this parameter (Fig. 35). Electrophysiological responses to these 

stimuli were recorded in NCM under passive listening conditions. All birds received a 

shuffled stimulus presentation sequence. Neural discrimination metrics were calculated 

and analyzed as in Experiment 1. 

Methods 

Subjects 

All subjects were as in Experiment 1, except that this experiment used 8 naïve 

adult male zebra finches. 

Stimuli 

From a large corpus of male long calls, sixteen calls (each from a different bird) 

consisting of an initial downward frequency modulation (FM) followed by a relatively 

unmodulated section were selected (Fig. 35A). The fundamental frequency contour of 

each of these calls was detected from the spectrogram and was broken down into the 

downward FM and unmodulated sections. Some calls also had a brief upward modulation 

between these two sections. The initial and end frequencies, as well as the duration of 

each of these sections were extracted. To determine an ethologically-relevant dimension 

for synthesis of calls using mathematical functions, the relationships between the derived 
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parameters were examined. These analyses revealed that, the rate of the initial FM was 

not fixed, that is, the duration of the FM was not correlated with the amount of decrease 

in frequencies (r(14) = 0.19, p = 0.490). Thus, the start and the end frequencies were 

fixed and the duration of the initial FM was varied independently as the critical 

dimension. The durations of the FM ranged between 18 and 59 ms in natural calls. To 

keep the number of stimuli the same across experiments, 8 durations separated by 6-ms 

intervals were used to synthesize 8 different calls. Thus, the FM durations of the 8 

synthesized calls were 18, 24, 30, 36, 42, 48, 54, and 60 ms (Fig. 35B). The same average 

start and end frequencies of 1500 and 600 Hz, respectively, were used for synthesis of all 

calls. For the downward FM section, the start and end frequencies and a given duration 

were fitted by an exponential function. For the relatively stable, unmodulated section, the 

frequency contours of these sections in natural calls were each fitted by a power function 

and the fit that produced the parameters closest to the average values across calls was 

used for synthesis of all calls. To keep the entire duration of all stimuli equal to the 

average natural call duration of 150 ms, the stable section was trimmed from its 

beginning according to the duration of the specific initial FM used to synthesize that call. 

The two sections were connected with a 10-ms linear interpolation of an upward FM. 

These steps produced a fundamental frequency contour, from which 25 harmonics were 

generated. For harmonic emphasis, the power spectrum of the stable sections of all 

natural calls were calculated. Harmonic peak amplitudes were detected, linearly 

interpolated, and averaged across all natural calls. The resulting average power spectrum 

was used to calculate the frequency-dependent amplitude function for each harmonic 

separately. Finally, the amplitude envelopes of all natural calls were extracted, smoothed, 
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and averaged to generate an average amplitude envelope. All frequency contours and 

amplitude functions were brought together to generate the complex sound and the 

average of the amplitude envelopes of all natural calls was applied to produce the final 

synthesized call. This general approach to synthesizing calls was similar to that described 

in Vicario, Naqvi, and Raksin (2001). 

Surgery 

All surgical procedures were as in Experiment 1. 

Electrophysiology 

All electrophysiological procedures were as in Experiment 1. 

Stimulus presentation 

All stimulus presentation parameters were as in Experiment 1 (25 stimulus 

repetitions, 6 s ISI), except only shuffled stimulus presentation sequences were used. 

Histology 

All histological procedures were as in Experiment 1. 

Data analysis 

All data analysis procedures were as in Experiment 1, except both neural 

dissimilarities and neural classifications were analyzed in more detail with respect to 

pairwise acoustic similarities among different signals. 

Neural dissimilarity. Neural dissimilarities were calculated as in Experiment 1. 

Then, for each multi-unit or single-unit, a neural dissimilarity matrix was constructed to 

analyze the neural dissimilarities for all possible synthesized call pairs. To assess how 

acoustic similarity was related to neural dissimilarity, the trends of the diagonals of this 

matrix across FM durations were quantified using linear regression and normalization 
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methods as described for adaptation rates in Experiment 1. To analyze the relationship 

between acoustic similarity and the changes in neural dissimilarities with repeated 

stimulus presentation, two more such matrices were constructed and analyzed as 

described. However, instead of the average neural dissimilarities across stimulus 

repetitions, one of these matrices contained the slopes of neural dissimilarities for 

presentations 1-6 and the other contained the slopes of neural dissimilarities for 

presentations 6-25. 

Correct classification ratio. Neural classifications resulting from the decoding 

algorithm were used to construct confusion matrices, which show the frequencies for all 

true and neurally classified stimulus identity pairs. For each unit, these frequencies were 

used to calculate the ratio of correct classifications between a given stimulus pair as 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑓𝑞(𝑠𝐴, 𝑟𝐴) + 𝑓𝑞(𝑠𝐵, 𝑟𝐵)

𝑓𝑞(𝑠𝐴, 𝑟𝐴) + 𝑓𝑞(𝑠𝐴, 𝑟𝐵) + 𝑓𝑞(𝑠𝐵, 𝑟𝐴) + 𝑓𝑞(𝑠𝐵, 𝑟𝐵)
 

where fq is the frequency, s and r are the true and the neurally classified stimulus 

identities, respectively, and A and B are the particular stimuli used for the calculation. 

These ratios were calculated separately for all stimulus pairs that differed by 6 ms and 12 

ms in their FM durations. If two stimuli are completely confused, then this calculation is 

at 0.5 chance level. However, if this ratio is significantly greater than 0.5, then the two 

stimuli are correctly classified and not confused. 

Results 

Multi-unit Responses 

A total of 174 multi-unit sites were histologically verified to be in NCM and were 

included in statistical analyses. Due to the lack of systematic lateral differences, the two 

hemispheres were combined for all subsequent analyses. 
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Multi-unit Adaptation Rates 

 To test whether there was a difference in the rates of adaptation among the 

synthesized calls, a repeated-measures ANOVA with stimulus (1 through 8) and 

presentation (1-6, 6-25) as within-subjects variables was conducted on adaptation rates. 

As expected, adaptation rates were significantly more negative for presentations 1-6 than 

for presentations 6-25 (F(1,173) = 74.68, p < 0.001). There were also significant 

differences among stimuli (F(7,1211) = 7.61, p < 0.001, Fig. 36). Post-hoc comparisons 

indicated that the adaptation rates of the synthesized calls with the shortest two FMs (18 

and 24 ms) were significantly higher (less negative) than the adaptation rates of all the 

other synthesized calls, except for the one with the 30 ms FM duration, the adaptation 

rate of which was not different from any of the other synthesized calls. There was also a 

significant interaction between stimulus and presentation (F(7,1211) = 8.92, p < 0.001, 

Fig. 36). Post-hoc analyses revealed that the difference between the adaptation rates 

among the synthesized calls described above was only true for presentations 1-6, whereas 

no difference in adaptation rates was observed for presentations 6-25. 

 Summary: This analysis showed that, although multi-unit responses to all 

synthesized calls underwent adaptation, the rates of these changes were stronger for the 

calls with longer FMs. 

Multi-unit Neural Dissimilarities 

 Average neural dissimilarities between pairs of synthesized calls are shown in 

Figure 37A. Each entry in the main diagonal of this matrix shows the average neural 

dissimilarity across different repetitions of a particular synthesized call. That is, the main 

diagonal shows within-stimulus neural dissimilarities. The entries directly above the main 
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diagonal, which is hereafter referred to as diagonal 1, indicate the average neural 

dissimilarities between synthesized call pairs that are separated by 6 ms in their FM 

durations. Similarly, higher-order diagonals, from diagonals 2 through 6, contain the 

average neural dissimilarities between synthesized call pairs that are acoustically more 

and more dissimilar from each other. Thus, off-main-diagonal entries indicate between-

stimulus neural dissimilarities between pairs of synthesized calls with different degrees of 

acoustic similarity. The entries in the anti-diagonal of this matrix contains the average 

neural dissimilarities for all synthesized call pairs that share the same acoustic similarity 

levels. The slopes of all of these diagonals as functions of FM durations were analyzed to 

examine the relationships between acoustic parameters and the dissimilarities between 

the temporal profiles of neural responses.  Across multi-units, the slopes of the main 

diagonals of these matrices were significantly lower than 0 (t(173) = 8.45, p < 0.001, Fig. 

37B), suggesting that within-stimulus neural dissimilarities decreased as the FM of 

synthesized calls increased. Furthermore, the slopes of all the other higher-order 

diagonals, from diagonals 1 through 6, were also significantly lower than zero (all p < 

0.002, Fig. 37B). This means that there was an overall asymmetry in between-stimulus 

neural dissimilarities such that, for any given acoustic similarity level, neural 

dissimilarities tended to be greater for synthesized calls with shorter FMs. The slopes of 

the anti-diagonals of these matrices were significantly greater than 0 (t(173) = 12.13, p < 

0.001, Fig. 37C), indicating that neural dissimilarities increased as the acoustic 

dissimilarity increased. 

Next, the relationship of the changes in neural dissimilarities during presentations 

1-6 to the FMs of synthesized calls was analyzed. The average of the slopes of neural 
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dissimilarities for presentations 1-6 between each pair of synthesized calls are shown in 

Figure 37D. Across multi-units, none of the slopes of diagonals 1 through 6 of these 

matrices were significantly different from 0 (all p > 0.288), indicating that, for any given 

acoustic similarity level, the changes in neural dissimilarities during presentations 1-6 

were not related to the FM duration of synthesized calls. Moreover, the slopes of the anti-

diagonals of these matrices also did not significantly differ from 0 (t(173) = 1.11, p = 

0.269), which shows that the rates of changes in neural dissimilarities during 

presentations 1-6 were not related to the acoustic similarities between the synthesized 

calls. Surprisingly, for presentations 1-6, the slopes of neural dissimilarities for all 

acoustic similarity levels along the anti-diagonal were significantly less than 0 (all p < 

0.030), except for the acoustically most dissimilar stimulus pair (p = 0.403), indicating 

that the between-stimulus neural dissimilarities generally decreased during presentations 

1-6. 

Similar to the above analysis, the relationship of the changes in neural 

dissimilarities to the FMs of synthesized calls were analyzed for presentations 6-25 (Fig. 

37E). These analyses also revealed that, across multi-units, none of the slopes of 

diagonals 1 through 6 of these matrices significantly differed from 0 (all p > 0.052), 

indicating that the changes in neural dissimilarities during presentations 6-25 were not 

related to the FM duration of the synthesized calls for any given acoustic similarity level. 

The slopes of the anti-diagonals of these matrices also did not significantly differ from 0 

(t(173) = 0.17, p = 0.869), suggesting that the magnitude of changes in neural 

dissimilarities were not related to the acoustic similarities between the synthesized calls 

during presentations 6-25. Unlike for presentations 1-6, the slopes of neural 
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dissimilarities for all acoustic similarity levels along the anti-diagonal were significantly 

greater than 0 (all p < 0.034), indicating that the between-stimulus neural dissimilarities 

generally increased during presentations 6-25. 

Summary: Taken together, these analyses revealed interesting results. The 

temporal profiles of neural responses were more dissimilar from each other for 

synthesized call pairs with shorter FM durations. In addition, as expected, neural 

responses were more dissimilar for synthesized call pairs that were acoustically more 

dissimilar from each other. Surprisingly, the temporal profiles of neural responses to 

different synthesized calls became less dissimilar from each other during the first 6 

stimulus presentations, but then reversed and started to become more dissimilar from 

each other with further stimulus repetition. In contrast to predictions, the rates of these 

changes did not differ as a function of the acoustic similarities between synthesized call 

pairs. 

Multi-unit Correct Decoding Probabilities 

The correct neural decoding probabilities across time points along the stimulus 

duration and stimulus presentations for synthesized calls are shown in Figure 38A. A 

repeated-measures ANOVA on correct neural decoding probabilities using presentation 

(1 through 25) as a within-subjects variable revealed a significant effect of presentation 

(F(24,4152) = 2.10, p = 0.001, Fig. 38B). However, post-hoc comparisons did not reveal 

any significant difference except that probabilities in the first presentation was greater 

than those for presentations 11, 21, 22, 24, and 25. To examine these differences further 

in detail, the slopes of correct decoding probabilities for presentations 1-6 and 6-25 were 

compared. The slopes of probabilities were significantly greater for presentations 1-6 
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than for presentations 6-25 (t(173) = 3.33, p = 0.001, Fig. 38C). Furthermore, the slopes 

of between-stimulus neural dissimilarities were significantly greater than 0 for 

presentations 1-6 (t(173) = 3.65, p < 0.001), whereas, for presentations 6-25, they did not 

significantly differ from 0 (t(173) = 1.32, p = 0.187). 

Summary: These analyses provided further support for the results found for 

natural songs and calls in Experiments 1 and 2 and showed that decoding of synthesized 

calls using the temporal profiles of multi-unit responses increased during the first 6 

stimulus presentations, but did not change with subsequent exposure. 

Multi-unit Correct Decoding Latencies 

Correct neural decoding latencies in synthesized call responses were also 

analyzed via a repeated-measures ANOVA using presentation (1 through 25) as a within-

subjects variable. This analysis did not show a significant effect of presentation 

(F(24,4152) = 1.44, p = 0.077, Fig. 38D). The comparison of the slopes of correct 

decoding latencies for presentations 1-6 and 6-25 also did not reveal a significant 

difference (t(173) = 0.43, p = 0.665, Fig. 38E). Moreover, the slopes of latencies were 

not significantly different from 0 for either presentations 1-6 or 6-25 (both p > 0.617).  

Summary: These analyses revealed that, similar to the findings for natural call 

responses in Experiment 1, latencies along the stimulus duration to reach a correct neural 

decoding probability did not change with repeated stimulus presentation. 

Multi-unit Correct Classification Ratios 

 Classifications resulting from the neural decoding process were used to construct 

a confusion matrix (Fig. 39A), from which correct neural classification ratios were 

calculated for pairs of synthesized calls with different acoustic dissimilarities. The ratios 
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of correct classifications between pairs of stimuli that were separated by only 6 ms in 

their FM durations were not significantly greater than 0.5 in any of the stimulus pairs 

analyzed (all p > 0.052, Fig. 39B). When the same analysis was conducted on pairs of 

stimuli that are separated by 12 ms in their FM durations, the correct classification ratios 

were all clearly greater than 0.5 for all tested stimulus pairs (all p < 0.008, Fig. 39C). 

 Summary: These analyses indicated that the temporal profiles of multi-unit 

responses were not able to discriminate synthesized calls that only differed by 6 ms in 

their FM durations. However, they successfully discriminated synthesized call pairs with 

12 ms FM duration differences. 

Multi-unit Mutual Information 

 Finally, the changes in mutual information between synthesized calls and the 

temporal response profiles were analyzed as a function of time along the stimulus 

duration. A repeated-measures ANOVA on mutual information using bin (1 through 26) 

as a within-subjects variable revealed a significant effect (F(25,4325) = 62.24, p < 0.001, 

Fig. 40). Post-hoc comparisons indicated that there was a significant increase in mutual 

information until the 8th bin (80 ms), after which no significant change was observed. 

However, even the peak mutual information levels of ~0.13 bits for the 8 synthesized 

calls were drastically low as compared to the high mutual information documented for 

natural songs (~2.5 bits) and calls (~0.6 bits). 

 Summary: These findings indicate that the informativeness of the temporal 

profiles of multi-unit responses about synthesized calls improved until 80 ms after 

stimulus onset. However, the overall informativeness of these responses was lower than 

those observed for natural songs and calls, presumably because the high degree of 
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acoustic similarity among synthesized calls made them very difficult for neurons to 

classify accurately. 

Single-unit Responses 

The spike waveform clustering algorithm revealed a total of 90 neurons (43 

narrow and 47 wide spike) for synthesized call playbacks. A chi-square analysis indicated 

that there was no significant difference between the frequencies of the two neuron types 

(X2 = 0.18, p = 0.673). 

Single-unit Response Properties 

 The firing rates of narrow spike neurons during baseline conditions were 

significantly greater than those of wide spike neurons (z = 2.99, p = 0.003, Fig. 41A). 

Similarly, narrow spike neurons also had significantly greater stimulus-driven response 

magnitudes than did wide spike neurons (z = 2.61, p = 0.009, Fig. 41B). The adaptation 

rates of the two neuron types for presentations 1-6 did not differ from each other (z = 

1.11, p = 0.266) and were together not significantly different from 0 (z = 1.05, p = 0.295). 

However, for presentations 6-25, wide spike neurons had significantly more negative 

adaptation rates as compared to narrow spike neurons (z = 1.99, p = 0.047, Fig. 41C). 

The adaptation rates of wide spike neurons for presentations 6-25 were significantly less 

than 0 (z = 2.98, p = 0.003, Fig. 41C), whereas those of narrow spike neurons were not 

significantly different from 0 (z = 0.01, p = 0.992). 

 Summary: These analyses supported the differences between the two neuron types 

found in Experiments 1 and 2 and showed stronger firing for narrow spike neurons and 

stronger adaptation for wide spike neurons. Similar to the findings in Experiment 2, 

narrow spike neurons did not undergo adaptation at all with repeated stimulus exposure. 
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Single-unit Neural Dissimilarities 

 The relationship between acoustic parameters and the dissimilarities between the 

temporal profiles of single-unit responses were analyzed as for multi-unit responses. 

Average neural dissimilarities for pairs of synthesized calls are shown in Figure 42A. 

Similar to the neural dissimilarity matrix described for multi-units, the main-diagonal of 

this matrix shows within-stimulus neural dissimilarities, whereas off-main-diagonal 

entries indicate between-stimulus neural dissimilarities between pairs of synthesized calls 

with different degrees of acoustic similarity. Across single-units, the slopes of the main 

diagonals of these matrices did not significantly differ between the two neuron types (z = 

0.54, p = 0.586). These slopes in the two neuron types together were also not 

significantly different from 0 (z = 1.05, p = 0.293), suggesting that single-unit within-

stimulus neural dissimilarities were not related to the FM durations among synthesized 

calls. No difference was observed between the two neuron types in the slopes of any of 

the other higher-order diagonals (all p > 0.286). Furthermore, none of these slopes were 

significantly different from 0 (all p > 0.188), indicating that, for any given acoustic 

similarity level, neural dissimilarities were not related to the FM duration of the 

synthesized calls. Across single-units, there was also no significant difference between 

the two neuron types in the slopes of the anti-diagonals of these matrices (z = 1.42, p = 

0.155). However, these slopes in two neuron types together were significantly greater 

than 0 (z = 7.65, p < 0.001, Fig. 42B), showing that neural dissimilarities increased as the 

acoustic dissimilarity between synthesized calls increased. 

 Next, the relationship of the changes in neural dissimilarities during presentations 

1-6 to the FM durations of synthesized calls were analyzed in single-unit responses. The 
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average of the slopes of neural dissimilarities for presentations 1-6 between each pair of 

synthesized calls are shown in Figure 42C. Across single-units, none of the slopes of 

diagonals 1 through 6 of these matrices differed between the two neuron types (all p > 

0.069) or differed from 0 (p > 0.123), which suggest that there was no relationship 

between the FM durations of synthesized calls and the rates of changes in neural 

dissimilarities during presentations 1-6. However, the slopes of the anti-diagonals of 

these matrices were significantly greater for wide than for narrow spike neurons (z = 

2.07, p = 0.039, Fig. 42D). These slopes were significantly greater than 0 for wide spike 

neurons (z = 3.69, p < 0.001, Fig. 42D), whereas no such difference was found for 

narrow spike neurons (z = 0.84, p = 0.400). This suggests that, for wide spike neurons, 

neural dissimilarities increased during presentations 1-6 more strongly for synthesized 

call pairs with more acoustic dissimilarity. 

Similar to the above analysis, the relationship of the changes in neural 

dissimilarities to the FMs of synthesized calls were also analyzed for presentations 6-25 

(Fig. 42E). Across single-units, none of the slopes of diagonals 1 through 6 of these 

matrices differed between the two neuron types (all p > 0.204) or differed from 0 (all p > 

0.084). There was also no significant difference between the two neuron types in the 

slopes of the anti-diagonals of these matrices (z = 0.59, p = 0.559). However, these slopes 

in two neuron types together were significantly greater than 0 (z = 3.16, p = 0.002, Fig. 

42F) showing that, during presentations 6-25, the increase in neural dissimilarities were 

greater for stimulus pairs that were acoustically more dissimilar from each other. 

Summary: Taken together, these findings indicated that there were no strong 

differences between the neural dissimilarities of the two neuron types, similar to the 
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patterns observed in Experiments 1 and 2. In sharp contrast to the findings in multi-unit 

responses, after the first 6 stimulus presentations, the improvements in the dissimilarities 

between the temporal profiles of neural responses were stronger for acoustically more 

dissimilar synthesized calls in single-unit responses. There was also a similar effect 

during the first 6 presentations, but only for wide spike neurons. 

Single-unit Correct Decoding Probabilities 

 The correct neural decoding probabilities did not differ between the two neuron 

types (z = 0.22, p = 0.825). Similarly, there was no significant difference between the 

slopes of correct decoding probabilities of the two neuron types for either presentations 

1-6 (z = 0.11, p = 0.916) or 6-25 (z = 1.76, p = 0.079). However, the correct decoding 

probability slopes of the two neuron types together were significantly greater than 0 for 

presentations 1-6 (z = 1.97, p = 0.049, Fig. 43). For presentations 6-25, the slopes of 

probabilities did not significantly differ from 0 (z = 1.36, p = 0.174). 

 Summary: Unlike what was observed in Experiments 1 and 2, narrow spike 

neurons did not yield more accurate neural decoding compared to wide spike neurons. 

However, similar to the findings for natural vocalizations in Experiments 1 and 2, 

decoding of synthesized calls using the temporal profiles of single-unit responses 

improved during the first 6 presentations and did not change with further repetition. 

Single-unit Correct Decoding Latencies 

 There was no significant difference between the two neuron types either for 

correct decoding latencies (z = 0.71, p = 0.475) or for the slopes of latencies for 

presentations 1-6 (z = 1.20, p = 0.229) or 6-25 (z = 1.37, p = 0.170). Moreover, the slopes 
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of correct decoding latencies in the two neurons types together were not significantly 

different from 0 for either presentations 1-6 or 6-25 (both p > 0.649). 

Summary: These analyses revealed that, similar to the findings for natural call 

responses in Experiment 1, latencies along the stimulus duration to reach a correct neural 

decoding probability did not change with repeated stimulus presentation. 

Single-unit Correct Classification Ratios 

Similar to multi-units, classifications resulting from the neural decoding process 

were used to construct a confusion matrix for single-unit responses (Fig. 44A). From 

these, correct neural classification ratios were calculated for pairs of synthesized calls 

with different degrees of acoustic dissimilarity. The ratios of correct classifications 

between pairs of stimuli that are separated by only 6 ms in their FM durations did not 

significantly differ between the two neuron types in any of the stimulus pairs (all p > 

0.501), except one. The only significant difference was that wide spike neurons had 

greater correct classification ratios than did narrow spike neurons for the comparison 

between the stimuli with 24 and 30 ms FM durations (z = 2.27, p = 0.023). Similarly, the 

analysis of stimulus pairs that are separated by 12 ms in their FM durations did not reveal 

any significant difference between the two neuron types (all p > 0.070). The correct 

neural classification ratios of the two neuron types together were not significantly 

different from the 0.5 chance level for any of the comparisons between stimulus pairs 

with FMs that are 6 ms apart from each other (all p > 0.107, Fig. 44B). However, when 

the same analysis was conducted on pairs of stimuli that are separated by 12 ms in their 

FM durations, the correct classification ratios were significantly greater than 0.5 for all 
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tested stimulus pairs (all p < 0.049, Fig. 44C), except only the stimulus pair with 42 and 

54 ms FM durations (z = 1.18, p = 0.240). 

Summary: These analyses indicated that, similar to the multi-unit responses, the 

temporal profiles of single-unit responses were not able to discriminate synthesized calls 

that only differed by 6 ms in their FM durations. However, they successfully 

discriminated synthesized call pairs with 12 ms FM duration differences. There were no 

consistent differences between the confusions for the two neuron types. 

Single-unit Mutual Information 

 Finally, mutual information between synthesized calls and the temporal profiles 

of neural responses did not significantly differ between narrow and wide spike neurons (z 

= 1.90, p = 0.058). 

 Summary: Unlike in Experiments 1 and 2, the temporal profiles of neural 

responses of the two neuron types were not found to be differentially informative about 

synthesized calls. 

Discussion 

The results of this experiment revealed some clear effects and some mixed 

patterns regarding the relationship between acoustic similarity and the magnitudes of 

changes in neural discrimination with repeated stimulus exposure. In multi-unit 

responses, the slopes of neural dissimilarities as a function of stimulus repetition were not 

found to be related to the acoustic similarities between different pairs of synthesized 

calls. This suggests that, regardless of how similar a given synthesized call pair was, the 

dissimilarities between the temporal profiles of neural responses to those signals changed 

with passive exposure at similar rates. Nevertheless, single-unit responses showed a 
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completely different pattern. The wide spike neurons during the first 6 stimulus 

presentations and both neuron types during the subsequent repetitions indicated a 

negative relationship between acoustic similarity and the changes in neural dissimilarity. 

That is, neural dissimilarities between acoustically less similar synthesized call pairs 

increased at faster rates with repeated stimulus exposure. The reasons behind these 

conflicting findings between multi-unit and single-unit responses were not clear. 

 Despite these conflicting findings, the average neural dissimilarities across all 

stimulus presentations were positively related with acoustic dissimilarity in both multi-

unit and single-unit responses. This suggests that, irrespective of the changes with 

repeated stimulus presentation, acoustically more dissimilar synthesized call pairs were 

neurally discriminated to a greater degree. In addition, the analysis of confusion matrices 

showed that the temporal profiles of either the multi-unit or the single-unit responses 

could not discriminate synthesized call pairs that differed by only 6 ms in their FM 

durations. Successful neural discriminations in both multi-unit and single-unit responses 

were observed at the next acoustic dissimilarity level, which was a 12 ms FM duration 

difference. The similar findings in multi-unit and single-unit responses suggest that 

considering multiple neurons together, compared to analyzing single neurons in isolation, 

does not improve the sensitivity of stimulus discrimination. These findings can be seen as 

reflecting an innate just noticeable difference threshold for discrimination of FM duration 

differences in NCM neurons. However, this interpretation should be made with caution, 

because the neural decoding algorithm used in this experiment digitized neural responses 

at a 10 ms temporal resolution. Thus, complete confusion of synthesized calls with 6 ms 
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FM duration differences might be due to the specific temporal resolution used to decode 

responses and not necessarily to the temporal precision of neural responses themselves. 

Interestingly, for any given acoustic similarity level, the temporal profiles of 

multi-unit responses were more dissimilar for stimulus pairs with shorter FM durations. 

This might reflect a relatively more superior sensitivity to detect subtle differences 

between calls with faster FMs, which might serve individual recognition and 

discrimination of conspecific males. Furthermore, male zebra finches are shown to be 

extremely sensitive in their call back responses to whether a brief FM is present in the 

beginning of the calls they hear, which signals whether a call is produced by a male or a 

female (Vicario et al., 2001). Thus, the increased sensitivity to discriminate calls with 

faster FMs might be a reflection of this functional ability that enables birds to rapidly 

determine the sex of conspecifics based on calls. 

When all stimuli were analyzed together, the results mostly confirmed the main 

findings in Experiments 1 and 2. In both multi-unit and single-unit responses, the 

accuracy of neural decoding improved with passive exposure during the first 6 

presentations and did not show a consistent trend afterwards. The latencies to reach the 

highest levels of neural decoding accuracy, on the other hand, did not systematically 

change with repeated stimulus presentation. In addition, narrow spike neurons had higher 

baseline firing rates and stimulus-driven response magnitude as compared to wide spike 

neurons. The two neuron types also differed in their adaptation rates during stimulus 

repetitions following the first 6 presentations, such that wide spike neurons underwent 

strong adaptation, whereas narrow spike neurons as a group did not show adaptation. 

Unlike in Experiments 1 and 2, there was no difference between the two neuron types in 
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neural decoding accuracies or mutual information. This lack of difference might be due to 

overall poor neural decoding accuracy and mutual information levels for synthesized 

calls, which were more difficult to discriminate than natural songs and calls. 

 In summary, these findings suggest that the neural discrimination of synthesized 

calls that vary along a single dimension - the initial FM duration - improved with passive 

repeated exposure, as was seen for natural calls and songs. In single neurons, these 

improvements in the dissimilarities between the temporal profiles of neural responses 

were more pronounced for synthesized call pairs that were acoustically less similar from 

each other. Whether these neural changes influence the behavioral discrimination of the 

same signals was examined in the following experiment. 
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EXPERIMENT 4: BEHAVIORAL DISCRIMINATION OF 

PASSIVELY FAMILIARIZED VOCAL SIGNALS 

 

The primary goal of this experiment was to test whether prior passive 

familiarization with two auditory stimuli that are highly similar to each other improves 

the subjects’ ability to discriminate them in a subsequent behavioral task. Experiment 3 

showed that the neural discrimination of synthesized calls improves with passive 

familiarization. Furthermore, in humans, a brief period of exposure to distorted speech 

signals enhances behavioral measures of comprehension in later time points (Liss, 

Spitzer, Caviness, & Adler, 2002; Clarke & Garrett, 2004; Bradlow & Bent, 2008). Thus, 

it was hypothesized that behavioral discrimination of two similar synthesized calls is 

greater when passively pre-exposed to those signals as compared to encountering them 

for the first time. 

 To assess this hypothesis, birds were first trained in a Go/No-Go paradigm to 

discriminate the stimuli at the two ends of the synthesized call continuum (Fig. 35B). 

Then, one group was pre-exposed with two calls that fell between the training stimuli in 

the synthesized call continuum, whereas the other group heard two other stimuli that were 
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acoustically unrelated to synthesized calls. The stimuli with which the pre-exposed group 

was familiarized were used for both groups, together with other stimuli from the same 

synthesized call set, in a subsequent probe test. Behavioral discrimination between 

different pairs of stimuli was quantified using normalized measures. In humans, 

responses to ambiguous signals along a stimulus dimension in similar paradigms are 

marked by a contrast effect, which represents a shift in the perceptual boundary away 

from the most recently heard signals (Diehl, Elman, & McCusker, 1978; for a review, see 

Kleinschmidt & Jaeger, 2016). Thus, responses to ambiguous probe signals were also 

analyzed in detail as a function of the preceding stimulus. 

Methods 

Subjects 

All subjects were as in Experiment 1, except that 10 naïve adult male zebra 

finches were used in this experiment. The birds lived in the general aviary until the 

beginning of the experiment, after which they were housed individually in sound 

isolation boxes with ad libitum food. Access to water was restricted throughout the 

experiment, except on non-training days, in which the birds were given 1.5 ml water. 

Stimuli 

From the parametrically varying synthesized call set described in Experiment 3, 

the stimuli at the two ends of the continuum, the ones with 18 and 60 ms FM durations, 

were used in the initial stage of auditory discrimination training. In the passive auditory 

exposure stage, the stimuli with 30 and 48 ms FM durations from the same set were used 

for the experimental group, whereas two stimuli that were unrelated to the synthesized 

calls were used for the control group. These two control stimuli were synthesized using 
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similar procedures; however, they differed from the parametrically varying synthesized 

call set in two important aspects: they lack any FM and differed from each other only in 

their fundamental frequencies. The fundamental frequencies of 437 and 493 Hz were 

used so that they were within the natural range of fundamental frequencies of zebra finch 

vocalizations and they did not share any harmonics either with each other or with the 

experimental stimuli. The durations of the control stimuli were same as the experimental 

stimuli (150 ms). In the final probe test stage of the experiment, the stimuli with 30, 36, 

42, and 48 ms FM durations from the parametrically varying synthesized call set were 

used for all birds. 

Apparatus 

The behavioral training and the probe test were conducted in soundproof booths. 

On one wall of the training cage, a 25 Gauge needle (the tip blunted) was mounted 2 cm 

from the floor to deliver 5-10 µl water droplet rewards. To detect pecking behavior, an 

infrared system was placed 3 cm above the water delivery unit. On the panel behind the 

infrared system, a yellow LED was placed right between the receiver and the sensor to 

signal the bird availability of trial initialization. Stimuli were played back at an amplitude 

of 65 dB SPL (A scale) and a sampling frequency of 44.100 Hz from a speaker located 7 

cm behind the infrared system. 

Behavioral training 

Birds were placed in individual sound isolation boxes and water-deprived 24 hr 

before the beginning of the behavioral training. The training consisted of three 

consecutive stages. In the first stage, water droplets were delivered at random intervals 

between 30 and 60 s with no auditory stimulus or response requirement in order to 
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acclimate the birds to the training apparatus. All birds successfully learned to obtain the 

water droplets within one day and proceeded to the second stage. In this stage, shaping of 

the pecking behavior was accomplished by delivering the water droplets only after the 

bird pecked to the panel between the sensors to successfully break the infrared beam. 

Initially, pecking was facilitated by taping seeds to the panel between the infrared 

sensors. An intertrial interval (ITI) of 3 s was used to prevent continuous pecking. Birds 

proceeded to the next stage if they completed at least 100 trials in two consecutive days. 

In the third stage, a Go/No-Go paradigm was employed for auditory discrimination 

training. Before the initialization of a trial by the bird, the yellow LED stayed turned on. 

A peck to initialize a trial turned the LED off and led to the presentation of either the Go 

or the No-Go stimulus. Go and No-Go stimuli were always the synthesized calls with 60 

and 18 ms FM durations, respectively. There was a 1-s period from the onset of the 

stimulus presentation, in which the birds could not respond, followed by a 3-s response 

window. A successful peck within the response window to the Go stimulus was rewarded 

with a water droplet, while a peck in response to the No-Go stimulus led to a 30-s lights-

out period. Failure to respond to either stimulus within the response window did not 

deliver any outcome. The ITI was 1 s. The LED stayed off throughout the trial and turned 

on at the end of the ITI to signal the bird that the next trial was ready to be initialized. 

Each training day lasted for 6 h. The success criterion for the discrimination was an 

overall accuracy of correct responses on at least 80% of the trials for two consecutive 

days. 

Passive auditory exposure 
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After successful acquisition of auditory discrimination, the birds were assigned to 

one of two groups. The pre-exposed group was presented with the stimuli with 30 and 48 

ms FM durations from the synthesized call set, whereas the control group was presented 

with the two control stimuli that varied in fundamental frequency. For both groups, the 

passive auditory exposure was administered in home cages the day following the second 

criterion day of behavioral training. Stimuli were played back from a speaker located 5 

cm in front of the cage at an amplitude of 65 dB SPL (A scale) and a sampling frequency 

of 44.100 kHz for 200 times each with a 6 s ISI in a shuffled order. 

Probe test 

Ten minutes after the end of the passive auditory exposure, the birds were placed 

in the training cage for the probe test. The dynamics and the parameters of this test was 

exactly as in the initial auditory discrimination task, except the original Go and No-Go 

stimuli were presented only in 80% of the trials. In the remaining 20% of the trials,  

the stimuli with 30, 36, 42, and 48 ms FM durations from the parametrically varying 

synthesized call set were presented with equal probability. Note that the pre-exposed 

group was passively presented with two of these probe stimuli prior to the test phase, 

while the control group was completely naïve to all of the probe stimuli. The responses to 

the probe stimuli were neither rewarded nor punished. The probe test was conducted in 8-

h sessions for 3 consecutive days. 

Data analysis 

 Percent response. The responses to the Go stimulus were quantified by taking 

the ratio of Go trials with a pecking response to the total number of Go trials as a 
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percentage. Similarly, to quantify the responses to the No-Go stimulus, the percentage of 

No-Go trials with a pecking response in all No-Go trials was calculated. 

 Percent accuracy. To quantify the overall discrimination of the training stimuli, 

the fraction of the sum of the Go trials with pecking responses and the No-Go trials with 

no pecking responses to the total number of trials was calculated as a percentage. 

 Discrimination index. The magnitude of the discrimination between a particular 

probe stimulus pair was quantified via a metric that normalizes the difference between 

the responses to those signals by the response difference between the Go and No-Go 

stimuli as 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 100 ∗
%𝑅𝐴 − %𝑅𝐵

%𝑅𝐺𝑜 − %𝑅𝑁𝑜−𝐺𝑜
 

where %R is percent response and A and B are the particular probe stimuli used for the 

calculation. Stimulus A was always the stimulus that was acoustically more similar to the 

Go stimulus so that the calculation yields positive results. This discrimination index was 

computed for two probe stimulus pairs separately, one between the two stimuli that were 

passively presented to the pre-exposed group before the test sessions (30 and 48 ms FM 

durations) and one between the two probe stimuli that fell between the two pre-exposure 

signals along the FM duration dimension (36 and 42 ms FM durations). 

Results 

Responses in the Auditory Discrimination Training 

 First, the behavioral performances in the initial Go/No-Go auditory discrimination 

task were analyzed. On average across training days, birds completed 244.12 to 680.80 

(Mean ± SEM = 431.91 ± 47.03) trials per training day, which did not significantly differ 

between the pre-exposed and the control exposure condition (t(8) = 0.06, p = 0.956). 
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Latencies to reach the criterion for successful acquisition ranged from 9 to 36 days (Mean 

± SEM = 21.80 ± 2.91, Fig. 45A-B). Despite this considerable individual variability, 

acquisition latencies were also not significantly different between the two exposure 

conditions (t(8) = 0.26, p = 0.801). 

 The auditory discrimination performances in the beginning and at the end of 

training were compared between the two groups by calculating the average percent 

accuracies in the first and the last 2 training days separately. A mixed ANOVA on overall 

percent accuracies using exposure (Pre-exposed, Control) as a between-subjects variable 

and training days (First 2, Last 2) as a within-subject variable did not indicate an effect of 

exposure (F(1,8) = 1.47, p = 0.260) or an interaction between exposure and training days 

(F(1,8) = 0.06, p = 0.819). However, the effect of training days was highly significant 

(F(1,8) = 1666.86, p < 0.001), indicating greater percent accuracies in the last 2 than in 

the first 2 days of training. The percent accuracies in the first 2 training days were not 

significantly different from 50% chance level (t(9) = 0.12, p = 0.905). However, in the 

last 2 days of training, percent accuracies were significantly greater than 80% criterion 

level (t(9) = 8.14, p < 0.001). 

 Next, the responses to Go and No-Go stimuli were analyzed separately to 

examine the nature of auditory discrimination acquisition more in detail. A mixed 

ANOVA on percent responses to Go stimulus using exposure (Pre-exposed, Control) as a 

between-subjects variable and training days (First 2, Last 2) as a within-subjects variable 

did not show an effect of exposure (F(1,8) = 0.15, p = 0.710) or an interaction between 

exposure and training days (F(1,8) = 0.01, p = 0.983). There was a small but significant 

increase in percent responses to Go stimulus from the first 2 to last 2 training days (F(1,8) 
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= 9.90, p = 0.014, Fig. 45C), however the percent responses to Go stimulus in the first 2 

days of training were already at very high levels (Mean ± SEM = 92.46 ± 1.89 %). A 

similar ANOVA was used to examine the responses to No-Go stimulus and also revealed 

no significant effect of exposure (F(1,8) = 0.19, p = 0.678) or an interaction between 

exposure and training days (F(1,8) = 0.01, p = 0.946). However, the effect of training 

days was highly significant (F(1,8) = 736.34, p < 0.001, Fig. 45D). The percent responses 

to No-Go stimulus in the first 2 days of training were at very high levels (Mean ± SEM = 

92.30 ± 1.59 %), but dramatically decreased at the end of the training (Mean ± SEM = 

26.43 ± 1.34 %). 

 Summary: Taken together, these analyses indicated that the birds in the two 

exposure groups had comparable numbers of trials per day, latencies to successfully learn 

the task, and behavioral responses to both the Go and the No-Go stimulus prior to passive 

exposure and probe test. In addition, acquisition of the initial auditory discrimination task 

was mainly driven by learning to inhibit responding to the presentations of the No-Go 

stimulus. 

Responses to Probe Stimuli 

 Having established comparable responses between the two exposure groups in the 

initial discrimination training, responses in the probe tests were analyzed next. The 

percent responses to each stimulus during the three days of probe test for the pre-exposed 

and control birds are shown in Figure 46. There was no significant difference between 

the pre-exposed and the control condition in percent responses to either the Go or the No-

Go stimulus in any of the 3 days of probe tests (all p > 0.122). Thus, the discrimination of 

the initial training stimuli in probe tests were comparable between the two exposure 
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conditions. The discrimination between the probe stimuli with 30 and 48 ms FM 

durations, which were used in passive familiarization for the pre-exposed birds, were 

compared between the two exposure conditions via a mixed ANOVA on discrimination 

indices using exposure (Pre-exposed, Control) as a between-subjects variable and test day 

(1, 2, 3) as a within-subjects variable. This analysis did not reveal an overall difference 

between the two exposure conditions (F(1,8) = 0.65, p = 0.443, Fig. 47A) or an 

interaction between exposure and test day (F(2,16) = 1.06, p = 0.370). There was also no 

main effect of test day (F(2,16) = 1.49, p = 0.254). The discrimination between the probe 

stimuli with 36 and 42 ms FM durations was also assessed via a similar ANOVA. Again, 

this analyses did not reveal an effect of exposure (F(1,8) < 0.01, p = 0.995, Fig. 47B), an 

effect of test day (F(2,16) = 0.96, p = 0.404), or an interaction between exposure and test 

day (F(2,16) = 0.17, p = 0.846). 

 The number of trials completed throughout the 3 probe test days varied between 

951 and 3914 (Mean ± SEM = 2289.40 ± 342.77) across birds, although there was no 

significant difference between the two exposure conditions (t(8) = 0.80, p = 0.449). Due 

to this strong individual variability, probe test performances were further examined by 

focusing on blocks of trials rather than days. Block size was determined to be 200 trials 

so that there were 10 presentations of each probe stimulus in each block. This analysis 

was conducted on 4 blocks since the bird with the minimum number of trials completed 

951 trials. There was no significant difference between the pre-exposed and the control 

condition in percent responses to either the Go or the No-Go stimulus in any of the 4 test 

blocks (all p > 0.066). Thus, the original training stimuli were discriminated comparably 

between the two exposure conditions in each test block. The analysis of the 
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discrimination between the probe stimuli with 30 and 48 ms FM durations via a mixed 

ANOVA on discrimination indices using exposure (Pre-exposed, Control) as a between-

subjects variable and test block (1, 2, 3, 4) as a within-subjects variable did not reveal an 

effect of exposure (F(1,8) = 0.01, p = 0.911, Fig. 47C) or an interaction between 

exposure and test block (F(3,24) = 0.60, p = 0.622). There was also no significant 

difference among the test blocks (F(3,24) = 3.00, p = 0.051). The discrimination between 

the probe stimuli with 36 and 42 ms FM durations was also assessed via a similar 

ANOVA. Once again, there was no effect of exposure (F(1,8) = 1.99, p = 0.196, Fig. 

47D), effect of test block (F(3,24) = 0.91, p = 0.451), or an interaction between exposure 

and test block (F(3,24) = 0.61, p = 0.615). 

 Summary: Contrary to predictions, these analyses did not show an effect of prior 

familiarization on subsequent behavioral discrimination of the probe signals. There was 

no difference in the discrimination of synthesized calls whether they were familiarized 

right before testing or they were heard for the first time. 

Relationships Between Training and Test Performances 

 Since pre-exposure did not affect the behavioral discrimination of probe stimuli, 

relationships between training and test performances were assessed to examine whether 

consistent individual differences in the initial training could account for variations in 

responses to probe stimuli. For discrimination of the probe stimuli with 30 and 48 ms FM 

durations, there was a significant negative correlation between latencies to acquire the 

initial discrimination and magnitude of discrimination indices in the control condition 

(r(3) = -0.95, p = 0.013). The correlation between acquisition latencies and the same type 

of discrimination indices was also strongly negative in the pre-exposed condition; 
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however, it did reach statistical significance (r(3) = -0.74, p = 0.154). These correlations 

were not significantly different between the two exposure conditions (z = 0.88, p = 

0.379). Thus, when analyzed together, acquisition latencies and discrimination indices 

were highly negatively correlated (r(8) = -0.75, p = 0.013, Fig. 48A). The analysis of the 

correlation between acquisition latencies and the discrimination indices between the 

probe stimuli with 36 and 42 ms FM durations, on the other hand, did not reveal a 

significant correlation in either the pre-exposed (r(3) = 0.15, p = 0.806) or the control 

condition (r(3) = -0.80, p = 0.108). These two correlation coefficients also did not 

significantly differ from each other (z = 1.25, p = 0.211). 

 The relationship between the initial discrimination acquisition latency and the 

average level of responding to all probe stimuli, whether they were correct or not, was 

also analyzed. There was a significant positive correlation in the pre-exposed condition 

(r(3) = 0.95, p = 0.013). The same analysis also indicated a positive correlation 

coefficient in the control condition, but this correlation was not statistically significant 

(r(3) = 0.62, p = 0.269). However, these correlation coefficients were not significantly 

different between the two exposure conditions (z = 1.11, p = 0.267). Hence, the two 

exposure conditions were analyzed together, which revealed a significant positive 

correlation between the acquisition latencies and the overall levels of percent responses to 

probe stimuli (r(8) = 0.77, p = 0.009, Fig. 48B). 

 Summary: These analyses indicated that a significant portion of the variations in 

probe test behaviors could be accounted for by the variations in latencies to acquire the 

initial discrimination task. Birds that were quicker to learn the first auditory 

discrimination, also differentiated synthesized calls with 30 and 48 ms FM durations to a 
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greater degree. However, this effect was not observed for discrimination of acoustically 

more similar synthesized calls. In addition, birds that needed longer training to acquire 

the initial discrimination, also tended to respond more frequently to all probe stimuli, 

whether these responses were correct or not. 

Contrast Effects 

 Last, responses to probe stimuli were analyzed separately when they were 

presented after the Go or the No-Go stimulus to investigate whether the acoustic contrast 

to the preceding stimulus affected responses in the following trial. A mixed ANOVA was 

conducted on percent responses using exposure (Pre-exposed, Control) as a between-

subjects variable and target stimulus (30, 36, 42, 48 ms FM durations) and previous 

stimulus (Go, No-Go) as within-subjects variables. There was no effect of exposure 

(F(1,8) < 0.01, p = 0.972), or an interaction between exposure and target stimulus 

(F(3,24) = 0.13, p = 0.940), or an interaction between exposure and previous stimulus 

(F(1,8) < 0.01, p = 0.992), or a three-way interaction (F(3,24) = 2.20, p = 0.114). The 

effect of target stimulus was highly significant (F(3,24) = 56.12, p < 0.001, Fig. 49). 

Post-hoc analyses indicated that all pairwise comparisons were significantly different (all 

p < 0.025), such that the highest percent responses were seen for the probe stimulus with 

the 48 ms FM duration, followed by the one with the 42, 36, and 32 ms FM durations. 

Most importantly, there was a significant effect of previous stimulus (F(1,8) = 23.55, p = 

0.001, Fig. 49), indicating greater percent responses for target stimuli when they were 

preceded by the No-Go as compared to the Go stimulus. There was also a significant 

interaction between the target and the previous stimulus (F(3,24) = 3.20, p = 0.041, Fig. 

49). Post-hoc comparisons revealed that, for target stimuli with 30 and 42 ms FM 
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durations, percent responses were significantly greater when they were preceded by the 

No-Go as compared to the Go stimulus (both p < 0.009), whereas no such difference was 

observed for target stimuli with 36 and 48 ms FM durations (both p > 0.148). 

 Summary: This analyses revealed a clear contrast effect in behavioral responses to 

ambiguous probe stimuli. When preceded by the No-Go stimulus, which was a 

synthesized call with an 18 ms FM duration, the perception of probe stimuli were 

apparently “pushed away” from these short FM durations, resulting in more Go stimulus-

like, stronger behavioral responses, as compared to when they were preceded by the Go 

stimulus (a synthesized call with a 60 ms FM duration). When analyzed further in detail, 

this contrast effect was only significant for synthesized calls with 30 and 42 ms FM 

durations, however, the trends were also in the same direction for the other two probe 

stimuli. 

Discussion 

 The results of this experiment indicated no effect of prior passive familiarization 

with two acoustically similar synthesized calls on their behavioral discrimination in a 

subsequent task. There was no difference between the pre-exposed and the control 

exposure condition in the discrimination of either the synthesized calls that were used in 

passive exposure or the synthesized calls that fell between those signals along the FM 

duration dimension of the synthesized call set. These findings were in direct contrast with 

the expectations from the results in Experiment 3, which showed that the neural 

discrimination of the same synthesized calls that were used for pre-exposure in this 

experiment improved with passive repeated presentation. One potential reason for lack of 

an effect in this experiment might be that the passive exposure was administered in 



127 
 

 

housing cages, which provide a context different from that of the behavioral 

discrimination task. The pre-exposure was not conducted in the behavioral test apparatus 

to avoid any extinction-like interference effects. However, if the gains in neural 

discrimination with passive exposure are context-specific, then this might explain why no 

effect of pre-exposure was found in subsequent behavioral discrimination. Partial 

evidence for this idea comes from previous studies that investigated the context-

dependence of adaptation in NCM and reported that adaptation in one context, such as 

the specific location of the speaker or additional visual cues that were presented together 

with the auditory signal, is partially or completely reversed when the same signals are 

presented in a different context (Kruse, Stripling, & Clayton, 2004; Smulders & Jarvis, 

2013). As shown in Experiment 1, there is a relationship between adaptation and 

improvements in neural discrimination, thus it is possible that the gains in neural 

discrimination with passive exposure in the housing cage did not transfer to the 

behavioral discrimination context in this experiment. Another alternative explanation for 

the lack of differences between the pre-exposed and the control condition might be the 

relatively small sample size (n = 5 per group) used in this experiment. The effect of 

passive exposure on behavioral discrimination might not be very large, which would 

require more birds to reveal a significant difference between the two exposure conditions. 

 More than half of the variation in the behavioral discrimination of the pre-

exposure stimuli was explained by the variation in the latencies to acquire the initial 

auditory discrimination. This strong relationship indicates that the birds that learned the 

Go/No-Go discrimination quicker, also tended to discriminate the synthesized calls with 

30 and 42 ms FM durations better. This correlation might potentially reflect individual 
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differences in common general auditory capabilities that similarly affect detection of 

subtle acoustic differences between pairs of stimuli in the training and the test stage of 

the experiment. However, it is also possible that the relationship between the initial 

discrimination acquisition speed and the subsequent discrimination of probe signals 

might be due to individual differences in general task-related behavioral differences that 

are unrelated to auditory sensitivities. The analysis of the Go and the No-Go responses in 

the initial discrimination task indicated that birds improved their performance mainly by 

learning to inhibit responding to the No-Go stimulus. Furthermore, birds that took longer 

to acquire the initial discrimination, also showed higher levels of responding to the probe 

stimuli, whether these responses were correct or not. Taken together, these findings 

indicate that individual differences in executive control of responses may potentially 

contribute to the correlations between training and test performances. The two described 

possibilities, general auditory sensitivity and executive response control, are not mutually 

exclusive and may together underlie the individual differences seen in behavioral 

discrimination of synthesized calls. Nevertheless, it is important to note that the strong 

relationship between the initial discrimination acquisition speed and the subsequent 

discrimination magnitude for test signals was not observed in the discrimination of the 

two probe stimuli that were only differentiated by a 6 ms difference in their FM 

durations.  

 There were clear effects of the preceding training stimuli on behavioral responses 

to subsequent probe signals. If a probe synthesized call was presented after the No-Go 

stimulus (a synthesized call with an 18 ms FM duration) birds were more likely to 

respond as if the ambiguous probe signal was the Go stimulus (a synthesized call with a 
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60 ms FM duration). Thus, hearing a synthesized call with a short FM duration led to 

perceiving the FM duration of an ambiguous synthesized call as longer compared to 

hearing it after a synthesized call with a long FM duration. This finding suggests that 

responses to probe stimuli were not solely based on their acoustic properties, but also 

were influenced by their contrasts with recent signals. Similar phenomena are well-

known in humans as contrast effects, which represent a shift in perceptual boundaries 

away from the particular properties of the most recently encountered signals along a 

stimulus dimension (Diehl et al., 1978; for a review, see Kleinschmidt & Jaeger, 2016). 

 In summary, contrary to rapid and long-term improvements in neural 

discrimination of novel acoustic signals with passive familiarization, this experiment did 

not provide any evidence that these improvements affected behavioral discrimination.  
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GENERAL DISCUSSION 

 

In a series of experiments, this thesis investigated the effects of passive 

familiarization on neural and behavioral discrimination of novel acoustic signals. 

Experiment 1 provided strong evidence that the temporal profiles of neural responses to 

different novel natural vocalizations rapidly become more dissimilar from each other 

with repeated exposure, which improves the decoding of these stimuli from neural 

responses. In addition, the results of Experiment 1 indicated that the temporal profiles of 

neural responses are sensitive to the sequence in which the signals are presented such that 

neural responses are more informative about acoustic stimuli when they are presented in 

a blocked than in a shuffled sequence. Experiment 2 supported and extended these 

findings by showing that the rapid gains in neural discrimination and decoding of natural 

vocalizations with passive familiarization remained in effect 20 hours after the initial 

encounter. Experiment 3 investigated how the degree of acoustic similarity between 

sounds related to these rapid dynamic changes in stimulus representations using 

synthesized vocalizations and revealed mixed effects. Finally, contrary to findings in 
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neural responses, Experiment 4 did not yield any effect of passive familiarization on 

subsequent behavioral discrimination of two acoustically similar synthesized 

vocalizations. 

Rapid and Long-lasting Improvements in Neural Discrimination 

 The main finding from the first three experiments was that the decoding of novel 

stimuli using the temporal profiles of neural responses improves with passive 

familiarization. This was true for two different types of natural, as well as synthesized, 

vocalizations that varied in length, complexity, and ecological significance. These gains 

in neural recognition and discrimination were very rapid, exhibiting a sharp increase 

during initial stimulus presentations and either little or no change with further exposure. 

In most cases, these improvements were paralleled by a reduction in the latency along the 

stimulus duration to accurately decode stimulus identities with passive exposure. This 

means that, as they become more familiar, novel signals can be recognized by hearing 

shorter sections from the beginning of the vocalization. Although for songs, the 

improvements in neural decoding performance could be clearly explained by neural 

responses to the same stimuli becoming more and more similar to each other and neural 

responses to different stimuli becoming more and more dissimilar from each other, the 

neural decoding of natural and synthesized calls showed various other patterns. Thus, the 

analysis of the between-stimulus and within-stimulus neural dissimilarities separately 

was not always helpful in understanding the gains in neural decoding with repeated 

stimulus presentation. 

The main working hypothesis explored in this thesis was that the rapid 

improvements in neural discrimination and recognition of acoustic signals with passive 
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familiarization were related to the process of adaptation. The analysis of the correlations 

between the rates of adaptation and the linear trends of the neural discrimination metrics 

as a function of stimulus repetition indeed showed that the sites that adapted more 

steeply, also tended to increase in neural decoding more strongly. However, although 

significant, this relationship was not very strong, accounting for only about 7% of the 

total variation in the changes in neural decoding. Thus, adaptation, as measured in the 

zebra finch brain in previous studies (Chew et al., 1995, 1996a, 1996b), did not correlate 

strongly with the improvements in neural decoding with repeated stimulus presentation. 

However, in past studies and throughout this thesis, adaptation was quantified using the 

total magnitude of neural activity during the whole response, disregarding its temporal 

profile. This was in direct contrast to the neural discrimination metrics used in this thesis, 

which rely on the neural response profiles, not the absolute magnitudes. The contribution 

of non-stimulus-specific reductions in firing rates to the overall measure of adaptation 

rate might have overshadowed the effects of stimulus-specific adaptations to local 

features that maximally differentiate the temporal profiles of neural responses with 

stimulus repetition. Thus, if adaptation rates were examined at specific time points along 

the stimulus duration, points of maximum adaptation could potentially account for much 

more of the variation in neural discrimination improvements. However, although 

theoretically fruitful, this idea represents a methodological challenge, as the time points 

of maximum local adaptation can differ between different stimuli. In depth exploratory 

analytical techniques in future studies will potentially reveal the true strength of the 

relationship between the rates of adaptation and the improvements in neural 

discrimination.  
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The phenomenon of adaptation to features or complex statistics of external signals 

studied in the mammalian brain does not necessarily imply that the neural response 

magnitudes decrease with repeated exposure. Rather, the receptive fields of neurons 

change in complex ways to adjust the dynamic range of neurons to the relevant stimulus 

statistics in the environment and/or to enhance the detection of changes in the incoming 

stimulus stream. In a similar vein, recent studies in our lab demonstrated that the spectro-

temporal receptive fields of neurons in NCM undergo rapid changes with repeated 

stimulus exposure (Yang & Vicario, unpublished results). In fact, adaptation may just be 

a measure of dynamic changes in receptive field selectivity, with more selective receptive 

fields showing smaller responses with repeated stimulation. Whether total firing rates 

decrease, increase, or remain unchanged with stimulus repetition for any given neuron in 

NCM, it is possible that a significant portion of the variation in the changes in the 

temporal profiles of neural responses can potentially be explained by modulations in the 

receptive fields that change the time along the stimulus duration at which the neuron 

fires, irrespective of the changes in the total amount of firing. This might explain the 

reported low level of correlation between adaptation and neural discrimination 

improvements. Having discussed this possibility, it is important to reemphasize here that 

all of the neural discrimination metrics used in this thesis were exclusively based on the 

temporal profiles of neural responses and completely insensitive to changes in the total 

firing rates with adaptation. Thus, other neural decoding algorithms that also take into 

account the total amount of activity could potentially provide a stronger relationship 

between the rates of overall adaptation and the changes in neural decoding. 
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Another important piece of evidence in support of the relationship between 

adaptation and neural discrimination gains was provided by the long-term effects. As 

shown in previous studies, the responses to novel songs gradually adapted with repeated 

exposure, whereas the responses to songs that were passively familiarized 20 hours ago 

decreased dramatically with few repetitions and remained at adapted levels thereafter. 

This marked difference between the adaptation profiles of novel and familiar signals is 

taken as an indication of neural auditory memory in NCM (Chew et al., 1995; Phan, 

Pytte, & Vicario, 2006). These differences were paralleled by higher levels of neural 

decoding accuracy and mutual information for exactly the same songs when they had 

been previously familiarized as compared to when they were heard for the first time. 

Thus, there seems to be a link between conditions that produce long-term adaptation and 

neural decoding improvements. However, a closer examination of the trial-by-trial 

dynamics reveals interesting details. For instance, it is well-established that presentation 

of a novel song for 20 times does not produce a long-term neural memory that can be 

detected 20 hours later in NCM (Chew et al., 1996a, 1996b). In Experiment 2, 200 

stimulus repetitions were used for passive familiarization, which successfully induced 

long-term memory. However, the results of Experiments 1 and 2 indicate that there is 

little or no gain in neural decoding accuracy after about the first 6 stimulus presentations. 

This suggests that adaptation during the following stimulus presentations does not 

contribute to rapid improvements in neural decoding, but is needed for consolidation of 

those improvements for later processing. The direct relationships between rapid and long-

term effects are hard to decipher from the experiments in this thesis, because 

electrophysiological responses from given sites and neurons were recorded either only 
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during the test phase or only during the initial induction phase of memories. That is, there 

was no longitudinal recording. Having now established the first evidence for long-lasting 

gains in neural decoding with passive exposure, future studies utilizing chronic 

recordings are needed to address the dynamics governing the amount of information 

retained or lost at particular sites after the initial familiarization of novel acoustic signals. 

Acoustic Features and Neural Discrimination 

As expected, physical stimulus features were tightly related to the overall levels 

of the dissimilarity between the temporal profiles of neural responses to different auditory 

signals. The analysis of synthesized calls that only vary along the initial FM duration 

dimension indicated that acoustically more similar signals elicited more similar neural 

response profiles. The reason for choosing FM duration as the critical variable was that it 

was intrinsically a temporal feature, which was more likely to have its effects on the 

temporal profiles of neural responses as compared to other features, such as the 

fundamental frequency, that might lead to variations primarily in total firing rates. 

Despite the clear effects in multi-unit responses, the analysis of single neuron temporal 

response profiles did not reveal a relationship between acoustic and neural dissimilarity. 

One potential reason for this can be that neurons in NCM, due to their complex spectro-

temporal receptive fields (Kozlov & Gentner, 2016), might have shown differences for 

the highly similar short synthesized calls in their total firing rates, but not in temporal 

response patterns. If this was true, the neural dissimilarity metric that was utilized 

throughout this thesis would not be able to reflect those differences. Thus, to gain a more 

complete understanding of the relationship between physical stimulus characteristics and 

neural discrimination, one valuable future direction would be to assess the relative 
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contributions of total firing rates and the temporal activity patterns by employing 

different neural decoding techniques. 

Contrary to overall neural dissimilarity measures, the rates of changes in the 

dissimilarities between the neural response profiles with repeated stimulus presentation 

was not related to acoustic similarity in multi-unit responses. This means that, regardless 

of the degree of acoustic similarity between stimulus pairs, dissimilarities between the 

temporal profiles of neural responses to those signals changed at similar rates with 

passive exposure. In contrast, single neuron responses indicated that the neural 

dissimilarities between acoustically less similar synthesized call pairs increased more 

with repeated stimulus exposure compared to acoustically more similar stimulus pairs. 

This finding indicates that, at least in responses of single neurons, acoustic contrasts 

between auditory signals affect the improvements in neural discrimination with repeated 

stimulus exposure.  

Stimulus Sequence Effects on Neural Discrimination 

 In addition to physical acoustic stimulus features, contextual factors also had a 

huge impact on neural discrimination and recognition of acoustic signals. Contrary to 

what was hypothesized, the neural decoding of the same songs and calls was faster and 

more accurate when those stimuli were presented in a blocked compared to in a shuffled 

sequence. Mutual information between the temporal profiles of neural responses and 

stimulus identities also showed the same effect. Similar findings were reported in studies 

that investigated the effects of talker variability on speech comprehension. Recognition of 

speech signals is poorer and takes more time when stimuli are spoken by different talkers 

in a shuffled setting as compared to when utterances from different speakers are 



137 
 

 

presented one by one (Creelman, 1957; Mullennix, Pisoni, & Martin, 1989). These 

findings have been interpreted as an indication of a talker normalization process that 

more successfully improves the mapping of sounds to phonetic categories by 

accumulating talker-specific evidence under the stable conditions of a blocked setup as 

compared to a shuffled sequence, which triggers the normalization process every time the 

talker changes and leads to discontinuities in incoming talker-specific vocalization 

characteristics. Although in the case of zebra finch vocalizations, it is impossible to talk 

about a mapping mechanism between sounds and phoneme-like abstract processing units, 

either due to the absence of, or our ignorance of, such a system, the difference between 

blocked and shuffled sequences seem to be explained by similar principles. The main 

drive behind the neural decoding accuracy and mutual information differences was that 

the within-stimulus neural dissimilarities in the blocked sequence were markedly lower 

than those in the shuffled sequence. This suggests that the temporal profiles of neural 

responses to different presentations of any particular signal were reliably more consistent 

in the blocked compared to those in the shuffled presentation. Thus, similar to the 

proposed talker normalization process in humans, the discontinuities in the presentations 

of any particular stimulus in the shuffled sequence may induce variability and thus hinder 

the neural response profiles to reliably represent acoustic signals in NCM. 

Neuron Type Differences in Neural Discrimination 

Neurons in NCM separated nicely into narrow and wide spike neurons based on 

their spike waveforms. In all experiments, single-unit populations consisted of 

comparable numbers of the two neuron types, whereas a previous study reported a ~1:2 

narrow to wide spike neuron ratio in NCM (Meliza & Margoliash, 2012). These 
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conflicting findings might be due to the differences in the recording techniques or the 

spike-sorting algorithms used in this and other studies. In the mammalian cortex, it is 

shown that narrow spike waveforms indicate inhibitory neurons and wide spike 

waveforms indicate excitatory neurons (Bartho et al., 2004). If this formulation is correct 

in the songbird forebrain, then the equal proportions for the two neuron types found in 

this study would be a more accurate depiction of the underlying circuitry since both 

histological (Pinaud & Mello, 2007) and functional (Pinaud et al., 2008) analyses showed 

that roughly half of the neurons in NCM are GABAergic inhibitory neurons. 

Narrow spike neurons had higher baseline firing rates and stronger stimulus-

driven responses compared to wide spike neurons. In parallel, intracellular recordings in 

brain slices from NCM indicated that half of the neurons fire phasically, whereas the 

other half fires tonically or transiently in response to electrical stimulation (Dagostin, 

Lovell, Hilscher, Mello, & Leão, 2015). Importantly, the spike waveforms of the phasic 

neurons are wider than those of the tonic and transient neuron types. Unfortunately, the 

authors did not examine whether these differences in firing properties and spike 

waveforms reflected an excitatory/inhibitory neuron type differentiation. The results of 

this thesis also revealed a marked difference between the adaptation profiles of the two 

neuron types. Wide spike neurons underwent strong adaptation with repeated stimulus 

presentation, whereas there was little or no adaptation for narrow spike neuron responses. 

In the mammalian primary auditory cortex, two types of inhibitory interneurons are 

shown to contribute differently to the stimulus-specific adaptation (SSA) of excitatory 

neuron responses in the oddball paradigm (Natan et al., 2015). Parvalbumin-positive 

neurons provide a global inhibition, whereas somatostatin-positive neurons inhibit 
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excitatory responses to only the frequently repeated stimuli. The net effect of these two 

inhibitory processes is to adapt the excitatory neuron activity to repeatedly presented 

stimuli. If the narrow and wide spike neurons in NCM reflect inhibitory and excitatory 

neurons, respectively, then the strong adaptation observed for wide spike neurons might 

potentially be explained by similar circuitry interactions. However, to date, the 

representation of parvalbumin- and somatostatin-positive interneurons has not been well-

characterized in songbird NCM. Future studies utilizing in vivo imaging, together with 

cell type-specific optogenetic manipulations, are needed to address whether the long-term 

form of adaptation in the songbird NCM is an emergent property of such complex 

interactions between excitatory and different types of inhibitory neurons. 

Narrow spike neurons yielded higher neural decoding accuracy and mutual 

information estimations than did wide spike neurons. A previous study reported that wide 

spike neurons in the starling auditory lobule display higher levels of stimulus selectivity 

compared to narrow spike neurons (Meliza & Margoliash, 2012). This might seem in 

conflict with the present findings, however the selectivity measure used in the mentioned 

study was completely based on total firing rates as opposed to the neural decoding 

method based exclusively on the temporal profiles of responses used throughout this 

thesis. Even when the variations in total response magnitudes were controlled, the 

responses of narrow spike neurons were generally more informative about stimulus 

identities. This suggests that the differences between the two neuron types in terms of 

neural decoding accuracy cannot be simply explained by the absolute magnitudes of 

responses and thus might potentially reflect real differences in stimulus representations in 

different neuron types. 
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Despite the differences between narrow and wide spike neurons in overall mutual 

information, the two neuron types showed similar improvements in neural discrimination 

with repeated stimulus presentation. This suggests that the improvement in neural 

decoding performance observed in multi-unit responses with stimulus familiarization 

does not stem from differential contributions of the two neuron types, but rather occurs 

similarly at the single neuron level for both kinds of cells. Still, there might be other 

currently unknown parameters, based on which neurons in NCM can be classified and 

differ in their degrees of contribution to neural discrimination gains with passive 

familiarization. 

Neural Discrimination Gains in the Absence of Behavioral Improvements 

Contrary to strong evidence for neural discrimination gains with repeated stimulus 

exposure, there was no indication of an improvement in behavioral discrimination of 

acoustic signals with passive familiarization. As discussed, this absence of behavioral 

effects might be due to methodological constraints, such as the contextual differences 

between the pre-exposure and the probe test environments and small sample size. 

However, if there were indeed no direct gains in behavioral discrimination with passive 

exposure, how could the conflicting findings at the neural and behavioral levels be 

interpreted? It has been argued that one of the main advantages of sparse coding is 

increased storage capacity for distinct representations (Willmore & Tolhurst, 2001). 

Thus, the improvements in the dissimilarities of neural representations with the long-term 

form of adaptation in the songbird NCM may represent a process to maximize this 

capacity for encoding of unique sensory memories. Adaptations of this sort can benefit 

the organism in its ecology without necessarily having direct behavioral outcomes. It is 
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also possible that the effects of neural discrimination improvements with passive 

exposure are much subtler than previously imagined. Future studies using chronic 

electrophysiological recordings that span both passive exposure and subsequent 

behavioral testing are needed to examine the details of the relationship between neural 

and behavioral discrimination of novel signals as they become familiar. 

Related Observations in a Vocal Motor Area of the Songbird Brain 

This thesis focused on processing of novel signals in NCM, but it is only one area 

that responds to sounds in the songbird forebrain. In addition to other areas that receive 

ascending auditory input, such as field L and CM, neurons in a vocal motor area, HVC 

(Fig. 2), also have auditory responses, and these responses are selective for species-

specific vocalizations. The role or roles of these auditory responses in a motor area 

remains somewhat unclear, but lesions of HVC do disrupt auditory-driven behaviors 

(Brenowitz, 1991; Del Negro, Gahr, Leboucher, & Kreutzer, 1998).  In a recent study, 

changes in neural responses to passive exposure under blocked and shuffled conditions 

were compared between HVC and NCM (Soyman & Vicario, 2017). Analysis of data 

from simultaneous recordings in both structures revealed quantitative and qualitative 

differences in the way responses adapted with repeated presentation. In NCM, the 

response decrease with repetition of each stimulus was gradual and long-lasting, and the 

absolute magnitudes of the responses did not differ between the two sequences. In 

contrast, HVC responses to songs decreased much more rapidly in the blocked than in the 

shuffled sequence. Furthermore, contrary to long-lasting adaptation in NCM, adaptation 

in HVC was much more transient: there was a decrease in responding from the first to the 

second presentation only after zero or one intervening stimulus presentation (within 12 
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seconds); 2 or more intervening stimuli (separated by >12 seconds) resulted in a response 

to the second presentation as if the stimulus was completely novel. In addition, auditory 

responses in NCM were more informative and less internally coherent than in HVC. 

Thus, these findings suggest that NCM processes the individually-specific complex 

vocalizations of others based on prior familiarity, while HVC responses appear to be 

modulated strongly by transitions and/or timing in the ongoing sequence of sounds. Thus, 

the kinds of changes documented in this thesis for NCM are only one of a set of parallel 

processes that discriminate sounds in the service of learning and individual recognition. 

Conclusion 

The experiments in this thesis provide valuable insights into the mechanisms by 

which the nervous system dynamically modulates sensory representations to improve 

discrimination of external signals at short and long time-scales. When faced with auditory 

signals that have never been heard before, neural representations are rapidly modulated 

with just a few exposures to dramatically improve recognition, discrimination, and 

classification. During subsequent exposures, these signals are then successfully 

recognized after hearing fewer initial acoustic features. Furthermore, the nervous system 

can better recognize and discriminate these sounds when they are encountered in blocks 

of the same stimulus as compared to in an unpredictable sequence. The rapid plasticity in 

neural representations of novel auditory signals not only affects immediate processing, 

but is also long-lasting. That is, the discrimination of previously familiarized sounds is 

improved and occurs faster as compared to discrimination of completely novel signals. 

How these changes in neural representations affect behavioral outcomes remains unclear. 

Taken together, these findings shed light on how the adult sensory systems retain 
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neuroplasticity to adapt the organism to rapidly encode and classify sensory signals in an 

everchanging world. Similar mechanisms may also be engaged during processing of 

human speech signals, and thus have a significant potential translational relevance to 

understand the neural underpinnings of speech perception and comprehension difficulties. 
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Figure 1. Male zebra finch vocalizations. A shows the spectrograms of two songs. B 

shows the spectrograms of two long calls. 
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Figure 2. Overview of the zebra finch auditory and motor pathways. Red connections 

denote the conventional auditory thalamus-driven ascending auditory pathway, blue 

projections show the ascending auditory and motor feedback pathway, orange 

connections indicate the song production pathway, and green projections show the 

corticostriatal anterior forebrain pathway. Abbreviations: HVC (used as a proper name); 

Shelf: HVC Shelf; NCM: Caudal Medial Nidopallium; CMM: Caudal Medial 

Mesopallium; CLM: Caudal Lateral Mesopallium; Av: Avalanche; L1, L2, and L3: 

Subregions 1, 2, and 3 of the general Field L region; Nif: Nucleus Interfacialis of the 

Nidopallium; RA: Robust Nucleus of the Archopallium; LMAN: Lateral Magnocellular 

Nucleus of the Anterior Neostriatum; Area X (used as a proper name); Uva: Uveaformis; 

DLM: Medial Nucleus of the Dorsomedial Thalamus; Ov: Nucleus Ovoidalis; MLd: 

Mesencephalicus Lateralis Dorsalis; nXIIts: Tracheosyringeal Motor Nucleus. 
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Figure 3. Adaptation of neural responses to repeated stimulus presentation in NCM. 

Adaptation rates are typically quantified via linear regression methods for the first 6 and 

the remaining 20 presentations separately. 
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Figure 4. Temporal profiles of multi-unit neural responses to two different songs in 

NCM. A shows the peristimulus time histograms for the first 5, middle 5, and last 5 

stimulus presentations. Arrows indicate example time points that show strong adaptation. 

B shows the spike rasters for the same recordings. C shows the spectrograms of the two 

songs.  
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Figure 5. Histological verification of electrode tracks. Field L is identified by its densely 

packed neurons. NCM is the region posterior to field L. Red marks show the shanks of 

the silicon probe. 
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Figure 6. Clustering of single-units based on spike waveforms. A shows the single-unit 

clusters in the first 2 principal component space. B shows the average waveforms of 

narrow and wide spike neurons. 
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Figure 7. Multi-unit adaptation profiles for songs and calls in blocked and shuffled 

sequences. A shows the percent response magnitudes as a function of stimulus 

presentation for songs in the two sequences. B shows the adaptation rates for 

presentations 1-6 and 6-25 for songs in the two sequences. C and D are similar to A and 

B, respectively, but they show the same metrics for calls. Plotted values are means ± 

SEMs across multi-units.  
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Figure 8. Validation of the neural discrimination metrics via the analysis of simulated 

data that randomizes the timings of spikes, while keeping the absolute firing rates 

constant. A shows the between-stimulus neural dissimilarities as a function of stimulus 

presentation. B shows the within-stimulus neural dissimilarities in a similar way. C 

shows the correct decoding probabilities across time points along the stimulus duration 

and across stimulus presentations. D shows the bias-corrected mutual information 

estimations. 
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Figure 9. Multi-unit between-stimulus neural dissimilarities for songs and calls in 

blocked and shuffled sequences.  A shows the between-stimulus neural dissimilarities as 

a function of stimulus presentation for songs in the two sequences. B shows the slopes of 

between-stimulus neural dissimilarities for presentations 1-6 and 6-25 for songs in the 

two sequences. C and D are similar to A and B, respectively, but they show the same 

metrics for calls.  
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Figure 10. Multi-unit within-stimulus neural dissimilarities for songs and calls in blocked 

and shuffled sequences.  A shows the within-stimulus neural dissimilarities as a function 

of stimulus presentation for songs in the two sequences. B shows the slopes of within-

stimulus neural dissimilarities for presentations 1-6 and 6-25 for songs in the two 

sequences. C and D are similar to A and B, respectively, but they show the same metrics 

for calls. 
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Figure 11. Multi-unit neural decoding accuracies for songs in blocked and shuffled 

sequences. A shows the correct decoding probabilities across time points along the 

stimulus duration and across stimulus presentations averaged across multi-units in the 

blocked sequence. B is similar to A, but it shows the same metrics in the shuffled 
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sequence. C shows the correct decoding probabilities (measured at 500 ms) as a function 

of stimulus presentation in the two sequences. D shows the slopes of correct decoding 

probabilities for presentations 1-6 and 6-25 in the two sequences. E and F are similar to 

C and D, respectively, but they show correct decoding latencies (to achieve a probability 

of .75) and their slopes. 
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Figure 12. Multi-unit neural decoding accuracies for calls in blocked and shuffled 

sequences. A shows the correct decoding probabilities across time points along the 

stimulus duration and across stimulus presentations in the blocked sequence. B is similar 

to A, but it shows the same metrics in the shuffled sequence. C shows the correct 
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decoding probabilities (measured at 160 ms) as a function of stimulus presentation in the 

two sequences. D shows the slopes of correct decoding probabilities for presentations 1-6 

and 6-25 in the two sequences. E and F are similar to C and D, respectively, but they 

show correct decoding latencies (to achieve a probability of .50) and their slopes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 
 

 

 

Figure 13. Multi-unit mutual information for songs and calls in blocked and shuffled 

sequences. A shows the bias-corrected mutual information estimations as a function of 

time along the stimulus duration for songs in the two sequences. B is similar to A, but it 

shows the same metric for calls. Plotted values are means ± SEMs across multi-units for 

each time bin of 10 ms. 
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Figure 14. Multi-unit adaptation and neural discrimination relationships for songs for 

presentations 1-6. A shows the correlation between adaptation rates and the slopes of 

between-stimulus neural dissimilarities. B, C, and D are similar to A, but they show the 

correlations for the slopes of within-stimulus neural dissimilarities, correct decoding 

probabilities, and correct decoding latencies, respectively. Black lines show regression 

lines for blocked and shuffled sequences together. 
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Figure 15. Multi-unit adaptation and neural discrimination relationships for songs for 

presentations 6-25. A shows the correlation between adaptation rates and the slopes of 

between-stimulus neural dissimilarities. B is similar to A, but it shows the correlation for 

the slopes of within-stimulus neural dissimilarities. 
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Figure 16. Multi-unit adaptation and neural discrimination relationships for calls for 

presentations 1-6. A shows the correlation between adaptation rates and the slopes of 

within-stimulus neural dissimilarities. B is similar to A, but it shows the correlation for 

the slopes of correct decoding probabilities. 
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Figure 17. Multi-unit adaptation and neural discrimination relationships for calls for 

presentations 6-25. A shows the correlation between adaptation rates and the slopes of 

between-stimulus neural dissimilarities. B and C are similar to A, but they show the 

correlations for the slopes of within-stimulus neural dissimilarities and correct decoding 

probabilities, respectively. 
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Figure 18. Single-unit response properties for songs for narrow and wide spike neurons 

in blocked and shuffled sequences. A shows the baseline firing rates for the two neuron 

types in the two sequences. B, C, and D are similar to A, but they show response 

magnitudes, adaptation rates for presentations 1-6, and adaptation rates for presentations 

6-25, respectively. Individual data points are jittered along the x axis for illustrative 

purposes. Black lines show the medians. 

 

 

 

 

 

 

 

 



171 
 

 

 

Figure 19. Single-unit response properties for calls for narrow and wide spike neurons in 

blocked and shuffled sequences. A shows the baseline firing rates for the two neuron 

types in the two sequences. B, C, and D are similar to A, but they show response 

magnitudes, adaptation rates for presentations 1-6, and adaptation rates for presentations 

6-25, respectively. 
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Figure 20. Single-unit neural dissimilarities for songs for narrow and wide spike neurons 

in blocked and shuffled sequences. A shows the between-stimulus neural dissimilarities 

for the two neuron types in the two sequences. B shows the slopes of between-stimulus 

neural dissimilarities for presentations 1-6 and 6-25. C and D are similar to A and B, 

respectively, but they show within-stimulus neural dissimilarities and their slopes. 
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Figure 21. Single-unit neural dissimilarities for calls for narrow and wide spike neurons 

in blocked and shuffled sequences. A shows the between-stimulus neural dissimilarities 

for the two neuron types in the two sequences. B is similar to A, but it shows within-

stimulus neural dissimilarities. C shows the slopes of within-stimulus neural 

dissimilarities for presentations 1-6 and 6-25. 
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Figure 22. Single-unit neural decoding accuracies for songs for narrow and wide spike 

neurons in blocked and shuffled sequences. A shows the correct decoding probabilities 

for the two neuron types in the two sequences. B shows the slopes of correct decoding 

probabilities for presentations 1-6 and 6-25. 
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Figure 23. Single-unit neural decoding accuracies for calls for narrow and wide spike 

neurons in blocked and shuffled sequences. A shows the correct decoding probabilities 

for the two neuron types in the two sequences. B is similar to A, but it shows correct 

decoding latencies. 
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Figure 24. Single-unit mutual information for songs and calls for narrow and wide spike 

neurons in blocked and shuffled sequences. A shows the bias-corrected mutual 

information estimations for songs for the two neuron types in the two sequences. B is 

similar to A, but it shows the same metric for calls. 
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Figure 25. Single-unit adaptation and neural discrimination relationships for songs for 

presentations 6-25. A shows the correlation between adaptation rates and the slopes of 

between-stimulus neural dissimilarities. B, C, and D are similar to A, but they show the 

correlations for the slopes of within-stimulus neural dissimilarities, correct decoding 

probabilities, and correct decoding latencies, respectively. 
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Figure 26. Single-unit correlation between adaptation rates and the slopes of correct 

decoding probabilities for calls for presentations 6-25. 
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Figure 27. Multi-unit adaptation profiles for songs in pre-exposed and control exposure 

conditions. A shows the percent response magnitudes as a function of stimulus 

presentation in the two exposure conditions. B shows the adaptation rates for 

presentations 1-6 and 6-25 in the two exposure conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



180 
 

 

 

Figure 28. Multi-unit neural dissimilarities for songs in pre-exposed and control 

exposure conditions.  A shows the between-stimulus neural dissimilarities as a function 

of stimulus presentation in the two exposure conditions. B shows the slopes of between-

stimulus neural dissimilarities for presentations 1-6 and 6-25 in the two exposure 

conditions. C and D are similar to A and B, respectively, but they show within-stimulus 

neural dissimilarities and their slopes.  
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Figure 29. Multi-unit neural decoding accuracies for songs in pre-exposed and control 

exposure conditions. A shows the correct decoding probabilities across time points along 

the stimulus duration and across stimulus presentations in the pre-exposed condition. B is 

similar to A, but it shows the same metrics in the control exposure condition. C shows the 
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correct decoding probabilities (measured at 500 ms) as a function of stimulus 

presentation in the two exposure conditions. D shows the slopes of correct decoding 

probabilities for presentations 1-6 and 6-25 in the two exposure conditions. E and F are 

similar to C and D, respectively, but they show correct decoding latencies (to achieve a 

probability of .75) and their slopes. 
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Figure 30. Multi-unit mutual information for songs in pre-exposed and control exposure 

conditions. The bias-corrected mutual information estimations are shown as a function of 

time along the stimulus duration in the two exposure conditions. 
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Figure 31. Single-unit response properties for songs for narrow and wide spike neurons 

in pre-exposed and control exposure conditions. A shows the baseline firing rates for the 

two neuron types in the two exposure conditions. B, C, and D are similar to A, but they 

show response magnitudes, adaptation rates for presentations 1-6, and adaptation rates for 

presentations 6-25, respectively. 
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Figure 32. Single-unit neural dissimilarities for songs for narrow and wide spike neurons 

in pre-exposed and control exposure conditions. A shows the within-stimulus neural 

dissimilarities for the two neuron types in the two exposure conditions. B shows the 

slopes of within-stimulus neural dissimilarities for presentations 1-6 and 6-25. 
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Figure 33. Single-unit neural decoding accuracies for songs for narrow and wide spike 

neurons in pre-exposed and control exposure conditions. A shows the correct decoding 

probabilities for the two neuron types in the two exposure conditions. B shows the slopes 

of correct decoding probabilities for presentations 1-6 and 6-25. C is similar to A, but it 

shows correct decoding latencies. 
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Figure 34. Single-unit mutual information for songs for narrow and wide spike neurons 

in pre-exposed and control exposure conditions. 
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Figure 35. Natural and synthesized calls. A shows the spectrograms of natural calls 

varying in initial frequency modulation duration, in addition to other features. B shows 

the spectrograms of the 8 synthesized calls that were generated using mathematical 

functions to vary only along the initial frequency modulation duration dimension. 
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Figure 36. Multi-unit adaptation rates for synthesized calls for presentations 1-6.  
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Figure 37. Multi-unit neural dissimilarities for synthesized calls. A shows the neural 

dissimilarities between the presentations of each possible synthesized call pair averaged 

across multi-units. The main (M) and the higher-order (1 through 6) diagonals of this 

matrix are indicated by lines. The anti-diagonal of this matrix is also shown. B shows the 
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slopes of these diagonals as functions of FM durations. C shows the neural dissimilarities 

on the anti-diagonal of the matrix in A. D and E are similar to A, but they show the 

slopes of neural dissimilarities for presentations 1-6 and 6-25, respectively. 
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Figure 38. Multi-unit neural decoding accuracies for synthesized calls. A shows the 

correct decoding probabilities across time points along the stimulus duration and across 

stimulus presentations. B shows the correct decoding probabilities as a function of 

stimulus presentation. C shows the slopes of correct decoding probabilities for 
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presentations 1-6 and 6-25. D and E are similar to B and C, respectively, but they show 

correct decoding latencies and their slopes. 
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Figure 39. Multi-unit neural classifications for synthesized calls. A shows the confusion 

between true stimulus identities (rows) and neural classifications (columns) averaged 

across multi-units. B shows the correct classification ratios between pairs of synthesized 

calls that differ by 6 ms in their FM durations. C is similar to B, but it shows the same 

metric for synthesized call pairs that differ by 12 ms in FM durations. 
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Figure 40. Multi-unit mutual information for synthesized calls. The bias-corrected 

mutual information estimations are shown as a function of time along the stimulus 

duration. 
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Figure 41. Single-unit response properties for synthesized calls for narrow and wide 

spike neurons. A shows the baseline firing rates for the two neuron types. B and C are 

similar to A, but they show response magnitudes and adaptation rates for presentations 6-

25, respectively. 
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Figure 42. Single-unit neural dissimilarities for synthesized calls for narrow and wide 

spike neurons. A shows the neural dissimilarities between the presentations of all 

possible synthesized call pairs. The main (M) and the higher-order (1 through 6) 

diagonals of this matrix are indicated by lines. The anti-diagonal of this matrix is also 
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shown. B shows the slopes of this anti-diagonal as a function of FM durations for the two 

neuron types. C and D are similar to A and B, respectively, but they show the slopes of 

neural dissimilarities for presentations 1-6. E and F are also similar to A and B, 

respectively, but they show the slopes of neural dissimilarities for presentations 6-25.  
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Figure 43. Single-unit correct decoding probability slopes for synthesized calls for 

presentations 1-6 and 6-25. 
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Figure 44. Single-unit neural classifications for synthesized calls. A shows the confusion 

between true stimulus identities (rows) and neural classifications (columns). B shows the 

correct classification ratios between pairs of synthesized calls that differed by 6 ms in 

their FM durations. C is similar to B, but it shows the same metric for synthesized call 

pairs that differ by 12 ms in FM durations. 
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Figure 45. Behavioral responses in the Go/No-Go auditory discrimination training in pre-

exposed and control exposure conditions. A shows the percent accuracies as a function of 

training days for all birds in the two exposure conditions. B shows the latencies in days of 

training to reach successful discrimination criterion in the two exposure conditions. C 

shows the percent responses to the Go stimulus in the first 2 and last 2 days of training in 

the two exposure conditions. D is similar to C, but it shows the responses to the No-Go 

stimulus. Plotted values are means ± SEMs across birds. 

 

 

 

 

 

 

 



202 
 

 

 

Figure 46. Behavioral responses in the probe test in pre-exposed and control exposure 

conditions. A shows the percent responses to the training (18 and 60 ms FM) and the 

probe stimuli (30, 36, 42, and 48 ms FM) in the first day of probe test in the two exposure 

conditions. B, C, and D are similar to A, but they show the responses in the second day, 

the third day, and across all days of probe test, respectively. 
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Figure 47. Discrimination of probe stimuli in pre-exposed and control exposure 

conditions. A shows the discrimination indices for the probe stimuli with 30 and 48 ms 

FM durations across probe test days in pre-exposed and control exposure conditions. 

These two stimuli were previously presented to the pre-exposed birds. B is similar to A, 

but it shows the same metrics for the probe stimuli with 36 and 42 ms FM durations. C 

and D are similar to A and B, respectively, but they show the same metrics across probe 

test blocks of 200 trials. 

 

 

 

 

 

 

 



204 
 

 

 

Figure 48. Initial auditory discrimination learning and probe test behavior relationships. 

A shows the correlation between latency in days of training to acquire the initial Go/No-

Go discrimination and the discrimination indices for the probe stimuli with 30 and 48 ms 

FM durations. B shows the correlation between latency in days of training to acquire the 

initial Go/No-Go discrimination and the average levels of percent responses to all probe 

stimuli combined. Black lines show regression lines for pre-exposed and control exposure 

conditions together. 
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Figure 49. Percent responses to the probe stimuli after the Go (60 ms FM) and the No-

Go stimulus (18 ms FM).  


