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ABSTRACT OF THE DISSERTATION
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PARTIALLY OBSERVABLE MARKOV JUMP PROCESSES

by Ruofan Yan

Dissertation Director: Paul Feehan and Andrzej Ruszczyński

In this dissertation, we provide a theory of time-consistent dynamic risk measures for partially

observable Markov jump processes in continuous time. By introducing risk filters, which are

new two-stage risk measures, we show that the risk measure of a partially observable system can

be represented as a risk measure of a fully observable system that is defined by a g-evaluation.

The innovation process of the original system is the Brownian Motion driving the new fully

observable system. Furthermore, we introduce a risk-averse control problem for the partially

observable system and we derive a risk-averse dynamic programming equation.
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Chapter 1

Introduction

The problem of evaluating a partially observable problem in continuous time consists of two

components. One component is the estimation of the unobservable part. Roughly speaking,

this means that we want to give the best estimate based on our currently available information.

A natural way of achieving this is to estimate the unobservable process via the conditional

expectation of the observable process, since conditional expectation gives an unbiased estimator

with the smallest mean squared error. The other question is how an estimation of our target

function is evaluated. The classical way is via taking expectation. In this dissertation, we focus

on the Wonham filter, a specific case of a partially observable system, and we will derive our

risk framework regarding this problem such that it is a generalization of the classical method

for both issues mentioned above.

The estimation of the unobservable process is actually a filtering problem. There are sev-

eral well-known results for the optimal filtering problems, for example the Kalman–Bucy [45]

and Wonham filters [63]. The optimal filters in both cases are characterized by stochastic

differential equations (SDE). A more general result was obtained by Zakai [66] and Kushner

[35, 36], in which the filter was represented by a stochastic partial differential equation (SPDE).

The Kusher equation is a stochastic nonlinear partial differential equation, the investigation of

which would be difficult. In contrast, the Zakai equation is a stochastic linear partial differential

equation, and it describes a non-normalized filtering density, which corresponds one-to-one to

the filtering density. The Zakai equation is pretty important for both theory and applications

[6, 1, 11, 29].

With the optimal filtering, it is natural to define the corresponding optimal control problem.

In the case of linear systems, Wonham [64] introduced the so-called separation theorem. In

the more general settings, some crucial results were obtained by Beneš and Karatzas [60] and
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Fleming and Pardoux [61]. However, the results about the optimal control for partially observ-

able problems are mainly concerned with the expected cost functionals; our work addresses the

problem of constructing risk measures and risk-averse control of such systems, which appears

to be unexplored.

In the financial area, everyone, including traders and investors, are exposed to various kinds

of risks. Therefore, finding a way to quantify the riskiness of a position is very helpful for

decision making. For this reason, the idea of risk measures was proposed in the literature.

Artzner et al. [39] first introduced the concept of a coherent risk measure. Föllmer and Schied

[20] and independently Frittelli and Rosazza Gianin [26] broadened the class of coherent risk

measures, defining convex risk measures. Then, Ruszczyński and Shapiro [53] considered

optimization problems involving convex risk measures.

Further developments in this area proceeded to dynamic settings. A dynamic risk measure

is a very natural and important concept. For example, in financial markets, risky payoffs are

usually spread over different dates, and the risk should be measured at each time based on the

updated information. Even if the payoff occurs at one or few times, our perpective on its risk

changes in time. In the discrete time setting, Bion-Nadal [10], Detlefsen and Scandolo [15]

and Ruszczyński and Shapiro [51] considered conditional risk measures. Coherent dynamic

risk measures were explored by Delbaen [14] and Artzner et al. [40]. Then, Cheridito et al.

[41, 13], Riedel [48], Frittelli and Rosazza Gianin [27] studied convex dynamic risk measures.

Furthermore, as for the control with a risk averse problem in the discrete time, Ruszczyński

et al. [50, 19, 12] developed Markov risk measures and risk averse dynamic programming

equations as well as computational methods.

In the continuous time setting, Coquet, Hu, Mémin, and Peng [17] discovered that a time-

consistent dynamic risk measure for a Brownian filtration can be represented by the solution

of a corresponding backward stochastic differential equation (BSDE). Important works along

these lines include Peng [42], Barrieu and El Karoui [8, 7] and Delbaen, Peng and Rosazza

Gianin [18]. As for control problems, while numerous books [31, 24, 43] discuss traditional

stochastic control, where the objective functional is defined as an expectation, the area of risk-

averse case is largely unerexplored. Ruszczyński and Yao [3, 2] considered the risk-averse

case with a coherent risk measure given by a g-evaluation. Therefore, by the result of [17],
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they changed the problem into a decoupled forward–backward stochastic differential equation

system (FBSDE), and obtained the related risk-averse dynamic programming equation, the

corresponding HJB equation, as well as numerical approximation results.

The contribution of this paper is the study of continuous time risk-averse control problems

with a partially observable state. In our setting, the unobservable process is a Markov jump

process while the observable one is given by a diffusion process. By introducing a special

risk structure called the risk filter, we transform the partially observable system into a fully

observable system of stochastic differential equations. Then we explore the properties of risk

filters to derive an equivalent controlled forward–backward system. Finally, we derive the

dynamic programming equation in the case of piecewise-constant controls.

The thesis is organized as follows: In Chapter 2, we introduce the background of risk mea-

sures including the static risk measure as well as dynamic risk measures in both discrete time

and continuous time. In Chapter 3, we cover the necessary background on optimal filtering. We

propose the general equation for optimal nonlinear filter and its applications: the Kalman-Bucy

filter and Wonham filter. We then extend to the equation of interpolation and extrapolation of

filter problem. In Chapter 4, we start to introduce our framework of risk filtering. We first dis-

cuss the case with only terminal cost function and then generalize to the case with running cost.

In Chapter 5, we further introduce control into our model and propose the risk averse control

problem with risk filtering setting. In Chapter 6, we develop dynamic programming w.r.t. to

the control problem and also the optimal control problem. Finally in Chapter 7, we sumarize

this thesis.
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Chapter 2

Risk Measures

When people are making decisions under uncertainty, they will always have a measure as a

criterion. One of the most widely used measures is the expected value of some cost or profit. In

probability theory, the expected value, intuitively, is the long-run average value of repetitions of

the experiment it represents. So the advantage of using the expected value is that it captures the

average behavior of the uncertain outcome and also it is convenient and easy to use. However,

in some cases, the simple average is not a desired a result for your decision making. One of the

example is the following, the famous ”St. Petersburg paradox”.

Example 2.0.1. (St. Petersburg Paradox) A casino offers a game of chance for a single player

in which a fair coin is tossed at each stage. The initial stake starts at 2 dollars and is doubled

every time heads appears. The first time tails appears, the game ends and the player wins

whatever is in the pot. Thus the player wins 2 dollars if tails appears on the first toss, 4 dollars

if heads appears on the first toss and tails on the second, 8 dollars if heads appears on the first

two tosses and tails on the third, and so on. Mathematically, the player wins 2k dollars, where

k equals number of tosses (k must be a whole number and greater than zero). What would be a

fair price to pay the casino for entering the game?

As for the above problem, if you use the expected value as your criterion for decision

making, you will be in big trouble. The expected return is the following:

E =
1
2
· 2 +

1
4
· 4 +

1
8
· 8 + · · · = ∞

which means, we would like to pay an infinite amount for this game. But is it a good decision?

The answer is no. The reason is simple, you only have 1.6% probability of winning $64 or

more, which means, with more than 98.4% chance, your win is no more than $32. Therefore,

definitely you are not willing to pay much for this game. Then, we should have some other
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criterion for our decision making. One possible approach is the famous Expected Utility The-

ory. A common utility function to use is log(x) (we choose the base to be 10). It is a function

of the gamblers total wealth w, and the concept of diminishing marginal utility of money is

built into it. The expected utility hypothesis posits that a utility function exists whose expected

net change from accepting the gamble is a good criterion for real people’s behavior. For each

possible event, the change in utility log(wealth after the event) − log(wealth before the event)

will be weighted by the probability of that event occurring. The intuition with this formula

is easy to understand: For example, a poor person whose initial wealth is $10 and who wins

$10, 000 has a different perspective from a rich person whose initial wealth is $100, 000 and

who wins the same amount of money. Actually, the importance of winning this amount for the

poor person is much higher than for the rich person. But in the measure of expected value, both

gain of $10, 000, while in contrast, in the expected utility theory, the utility for the poor person

is

log(10010) − log(10) = 3.00

while the utility for the rich person is

log(110000) − log(100000) = 1.04.

The result is consistent with our intuition.

Now let c be the cost charged to enter the game. The expected incremental utility of the

lottery now converges to a finite value:

c =

∞∑
k=1

1
2k [ln(2k + w) − ln(w)] < ∞

which is a fair price for the player with total wealth w.

Remark 2.0.2. This paradox takes its name from its resolution by Daniel Bernoulli [9], how-

ever, the problem was invented by Daniel’s cousin, Nicolas Bernoulli, who first stated it in a

letter to Pierre Raymond de Montmort in 1713.

2.1 The Concept of a Static Risk Measures

Risk Measures were introduced as means to quantify the riskness of financial positions and

provide a criterion to determine whether the risk is acceptable or not.
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2.1.1 Value at Risk and related risk measures

The expected utility function as mentioned in the above example is a widely used risk measure,

especially in economic theory. As for the area of finance, there is another very popular static

risk measure, called ”Value at Risk”(VaR).

Value at risk(VaR) (Duffle and Pan [16]) is a measure of the risk of investments. It estimates

how much a set of investments might lose, given normal market conditions, in a set time period

such as a day. VaR is typically used by firms and regulators in the financial industry to gauge

the amount of assets needed to cover possible losses. Formally, VaR with confidence level p is

defined such that the probability of a loss greater than VaR is less than or equal to p while the

probability of a loss less than VaR is less than or equal to 1 − p.

Mathematically, given a confidence level p, if X is the underlying(e.g., the price of a port-

folio)), then VaRp(X) is the negative of the p-quantile, i.e.:

VaRp(X) = inf{x ∈ R : P(X + x < 0) ≤ 1 − p} = inf{x ∈ R : 1 − FX(−x) ≥ p}

where FX(·) is the cdf as usual in probability theory.

Compared to expected value, which only focuses on the average, VaR pays attention to the

tail of the distribution, which quantifies the probability of unlikely and undesirable outcomes,

such as catastrophe or large loss. Since these measures help us to better understand and man-

age risk, they are called ”risk measures”. There are other VaR related risk measures [37], for

example, Expected Shortfall, Conditional Value At Risk (CVaR).

2.1.2 Markowitz Portfolio Theory

Markowitz proposed that portfolio risk is equal to the variance of the portfolio returns. His

setting is the following:

Assume we have a portfolio consisting of n assets, with return ri for i ∈ {1, 2, ..., n}. Denote

by µi = E(ri), m = (µ1, µ2, ...µn)T and the covariance matrix of their return to be Σ. If the

weight associated with each asset i is ωi, and we define ω = {ω1, .., ωn}. Then the return and

the variance of the portfolio is given by:

E = mTω, Var =
1
2
ωTΣω
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Now since variance is the measure of risk in Markowitz’s setting, the mathematical formulation

of the resulting optimization problem is the following:

minimize
1
2
ωTΣω

such that mTω ≥ µb, eTm = 1

Based on the Markowitz portfolio risk measurement, Sharpe [54] invented the Sharpe Ratio:

Sharpe =
µp − r f

σp

where µp is the portfolio return, r f is the risk free rate of return, andσp is the volatility (standard

deviation) of the portfolio. Sharpe ratio can be interpreted as the excess return above the risk

free rate per unit of risk, where risk is measured by Markowitz Portfolio Theory. The Sharpe

ratio provides a portfolio risk measure in terms of determining the quality of the portfolio return

at a given level of risk.

2.1.3 Coherent Risk Measure

A significant milestone in risk measurement, which is the concept of a coherent risk measure,

was achieved by Artzner et al [38, 39], who are the first to propose the axioms of risk mea-

surement. These axioms have far reaching implications. It is no longer possible to assign an

arbitrary function as risk measure unless it satisfies all these axioms. From this perspective,

VaR is no longer a coherent risk measure while CVaR is. Further developments in this area

include: convex risk measure, which was first introduced by Heath [28] and later by Föllmer

and Schied [20] and Frittelli and Rosazza Gianin [26] in more general spaces of random vari-

ables; representation theorems for sublinear and convex risk measures by Föllmer and Schied

[21, 20] and independently, Frittelli [25] and Frittelli and Rosazza Gianin [26]. Additional

interesting results about convex risk measures can be found in [22] by Föllmer and Schied.

Specifically, by choosing the acceptance set according to the lost functions of the investors,

they proposed the convex risk measures ”dependent” on the preferences of the agents.

Definition 2.1.1. (Convex / Coherent Risk Measure [23]) A mapping ρ : Z → R∪{∞} is called

a convex risk measure if ρ(0) is finite and ρ(·) satisfies the following axioms:

(i) Monotonicity: If X ≤ Y, then ρ(X) ≤ ρ(Y) ∀X,Y ∈ Z.
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(ii) Translation Invariance: ρ(X + m) = ρ(X) + m ∀X ∈ Z, m ∈ R.

(iii) Convexity: ρ(λX + (1 − λ)Y) ≤ λρ(X) + (1 − λ)ρ(Y) ∀X,Y ∈ Z, 0 ≤ λ ≤ 1.

A convex risk measure is called a coherent risk measure, if it further satisfies:

(i) Positive Homogeneity: ρ(λX) = λρ(X) ∀X ∈ Z, λ ≥ 0.

Under the assumption of positive homogeneity, the Convexity of a monetary risk measure is

equivalent to:

(i) Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y) ∀X,Y ∈ Z.

Each axiom listed above has its own explanation. Assume the above ρ(X) measures the

future loss of the portfolio X. Then, Monotonicity means that high loss is associated with high

risk. Translation Invariance can be understood as that the investment in the riskless bond bears

no loss with probability 1. Hence we must always receive the initial amount invested. The

Convexity or Subadditivity states that if you diversify your portfolio, it will reduce the risk,

which reflects the core idea of risk management. Finally, Positive Homogeneity ensures that

we cannot increase or decrease risk by investing differing amounts in the same stock; in other

words the risk arises from the stock itself and is not a function of the quantity purchased.

Under the framework of coherent risk measure, as mentioned at the beginning, VaR is no

longer a candidate since it does not satisfy the Subadditivity property.

Remark 2.1.1. The following are some popular used coherent risk measures:

• CVaR:

CVaR = E(X|X > VaRp(X))

• Mean-semideviation ([4]):

ρ(X) = E(X) + α(E(Z − E[Z])+)p)
1
p , α ∈ [0, 1], p ≥ 1

• Entropic risk measure ([22])

ρ(X) =
1
p

log(E(epX)), p > 0
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2.2 Dynamic Risk Measures in Discrete Time

The above section is mainly about risk measures within one stage, i.e., the problem of quantify-

ing today’s risk of our financial position w.r.t. a future maturity date. Such measures are called

”static risk measures.”

Another interesting and prospective direction is the theory of multi-stage risk measures, or

dynamic risk measures. In this setting, we estimate the risk of our position at different times

between today and the maturity. There are two directions within this theory, discrete time

models and continuous time models. We start with the discrete time models.

Definition 2.2.1. (Conditional Risk Measure) Given a probability space (Ω,F , P) with filtra-

tions F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F . We also have adapted sequence of random variables

Z1,Z2, ...,ZT such that Zt ∈ Zt = Lp(Ω,Ft, P) and Zt,T = Zt × · · · × ZT . Then a mapping

ρt,T : Zt,T → Zt is called Conditional Risk Measure if it satisfies the following monotonicity

condition:

ρt,T (Z) ≤ ρt,T (W) ∀Z,W ∈ Zt,T such that Z ≤ W

Based on the Conditional Risk Measure, we can define the Dynamic Risk Measure.

Definition 2.2.2. (Dynamic Risk Measure) Dynamic Risk Measure is a sequence of conditional

risk measures

ρt,T : Zt,T → Zt t = 1, 2, ...,T

For example:

ρ1,T (Z1,Z2,Z3, ...,ZT ) ∈ Z1 = R

ρ2,T (Z2,Z3, ...,ZT ) ∈ Z2

ρ2,T (Z3, ...,ZT ) ∈ Z3

......

The key issue in the dynamic setting is the consistency over time, which has been studied

in various references (e.g. [40, 33, 34]), in the past. The definition we proposed is similar to

that in [50].
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Definition 2.2.3. (Time-Consistency) A dynamic risk measure {ρt,T }
T
t=1 is time-consistent if for

all τ < θ the relation

Zk = Wk, k = τ, ..., θ − 1

and

ρθ,T (Zθ, ...,ZT ) ≤ ρθ,T (Wθ, ...,WT )

imply that

ρτ,T (Zτ, ...,ZT ) ≤ ρτ,T (Wτ, ...,WT )

The understanding of the concept of time consistency is intuitive: If Z is at least as good as

W from future time θ and Z and W are identical between τ and θ − 1, then at earlier time τ, Z

should be at least as good as W as well. Then we have the following Risk-Averse Equivalence

Theorem regarding the structure of time consistency.

Theorem 2.2.1. (Risk-Averse Equivalence Theorem [50]) Suppose {ρt,T }
T
t=1 satisfies the condi-

tion:

ρt,T (Zt,Zt+1, ...,ZT ) = Zt + ρt,T (0,Zt+1, ...,ZT )

ρ(0, 0, ..., 0) = 0

Then it is time-consistent if and only if for all τ ≤ θ:

ρτ,T (Zτ, ...,Zθ, ...,ZT ) = ρτ,θ(Zτ, ...,Zθ−1, ρθ,T (Zθ, ...,ZT ))

Based on the above theorem, if we further define one-step conditional risk measures ρt :

Zt+1 → Zt:

ρt(Zt+1) = ρt,T (0,Zt+1, 0, ..., 0)

Then, we dynamically evaluate the risk ρt,T at time t by recursively evaluating the one-step

conditional risk measures.

Theorem 2.2.2. (Nested Decomposition Theorem [50]) Suppose {ρt,T }
T
t=1 is time-consistent and

satisfies the condition:

ρt,T (Zt,Zt+1, ...,ZT ) = Zt + ρt,T (0,Zt+1, ...,ZT )

ρ(0, 0, ..., 0) = 0
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Then for all t we have the representation:

ρt,T (Zt,Zt+1, ...,ZT ) = Zt + ρt(Zt+1 + ρt+1(Zt+2 + ... + ρT−1(ZT )))

From the above theorem, we can see that it gives an algorithm to evaluate the risk in a

backward induction, which is a dynamic setting. And it involves only one-step conditional risk

measures.

Example 2.2.3. (The mean semideviation model [5, 52])

ρt(Zt+1) = E(Zt+1|Ft) + kE[((Zt+1 − E[Zt+1|Ft])+)p|Ft]
1
p

where k ∈ [0, 1] may be Ft- measurable and p ≥ 1.

If it involves optimal decision making in solving Multistage Risk-Averse Optimization

Problems, the following Interchangeability Principle will be used.

Proposition 2.2.4. (Interchangeability Principle [50]) Given a probability space (Ω,F , P) with

filtration F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F . If we denote by xt(ω) ω ∈ Ω, t = 1, 2, ...,T to be the

decision variable at time t. And we further assume that xt(·) is not anticipated, i.e. xt(·) is

Ft-measurable. Also, the cost at each stage is defined by Zt(xt), t = 1, 2, ..,T. Then we have

the following:

min
x1,x2,...,xT

{Z1(x1) + ρ1(Z2(x2) + ρ2(Z3(x3) + ... + ρT−1(ZT )) · ··))}

= min
x1
{Z1(x1) + ρ1(min

x2
Z2(x2) + ρ2(min

x3
Z3(x3) + ... + ρT−1(min

xT
(ZT )) · ··))}

2.3 Dynamic Risk Measures in Continuous Time

Dynamic risk measures in the continuous time setting starts from Peng et al’s [17] contribution

of connecting time consistent dynamic risk measure with a corresponding backward stochas-

tic differential equation(BSDE). We will go through the concepts of nonlinear expectation,

g-evaluation and BSDE in this section. Also, since law invariance plays a crucial role in the

partially observable problem, which is our main material, we shall first start this section with

the concept of a law invariant risk measure, namely a risk estimator.
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2.3.1 Risk Estimators

Given a probability space (Ω,F , P), and a space Z of measurable real functions on (Ω,F ), a

risk measure is a real-valued function on Z. In our further considerations we focus on Z =

L2(Ω,F , P).

Definition 2.3.1. A risk measure ρ : L2(Ω,F , P) → R is law invariant with respect to the

probability measure P, if for any random variables Z ∈ L2(Ω,F , P) and Z′ ∈ L2(Ω,F , P) that

have the same distribution under P, we have ρ(Z) = ρ(Z′).

Remark 2.3.1. A law invariant risk measure ρ(Z) can be written as ρ(πZ), where πZ = P ◦ Z−1

is the distribution of Z on R. Also, for any measurable function f : R → R such that f (Z) ∈

L2(Ω,F , P) if Z ∈ L2(Ω,F , P), the risk measure ρ( f (Z)) can be written as ρ( f , πZ).

Definition 2.3.2. A law invariant risk measure is called a risk estimator.

The concept of risk estimator will play a crucial role in the main setting and we will discuss

it later on.

2.3.2 Dynamic Risk Measures

Consider now a filtration
{
Ft

}
0≤t≤T and the corresponding spacesZt = L2(Ω,Ft, P), 0 ≤ t ≤ T .

Definition 2.3.3. A conditional risk measure is a measurable mapping ρt,T : ZT → Zt, where

0 ≤ t ≤ T.

(i) It is monotonic, if ξ ≤ ξ′ a.s. implies that ρt,T [ξ] ≤ ρt,T [ξ′] a.s.;

(ii) It is normalized, if ρt,T [0] = 0;

(iii) If has the generalized constant preservation property, if ρt,T (ξ) = ξ for all ξ ∈ Zt;

(iv) It has the translation property, if ρt,T [ξ + η] = ξ + ρt,T [η], for all ξ ∈ Zt, η ∈ ZT ;

(v) It has the local property, if ρt,T [ 1Aξ ] = 1Aρt,T [ ξ ], for all ξ ∈ ZT and all A ∈ Ft.

Observe that a normalized conditional risk measure having the translation property has the

generalized constant preservation property as well.

Definition 2.3.4. A dynamic risk measure is a collection of conditional risk measures {ρt,T }0≤t≤T .

We say that it is monotonic, normalized, has the generalized constant preservation property, the
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translation property, or the local property, if all its conditional risk measures have the corre-

sponding properties (i), (ii), (iii), or (v) of Definition 2.3.3. It is time consistent, if for all

0 ≤ t ≤ s ≤ T and all ξ ∈ ZT we have ρt,T (ξ) = ρt,T
(
ρs,T (ξ)

)
.

For any 0 ≤ t ≤ s ≤ T , we can define ρt,s : Zs → Zt such that ρt,s(η) = ρt,T (η) for any

η ∈ Zs. Therefore, a family of conditional risk measures {ρt,s}0≤t≤s≤T is available.

Remark 2.3.2. Under the generalized constant preservation property, time consistency can be

equivalently expressed as follows: for all 0 ≤ t ≤ s ≤ T, if ρs,T (Y) ≤ ρs,T (Y ′) then ρt,T (Y) ≤

ρt,T (Y ′). Indeed, we immediately see that ρs,T (Y) = ρs,T (Y ′) implies ρt,T (Y) = ρt,T (Y ′) and thus

ρt,T (Y) = ϕ
(
ρs,T (Y)

)
for all Y ∈ ZT , for some operator ϕ : Zs → Zt. Setting Y ∈ Zs, we get

ρt,T (Y) = ϕ(Y), and thus ϕ(·) = ρt,s(·).

2.3.3 Nonlinear Expectations

We start from basic properties on nonlinear expectations.

Definition 2.3.5. For 0 ≤ T < ∞, a nonlinear expectation is a functional: γ0,T : L2(Ω,FT , P)→

R satisfying the following properties:

(i) Strict Monotonicity: If η ≥ η′ a.s., then γ0,T [η] ≥ γ0,T [η′]; If η ≥ η′ a.s., then γ0,T [η] =

γ0,T [η′] if and only if η = η′ a.s..

(ii) Constant Preservation: γ0,T [c] = c ∀c ∈ R

Lemma 2.3.3. For any 0 ≤ t ≤ T, and η, η′ ∈ L2(Ω,Ft, P). If

γ0,T [η1A] = γ0,T [η′1A] ∀A ∈ Ft

then η = η′ a.s.

Proof. We choose A = {η1 > η2} ∈ Ft, since (η1 − η2)1A ≥ 0, and γ0,T [η11A] = γ0,T [η21A], it

follows that η11A = η21A a.s. Thus η2 ≥ η1 a.s. Similarly, we can also prove that η1 ≥ η2 a.s.

Therefore, η1 = η2 a.s.. �

Based on the above lemma, we can further define an F -consistent nonlinear expectation.
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Definition 2.3.6. For the given filtration {Ft}, 0 ≤ t ≤ T, a nonlinear expectation γ0,T [·] is

F -consistent if for every η ∈ L2(Ω,FT , P) and every t ∈ [0,T ], there exists a random variable

ζ ∈ L2(Ω,Ft, P) such that

γ0,T [η1A] = γ0,T [ζ1A] ∀A ∈ Ft

Remark 2.3.4. According to Lemma 2.3.3, ζ is uniquely defined; we denote it by γt,T [η]. This

can be understood as the nonlinear conditional expectation of η at time t. We can further define

γ0,t : L2(Ω,Ft, P) → R such that γ0,t[η] = γ0,T [η] for all t ∈ [0,T ] and η ∈ L2(Ω,Ft, P). This

can be interpreted as follows: sinceFt has all the information about η, even ifFT contains more

information, our estimation of η remains the same. Furthermore, for any 0 ≤ t ≤ s ≤ T, we can

define γt,s : L2(Ω,Fs, P) → L2(Ω,Ft, P) such that γt,s(η) = γt,T (η) for any η ∈ L2(Ω,Fs, P).

The interpretation for this is similar to γ0,t. Therefore, a family of F -consistent nonlinear

expectations {γt,s, 0 ≤ t ≤ s ≤ T } is defined.

Proposition 2.3.5. Let γ0,T (·) be defined in Definition 2.3.5, for each 0 ≤ t ≤ T and ξ ∈

L2(Ω,FT , P), there exists a γt,T (·) ∈ L2(Ω,Ft, P) satisfying Definition 2.3.6, then γt,T (·) satis-

fies the following axioms:

• Monotonicity: γt,T [ξ] ≥ γt,T [ξ′] a.s. if ξ ≥ ξ′ a.s.

• Constant Preservation: γt,T [ξ] = ξ i f ξ ∈ L2(Ω,Ft, P)

• Local Property: for each t, γt,T [1Aξ] = 1Aγt,T [ξ] ∀A ∈ Ft

• Time Consistency: γs,t[γt,T [ξ]] = γs,T [ξ] for 0 ≤ s ≤ t ≤ T

Proof. We first prove Monotonicity. Define ξt = γt,T [ξ] and ξ′t = γt,T [ξ′]. Assuming that

ξ, ξ′ ∈ L2(Ω,FT , P) and ξ′ ≤ ξ. Let A ∈ L2(Ω,Ft, P). Then by the monotonicity property of

γ0,T [·], we have:

γ0,T [ξ′t 1A] = γ0,T [ξ′1A] ≤ γ0,T [ξt1A] = γ0,T [ξt1A]

Now we take A = {ξ′t > ξt}, then if P(A) > 0, by the strict monotonicity property of γ0,T [·], we

have

γ0,T [ξ′t 1A] > γ0,T [ξt1A]

which is a contradiction. Hence, P(A) = 0, which implies ξ′t ≤ ξt a.s.
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Second, the constant preservation property is trivial and straightforward by recalling the

Definition 2.3.6 and Lemma 2.3.3.

Third, we prove the Local Property. For each B ∈ L2(Ω,Ft, P), we have:

γ0,T [γt,T [ξ1A]1B] = γ0,T [ξ1A1B]

= γ0,T [γt,T [ξ]1A∩B]

= γ0,T [[γt,T [ξ]1A]1B]

Therefore, by the uniqueness property, the local property holds.

Finally we shall prove the Time Consistency Property. For any A ∈ Fs, we have A ∈ Ft.

Thus,

γ0,T [γs,T [γt,T [ξ]]1A] = γ0,T [γt,T [ξ]1A]

= γ0,T [ξ1A]

= γ0,T [γs,T [ξ]1A]

Therefore, γs,T [ξ] = γs,T [γt,T [ξ]] = γs,t[γt,T [ξ]]. �

Lemma 2.3.6. For any ξ, ξ′ ∈ L2(Ω,FT , P), ∀A ∈ Ft, and for each t ∈ [0,T ], we have:

γt,T [ξ1A + ξ′1AC ] = γt,T [ξ]1A + γt,T [ξ′]1AC

Proof.

γt,T [ξ1A + ξ′1AC ] = γt,T [ξ1A + ξ′1AC ]1A + γt,T [ξ1A + ξ′1AC ]1AC

= γt,T [ξ1A + ξ′1AC 1A] + γt,T [ξ1A + ξ′1AC 1AC ]

= γt,T [ξ1A] + γt,T [ξ′1AC ]

= γt,T [ξ]1A + γt,T [ξ′]1AC

�

2.3.4 Backward Stochastic Differential Equations

Let’s first introduce the framework of BSDE by a simple example. For ∀ξ ∈ L2(Ω,FT , P), by

the Martingale Representation Theorem, there exists ηt ∈ L2(Ω,Ft, P) such that ξ = E[ξ] +
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∫ T
0 ηtdWt. For here, the filtration {Ft} is the augmented filtration generated by the Brownian

Motion Wt. Denote

Yt := E[ξ] +

∫ t

0
ηsdWs, Zt := ηt

Then (Yt,Zt) are Ft-adapted and they satisfy the following:

dYt = ZtdWt, YT = ξ

This is actually a simple BSDE, and the pair (Y,Z) is called the solution of this BSDE.

More generally and formally, let the filtration be generated by a d-dimensional Brownian

motion {Wt}0≤t≤T . On the probability space (Ω,F , P) with a Brownian filtration {Ft}0≤t≤T , we

consider the following one-dimensional backward stochastic differential equation (BSDE):

(2.1) −dYt = g(t,Yt,Zt) dt − Zt dWt, YT = η.

Here, η ∈ L2(Ω,FT , P) is called the terminal condition and the measurable function g : [0,T ]×

R × Rd × Ω → R is called the driver (or generator); we always assume that g(t,Yt,Zt) is Ft-

measurable for all t ∈ [0,T ]. We define two relevant spaces of processes:

• S2,m[t,T ] is the set of functions Y : [t,T ] × Ω → Rm that are adapted and such that

E[ sup
t≤s≤T

|Ys|
2] < ∞; for m = 1, we write it as S2[t,T ];

• H2,m[t,T ] is the set of functions Y : [t,T ] × Ω → Rm that are adapted and such that

E[
∫ T

t |Ys|
2 ds] < ∞; for m = 1, we write it asH2[t,T ].

Definition 2.3.7. If a pair of processes (Y,Z) ∈ S2[0,T ] × H2,d[0,T ] satisfies equation (2.1),

we say that the pair (Y,Z) is the solution of the corresponding BSDE.

Assumption 2.3.7. The function g is jointly Lipschitz in (y, z). i.e., a constant K > 0 exists such

that for all t ∈ [0,T ], all y1, y2 ∈ R and all z1, z2 ∈ R
d, we have

|g(t, y1, z1) − g(t, y2, z2)| ≤ K(|y1 − y2| + |z1 − z2|) a.s.,

and the process g(·, 0, 0) ∈ H2[0,T ].

In order to introduce the existence and uniqueness result, we shall state the following lemma

first.
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Lemma 2.3.8. Under Assumption 2.3.7, if (Y,Z) is a solution of the orignial BSDE, Then

||(Y,Z)||2 ≤ CE[|η|2 +

∫ T

0
|g(t, 0, 0)2dt|]

where

||(Y,Z)||2 := E{ sup
0≤t≤T

|Yt|
2 +

∫ T

0
|Zt|

2dt}

Theorem 2.3.9. If Assumption 2.3.7 is satisfied, the existence and uniqueness of the solution

of (2.1) can be guaranteed (see J. Zhang [67]).

Proof. We first prove the uniqueness of the solution. Suppose the pairs (Y i,Zi), i = 1, 2 are the

solutions. And it suffices to prove that

||(Y1 − Y2,Z1 − Z2)|| = 0

Denote ∆Yt := Y1
t − Y2

t ,∆Zt := Z1
t − Z2

t , then

∆Yt =

∫ T

t
[g(s,Y1

s ,Z
1
s ) − g(s,Y2

s ,Z
2
s )]ds −

∫ T

t
∆ZsdWs

=

∫ T

t
[αs∆Ys + βs∆Zs]ds −

∫ T

t
∆ZsdWs

where

(2.2) αt =


g(t,Y1

t ,Z
1
t )−g(t,Y2

t ,Z
1
t )

∆Yt
, if ∆Yt , 0

0, if ∆Yt = 0
βt =


g(t,Y2

t ,Z
1
t )−g(t,Y2

t ,Z
2
t )

∆Zt
, if ∆Zt , 0

0, if ∆Zt = 0

are bounded. Then by Lemma 2.3.8, we get ||(∆Y,∆Z)||2 ≤ 0, the uniqueness is proved.

Then, let’s prove the existence by Picard Iteration. Denote

Y0
t = η +

∫ T

t
g(s, 0, 0)ds −

∫ T

t
Z0

s dWs

and for n = 1, 2, ...,

Yn
t = η +

∫ T

t
g(s,Yn−1

s ,Zn−1
s )ds −

∫ T

t
Zn

s dWs

By induction, one can easily show that ||(Yn,Zn)|| < ∞, n = 0, 1, 2, .... Denote ∆Yn
t := Yn

t −

Yn−1
t ,∆Zt := Zn

t − Zn−1
t . Then

∆Yn
t =

∫ T

t
[αn−1

s ∆Yn−1
s + βn−1

s ∆Zn−1
s ]ds −

∫ T

t
∆Zn

s dWs
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where αn, βn are defined in a similar way as in the (2.2) and are bounded. By applying Itô

formula to eγt|∆Yn
t |

2 with γ > 0 a constant and by noting that ∆Yn
T = 0, we have:

E[eγt|∆Yn
t |

2 + γ

∫ T

t
eγs|∆Yn

s |
2ds +

∫ T

t
eγs|∆Zn

s |
2ds]

= E[2
∫ T

t
[eγs∆Yn

s [αn−1
s ∆Yn−1

s + βn−1
s ∆Zn−1

s ]]ds]

≤ E[C
∫ T

t
[eγs|∆Yn

s |[|∆Yn−1
s | + |∆Zn−1

s |]ds]

≤ E[C0

∫ T

t
eγt|∆Yn

s |
2ds +

1
4T

∫ T

t
eγs|∆Yn−1

s |2ds +
1
4

∫ T

t
eγs|∆Zn−1

s |2ds]

where C0 is a constant and here by choosing γ = C0, we have:

E[eγt|∆Yn
t |

2 +

∫ T

t
eγs|∆Zn

s |
2ds]

≤ E[
1

4T

∫ T

t
eγs|∆Yn−1

s |2ds +
1
4

∫ T

t
eγs|∆Zn−1

s |2ds]

≤
1
4

[ sup
0≤s≤T

eγsE|∆Yn−1
s |2 +

∫ T

0
eγsE|∆Zn−1

s |2ds]

Thus,

sup
0≤t≤T

eγtE|∆Yn
t |

2 ≤
1
4

[ sup
0≤t≤T

eγtE|∆Yn−1
t |2 +

∫ T

0
eγtE|∆Zn−1

t |2dt]∫ T

0
eγt|∆Zn

t |
2dt ≤

1
4

[ sup
0≤t≤T

eγtE|∆Yn−1
t |2 +

∫ T

0
eγtE|∆Zn−1

t |2dt]

Define

||(Y,Z)||2γ := E[ sup
0≤t≤T

eγt|Yt|
2 +

∫ T

0
eγt|Zt|

2dt]

Then we have the following relation:

||(∆Yn,∆Zn)||2γ ≤
1
2
||(∆Yn−1,∆Zn−1)||2γ

Hence,

|(∆Yn,∆Zn)||2γ ≤
1

2n−1 |(∆Y1,∆Z1)||2γ =
C
2n

Also, noticing that

|(Y1 + Y2,Z1 + Z2)||γ ≤ |(Y1,Z1)||γ + ||(Y2,Z2)||γ

For any n < m,

||(Yn
t − Ym

t ,Z
n
t − Zm

t )||γ ≤
m∑

j=n+1

||(∆Y j,∆Z j)||γ ≤
m∑

j=n+1

C

2
j
2

≤
C

2
n
2
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Therefore,

||(Yn
t − Ym

t ,Z
n
t − Zm

t )||γ → 0 as n,m→ ∞

Thus, there exists (Y,Z) such that

sup
0≤t≤T

eγtE|Yn
t − Yt|

2 +

∫ T

0
eγt|Zn

t − Zt|
2dt → 0 as n→ ∞

Finally, by letting n→ ∞, we conclude that the pair (Y,Z) satisfies the original BSDE.

�

We also have the following stability and comparison result for BSDE.

Theorem 2.3.10. (Stability) Assume

Yt = η +

∫ T

t
g(s,Ys,Zs)ds −

∫ T

t
ZsdWs

and

Yn
t = ηn +

∫ T

t
gn(s,Yn

s ,Z
n
s )ds −

∫ T

t
Zn

s dWn

where η, ηn ∈ L2(Ω,FT , P), both g and gn satisfies Assumption 2.3.7 with a common Lipschitz

constant for all n. Assume further that

lim
n→∞

E[|ηn − η|
2 +

∫ T

0
|gn(t, 0, 0) − g(t, 0, 0)|2dt] = 0

and that ∀(t, y, z), gn(t, y, z)→ g(t, y, z), P − a.s. Then,

lim
n→∞
||(Yn − Y,Zn − Z)|| = 0

Theorem 2.3.11. (Comparison) Assume Assumption 2.3.7 hold for the drivers gi, i = 1, 2 and

that η1, η2 ∈ L2(Ω,FT , P). Also, let (Y i,Zi) bet the solution of the following BSDE:

Y i
t = ηi +

∫ T

t
gi(s,Y i

s,Z
i
s)ds −

∫ T

t
Zi

sdWs i = 1, 2.

Assume further that η1 > η2 a.s. and that for ∀(t, y, z), g1(t, y, z) ≥ g2(t, y, z) a.s.. Then, Y1
t >

Y2
t ∀t, a.s.. In particular, Y1

0 ≥ Y2
0 .

Proof. Denote

∆Yt := Y1
t − Y2

t ; ∆Zt := Z1
t − Z2

t ; ∆ξ := ξ1 − ξ2
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Then,

∆Yt = ∆ξ +

∫ T

t
[g1(s,Y1

s ,Z
1
s ) − g2(s,Y2

s ,Z
2
s )]ds −

∫ T

t
∆ZsdWs

= ∆ξ +

∫ T

t
[αs∆Ys + βs∆Zs + ĝs]ds −

∫ T

t
∆ZsdWs

where

αs :=
g1(s,Y1

s ,Z
1
s ) − g1(s,Y2

s ,Z
1
s )

∆Ys
βs :=

g1(s,Y2
s ,Z

1
s ) − g1(s,Y2

s ,Z
2
s )

∆Zs

are bounded and

ĝt := g1(t,Y2
t ,Z

2
t ) − g2(t,Y2

t ,Z
2
t )

By recalling that we have

∆ξ ≥ 0, and ĝt ≥ 0 a.s. ∀t

We get ∆Yt ≥ 0 a.s. from the basic result for linear BSDE (J. Zhang [67] ). �

Remark 2.3.12. Some comments on the comparison theorem:

• Comparison theorem holds true only when dim(Y) = 1, but W can be high dimensional.

• In general, we do not have g1(t,Y1
t ,Z

1
t ) ≥ g2(t,Y2

t ,Z
2
t ).

• We cannot claim that Z1
t ≥ Z2

t since actually Z can be in high dimensional.

We also have the following useful result (Peng [42]).

Proposition 2.3.13. Suppose g satisfies Assumption 2.3.7, for any t0 ∈ [0,T ] and any (y, z) ∈

R × Rd, the process g(·, y, z) is adapted to F t0
t = σ(Wτ, t0 ≤ τ ≤ t) on the interval [t0,T ] and

η ∈ L2(Ω,F t0
T , P). Then the solution (Y,Z) of the BSDE (2.1) is also F t0

t -adapted on [t0,T ]. In

particular, Yt0 and Zt0 are deterministic.

Proof. Let (Y ′,Z′) be the solution of F t0
t -adapted solution, on the interval [t0,T ] of the BSDE

Y ′t = η +

∫ T

t
g(s,Y ′s,Z

′
s)ds −

∫ T

t
Z′sdW0

s

where we denote W0
t ≡ Wt−Wt0 . Observe that (W0

s )t0≤s≤T is a Brownian Motion that is adapted

to F t0
t on the interval [t0,T ]. However, on the other hand, the process (Y ′t ,Z

′
t )t0≤s≤T is also

Ft-adapted and we have the following:∫ T

t
Z′sdWs =

∫ T

t
Z′sdW0

s , t ∈ [t0,T ]
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Therefore, the solution (Y,Z) of the original BSDE coincides with (Y ′,Z′) on the interval

[t0,T ] by the uniqueness of the solution of the BSDE. Hence the pair (Y,Z) is F t0
t -adapted. In

particular, Yt0 and Zt0 are deterministic. �

2.3.5 g-Evaluations

Under Assumption 2.3.7, we can move on to the definition of the g-evaluation.

Definition 2.3.8. For each 0 ≤ t ≤ T and η ∈ L2(Ω,FT , P), the g-evaluation at time t is the

operator ρg
t,T : L2(Ω,FT , P)→ L2(Ω,Ft, P) defined as follows:

ρ
g
t,T [η] = Yt,

where (Y,Z) ∈ S2[0,T ] ×H2,d[0,T ] is the unique solution of (2.1).

The following theorem clarifies the relation between g-evaluations and dynamic risk mea-

sures, as well as F -consistent nonlinear expectations.

Theorem 2.3.14. If the driver g satisfies Assumption 2.3.7 and g(·, y, 0) ≡ 0 for all y ∈ R, then

the the system of g-evaluations
{
ρ

g
t,T

}
0≤t≤T is a monotonic, time-consistent, generalized constant

preserving risk measure having the local property (actually a system of F -consistent nonlinear

expectation). Moreover, for any t ∈ (0,T ], any η ∈ L2(Ω,Ft, P), we have lim
s↑t

ρ
g
s,t[η] = η.

Proof. First, the Monotonicity Property is direct from the Comparison Theorem above.

As for the Local Property, we multiply 2.1 by 1A on both hand sides on the interval [t,T ],

and then we get

Yt1A = YT 1A +

∫ T

t
1Ag(t,Ys,Zs)ds −

∫ T

t
1AZsdWs

= YT 1A +

∫ T

t
g(t,Ys1A,Zs1A)ds −

∫ T

t
1AZsdWs

where the last equation is true because of the fact that g(·, y, 0) ≡ 0. This implies that (1AYs, 1AZs)

for s ∈ [t,T ] is actually a solution of the above BSDE. Therefore we have:

1Aρ
g
t,T [η] = ρ

g
t,T [1Aη]
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As for the Time Consistency Property, it follow from the uniqueness of the solution of BSDE

that for any s ≤ t ≤ T ,:

ρ
g
s,T [η] = ρ

g
s,t[Yt] = ρ

g
s,t[ρ

g
t,T [η]]

As for the Generalized Constant Preservation Property, we consider the solution (y, z) of equa-

tion (2.1) defined on [t,T ] with η ∈ L2(Ω,Ft, P):

Yt = η +

∫ T

t
g(s,Ys,Zs)ds −

∫ T

t
ZsdWs

Then by definition, we have Yt = ρ
g
t,T (η). Also, since g(·, y, 0) ≡ 0 for all y ∈ R, it is easy to

check (Yt,Zt) = (η, 0). Therefore,

ρ
g
t,T (η) = η, ∀η ∈ L2(Ω,Ft, P)

Finally, due to the continuity property of Yt w.r.t. t, we have:

lim
s↑t

ρ
g
s,t[η] = η

�

Proposition 2.3.15. We assume that the drivers g1 and g2 satisfy Assumption 2.3.7, then if g1

dominates g2 in the following sense:

g1(t, y, z) − g1(t, y′, z′) ≤ g2(t, y − y′, z − z′) ∀y, y′ ∈ R, ∀z, z′ ∈ Rd

then, ρg1
t,T [·] is dominated by ρg2

t,T [·] in the following sense, for each η, η′ ∈ L2(Ω,FT , P):

ρ
g1
t,T [η] − ρg1

t,T [η′] ≤ ρg2
t,T [η − η′]

In particular, if g is dominated by itself, then ρg
t,T [·] is also dominated by itself.

Proof. We consider three BSDE such that the first two are with same driver g1 but different

terminal conditions η and η′ while the last one is with driver g2 and terminal condition η − η′.

−dYs = g1(s,Ys,Zs)ds − ZsdWs YT = η

−dY ′s = g1(s,Y ′s,Z
′
s)ds − Z′sdWs YT = η′

−dỸs = g2(s, Ỹs, Z̃s)ds − Z̃sdWs ỸT = η − η′
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From the first two equations, we have:

−d(Ys − Y ′s) = (g1(s,Ys,Zs) − g1(s,Y ′s,Z
′
s))ds − (Zs − Z′s)dWs YT − Y ′T = η − η′

and if we denote by Ȳs = Ys − Y ′s, Z̄s = Zs − Z′s and ḡs = g1(s,Ys,Zs) − g1(s,Y ′s,Z
′
s), then we

have

−dȲs = ḡsds − Z̄sdWs ȲT = η − η′

By the Comparison Theorem and by noticing that

ḡs = g1(s,Ys,Zs) − g1(s,Y ′s,Z
′
s) ≤ g2(s,Ys − Y ′s,Zs − Z′s) = g2(s, Ȳs, Z̄s)

we have:

Ȳt = Yt − Y ′t ≤ Ỹt

Then the conclusion follows by recalling the definition of g-evaluation.

�

On the other hand, we have the following remarkable result due to [17].

Theorem 2.3.16. Suppose the filtration is defined by a d-dimensional Brownian motion, and a

dynamic risk measure {ρt,T }0≤t≤T is monotonic, time consistent, has the local property, the nor-

malization property ( a system of F -consistent nonlinear expectation), the translation property,

and

ρ0,T [ξ + η] − ρ0,T [ξ] ≤ ρµ,ν0,T [η], ∀ξ, η ∈ L2(Ω,FT , P),

where ρµ,ν0,T [·] is a g-evaluation with g(t, y, z) = µ|y| + ν|z| for some µ > 0, ν > 0. Then a driver

g satisfying Assumption 2.3.7 with g(·, y, 0) ≡ 0 for all y ∈ R exists, such that each ρt,T [·] is a

g-evaluation.

From now on, we shall consider only risk measures defined by g-evaluations. To ensure

their desired properties, we may impose additional conditions on the driver g.

Assumption 2.3.17. The driver g satisfies the following conditions for almost all t ∈ [0,T ]:

(i) g is deterministic and independent of y, i.e., g : [0,T ] × Rd → R and g(·, 0) ≡ 0;

(ii) g(t, ·) is convex for all t ∈ [0,T ];

(iii) g(t, ·) is positively homogeneous for all t ∈ [0,T ].
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The desired properties of the g-evaluation are obtained by the following theorem.

Theorem 2.3.18. Suppose g satisfies Assumption 2.3.7 and Assumption 2.3.17(i). Then the

system of the corresponding g-evaluations {ρg
t,s}0≤t≤s≤T is normalized, monotonic and has the

translation property. If, additionally, condition (ii) of Assumption 2.3.17 is satisfied, then ρg
t,s

has the property of convexity: for all η, η′ ∈ L2(Ω,Fs, P) and all β ∈ L∞(Ω,Ft, P) such that

0 ≤ β ≤ 1, we have

ρ
g
t,s(βη + (1 − β)η′) ≤ βρg

t,s(η) + (1 − β)ρg
t,s(η

′) a.s.

If g also satisfies (iii) of Assumption 2.3.17, then ρg
t,s also has the property of positive homo-

geneity: for all η ∈ L2(Ω,Fs, P) and all β ∈ L∞(Ω,Ft, P) such that β ≥ 0, we have

ρ
g
t,s(βη) = βρ

g
t,s(η) a.s.

In the following chapters, we shall drop the superscript g from the dynamic risk measures

defined by g-evaluations; the driver will be obvious from the context.
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Chapter 3

Optimal Filter

In the process of solving the partially observable problem, the conditional expectation plays a

key role, since it gives an unbiased estimation with the smallest mean squared error. There-

fore, there are many works focusing on the deduction of the representations of the conditional

expectations under different assumptions. Kolmogorov [32] and Wiener [62] first did the fun-

damental work of constructing the optimal estimator within the linear framework. Further work

obtained by themselves as well as others can be found in [44, 49, 65]. When it comes to the

field of optimal nonlinear filtering, Stratonovich [58, 59] derived the first general result on the

construction of an optimal nonlinear estimator for Markov process based on the theory of con-

ditional Markov processes. Other works in the nonlinear filtering area including: Wonham [63],

Kushner [35, 57], Shiryaev [55, 56, 57].

In general, filtering theory is concerned with the following problem. Suppose we have a

signal process θt, which we cannot observe directly. Instead, what we can observe is another

process ξt which is correlated with θt. We can understand the process ξt as ”signal plus white

noise”, which means

dξt = a(θt)dt + σtdWt

where Wt is a Wiener process and ξt is related with θt by this dynamics. Given a time t, we can

only observe {ξt, 0 ≤ s ≤ t}, therefore, our task is to estimate θt based on the information from

{ξs≤t}. For any function h(·) w.r.t θt, the best estimation in the sense of smallest mean square

error, is given by the conditional expectation,

πt(h) = E(h(θt)|F
ξ

t )

where F ξ
t = σ{θs, 0 ≤ s ≤ t}.

The goal in this type of problem is to find an explicit expression for πt(h) in terms of
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{ξs≤t}. In particular, we want to seek to express πt(h) as the solution of a stochastic differential

equation driven by the observable part ξt. The organization of this chapter is the following:

we first introduce a theorem about the dynamics of πt(h) in the general sense, then gives two

famous types of filtering, i.e. Kalman-Bucy filter and Wonham filter. Finally, we introduce the

interpolation and extrapolation problem at the end.

3.1 General Equations of Optimal Nonlineare Filter

In this section, let’s give a general formula for the optimal filter problem, this is one of the main

theories from the reference [47]. The Kalman-Bucy filter and the Wonham filter’s result can be

reached by applying this general theorem. We will discuss them later on.

3.1.1 Basic Setting

Let {Ω,F , P} be a complete probability space with a nondecreasing family of right continuous

sub σ-algebras {Ft}0≤t≤T and let θt be an unobservable process measurable w.r.t. the whole

filtration Ft while let ξt be an observable process measurable w.r.t Ft with the following dy-

namics:

ξt = ξ0 +

∫ t

0
As(ω)ds +

∫ t

0
Bs(ξ)dWs

where (Ws,Ft) is a Wiener process and the process (At(ω),Ft) and (Bt(ξ),Ft) are assumed to

satisfy the following:

P(
∫ T

0
|At(ω)|dt < ∞) = 1

P(
∫ T

0
|B2

t (ξ)|dt < ∞) = 1

Then we further assume the following conditions:

|Bt(x) − Bt(y)|2 ≤ L1

∫ t

0
[xs − ys]2dK(s) + L2[xt − yt]2

B2
t (x) ≤ L1

∫ t

0
(1 + x2

s)dK(s) + L2(1 + x2
t )

where K(t) is nondereasing right continuous function lies between 0 and 1, and both L1 and L2

are nonnegative constants.
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So now, suppose we have a Ft-measurable function ht of (θ, ξ), and Eh2
t < ∞. Then, a

natural way to characterize ht based on the information of ξs, s ≤ t is by πt(h) = E(ht|F
ξ

t ). If

we further assume that ht has the following representation:

ht = h0 +

∫ t

0
Hsds + xt

where (xt,Ft) is a martingale and (Ht,Ft) is a random process such that
∫ T

0 |Hs|ds < ∞ a.s.

3.1.2 Equation for the Optimal Nonlinear Filter

Under all the assumption above, we can have a characterize for ξs, s ≤ t, which is the following

main theorem. ([47])

Theorem 3.1.1. With all the assumption above satisfies, as well as the following:

sup
0≤t≤T

Eh2
t < ∞∫ T

0
EH2

t dt < ∞

B2
t (x) ≥ C > 0

Then, for each t ∈ [0,T ], we have P a.s.

πt(h) = π0(h) +

∫ t

0
πs(H)ds +

∫ t

0
πs(D) +

πs(hA) − πs(h)πs(A)
Bs(ξ)

dW s

where

W t =

∫ t

0

dξs − πs(A)ds
Bs(ξ)

, Dt =
d 〈x,W〉t

dt

W t is a Wiener process w.r.t F ξ
t and Dt is a process measurable w.r.t. Ft.

Remark 3.1.2. If we consider the problem of estimating the unobservable component θt of

the two-dimensional diffusion Markov process (θt, ξt), 0 ≤ t ≤ T, based on the observable

process ξt, then the representation result of πt(h) can be found in Shiryaev [57] and Liptser and

Shiryaev [46].

3.1.3 Kalman-Bucy Filter

We will give two specific applications of the above main theorem, the first one is the Kalman-

Bucy Filter, and the second one is the Wonham Filter. As you might have already noticed, the
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dynamics of πt(h) in the main theorem is not a SDE in general. However, in these two cases, it

yields a Stochastic Differential Equation.

The Kalman-Bucy Filter is a continuous time counterpart to the discrete time Kalman Filter.

As with the Kalman Filter, the Kalman-Bucy Filter is designed to estimate unmeasured states

of a process, usually for the purpose of controlling one or more of them.

In the setting of Kalman-Bucy Filters, the processes θt and ξt are two one-dimensional

Gaussian random processes given by the following linear equations:

dθt = a(t)θtdt + b(t)dW1(t)

dξt = A(t)θtdt + B(t)dW2(t)

where (W1(t),Ft) and (W2(t),Ft) are two independent Wiener processes and θ0 and ξ0 are F0-

measurable. In Kalman-Bucy setting, we want to have an estimation of the unobservable pro-

cess θt based on the observable process ξt, which will provide partial information. We would

like to have the estimation at each moment t in the optimal way, which is in the sense that mean

square error is minimized. Therefore, this estimation for θt coincides with the conditional ex-

pectation

mt = E(θt|F
ξ

t )

the mean square error is denoted by

γt = E(θt − mt)2

The following theorem gives a closed system of dynamic equations with respect to mt and γt

so that we can construct the optimal filter.

Theorem 3.1.3. Let (θt, ξt), 0 ≤ t ≤ T be a two-dimensional Gaussian process as mentioned

above. Also, the following conditions satisfiy:∫ T

0
|a(t)|dt < ∞,

∫ T

0
b2(t)dt < ∞∫ T

0
|A(t)|dt < ∞,

∫ T

0
B2(t)dt < ∞∫ T

0
A2(t)dt < ∞, B2(t) ≥ C > 0, 0 ≤ t ≤ T
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Then the conditional expectation mt = E(θt|F
ξ

t ) and the mean square error γt = E(θt −mt)2

satisfy the system of equations:

dmt = a(t)mtdt +
γtA(t)
B2(t)

(dξt − A(t)mtdt)

γ̇t = 2a(t)γt −
A2(t)γ2

t

B2(t)
+ b2(t)

with m0 = E(θ0|ξ0), γ0 = E(θ0 − m0)2. Moreover, the above system has a unique continuous

solution.

3.2 Wonham Filter

From now on, we focus on another kind of filter which is called the Wonham Filter. And all

our later risk measure and risk filter arguments are focusing on this specific class of filters.

Unlike the Kalman-Bucy filter, the signal process θt in this model is not defined as the solution

of a stochastic differential equation. Instead, it is a Markov Jump Process, which takes a finite

number of values and has piecewise constant sample paths. The observable process ξt is given

by a diffusion process which involes the signal process in its drift part. The simplification of

the unobservable process matters, since if θt takes a finite number of values α1, α2, ..., αn, then

estimation of any πt(h) is equivalent of the knowledge of conditional probability distribution

P(θt = αi|F
ξ

t ), i = 1, 2, ..., n. Therefore, the dynamics of P(θt = αi|F
ξ

t ) is the main concern in

the Wonham filter.

3.2.1 Equations of the Optimal Nonlinear Filter

Let {Ω,F , P} be a complete probability space with a nondecreasing family of right continuous

sub σ-algebras {Ft}0≤t≤T . Let the process {θt}0≤t≤T , adapted to {Ft}0≤t≤T , be a real right contin-

uous Markov process with values in a finite set E = {α1, α2, . . . , αn}; it is called a Markov jump

process. The values of the process {θt} are not observed, but at time t = 0 we know the prior

probabilities pi = P[θ0 = αi], i = 1, . . . , n.

Let {Wt}0≤t≤T , be a standard Wiener process, also adapted to {Ft}0≤t≤T , independent of θ.

The observed process {ξt}0≤t≤T follows the SDE:

(3.1) dξt = A(θt, t) dt + B(t) dWt, 0 ≤ t ≤ T,
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with the initial value ξ0, which is F0-measurable and independent of θ0.

Assumption 3.2.1. We assume the following conditions:

(i) E
[
ξ2

0
]
< ∞;

(ii) The functions A(α, t) and B(t) satisfy for all α ∈ E and 0 ≤ t ≤ T the following conditions:

|A(α, t)| ≤ L1, and 0 < C ≤ B2(t) ≤ L1, where L1 and C are constants.

Now we define the posterior probabilities:

(3.2) πi(t) = P
[
θt = αi|F

ξ
t
]
, i = 1, . . . , n,

where {F ξ
t } is the filtration generated by the observable process {ξt}. The vector π(t) = {π1(t), π2(t), . . . , πn(t)}

may be regarded as our estimate of θt based on the information from the σ-subalgebra F ξ
t . To

characterize the dynamics of the n-dimensional process π(t), we introduce a condition on the

transition rates of the unobservable process θt.

Assumption 3.2.2. Functions λαβ(t), 0 ≤ t ≤ T, α, β ∈ E, and a constant K exist, such that

(uniformly over α, β, and t), |λαβ(t)| ≤ K and

(3.3) lim
∆t↓0

1
∆t

[
P(θt+∆t = β | θt = α) − δ(α, β)

]
= λαβ(t),

where δ(α, β) is the Kronecker function (equal 1 if α = β, and 0 otherwise).

The matrix Λ =
(
λαiα j

)n
i, j=1 is the infinitesimal generator of the process θ.

The following theorem characterizes the movement of the n-dimensional process π(t).

Theorem 3.2.3 ([47]). Let Assumptions 3.2.1 and 3.2.2 hold. Then the posterior probabilities

πi(t), i = 1, . . . , n, satisfy for t ∈ [0,T ] the following system of n SDE:

(3.4) πi(t) = pi +

∫ t

0
(Λ∗π)i(τ) dτ +

∫ t

0
πi(τ)

A(αi, τ) − Ā(τ)
B(τ)

dWτ, πi(0) = pi,

where

(Λ∗π)i(τ) =

n∑
j=1

λα jαi(τ) π j(τ), Ā(τ) =

n∑
j=1

A(α j, τ) π j(τ),(3.5)

and {W t}0≤t≤T is a Wiener process given by the formula

(3.6) W t =

∫ t

0

dξτ − Ā(τ) dτ
B(τ)

.
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The proof of the above theorem based on the following two lemmas.

Lemma 3.2.4. If we denote:

pαβ(s, t) = P(θt = β|θs = α), 0 ≤ s ≤ t ≤ T

pβ = P(θt = β), 0 ≤ t ≤ T

Then, pαβ(s, t) satisfies the forward Kolmogorov equation:

pαβ(s, t) = δ(β, α) +

∫ t

s
L∗pαβ(s, u)du

where

L∗pαβ(s, u) =
∑
γ∈E

λγβ(u)pαγ(s, u)

The probability pβ(t) satisfies the equation:

pβ(t) = pβ(0) +

∫ t

0
L∗pβ(u)du

where

L∗pβ(u)du =
∑
γ∈E

λγβ(u)pγ(u)

Lemma 3.2.5. For each β ∈ E, we set the process xβt to be the following:

xβt = δ(β, θt) − δ(β, θ0) −
∫ t

0
λθsβ(s)ds

Then, the process xβt is a square integrable martingale with right continuous trajectories, hav-

ing limits to the left.

Proof. First, xβt is bounded by the uniform bound of λθsβ(s). Second, right continuity is due to

the right continuity of the trajectories of the process θt. So the only thing left is the martingale

property of xβt .

E(xβt |Fs) = xβs + E(δ(β, θt) − δ(β, θs) −
∫ t

s
λθuβ(u)du|Fs)

= xβs + E(δ(β, θt) − δ(β, θs) −
∫ t

s
λθuβ(u)du|θs)

= xβs + pθsβ(s, t) − δ(β, θs) −
∫ t

s

∑
γ∈E

λγβ(u)pθsγ(s, u)

= xβs



32

where the second equation is due to the Markov property of the process θ and the third equation

holds by the forward Kolmogorov equation in the above lemma. �

Now based on the above lemma, we can move on to the proof of the Theorem 3.2.3.

Proof. We prove the result based on the Theorem 3.1.1. We apply the result of the main Theo-

rem to the process xβt and it is easy to check that the conditions are all satisfied, and since xβt is

independent of the Wiener process Wt, we have
〈
xβ,W

〉
t
≡ 0.

Therefore, with all the assumptions satisfied, the following equation follows:

(3.7) πt(δ(β, θt)) = π0(δ(β, θ0)) +

∫ t

0
πs(λθsβ(s))ds

+

∫ t

0

πs(δ(β, θs)A(θs, s)) − πs(δ(β, θs))πs(A(θs, s))
B(s)

dW s

where

πt(·) = E(·|F ξ
t )

and

(3.8) W t =

∫ t

0

dξr − πr(A)dr
B(r)

where {W t}, 0 ≤ t ≤ T is a Wiener Process.

Finally, we simplify (3.7) for β = αi with i ∈ {1, 2, ..., n}:

πt(δ(αi, θt)) = E(δ(αi, θ0)|F ξ
0 ) +

∫ t

0
E(λθsαi(s)|F ξ

s )ds

+

∫ t

0

E(δ(αi, θs)A(θs, s)|F ξ
s ) − E(δ(αi, θs)|F

ξ
s )E(A(θs, s)|F ξ

s )
B(s)

dW s

= P(θ0 = αi) +

∫ t

0

n∑
j=1

λα jαi(s)π j(s)ds

+

∫ t

0

A(αi, s)πi(s) − πi(s)
n∑

j=1
A(α j, s)π j(s)

B(s)
dW s

= pi +

∫ t

0
(Λ∗π)i(s) ds +

∫ t

0
πi(s)

A(αi, s) − A(s)
B(s)

dW s

By noticing that πt(δ(αi, θt)) = E(δ(αi, θt)|F
ξ

t ) = πi(t), we conclude that equation (3.4) holds.

�



33

Remark 3.2.6. From equation (3.6), it is obvious that F W
t ⊆ F

ξ
t , 0 ≤ t ≤ T. It can also be

concluded that F ξ
t ⊆ F

W
t , 0 ≤ t ≤ T by noticing that both B(τ) and A(αi, τ), i = 1, . . . , n are

deterministic functions. Therefore, F W
t = F

ξ
t for all 0 ≤ t ≤ T.

Example 3.2.7. Let θ be a random variable taking values 0 and 1 with probability 1 − p and

p, respectively. The random process ξt is defined as follows:

(3.9) dξt = θ dt + dWt, ξ0 = 0.

Since π0(t) + π1(t) = 1, it is sufficient to characterize π1(t). Theorem 3.2.3 yields:

(3.10) dπ1(t) = π1(t)(1 − π1(t)) dW t,

where W t =
∫ t

0 (dξτ − π1(τ) dτ) is a Wiener process.

Example 3.2.8. Let θt, t ≥ 0 be a Markov process with two states 0 and 1 with P(θ0 = 1) = p,

P(θ0 = 0) = 1 − p. Let the observable process ξt have the following dynamics:

dξt = θtdt + dWt, ξ0 = 0

where Wt is a Wiener process as usual. Also, let the transition kernel of θt is given by the

following matrix:

Q(t) =

−λ λ

0 0


where the i-row and j-column entry means the transition rate from state i − 1 to j − 1. For

example, 1-row and 2-column entry is λ, meaning the transition rate from state 0 to state 1 is

always λ, and for here, the transition rate is time independent.

Then, if we denote by

π(t) = P(θt = 1|F ξ
t )

According to Theorem 3.2.3, we have the following:

dπ(t) = λ(1 − π(t))dt + π(t)(1 − π(t))dW t π(0) = p

where W t =
∫ t

0 (dξτ − π(τ) dτ) is a Wiener process.
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3.3 Equations of Optimal Nonlinear Interpolation and Extrapolation

Before we move on to our framework of risk filtering, let’s introduce interpolation and ex-

trapolation in the optimal filter problems. As for the interpolation, we are concerned with

πs,t(h) = E(hs|F
ξ

t ) for 0 ≤ s ≤ t ≤ T , and specifically, when s = t, πt,t(h) = πt(h). As for

the extrapolation, we consider πt,s(h) = E(ht|F
ξ
s ) for 0 ≤ s ≤ t ≤ T . For this section, all the

assumption for ht and ξt are exactly the same as the first section in this chapter.

3.3.1 Interpolation

Similar to Theorem 3.1.1, we also have a general theorem for interpolation as follows. Notice

that here we consider the ’forward’ equations (over t for fixed s).

Theorem 3.3.1. Let the assumption of Theorem 3.1.1 be satisfied. Then for 0 ≤ s ≤ t ≤ T, we

have

πs,t(h) = πs(h) +

∫ t

s

E(hsAu|F
ξ

u ) − E(hs|F
ξ

u )E(Au|F
ξ

u )
Bu(ξ)

dWu

where W t is a F ξ
t -measurable Wiener process of the following form:

W t = Wt +

∫ t

0

Au − πu(A)
Bu(ξ)

du

3.3.2 Extrapolation

We deduce a similar forward equation (over t for fixed s) for the extrapolation πt,s(h) = E(ht|F
ξ
s )

for 0 ≤ s ≤ t ≤ T .

Theorem 3.3.2. Let the assumptions for Theorem 3.1.1 be satisfied. Then, for fixed t and s

such that s ≤ t, we have:

πt,s(h) = πt,0(h) +

∫ s

0
{πu(D) +

E[E(ht|Fu)(Au − πu(A))|F ξ
u ]

Bu(ξ)
}dWu

where Ds =
d〈x̃,W〉s

ds and x̃s = E(ht|F
ξ
s ) is a square integrable martingale and is measurable

with respect to Fs for 0 ≤ s ≤ t. Also, W t is a F ξ
t -measurable Wiener process of the following

form:

W t = Wt +

∫ t

0

Au − πu(A)
Bu(ξ)

du
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3.3.3 Example

The interpolation and extrapolation have specific forms for specific filters based the above

geneal theorems, for example, for the Wonham Filter. I do not present the detail about this, but

the reader can refer to [47] for details. So here I give a concrete and simple example for the

interpolation as well as extrapolation based on a special case of the Wonham Filter.

Example 3.3.3. Let θt, t ≥ 0, be a Markov jump process with two states 0 and 1 with P(θ0 =

1) = P(θ0 = 0) = 1
2 . Let the observable process ξt have the following dynamics:

dξt = θtdt + dWt, ξ0 = 0

where Wt is a Wiener process as usual. Also, let the transition kernel of θt be given by the

following matrix:

Q(t) =

−λ λ

λ −λ


where the i-row and j-column entry means the transition rate from state i − 1 to j − 1. For

example, 1-row and 2-column is λ, meaning the transition rate from state 0 to state 1 is always

λ and for here, the transition rate is no time dependent.

Then, if we let

π(t) = P(θt = 1|F ξ
t )

According to Theorem 3.2.3, we have the following:

dπ(t) = λ(1 − 2π(t))dt + π(t)(1 − π(t))dW t π(0) =
1
2

where W t =
∫ t

0 (dξτ − π(τ) dτ) is a Wiener process.

As for the forward interpolation, given 0 ≤ s ≤ t ≤ T, if we denote π(s, t) = P(θs = 1|F ξ
t ),

then

(3.11) π(s, t) = π(s) +

∫ t

s
π(s, u)(ω11(u, s) − π(u))dWu

where W t is a Wiener process defined by the follow:

dW t = dξt − π(t)dt
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and ω11 = P(θt = 1|θs = 1,F ξ
t ) satisfies the equation:

ω11(t, s) = 1 + λ

∫ t

s
[1 − 2ω11(u, s)]du +

∫ t

s
ω11(u, s)[1 − ω11(u, s)][dξu − ω11(u, s)du]

Actually, we can further represent π(s, t) according to (3.11):

π(s, t) = π(s) exp {
∫ t

s
[ω11 − π(u)]dξu −

1
2

∫ t

s
[ω2

11(u, s) − π2(u)]du}

Finally, we consider forward extrapolation. Given 0 ≤ s ≤ t ≤ T, denote π(t, s) = P(θt =

1|F ξ
s ). Then we have:

π(t, s) = π(s) + λ

∫ t

s
[1 − 2π(u, s)]du

which, we can represent π(t, s) as follows:

π(t, s) = π(s)e−2λ(t−s) +
1
2

(1 − e−2λ(t−s))
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Chapter 4

Risk Filtering

4.1 Filtration Inconsistency Problem

We now consider the problem of estimating a cost functional φ(θT ), where φ : E → R, but

instead of using its expectation, we intend to apply a risk measure. The corresponding evalu-

ation should be available at each time t, and thus we need a dynamic risk measure {ρt,T }0≤t≤T ,

which is monotonic, time-consistent, and has the local property, at least. However, we cannot

evaluate φ(θT ) by ρt,T
[
φ(θT )

]
directly, because all the information we can observe up to time t

is in the σ-subalgebra F ξ
t . Even at t = T , the random variable θT is not F ξ

T -measurable, but

only measurable w.r.t. FT .

In order to overcome this difficulty, let us analyze the classical case first. When we measure

the cost φ(θT ) by its conditional expected value E[φ(θT ) |F ξ
t ], we use the tower property to

rewrite it as

E
[
E[φ(θT )|F ξ

T ]
∣∣∣F ξ

t
]

= E[ f (φ, π(T )) | F ξ
t ]

where

f (φ, π(T )) =

n∑
i=1

φ(αi)πi(T )

Since the function f (φ, π(T )) is a linear combination of the posterior estimates π1(T ), π2(T ),

. . . ,πn(T ), which are F ξ
T -measurable, it is F ξ

T -measurable as well. In this way, we can evaluate

E[ f (φ, π(T ))] without any filtration inconsistency problem.

Hence, in the classical case, we deal with the problem in two stages. First, we construct

an unbiased estimator of the unobserved φ(θT ), which is law invariant. Next, since the unbi-

ased estimator is filtration consistent, we can evaluate it by conditional expectation. Therefore,

first of all, we can now use a risk measure to reevaluate it by replacing the outside conditional
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expectation by a conditional risk measure ρt,T [E(φ(θT )|F ξ
T ]. This construction makes sense, be-

cause we have eliminated the filtration inconsistency issue by the inner conditional expectation

and everything inside the risk measure ρt,T is now measurable w.r.t the sub-filtration F ξ
T .

In this way, we have successfully defined a risk measure in the partially observable problem,

but in order to overcome the filtration inconsistency problem, we used the inner conditional

expectation, which is law-invariant and linear. A natural question is whether we can also replace

the inner conditional expectation by a more general nonlinear law-invariant risk estimator?

Moreover, is such a construction general enough, or is is just a convenient trick to deal with the

filtration inconsistency problem? The answer to these questions is the theory of risk filters that

we introduce in the next section.

4.2 Risk Filter

In order to answer the question in the previous section, we introduce a special nonlinear op-

erator, which will help us overcome the filtration inconsistency problem. After that, we give

a formal definition of the risk filter, the core two-stage risk measure structure. Then, the cost

function with only a terminal cost and the cost function also with a running cost will be dis-

cussed separately, and we will derive a decoupled FBSDE system in both cases.

Consider a probability space (Ω,F , P) with a filtration {Ft}0≤t≤T , such that F = FT . We

assume that a subfiltration {Gt}0≤t≤T is available, such that Gt ⊆ Ft for any t ∈ [0,T ].

Definition 4.2.1. A risk filter is a family of nonlinear operators ρ̄t,T : L2(Ω,FT , P)→ L2(Ω,Gt, P),

0 ≤ t ≤ T, which satisfies the following conditions:

(i) Normalization: For any t ∈ [0,T ] we have ρ̄t,T (0) = 0;

(ii) Translation Equivariance: For any t ∈ [0,T ], any V ∈ L2(Ω,Gt, P), and any Z ∈

L2(Ω,FT , P), ρ̄t,T (V + Z) = V + ρ̄t,T (Z);

(iii) Generalized Monotonicity: For all 0 ≤ t ≤ s ≤ T, and all Y, Y ′ ∈ L2(Ω,FT , P), if

ρ̄s,T (Y) ≤ ρ̄s,T (Y ′), then ρ̄t,T (Y) ≤ ρ̄t,T (Y ′).

It is easy to see that the operators {ρ̄t,T }0≤t≤T restricted to the spaces L2(Ω,GT , P) form a

dynamic measure of risk {ρt,T }0≤t≤T enjoying the properties (i)–(iii) of Definition 4.2.1. Due to

Remark 2.3.2, it is time consistent.
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Theorem 4.2.1. The risk filter defined in Definition 4.2.1 is time consistent and allows the

following decomposition: for any 0 ≤ t ≤ s ≤ T and any Y ∈ L2(Ω,FT , P),

(4.1) ρ̄t,T (Y) = ρt,T (ρ̄s,T (Y)).

Proof. The conditions (i) and (ii) of Definition 4.2.1 for any s ∈ [0,T ] and any Y ∈ L2(Ω,Gs, P)

yield the generalized constant preservation: ρ̄s,T (Y) = Y + ρ̄s,T (0) = Y . Thus, for any X ∈

L2(Ω,FT , P), we obtain ρ̄s,T (X) = ρ̄s,T
(
ρ̄s,T (X)

)
, which means

ρ̄s,T (X) ≤ ρ̄s,T (ρ̄s,T (X))

ρ̄s,T (X) ≥ ρ̄s,T (ρ̄s,T (X))

Therefore, by the generalized monotonicity condition (iii) of Definition 4.2.1,

ρ̄t,T (X) ≤ ρ̄t,T (ρ̄s,T (X))

ρ̄t,T (X) ≥ ρ̄t,T (ρ̄s,T (X))

Therefore,

ρ̄t,T (X) = ρ̄t,T
(
ρ̄s,T (X)

)
,

which is the time consistency of the risk filter ρ̄. Since ρ̄s,T (X) ∈ L2(Ω,Gs, P), the last equation

takes on the form of the postulated decomposition (4.1) of the risk filter. �

Remark 4.2.2. It is evident that a risk filter defines a wider class of operators ρ̄t,s : L2(Ω,Fs, P)→

L2(Ω,Gt, P), 0 ≤ t ≤ s ≤ T, as follows: for Y ∈ L2(Ω,Fs, P) we set ρ̄t,s(Y) = ρ̄t,T (Y). In par-

ticular, the operator {ρt,s}0≤t≤s≤T is the restriction of the operator {ρ̄t,s}0≤t≤s≤T on the spaces

L2(Ω,Gs, P).

We thus obtain the following propositions.

Proposition 4.2.3. Given 0 ≤ t ≤ r ≤ s ≤ T, Y ∈ L2(Ω,Fr, P) and Z ∈ L2(Ω,Gr, P), we then

have:

ρ̄t,r(Y) = ρ̄t,s(Y)

ρt,r(Z) = ρt,s(Z)
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Proof. Since it is trivial that Y ∈ L2(Ω,Fs, P), from Remark 4.2.2

ρ̄t,r(Y) = ρ̄t,T (Y) = ρ̄t,s(Y)

Since Z is measurable w.r.t. Gr, Z is also measurable w.r.t. Gs. Hence, by Remark 4.2.2 and

the first half of proof, we have the following:

ρt,r(Z) = ρ̄t,r(Z) = ρ̄t,s(Z) = ρt,s(Z)

which completes the proof. �

Proposition 4.2.4. Given 0 ≤ t ≤ r ≤ s ≤ T, then for any random variables Y, Y ′ ∈

L2(Ω,Fs, P), if ρ̄r,s(Y) ≤ ρ̄r,s(Y ′), then ρ̄t,s(Y) ≤ ρ̄t,s(Y ′).

Proof. From Remark 4.2.2,

ρ̄r,s(Y) = ρ̄r,T (Y), ρ̄r,s(Y ′) = ρ̄r,T (Y ′)

ρ̄t,s(Y) = ρ̄t,T (Y), ρ̄t,s(Y ′) = ρ̄t,T (Y ′)

Therefore,

ρ̄r,T (Y) ≤ ρ̄r,T (Y ′)

By the Monotonicity property, we have

ρ̄t,T (Y) ≤ ρ̄t,T (Y ′)

then, the conclusion follows.

�

Corollary 4.2.5. Given 0 ≤ t ≤ r ≤ s ≤ T and any Y ∈ L2(Ω,Fs, P), we have ρ̄t,T (Y) =

ρt,s(ρ̄r,s(Y)). In particular ρ̄t,T (Y) = ρt,s(ρ̄s,s(Y)). Furthermore, ρt,s(X) = ρt,s(ρr,s(X)) for any

X ∈ L2(Ω,Gs, P).

Proof. By Theorem 4.2.1,

ρ̄t,T (Y) = ρt,T (ρ̄r,T (Y)) = ρt,T (ρ̄r,s(Y))

Then, by Proposition 4.2.3,

ρt,T (ρ̄r,s(Y)) = ρt,r(ρ̄r,s(Y)) = ρt,s(ρ̄r,s(Y))
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which finishes the first part.

As for the second part, again by Theorem 4.2.1 and Proposition 4.2.3,

ρt,s(X) = ρt,T (X) = ρt,T (ρr,T (X)) = ρt,T (ρr,s(X)) = ρt,r(ρr,s(X)) = ρt,s(ρr,s(X))

which completes the proof. �

Risk filtering is indeed carried out by a two-stage procedure: for Y ∈ L2(Ω,Fs, P) we first

calculate ρ̄s,s(Y) ∈ L2(Ω,Gs, P), and then evaluate the conditional risk measure ρt,s on this

element.

4.3 Risk Filtering in the Terminal Cost Case

From now on, we will focus on the Wonham filter that we have introduced before. We will

introduce our risk filter as an estimation of the terminal cost function first, and then generalize

it to the case with running cost function as well.

On the probability space (Ω,F , P) with the filtration of the Wiener Process {W t, 0 ≤ t ≤

T } given by equation (3.6), i.e., F W = {σ(W t), 0 ≤ t ≤ T }, we consider the following 1-

dimensional BSDE:

(4.2) −dYt = g(t,Yt,Zt) dt − Zt dW t YT = η,

where η ∈ L2(Ω,F W
T , P), g : [0,T ] × R × R ×Ω→ R, and g(t,Yt,Zt) is F W

t -measurable for all

t ∈ [0,T ].

Remark 4.3.1. Due to Remark 3.2.6, we can replace F W
t by F ξ

t for any t ∈ [0,T ], since

F W
t = F

ξ
t for any t ∈ [0,T ]. From now on, we consider the augmentation of F W

t , but we still

use the same notation.

We introduce a risk filter {ρ̄t,T , 0 ≤ t ≤ T }, as defined in Definition 4.2.1, specifying{
Ft

}
0≤t≤T to be the whole original filtration, and

{
Gt

}
0≤t≤T to be the observable filtration

{
F
ξ

t
}
0≤t≤T .

Then, the decomposition ρ̄t,T (·) = ρt,T (ρ̄T,T (·)) is possible, where the family of operators{
ρt,T

}
0≤t≤T is derived in Theorem 4.2.1.

For the final cost function of the form φ(θT ), we have ρ̄t,T [φ(θT )] = ρt,T [ρ̄T,T (φ(θT ))]. If we

assume further that ρ̄T,T (·) is a risk estimator (Definition 2.3.2), then ρ̄t,T [φ(θT )] can be written
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as ρt,T [ρ̄T,T (φ, π(T ))]. Notice that ρ̄T,T (φ, π(T )) ∈ L2(Ω,F ξ
T , P), therefore (see Remark 4.3.1)

it is natural to specify the operators
{
ρt,T

}
0≤t≤T as a g-evaluation w.r.t. BSDE (4.2) for some

driver g satisfying Assumptions 2.3.7 and 2.3.17(i). We formalize these considerations below.

Corollary 4.3.2. Consider a risk filter
{
ρ̄t,T

}
0≤t≤T whose decomposition component ρt,T satisfies

for all 0 ≤ t ≤ T the following conditions:

• ρt,T [X + η] = ρt,T [X] + η, ∀X ∈ L2(Ω,GT , P), ∀η ∈ L2(Ω,Gt, P),

• ρ0,T [Y + Z] − ρ0,T [Y] ≤ ρµ,ν0,T [Z], ∀Y, Z ∈ L2(Ω,GT , P),

where ρµ,ν0,T [·, ·] is a g-evaluation with g = µ|y| + ν|z| for some µ, ν > 0. By Theorem 2.3.16,

ρt,T is a g-evaluation with a unique driver g. If the driver g satisfies Assumption 2.3.17(i), then{
ρt,T

}
0≤t≤T is indeed a dynamic risk measure.

From now on, we shall only consider risk filters satisfying the conditions of Corollary 4.3.2.

Definition 4.3.1. For the risk filter
{
ρ̄t,T

}
0≤t≤T , we define the value function at time t with initial

conditional distribution p = {p1, p2, . . . , pn} where pi = P(θt = αi), i = 1, 2, ..., n, to be

V(t, p) = ρ̄t,T (φ(θT ))

Proposition 4.3.3. For a risk filter
{
ρ̄t,T

}
0≤t≤T , the value function V(t, p) can be represented by

Yt, which is deterministic, where the pair
{
Ys,Zs

}
0≤s≤T is a solution of a BSDE with a driver

g(·, ·):

(4.3) Yt = ρ̄T,T (φ, π(T )) +

∫ T

t
g(s,Zs) ds −

∫ T

t
Zs dW s,

with
{
π(s)

}
t≤s≤T satisfying for i = 1, . . . , n the system of SDE:

dπi(s) = (Λ∗π)i(s) ds +
πi(s)[A(αi, s) − A(s)]

B(s)
dW s, πi(t) = pi = P(θt = αi),

in which

(Λ∗π)i(s) =

n∑
j=1

λα jαi(s)π j(s), A(s) =

n∑
j=1

A(α j, s)π j(s),

and
{
W s

}
t≤s≤T is a Wiener Process given by the equation

dW s =
dξs − A(s) ds

B(s)
.
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In this way, we decompose the estimation of the cost function into a two-stage problem:

inside is the final risk estimator, and outside is the dynamic risk measure. Mathematically,

there are two components of our risk model:

• ρ̄T,T (·), which is the final risk estimator; and

• the driver g(·, ·), which determines the convex dynamic risk measure part.

Specifically, if the driver g ≡ 0, and ρ̄T,T (·) = E(·|F ξ
T ), then by noticing that Yt is a martingale

in this case, we have:

ρ̄t,T (·) = Yt = E(YT |F
ξ

t ) = E(ρ̄T,T (·)|F ξ
t ) = E(E(·|F ξ

T )|F ξ
t ) = E(·|F ξ

t ).

It follows that the classical way of evaluating the partially observable problem is a special case

of our risk filter.

4.4 Risk Filtering in the Running Cost Case

In this section, we consider the cost functional involving running cost:
∫ T

0 c̃(θs) ds + φ(θT ),

where c̃ : E → R. In the classical case, the evaluation of the cost to go at time t is via tower

property:

E

[∫ T

t
c̃(θs) ds + φ(θT )

∣∣∣∣ F ξ
t

]
= E

∫ T

t

n∑
j=1

c̃(α j)π j(s) ds + φ(θT )
∣∣∣∣ F ξ

t

 .
We can further rewrite it as E

[∫ T
t c(π(s)) ds + φ(θT )

∣∣∣ F ξ
t

]
with

(4.4) c(π) =

n∑
j=1

c̃(α j)π j.

A natural generalization of this cost functional is to replace the conditional expectation by a

risk filter ρ̄t,T (·) and the function (4.4) by a state risk evaluator c : Rn → R. We make the

following assumption.

Assumption 4.4.1. The function c is Lipschitz continuous.

Then, the evaluation of the cost functional can be carried out as follows.
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Theorem 4.4.2. Under Assumption 4.4.1, with 0 ≤ t ≤ T, given a cost function of the form∫ T
t c(π(s)) ds +φ(θT ), the value function with respect to the risk filter

{
ρ̄t,T

}
0≤t≤T has the follow-

ing representation:

(4.5) V(t, p) = ρ̄t,T

[∫ T

t
c(π(s)) ds + φ(θT )

]
= ρt,T

[∫ T

t
c(π(s)) ds + ρ̄T,T (φ, π(T ))

]
,

where ρt,T (ρ̄T,T (·)) is the decomposition of ρ̄t,T (·) of Theorem 4.2.1.

Proof. From the decomposition theorem of the nonlinear operator ρ̄t,T ,

ρ̄t,T

[∫ T

t
c(π(s)) ds + φ(θT )

]
= ρt,T

[
ρ̄T,T

[∫ T

t
c(π(s)) ds + φ(θT )

]]
.

Since for any t ≤ s ≤ T , c(π(s)) ∈ L2(Ω,F ξ
s , P), then

∫ T
t c(π(s)) ds ∈ L2(Ω,F ξ

T , P) as well.

Therefore, by the translation property of ρ̄T,T ,

ρ̄T,T

[∫ T

t
c(π(s)) ds + φ(θT )

]
=

∫ T

t
c(π(s)) ds + ρ̄T,T

[
φ(θT )

]
.

Also, since ρ̄T,T is law invariant, we can write it as

ρ̄T,T [φ(θT )] = ρ̄T,T (φ, π(T )).

Combining all the equations above, we obtain equation (4.5). �

Similar to Proposition 4.3.3, the value function with initial distribution p at time t can be

described by Yt, which is part of the unique solution {Yt,Zt} of a BSDE.

Proposition 4.4.3. Under Assumption 4.4.1, with 0 ≤ t ≤ T, the value function at time t, with

initial distribution pi = P(θt = αi), i = 1, . . . , n, is V(t, p) = Yt, which is deterministic, where

the triple
{
π(s),Ys,Zs

}
t≤s≤T is the solution of the FBSDE system:

dπi(s) = (Λ∗π)i(s) ds +
πi(s)[A(αi, s) − A(s)]

B(s)
dW s, πi(t) = pi, i = 1, . . . , n(4.6)

−dYs =
[
c(π(s)) + g(s,Zs)

]
ds − Zs dW s, YT = ρ̄T,T (φ, π(T )),(4.7)

in which

(Λ∗π)i(s) =

n∑
k=1

λαkαi(s)πk(s), A(s) =

n∑
k=1

A(αk, s)πk(s),

and
{
W s

}
t≤s≤T is a Wiener process given by the equation:

dW s =
dξs − A(s) ds

B(s)
.
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It is evident that under Assumptions 2.3.7, 2.3.17, and 4.4.1, the forward-backward system

(4.6)-(4.7) has a unique solution.

In this chapter, we successfully define a two-stage risk filter as a generalization of the

classical case and in the following chapter, we will introduce a control into the system and

derive the so-called risk averse control problem, and we will discuss the problem with running

cost since it’s a more general case.

Remark 4.4.4. The risk measures and risk-averse control problem of partially observable sys-

tem in discrete time setting has also been explored by J. Fan, A. Ruszczyński in [30].
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Chapter 5

The Risk Averse Control Problem

In this section, we discuss the risk averse control problems for the partially observable system.

As in the previous chapter, we will focus on the Wonham filter as well. We put the control

parameter into the transition kernel of the unobservable process {θt}0≤t≤T , which means that

we can control the rate of the change w.r.t. {θt}0≤t≤T . One thing we have to be careful here is

that the control we are considering here is piecewise-constant control for the reason that if we

consider the more general continuous control, for any given time t, the transition rate at that

time will not be well-defined since it is actually depending on the whole history path up to time

t. We derive a similar equation for the optimal nonlinear filter as the one without control on

each small interval (same interval as the piecewise-constant control) and then we argue that the

innovation process in each of these interval can be patched together as a whole Wiener process

starting from time 0 to time T . Finally, we define the risk averse control problem as well as the

associated decoupled FBSDE system in this settings.

5.1 Equations of the Optimal Nonlinear Filter

From now on, we discuss the case with running costs and terminal cost, as the most general

one.

Definition 5.1.1. A stochastic process u(·) is called an admissible control if u(·) is an element

of the set:

U :=
{
u : [0,T ] ×Ω→ U

∣∣∣ u(·) is {F ξ
t }-adapted

}
,

where U ∈ Rm is a compact set.

We focus on piecewise-constant controls. For 0 = t0 < t1 < t2 < · · · < tN = T , and
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i = 0, . . . ,N − 1 we define

(5.1) UN
i =

{
u ∈ U

∣∣∣ u(t) = u(t j), ∀ t ∈ [t j, t j+1), ∀ j = i, . . . ,N − 1
}
.

In our partially observable problem, the control u impacts the transition rate λ(·), hence we have

a condition similar to Assumption 3.2.2.

For j = 0, 1, 2, . . . ,N − 1 and t j ≤ s < t < t j+1 we define the transition probability

Pζαβ(s, t) = P(θt = β | θs = α, ut = ζ),

where ζ is the value of the control in the interval [t j, t j+1). Based on this, we can further define

the controlled transition rates as follows.

Condition 5.1.1. For every j = 0, 1, . . . ,N − 1, and for every s ∈ [t j, t j+1) the following limits

are well defined and uniformly bounded:

(5.2) λαβ(s, ζ) =


lim
t↓s

Pζαβ(s, t)

t − s
if β , α,

−
∑

γ∈E,γ,α

lim
t↓s

Pζαγ(s, t)
t − s

if β = α.

First, we recall the forward Kolmogorov equations.

Lemma 5.1.2. Under Condition 5.1.1, for all t j ≤ s < t < t j+1 and for all α, β ∈ E, the

transition probabilities Pζαβ(s, t) satisfy the equations

Pζαβ(s, t) = δ(β, α) +

∫ t

s

∑
γ∈E

λγβ(r, ζ)Pζαγ(s, r) dr.

This allows us to derive the following lemma.

Lemma 5.1.3. Suppose Condition 5.1.1 holds. For every j = 0, 1, . . . ,N − 1, every β ∈ E, and

every ζ ∈ U, let

mβ,ζ
t = δ(β, θt) − δ(β, θt j) −

∫ t

t j

λθrβ(r, ζ) dr, t j ≤ t < t j+1.

Then the process (mβ,ζ
t ,Ft) is a square-integrable martingale with right-continuous trajectories

on [t j, tt+1), having limits from the left.



48

Proof. Since θt is right continuous and |λθtβ(t, ζ)| ≤ K for some K, then mβ,ζ
t is right continuous

and uniformly bounded. To verify the martingale property, for t j ≤ s < t < t j+1 we derive the

chain of equalities:

E
[
mβ,ζ

t

∣∣∣Fs
]

= E
[
mβ,ζ

s + δ(β, θt) − δ(β, θs) −
∫ t

s
λθrβ(r, ζ) dr

∣∣∣∣∣Fs

]
= mβ,ζ

s − δ(β, θs) + E
[
δ(β, θt) −

∫ t

s
λθrβ(r, ζ) dr

∣∣∣∣∣Fs

]
= mβ,ζ

s − δ(β, θs) + Pζθsβ
(s, t) −

∫ t

s

∑
γ∈E

λγβ(r, ζ)Pζθsγ
(s, r) dr.

Due to Lemma 5.1.2, the last expression is equal to mβ,ζ
s . �

Consider an interval [t j, t j+1), where j ∈ {0, 1, . . . ,N − 1}. Let

pi = P
[
θt j = αi|F

ξ
t j

]
, i = 1, . . . , n.

Under the assumption that ut = ζ for t ∈ [t j, t j+1), we define the process

π
p;ζ
i (t) = P

[
θt = αi|F

ξ
t
]
, i = 1, . . . , n.

We can now describe the dynamics of the process πp;ζ on this interval.

Theorem 5.1.4. Let Conditions 3.2.1 and 5.1.1 hold. Then for t ∈ [t j, t j+1), the posterior

probabilities πp;ζ
i (·), i ∈ {1, . . . , n} satisfy the following system of n equations:

(5.3) π
p;ζ
i (t) = pi +

∫ t

t j

(Λ∗jπ
p;ζ)i(r) dr +

∫ t

t j

π
p;ζ
i (r)

A(αi, r) − A
ζ

j(r)

B(r)
dW

j
r,

where

(Λ∗πp;ζ)i(r) =

n∑
k=1

λαkαi(r, ζ)πp;ζ
k (r)(5.4)

A
ζ
(r) =

n∑
k=1

A(αk, r)πp;ζ
k (r),(5.5)

and
{
W

j}
t j≤t<t j+1

is a Wiener process with

(5.6) W
j
t =

∫ t

t j

dξr − A
ζ

j(r) dr

B(r)
.
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Proof. By Lemma 5.1.3, the process

mβ,ζ
t = δ(β, θt) − δ(β, θt j) −

∫ t

t j

λ
j
θrβ

(r, ζ) dr, t j ≤ t < t j+1,

is a square integrable martingale. First, we claim that the quadratic variation

(5.7)
〈
mβ,ζ ,W

〉
t
≡ 0 (P a.s.), t j ≤ t < t j+1.

For any partition Γ of the time interval [t j, t] with t j = Γ0 < Γ1 < Γ2 < · · · < ΓL = t, we define

‖Γ‖ = max`(Γ`+1 − Γ`). If we denote by

QΓ(D,W) =

L−1∑
`=0

(
DΓ`+1 − DΓ`

)(
WΓ`+1 −WΓ`

)
,

then the quadratic variation 〈D,W〉t = lim
‖Γ‖→0

QΓ(D,W).

Let Dt = δ(β, θt) −
∫ t

t j
λθsβ(s, ζ) ds. For a partition Γ, we calculate QΓ(mβ,ζ ,W) as follows:

QΓ(mβ,ζ ,W) =

L−1∑
`=0

(mβ,ζ
Γ`+1
− mβ,ζ

Γ`
)(WΓ`+1 −WΓ`)

=

L−1∑
`=0

(
DΓ`+1 − DΓ`

)(
WΓ`+1 −WΓ`

)
=

L−1∑
`=0

(
−

∫ Γ`+1

Γ`

λθsβ(s, ζ) ds + δ(β, θΓ`+1) − δ(β, θΓ`)
)(

WΓ`+1 −WΓ`

)
=

L−1∑
`=0

(
WΓ`+1 −WΓ`

)(
δ(β, θΓ`+1) − δ(β, θΓ`)

)
−

(
WΓ`+1 −WΓ`

) ∫ Γ`+1

Γ`

λθsβ(s, ζ) ds.

On the one hand, we have∣∣∣∣∣ L−1∑
`=0

(
WΓ`+1) −WΓ`)

)(
δ(β, θΓ`+1) − δ(β, θΓ`)

)∣∣∣∣∣
≤ max

`

∣∣∣∣(WΓ`+1 −WΓ`

)∣∣∣∣∣∣∣∣∣ L−1∑
`=0

δ(β, θΓ`+1) − δ(β, θΓ`)
∣∣∣∣∣.

The process {θt} is right continuous and with probability 1 has only finitely many jumps in any

time interval, because the transition rate λαβ(t, ζ) is uniformly bounded. Let M be the random

number of jumps of δ(β, θs) in the time interval [t j, t]. Since the jump size is 1, we conclude

that

(5.8)
∣∣∣∣∣ L−1∑
`=0

(
WΓ`+1 −WΓ`

)(
δ(β, θΓ`+1) − δ(β, θΓ`)

)∣∣∣∣∣ ≤ M max
`

∣∣∣WΓ`+1 −WΓ`

∣∣∣.
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This expression converges to zero with probability 1, as ‖Γ‖ → 0.

On the other hand, ∣∣∣∣∣ L−1∑
`=0

(
WΓk+1 −WΓk

) ∫ Γ`+1

Γ`

λθs,β(s, ζ) ds
∣∣∣∣∣

≤

L−1∑
`=0

∣∣∣∣∣(WΓ`+1 −WΓ`

) ∫ Γ`+1

Γ`

λθs,β(s, ζ) ds
∣∣∣∣∣

≤ max
`

∣∣∣WΓ`+1 −WΓ`

∣∣∣ L−1∑
`=0

∫ Γ`+1

Γ`

∣∣∣λθs,β(s, ζ)
∣∣∣ ds

≤ max
`

∣∣∣WΓ`+1 −WΓ`

∣∣∣ L−1∑
`=0

∫ Γ`+1

Γ`

K ds

≤ K(t − t j) max
`

∣∣∣WΓ`+1 −WΓ`

∣∣∣.
This expression also goes to 0, as ‖Γ‖ → 0. In view of (5.8), we conclude that (5.7) is true.

Actually, since the control ζ is fixed and known at the time t j, which means the the transition

rate λαβ(t, ζ) is deterministic for every t ∈ [t j, t j+1). Therefore, mβ,ζ
t is independent of W on the

interval [t j, t j+1). Hence,
〈
mβ,ζ ,W

〉
t
≡ 0 (P a.s.), t j ≤ t < t j+1.

Therefore, with all the assumptions satisfied, we can apply Theorem 8.1 from [47]. The

following equation follows:

(5.9) E
[
δ(β, θt)

∣∣∣F ξ
t
]

= E
[
δ(β, θt j)

∣∣∣F ξ
t j

]
+

∫ t

t j

E
[
λθsβ(s, ζ)

∣∣∣F ξ
s
]

ds

+

∫ t

t j

E
[
δ(β, θs)A(θs, s)

∣∣∣F ξ
s
]
− E

[
δ(β, θs)

∣∣∣F ξ
s
]
E
[
A(θs, s)

∣∣∣F ξ
s
]

B(s)
dW

j
s,

where

(5.10) W
j
t =

∫ t

t j

dξr − E
[
A(θr, r)

∣∣∣F ξ
r
]
dr

B(r)
, t ∈ [t j, t j+1),

is a Wiener Process.

Finally, we simplify (5.9) for β = αi with i ∈ {1, 2, . . . , n}:

E
[
δ(αi, θt)

∣∣∣F ξ
t
]

= P
(
θt = αi

∣∣∣F ξ
t
)

+

∫ t

t j

n∑
k=1

λαkαi(s)πp;ζ
k (s, ζ) ds

+

∫ t

t j

A(αi, s)πp;ζ
i (s) − πp;ζ

i (s)
n∑

k=1
A(αk, s)πp;ζ

k (s)

B(s)
dW

j
s

= pi +

∫ t

t j

(Λ∗π)p;ζ
i (s) ds +

∫ t

t j

π
p;u
i (s)

A(αi, s) − A
ζ

j(s)

B(s)
dW

j
s.
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By noticing that E
[
δ(αi, θt)

∣∣∣F ξ
t
]

= π
p;ζ
i (t), we conclude that the equation (5.3) holds. �

In the last result, on each time interval [t j, t j+1), we defined a Wiener process
{
W

j
t
}
. Now we

patch these Wiener processes together to obtain a Wiener process on the whole interval [0,T].

We set W̃0 = 0 and for j = 0, 1, . . . ,N − 1 we define

W̃t = W̃t j + W
j
t = W̃t j +

∫ t

t j

dξr −
∑n

k=1 A(αk, r)πp;ζ j

k (r) dr

B(r)
, t j ≤ t < t j+1,

where ζ j is the control value on the interval [tt, t j+1).

Theorem 5.1.5. The process W̃t is a Wiener Process on [0,T ].

Proof. For any 0 < s < t < T , there exists k and j such that tk ≤ s < tk+1 ≤ t j ≤ t < t j+1. Then

by Itô formula, with ı denoting the imaginary unit,

eızW̃t = eızW̃s + ız
∫ t

s
eızW̃r dW̃r −

z2

2

∫ t

s
eızW̃r d

〈
W̃, W̃

〉
r

= eızW̃s + ız
∫ t

s
eızW̃r dWr

+ ız
{ ∫ tk+1

s
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζk
m (r)] dr

+

j−1∑
l=k+1

∫ tl+1

tl
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζl
m (r)] dr

+

∫ t

t j

eızW̃r
1

B(r)
[A(θr, r) −

n∑
m=1

A(αm, r)πp;ζ j
m (r)] dr

}
−

z2

2

∫ t

s
eızW̃r dr.

We take the conditional expectation E(·|F ξ
s ) in the above formula, by noticing that

E
[ ∫ t

s
eızW̃r dWr

∣∣∣∣∣F ξ
s

]
= 0,

and
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E
{ ∫ tk+1

s
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζk
m (r)] dr

+

j−1∑
l=k+1

∫ tl+1

tl
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζl
m (r)] dr

+

∫ t

t j

eızW̃r
1

B(r)
[A(θr, r) −

n∑
m=1

A(αm, r)πp;ζ j
m (r)] dr

∣∣∣∣∣F ξ
s

}
= E

{ ∫ tk+1

s
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζk
m (r)] dr

+

j−1∑
l=k+1

∫ tl+1

tl
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζl
m (r)] dr

∣∣∣∣∣F ξ
s

}
+ E

{ ∫ t

t j

eızW̃r
1

B(r)
E
[
A(θr, r) −

n∑
m=1

A(αm, r)πp;ζ j
m (r)

∣∣∣∣F ξ
r

]
dr

∣∣∣∣∣F ξ
s

}
= E

{ ∫ tk+1

s
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζk
m (r)] dr

+

j−1∑
l=k+1

∫ tl+1

tl
eızW̃r

1
B(r)

[A(θr, r) −
n∑

m=1

A(αm, r)πp;ζl
m (r)] dr

∣∣∣∣∣F ξ
s

}
.

In the last equation, we removed the following term by conditioning on F ξ
r , r ∈ [t j, t], and

using the tower property:

E
{∫ t

t j

eızW̃r
1

B(r)
E
[
A(θr, r) −

n∑
m=1

A(αm, r)πp;ζ j
m (r)

∣∣∣∣F ξ
r
]

dr
∣∣∣∣∣F ξ

s

}
=

E
{∫ t

t j

eızW̃r
1

B(r)

[ n∑
m=1

A(αm, r)πp;ζ j
m (r) −

n∑
m=1

A(αm, r)πp;ζ j
m (r)

]
dr

∣∣∣∣∣F ξ
s

}
= 0.

We use this trick iteratively by conditioning on F ξ
r , r ∈ [t`, t`+1], to remove other terms in

the previously displayed equation. Finally, we obtain the equation:

E
{
eız(W̃t−W̃s)

∣∣∣∣∣F ξ
s

}
= 1 −

z2

2

∫ t

s
E
[
eız(W̃r−W̃s)

∣∣∣∣F ξ
s

]
dr.

From this equation we conclude that:

E
[
eız(W̃t−W̃s)

∣∣∣∣F ξ
s

]
= e−

z2
2 (t−s) P-a.s.,

which is the characteristic function of the normal distribution with expected value 0 and vari-

ance t − s. The same equation implies that W̃t − W̃s is independent of F ξ
s . �
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Consider a piecewise constant control ut = ζ j, for t ∈ [t j, t j+1), j = 0, 1, . . . ,N−1. By virtue

of the above theorem, we can now claim that for different time intervals [t j, t j+1), the forward

SDE describing the evolution of πp;ζ j
i (t) is actually driven by one Wiener Process

{
W̃t

}
0≤t≤T .

Therefore, we can “patch” the forward SDEs in different time intervals together to obtain the

following result.

Proposition 5.1.6. Let Conditions 3.2.1 and 5.1.1 hold. Then for any 0 ≤ t ≤ T, the posterior

probabilities πp;u
i (t), i ∈ {1, 2, . . . , n} satisfy the following system of n equations:

(5.11) π
p;u
i (t) = pi +

∫ t

0
(Λ∗πp;u)i(r) dr +

∫ t

0
π

p;u
i (r)

A(αi, r) − A
u
(r)

B(r)
dW̃r

where pi = P(θ0 = αi), π
p;u
i (t) = π

p;ζ j
i (t) for t ∈ [t j, t j+1), and for r ∈ [t j, t j+1)

(Λ∗πp;u)i(r) =

n∑
k=1

λαkαi(r, ζ j)π
p;u
k (r),(5.12)

A
u
(r) =

n∑
k=1

A(αk, r)πp;u
k (r).(5.13)

Our next step is to introduce the risk filter. We consider the running cost case and make the

following assumption for the controlled system.

5.2 Risk filter for risk averse control problem

Assumption 5.2.1. The running cost function c(·, ·) is Lipschitz continuous with respect to the

first argument, and continuous with respect to the second argument.

We summarize our derivations in the following result.

Proposition 5.2.2. Suppose Assumption 5.2.1 is satisfied. For a risk filter
{
ρ̄t,T

}
0≤t≤T and a

piecewise constant control u(·), the value function

(5.14) Vu(t, p) = ρ̄t,T
[ ∫ T

t
c(πt,p;u(s), us) ds + φ(θT )

]
at time t and with a F ξ

t -measurable initial distribution p, is equal to Yt, where {πt,p;u
i (s)},

{Ys,Zs}, for t ≤ s ≤ T, are given by the following decoupled FBSDE system:

dπt,p;u
i (s) = (Λ∗πt,p;u)i(s) ds +

π
t,p;u
i (s)[A(αi, s) − A

u
(s)]

B(s)
dW̃s π

t,p;u
i (t) = pi,(5.15)

−dYs = [c(πt,p;u(s), us) + g(s,Zs)] ds − Zs dW̃s, YT = ρ̄T,T (φ, πt,p;u(T )).(5.16)
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Under Conditions 3.2.1, 5.1.1 and Assumptions 2.3.7, 2.3.17, and 5.2.1, g for any (t, p) ∈

[0,T ] × S, there exists a unique solution for the FBSDE system (5.15)–(5.16).

It follows that we have successfully transferred a partially observable problem into a fully

observable system: Given a probability space (Ω,F , P), where F = {F W̃
T } and {F W̃

t , 0 ≤ t ≤ T }

is the augmentation of the filtration generated by the Brownian Motion {W̃t, 0 ≤ t ≤ T }, we

have the equivalent system (5.15)–(5.16), if the forward SDE starts at time t.
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Chapter 6

Dynamic Programming

At the points t j, j = 0, 1, . . . ,N − 1, the equation (5.14) can be refined.

Theorem 6.0.1. For any j = 0, 1, . . . ,N − 1 and p ∈ S, given a piecewise-constant admissible

control u with values ζ j in the intervals [t j, t j+1), we have:

Vu(t j, p) = ρt j,t j+1

[ ∫ t j+1

t j

c(πti,p;u(r), ur) dr + Vu
(
t j+1, π

ti,p;u(t j+1)
)]
.

Proof. Using the translation property, we obtain:

Vu(t j, p) = ρt j,T

( ∫ T

t j

c(πt j,p;u(r), ur) dr + ρ̄T,T (φ, πt j,p;u(T ))
)

= ρt j,t j+1

[
ρt j+1,T

( ∫ T

t j

c(πt j,p;u(r), ur) dr + ρ̄T,T (φ, πt j,p;u(T ))
)]

= ρt j,t j+1

[
ρt j+1,T

( ∫ t j+1

t j

c(πt j,p;u(r), ur) dr

+

∫ T

t j+1

c(πt j,p;u(r), ur) dr + ρ̄T,T (φ, πt j,p;u(T ))
)]

= ρt j,t j+1

[ ∫ t j+1

t j

c(πt j,p;u(r), ur) dr

+ ρt j+1,T

( ∫ T

t j+1

c(πt j,p;u(r), ur) dr + ρ̄T,T (φ, πt j,p;u(T ))
)]
.

In the last expression, by the Markov property of the process πt j,p;u(r), we have

ρt j+1,T

( ∫ T

t j+1

c(πt j,p;u(r), ur) dr + ρ̄T,T (φ, πt j,p;u(T ))
)]

= Vu
(
t j+1, π

ti,p;u(t j+1)
)
,

which completes the proof. �

We are now ready to analyze the optimal control problem. Given j = 0, 1, . . . ,N and p ∈ S,

we define the optimal value function:

(6.1) V(t j, p) = inf
u∈UN

j

Vu(t j, p),
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where the inf is taken over all the available piecewise-constant control functions u(·) on the

interval [t j,T ], as defined in (5.1).

Theorem 6.0.2. For any j = 0, 1, . . . ,N − 1 and p ∈ S, we have

(6.2) V(t j, p) = inf
ζ∈U

ρt j,t j+1

[ ∫ t j+1

t j

c(πti,p;ζ(r), ζ) dr + V
(
t j+1, π

ti,p;ζ(t j+1)
)]
,

with V(T, p) = ρ̄T,T (φ, p).

Proof. Due to Theorem 6.0.1,

inf
u∈UN

i

Vu(t j, p) = inf
u∈UN

i

ρt j,t j+1

[ ∫ t j+1

t j

c(πti,p;ζ j(r), ζ j) dr + Vu
(
t j+1, π

ti,p;ζ j(t j+1)
)]

= inf
ζ j∈U

ρt j,t j+1

[ ∫ t j+1

t j

c(πti,p;ζ j(r), ζ j) dr + inf
u∈UN

i+1

Vu
(
t j+1, π

ti,p;ζ j(t j+1)
)]
.

The last equation follows from the monotonicity of ρt j,t j+1 . Substitution of (6.1) for t j and t j+1

yields (6.2). �

Numerical methods for solving the FBSDE system associated with (6.2) are discussed in

[3].
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Chapter 7

Conclusion

In this thesis, we mainly focus on the Wonham filter, we generalized the classical way of

evaluating a cost function related to the unobservable process by expectation. In our setting,

we construct a two-stage structure, in which the inside part is responsible for the estimation

of the unobservable process while the outside part is responsible for the evaluation of the risk,

which is the solution of a corresponding BSDE. Then we add a control component into the

transition rate of the unobservable process and in particular, we consider piecewise-constant

control. We first derive a similar equation for the estimator for unosbservable process in each

small interval driven by separate innovation process, and then we prove that these innovation

process can actually be patched together to formulate a Wiener process from beginning to end.

As in the non-controlled problem, we introduce the evaluation of the risk via BSDE in the

controlled problem. Finally, we derive the dynamic programming equation under the control

problem and further for the optimal control problem.
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