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ABSTRACT OF THE THESIS

On the Feasibility of Using Connectivity Measures for

Decoding Brain States

by Anthony Yang

Thesis Director: Professor Laleh Najafizadeh

Optical brain imaging using functional near infrared spectroscopy (fNIRS) offers

a non-invasive imaging tool for monitoring brain activity. fNIRS is a safe imaging

technique offering high temporal resolution, making it an attractive choice for brain-computer

interfaces, as well as for real-time and long-term monitoring of brain function. While

often lauded for its portability, the application of fNIRS has been mostly limited to

laboratory environments.

In order to improve the portability and wearability of fNIRS systems, it would be

desirable to reduce the number of optodes, without compromising the performance.

Using a large of number of optodes, while resulting in better coverage, increases the

setup time, causes added discomfort, and hence, reduces the duration of wear time.

This work focuses on the application of fNIRS systems for decoding brain states

and brain computer interfaces, and considers the problem of two-class classification in

the case where the number of optodes are limited to those covering only the prefrontal

cortex. Pairwise functional connectivity for various time windows have been computed

as features. Extensive classification experiments have been performed using Support

Vector Machines (SVM) and Convolutional Neural Networks (CNN) as classifiers. Results

obtained from 8 subjects’ data, indicate that it is feasible to create predictive models

based on fNIRS-based functional connectivity measures of prefrontal cortex.
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Chapter 1

Introduction

The goal of this study is to develop a functional near-infrared spectroscopy (fNIRS)

classifier based on functional connectivity in the prefrontal cortex of the brain. Many

fNIRS classification tasks involve imaging all or most of the brain, a task which requires

many optodes and results in a long setup time. A reliable method involving fewer

fNIRS optodes would reduce this setup time, as well as increase wearer comfort, which

in turn increases the wear duration. Relying on fewer optodes also reduces the chance

of introducing artifacts along the optical-tissue interfaces. Some fNIRS studies have

shown promising results with narrowing down the number of optodes to just those that

are needed to map the prefrontal cortex. However, no study has yet investigated if

functional connectivity in the prefrontal cortex can be used in reduced-optode fNIRS

classification. In addition, this study examines if deep learning is suitable for this

classification task, by comapring support vector machine (SVM) and convolutional

neural networks (CNN). To the best of the author’s knowledge, no work as been done

involving CNN for fNIRS functional connectivity.

fNIRS utilizes near-infrared light to measure activity in the brain. This technology

is relatively recent compared to the more established electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI) techniques. Compared to these

two modalities, fNIRS has had a rise in popularity due to its spatial and temporal

resolutions. However, the quantity of optodes required limits its potential for use in

applications other than research.

One prominent application of fNIRS-based classifiers is in brain computer interfaces

(BCI). A BCI requires a highly accurate classifier in order to be successful. A large

number of studies have been done to investigate what classifier, such as SVM, is best
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to use in BCI. However, few have discussed the use of CNNs with fNIRS-based BCI.

The studies that do investigate using CNN have shown promising results that can meet

or exceed rival classification techniques. This study will explore using CNN and deep

learning for fNIRS BCI based on functional connectivity in the prefrontal cortex, and

compare the results with SVM.

The second chapter contains background information on fNIRS and its fundamentals.

The third chapter reviews machine learning topics, including feature extraction and

classification methods with a focus on SVM and CNN. The fourth chapter examines

other previous studies relating to fNIRS-based classifiers and BCI. The fifth chapter

describes the experimental paradigm and data collection for this study, followed by a

detail of the classification method and results in the sixth and seventh chapters. The

eighth chapter contains a discussion about the results of the study and possible future

work.
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Chapter 2

Review of functional Near-Infrared Spectroscopy

2.1 Introduction

This chapter presents a brief overview of how brain activity is measured and monitored

using fNIRS. The modified Beer-Lambert Law and its role in fNIRS is discussed.

The chapter continues with a comparison between fNIRS and other commonly-used

neuroimgaging techniques, followed by a commentary on how fNIRS would need to be

improved in order to see use in more practical applications.

2.2 Monitoring Brain Activity Using Near Infrared Light

fNIRS is a non-invasive neuroimaging technique which measures brain activity using

optical light in the near-infrared (NIR) range (700 to 1000 nm) [1]. An fNIRS device

utilizes NIR light sources to send photons into the head. Photons in this range pass

largely uninhibited through the skin and skull, but may be attenuated by absorption

or scattering by certain substances, in particular oxygenated hemoglobin (HbO2) and

deoxygenated hemoglobin (HbR). Fig. 2.1 shows how the photons travel through the

brain from a light source to a light detector. Knowing the absorption coefficients of

HbO2 and HbR, we can estimate their concentrations using the modified Beer-Lambert

law [1]. However, because the photon path length through the brain is unknown, the

absolute value of the hemoglobin concentrations cannot be found and only the change in

hemoglobin concentration from the baseline can be calculated. Change in oxygenated

hemoglobin concentration is notated as (∆[HbO2]) while change in deoxygentated

hemoglobin concentration is notated as (∆[HbR]).

∆[HbO2] and ∆[HbR] are used in determining changes in brain activity. When
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Figure 2.1: This illustration shows an example of the path of photons, shown in yellow,
traveling from a light source to a light detector. The photons take a curved path through
the brain, passing through the skin and skull before being absorbed by hemoglobin
inside the brain.

neurons activate, they take in oxygen from the bloodstream. When brain activity

increases, local oxygenation levels decrease at first due to increased oxygen consumption

[1]. Shortly afterwards, the body reacts to increase cerebral blood flow (CBF), resulting

in a net increase of oxygen concentration. Since most of the oxygen in the bloodstream

is carried by hemoglobin, mapping the ∆[HbO2] and ∆[HbR] concentrations in regions

of the brain can show what parts of the brain are being activated. Relationships can

then be drawn between stimuli and the activation of regions of the brain.

Measurement of light attenuation is performed by emitting photons from a source

at a known intensity and measuring the received photon intensity at the detector. The

light sources and detectors are referred to as optodes and are placed in a configuration

on the head known as a montage. The light attenuation measured by the optodes is

used to calculate the concentrations of the substances in the photon path using the

modified Beer-Lambert Law, as shown in (2.1) [1].

A = ln
I0
I

= ε× c× d×B + G (2.1)

In (2.1) A is the measured attenuation, I0 is the initial light intensity, I is the

measured light intensity at the detector, ε is the specific extinction coefficient of the

substance, c is the substance concentration, d is the distance from source to detector,

B is the differential path length factor (DPF), and G is the loss due to light scattering.
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ε is determined by the substance that is being measured (i.e. HbO2 or HbR) and

the wavelength of light that is being used. In the original Beer-Lambert law, the

photon path is a straight line, and therefore the path length was equal to d. However,

with fNIRS, the photons take a curved path to the detector, and thus the term B is

introduced to calculate the curved path length d×B. If G is assumed to be constant,

then the change in substance concentration (∆c) can be expressed as (2.2).

∆A = ε×∆c× d×B (2.2)

In the form of the modified Beer-Lambert Law in (2.1), the term G drops out. B

can be set as some estimated path length, which allows ∆c to be calculated.

2.3 Comparison of fNIRS with other Techniques

In addition to fNIRS, there are other well established methods for mapping brain

function. Among them, two commonly-used techniques are EEG and fMRI. EEG

measures brain activity using electrical signals, and fMRI measures brain activations

through the blood oxygen level-dependent (BOLD) response [2]. There are a number

of advantages and disadvantages of fNIRS compared with EEG and fMRI. Between

fNIRS and EEG, EEG has a significantly higher temporal resolution, but fNIRS has a

better spatial resolution and is immune to electromagnetic interference [3]. Comparing

fNIRS and fMRI, fNIRS can attain temporal resolution on the order of 40 ms versus

fMRI with around 2000 ms, but fMRI yields better spatial resolution and coverage [3],

as well as higher SNR [4].

2.4 Improving Usability of fNIRS

The advantages of fNIRS make it a useful tool, but currently it generally sees

application in laboratory settings where the environment is closely controlled. Enabling

fNIRS to be used for in more practical situations would require improvement of the

headgear used in fNIRS. For example, NASA has said that it would like to use fNIRS

for sensing the mental state of pilots, but several challenges currently prevent this
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from being possible [5]. The largest issues include long setup time due to the required

quantity of optodes, introduction of signal artifacts at the optical-tissue interface [6],

and comfort to the wearer over long periods of time. One innovation NASA suggests is

to use a headband with small comblettes with several optodes attached that part hair

more easily than single optodes to facilitate rapid setup. Another study shows that

using optodes with multiple fibers, called brush optodes, may be more effective and

easier for setup than regular optodes [7].

A different possible approach to improving fNIRS equipment would be to reduce

the number of optodes used by measuring only certain areas of the head. The easiest

location on the head to measure with fNIRS is the prefrontal cortex where there is

less hair. If prefrontal cortex signals alone are enough for classification, this would

decrease the setup time significantly, while keeping the most reliable optode placement

locations. However, it needs to be determined whether the fNIRS measurement of only

the prefrontal cortex is sufficient to generate useful data that is capable of differentiating

between various brain states. This study aims to address this question.

2.5 Conclusion

In summary, functional near-infrared spectroscopy is a promising tool for measuring

brain activation through changes in concentrations of oxygenated and deoxygenated

hemoglobin. A comparison of fNIRS with EEG and fMRI find that the different

modailities each have their own characteristics, making them all valuable for differing

reasons. While fNIRS has much utility already as it is, some possible improvements

would allow fNIRS to be used outside of a lab setting for places like NASA.
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Chapter 3

Machine Learning

3.1 Introduction

In this chapter, some of the basics of machine learning methods and techniques

are presented. Feature extraction is discussed, followed by a general review of the

classification problem and the techniques used to overcome the common problem of

overfitting. Then, two classifiers are introduced, support vector machine and convolutional

neural networks. Details about convolutional neural network layers, training, testing,

and transfer learning with pretrained networks are given. The chapter closes with an

examination of the metrics used to evaluate the performance of classifiers.

3.2 Review of Machine Learning

Machine learning is a technique used to train classification functions, or classifiers.

Classifiers are mathematical models which place unlabeled data into classes. To do so,

the classifier must learn the classes beforehand from a set of training data. Modern

computers are capable of learning from enormous datasets to acquire the best fitting

model. Building a classifier involves several steps. First, specific features may be

extracted from the data depending on if the input data contains more information than

needed. Then once the features are prepared, the dataset split into training and testing

sets. It is crucial that the testing set does not contain any data samples from the

training set to ensure that the performance is evaluated correctly. Finally, a classifier

is learned from the training set, and evaluated using the testing set. Each step has a

significant impact on the final result, and the designer chooses how to carry out each

stage.
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3.3 Feature Extraction

Input data often contains irrelevant or redundant data which can slow down the

training of a classifier, or have a negative impact on its performance. The solution to

this is to reduce the dimensionality of the data by extracting only features important

to the classification problem. Some features that have been found to be useful for BCI

include correlation coefficient, Principal Component Analysis (PCA), and Independent

Component Analysis (ICA) [8]. No one feature has yet been found to be suitable for

every type of data.

Although feature extraction is often helpful, removing too much information also

tends to reduce the performance of the classifier. Because of this, some classifiers do

not use any feature extraction and instead use just the raw input data. This is typically

only the case with deep learning methods, where features are shaped simply through

training the neural network without the need to manually select them. As a result,

using raw data with a neural network such as a convolutional neural network, can meet

or exceed the performance of handpicked features [9].

3.4 Classification Methods

In machine learning, there is supervised learning and unsupervised learning. In

supervised learning, the classifier is trained with known labels. These labels are used

to create a function which separates the labels into classes within the feature space.

Examples of supervised learning methods include SVM and CNN, which will be discussed

in more detail below. Unsupervised learning does not train with known labels, and

instead the learner organizes and groups the data by similarities in the feature space.

An example of this is K-means clustering.

Since the goal of classification is create a model which fits the data as accurately

as possible, two possible problems with classifiers is underfitting and overfitting. In

the underfitting case, the model is not a high enough order to accurately describe the

boundary between classes. Overfitting is the opposite, where the model is too complex

and is thus intolerant to noise. Both scenarios result in poor classification results. If
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the classifier is underfitting the data, then a more complex model should be used, for

example, a nonlinear classifier rather than a linear one. Overfitting, on the other hand,

is often caused by an insufficient quantity of training data.

Data augmentation and k-fold cross-validation are two common methods used to

remedy overfitting [10]. Data augmentation involves synthesizing data from the original

dataset to increase the overall size of the training data. Some methods of doing this

include splitting original samples into multiple samples, adding jitter and noise, or data

warping [11]. In k-fold cross validation, the entire dataset is divided into k equal or

nearly equal subsets, called folds [12, 13]. One fold is selected as a testing set, while the

remaining k − 1 folds are used as the training set. By using each of the k folds as the

testing set once, k classifiers can be trained. Then, the accuracy for a classifier trained

on the entire dataset can be estimated as the average accuracy of the k classifiers. This

allows the testing set to be used in training and increase the size of the training data.

k-fold cross validation is shown in Fig. 3.1

Figure 3.1: This figure shows how k-fold cross validation is applied to a dataset. The
dataset is split into k folds and one fold is selected as the test fold which is highlighted
in blue. Each iteration selects a different fold as the test fold, while the remaining folds
form the training set.
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3.4.1 Support Vector Machine

Support Vector Machine is a binary classifier that has become popular because it

is relatively simple and fast while also yielding strong results. The algorithm seeks to

find the optimal hyperplane boundary separating two classes of data [14, 15]. First, the

training data is mapped from input space into a higher-dimensional feature space. Next,

a small amount of training data near the boundary between the classes is selected as

the support vectors. Then, the optimal hyperplane is found by minimizing the distance

between the hyperplane and the support vectors. This is done by minimizing the

sum of the dot products between the support vectors and the hyperplane vector. The

hyperplane can then be mapped back from feature space into input space. SVM then

uses the hyperplane to label the test data samples in the feature space.

3.4.2 Convolutional Neural Networks

Convolutional neural networks are neural networks that rely on a type of layer called

convolutional layers. The convolutional layers allow a CNN to extract features from

raw data or generate higher level features in a deeper network architecture. This ability

means that hand-picked features may not be necessary to create an effective classifier

as in [9]. However, selecting features may still be useful, as in [16].

A neural network is a network structure that transforms an input through a series of

hidden layers to generate an output prediction. Each hidden layer consists of neurons

that may be connected to some or all of the neurons in the following and preceding

layers. The first layer is an input layer which accepts the input data in a specific

arrangement (e.g. a 32x32x3 matrix for a 32x32 image with 3 color channels). The final

layer is the output layer, which is a fully-connected layer, meaning that it is connected

with all of the neurons in the previous layer. This layer contains scores for each class,

where the top score is the CNN’s best prediction. The hidden layers typically consist

of convolutional layers, pooling layers, rectified linear unit (ReLU) layers, and dropout

layers. Each layer performs a different transformation on the data. An illustration of

the layers in a neural network are shown in Fig. 3.2.
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Figure 3.2: Visualization of the layers in a neural network. The input layer is the same
dimensions as the input data. The output layer has one neuron for each class. The
hidden layers may have any number of neurons. The neurons from each layer may be
connected to one, many, or no neurons in the next layer. A network with N layers has
N − 2 hidden layers.

3.4.3 CNN Layers

The convolutional layer is a powerful tool which gives the CNN the ability to connect

neurons locally in the data. In this layer, a convolution filter slides across the height

and width of the input data. During each step, the filter convolves the data inside

of it, through the entire depth, producing a connection to a neuron on the next layer

[17]. This filter passes across entire extent of the data, which creates a two dimensional

map of features from the input. The values in the filters are called weights, which are

tuned as the CNN trains. The value of an element in the output layer yi,j is expressed

mathematically in (3.1) for a convolutional layer, x, of size H ×W using a m× n filter

of weights ω. The resulting layer, y, is of size (H − (m− 1))× (W − (n− 1)).

yi,j =
m−1∑
a=0

n−1∑
b=0

ωaby(i+a),(j+b) (3.1)

Here, 0 ≤ i < H, 0 ≤ j < W . The result of performing convolution is shown in Fig.

3.3, which depicts an example of a 19×19 convolutional layer with a 5×5 filter creating

a 15× 15 resulting feature map. The strength of using convolution is that the neurons
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are only locally connected instead of fully connected to every neuron in the next layer.

This allows the CNN to save on computational power while preserving the most critical

neuron connections. Multiple convolutional layers creates features which become more

complex as the number of layers increases. Convolutional layers have proven to be so

powerful that CNNs built primarily on just convolutional layers have shown state of

the art performance [18].

Figure 3.3: Illustration of the convolutional layer. The blue squares show the 5 × 5
convolutional filter convolving the input region on the left to create the feature map on
the right. With this filter size, the 19× 19 input becomes 15× 15 at the output.

Typically, convolutional layers are complemented by pooling layers. Pooling is used

to downsample data, which removes dimensionality and adds generality, helping to

reduce overfitting. The operation takes a layer of size H×W and divides it into square

pooling regions of size k× k, resulting in an output of size H
k ×

W
k . The most common

type of pooling is max pooling, as shown in (3.2).

yi,j = max
0≤m<k,0≤n<k

xi×k+m,j×k+n (3.2)

In (3.2), yi,j is an element in downsampled layer after pooling, 0 ≤ i < H
k , 0 ≤ j < W

k

and x is the input layer. Max pooling is usually implemented using a 2× 2 filter. This

process divides the entire length and width of the data into 2 × 2 regions and only
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preserves the max value in each region, resulting in an output that is one-quarter of the

original size. This type of max pooling is shown in Fig. 3.4. Pooling layers are often

placed after one or more convolutional layers.

Figure 3.4: The figure shows 2 × 2 max pooling being performed on a 4 × 4 input
layer. The highest value in each 2 × 2 section of the input is retained in the output,
compressing the input to a 2× 2 output.

Rectified linear unit (ReLU) layers apply an activation function to each element

in the data. This is done after convolution to introduce some non-linearity into the

system, which can improve classification results [19]. The most common function is

yi,j,d = max{0, xi,j,d} (3.3)

where 0 ≤ i < H, 0 ≤ j < W , 0 ≤ d < D for an input layer x and output layer y,

both of which have height (H), width (W ), and depth (D). There are other activation

functions which may be used instead of max(0, x), such as tanh(x), but those are

infrequently used since it is more rapid to compute max(0, x) than the alternatives.

Dropout layers randomly drop neurons and their connections with a certain probability

by setting the neuron to zero [20]. This is utilized during network training as a way to

reduce the chance that the network will fit to noise, and thus reduce the possibility of

overfitting. During testing, the dropout layers are removed from the network.
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3.4.4 CNN Training and Testing

CNNs may use shallow architecture, with just a few layers, or a deep one with

dozens of layers. Shallow architectures have fewer weights and train faster, while deeper

architectures have more weights and take longer to train. As the CNN trains, the

weights in its layers are tuned and optimized with the goal of minimizing the loss

function. This function is calculated from the output of the last layer. The most

commonly used loss function is the softmax function, shown in (3.4).

yi,j,k′ =
exi,j,k′∑
k e

xi,j,k
(3.4)

The softmax function returns a set of probabilities that the input data belongs to

each of the classes from a set of k′ different classes. Softmax is typically combined with

the negative log-likelihood function, as in (3.5),

yi,j = − log xi,j,ci,j (3.5)

where ci,j is the index of the location of the correct class. This returns a single value

describing the loss from the classification of a particular input data sample.

The CNN may train on the data for any number of passes, which are called epochs.

Each epoch, the CNN tunes parameters to minimize the loss function by a rate defined

by the learning rate. The learning rate is set by the designer and heavily impacts how

successful the network is able to converge to the optimal weights. If the learning rate is

too high, then the network may fail to converge, or it may not be able to tune precisely

enough to find the lowest loss. If the learning rate is too low, then the network will

take a long time to converge. The behavior of different learning rates is depicted in Fig.

3.5. The learning rate can be decayed during training to find a compromise between

training time and minimization of the loss function. One well known technique to decay

learning rate is using a method called Adam [21].

The more epochs the CNN trains for, the better tuned the weights will be. However,

if the CNN trains for too many epochs, the network may overfit. Therefore, there

is typically a dataset called the validation set which is used as the network trains
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Figure 3.5: This sketch represents examples of losses from training a CNN with different
learning rates. A suitable learning rate will converge to the minimum loss rapidly, while
a low learning rate will approach the minimum loss more slowly, requiring more epochs
than the suitable learning rate. A high learning rate will often settle at a loss which is
not optimal, and a very high learning rate will fail to converge.

to determine when the network is starting to overfit and should stop training. The

validation accuracy is compared to the training accuracy. A classifier with zero overfitting

will have a validation accuracy equal to the training accuracy, but in practice it is

expected that the validation accuracy will be slightly lower than the training accuracy.

This is because the CNN is tuned only to the train dataset, so it should naturally

perform better with the train dataset than the validation dataset. If the validation

accuracy is much lower than the training accuracy, this is a sign of overfitting, as the

CNN has become tuned too tightly to the training data to classify other data accurately.

To avoid this, the network can be set to stop training once the validation accuracy no

longer improves. An illustration of overfitting indicated by the training and validation

accuracy is shown in Fig. 3.6.

3.4.5 Transfer Learning and Pretrained Networks

Creating a CNN from scratch can often be challenging due to insufficient quantities

of training data. In this situation, the limited size of the training dataset often results
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Figure 3.6: This sketch shows training and validation curves to illustrate the effect
of overfitting on the validation accuracy. A classifier with minimal overfitting has a
validation accuracy just slightly below that of the training accuracy. If the classifier has
heavy overfitting, then the validation accuracy will be far below the training accuracy,
and the validation accuracy may decrease with increased training.

in heavy overfitting. However, it has been found that it is possible to effectively apply

features from a deep network trained on a large and separate dataset to a significantly

different classification task, which is called transfer learning [22, 23, 24]. This method

adapts the original pretrained network to predict the classes for the new classification

task by altering the output layer. In addition, the input data is processed to match

the input layer of the original network. The architecture of the pretrained network

may altered by removing or adding layers, or it can be left as is. Then, the pretrained

network is trained on the new dataset to fine-tune the network to the new task to create

the new classifier.

There are many deep pretrained networks available to use for transfer learning, with

varying accuracies and training speeds. Perhaps the most well known deep network is

AlexNet which was created in 2012, and named after one of its creators, Alex Krizhevsky

[25]. This network vastly outperformed its competition on the ImageNet dataset, and

brought deep learning methods into the forefront of machine learning. Since then, many

improvements have been made to AlexNet in networks such as VGG-F, which was
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developed in 2013 [26]. VGG-F has a similar architecture and performance as AlexNet,

but runs quicker due to the use of a large 4 pixel stride in the first convolutional

layer, and smaller convolutional filter depth. Published in 2014, VGG Net 16 is

another notable network which used 3x3 convolutional filters, smaller than the filters

in AlexNet, which helped it perform better than AlexNet at the expense of speed [27].

The architecture of AlexNet, VGG-F, and VGG Net 16 are shown in Table 3.1.

Table 3.1: Popular Pretrained Convolutional Neural Networks

AlexNet (2012) VGG-F (2013) VGG Net 16 (2014)

8 weight layers 8 weight layers 16 weight layers

input (224 x 224 RGB
Image)

input (224 x 224 RGB
Image)

input(224 x 224 RGB
Image)

conv11-96 conv11-64 conv3-64
maxpool maxpool conv3-64

maxpool

conv5-256 conv5-256 conv3-128
maxpool maxpool conv3-128

maxpool

conv3-384 conv3-256 conv3-256
conv3-384 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256
maxpool maxpool maxpool

conv3-512
conv3-512
conv3-512
maxpool

conv3-512
conv3-512
conv3-512
maxpool

fc-4096 fc-4096 fc-4096
fc-4096 fc-4096 fc-4096
fc-1000 fc-1000 fc-1000

soft-max soft-max soft-max

Notes: This table shows the network architecture of the AlexNet, VGG-F and
VGG Net 16 networks. AlexNet and VGG-F both include five convolutional
(conv) layers, three max pooling (maxpool) layers, and three fully connected (fc)
layers. VGG Net 16 contains 13 convolutional layers, 5 max pooling layers, and
3 fully connected layers. The convolutional layer parameters are represented
as ”conv(filter size)-(number of filters)”. Fully connected layers are similarly
written as ”fc-(number of filters)”.
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3.5 Performance Evaluation Metrics

As test data samples are labeled by the classifier, the result is compared with the

actual label. There are four possible outcomes depending on whether the label is correct

and what class is being assessed as the positive class. The four possibilities are true

positive (tp), true negative (tn), false positive (fp), and false negative (fn). The quantity

of each of the outcomes is used to determine four main performance evaluation metrics,

which are accuracy, precision, sensitivity, and specificity [28, 29]. Accuracy is the most

common metric and is found using (3.6).

Accuracy =
tp + tn

tp + fn + fp + tn
(3.6)

Accuracy describes the overall performance of the classifier and is a useful metric

for comparing different classifiers. However, other metrics offer some additional insight.

Precision is another common metric, as in (3.7).

Precision =
tp

tp + fp
(3.7)

Precision gives some input on how well the classifier selects the positive class. If

precision is high, then a large number of the test samples the classifier deemed as positive

were correctly labeled. This is a particularly useful metric when it is important to avoid

false positives. Two more performance measures are sensitivity, also known as recall,

and specificity.

Sensitivity =
tp

tp + fn
(3.8)

Specificity =
tn

fp + tn
(3.9)

Sensitivity, as in (3.8), measures the true positive rate of the classifier and describes

how effective it is at correctly labeling the positive class. On the other hand, specificity,

in (3.9), measures the true negative rate, which is how well the classifier labels the

negative class. To elaborate, sensitivity is useful in measuring the how well the classifier

avoids false negatives, while specificity can be helpful for measuring the avoidance of
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false positives. Together, sensitivity and specificity and give a measure of bias in the

classifier. A sensitivity higher than the specificity indicates that the classifier prefers to

label samples as the positive class. The opposite would signify that the classifier prefers

to label samples as a class other than the positive class. Combined together, the four

values of accuracy, precision, sensitivity, and specificity give useful information into the

characteristics of the classifier.

3.6 Conclusion

This chapter gave an introduction to machine learning and some of the techniques

for feature extraction and classification. Two popular classifiers are explored, support

vector machine and convolutional neural networks. Then, details are given on how

to build and train a classifier, as well as how to evaluate performance using several

measures.
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Chapter 4

Previous Works

4.1 Introduction

This chapter examines recent research done on fNIRS functional connectivity as well

as fNIRS-based classification work. Some methodologies used, feature extraction, and

classification are briefly reviewed. In addition to fNIRS studies, a few EEG classification

studies are also included in this chapter as an alternative neuroimaging technique. BCI

studies comprise the majority of the research done on fNIRS and EEG classification.

4.2 Functional Connectivity Studies

Functional connectivity refers to the strong temporal correlations in signals of

distinct regions of the brain [30, 31]. Measuring functional connectivity requires a

method that examines the statistical dependence between time series data [32], the

simplest of which is calculating the correlation coefficients [33]. There are a number of

other measurements of functional connectivity, such as wavelet coherence and wavelet

phase coherence as used in [30], and phase locking value in [34]. Functional connectivity

can exhibit statistically significant changes during a cognitive task [33] making it

potentially useful as a feature for classification.

4.3 Classification Studies with fNIRS

4.3.1 Data Collection and Feature Extraction

Much of the previous work done with classification on neuroimaging data is for the

purpose of developing a BCI. Most fNIRS- and EEG-based BCI studies share a similar

procedure for data acquisition and preprocessing before the classification task. First,



21

the data is collected in an experiment using fNIRS, EEG, or both technologies. Then,

the data is filtered for artifacts from instrumental, experimental, and physiological

noise using filtering and other signal processing methods. Depending on the task, the

experiment, and the neuroimaging modality, the data can be analyzed in the time

domain or in the frequency domain [16]. In fNIRS recordings, ∆[HbO2] signals are

more commonly used for classification as opposed to ∆[HbR] due to higher reliability

and stability [35].

There are many features which can be extracted from fNIRS or EEG signals.

Common features used in classification of fNIRS-based BCIs include mean, slope,

variance, amplitude, skew, and kurtosis [35]. Some EEG studies use short windows from

the raw time series data. In [9], 2 second wide crops are taken from 4.5 second EEG

trials. The crops are taken spanning the entire trial so that one single trial produced 625

crops, each which was used in their classification dataset. Each crop is shifted by one

sample from the last, so that they overlap, creating the most possible crops from one

trial. This sliding time window technique generated a very large dataset from a much

smaller one, which can help reduce overfitting, especially in a CNN. Another study used

a slightly different method with non-overlapping time windows and 3 EEG frequency

bands to create 3-channel spectral topography maps [36]. The time windows in this

study were 0.5 seconds long, and each 3.5 second trial yielded 7 spectral topography

maps.

4.3.2 Classification

Classification is most commonly performed using a supervised learning method, such

as Linear Discriminant Analysis (LDA), SVM, and artificial neural networks (ANN).

From 2004 to 2014, LDA was the most frequently used method, with use in 42.2% of

studies, due to its agility and simple implementation, while SVM was the second most

widely used, at 25.5%, for its high effectiveness [35]. ANNs have also become popular in

recent years because of promising new results. One fNIRS study found that both SVM

and ANN perform well compared to other popular methods [37]. In addition to ANNs,

CNNs have recently found application for fNIRS-Based BCIs, with one study finding
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that CNN improved classification accuracy over SVM and ANN by up to 6.49% and

3.33% respectively [38]. A summary of the results from these papers is given in Table

4.1. These papers show that it is feasible to achieve over 80% accuracy with CNN and

SVM, with some papers reaching above 90%.

Overfitting is a common problem faced in fNIRS and EEG classification problems

due to the difficulty in acquiring a large dataset. As a result, it is common for

papers to implement k-fold cross validation to reduce the overfitting [39]. For CNN,

another technique for reducing overfitting is to use transfer learning and tune an already

pretrained network. One study used AlexNet to train a classifier for medical image

analysis, which met or exceeded the performance of CNNs designed from scratch [40].

4.4 Conclusion

Much work has been done with fNIRS and EEG classification, typically for use in

BCI. Functional connectivity has been found to be a useful statistical measure, but has

not yet been explored for use as a feature in fNIRS classification. Techniques such as

using a sliding time window can be used to generate a much larger dataset from a small

one. A number of classifiers have shown promise for use with fNIRS and EEG data,

including SVM and CNN. There are also a few known methods for reducing overfitting,

including k-fold cross validation and CNN transfer learning.
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Table 4.1: List of Previous fNIRS and EEG Classification Works

Source Feature Space Classification
Method

Modality Average
Accuracy

%

[16] Fast Fourier Transform Pretrained Stacking
Restricted Boltzmann

Machines

EEG 84

[37] 3-D combination of
standard statistical

features∗

linear discriminant
analysis

fNIRS 79.6

[37] 3-D combination of
standard statistical

features

quadratic discriminant
analysis

fNIRS 95.2

[37] 3-D combination of
standard statistical

features

k-nearest neighbor fNIRS 64.5

[37] 3-D combination of
standard statistical

features

nav̈e bayes fNIRS 94.8

[37] 3-D combination of
standard statistical

features

support vector machine fNIRS 95.2

[37] 3-D combination of
standard statistical

features

artificial neural
networks

fNIRS 96.3

[9] raw EEG, 2 second
sliding windows

CNN with 5 weighted
layers

EEG 92.40

[9] raw EEG, 2 second
sliding windows

CNN with 2 weighted
layer

EEG 89.28

[36] spectral topology map,
single window

recurrent-CNN EEG 87.61

[36] spectral topology map,
multiple windows

recurrent-CNN EEG 91.11

[38] standard statistical
features with PCA

support vector machine fNIRS 86.19

[38] standard statistical
features with PCA

artificial neural
network with 2
weighted layers

fNIRS 89.79

[38] standard statistical
features with PCA

CNN with 1 weighted
layer

fNIRS 93.08

∗standard statistical features refers to the six statistical properties of mean, variance,
kurtosis, skewness, peak and slope.
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Chapter 5

Classification Results Based on Connectivity-Based

Features

5.1 Introduction

In this chapter, results for using connectivity-based measures for decoding brain

states are presented. First, the experimental task and data collection process are

described, followed by a description of feature extraction procedure. Finally, classification

results for SVM and CNN are presented.

5.2 Experimental Paradigm

This research utilizes data collected in an investigation performed by T. Zeng et

al. described in [41]. The study used fNIRS to investigate if the somatosensory and

prefrontal cortices of the brain show activation due to irritation. The paradigm used two

solutions as the stimuli: irritant-contained and irritant-free. The experiment consisted

of a total of ten blocks. During each block, the participant is given 10 mL of one of the

solutions. The solution is held in the participant’s mouth for 30 seconds while he or she

remains still and focuses on a plus symbol displayed on a computer monitor. After the

30 second period, the solution is spit out. Following this is 2 minutes of rinsing with

water, 1 minute of break, and 1 minute of rest before the next block begins, as shown

in Fig. 5.1. Each experiment consisted of ten such trials of 30 second blocks followed

by 4 minute intervals.
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Figure 5.1: An illustration of the timing procedure for the experiment. Solutions are
held in the mouth for 30 seconds in each block. The blocks are separated by 4 minute
intervals. Image is used with permission by T. Zeng et al. [41].

Figure 5.2: The image shows the experimental setup used. The participant is seated
in front of the computer monitor in a relaxed position. The solutions are given in a
random order. Image is used with permission by T. Zeng et al. [41].

5.3 Data Collection

The experiment included 9 right-handed subjects (3 female, 6 male) who signed the

informed consent forms approved by the Rutgers Institutional Review Board (IRB).

The participants were seated comfortably in front of a computer. The experimental

setup is shown in Fig. 5.2.

The system used to collect the fNIRS data was the NIRScout XP by NIRx Medical

Technologies, LLC. A sampling rate of 7.81 Hz was used with wavelengths of 760 nm

and 850 nm. Four sources and eight detectors were placed on the prefrontal cortex,
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while six sources and eight detectors were placed on each side of the somatosensory

cortex, totaling in 16 sources and 24 detectors. The optodes were arranged as shown in

Fig. 5.3. The optode arrangement created 14 channels covering the prefrontal cortex,

and 36 channels covering the somatosensory region, as shown in Fig. 5.4. Only the

data from the 14 prefrontal cortex channels are used in this research.

Figure 5.3: The fNIRS optode montage includes coverage of the prefrontal and
somatosensory cortices. There are 4 sources and 8 detectors in the prefrontal cortex,
giving 14 prefrontal channels. The somatosensory cortex contains 6 sources and 8
detectors per side, resulting in a 36 somatosensory channels. There are a total of 16
sources and 24 detectors creating 50 channels. Image is used with permission by T.
Zeng et al. [41].

5.4 Data Preprocessing

∆[HbO2] and ∆[HbR] were calculated using the modified Beer-Lambert law, then

band-pass filtered from 0.01 Hz and 0.5 Hz to remove artifacts and physiological noise.

If the correlation coefficient between ∆[HbO2] and ∆[HbR] for a channel was greater

than 0.5, then the channel was labeled a bad channel and the data from those channels

was replaced by averages of the neighboring channels. One subject had a majority of
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Figure 5.4: The image shows the positions of each of the 14 prefrontal cortex channels
and 36 somatosensory cortex channels. There are six circled regions, denoted as
LP (left prefrontal), RP (right prefrontal), LLS (lower left somatosensory), ULS
(upper left somatosensory), LRS (lower right somatosensory), and URS (upper right
somatosensory). Image is used with permission by T. Zeng et al. [41].

bad channels, and was thus removed from the dataset.

5.5 Feature Extraction

The data consists of 8 subjects, after removal of one subject with many bad channels.

Each subject contributed 10 blocks (5 irritant-contained, 5 irritant-free). Every block

is 30 seconds in duration, sampled at 7.81 Hz, which results in 234 samples per block.

The features used in this classifier will be based on measures of pair-wise functional

connectivity for all 14 fNIRS channels in the prefrontal cortex. Correlation coefficient

is chosen as the measure of functional connectivity, primarily due to its simplicity of

implementation. The correlation coefficients are calculated between all pairs of channels

among the 14 prefrontal cortex channels, resulting in a 14 × 14 correlation coefficient

matrix. An example is shown in Fig. 5.5.

The correlation coefficient matrix can be calculated for the entire 30 second time

block, or for smaller time windows depending on the design of the classifier. In addition,
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Figure 5.5: A visualization of a 14 × 14 correlation coefficient matrix extracted from
the fNIRS raw time series. Each element in the matrix is the value of the correlation
coefficient between two pairs of prefrontal cortex channels. The correlation coefficient,
which measures functional connectivity, is the feature used in classification. A color
legend is shown to the right.

if the size of the time window is smaller than the entire 30 second block, then it is

possible to create many sliding time windows for each 30 second block, which yields

multiple correlation coefficient matrices for each block. For example, if the entire time

block is used for each correlation coefficient matrix, it would result in 80 possible

matrices. On the other hand, if the size of the time windows is approximately 1 second

(8 samples), and overlaps are permitted, then there would be 234 − 8 = 226 possible

windows, resulting in 18080 matrices. Since each correlation coefficient matrix is used

as an input data sample to the classifier, generating as many matrices as possible helps

to reduce overfitting.

5.6 Classification Experiments

Four types of classification experiments were performed with SVM and CNN as

classifiers. Table 5.1 summarizes them. In experiments type A, B, and C, one single

time window from each 30 second block is used to extract features. The time window
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Figure 5.6: The figure demonstrates an example of a 1 second sliding window that is
used to create correlation coefficient matrices in the time interval of 16 to 19 seconds
in the time series data. Not drawn to scale.

of 15 to 20 seconds was chosen for classifier type A, as it was the time window proposed

in [41] to have the most statistically significant difference between the two classes. In

type B correlation coefficients are extracted from 16 to 16.5 seconds, while in type C

they are extracted from a window of 18.5 to 19 seconds. These time windows were

found to have the best performance out of the possible 0.5, 1, and 2 second windows

from 15 to 20 seconds. In type D, 2 second wide sliding time windows are employed.

The time range selected was from 16 to 19 seconds, which is a subset of the statistically

significant 15 to 20 second range. This generated 480 total images for type D, rather

than 80 images as with types A, B, and C. All four types use k-fold cross validation

with k = 8, where each fold is the data from one of the 8 subjects. By splitting the

folds by subject, the validation sets would be most independent from the training sets.

Table 5.1: SVM and CNN Classifier Types

Type of Experiment A B C D

Description Single
window

Single
window

Single
window

Sliding
windows

Time Range (s) 15 → 20 16→ 16.5 18.5 → 19 16 → 19

Window Size (s) 5 0.5 0.5 2

No. Matrices/Images 80 80 80 480

Note: k-fold (k = 8) cross validation is used for validation for all types of
classification experiments. Each fold is one of the 8 subjects. To input the correlation
coefficient matrices to a CNN, each matrix is first converted to an image.
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5.7 SVM Results

The SVM results for all four types of classification experiments are shown in Table

5.2. SVM-B had the best results with 62.5% testing accuracy, and also scored the best

in precision, sensitivity, and specificity. However, SVM-B strongly overfit the data with

a difference between training and testing accuracy of 18.39%. In addition, it also had

the highest variance in accuracy between subjects, with a standard deviation of 16.69%.

So while it may succeed in classification for some subjects, it may also perform poorly

for some others. The performance for SVM-A and C were quite poor with < 55%.

SVM-D also had low performance at 56.26%, but the slight improvement over SVM-A

and C could possibly suggest that the sliding window may have potential if explored

further.

The average precision of the classifiers was low for SVM-A, C, and D and highest

for SVM-B, which corresponds to the respective test accuracies of those classifiers.

The average sensitivity and specificity show that each classifier type usually results in

approximately equal weighting to both classes.

Overall, the SVM classifiers had achieved only limited performance. The best

classifier with 62.5% accuracy can be used as a starting point for further improvement,

but is not currently capable of reliably classifying data. The CNN classifiers designed

in the next section seek to improve upon the SVM results.

5.8 CNN Architecture

Classification with CNN was first explored using a shallow architecture from scratch.

However, this soon proved to be insufficient for the classification task, and had problems

with overfitting as the SVM classifier did. In addition, with just one or two convolutional

layers, the CNN from scratch was unable to develop higher level features which would

be able to increase performance. So instead of building the CNN, transfer learning

with a pretrained network was used. VGG-F was selected to be the pretrained network

as it is relatively lightweight in computation requirements, while also showing good

performance. The network architecture can be found in Table. 3.1 from Chapter 3.



31

Table 5.2: SVM Classifier Results

Type of Experiment SVM-A SVM-B SVM-C SVM-D

S1 Val. Accuracy 50 90 60 56.67

S2 Val. Accuracy 50 40 50 51.67

S3 Val. Accuracy 60 50 40 58.33

S4 Val. Accuracy 50 60 40 43.33

S5 Val. Accuracy 50 50 30 61.67

S6 Val. Accuracy 60 60 50 63.33

S7 Val. Accuracy 50 80 40 63.33

S8 Val. Accuracy 40 70 50 51.67

Average Testing Accuracy 51.25 62.5 45 56.25

St. Dev. Accuracy 6.41 16.69 9.26 7.00

Average Training Accuracy 80.54 80.89 72.32 85.33

Average Precision 30 82.5 52.5 45.83

Average Sensitivity 61.31 68.68 42.53 67.05

Average Specificity 54.14 79.17 46.88 56.84

Note: S1 → S8 denote subject 1 thru 8. All metrics are shown as percents
(%).

The input to VGG-F is an RGB image of size 224 × 224 × 3. In order to utilize

VGG-F for this classification task, the input data must be resized to the format of these

images. To achieve this, the 14× 14 correlation coefficient matrix is zero-padded on all

four sides by 105 elements. Then, the resulting matrix is replicated 3 times to resemble

a 3-channel image with 3 identical layers. The final padded and 3-channel 224×224×3

matrices, which will be referred to as input images, are shown in Fig. 5.7. With the

input data resized, the output layer of VGG-F is replaced to output 2 classes instead of

1000 classes. An overview of the modified VGG-F is shown in Fig. 5.8. During network

training, none of the layers were frozen and the entire network was tuned to the input

data.

5.9 CNN Results

CNN classification again involved the types of experiments described in Table 5.1.

The classification performance of all four types is summarized in Table 5.3. The learning

rate was a constant rate selected manually for each experiment. The network was
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Figure 5.7: An illustration of the 14× 14 correlation coefficient matrices after padding
with 105 zeros on all sides and replicating to generate a 224× 224× 3 input image that
can be used with VGG-F. Each of the three replicated layers are identical.

trained for 74 epochs in all classifiers. This number of epochs was chosen as it was

also the number used in the VGG Net paper [27]. The table shows both the training

accuracy and the testing accuracy. The testing accuracy is most important as a measure

of classification performance, while the training accuracy is useful to determine if the

classifier had overfitting. All experiments used k-fold cross validation (k = 8), and the

average testing accuracy was calculated by averaging the validation accuracy from each

fold.

The best performing CNN classifier was CNN-B, with an average testing accuracy of

66.25%. However, CNN-B has a large standard deviation of 18.47% in testing accuracy.

CNN-C has the second highest performance with an average testing accuracy of 61.25%.

Both of these classifiers used single time windows of 0.5 seconds. In contrast, CNN-A

used a single time window of 5 seconds from 15 to 20 seconds and had the lowest

performance out of the others at just 50%. The performance of CNN-D is close to, but

lower than that of CNN-C with 59.89%. As such, it seems that the sliding time window

method was unsuccessful at improving the CNN results. The accuracies of the CNN
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Figure 5.8: A depiction of the transfer learning with VGG-F. The input images are
used to train and test the network, and there are two classes in the resulting output
scores.

classifiers are improved or similar to their SVM counterparts.

The average precision of the classifiers was low for CNN-A and better for CNN-B,

C, and D, which aligns with the respective testing accuracies. However, the average

sensitivity and specificity show that each classifier type usually results in one of the

classes being weighted higher than the other. Interestingly, each class is favored by two

classifiers equally.

Though CNN-B and C were the two most successful CNN classifiers, they both

showed overfitting, with the average testing accuracy falling short of the average training

accuracy by 13.21% and 20.54% respectively. This is likely due to the small dataset

used in both classifiers of just 80 images. Yet, CNN-D also had heavy overfitting with a

14.72% lower average testing accuracy than average training accuracy when it utilized

480 images. This could mean that even more than 480 images are needed, which is

quite possible with a CNN. Another reason for overfitting may be that the learning

rate or number of epochs was not optimal for the dataset.

The high standard deviation in average testing accuracy for CNN-B mostly resulted

from the poor testing accuracy of 30% in subject 4. Meanwhile, CNN-C achieved 70%

testing accuracy with subject 4. This suggests that developing a CNN which uses

both of the time windows from CNN-B (16-16.5 s) and CNN-C (18.5-19 s) might yield

improved classification.

In addition to classifier types A through D, all of which create one classifier using

the data from all eight subjects, it is also of interest to see whether classifiers can be
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Table 5.3: CNN Classifier Results

Type of Experiment CNN-A CNN-B CNN-C CNN-D

Learning Rate 1× 10−5 1× 10−5 1× 10−5 5× 10−6

Epochs 74 74 74 74

S1 Val. Accuracy 60 80 50 68.8

S2 Val. Accuracy 60 80 60 60.4

S3 Val. Accuracy 50 80 50 56.2

S4 Val. Accuracy 50 30 70 50

S5 Val. Accuracy 50 60 70 58.3

S6 Val. Accuracy 40 50 50 68.8

S7 Val. Accuracy 40 70 70 58.3

S8 Val. Accuracy 50 80 70 58.3

Average Testing Accuracy 50 66.25 61.25 59.89

St. Dev. Testing Accuracy 7.56 18.47 9.91 6.30

Average Training Accuracy 60.71 79.46 81.79 74.61

Average Precision 31.05 63.55 67.04 70.88

Average Sensitivity 35 80 52.5 34.38

Average Specificity 65 52.5 70 85.42

Note: S1 → S8 denote subject 1 thru 8. Average testing accuracy is
calculated by averaging the validation accuracy of all subjects. All metrics
are shown as percents (%).

created for individual subjects. It is expected that data within each subject should be

fairly similar which may help improve accuracy. Accordingly, six experiment types were

designed for single subject classifiers. Since the training data is now divided among the

8 subjects, sliding window must be used to generate more images. Shown in Table 5.4,

sliding time windows of different time range and window sizes are used for extracting

features in experiment types E through J. The table includes the number of images

used in training each subject, which is now limited to the data from one subject per

classifier, reducing the size of each dataset. The testing accuracy for each classifier

is shown, along with the averages for testing accuracy, training accuracy, precision,

sensitivity, and specificity among all subjects. All of the classifiers are trained with a

learning rate of 1×10−5 and for 74 epochs. k-fold cross validation is used by separating

the dataset into 5 folds where each fold is two of the ten trial blocks from each subject.

Each fold contains one block from each class.

The results of these CNNs differed greatly between different subjects and classifier
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types. 39 of the 48 classifiers had a testing accuracy less than 60%, 8 had an testing

accuracy between 60% and 70%, and one had a testing accuracy above 70% with

73.61%, which was the best accuracy. This classifier was for subject 7 using CNN-J.

However, none of the average testing accuracies over all 8 subjects were above 60%

for any of the six classifier types, the highest being CNN-J with just 56.42%. Average

precision, sensitivity and specificity are near 50% in most classifier types, which is

expected with low accuracy. Average sensitivity and specificity are balanced, meaning

that the classifiers predict each class with approximately equal weight. The classifiers

all showed heavy overfitting, with a minimal difference between average training and

testing accuracy of 17.38% in CNN-J, and a maximum difference of 30.57% in CNN-H.

The overfitting in these classifier types is overall more severe than the classifiers from

types A through D.

5.10 Conclusion

This chapter presented results on how measures of functional connectivity extracted

as features perform with SVM and CNN classifiers to discriminate brain states. After

collecting fNIRS data and preprocessing it, functional connectivity features are extracted

in the form of correlation coefficient matrices, either for a single time window, or using a

sliding time window. Four main types of classification experiments were performed for

both SVM and CNN classifiers. The best performing SVM and CNN both used classifier

type B, which included a single time window from 16 to 16.5 seconds. While the CNN

classifiers did improve on the SVM classifier as anticipated, the classifier with the best

performance just had moderate accuracy. In addition, CNN classifiers that were trained

per subject showed improved averaged training accuracy, but suffered from increased

overfitting. While there are areas for improvement, the results show that it is feasible

to create SVM and CNN classifiers based on measures of functional connectivity in the

prefrontal cortex. Consequently, the approach used for creating classifiers in this Thesis

may have potential for adaptation to other types of classification tasks.
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Table 5.4: CNN Single Subject Classifier Results

Type of
Experiment

CNN-E CNN-F CNN-G CNN-H CNN-I CNN-J

Time Range
(s)

14 → 21 14 → 21 14 → 21 16 → 19 16 → 19 16 → 19

Window Size
(s)

2 1 0.5 2 1 0

Images 3040 3680 4000 480 1120 1440

Images/Sub 380 460 500 60 140 180

S1 Testing
Accuracy

55.53 56.09 49.60 43.33 59.29 64.44

S2 Testing
Accuracy

55.53 55.65 53.80 61.67 65.71 57.22

S3 Testing
Accuracy

44.74 44.57 49.20 65.00 49.29 54.44

S4 Testing
Accuracy

44.47 48.04 50.40 66.67 39.29 48.33

S5 Testing
Accuracy

65.79 54.57 57.80 50.00 68.57 54.44

S6 Testing
Accuracy

54.47 48.04 52.00 60.00 42.14 50.00

S7 Testing
Accuracy

52.89 50.00 52.00 38.33 48.57 73.61

S8 Testing
Accuracy

55.53 48.26 48.20 53.33 52.14 48.89

Avg. Testing
Acc.

53.62 50.65 51.63 54.79 53.13 56.42

St. Dev.
Testing Acc.

6.79 4.25 3.08 10.33 10.58 8.72

Avg.
Training

Acc.

75.77 70.75 71.03 85.36 80.47 73.80

Avg.
Precision

53.37 53.09 53.47 30.42 47.99 50.28

Avg.
Sensitivity

53.16 45.00 52.40 60.00 45.54 53.05

Avg.
Specificity

54.08 56.30 50.85 49.58 60.72 54.86

Note: Learning rate is 1 × 10−5 and number of epochs is 74 for all classifiers in this
table. k-fold cross validation is done using 5 folds belonging to one subject, where
each fold contains two experimental trial blocks. Accuracies are all shown as percents
(%)
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Chapter 6

Conclusion

This Thesis explored the feasibility of using measures of functional connectivity

in the prefrontal cortex as features to develop models of discriminating brain states

from fNIRS recordings.There are numerous benefits to fNIRS compared with other

neuroimaging techniques, such as EEG and fMRI, but fNIRS still suffers from drawbacks

that are directly related to the number of optodes used. Some of these issues include

long setup time and wearer discomfort. The development of an fNIRS classification

technique which only requires prefrontal cortex signals would reduce the number of

optodes needed and decrease the effect of these drawbacks, especially since unlike other

areas, there is little or no hair in the prefrontal cortex region which allows for ease of

setup and better signal quality. This study attempts to find a solution for this challenge

by using functional connectivity measures of the prefrontal cortex as features for SVM

and CNN classifiers.

To measure functional connectivty, correlation coefficient matrices were used. The

correlation coefficient matrices were calculated using the fNIRS time series data from

14 prefrontal cortex channels. Four different classification experiments were performed

by varying the time windows used in calculating the correlation coefficient matrices.

Three of the four classification experiments use one single time window for feature

extraction, while a sliding time window method generating many more windows and

augmenting the training and testing datasets was used for the fourth experiment. k-fold

cross validation was used to evaluate the performance of the classifiers, where the folds

are divided by subject. The sliding time window method and the k-fold cross validation

aim to reduce the presence of overfitting in the data, which is a common problem for

neuroimaging datasets since obtaining large quantities of data is a challenge.
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The experimental task used for data collection involved measuring the fNIRS responses

to irritant-contained and irritant-free solutions. The results with both SVM and CNN

classifiers show that it is possible to create a classifier based on measures of functional

connectivity in the prefrontal cortex.

6.1 Future Work

This work explored the possibility of using functional connectivity in the prefrontal

cortex for discriminating brain states, but further work can be done to improve the

classification performance, especially for the CNN classifier. The main impediment to

achieving higher accuracy was overfitting. The small quantity of data is most likely the

cause of the overfitting. Therefore, if additional overfit reduction strategies can be used

during classifier training then the performance will likely improve.

The tuning of the CNN can be improved using early stopping of training and decay

of learning rates. The CNN proposed in this Thesis trains for a certain fixed number of

epochs. In contrast, the early stopping method checks the validation accuracy during

each epoch as the CNN trains, and stops the training when the validation accuracy

no longer increases. This is very useful for reducing the overfitting in the model. The

learning rates for the CNN classifiers here also had fixed learning rates. Decaying the

learning rate using Adam [21] or a similar technique could potentially result in a faster

and more optimal training of the network.

The results from this Thesis found that the choice of features has a large impact on

the performance of the CNN classifier. In many cases, a classifier would perform more

accurately with some subjects than others. Therefore, there may be an improvement

in performance if features extracted from different time windows were can be together

in one feature space. Another possible method for adjusting the feature space is to

choose what channels to include when calculating the correlation coefficient matrix.

This study included data from all available prefrontal cortex channels, but perhaps the

use of all 14 channels was not necessary and contributed to the heavy overfitting seen

in most of the classifiers.
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The CNN architecture also may be improved upon. VGG-F was chosen as the

pretrained network for transfer learning because of its speed, not necessarily because of

its exceptional accuracy. For example, Microsoft’s ResNet architecture has significantly

greater performance than that of VGG-F when it was published in 2015 [42]. Hence,

ResNet may also have superior results in transfer learning, especially if combined with

improved network tuning and feature selection.
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