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Severe hurricane events have been occurring across the United States, threatening both highly 

developed urban areas and distressed island communities. Assessment of building damages due to 

hurricane events is a critical element in disaster management as it supports not only search and 

recues operations but also provides insights into the performance of existing planning and 

building practices. But unlike many other extreme weather events, hurricanes can topple an entire 

region for an extended amount of time, creating a daunting task for traditional foot-on-ground 

building damage assessment approaches.  

The overarching goal of this study is to create and test a computational framework to leverage 

big spatial data acquisition and processing technologies for automated building damage 

assessment. The specific aims of this study include: (1) formulating a cohesive and multi-scale 

damage assessment approach that considers the continuously evolving data sources and damage 

assessment needs during different phases of disaster management; (2) developing algorithms for 

rapid building damage assessment with airborne lidar data, which are typically collected 

immediately after the landing of hurricane events; (2) developing algorithms for component-level 

building damage assessment with high-resolution ground-based lidar data; (3) charactering the 
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performance of image based 3D reconstruction for damage assessment; (4) developing robust 

image alignment algorithms for geo-registering post-disaster image data from varied sources to 

realize the fusion of heterogeneous point cloud and image data for comprehensive damage 

assessment. The proposed methods were applied on several geospatial data sets collected during 

Hurricane Sandy. The results are compared with the ground truth which was created by a manual 

labeling process. The results show that the proposed methods are capable of conducting damage 

assessment of building structures autonomously and at different resolution and extracting useful 

damage information to support building performance modeling. Future research of this study will 

be focused on leveraging high performance computing capabilities to accelerate the damage 

assessment process. 
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Chapter 1 : Introduction 

1.1 Research Background 

In the past decade, humankind has suffered tremendous loss due to the increasing amount, 

intensity, and frequency of extreme weather events. Sadly, the effects of increased occurrence and 

ferocity of events are disproportionately felt by the poorest and most vulnerable members of our 

global population. Among many types of extreme weather events, tropical cyclone is one of the 

most devastating events affecting many heavily populated areas in the United States and around 

the world. For example, the recent Hurricane events in the United State alone as shown in Table 

1.1 have caused hundreds of billions of dollars of damages to properties and business and have 

claimed thousands of human lives. One often severely impacted structure during these events are 

buildings, especially residential homes. 

Table 1.1. Recent Major Hurricane Events in U.S. 

Name Date Total Deaths Total Damages Building Damages 

Hurricane Matthew Oct, 2016 15 $6 Billion 102 Destroyed; 

100000 Affected 

Hurricane Sandy Oct, 2012 159 $62 Billion 500 Destroyed; 

5000 Major Damage; 

24000 Minor Damage 

Hurricane Katrina Aug, 2008 1833 $108 Billion 300000 Affected 

Hurricane Ike Sept, 2008 195 $38 Billion 323800 (Affected in Cube) 

 

In the aftermath of large coastal storm events, in fact, any type of large-scale natural 

disasters, damage assessment is an absolutely essential task as it impacts nearly every aspects of 

disaster 
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management. Essential disaster management functionalities including sheltering, temporary 

housing, search and rescue, debris removal, reestablishment of major transportation links, utilities 

and communication restoration, hazard mitigation, demolition, and redevelopment planning all 

depend on the information from damage assessment in order to make informed decisions. 

After the occurrence of natural hazard, two types of damage assessment protocols are 

conducted sequentially (FEMA 2016). Immediate after a disaster, rapid damage assessment is 

launched primarily for gathering information that can be used to quickly determine whether a 

structure is safe to enter or not, or to determine whether a structure is collapsed or not. In 

addition, topographic change and debris distribution are also quickly evaluated to support the 

decision of routing of evacuation, rescue, and post-hazards evaluation. After the rapid assessment, 

detailed damage assessment is carried out primarily for repair estimation and damage modeling. 

In this stage, the extent of structure damages is quantitatively estimated so that recovery teams 

would be able to determine the damage status of each individual objects. 

Conventional post-disaster building damage relies on manual damage assessment by ground 

assessment teams (Chiu et al. 1999, Crandell et al. 2005, Gurley et al. 2006, Curtis et al. 2012). 

These approaches are generally labor intensive and are difficult to be scaled up to cover large 

disaster areas without incurring significant cost. This makes it impractical for large-scale rapid 

assessment. With the progressive development in remote sensing technologies, remote sensing 

aided damage assessment has become a feasible alternative solution to manual damage 

assessment. In particular, modern big spatial data acquisition and processing technologies such as 

laser scanning from airborne, mobile, or static platforms and dense 3D reconstruction using 

photos from a variety of sources are playing an increasingly important role for decision support in 

disaster preparation, response, and recovery operations as they greatly expand the ability of 

collecting disaster data. For instance, in recent years, because state and federal agencies have 

made airborne LiDAR (Light Detection and Ranging) data collection a priority, post-storm 

LiDAR collection is now routine after large surge event and vast amounts of disaster data are now 
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freely available online (e.g. NOAA’s Digital Coast). In another example, emerging high 

resolution sensing systems such as terrestrial/mobile LiDAR have also been deployed for damage 

data collection during recent events such as Superstorm Sandy, generating an unprecedented 

amount of 3D geospatial data. Lastly, volunteered geographic information (VGI), such as geo-

tagged disaster photos, is a new breed of disaster data which further enriches but also complicates 

disaster data analysis. The geo-tagged photos themselves are not 3D. But 3D information can be 

recovered by either running Structure-from-Motion followed by multi-view stereo on these 

unstructured images or registering these images with LiDAR data. 

Significant research effort have been devoted in the past to post-disaster damage using either 

imagery-based approaches (Barnes et al. 2007, Vijayaraj et al. 2008) or point cloud-based 

approach (Elberink et al. 2012). Compared with conventional field survey practices, remote 

sensing-based approaches have the following advantages: 

1) Safety: Compared with manual field survey, which requires the survey team to approach 

each building one by one, remote sensing technologies can observe objects and extract 

condition data in distance. 

2) Speed: Compared with manual field survey, remote sensing technologies often involve 

the use of advanced sensing technologies which are mounted on fast moving platforms 

such as satellite, man and unmanned airplanes, mobile vehicles, or boats. This makes it 

feasible to collect data on large areas in a short amount of time. 

3) Perception: Remote sensing technologies provide large-scale perceptions of the extent of 

damage, offering a big picture of what is going on in the impacted area. Manual field 

survey provides rich detail, but lacks the capability in facilitating comprehension of 

situational awareness at a large-scale. 

4) Information: Compared with field survey, remote sensing technologies are able to 

reconstruct the geo-referenced 3D model of the evaluated objects with actual sizes. This 
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brings alternative solution to manual damage assessment as engineers and agencies can 

revisit the damaged areas virtually in the office. Meanwhile, there is no need to return to 

the field to reevaluate buildings if some components are omitted at the first round of 

evaluation. 

As shown in Figure 1.1, the comparison of remote sensing-based and field survey-based 

assessment is summarized in radar plot manner. The comparison is conducted qualitatively. As 

observed, remote sensing-based approach overwhelms the field survey approach in safety, speed, 

and perception aspects significantly. 

Use of remote sensing technologies to assess disaster impacts is not a new topic. A 

particularly well-studied area is building damage assessment following major disasters such as 

earthquake, tsunami, and tornado. The type of data used in these studies include satellite imagery, 

airborne imagery, airborne lidar, InSAR, oblique imagery, point clouds reconstructed from 

overlapping images, and terrestrial lidar. There are two dominant approaches used in these studies 

to detect and quantify damages. The first is based on classifying damages based on damage 

features such as surface smoothness, local features, intensity distribution, and height information 

extracted from mono-temporal data (Khoshelham et al. 2013, Kashani et al. 2014, Galarreta et al. 

2015, Kashani et al. 2015, Kashani et al. 2015, Vetrivel et al. 2015, Vetrivel et al. 2016). The 

second is based on detecting and characterizing changes between multi-temporal data sets (Vögtle 

et al. 2004, Huang et al. 2014, Lucieer et al. 2014, Pang et al. 2014, Coulter et al. 2015, Vetrivel 

et al. 2016).   
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Table 1.2 summarizes the research conducted regarding the building damage assessment and 

change detection using multiple remote sensing technologies. 

 

Figure 1.1. Remote Sensing Technologies for Damage Assessment 
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Table 1.2. Research about Damage Assessment using Remote Sensing Techniques 

Research Technique Damage Category Methodology Features 

Schweier et 

al. (2004), 

(2006) 

ALS Earthquake  Inclined layer; 

 Pancake collapse; 

 Debris heaps; 

 Overturn collapse; 

 Overhanging elements 

Comparison between pre-

event and post-event data 

1) Height difference; 

2) Volume reduction; 

3) Footprints; 

4) Inclination change 

Rehor et al. 

(2008) 

ALS Earthquake  Comparison between pre-

event and post-event 

plane segments 

Plane extraction: 

1) RANSAC; 

2) Region-growing 

Yonglin et al. 

(2010) 

ALS Earthquake  Roof inclination Compute the roof normal 

and axis line direction 

Group roofs into: 

1) Symmetric roof; 

2) Partial symmetric roof; 

3) Asymmetric roof 

Elberink et al. ALS   Building collapse Machine learning-based 1) Number of points per 
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(2012) approach with post-event 

data only 

segment;  

2) Mean height; 

3) Planarity; 

4) Standard deviation of 

intensity 

Khoshelham 

et al. (2013) 

ALS Earthquake  Intact buildings; 

 Damage buildings 

Machine learning-based 

approach with post-event 

data only 

1) Number of points per 

segment;  

2) Mean height; 

3) Planarity; 

4) Standard deviation of 

intensity 

He et al. 

(2016) 

ALS Earthquake  Inclined layers; 

 Pancake collapse; 

 Debris heaps; 

 Overturn collapse; 

 Overhanging elements 

Use shape descriptors to 

detect damage 

1) Shape contours; 

2) Chaos index 
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Kashani et al. 

(2015) 

TLS Tornado  Roof damage Statistically count the 

distribution of intensity 

value of different roof 

materials 

1) Point cloud intensity 

Kashani et al. 

(2015) 

TLS Tornado  Roof damage Cluster the damage 

patterns from the colored 

point cloud 

1) Point cloud intensity; 

2) Image color 

Zhou et al. 

(2016) 

MLS Hurricane/Storm 

Surge 

 Pipeline Risk Use the building and 

terrain change to estimate 

the buried and 

aboveground pipeline 

risks 

1) Oriented point-to-point 

distance; 

2) Building component 

level change detection 

Gong et al. 

(2014) 

MLS & ALS Hurricane/Storm 

Surge 

 Building damage; 

 Debris 

Comparison between pre-

event ALS and post-event 

MLS 

1) Point to point distance 

Zhou et al. Image & MLS Hurricane/Storm  Building components Use image-based 3D 1) Plane segmentation; 
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(2015) Surge damage reconstruction to detect 

the building components 

damage 

2) Boundary points 

extraction; 

3) of plane fitting; 

4) Normal of planes 

Kashani et al. 

(2014), 

(2016) 

TLS & Aerial 

Imagery 

Tornado  Roof damage Comparison between pre-

event aerial imagery and 

post-event TLS data 

1) Point cloud intensity; 

2) Image color 

Barnes et al. 

(2007) 

Satellite 

Imagery 

Hurricane / 

Storm Surge 

 Building roof; 

 Parking lot; 

 Vehicle; 

 Road 

Use σ-tree-based 

structure to detect the 

wind-induced damage 

Multiple image features: 

1) Building roof edge; 

2) Building roof corner: 

3) Ship cargo containers; 

etc. 

Chen et al. 

(2016) 

Aerial 

Imagery 

  Generate RGB-D map 

from aerial imagery, then 

depth difference is 

extracted to quantify the 

1) SHOT descriptor; 

2) HoG; 

3) DSTD 
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change 

Galarreta et 

al. (2015) 

TLS/MLS & 

Oblique 

Imagery 

  Wall façade; 

 Roof facet; 

 Rubble piles 

Use UAV image to assist 

the building damage 

(addressing the damage 

level ambiguity) 

 

Geiß et al. 

(2015) 

Satellite / 

Aerial 

Imagery 

Earthquake  Masonry; 

 Reinforced concrete 

low rise; 

 Reinforced concrete 

high rise; 

 Unreinforced masonry; 

 Timber frame 

residential; 

 Timber frame non-

residential; 

 Steel frame 

Machine learning-based 

approach uses fusion of 

multi-remote sensing data 

for seismic building 

structural types 

determination 

Multiple features 

including: 

1) Extent; 

2) Shape; 

3) Color; 

4) Texture; 

5) Spatial Context; 

6) 3D characteristics 

Hua et al. Oblique Earthquake  Intact building; Detect building collapse 1) HoG 
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(2016) Imagery  Collapsed buildings from UAV-based oblique 

imagery 

Janalipour et 

al. (2016) 

Satellite 

Imagery 

Earthquake  Very heavy damage; 

 Heavy damage; 

 Negligible to moderate 

damage 

Integrate a decision-

making system and 

adaptive network-based 

fuzzy inference system to 

extract building damage 

degree 

1) Area; 

2) Length; 

3) Solidity; 

4) Convexity; 

5) Roundness; 

6) Form factor; 

7) Rectangle fit 

Kahraman et 

al. (2016) 

Satellite 

Imagery 

  Intact buildings; 

 Damage buildings 

Use local self-similarity 

descriptor to assess 

damage with pre-event 

and post-event EQ image 

1) Self-similarity 

descriptor 

Tian et al. 

(2014) 

Satellite 

Imagery 

  Positive change; 

 Negative change; 

 Rebuilt 

Use joint of height 

changes and Kullback-

Leibler divergence 

similarity to detect the 

1) Height change; 

2) Similarity 

measurement 
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building changes based 

on stereo matching and 

DSM generation 

Li et al. 

(2015) 

Aerial 

Imagery 

Earthquake  Roof hole Gradient Map is first 

generated, and a Chinese 

franchise model is used to 

learn an unsupervised 

model to detect roof holes 

1) Image color features; 

2) Image shape features 

Tong et al. 

(2012) 

Satellite 

Imagery 

Earthquake  Intact building; 

 Collapsed building 

Construct the 3-D model 

using stereo matching, 

and detect the collapsed 

buildings through height 

change and area reduction 

1) Height difference; 

2) Area reduction of 

DSM 

Tong et al. 

(2013) 

Satellite 

Imagery 

Earthquake  Intact building; 

 Collapsed building 

Based on footprint and 

height data, the 3-D 

model is generated first. 

Then the theoretical 

1) Theoretical shadow 

polygon; 

2) Actual shadow 
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shadow area is computed 

as reference to detect the 

collapsed buildings 

polygon 

Vetrivel et al. 

(2015) 

Oblique 

Imagery 

Earthquake  Debris; 

 Rubble piles; 

 Heavy spalling 

Train a Visual-Bag-of-

Words to classify pixel-

wise features to detect 

structural damage 

1) HoG; 

2) Gabor wavelets; 

3) SURF 

Torok et al. 

(2013) 

Image   Concrete crack Use image-based 3D 

reconstruction to detect 

the concrete crack 

1) Mesh normal 

Hatzikyriakou 

et al. (2015), 

Xian et al. 

(2015) 

Image Hurricane / 

Storm Surg 

 Wall collapse; 

 Roof collapse; 

 Foundation scouring; 

 Wall cladding 

Use ground-based 

imagery data to assist the 

field survey and 

evaluation 

 

Yeum (2016) Image Earthquake  Building collapse; 

 Cracks 

Use computer vision 

based techniques to detect 

1) Multiple color space; 

2) HoG; 
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visual patterns from 

imagery. Use deep 

learning techniques to 

detect cracks 

3) High-level features 

Cha et al. 

(2017) 

Image   Concrete crack Use convolutional neural 

network to learn and 

detect the concrete cracks 

from 

1) High-level features 
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In contrast to this plethora of studies devoted to building damage assessment after earthquake, 

tsunami, and tornado events, use of remotely sensed data, in particular high-resolution imagery or 

point cloud data, to assess building damages after hurricane events has drawn much less attention. 

For the very limited amount of studies that have investigated hurricane damage assessment with 

remotely sensed data, virtually all of them rely on manual interpretation of imagery or point cloud 

(Gong et al. 2014, Hatzikyriakou et al. 2015, Xian et al. 2015). Furthermore, none of these studies 

has investigated the use of airborne lidar data for hurricane damage assessment.  

The pattern of seismic-induced damage varies significantly from the pattern of hurricane-

induced damage. As illustrated in Figure 1.2, earthquake induced building damage is mainly 

caused by the large horizontal movement of the earth and the huge lateral shear force caused by 

ground acceleration. Tornado events impact the building primarily through wind effects, and 

tsunami events damage buildings primarily through wave and storm surge actions. In contrast to 

these events, damages to buildings during hurricanes are often due to the combined wind, storm 

surge, and wave action effects. In addition to building damage, storm surge depth is also a 

dominant factor in influencing the extent of building property damages. While the studies in 

earthquake, tornado, and tsunami damage assessment have shown the promising capabilities 

associated with remote sensing technologies, it is reasonable to expect that use of remote sensing 

technologies for hurricane damage assessment requires dedicated methodology development 

because of the complexity in hurricane damage mechanisms. 
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Figure 1.2. Pattern of Seismic-induced and Flooding Surge-induced Building Damage. 

Figure 1.2 (a) is the collapsed building in Wenchuan earthquake, 2008
[1]

; (b) is the collapsed 

building in Hurricane Sandy, 2012
[2]

; (c) is the damaged roof in Andrew, 1992
[3]

; (4) is the 

building damage due to storm surge in Hurricane Sandy, 2012[4]. 

Crowd-Sourcing and Volunteered Geographic Information (VGI) are widely considered 

potential game changers in damage assessment. The rise of social media has provided an 

unconventional way of sensing disaster damages through a so-called social sensing mechanism. 

                                                             
1 http://agnesngoy.blogspot.com/2014/11/case-study-2008-sichuan-earthquake.html 
2 http://www.nbcphiladelphia.com/news/national-international/Sandy-Retired-from-List-of-

Hurricane-Names-202549971.html?_osource=AMP 
3 http://www.floridadisaster.org/hrg/content/risks/risks_index.asp 
4 https://weather.com/news/news/storm-surge-hurricane-sandy-isaac-20121227#/1 
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Table 1.3 summarizes the studies regarding crowd-sourcing-based and VGI-based damage 

assessment. Some of these studies have focused on object-based seismic-induced damage 

assessment by the integration of crowd-sourcing imagery and VGI data. It also can be noticed that 

great attention has been paid on mapping the flooding surge at global scale. Inundation impact is 

a critical concern to people who are impacted by hurricane events. Unlike building damage which 

is statically remained until the recovery procedure begins, the flooding surge height varies 

quickly and is hardly captured by organized assessment team. To address this issue, a crowd 

sourcing-based (Howe 2008), or called volunteered geographic information-based concept was 

introduced in (Goodchild et al. 2007). While many of these studies have clearly demonstrated the 

potential of social media and VGI-based approach, most of these studies rely on geotags in the 

social media and VGI data to localize these data. Use of unstructured VGI or crowd sourced 

image data for damage assessment is an open research field. 
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Table 1.3. Research about Storm Surge Measurement using Crowd-sourcing and VGI data 

Research Technique Category Scale Damage Methodology 

Lane et al. 

(2003) 

 Point Cloud DTM; 

 Imagery 

Flood height 

measurement 

Large 

scale 

Flood Surge Compare the following 

methodologies: 1) Point cloud 

segmentation based upon image 

analysis; 2) Point cloud segmentation 

based upon digital flood outlines 

using watermark line identification; 3) 

Imagery analysis 

De Albuquerque 

et al. (2015) 

 Social media text-

tweets; 

 Authoritative 

spatial data 

Explore relation 

between social 

media events and 

disaster events 

Large 

scale 

Flood Surge Relate crowd sourcing data (imagery, 

tweets) to authoritative spatial data to 

explore the statistical pattern in the 

occurrence of flood-related tweets and 

the associated events 

Barrington et al. 

(2012) 

 Crowd-sourcing 

aerial imagery 

Earthquake-induced 

damage detection 

Object-

based 

scale 

Earthquake Case study regarding multiple 

extreme earthquake disaster 
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Crooks et al. 

(2013) 

 Social media text-

tweets; 

 Authoritative 

spatial data 

Explore relation 

between social 

media events and 

disaster event 

Large 

scale 

Earthquake Leveraging social media text as a 

distributed sensor system to explore 

the relation between the social media 

response and actual hazards event 

Schnebele et al. 

(2013) 

 Social media 

imagery; 

 Tweets; 

 Geo-located 

videos; 

 Authoritative data 

Flood mapping Large 

scale 

Hurricane & 

Flood Surge 

Integrate the non-authoritative crowd 

sourcing data with authoritative 

geospatial data to conduct the flood 

damage mapping 

Schnebele 

(2013) 

 Social media 

imagery; 

 Remotely sensed 

imagery; 

 DEM’ 

 Authoritative data 

Flood mapping Large 

scale 

Flood Surge Multi-temporal remotely sensed 

imagery data are registered. The 

social media image are then used to 

improve the classification of water 

mark pixels. 

McDougall  Volunteered Flood mapping Large Flood Surge Individual imagery is collected and 
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(2011) geographic 

information; 

 Social media data 

scale the flood height is measured. The 

flood map is then obtained through 

integration of VGI and social media 

data 

Triglav-Čekada 

et al. (2013) 

 Raster flood maps; 

 Volunteered 

geographic 

information 

Flood mapping Large 

scale 

Flood Surge The VGI data is obtained through 

public call. The web-based search is 

integrated. Then the 3-D flood 

mapping is obtained through manual 

fitting approach 

Clinch et al. 

(2012) 

 Multi-temporal 

topographic data; 

 Storm data such as 

peak water 

elevation 

Flood mapping Large 

scale 

Flood Surge Integration of topographic data and 

storm data is used to estimate the 

flooding map using 1) temporal dune 

cross section analysis; 2) dune ridge 

analysis; 3) wrack line surge 

estimation; and 4) inundation 

visualization 

Schnebele et al.  Volunteered 

geographic 

Flood mapping Large 

scale 

Flood Surge Spatial temporal damage assessment 

is firstly conducted by fusion of social 
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(2014) information; 

 Social media dtaa 

media data and VGI data. Then the 

authoritative data is integrated to 

improve the performance, and finally 

the road network layer is overlaid for 

the mapping 

Rosser et al. 

(2017) 

 Social media 

imagery; 

 Point cloud data; 

 Topographic 

model 

Flood mapping Large 

scale 

Flood Surge Social media imagery is firstly 

integrated with georeferenced data. 

The point cloud DTM is used to 

generate the fuse model. And finally a 

Bayesian probabilistic method is 

adopted to explore the relation 

between evidence variables 
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1.2 Research Objectives and Research Questions 

The central research question to be addressed in the dissertation is: Can big spatial data 

acquisition and processing technologies including laser scanning from aerial and mobile 

platforms and 3D dense reconstruction provide a systematic and automated way to assess 

building damages in the aftermath of major hurricane events? To answer this question, this 

dissertation is structured to address the following challenges: 

1) After the occurrence of hurricane events, an initiative wave of airborne lidar data 

collection is often conducted to assess topographical changes. These data sets often cover 

large geographic regions. It is challenging to automatically and rapidly process these data 

sets to detect building objects and assess their conditions. It is also unknown that to what 

extent can building damage be assessed using airborne lidar data which tend to be very 

sparse.  

2) Following rapid response, a detail damage assessment is often required. Mobile lidar has 

greatly expanded the data collection capability during natural disasters. Unlike airborne 

lidar data, mobile lidar data have very high resolution. This makes mobile lidar a useful 

tool for detail damage assessment. However, the complexities in building configuration 

make detail damage assessment a challenging task for computers. Therefore, how to 

process mobile lidar data efficiently and intelligently to detect building damage in details 

is a question to be answered in this research. 

3) Images are indispensable sources of information during hurricane events. Immediately 

following hurricane events, photos of impacted buildings start coming in from many 

different channels such as first responders, residents, and social media outlets. These 

photo data are extremely helpful for rapid and later on detailed damage assessment. 

Technologically, it is now feasible to recreate a virtual reality of impacted sites to 
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facilitate damage assessment. However, to what extent model reconstruction from these 

photos can be used for assessing hurricane damages is unknown. 

4) Many of the photos of damaged buildings from different sources are not georeferenced, 

which makes it difficult to figure out the correspondence between images and building 

objects. The difficulty in tagging images to relevant building structures leads to missed 

opportunities in assessing damages in a timely, accurate, and comprehensive fashion. A 

fundamental challenge is image-to-image and image-to-3D data alignment for fusing 

multi-sourced visual disaster data. If this can be accomplished, it opens doors to many 

innovative applications such as image based storm surge height measurement and 

recreation of inundation scenarios. 

1.3 Research Methodology 

To address the aforementioned research challenges, a framework for processing data 

collected by big spatial data acquisition technologies for damage assessment is shown in Figure 

1.3. In the figure, the dashed arrow indicates the sequence of different stages, and the solid arrow 

represents the operation at a start point is applied to the operation at an end point. Immediately 

after the occurrences of hurricane events, building objects are detected and extracted from 

airborne lidar point cloud using a convolutional neural network-based approach (Figure 1.4 (a)). 

A rapid building damage assessment is conducted using multi-temporal airborne lidar data sets 

(Figure 1.4 (b)). The detection is conducted through comparison of multiple features computed 

from multi-temporal point cloud data. Later on, an automated semantic parsing and damage 

detection framework is designed to conduct component level damage assessment (Figure 1.4 (c)). 

To integrate VGI- or crowdsourcing- based image data into the framework, a component level 

damage assessment approach using fusion of point cloud and image-based reconstruction model 

is designed (Figure 1.4 (d)). In this approach, 3D reconstruction techniques are employed to 

generate dense point cloud data, and their potential for supporting component-level damage is 
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evaluated. The last stage of the proposed framework is a framework of using the fusion of geo-

tagged street-level image and point cloud data to estimate the component-level building damage 

(Figure 1.4 (e)), which address the fundamental challenges in image-to-image and image-to-

model alignment in the disaster science context.  

 

Figure 1.3. The Overview of Framework 

 

Figure 1.4. Overview of Components of the Proposed Framework 

Comprehensive case studies are carried out to validate the proposed system framework. The 

airborne lidar data collected before and after Hurricane Sandy, the mobile lidar collected in the 
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aftermath of Hurricane Sandy, and the image data collected by different damage assessment 

teams are used as the training and testing data sets in this research. All these data sets are 

collected at Ortley Beach and Seaside Heights in New Jersey, which are among the most severely 

damaged areas during Hurricane Sandy.  

1.4 Research Contributions 

The overall contribution of this dissertation research is designing, developing, and validating 

a unified framework and algorithms for fusing and interpreting emerging spatial disaster data sets 

for automated and intelligent damage assessment in the aftermath of major hurricane events. 

The individual components of this research provide further contributions along the following 

fronts: 

1) The design of a high performance building detection approach that requires minimum 

preprocessing of airborne LiDAR data (i.e. no ground detection or any other kind of 

classification is needed), works on both pre- and post-disaster data, and is autonomous and 

highly efficient. The study also represents the first study in using deep neural networks for 

building detection in airborne LiDAR data sets. 

2) The design of a hierarchical framework that is able to 1) characterize the extent of 

building damage; 2) deal with the scenario that roof facets are severely damaged so that 

they are not able to be detected; and 3) propose a framework that is able to detect and 

assess the hurricane-induced building damage at residential area with rich vegetation. 

3) The design of a fully automated method that is able to 1) semantically parse dense point 

cloud data of residential buildings, regardless of whether they are damaged or not, into 

major building components including roof, exterior walls, columns, and handrails; 2) 

apply to post-event point cloud data only, because the proposed methodology is based on 

rule-based topological assumptions. 
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4) The design of an imagery reconstruction-based approach that is able to assess the 

component level building damage including wall cladding failure, balcony inclination, 

opening size, etc.  

5) The design of an efficient framework that is able to  

i. align the arbitrary image with point cloud and retrieve the projection correspondence 

between the image and point cloud; and  

ii. measure the storm surge height from image data which could not be addressed from 

point cloud data. 
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Chapter 2 : Automated Residential Building Detection From Airborne Lidar Data With 

Deep Neural Networks 

Detection of building objects in airborne LiDAR data is an essential task in many types of 

geospatial data applications such as urban reconstruction and damage assessment. Traditional 

approaches used in building detection often rely on shape primitives that can be detected by 

2D/3D computer vision techniques. These approaches require carefully engineered features which 

tend to be specific to building types. Furthermore, these approaches are often computationally 

expensive with the increase of data size. In this paper, I propose a novel approach that employs a 

deep neural network to recognize and extract residential building objects in airborne LiDAR data. 

This proposed approach does not require any pre-defined geometric or texture features, and it is 

applicable to airborne LiDAR data sets with varied point densities and with damaged building 

objects. The latter makes this approach particularly useful in damage assessment applications. 

The research results show that the proposed approach is capable of achieving the state-of-the-art 

accuracy in building detection in these different types of point cloud data sets. 

2.1 Introduction 
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LiDAR is a remote sensing technology that measures distance by illuminating a target with a 

laser and analyzing the reflected light. Among other applications, LiDAR is useful for detailed 

mapping of terrain, elevation, structures, and change detection in disaster management at several 

levels.  The field is rapidly maturing in capabilities, applications, and utility. In recent years, 

because state and federal agencies have made airborne LiDAR data collection a priority, LiDAR 

collection is now routine after large surge event and vast amounts of point cloud data are now 

freely available online (e.g. NOAA’s Digital Coast). LiDAR data have rich use cases in city 

management and damage assessment applications. One crucial processing task in these LiDAR 

applications is building detection.  

Automated building detection from airborne LiDAR data sets is a challenging task. Airborne 

LiDAR systems collect primarily nadir LiDAR observations, leading to sharp drops in data 

density from the rooftops to the vertical facades. Because of the lack of LiDAR observations on 

the vertical facades, building detection has to rely on detection of roof objects (Wang et al. 2009, 

Tseng et al. 2016). Nevertheless, because of the attitude of airborne LiDAR data collection, most 

airborne LIDAR systems produce sparse point cloud data sets, posing challenges to detect planar 

roof objects and their boundaries. In addition to these challenges, detection of building objects 

from airborne LiDAR data sets that were collected after major disasters is further complicated by 

damaged or collapsed roof objects. In these kinds of scenarios, specialized features need to be 

designed in order to realize automated detection of buildings based on roof objects. However, use 

of special features that are hand engineered for different types of data sets inevitably limits the 

usefulness of these building detection methods in broader applications.  

With the rapid emerging of deep learning techniques, multiple types of deep learning 

frameworks have been developed and applied in visual recognition and classification tasks 

(Sermanet et al. 2013, He et al. 2016, Liu et al. 2016). It has been shown that Convolutional 

Neural Network (CNN) is capable of recognizing high-level objects by automatically learning a 

set of abstract features. Recently, Hu et al. (2016) proposed a CNN-based approach to extract 



29 
 

 
 

Digital Terrain Model (DTM) from airborne point cloud data sets. In their research, the point 

clouds were first converted to feature images which were fed into a CNN to learn the abstract 

features of ground and non-ground points. Ghamisi et al. (2016) proposed a deep learning based 

framework to extract the spatial information from the fusion of hyperspectral and LiDAR data. In 

this research, I propose a CNN-based approach to automatically detect building objects from 

point clouds with different densities and building conditions (damaged, intact, or collapsed). 

More specifically, the point cloud is first converted to a gray-scale image with the value of each 

pixel representing the height of the corresponding point. A deep CNN is then trained to learn the 

features in the converted images. The experiment shows that the proposed approach is able to 

extract the building objects very reliably from airborne LiDAR data.  

The major contributions of this study include the design of a high performance building 

detection approach that requires minimum preprocessing of airborne LiDAR data (i.e. no ground 

detection or any other kind of classification is needed), works on both pre- and post-disaster data, 

and is autonomous and highly efficient. The study also represents the first study in using deep 

neural networks for building detection in airborne LiDAR data sets. This new approach is capable 

of achieving the state-of-the-art accuracy (93%) in building detection in these different types of 

point cloud data sets. 

2.2 Related Work 

Building detection from airborne LiDAR data has been extensively studied in the context of 

urban reconstruction and modeling, damage assessment, and many other city management 

applications. The major approaches used in building detection studies include, but are not limited 

to, the use of shape descriptors, contours, and prior model data (such as building footprint 

databases and roof geometric models).  

Buildings as man-made structures have strong geometric cues that can be exploited for 

building detection. For example, Dorninger et al.(2008) proposed an automatic building 

extraction approach which relies on the detection of plane segments. For community-scale 
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building extraction, this approach becomes computationally very expensive. To address this issue, 

the authors proposed to use candidate seeds that are initialized first using hierarchical clustering 

and to detect building objects around the seeds. Lafarge et al.(2011) developed a large-scale city 

modeling system which leverages a combination of generic shape descriptors such as plane, 

sphere, cylinder, etc., to model the building objects. However, this approach requires dense 

airborne point cloud as inputs to generate Level-of-Detail (LoD) models. Awrangjeb et al.(2014) 

developed a framework for automatic building extraction. In their approach, a removal of wall 

points was implemented before the roof segmentation. And then the height and local 

neighborhood are used to cluster the roof points. And Sun et al. (2013) proposed an automated 

building object extraction framework in which point cloud data were first classified into ground 

and non-ground using the graph-cut algorithm, then the non-ground points were segmented using 

a distance-based clustering method, and eventually the building objects were detected if 

connected planes were detected. Niemeyer et al. (2014) proposed to use conditional random field 

to obtain the probabilistic classification of the point cloud. In this way, the contexture relationship 

among points could be taken advantage. 

Another major approach used in building detection from airborne LiDAR data is the use of 

contours, a geometric representation that could facilitate the detection of building objects. For 

example, a Markov Random Field-based approach for detecting the building contour is presented 

in (dos Santos Galvanin et al. 2012). This study leverages MRF to retrieve the regularized 

contours lines of each building objects, and does not require pre-initialized or recognized building 

candidates as inputs. However, the MRF-based contours optimization will be hampered if the 

buildings are located in densely vegetated areas. Similarly, Wu et al.(2017) proposed an approach 

using contours to represent the building objects. Although the approach performs well on 

metropolitan area datasets, residential areas with low-rise homes and buildings will likely pose 

challenges to this approach. This is because as for metropolitan area, the elevations and sizes of 
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buildings are often remarkably higher and larger than other objects such as vegetation, which 

makes it relatively easy to distinguish building objects from objects like vegetation. In addition, it 

is challenging to generate enclosed contours in residential areas if the point cloud data points are 

relatively sparse. To this end, Zhou et al.(2013) proposed an approach that is able to reconstruct 

residential buildings in areas with rich vegetation. Their approach utilized the multi-passes of 

laser scanning at trees to identify buildings from vegetation. However, this approach requires 

dense point cloud. For low point density scenario, the proposed approach will have problem in 

detecting 2.5D characteristics (roofs and vertical walls).  

Use of prior data as such as building footprints and knowledge about building forms to 

inform building detection algorithms is another approach that has been studied in the past. A roof 

ridge decomposition-based roof facets extraction approach was introduced by (Fan et al. 2014). 

However, their approach requires the use of building footprints retrieved from the 

OpenStreetMap database to clip out each building object before extracting roof objects. This 

requirement restricts the use of their approach only in scenarios where building footprints are 

available and there are no major changes to building footprints. This reduces the applicability of 

their method in post-disaster scenarios. Wang et al. (2006) proposed a system to reconstruct the 

building footprints by extracting initial footprints using neighbor-searching, then the regularized 

footprint was optimized using a Bayesian MAP algorithm. Huang et al. (2013) proposed a 

statistical approach that does not require the building footprints as input. In their approach, the 

pre-defined roof primitives are used Markov Chain Monte Carlo is developed to reconstruct the 

building roofs. However, this approach might fail to detect a building object if the candidate 

contains too few data points.   

The above approaches have focused mostly on intact buildings. Detection of damaged 

buildings after major disasters is of particular interest to emergency management. Detection of 

damaged buildings is significantly more challenging than detection of intact buildings, because 

the damaged buildings often have more complex and un-defined features. Nevertheless, the state-
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of-the-art techniques of building detection from damaged area are still built on the detection of 

shape primitives. For example, Yonglin et al. (2010) proposed a plane-based building damage 

detection framework. In their research, the building roofs were detected and classified into pre-

defined categories at first, and the geometric axis line of the building was then extracted. 

However, in cases building roofs have been severely damaged or collapsed, the rooftops can 

hardly be detected using conventional plane detection algorithms. In a more recent study, He, M. 

et al. (2016) proposed a building detection approach for damaged buildings by extracting building 

contours followed by the use of chaos index to describe the shape of building roofs. A noticeable 

issue in this approach is how to distinguish the contours of damaged buildings from vegetation. 

Due to destruction, the boundaries of a damaged building will hardly preserve features like 

straight lines. Consequently, this introduces difficulties in classifying vegetation from buildings. 

An apparent competition to point cloud based building detection is the use of satellite and 

airborne imagery for building detection, in particular considering many airborne LiDAR systems 

now collect imagery along with point cloud data during data collection flights. There is also a 

resurging of interest in using imagery data for various object detection tasks, largely fueled by the 

rise of deep neural networks. With deep learning, it is possible to let computers learn features 

themselves instead of imposing the tasks of extracting human-designed features such as plane 

segmentation and boundary extraction. Along this line, Vakalopoulou et al. (2015) proposed to 

use convolutional neural network to detect building objects from very high-resolution satellite 

imagery. A MRF optimizer was employed to retrieve the optimal labeling results. Huang et al. 

(2016) also proposed a deep learning-based approach in which multiple sources of imagery data 

were fused and the deep CNN was fine-tuned to output saliency map. Sherrah (2016) leveraged 

the Fully Convolutional Neural network (FCN) to achieve the pixel-wise semantic labeling. In 

their study, the fully connected layers were replaced by the convolutional layers, and the 

deconvolution kernels were stacked to retrieve the outputs that have size equaling to the size of 

inputs. Then, the Digital Surface Model (DSM) was concatenated with the high-resolution 
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imagery during training and inference. Yuan (2016) introduced the use of signed distance 

functions in a CNN to output the building boundaries. In the study, the GIS data were also used to 

assist the training phase, and remarkable performance was obtained.  

The above research studies are summarized and categorized in Table 2.1. It can be noted that 

the studies focusing on airborne LiDAR point cloud data use primarily the engineered features 

and pre-defined shape primitives, such as plane, cylinder, contours, etc. However, a major 

limitation of the engineered features-based approaches is that they require sufficient point cloud 

density. This is because the shape primitives are detected via either fitting neighbors to model 

primitives, or extracting the geometric features of the local neighbor of each single point. Low 

spatial resolution creates significant challenges for reliable primitive fitting. In addition, these 

studies focus only on mono-temporal data, meaning only pre-event (intact) datasets or post-event 

(damaged) datasets are used. In disaster management, multi-temporal data sets offer distinctive 

advantages over mono-temporal data sets as they enable rapid change detection. However, it is 

possible that the resolutions of multi-temporal datasets can vary significantly from data set to data 

set due to data collection approaches, devices, weather condition, etc. These multi-temporal data 

sets will likely cause challenges to the existing approaches. Another group of relevant studies 

started investigating the use of emerging deep learning techniques on building detection. These 

studies demonstrated promising results in building detection applications. However, these studies 

focused only on imagery data sets, leaving a research gap on using deep learning techniques to 

detect and extract building objects from airborne LiDAR point data. 
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Table 2.1. Summary of Related Research Efforts 

Research Efforts Approaches Limitations 

Dorninger et al.(2008), 

Yonglin et al. (2010), Lafarge 

et al.(2011), Sun et al. (2013), 

Fan, Yao et al. (2014), 

Niemeyer et al. (2014), He, 

M. et al. (2016), Wu et 

al.(2017), 

Detection of shape primitives: 

 plane; 

 cylinder; 

 contours, etc. 

 Require sufficient point cloud 

density; 

 Models only applied on 

either pre-event or post-event 

datasets 

Vakalopoulou et al. (2015), 

Huang et al. (2016), Sherrah 

(2016), Yuan(2016) 

Deep learning-based 

approaches: 

 convolutional neural 

network; 

 fully convolutional neural 

network, etc. 

 Model only applied on 

satellite/aerial imagery data 

 

The scope of this research is to develop a novel approach – convolutional neural network 

based approach – for the application of building object detection in both pre- and post-disaster 

scenarios. The learned features are able to delineate buildings of various scenarios. This is a 

notable gap in existing literature to be filled. A particular important application of this study is 

assessing building damages in coastal areas after major coastal storm events. 

2.3 Research Methodology 

In this study, I propose a deep neural network based approach for building detection from  

airborne LiDAR data sets (Figure 2.1). In this approach, point cloud data are firstly converted to 

gray-scale images, in which the value of each pixel represents the relative elevation of the 
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corresponding points. A convolutional neural network is engineered and trained to learn the 

features that are capable of distinguishing building objects from other objects such as vegetation. 

During the prediction phrase, I propose to apply morphological operations on the grey-scale 

images converted from large point cloud data sets to propose object candidates in order to avoid 

the use of exhaustive sliding windows. Following morphological operations, each object 

candidate is classified through the trained neural network. The following provides a detail 

description of each stage in this proposed approach. 

 

Figure 2.1. The Proposed Deep Neural Network based Building Detection Approach 

2.3.1 Engineering Point Cloud into Grey-Scale Images 

The first step of this proposed approach is to convert point cloud data into gray-scale images. 

A key challenge in this step is that the images directly converted from point cloud data with the 

native resolution contains little information that the CNN can learn and leverage. This has 

become a focus point of issues to be addressed in this step. 

In this proposed approach, the x and y dimensions of the point cloud data are multiplied by a 

positive scalar factor, sxy. This is because the original airborne point cloud is relatively sparse 

with point density approximately of 1-4𝑝𝑡/𝑚2 for pre-event dataset, and < 1𝑝𝑡/𝑚2  for post-

event dataset. If the conversion is conducted using original resolution, each building will be 

converted to the image patch with approximately (10 × 10)𝑝𝑥2, which is considerably low in 
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image resolution. Because the pixel values of a gray-scale image fall in a range between 0 and 

255 and the height values of normal residential areas have a range of 0 to 10 meters, I multiply 

the height values of the point cloud data by a scalar factor, sz to normalize the height values such 

that they fall into between the range of 0 and 255. In the case that more than one point is mapped 

to a given pixel cell, I pick the elevation of the highest point to represent the pixel value. In 

summary, the conversion of point cloud data from a three-dimensional coordinate system to a 

two-dimensional pixel format could be expressed as: 

 

𝐼𝑥 = ⌊𝑠𝑥𝑦 ⋅ (𝑋 − 𝑚𝑖𝑛(𝑋))⌉

𝐼𝑦 = ⌊𝑠𝑥𝑦 ⋅ (𝑌 − 𝑚𝑖𝑛(𝑌))⌉

𝐼(𝑥, 𝑦) = ∑ ⌊𝑠𝑧 ⋅ (𝑍 − 𝑚𝑖𝑛(𝑍))⌉𝑋,𝑌∈(𝐼𝑥,𝐼𝑦)

  (2.1) 

here the 𝑋, 𝑌, and 𝑍 are the point cloud coordinate values, 𝐼𝑥 , 𝐼𝑦  are the image pixel coordinate 

values, and 𝐼(𝑥, 𝑦) is the height value of the image at location 𝐼𝑥  and 𝐼𝑦 . The original value is 

shifted by the corresponding minimum value in order to convert the value from the global 

coordinate to a local coordinate. And ⌊𝑓(𝑥)⌉ denotes the nearest integer of the function value. The 

conversion from point cloud to image coordinate is shown Figure 2.2 (b) and (c). 

 

Figure 2.2. Generation of Initial Height Images 

Due to the sparsity of airborne LiDAR data points in a given spatial region, the images 

generated using the above approach inevitably have many holes (pixels with no height values) 

(Figure 2d). To overcome this issue, a triangulation procedure is used in this study. As shown in 

Figure 2.3 (a), the triangulation is constructed on the initial height image, where each vertex of 
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the triangle is the image pixel that has corresponding point cloud data points. In order to keep the 

fidelity of data interpolation, the triangles with edges longer than a pre-defined threshold are 

excluded so that every triangle connects points belonging to the same object or adjacent objects 

(Figure 2.3 (b)). Within each valid triangle, a linear interpolation is conducted. As the triangles 

might connect points belonging to adjacent objects, such as building and vegetation, or building 

and ground, it is important to avoid the interpolation between different objects to preserve edges. 

For each triangle, I denote its vertices as (𝑉𝑖
𝑑 , 𝑖 = 1,2,3, 𝑑 = 𝑥, 𝑦, ℎ𝑒𝑖𝑔ℎ𝑡) . If ∄(𝑉𝑖

ℎ𝑒𝑖𝑔ℎ𝑡
−

𝑉𝑗
ℎ𝑒𝑖𝑔ℎ𝑡

) > 𝛿, here δ is a pre-defined threshold, I use a bilinear interpolation to estimate the pixel 

values inside the triangle defined by these three vertices. A visual interpretation of this process is 

shown in Figure 2.3 (c). A plane is fitted in 3D coordinate system, where the pixel value is 

interpreted as z-dimension. Then for all pairs of {𝑥, 𝑦 inside the triangle enclosed by {𝑉𝑖
𝑥 , 𝑉𝑖

𝑦}, the 

corresponding z value is estimated via solving the equation 𝒏 ∙ (𝑉̃ − 𝑉𝑖
𝑑) = 0, where 𝒏 = (𝑉2

𝑑 −

𝑉1
𝑑) × (𝑉3

𝑑 − 𝑉1
𝑑) is the normal of the plane in 3-D space, 𝑉̃ = {𝑥, 𝑦, ℎ𝑒𝑖𝑔ℎ𝑡} is the point to be 

interpolated, and 𝑉𝑖
𝑑 is the vertices of the triangle. 
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Figure 2.3. Image Interpolation 

If ∃(𝑉𝑖
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑉𝑗
ℎ𝑒𝑖𝑔ℎ𝑡

) > 𝛿  and ∃(𝑉𝑖
ℎ𝑒𝑖𝑔ℎ𝑡

− 𝑉𝑘
ℎ𝑒𝑖𝑔ℎ𝑡

) < 𝛿 , where 𝑖, 𝑗, 𝑘 = 1,2,3 , and 

𝑖 ≠ 𝑗 ≠ 𝑘 , I use linear interpolation to estimate the pixel values that are very close the line 

segment connected by {𝑉𝑖
𝑥,𝑦

, 𝑉𝑘
𝑥,𝑦

}. As shown in Figure 2.3 (d), I only take the vertices having 

similar height values into consideration to preserve edges and avoid smoothening of the image. In 

Figure 2.3 (c) and (d), the blue circles represent the vertices that are considered in the 

interpolation, the pink circles represent the interpolated pixels, and the black circles represent the 

point not considered when interpolating the hole. The interpolation result is illustrated in Figure 

2.3 (e). Compared with the image before interpolation (Figure 2.3 (d)), the proposed interpolation 

strategy is capable of filling the image holes and maintaining the edge sharpness at the same time. 

2.3.2 Design of CNN Architecture 
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Deep learning has been at the forefront of artificial intelligence research since its initial 

success in visual recognition tasks (Krizhevsky et al. 2012). In particular, CNN-based 

architectures have been extensively studied to design new network architecture and improve 

learning and inference performance. Deep learning is one type of machine learning methods, 

which maps the inputs to the outputs through very complex linear or non-linear transformations. 

Deep convolutional neural network, in particular, mimics the behavior of neurons through many 

shared neurons called convolutional filters. Different filters have different responses on certain 

feature patterns which could be very high level and very abstract. The bottom neural layers learn 

the low level features with small reception fields, such as edge features or corner features, while 

the top layers learn very abstract features with comparatively large reception field. A series of 

intuitive explanation of deep neural network could be found at (Olah 2017). Among various CNN 

architectures, VGG net (Simonyan et al. 2014), Google LeNet (Szegedy et al. 2015), and (He et al. 

2016) are some of the most popular network architectures. In this research, I adopt a network that 

has the similar architecture as the VGG net, but has different dimensions of input and output 

layers. In the VGG net, the input images have the size of 224 x 224 pixels and the output layer is 

vector with 1000 elements. In this study, the input images are resized to 128 x 128 pixels and the 

output layer is a vector with two elements as I am only interested in binary classification. As 

shown in Figure 2.4, the network is designed as multilayer of convolution operation followed by 

multiple fully connected layers. The configuration of each layer is listed in Table 2.2. As 

indicated in the table, all the convolution kernels have the same size in x and y dimension, but the 

different convolution layers have different convolution kernels in depth. The max pooling layers 

are stacked with the convolution layers to reduce the dimension without losing the maximum 

response to each kernels. 

I use batch normalization (Ioffe et al. 2015) to accelerate the training process. For a mini-

batch of variables ℬ = {x1, x2 , … , xm} , the batch normalization learns two parameters, 𝜇 =
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1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 , 𝜎2 =

1

𝑚
∑ (𝑥𝑖 − 𝜇)2𝑚

𝑖=1  to normalize and transform the variables. The new distribution 

of variables after batch normalization is give as: 𝑥𝑖 = (𝑥𝑖 − 𝜇) √ 𝜎2 + 𝜖⁄ , 𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽. After 

the last convolution layer, I reshape the output feature map from a 4-D tensor to a 1-D vector, so 

that the following fully connected layer can be explicitly written in algebraic formation as: 

𝑦𝑗 = 𝑾𝑖𝑗 ∙ 𝑥𝑖 + 𝑏𝑗. In this equation, 𝑾𝑖𝑗 is the weight matrix of shape {𝑀, 𝑁}, where 𝑀 stands 

for the number of variables output from previous layer, and N stands for the number of variables 

of current layer, and bj is the bias. For the loss, a softmax cross-entropy as shown below is used 

to measure the loss. 

𝐿(𝑤) = −
1

𝑁
∑ [𝑦𝑖 𝑙𝑜𝑔 𝑦̂𝑖 + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦̂𝑖)]𝑁

𝑖=1   (2.2) 

where 𝑦̂𝑖 is the predicted value and 𝑦𝑖 is the ground truth. The AdaGrad (Duchi et al. 2011) 

optimization algorithm was employed during training. 

 

Figure 2.4. Network Architecture 

Table 2.2. Network Configuration 

Input (batchsize × size-x × size-y × depth) 

N × 128 × 128 × 1 

Conv Layer 1 (filtersize-x × filtersize-y × in-depth × out-depth) 

3 × 3 × 3 × 64 3 × 3 × 64 × 64 

Max Pooling 1 (batchsize × size-x × size-y × depth) 

N × 64 × 64 × 64 
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Conv Layer 2 (filtersize-x × filtersize-y × in-depth × out-depth) 

3 × 3 × 64 × 128 3 × 3 × 128 × 128 

Max Pooling 2 (batchsize × size-x × size-y × depth) 

N × 32 × 32 × 128 

Conv Layer 3 (filtersize-x × filtersize-y × in-depth × out-depth) 

3 × 3 × 128 × 256 3 × 3 × 256 × 256 3 × 3 × 256 × 256 

Max Pooling 3 (batchsize × size-x × size-y × depth) 

N × 16 × 16 × 256 

Conv Layer 4 (filtersize-x × filtersize-y × in-depth × out-depth) 

3 × 3 × 256 × 512 3 × 3 × 512 × 512 3 × 3 × 512 × 512 

Max Pooling 4 (batchsize × size-x × size-y × depth) 

N × 8 × 8 × 512 

Conv Layer 5 (filtersize-x × filtersize-y × in-depth × out-depth) 

3 × 3 × 512 × 512 3 × 3 × 512 × 512 3 × 3 × 512 × 512 

Fully Connected Layer 1 (in-depth × out-depth) 

(N × 32768) × 2048 

Fully Connected Layer 2 (in-depth × out-depth) 

2048 × 2048 

Soft-max Layer (in-depth × out-depth) 

2048 × 1000 

 

2.3.3 Accelerating Network Inference with Object Proposals 

Unlike image classification, object detection requires not only classification of an image, but 

also the localization of objects in the images. Largely due to the rise of CNN, multiple successful 

deep learning based object detection approaches have been proposed. Notable ones are OverFeat 
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(Sermanet et al. 2013), R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015), Faster R-

CNN (Ren et al. 2015), YoLo (Redmon et al. 2016), and SSD (Liu et al. 2016). These approaches 

use image proposals (Alexe et al. 2012, Carreira et al. 2012, Uijlings et al. 2013) to avoid 

redundant and exhaustive sliding boxes in order to speed up the detection procedure. Because in 

this research the images are synthetic gray-scale images, morphological operations rather than 

object proposal techniques were used to retrieve the object candidates. As shown in Figure 2.5 (a), 

the synthetic images have two main patterns: the pixels enclosed in the red block represent 

building objects, and the pixels enclosed in blue block represent the non-building objects such as 

vegetation (Figure 2.5 (a)). A series of images are generated from original image I  by applying 

the morphological operations. 

𝐼𝑑 = 𝐼 ⊕ 𝑔

𝐼𝑒 = 𝐼 ⊝ 𝑔

𝐼 = 𝐼𝑑 − 𝐼𝑒

𝐼 = (𝐼 ⊝ 𝑔) ⊕ 𝑔

   (2.3) 

where ⊕ denotes dilation operation, ⊝ denotes erosion operation, and 𝑔 denotes a morphological 

operator. 𝐼 is an image that preserves possible building objects (Figure 2.5 (c)), while 𝐼  is an 

image that preserves non-building objects (Figure 2.5 (b)). All these images are binarized by 

passing their pixel values through a step function defined as: 

ℱ(𝑥, 𝑦) = {
1
0

     
if 𝐼(𝑥, 𝑦) ≥  𝛿

if 𝐼(𝑥, 𝑦) <  𝛿
  (2.4) 

where 𝛿 = ∆ + min𝑥,𝑦∈𝕊 𝐼(𝑥, 𝑦). ∆ is a constant value set to be 3 meters because most of the non-

building and non-vegetative objects in residential areas are below this height, and 

min𝑥,𝑦∈𝕊 𝐼(𝑥, 𝑦) is the minimum pixel value within the region 𝕊 centered at pixel (𝑥, 𝑦). This 

equation is adopted based on the assumption that the change of ground elevations in small region 

(e.g. 10(m) × 10(m)) in residential areas is relatively small, and the ground elevation within 

such a small region could be approximately represented by a single value. Here I use the 

minimum elevation of the small region to represent the ground elevation.  
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Figure 2.5. Object Proposal 

For both images, 𝐼 and 𝐼, I cluster pixels with value 𝐼(𝑥, 𝑦) = 1 and 𝐼(𝑥, 𝑦) = 1 using (Ester 

et al. 1996). The reason to cluster these two images is to obtain object proposals from the binary 

images. Here the clustering algorithm takes two parameters, 𝑘 and 𝜖, where 𝑘 stands for the 

number of neighbor points within a certain radius, and ϵ stands for the searching radius. In this 

research, these parameters are set as 𝑘 = 2, 𝜖 = 2.  After the clustering, the centroid of each 

cluster {𝑥𝑐 , 𝑦𝑐} is used as a seed to generate multiple bounding boxes according to the following 

method: (1) The bounding box of each cluster is first determined as {𝑤, ℎ}, here 𝑤 = 𝑥𝑚𝑎𝑥 −

𝑥𝑚𝑖𝑛, and ℎ = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛; and (2) If a bounding box is expressed as: 𝔅(𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ), I then 

generate multiple bounding boxes around {𝑥𝑐 , 𝑦𝑐} as 𝔅(𝑥𝑐 + 𝜀𝑥 , 𝑦𝑐 + 𝜀𝑦 , 𝑤 + 𝜀𝑤 , ℎ + 𝜀ℎ), where 

𝜀𝑥 , 𝜀𝑦, 𝜀𝑤, 𝜀ℎ  are random positive integers to shift and scale the original bounding box 

𝔅(𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ) (Figure 2.5 (d)). 

Before conducting inference, the testing images are clipped by the above generated bounding 

boxes, and the clipped images are resized to the dimension of 128 pixels x 128 pixels x 1 channel. 

The trained CNN assigns a label to each of those images, which can be mapped back to the 

original images. If an image clipped by the bounding box  𝔅 has been classified as 𝑦 = 𝑗, the 

pixels of the original image inside the bounding box 𝔅 are then assigned to 𝑒𝑿𝑇𝑾𝑗/ ∑ 𝑒𝑿𝑇𝑾𝑘𝐾
𝑘=1 . 
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As shown in Figure 2.6 (b) and (c), the probabilities of each pixel being assigned to a building 

object or a non-building object are plotted as a heat map. The final classification map is shown in 

Figure 2.6 (d). In the map, the positive value represents the probability of a pixel being classified 

as a building object, and the negative value represents the probability of a pixel being classified 

as a non-building object. 

 

Figure 2.6. Probability Map 

2.3.4 From Building Detection to Building Extraction 

It can be noticed from Figure 2.6 (d) that although the network outputs pixel-wise labels, the 

boundary of a blob of pixels with the same labels is not usually aligned perfectly with the true 

boundary of a building object. Therefore, the output label map cannot be directly used to extract 

the building objects from the original point cloud data because the map in some cases can clip 

one building object into two parts, or can include erroneous surrounding objects. To address this 

issue, a new approach is introduced in this study to retrieve building objects using the label maps.  

In Section 2.3.1, I mentioned the binarization of the height image using function ℱ(x, y). 

Denoting the binary image as 𝐼ℬ  and the labelled image as 𝐼ℒ , I cluster the pixels with value 

𝐼ℬ(𝑥, 𝑦) = 1 into multiple groups. For each cluster 𝐶𝑖 ∈ 𝐼ℬ , I count the occurrence of pixel: 

𝐼ℒ(𝑥, 𝑦) ∈  𝐶𝑖 assigned to label ℒ = l as: 
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𝐶(ℒ = 𝑙) = ∑ 𝐼ℒ
𝑙 (𝑥, 𝑦) ∙ ℐ(ℒ = 𝑙)(𝑥,𝑦)∈𝐶𝑖

  (2.5) 

where ℐ(ℒ = l) = 1, and  ℐ(ℒ ≠ l) = 0. For binary case, if 𝐶(ℒ = 1) > 𝐶(ℒ = 2), I assign the 

entire cluster to label 1, otherwise, the entire cluster is assigned to label 2. This simple counting is 

able to retrieve the edge-aware object map with the label assignment.  

Figure 2.7 presents the results of building extraction using the edge-aware cluster maps. 

Figure 2.7 (a) – (c) are the results of extraction on the pre-event airborne LiDAR data set, and 

Figure 2.7 (d) shows the results on data captured from the post-event data set. It can be observed 

that the edge-aware cluster map is capable of extracting entire building objects while minimizing 

the inclusion of erroneous of surrounding objects. 

 

Figure 2.7. Extraction of Building Objects 

2.4 Model Training, Testing, and Discussion 

2.4.1 Model Training 
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The neural network was trained using an airborne LiDAR data set collected along the 

Northeast coastline in the United States. These data can be downloaded from the Digital Coast, an 

online geospatial data repository maintained by the National Ocean and Atmosphere 

Administration (NOAA). The point cloud data contain mostly low-rise residential buildings in the 

coastal communities. The average height of the building objects is less than 10 meters. To convert 

the point cloud data into height images, the scalar factors descripted in Eq. (1) are set as: 𝑠𝑥𝑦 =

5.12, 𝑠𝑧 = 25. In image interpolation, I set 𝛿 = 30 as the boundary between the bilinearity and 

linearity interpolation modes. 10,000 training samples are generated by manually labeling the 

point cloud data. 

 

Figure 2.8. Labeling Process 

To improve the labeling efficiency, a GUI is developed to assist the labeling process (Figure 

2.8 (a)). The labeling is conducted on the converted gray-scale image. The overview of the 

labeling framework is also given in Figure 2.8 (b). At the first step, a region-of-interest (RoI) is 

manually selected via drawing a bounding box on the image. Then the category of the RoI is 

annotated. As known, training a CNN model consumes tremendous amount of training data, 

which is extraordinarily tedious and labor intensive if each every one of the training sample is 
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manually labeled. Therefore, data augmentation technique is introduced at the next step to 

produce more annotated data. In my GUI, data augmentation is mainly conducted via randomly 

rotating and flipping an annotated RoI. After the augmentation, the annotated images are saved as 

training samples. 

Among these training samples, 5000 samples are building objects and the other 5000 samples 

are non-building objects such as vegetation. The convolution neural network was trained using 

TensorFlow (Abadi et al. 2016). The training was limited to 1.5 × 105 iterations. As shown in 

Figure 2.9 (b), the loss of the network drops significantly after the first 10,000 iterations. 

 

Figure 2.9. Training Sample and Loss 

2.4.2 Model Testing 

The performance of the trained network was evaluated using pre-event airborne lidar data and 

post-event airborne lidar data respectively. The pre-event data was collected two years before the 

Hurricane Sandy (in 2010), and the post-event data was captured right after the extreme natural 

hazard. The selected two datasets have significantly different point resolution. As shown in 

Figure 2.10, the point resolution is evaluated by the average nearest point-to-point distance, and 

the average number of points per area.  As shown in Figure 2.10 (a), the average nearest point-to-

point distance of pre-event data is approximately less than half of the post-event dataset. In 
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addition, Figure 2.10 (b) and (c) show the average number of points per 1(𝑓𝑡2) and 4(𝑓𝑡2 ), 

respectively. These metrics show that the resolution of pre-event data is remarkably higher than 

that of post-event data. 

 

 

Figure 2.10. Evaluation of Data Resolution 

The evaluation was implemented on CPUs, and each image took in average 0.35 sec to 

inference. The area where the testing data sets were collected is far away from the area where 

training data were collected. For both pre- and post-event datasets, I further divide them into three 

blocks to speed up the inference and detection process. Each of these blocks contains 60~90 

building objects. The building detection results are shown in Figure 2.11. The yellow regions 

represent the objects have high probability been recognized as buildings, and the blue regions 

represent the objects hive high probability been recognized as vegetation. For building objects, 

the brighter the color is, the higher the probability they are predicted as buildings, and for 

vegetation, the darker the color is, the higher the probability they are recognized as vegetation 

objects. As can be shown in the figure, the upper row (a, b, c) are the dataset of three blocks 

collected prior to the occurrence of natural hazard, and the lower row (d, e, f) are the dataset of 

three blocks collected after the hazard. Intuitively, the proposed approach performs well on the 

pre-event dataset, and the performance drops slightly on the post-event dataset. The drop of 

performance on post-event dataset is in part because that the building patterns in post-event 

dataset have high randomness compared with the pre-event case. Because in post-event scenario, 
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the building objects do not necessarily preserve the engineered configuration. For example, 

buildings in post-event scenario may be collapsed or inclined. Furthermore, the vegetation may 

be wiped to cover the building roofs because of the extreme wind force. Because the proposed 

network is trained using the pre-event dataset, all of these unexpected scenarios will pose 

challenges to the inference stage. 

 

Figure 2.11. Building Detection Results 

From the inference results, I identify several typical failure patterns. As shown in Figure 2.12 

(a), this approach might recognize the building partially covered by vegetation as vegetation. 

Another typical failure is shown in Figure 2.12 (b), where the network classifies a building with 

complex roof configuration as vegetation. I believe there are two main reasons for these kinds of 

detection failures. The first reason is that the training samples are mostly residential homes, 

which have similar shape and size. Consequently, the network fails to detect the objects with 

significantly different patterns and sizes. Another reason is because the sparsity of point cloud 

data introduces noises during image interpolation. Although the interpolation procedure in this 

research is designed to preserve object edges, it may smooth the edge when the point cloud data 

are too sparse. Another failure example is given in Figure 2.12 (c). In this case, the building 
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enclosed in the red bounding box is recognized as vegetation with very high probability. This is 

likely because the low point density makes it fit to the abstract features of vegetation. 

 

Figure 2.12. Typical Failure Cases 

2.4.3 Performance Comparison 

To further validate the performance of this approach, I compare my proposed approach with 

LAStools, a widely used LiDAR data processing tool. To further validate the performance of this 

approach, I compare this proposed approach with LAStools, a widely used LiDAR data 

processing tool. For LAStools, I tune the parameters to achieve optimal classification accuracy. In 

this study, the parameters are set as 1) search area size: 4; 2) building planarity: 0.2; 3) forest 

ruggedness: 0.4; and 4) ground offset: 2. The results are shown in Figure 12, the figures captioned 

with mine v.s. GT represents the comparison between the result obtained by proposed approach 

and the ground truth, and the figures captioned with LAStools v.s. GT stands for the comparison 

between the result obtained by LAStools and ground truth. In the figure, the dots and circles 

represent the centroids of detected building object. As commonly used for accuracy measurement, 

I use True Positive (TP), True Negative(TN), and False Positive(FP), where specifically, True 

means the object is predicted as building, False means the object is predicted as vegetation, and 

Negative means the object is actually vegetation. In each sub-figure, the red and black solid dot 

represent TP, the black circles represent TN, and the red circles represent FP, respectively. It is 

noticed from the figure that the proposed approach correctly recognizes most of the building 

objects from both pre- and post-event dataset. Although the detection accuracy obtained by CNN-

based approach drops slightly from pre-event to post-event dataset, it still outperforms the 
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LAStools. Figure 2.13 (a-c) show the comparison between two approaches on pre-event data, and 

Figure 2.13 (d-f) present that of on post-event data. The comparison on Figure 2.13 (a) shows that 

both approach performs well, while for the rest of the dataset, the performance of LAStools drops 

significantly. This is because LAStools tris to classify points as building objects if the neighbors 

of each of them form planar object with respect to certain parameters. Therefore, the data 

resolution matters in terms of the neighbor finding and model fitting. As discussed previously, the 

testing dataset has very low data resolution especially for post-event dataset, this impedes the 

robust detection using LAStools. In contrast, the proposed approach shows more robust 

performance against the spatial resolution issues.  

To quantitatively compare the results, the Precision and Recall are calculated. The recall and 

precision are shown in Figure 2.14. As can be seen in Figure 2.14 (a) and (b), the precision 

comparison does not yield significant differences. What can be noted is that the precision on the 

pre-event data is slightly higher than on the post-event data. This is largely due to that the post-

event data have more clutters and irregular building objects. The comparison on recalls shows 

significant differences. The recall performance obtained by the proposed approach significantly 

outperforms that of LAStools. This is because LAStools tend to fail to detect many building 

objects which are with small sizes and have low point density. In contrast, the proposed approach 

still performs well and detects most of the building objects. This indicates that by learning very 

abstract and high level features, the challenges brought by low spatial resolution and clutters and 

irregularity in post-disaster scenes can still be dealt with to a great extent. The exact precision and 

recall values are listed in Table 2.3. 
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Figure 2.13. Comparison between Proposed Approach and LAStools 

 

Figure 2.14. Precision and Recall 
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Table 2.3. Precision and Recall 

  Pre-event Post-event 

Ours Precision 0.941 .0937 0.964 0.853 0.881 0.865 

Recall 0.873 0.967 0.987 0.927 0.945 0.895 

LAStools Precision 0.979 0.921 0.915 0.805 0.844 0.888 

Recall 0.886 0.583 0.544 0.460 0.678 0.376 

 

Another important metric in measuring the performance of building detection is the area of 

detected building footprint. To evaluate the performance of this approach in detecting complete 

building objects, I choose one testing dataset (Figure 2.16 (a)) and compute the area of each 

building footprints detected by both methods (Ours and LAStools). Figure 2.15 shows the area of 

each detected building footprints. It can be noticed that most of the building objects detected by 

this proposed approach have larger footprints than the ones detected by LAStools. Specifically, 

for 77 building objects inside the testing region, the area of footprints of 69 building objects 

detected by this approach are larger than those extracted by LAStools. More specifically, in 

average for each building, the footprint area extracted by LAStools is approximately 63.2% of 

that detected by this approach. One such example is shown in Figure 2.16. In addition, this 

approach in many cases produces more complete rooftop boundaries than LAStools does. 

Furthermore, I observed that in cases where LAStools found buildings with larger footprints than 

what this approach did, one main reason is that LAStools often merges two adjacent buildings 

into one building (Figure 2.16 (d)-(f)). 
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Figure 2.15. Area of Buildings Detected by Proposed Approach and LAStools 
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Figure 2.16. Area Completeness 

2.5 Conclusion 

In this study, I proposed a deep neural network based approach for building detection and 

extraction from airborne LiDAR data sets. Unlike other computer vision based approaches, the 

proposed approach does not require carefully engineered features for the purpose of pattern 

recognition and object detection. More specifically, this proposed approach does not require the 

computation of surface normal and sample consensus, which are often computationally expensive 

but key to shape primitive-based methods. Because of this, the proposed approach is applicable to 
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building object extraction from very large-scale point cloud data sets. The proposed approach is 

also capable of processing both pre-disaster and post-disaster airborne LiDAR data sets with the 

same trained neural network to extract building objects, regardless their extent of damage. Finally, 

the proposed approach is capable of extracting building objects with high-quality boundaries due 

to its use of edge-aware map to ensure the integrity and compactness of object extraction. The 

trick of using edge-aware cluster map is still largely an ongoing research topic in CNN-based 2D 

and 3D semantic segmentation research. Future work of this research includes inclusion of more 

commercial and high-rise building data sets for expanding the capability of this trained network 

as well as studying the use of big data infrastructure such as Spark to accelerate the image 

conversion and inference process. 
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Chapter 3 : Automated Assessment Of Residential Home Damages During Hurricane 

Events With Multi-Temporal Airborne Lidar Data 

Rapid building damage assessment is a critical task following the landing of major hurricane 

events. Use of remotely sensed data to support building damage assessment is a logic choice 

considering the difficulty of gaining ground access to the impacted areas immediately after 

hurricane events. However, such remote sensing based damage assessment approach is often 

limited to detect severely damaged buildings. In this study, an efficient airborne lidar-based 

damage assessment approach is proposed. In the proposed approach, building models are 

reconstructed at first, then two features are computed between multi-temporal airborne point 

cloud to indicate the damage status, and finally three property-wise damage patterns are identified 

based on these features. The results of this study suggest that this proposed approach is capable of 

1) reconstructing building models; 2) extracting damage features; and 3) characterizing the extent 

of damage to individual building properties. 

3.1 Introduction 

The past decades have witnessed increasing catastrophic natural hazards, such as 2008 

Wenchuan earthquake, 2011 Japan earthquake, 2012 Hurricane Sandy, and the two super storms 

Harvey and Irma in 2017. After the hazard, rapid damage status assessment is critical in terms of 

immediate post-hazard response and decision making. In recent years, rapid development in 

remote sensing technology has successfully expanded the capability of rapid assessment by mean 

of rapid data collection in very large scale. Within the sufficient amount of data, a critical 

challenge of using these data to support ongoing decision making during extreme events is lack of 

efficient data processing methods that can extract useful information from these data sets within a 

realistic time bound. 

Use of computer vision methods to interpret remotely sensed disaster data is not a new topic. 

A particularly well-studied area is building damage assessment following major disasters such as 

earthquake, tsunami, and tornado. The type of data used in these studies include satellite imagery, 
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airborne imagery, airborne lidar, InSAR, oblique imagery, point clouds reconstructed from 

overlapping images, and terrestrial lidar. There are two dominant approaches used in these studies 

to detect and quantify damages. The first is based on classifying damages based on damage 

features such as surface smoothness, local features, intensity distribution, and height information 

extracted from mono-temporal data (Khoshelham et al. 2013, Kashani et al. 2014, Galarreta et al. 

2015, Kashani et al. 2015, Vetrivel et al. 2016). The second is based on detecting and 

characterizing changes between multi-temporal data sets (Vögtle et al. 2004, Huang et al. 2014, 

Pang et al. 2014, Vetrivel et al. 2016). In contrast to this plethora of studies devoted to building 

damage assessment after earthquake, tsunami, and tornado events, use of 3D disaster data to 

assess building damages after hurricane events has drawn much less attention. Airborne lidar data 

have been recently used more frequently for dune and beach assessment following hurricane 

events (Woolard et al. 2002, Zhang et al. 2005, Gesch 2009, Claudino-Sales et al. 2010, Rego et 

al. 2010, Sherman et al. 2013), but much less so for building damage assessment (Friedland 2009). 

Studies on interpreting building component-level damages with 3D disaster data are scarce (Gong 

et al. 2014, Hatzikyriakou et al. 2015, Zhou et al. 2015). It appears that most of the building 

damage assessment studies after major hurricane events have predominantly relied on the foot-

on-ground approach.  But given the fact that a major hurricane often causes damages to hundreds 

of thousands of homes spanning multiple states, such assessment approaches would incur 

tremendous cost and leave little time to assessors for conducting detailed field measurement. 

Therefore, there is inevitably a loss of valuable information for long-term research that could 

otherwise lead to improved understanding of severe wind and flood effects on the built 

environment. 

In this study, I propose a novel post-hurricane damage assessment approach that can 

automatically process multi-temporal airborne lidar data sets to provide fine-scale estimate of 

building damages. The proposed approach first extracts building objects from both pre-event, and 

an efficient building reconstruction method is developed to reconstruct the 3D polyhedron 
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building models. Finally, building damage estimation is conducted based on fusion of two 

indicators, 1) outlier scores, and 2) average inlier area ratio.  

The contribution of the proposed approach lies in its focus on addressing several limitations 

in existing studies. First, in many studies, airborne lidar based change detection is often 

conducted at the global level. This means such analysis is capable of detecting whether a building 

is changed or not, but falls short of characterizing the extent of damage. Second, current state-of-

the-art methods depend on detection of roof segments (Schweier et al. 2006). This could be 

problematic if the rooftops of a damaged building were severely collapsed and deformed so that 

no plane segments could be identified. Thirdly, current state-of-the-art methods focus mostly on 

the seismic-induced damage scenario, while less attention has been paid on hurricane/storm 

surge-induced damage. In fact, during hurricane/storm surge hazard, what is more vulnerable is 

coastal residential houses. Those buildings are short in height, and distributed sparsely. In 

addition, they are likely to locate in rich vegetation region, makes it difficult to differentiate from 

vegetation. Lastly and most importantly, this approach is able to handle the case where post-event 

LiDAR data is of extreme low resolution, this makes the proposed approach applicable when the 

post-event data collection has to be carried out in a very short amount of time and, hence, with 

very poor data quality. 

3.2 Related Works 

Typically, damage assessment could be grouped into two categories: 1) using mono-temporal 

data, namely only the post-event data, and 2) using multi-temporal data, specifically pre- and 

post-event data. 

3.2.1 Building Damage Assessment with Mono-Temporal Data 

Using mono-temporal data for damage assessment is challenging, because it is difficult to 

quantitatively define damage. Schweier et al. (2006) presented a framework to describe the 

seismic-induced building damage patterns. They classified the damage patterns into multiple 



60 
 

 
 

categories, including inclined plane, multi-layer collapse, pancake collapse, etc. Shen et al. (2010) 

proposed to use point cloud segment for building damage assessment. In their approach, rooftops 

were firstly extracted, then the mean roof plane is estimated and employed to indicate whether the 

building is inclined or not. Elberink et al. (2012) and Khoshelham et al. (2013) proposed to use 

statistical learning strategies for damage detection. In their studies, the roof planes were 

segmented at the first stage. Then multiple features were extracted from each segment. To figure 

out the mathematical models fitting the features and damage patterns, a machine learning-based 

strategy was employed to learn the complex models. He et al. (2016), instead of using point cloud 

segments, proposed to use the shape descriptors to detect the damage patterns. In their approach, 

the shape descriptor is computed as chaos index of each contour lines of the point cloud. 

In addition to the use of LiDAR point cloud, aerial imagery is another major data source in 

terms of building damage assessment. Balz et al. (2010) proposed to use the appearance feature, 

including building surface appearance and corner appearance features, to identify damage 

patterns. Similarly, Tong et al. (2013) proposed a novel approach that is able to detect collapsed 

building from their shadows using post-event aerial imagery. In their approach, the actual 

shadows were extracted from the post-event imagery, and the theoretical shadows were estimated 

using the height information and footprint information of each building objects. The damage was 

identified by comparing the actual shadow polygons with the theoretical shadow polygons. Nex et 

al. (2014) proposed a post-event data only approach for building damage detection. They first 

generated DSM from post-event airborne images, then building objects were extracted using 

MRF-based inference process. Then the buildings are classified into intact and damaged 

according to the fusion of multiple features, including spectral features and local planarity. 

Vetrivel et al. (2016) proposed an approach that uses Bag-of-Words classifier to learn the model 

fed with multiple features extracted from aerial imagery including histogram of gradient 

orientation, gradient magnitude, etc. Ye et al. (2017) proposed a novel approach that leverages the 

interior roofs and building edges to determine the damage status. In their approach, two new 
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features, including edge significance and local gradient orientation entropy, were introduced to 

describe the intactness of building objects. Vetrivel et al. (2017) investigated the use of 

integrating CNN-extracted image features and geometric point cloud features to detect building 

damages. The fusion of multi-source data shows encouraging performance in detecting damages 

such as roof collapse and building collapse. 

3.2.2 Building Damage Assessment with Multi-Temporal Data 

Multi-temporal data has been widely used in damage detection and change detection. Among 

those research efforts, they can be categorized as 1) use of multi-temporal LiDAR data, 2) use of 

multi-temporal imagery, and 3) use of multi-temporal and multi-source data.  

For the first category, Chen et al. (2010) proposed to use pre-change 3D building models and 

post-change LiDAR and aerial imagery data for building change detection. In this research, the 

old building model and new airborne LiDAR was registered, and the points inside the building 

model were selected. After removing the facet points, the change detection is conducted 

according to the height difference and area difference. In this research, the change detection is 

conducted in structural-level, means this is not a binary change detection, but more detailed 

change analysis is able to be extracted. However, this approach relies 3D building models as an 

input, which constrains the applicability of this approach. To address this issue Awrangjeb (2015) 

proposed an approach using pre-change building database and post-change airborne LiDAR point 

cloud to detect the building change. To generate the pre-change building database, a graphic user 

interface (GUI) was developed so that building database could be created from building footprints. 

And the building model could be generated with human editing. During change detection phase, 

the post-change airborne LiDAR was used to extract new building footprint, and the comparison 

is carried out between this new footprint and the old building models. Trinder et al. (2011), (2012) 

proposed to use pre- and post-event airborne LiDAR and airborne imagery data to detect building 

damage. In their approach, four change detection methods, namely image differencing, PCA, 

minimum noise fraction, and post-classification are evaluated, and majority voting scheme was 
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employed to produce the final damage map. The experimental analysis shows that the fusion of 

imagery and LiDAR improves the detection accuracy. Xu et al. (2015) proposed an approach 

using multi-temporal airborne LiDAR point cloud to detect the urban environment change. After 

co-registration of the LiDAR, octree was constructed from the non-ground points, and the change 

detection is carried out efficiently using octree-based structure. Bloch et al. (2016) introduced a 

novel approach to identify the interior space of a damaged building caused by earthquake disaster. 

In their approach, a pre-event as-built BIM model is used and multiple potential collapse patterns 

were estimated. Then a post-event as-damaged model was generated from terrestrial laser 

scanning. And this as-damaged model was used to search for the similar damage pattern. This 

approach could be employed to identify structural-level damage. However, because the damage 

potential damage patterns may vary according to different building structure and materials, in 

addition, the use of terrestrial laser scanning is constrained by accessibility issue, which makes 

this approach less applicable in large scale response. 

For the second category, Tong et al. (2012) assessed the building damage caused by 

Wenchuan earthquake using pre- and post-event satellite stereo-imagery. In this study, the height 

change was used as one major indicator of building collapse. Tian et al. (2014) proposed to use 

multi-temporal stereo imagery for building change detection. In this study, stereo imagery were 

firstly matched to DSM, then the height change and the similarity measurement between imagery 

were carried out. Susaki (2015) proposed an approach using multi-temporal aerial imagery to find 

individual tsunami-induced buildings. In the study, stereo-images were firstly matched to 

generate DSM, then the height change was calculated to detect the damaged buildings. In addition 

to the height change, the horizontal displacement caused by land deformation was also detected 

using the SIFT descriptor. Kahraman et al. (2016) explored the use of multi-temporal satellite 

imagery and footprints in building damage detection. After the building objects been extracted, 

adaptive self-similarity descriptor was employed to measure the layout of individual building 

object, and the damage was detected by computing the difference of self-similarity descriptor of 
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pre- and post-event data. In addition to imagery, synthetic-aperture radar (SAR) is also widely 

employed in damage assessment field. Li et al. (2012) proposed a SAR-based approach for 

collapsed building extraction. In this research, an entropy-average scattering mechanism-circular 

polarization correlation coefficient method is developed to extract the spatial distribution of 

collapsed building from SAR imagery. Sharma et al. (2017) proposed a novel approach, 

earthquake damage visualization, to detect the building damage caused by seismic attack. The 

pre-seismic coherence and post-seismic coherence were computed using pair of pre- and post-

seismic SAR imagery, respectively. The damage was detected at the pixel level where low 

coherence value indicates high possibility of damage, while the region with high coherence value 

is assumed to represent intact building objects. Karimzadeh et al. (2017) used multi-sensor SAR 

to assess the earthquake-induced building damage. They used 1) differential coherence values, 2) 

differential backscattering intensity values of pre- and post-event images, and 3) binary damage 

map of the pre- and post-event imagery. 

For the third category, Rastiveis et al. (2015) proposed an approach that integrates post-event 

airborne LiDAR and pre-event vector map to extract and map the damaged buildings. In their 

approach, LiDAR points were classified into debris, intact building, and unclassified categories 

using texture feature and nDSM.  And the buildings are categorized into damaged and 

undamaged. Du et al. (2016) proposed a novel approach that leverages the dense point cloud 

generated from aerial imagery and the airborne LiDAR point cloud data to detect the urban 

environment change.  They first generate dense point cloud from earlier imagery. After co-

registration, height change and grey-scale similarity are computed to indicate the urban 

environment change. And in this study, the change is categorized into positive (indicates newly 

built or taller building), and negative (demolished or lower buildings). Vetrivel et al. (2016) 

investigated the potential of aerial oblique imagery data and point cloud data for detailed building 

damage evaluation. In their research, two approaches were developed. The first approach 

leverages the aerial imagery data and pre-event point cloud data to detect the structural damages. 
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To compensate the noisy point cloud on vertical façade, the second approach using oriented 

oblique imagery was introduced. GIS data also plays valuable role in damage assessment and 

asset management. For example, Tu et al. (2016) presented a framework that uses aerial imagery 

and GIS data to detect various types of building damages, including intact, trivial, severely, and 

totally damage. More specifically, the post-event imagery was registered with pre-event GIS 

model to extract the height change, area reduction, and rooftop texture. A supervised learning 

strategy was then employed to classify damage into different types. 

The aforementioned approaches have the following issues. 1) For imagery based approaches, 

because the depth information is not delivered, the detection result does not reveal elevation 

change, which in fact plays a significant role in damage assessment. As a result, imagery-based 

approach can hardly identify partial damage, as for this case, the damage occurs as elevation 

change or inclination. 2) For LiDAR based approaches, the state-of-the-arts mono-temporal-based 

approaches rely on the features of point cloud segments and histogram distribution of the points. 

Although experiments show promising results, the computation of geometric features and 

histogram distribution requires consistent data resolution. While this is not guaranteed in real 

application. As will be shown in the experiment study section, the resolution of post-event data is 

significantly lower and inconsistent compared with pre-event data. In this research, I proposed a 

novel approach that uses multi-temporal airborne LiDAR data to detection the hurricane-induced 

building damage. The proposed approach is able to handle the extreme case that the data 

resolution is extremely low and inconsistent. 

3.3 Methodology 

The workflow of the proposed framework is presented in Figure 3.1 The framework contains 

five major stages. Given the pre- and post-event airborne point cloud dataset, the pre-processing 

procedure is carried out at first to identify the building objects. The second stage is implemented 

on pre-event dataset only. At this stage, an efficient roof model reconstruction approach is 

introduced, which is able to reconstruct the building model from the airborne LiDAR point cloud 
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with various data resolution. Compared with the conventional approaches, which implement the 

change (or damage) detection directly on the multi-temporal point cloud, I identify two issues 

which are associated to the performance of detection with respect to various point cloud 

resolution. As shown in Figure 3.2, the computation of point-to-point distance is severely affected 

by the point cloud resolution. The point cloud in Figure 3.2 (a) and (b) are the same dataset but 

with different resolution, it is noticed that the point-to-point distance for low-resolution scenario 

is larger than that of high-resolution scenario. The resolution also affects the detection accuracy 

in terms of the area computation. As shown in Figure 3.2 (c) and (d), the area of low-resolution 

point cloud data is smaller than that of high-resolution data. Once the pre-event roof model is 

reconstructed, the corresponding post-event building object extraction is implemented in the third 

stage. In the fourth stage, I compute the point-to-plane distance and the roof facet area ratio to 

indicate various types of damage patterns. And the damage status is determined at the last stage, 

which is based on the reconstructed model and computed features in the fourth stage. I will 

describe each stage in detail in the following sections. 

 

Figure 3.1. Overview of Proposed Framework 

3.3.1 Pre-processing: Building Objects Identification 

Given input airborne point cloud, pre-processing aims at the following two purposes, 1) 

identifying the building points from other objects, such as ground and vegetation, and 2) extract 

each building objects. The building objects extraction and ground points filtering have been an 

ongoing research topic in recent years, and numerous research effort have been made regarding to 

these topics such as (Zhang et al. 2003, Meng et al. 2009, Tseng et al. 2016, Zeng et al. 2016, 
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Zhang et al. 2016, Wei et al. 2017). These approaches, though perform well in identifying 

building objects from other objects, require further processing to cluster building segments. In 

Chapter 2, I propose a deep learning-based framework that is able to identify and extract building 

objects from a raw airborne LiDAR point cloud data. Compared with other approach, this 

framework combines the building objects detection and segments clustering procedures in the 

same framework, makes it easy-to-use for the applications when time is a serious concern. In this 

research, I use the deep learning-based approach to pre-process the building objects identification 

and clustering. 

 

Figure 3.2. Two Issues associated with Detection Accuracy 

3.3.2 Efficient Building Model Reconstruction 

With individual building objects been extracted, I propose a novel and efficient approach to 

reconstruct the building models from multi-resolution airborne LiDAR point cloud data. Because 

of the purpose of rapid post-disaster damage assessment, efficiency is a critical concern to this 

stage. This approach is, therefore, developed to efficiently reconstruct the roof models regardless 
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the resolution of input point cloud data. The overview of the proposed model reconstruction is 

shown in Figure 3.3. The framework is consists of five major steps, and each step will be 

described in detail in in the following sections. 

 

Figure 3.3. Overview of Efficient Building Model Reconstruction 

Triangulation and Densification: Considering the various data resolution of different 

airborne point cloud, the roof model reconstruction (Wang et al. 2016, Cao et al. 2017, Jung et al. 

2017) is easily affected by the low resolution of point cloud data. Instead of reconstructing the 

models on original data set with various point density, a geometry-preserving densification 

procedure is introduced to address the resolution issue. For an input point cloud, the triangle mesh 

is first constructed (Marton et al. 2009). As shown in Figure 3.4 (a) and (b), the mesh constructed 

on the sparse point cloud data have a issue demonstrated in Figure 3.4 (c). As shown, the red dots 

represent what is observed in the point cloud, and the red and blue dots represent what the real 

model should be. Due to the low resolution, a mesh is constructed via connecting vertex P2 and P3 

(here the third vertex of the mesh is assumed to be outside the paper plane and therefore is 

omitted), which introduces error compared to the actual case. In order to avoid the densification 

on the wrong mesh triangle, only the valid triangle meshes are considered. A valid triangle mesh 

is defined as the triangle ∆123 shown in Figure 3.4 (d), whose normal vector is parallel to its 

edge-sharing triangles’ normal with a tolerance δ. Mathematically, a valid triangle mesh could be 

formulated as  

∆𝑖= { 𝑣𝑎𝑙𝑖𝑑
𝑖𝑛𝑣𝑎𝑙𝑖𝑑

    
∄(|𝑛𝑖∙𝑛𝑗|>𝜃)

∃(|𝑛𝑖∙𝑛𝑗|>𝜃)
   (3.1) 
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where 𝑛𝑖 is the normal of ∆𝑖, and 𝑛𝑗  is the normal of ∆𝑖’s edge-sharing triangle mesh.  And 

∄(|𝑛𝑖 ∙ 𝑛𝑗| > 𝜃) means that for all the 𝑛𝑗 , the angle between 𝑛𝑖 and 𝑛𝑗  is smaller than an angle 

threshold 𝜃. 

 

Figure 3.4. Point Cloud Triangulation and Densification 

Triangle Propagation: After the densification, I first construct new triangle meshes. Then 

triangle propagation procedure is implemented to retrieve the roof facets.  For an arbitrary 

triangle mesh ∆𝑖, I propagate its edge-sharing triangles ∆𝑗  to the same roof facet if the angle 

between their normal is smaller than a threshold value. Started from an arbitrary triangle, this 

procedure is repeated until no more triangles could be propagated. And a new propagation 

procedure is initialized from an arbitrary triangle of the un-propagated meshes. 

Footprint Estimation: Within the extraction roof facets, the next step is to estimate the 

building footprint polygon. Because the purpose of this research is focusing on rapid post-disaster 

damage assessment, high speed reconstruction of building model is considered as a priority issue. 

Sun et al. (2013) proposed a robust approach to estimate the rooftop orientation via rotating and 

fitting the minimum bounding box. In this research, I propose an efficient rapid building footprint 

estimation approach based on one assumption applies to common residential building objects: a 

residential building has two major axes, and the boundary lines of its footprint are parallel to one 
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principal axis, and perpendicular to another. Figure 3.5 (a) shows an aerial imagery
[5]

 with 

multiple residential buildings. And Figure 3.5 (b) shows the roof layout of a gable roof 

configuration. It is observed from the figure that the boundary lines of the building footprint 

polygon is parallel one of its principal axis, and perpendicular to another. For example, line 

segment 𝐿𝐴𝐵  is parallel to principal axis 1 and perpendicular to principal axis 2. Since the 

principal axes of a residential building could be modeled by the direction of its roof ridges, this 

makes it straightforward to estimate the principal axes via intersecting its roof facets.  

 

Figure 3.5. Assumption of Residential Building Roof Layout 

I propose a novel footprint polygon estimation approach via shrinking a rectangle along the 

principal axes of the building. I denote the point data set of a building object as 𝑃, and the  

principal axes of the building as 𝑋𝑖, so that |𝑋𝑖 ∙ 𝑋𝑗| = 0. For 𝑋𝑖, I move a vertical line {𝐿𝑖: 𝐿𝑖 ⊥

𝑋𝑖} along 𝑋𝑖. At each location 𝑥𝑖 along 𝑋𝑖, I compute the distance between each point 𝑃𝑖 to 𝐿𝑖 as 

𝑑𝑖, and find the inliers with distance smaller than a threshold as {𝑃𝑖 ∈ 𝑃: 𝑑𝑖 < 𝛿𝑑}. After that, I 

compute the maximum point-to-point distance along the line 𝐿𝑖 as 𝑑̃𝑖. By swiping 𝐿𝑖 along 𝑋𝑖 

with certain step length, I construct a 2-D signal where the value of each data represents 𝑑̃𝑖 

(Figure 3.6 (a) black dot line). I define a clip point 𝑥𝑖
𝑐  along 𝑋𝑖 as following: { 𝑥𝑖

𝑐 ∈ 𝑋𝑖: |𝑑̃𝑖+∆ −

                                                             
5 https://apollomapping.com/blog/update-on-digitalglobe-precision-aerial-imagery-program-usa-

europe 
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𝑑̃𝑖−∆| > 𝛿𝑙}, where 𝑑̃𝑖−∆ is the maximum point-to-point distance at ∆ step before 𝑥𝑖 , and 𝑑̃𝑖+∆ is 

the maximum point-to-point distance at ∆ after 𝑥𝑖 , and 𝛿𝑙 denotes length threshold. I apply max-

pooling and min-pooling operation to the original signal, and find the local maxima of the 

difference of max-pooling and min-pooling signal as the clip location (Figure 3.6 (b)). Once the 

clip points are estimated, I construct multiple rectangles by connecting the clip points. As shown 

in Figure 3.6 (c), this may introduce rectangles which do not overlap with building roof points, 

these rectangles are then removed to retrieve the final building footprint concave polygon as 

shown in Figure 3.6 (d). 

 

Figure 3.6. Building Footprint Polygon Estimation 

Constrained Roof Polygon Estimation: After the estimation of building footprint polygon, I 

implement multi-rule constrained polygon fitting strategy to reconstruct the polygon of each roof 

facet. For simplicity, I fit the 𝑙(th) roof facet using quadrilateral polygon as 𝒫𝑙 = 𝒫(𝑥), 

regardless the actual shape of the facet, where x is the vertex of the polygon, and the compact 

polygon will be obtained in the refinement stage. The facet reconstruction could be formulated as 

a constrained optimization problem, which could be mathematically expressed as: 



71 
 

 
 

argmin𝑥 𝑓(𝑥) subject to {
(𝑥𝑖 − 𝑥𝑗) ∙ (𝑥𝑖 − 𝑥𝑘) = 0

(𝑥𝑖 − 𝑥𝑗) ∙ 𝑋𝑚 = 0
  (3.2) 

where the cost function is defined as: 𝑓(𝑥) = ∑ |𝑣𝑖 ∙ 𝑛|𝑁
𝑖=1 . In the cost function, {𝑣𝑖 = 𝑝𝑖 −

𝑥0: 𝑝𝑖 ∈ 𝑃𝑙}  is the vector from the ith point of the roof point cloud to the vertex of the polygon, 

and n is the unit normal vector of the polygon 𝒫𝑙 . The first constrain implies that any pair of 

vertex-sharing boundary lines of the polygon are orthogonal to each other, and the second 

constrain implies that the boundary line should be orthogonal to one of the principal axis of the 

building object. This optimization procedure will fit the polygon constrained by the principal axes 

of the building object. However, this optimization is not able to fit the polygon model with the 

optimal size, which means the fitted polygon could be either expanded or shrunk in size 

compared with the actual size. As shown in Figure 3.7, the fitted polygon is larger than the actual 

size of the corresponding roof facet (shown as pink points). This will be addressed in the 

refinement stage. 

 

Figure 3.7. Roof Facet Polygon Estimation 

Roof Model Refinement: The last stage of roof model reconstruction is refinement of the 

optimized polygons. For each fitted polygon 𝒫𝑙 , I first expand it along each principal direction by 

a certain value to ensure that the expanded polygon crosses either the building footprint boundary, 
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roof ridge, or other polygons. After the expansion, I implement polygon Boolean operation to clip 

the polygon 𝒫𝑖  into multiple small polygons {𝒫𝑗
𝑙 : ∪ 𝒫𝑗

𝑙 = 𝒫𝑙} with either the footprint boundary, 

roof ridge, or intersected polygons. Due to the complex configuration of the building roof facets, 

the Boolean operation does not necessarily generate quadrilateral polygon anymore. Although the 

Boolean operation generates shape-compact polygons, it also generates polygons that do not have 

inlier points. To remove these polygons, I project the points {𝑃𝑙} on the clipped polygon 𝒫𝑗
𝑙  and 

find the points projected inside the polygon region as inlier points. Ideally, a polygon 𝒫𝑗
𝑙  is 

removed if no points projected inside the polygon region. However, this does not work very well 

in real scenario due to the densification procedure described in previous section when the data 

resolution of original point cloud is low. In order to robustly remove the invalid polygons, I 

compute the ratio between the alpha shape area of the inlier points and the area of polygon 𝒫𝑗
𝑙 . If 

the ratio is larger than a threshold value 𝛿𝑎, this polygon is considered as valid and will kept, 

otherwise, it is removed as invalid. In this research, the threshold value is set as 𝛿𝑎 = 0.1. 

The polygon refinement procedure is graphically illustrated in Figure 3.8. After the expansion 

(Figure 3.8 (a)) and Boolean operation (Figure 3.8 (b), (c)), the removal of invalid polygon is 

shown in Figure 3.8 (d), (e). As shown in the figure, the yellow dots represent the inlier points 

projected by the red dots. And the polygon enclosed by blue line segments represent the alpha 

shape of the inlier points. If the ratio between the area of projected alpha shape polygon and the 

clipped polygon does not satisfy the pre-defined criteria, the clipped polygon is removed. A 

typical example of invalid polygon is given as the red polygon in Figure 3.8 (e).  
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Figure 3.8. Polygon Refinement 

Figure 3.9 shows the reconstruction of several typical building objects. The first row of the 

figure shows the original point cloud with low data resolution, and the second row shows the 

reconstructed roof models. As shown, the proposed approach is able to reconstruct the models of 

various type of building objects, such as the building in Figure 3.9 (b) with multiple pair of gable 

roofs, of the building in Figure 3.9 (e) with isolated parts of different elevation. I will show in the 

following section that these reconstructed models will be used to measure the building damage 

with various resolution post-event point cloud. 

 

 

Figure 3.9. Results of Building Model Reconstruction 

3.3.3 Post-event Building Objects Extraction 
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After the reconstruction of pre-event building model, the corresponding post-event building 

object is extracted in order to achieve the property-wise damage assessment. One solution to this 

is to detect the post-event building objects individually, and match the objects. This approach, 

however, is not robust in real case. One reason is derived from the fact that the post-event 

building could be severely damaged or even totally collapsed, and conventional building 

detection algorithms will not be able to robustly identify them. In addition, the time-sensitive 

post-event assessment does not necessarily collect high resolution point cloud data. The post-

event airborne point cloud with very low resolution collected after Hurricane Sandy is a typical 

example (NOAA 2012). Figure 3.10 compares the point cloud resolution of multi-temporal 

dataset collected at the same region. For each building object, the resolution is represented by the 

average minimal point-to-point distance (m), therefore, the smaller the average distance, the 

larger resolution it is. It is shown that the pre-event data resolution is much larger than that of the 

post-event dataset.  

 

Figure 3.10. Point Cloud Resolution Comparison 

To address this issue, I simply crop the post-event dataset using each pre-event building 

footprint polygons. Ideally, the post-event building object should have exactly the same layout 

and location of the corresponding pre-event building object. However, if a building is collapsed, 

rotated, or displaced due to natural hazard effects, the location and layout of the post-event 
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building object will vary from the pre-event object. Nevertheless, this approach is still recognized 

as easy and efficient to use for the purpose  of property-wise damage detection for the reason that 

if the cropped point cloud does not match the pre-event model very well, the building is 

considered as damaged. 

3.3.4 Feature Computation 

In this section, I propose two features 1) outlier score, 𝒮, of the point-to-plane distance, and 2) 

average inlier area ratio ℛA
̅̅ ̅̅  for damage status identification. The outlier score is a robust 

statistical matric modified from the concept of median absolute deviation (Mosteller et al. 1977). 

In order to compute the outlier score, the point-to-plane distance 𝑑𝑖 is first computed. Instead of 

subtracting the median of 𝑑𝑖 from each 𝑑𝑖, I propose to subtract min (|𝑑𝑖|) from each 𝑑𝑖 as 

following 

𝒮 = median(|𝑑𝑖 − min (|𝑑𝑖|)|)   (3.4) 

Because I assume that for ideal case, the point-to-plane distance should as small as possible 

and the distribution of 𝑑𝑖 is concentrated around zero. For damaged building, the distribution of 

𝑑𝑖 tends to be more spread and skewed towards large value. The histograms of the point-to-plane 

distribution of one typical intact building and damaged building are plotted in Figure 3.11 (b), it 

is noticed that the shape of histogram is distinguishable for various building conditions, and the 

corresponding outlier scores are comparatively far away from each other, thus this score is an 

efficient feature implying the building condition.  

The average inlier area ratio ℛ̅ is defined as  

ℛ̅ = ∑ (𝐴𝑘 𝔸𝑘⁄ )𝐾
𝑘=1      (3.5) 

where 𝔸𝑘 is the area of the kth pre-event roof facet polygon, and 𝐴𝑘 is the area of the kth post-

event roof facet point set (Figure 3.11 (c)). Although it is straightforward to compute the area of 

pre-event facet as the polygon area, the computation of the post-event point set area is sensitive to 

variation of data resolution. Conventional area computation relies on construction of alpha shape 
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or convex hull polygon, however, these approaches are sensitive to resolution variation. As 

shown in Figure 3.12, the low resolution of point cloud tends to decrease the area of polygon. To 

address this issue, I propose an efficient resolution-invariant point cloud area estimation approach. 

Instead of constructing the polygon on the point cloud, this approach estimates the equivalent 

square for each point. The procedure is illustrated in Figure 3.12 (e), (f). I first construct the 

triangulation on the point cloud, and remove the invalid triangle edges using MCMD_Z outlier 

detection algorithm (Nurunnabi et al. 2015) And the length of equivalent square is estimated as 

the median value of valid edge length. And the area of sparse point cloud is computed as 𝛽 ∑ 𝑟̃𝑖𝑖 . 

In this equation, 𝑟̃𝑖 is the size of equivalent square, and 𝛽 = 1.2 is a constant coefficient obtained 

via statistical experiment. As sown in Table 3.1, the approach is able to estimate the area of point 

cloud of various resolution. The third row of the table is the ratio of the estimated area to the 

actual polygon area. It is observed that for various resolution, the estimated area is around 1.2 

time of the actual area, therefore, the constant coefficient is estimated as 𝛽 = 1.2. 

Table 3.1. Statistical Analysis of Resolution-Invariant Area Estimation 

Resolution 100% 40% 20% 10% 2% 

𝑟̃𝑖  0.0154 0.0246 0.0344 0.049 0.11 

∑ 𝑟̃𝑖𝑖 /𝔸  1.1977 1.2041 1.1902 1.2023 1.2092 

 

 

Figure 3.11. Definition of Three Features 
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In real case, not all the points could be counted as inlier points for roof area computation, I 

modify the computation of area of sparse point cloud as following: 

𝐴 = 𝛽 ∑ 𝑟̃𝑖𝑖 ℐ′(𝑝𝑖 , 𝑝̃)ℐ′′(|𝑑𝑖|, 𝜖𝑑)   (3.6) 

where ℐ′(𝑝𝑖, 𝑝̃) = 1 if 𝑝𝑖 = 𝑝̃, and ℐ′(𝑝𝑖 , 𝑝̃) = 0 otherwise, and  p̃ indicates the point is inside the 

region of pre-event facet polygon. And the definition of another term is ℐ′′(|𝑑𝑖|, 𝜖𝑑) = 1 if 

|𝑑𝑖| < 𝜖𝑑  and ℐ′′(|𝑑𝑖|, 𝜖𝑑) = 0 otherwise, where 𝜖𝑑  is the distance threshold value. 

 

 

Figure 3.12. Resolution-Invariant Point Cloud Area Estimation 

3.3.5 Damage Detection 

The last stage of this framework is damage detection using the features described in previous 

section. I classify the building condition into the following categories, 1) Intact, 2) Partially 

Collapsed, and 3) Totally Collapsed. The concrete description of the rules associating each 

damage pattern to features is described as follow. 

Intact: A building object is considered as intact if the following two criterions are satisfied 

simultaneously: 
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{𝒮 < ∆𝒮  𝑎𝑛𝑑 ℛ̅ > ∆ℛ̅}  (7) 

where ∆𝒮 , and ∆ℛ̅  are two threshold values which are pre-defined by users. Intuitively, the first 

criteria implies that whether height change, collapsing, deformation, inclination, or rotation exists. 

If such scenarios exist, the distribution of 𝑑𝑖 spreads, and as consequence, the outlier score raises 

significantly. If none of these scenarios exists, the post-event point cloud should fit the pre-event 

model, therefore, the distribution is highly concentrated and the outlier score drops. The second 

criteria implies that the area of post-event roof facets are close to that of pre-event roof facets.  

Partial Collapsed: Building partial collapsing includes various damage patterns: 1) inclination, 

2) displacement, 3) rotation. As shown in Figure 3.13 (b), (c), a building is considered as partially 

collapsed if one of the followings is satisfied: 

{𝒮 > ∆𝒮  or 0 < ℛ̅ < ∆ℛ̅}  (8) 

The interpretation of the first criteria is straightforward, no matter what types of damage pattern 

exist, the post-event point cloud does not fit the pre-event model very closely, which leads to the 

raise of outlier score. I constrain the second criteria to be in between the range of (0, ∆ℛ̅). On one 

hand, the upper boundary implies that the area of post-event roof facets are smaller than the pre-

event facets, on the other hand, however, there are still part of the inlier post-event points (red 

points in Figure 3.13). 

Totally Collapsed: I define the following two categories as totally collapsing: 1) height 

change, 2) wiped out. Specifically, the following criterions are satisfied if a building object is 

considered as totally collapsed: 

{𝒮 > ∆𝒮  and ℛ̅ = 0}  (9) 

As shown in Figure 3.13 (d), (e), for a totally collapsed building (height change or wiped out), it 

is assumed that no inlier points exist from post-event dataset. Therefore, the average inlier area 

ratio is 0 for this scenario. 
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Figure 3.13. Damage Patterns 

3.4 Experiment 

3.4.1 Data Description and Pre-processing 

I conduct an experiment on the data set collected at New Jersey shoreline area (Figure 3.14 

(a)). The pre-event dataset was collected at 2010, and the post-event dataset was collected right 

after the occurrence of Hurricane Sandy. To be specific, I focus on the area where the impact was 

severe (Figure 3.14 (b), (c)). In order to validate the results of damage detection, two datasets are 

employed as ground truth. The first dataset is the mobile LiDAR point cloud collected at the same 

area after the particular natural hazard (Figure 3.14 (d)), and the visual interpretation approach is 

conducted on the mobile point cloud to estimate the building damage status. In the following 

parts, this dataset is denoted as MLS-2012 for simplicity and clarity. Another ground truth dataset 

is collected by Xian et al. (2015) and Hatzikyriakou et al. (2015) (Figure 3.14 (e)). During the 

survey, a very comprehensive evaluation was conducted which classifies the building damage 

conditions into first floor damage, second floor damage, third floor damage, roof damage, and 

overall damage. However, because for airborne LiDAR-based detection, only the rooftop is 

visible, the matric adopted in their research is not proper to be directly applied to the airborne 

point cloud. To address this, only the overall damage matric is used as for the validation. For 

simplicity, I denote their dataset as HS-2015. 
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Figure 3.14. Data Description 

The results of building objects extraction during the pre-processing step are shown in Figure 

3.14 (f), (g). The pre-event building objects are extracted using the approach described in section 

3.1, and the corresponding post-event building objects are extracted as described in section 3.3. 

To evaluate the accuracy of building extraction, the manually created building footprint polygons 

are used as shown in Figure 3.14 (h). It is observed that the extracted building objects overlap 

with the ground truth footprint polygon well. The quantitative analysis of the area of extracted 

building and the ground truth polygon is shown in Figure 3.14 (i). Although most of the pre-event 

building objects match the polygon shape accurately, there are still some buildings have much 

larger areas compared with that of the corresponding ground truth polygons. A typical failure 

example is shown in Figure 3.14 (j), because the buildings are adjacent to each other very closely, 

which is hard to be identified as two buildings from airborne LiDAR point cloud when the data 

resolution is close to the gap between two objects.  

3.4.2 Pre-event Building Model Reconstruction 
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The parameters for building model reconstruction are listed in Table 3.2. The choose of 𝛿𝑑 

and 𝛿𝑎 depends on the resolution of dataset, generally, the lower the resolution is, the larger the 

parameters are chosen. 

Table 3.2. Parameters for Model Reconstruction 

Parameter θ δd δl δa 

Value 5° 0.25(m) 1(m) 0.1(m) 

 

Figure 3.15 shows the results of building model reconstruction of some typical building 

configuration. The first row of the figure is the pre-event airborne LiDAR point cloud. The 

second row is the corresponding reconstructed models, and the third row shows the mobile 

LiDAR point cloud. To evaluate the performance of proposed efficient building model 

reconstruction approach, the ground truth polygon shapes are used for comparison. Figure 3.16 (a) 

visualizes the results of all the reconstructed models and the comparison with corresponding 

ground truth polygon. It is observed that the reconstructed polygons match the ground truth 

polygon well in terms of polygon size and shape. The quantitative analysis is carried out in 

comparing the area between reconstructed models and the ground truth models. As shown in 

Figure 3.16 (b), the area of reconstruction model is plotted in red color, and the corresponding 

ground truth is colored in black. As stated by the figure, the areas are close for most of the 

building objects, and the histogram of the area ratio suggests also suggests the consistent result 

(Figure 3.16 (c)). 
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Figure 3.15. Results of Efficient Building Model Reconstruction 

3.4.3 Feature Computation and Damage Status Detection 

As described in section 3.3.4, two features are computed for each pair of pre- and post-event 

building objects. The results of features are shown in Figure 3.17. The result of outlier sore 𝒮 

shows distinguishable patterns, where most of the values are close to 0, and few of them jumps up 

significantly. The result of average inlier area ratio ℛ̅ illustrates a more noisy pattern, 

comparatively. Shortly, I will argue that the average inlier area ratio is more sensitive to the data 

resolution compared with the outlier score. Although it is found in the following discussion that 

the outlier score is more robust and insensitive to data resolution in building damage detection, 

the area ratio is still a necessity feature in identifying partial collapsing scenario. 

I first evaluate the result of proposed approach using the post-event mobile LiDAR point 

cloud as reference, and the corresponding building damage status is evaluated by the author 

manually based on the rules defined in section 3.3.5. The typical building status are illustrated in 

Figure 3.18. The intact buildings are visualized in blue, the partially collapsed buildings are 

colored in orange, and the totally collapsed buildings are identified in red. The comparison 

between the ground truth(MLS) and detected damage status the proposed approach suggests that 

the proposed approach is able to detect 8/12 of the totally collapsed buildings correctly. 
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However, it is noticed that this approach tends to over-evaluate the building damage status. 

Another comparison between HX-2015 dataset and mine suggests that this approach is able to 

11/14 totally collapsed buildings correctly. Quantitatively, the confusion matrixes of each 

comparison are listed in Table 3.3. Each confusion matrix is constructed on binary bases, 

therefore, the off-diagonal elements indicate the error detection. Specifically, the error rate for 

confusion matrix I-NI iℰ𝐼−𝑁𝐼 = 17.82%s, the error rate for P-NP is ℰ𝑃−𝑁𝑃 = 21.78%, the error 

rate for T-NT is ℰ𝑇−𝑁𝑇 = 3.96%, and the error rate for I-D is ℰ𝐼−𝐷 = 24.75%, respectively. The 

error rate for partial collapse and intact are significantly higher than that of total collapse case, 

and this is because the actual intact buildings are recognized as partially collapsed, which will be 

analyzed shortly so that the data resolution does affect the building damage detection using 

airborne LiDAR point cloud. Although the error rate for the comparison between HX-2015 

dataset and mine is also large, it is mainly because the standards of evaluation can hardly be 

unified. Therefore, the failure analysis will focus on the comparison between MLS-2012 dataset 

and ours. 

Table 3.3. Confusion Matrixes 

I-NI Intact (MLS-2012) Non-Intact (MLS-2012) 

Intact (Ours) 69 0 

Non-Intact (Ours) 18 14 

   

P-NP Partial Collapse (MLS-2012) Non-Partial Collapse (MLS-2012) 

Partial Collapse (Ours) 2 22 

Non-Partial Collapse(Ours) 0 77 

   

T-NT Total Collapse(MLS-2012) Non-Total Collapse(MLS-2012) 
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Total Collapse(Ours) 8 0 

Non-Total Collapse(Ours) 4 89 

   

I-D Intact(HX-2015) Damage(HX-2015) 

Intact(Ours) 65 3 

Damage(Ours) 22 11 
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Figure 3.16. Comparison between Reconstruction and Ground Truth Polygon 
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Figure 3.17. Results of Feature Computation 

 

Figure 3.18. Results of Damage Detection 
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3.4.4 Failure Analysis 

In this section, I will closely look at some of the failure cases where intact buildings are 

recognized as partial collapse. Or totally collapsed buildings are recognized as intact. I categorize 

the miss-recognition into the following groups: 1) failure actually caused by proposed approach, 2) 

failure caused by building modification, 3) failure caused by low resolution of post-event data, 

and 4) failure caused by accuracy issue of post-event data. Figure 3.19 shows the four typical 

examples of each type of failure mode. As shown in Figure 3.19 (a), the building roof 

configuration is complex, and the densification of original airborne point cloud is unable to 

preserve the actual roof layout. As the result, the reconstructed roof model is inaccurate and 

misses part of the roof facets. Figure 3.19 (b) presents the case of building modification. The pre-

event airborne point cloud is shown in pink, and the post-event mobile point cloud is shown in 

gray-scale. Clearly, the large outlier score and low inlier area ratio is caused by the modification 

of building configuration. Although the building is not damaged during the hazard, the proposed 

approach detects huge change and therefore, recognizes it as severe damage. The failure mode 

caused by low resolution of post-event data is shown in Figure 3.19 (c). The reconstruction of the 

building model correctly reflect the actual building configuration, while, the low resolution of 

post-event data (colored in orange) leads to significant drop of area ratio ℛ̅. Lastly, the example 

of failure caused by post-event data accuracy issue is stated in Figure 3.19 (d). It is obvious that 

the reconstructed model matches the post-event mobile point cloud correctly, while the post-event 

airborne point cloud shifts upwards against the mobile data. This is because the registration error 

between scanning frame and navigation trajectory data. As a consequence, the building is 

detected as partially collapsed by this approach. 

I conducted a thorough analysis on the failure cases and identified that among the error 

detection, five of them are caused by low resolution, three of them are caused by low resolution 

and accuracy issue. In addition, there are also two cases of building modification. 
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Figure 3.19. Failure Example 

3.5 Discussion 

In this research, I propose a novel framework to detect building damage using multi-temporal 

airborne LiDAR point cloud. To overcome the variation of data resolution, the pre-event point 

cloud is densified at first, and an efficient model reconstruction approach is introduced to 

estimate the building roof configuration. This is to address the issue of very low resolution of 

post-event. To detect the damage status, two features, outlier score and inlier area ratio, are 

estimated and three damage categories are identified based on these features. An experimental 

study was conducted on the data collected after the impact of Hurricane Sandy, and two reference 

datasets were utilized for ground truth. The result suggests that this approach is able to identify 

the totally collapsed building accurately regardless the variation of post-event data resolution. 

And the detection of partially collapsed building is relatively sensitive to the data resolution.  

  



89 
 

 
 

Chapter 4 : Automated Analysis Of Mobile Lidar Data For Component-Level Damage 

Assessment Of Building Structures During Large Coastal Storm Events  

Rapid assessment of building damages due to natural disasters is a critical element in disaster 

management. Although airborne-based remote sensing techniques have been successfully applied 

in many post-disaster scenarios, automated building component-level damage assessment with 

terrestrial LiDAR data is still challenging to achieve due to lack of reliable segmentation methods 

for damaged buildings. In this research, a novel damage detection approach is proposed to realize 

automated building component level (wall, roof, balcony, column, handrail) damage assessment. 

Specifically, the proposed approach first conducts semantic segmentation of building point cloud 

data using a rule-based approach. The detected building components are then evaluated to 

determine if the components are damaged. I applied this method on a mobile LiDAR data set 

collected after Hurricane Sandy. The results demonstrate that the approach is capable of 

achieving 96% and 86% parsing accuracy for wall facades and roof facets, and obtain 82% and 

78% of detection accuracy for damaged walls and roof facets. 

4.1 Introduction 

Severe weather events such as hurricanes and storm surge have been threatening places where 

economic and industrial activities are heavily concentrated across U.S and around the global. 

Damage assessment is critical for better understanding of the hazard impacts and damage 

condition. Traditional approaches rely on foot-on-ground survey, and the assessment is conducted 

one building after another often based on manual assessment (Chiu et al. 1999). While these 

approaches have the potential to collect very detailed damage data, they are slow, labor intensive, 

and error prone, which often lead to missed opportunities in collecting valuable data and gaining 

timely insights for building more resilient future communities. In the case of hurricane events 

which often occur cross states, it would take weeks or months for these manual methods to 

complete damage assessment for impacted areas. This could result in delay in obtaining baseline 
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data to inform how to restore to normalcy while preventing shortsighted decisions which can lead 

to repeated failures. 

Damage detection in civil and infrastructure domain heavily relies on the use of sensors. 

Many in-depth research efforts have been carried out to detect the damage from input signal 

patterns obtained by close-range sensors (Cha et al. 2017, Lin et al. 2017, Rafiei et al. 2017). 

Although impressive performance is obtained, the damage detection of large-scale, especially 

community-scale, is another story as single close-range sensors cannot  provide comprehensive 

observation for all the interesting objects. Therefore, advanced geospatial sensing technologies 

are playing an increasingly important role for decision support in disaster preparation, response, 

and recovery operations as they greatly expand this ability of collecting disaster data. The types 

of geospatial data that are useful for post-disaster damage assessment include photo imagery and 

LiDAR data. Infrared, hyperspectral, and radar imagery may also be useful since they 

complement characteristics of images captured in other portions of the spectrum. More recently, 

high-resolution spatial sensing instruments such as static/mobile LiDAR and 3D dense 

reconstruction from images have been increasingly used for damage mapping due to their 

apparent advantages in capturing finer-scale of damage patterns and in collecting damage data on 

vertical facades (Olsen et al. 2009, Olsen et al. 2012, Gong et al. 2014, Kashani et al. 2015, Zhou 

et al. 2015). While these high-resolution damage data sets promise better insights into damage 

mechanisms, interpretation and processing of these data sets in a timely fashion are also growing 

challenges facing damage assessment teams.  

Use of computer vision methods to interpret remotely sensed disaster data is not a new topic. 

In particular, damage analysis tasks such as building detection, ground classification, and bridge 

detection from 3D point clouds and imagery are well studied (Sithole et al. 2006, Meng et al. 

2010). However, most of these studies focus on imagery and LiDAR data captured from aerial-

based platforms. A recent focus of computer vision based damage assessment has been placed on 

processing oblique imagery collected in disaster impacted areas with either manned or unmanned 
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aircrafts. For example, Vetrivel et al. investigated the application of high resolution oblique 

imagery data for building damage detection (2016, 2016). In their research, the texture features 

are extracted from the imagery to detect the building damages. One major limitation of imagery-

based approach is that it cannot estimate the damage in actual size unless the imagery data is 

accurately geo-referenced. To overcome this, Tu et al. (2016) leveraged the fusion of oblique 

imagery and GIS data to improve the performance of damage detection. In this research, texture 

features of 2D imagery are employed to recognize the damage pattern. 3D GIS data are then 

combined to retrieve the damage size. However, a major constraint of this approach comes from 

the fact that the applicability is restricted by the data availability. In another direction, Verykokou 

et al. (2016) proposed to use UAV-based imagery to reconstruct dense 3-D model for damage 

assessment. Although very dense point cloud could be obtained from image-based reconstruction, 

the damage assessment is still conducted in global level, meaning that automated semantic 

damage detection is still a problem to be resolved.  

Use of dense point cloud data reconstructed from oblique imagery is often complicated by the 

presence of reconstruction artifacts and lack of accuracy standards. The latter in particular 

challenges its use in evaluating damages to critical infrastructures. Automated damage assessment 

with static/mobile LiDAR data which often have clear accuracy standards and specifications is an 

intriguing option. Kashani et al. (2016) tested terrestrial LiDAR based approach to evaluate 

building damage due to tornado events. However, their approach mainly focused on rooftop 

failures. A general observation is that studies on interpreting building component-level damages 

with dense point cloud data are scarce. The reality is that while ones are capable of drastically 

reducing field time for collecting data about damage, debris, and waste with sensing instruments, 

the collected disaster data still have to go through painstakingly manual interpretation in office, 

delaying delivery of critical information to stakeholders. 

To address this issue, I propose an automatic semantic building damage detection approach 

for post-disaster building structural damage evaluation with dense LiDAR point data. This 



92 
 

 
 

approach first semantically parses the building into segments, then the damage detection is 

conducted to extract the semantic structural damage information. This approach focuses on the 

parsing and detection of following structural components: wall, roof, handrail, and column. I then 

evaluate this approach on the dataset collected in the New Jersey Shoreline area after Hurricane 

Sandy. The experiment results show that the proposed approach is able to parse the component 

level building damage. 

The contributions of this paper include: (1) the study provides a fully automated method to 

semantically parse dense point cloud data of residential buildings, regardless of whether they are 

damaged or not, into major building components including roof, exterior walls, columns, and 

handrails; (2) the method is designed to eliminate any data pre-processing steps, making it user 

friendly to practitioners; and (3) the damage detection is based on topological assumptions and 

constraints, and does not require any pre-event data as reference data. This makes the proposed 

method applicable even there is no pre-event data available. 

The paper is organized as follow: The related research work regarding the semantic building 

parsing and 3D reconstruction are firstly reviewed. Then I introduce the methodology of the 

proposed approach in detail. Experiment is implemented to verify the approach. And finally 

conclusion of the research is drawn. 

4.2 Related Work 

As the point cloud processing applicable to post-hazard damage scenario, parsing the point 

cloud into semantically meaningful segments is a critical prior. A major approach used in 

semantic segmentation of point cloud data is plane extraction. RANSAC (Fischler et al. 1981) has 

been proven to be one of the most popular and robust algorithm since its emerge. Deschaud et 

al.(2010) proposed a region-growing based plane extraction algorithm. It starts from computation 

of normal and local scores, then the points are propagated according to the curvature. Based on 

these approaches, various algorithms are proposed in application of various scenarios such 

as(Schnabel et al. 2007, Tarsha-Kurdi et al. 2007, Subramaniam et al. 2014). Wang et al.(2013) 
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proposed a graph-cut based plane segmentation algorithm, the algorithm merges planes and cuts 

planes that minimizes the energy function. Nguyen et al.(2016) proposed to use scan line, plane 

objects are detected based on the scan profiles. A voting-based approach is introduced by (Feng et 

al. 2016). In their approach, point cloud is first over-segmented. And the co-planar segments are 

detected via their tensor-voting based algorithm. In many cases, the point cloud is corrupted by 

noise, to address the issue of plane extraction from noisy point cloud, Zhang et al.(2015) 

developed a linear subspace decomposition-based approach. In this research, the linear subspace 

of the noisy point cloud is retrieved through a sparse optimization procedure. Then an extended 

version of RANSAC, called MLESAC, is adopted to estimate the optimal model of shape 

primitives.   

Once the geometric primitives such as planes are extracted, they are often parsed into high-

level building elements based on rules and heuristics. Ripperda et al.(2009) introduced a system 

leveraging the structural information to parse the building into components. However, their 

approach is not fully automated, and, as a consequence, which is not an ideal tool in post-disaster 

scenario considering the time sensitivity. Becker et al.(2009) introduced a grammar-based 

building parsing framework. In their approach, façade segments are first extracted from the raw 

data in preprocessing phase, and a building grammar is used to parse the facades into semantic 

components. More complex grammar are introduced by (Pu et al. 2009, Toshev et al. 2010). Their 

approach leverages the patch features and topological relationship to achieve optimal global 

parsing results. Martínezet al.(2012) introduced an automated point cloud processing algorithm. 

Their approach assumes that the orientation of sensor is known. The point cloud is oriented and 

the planar objects are detected via finding the peaks of oriented profiled point cloud. Xiong et 

al.(2013) introduced a context-based parsing framework . Then a machine learning-based 

approach is used to assign the patches with semantic labels. Aijazi et al. (2013) proposed a voxel-

based approach. In their study, a chain-link method was implemented to generate initial object 

candidates, and the geometric descriptors are computed from each linked voxels to segment the 
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point cloud into semantic meaningful objects. Vanegas et al.(2012) proposed an approach in 

reconstructing the urban scene from point cloud. Their approach does not require labeling, but it 

is based on the assumption of orthogonality of fundamental components. And therefore is not 

applicable to my scenario as in this case, the buildings might be damaged and might loss regular 

geometric relationship among building components. Monszpartet al.(2015) and Ochmann et 

al.(2016) proposed algorithms in reconstructing complex indoor scenes. Their approaches are 

able to reconstruct plane-based 3-D models from very complex point cloud dataset. Recently, Li 

et al. (2017) introduced a novel hierarchical approach to semantically segment urban 

environmental façade objects. In their approach, input point cloud is firstly converted into 

individual plane objects. Then a SVM-based approach, called BieS-ScSPM algorithm, is carried 

out to assign each individual plane objects semantic meaning. Lastly, an object regularization 

procedure is introduced to refine the parsing and segmentation result.  

In addition, studies focusing on building reconstruction, modeling have been carried out in 

recent years. Truong‐Hong et al. (2011) proposed fully automated approach to reconstruct 

geometric model of building façade from dense point cloud. Their approach first detect boundary 

points using Delaunay triangulation construction. Then the boundary line segments are fitted on 

the boundary points. Then voxel-based approach is leveraged to reconstruct the façade model. 

Instead of using Delaunay triangulation, Truong‐Hong et al. (2013) proposed a novel approach 

that uses KNN searching to extract boundary points. A slicing based approach is proposed by 

Zolanvari et al. (2016). In this study, the façade boundary are extracted via horizontally and 

vertically slicing the point cloud. And the façade model could be reconstructed via fitting and 

adjusting the boundary points.  

The aforementioned research effort focuses on processing point cloud data of intact building 

objects, which often have strong and well-understood topological cues. For example, a wall facet 

is always vertical to ground plane. In post-disaster scenarios, these patterns are not necessarily 
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preserved because the natural hazards generate much complex and rarely recognized damage 

patterns. For example, a vertical wall façade might be recognized as roof facet if severe 

inclination occurs. Also, a horizontal balcony floor might be recognized as roof if it inclines to 

certain degree because of the failure of supporting structures. 

To deal with the segmentation of damaged buildings, Kashani et al. (2015) proposed a 

cluster-based approach using the point cloud with texture information to detect the roof damage. 

However, this approach is limited of application because it focused on the roof objects as a prior. 

In terms of the entire building objects, the various sizes of different building components will 

affect the performance of the k-means algorithm adopted in the study.  

Therefore, this study proposes a novel approach aims at addressing the abovementioned 

issues. To the best of my knowledge, these is still no research attacking the problem of automatic 

parsing and detecting component level building damage using ground-based lidar point cloud. 

4.3 Methodology 

The proposed approach involves a data processing workflow that has five phrases (Figure 

4.1). The first phase is plane segmentation. In this stage, I proposed to use a supervoxel 

propagation based plane segmentation to avoid the computing of point normal. The second phase 

is initial parsing. In this stage, the segments are parsed into semantic building components with a 

rule-based parser. A MRF based optimization approach is implemented in the third phase to 

optimize the parsing results. Based on optimized semantic segments, I parse the handrails and 

columns in the fourth phase. The last phase involves component-level damage detection and 

assessment. In the following, detailed description of the algorithms used in each phase is provided.  

 

Figure 4.1. Workflow of Proposed Approach 
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4.3.1 Supervoxel Propagation-based Plane Segmentation 

I use supervoxel propagation-based plane segmentation to conduct initial plane detection in 

this phase. Where the term ‘supervoxel’ refers a set of points that are locally connected, and share 

the similar normal direction. The reasons that I propose this approach rather than other commonly 

used algorithms such as RANSAC and Region-Growing are: 1) Region-Growing requires the 

computation of point normal and implementation of growing at a global scale, which 

exponentially increase the computational time with the increase of data size; 2) RANSAC fits a 

model when most points are considered as inliers. This might return invalid fitting result if not 

supervised. For example, it might fit an inclined plane if most points are considered as inliers, 

while in fact these points could belong to multiple models respectively. This is especially true for 

disaster scenes with full of clutters.  

To address these issues, I propose to propagate supervoxels rather than individual points. I 

first construct supervoxel using the method proposed by (Papon et al. 2013).  Due to the noise in 

point cloud and model complexity, it might return supervoxels which contain multiple planes 

(Figure 4.2 (a)). To ensure that each supervoxel only contains one plane, a RANSAC-based plane 

fitting is implemented to extract each plane models from the supervoxels. Because the points in a 

supervoxel are highly concentrated, RANSAC is not likely to fit models that merge together 

points belonging to different models in this approach. Because the RANSAC is applied on every 

supervoxel, I assume that each supervoxel contains at most  two or three planes. During the 

implementation, when a plane is found and the inliers are removed, if the remained points is less 

than a predefined ratio (in this research, 1/4), I stop the plane search. Therefore, each supervoxel 

satisfies the following: 

{𝒱(𝒑𝑖) | ∄(|(𝒑𝑖 − 𝒑0) ∙ 𝒏|/‖𝒏‖2) > 𝛿}    (4.1) 

where 𝒑𝑖 is a point in supervoxel, 𝒑0 is an arbitrary point on the fitted plane, 𝒏 is the normal 

vector of the plane model, and 𝛿 is a positive constant value determines the inlier points. And 𝒱 

denotes a supervoxel after RANSAC plane fitting. 
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With the supervoxels constructed, I construct the adjacency graph (Figure 4.2 (c)) as: 𝒢(𝒱, ℰ), 

where 𝒱 denotes node in the graph, and ℰ denotes the edge connecting two adjacent nodes. Two 

supervoxels 𝒱𝑖 and 𝒱𝑗  are adjacent to each other if there exist such a pair of points that the point-

to-point distance is less than a pre-defined threshold. Mathematically, a pair of supervoxels are 

considered adjacent if the following equation is satisfied: 

{∃(|𝒑𝑖 − 𝒑𝑗| < 𝜀), 𝒑𝑖 ∈ 𝒱𝑖 , 𝒑𝑗 ∈ 𝒱𝑗}    (4.2) 

I then propagate the supervoxels along the adjacency graph to extract the segments. The 

pseudo code is presented in Algorithm 4.1. Starting from an arbitrary supervoxel, I propagate its 

adjacent supervoxel if their normal vectors are parallel to each other: (𝒱𝑖 ∥ 𝒱𝑗), here a pair or 

adjacent supervoxels are considered parallel if they satisfy: (𝒏𝑖 ∙ 𝒏𝑗) > 𝜃. The propagation is 

iteratively implemented until no more supervoxel can be propagated. Example results of 

supervoxel propagation based plane segmentation are shown in Figure 4.2 (d). 

 

 

Figure 4.2. Plane Detection and Segmentation with Supervoxel Propagation 
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Algorithm 4.1. Pseudo Code of Supervoxel Propagation 

 

4.3.2 Rule-based Parsing 

Because the layout of building components always has geometrical patterns, a rule-based 

parsing algorithm is constructed in this phase to parse the segments into semantic building 

components. Algorithm 4.2 presents the pseudo code of the rule-based initial parsing. As listed in 

the table, the parsing can be conducted in three different ways: the first path is chosen when a 

segment is vertical, the second path is chosen when a segment is inclined, and the third path is 

chosen if a segment is horizontal. At the same time, the geometric relationships between different 

segments are defined as: 𝐴 ⟷ 𝐵 denotes 𝐴 and 𝐵 are adjacent to each other; 𝐴 ↑ 𝐵 denotes 𝐴 is 

entirely above 𝐵; 𝐴 ↓ 𝐵  denotes 𝐴 is entirely below 𝐵; 𝐴 ⊲ 𝐵 denotes A is partially or entirely 

inside the space of 𝐵; and A ≳ B denotes the size of the minimal bounding box of 𝐴 is equal or 
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greater than 𝐵. The notations of outputs are defined as: {𝑊} denotes wall segments; {𝑅} denotes 

rooftop segments; {𝐺} denotes ground segments; {𝐹} denotes fence segments; and {𝐷} denotes 

doorway/balcony segments. The following parameters are also defined in the criteria:  𝜃𝑣 - the 

threshold angle between the surface normal of the plane and the vertical direction; normal to 

vertical; 𝜃ℎ  - the threshold angle between the surface normal of the plane normal and the 

horizontal direction; 𝛿ℎ - the height threshold; and 𝛿𝑠 - the threshold size. 

Algorithm 4.2. Pseudo Code of Rule-based Parsing 

 

The rules used in path 1 are presented in Algorithm 4.3. Starting from a vertical plane, I first 

propagate all the vertical planes that are adjacent to each other for the purpose of propagating 

vertical planes perpendicular to each other. Then I evaluate if there exist any inclined planes that 

are adjacent to any propagated vertical plane. If these included planes are above the height 

threshold, the propagated vertical planes are parsed as wall segments. If the inclined plane cannot 

be found, the propagated vertical planes are still parsed as wall segments as long as there are one 

or more planes whose minimal bounding boxes have sizes larger than the size threshold. 

Otherwise, the propagated vertical planes are parsed as fences. For the minimal bounding box of 
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a plane segment, I only use rectangle, triangle, parallelogram, and semi-circle as templates. The 

template that fits the points best will be selected as the minimal bounding box (Figure 4.6(a)). 

The visual illustration of the Algorithm 4.3 is shown in Figure 4.3. 

Algorithm 4.3. Pseudo Code (Wall Segment Parsing) 

 

 

Figure 4.3. Workflow of Algorithm 3 

Algorithm 4.4 lists the rules used In roof/ground segment parsing. If a plane segment, 𝑃𝑖, is 

inclined, I first construct the polyhedron from this inclined plane. To construct the polyhedron, 

the inclined plane is first projected onto the horizontal plane, and then the projected plane is 

extruded vertically in both negative and positive directions (Figure 4.6(b)). If there exists a 

vertical plane that is partially or entirely inside the polyhedron, and 𝑃𝑖 is above the height 

threshold, it is parsed as a rooftop segment. If there exists a vertical plane partially or entirely 

inside the polyhedron, but 𝑃𝑖 is below the height threshold 𝛿ℎ, it is parsed as a ground segment. In 
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addition to finding the vertical planes, inclined planes are also checked. If the inclined planes are 

found that partially or entirely inside the polyhedron, the plane, 𝑃𝑖, is parsed as rooftop if it is 

above 𝛿ℎ, otherwise, it is parsed as ground. The algorithmic workflow is presented in Figure 4.4. 

Algorithm 4.4. Pseudo Code (Roof/Ground Segment Parsing) 
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Figure 4.4. Workflow of Algorithm 4 

The pseudo code of doorway/balcony segment parsing is presented in Algorithm 4.5 (Figure 

4.5), which mainly parses horizontal plane segments into ground or doorway/balcony segments. 

For each horizontal plane, 𝑃𝑖, the polyhedron is constructed at first use the approach described in 

phase 2. If there exists vertical or inclined planes inside the polyhedron partially or entirely, the 

plane  𝑃𝑖 is parsed as doorway/balcony segment if it is above the threshold height 𝛿ℎ. Otherwise, 

it is parsed as ground. 
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Algorithm 4.5. Pseudo Code (Doorway/Balcony Segment Parsing) 

 

 

 

Figure 4.5. Workflow of Algorithm 5 

4.3.3 Parsing Optimization 

The supervoxel based propagation algorithm sometimes outputs wrong parsing results for 

some small-size supervoxels. As shown in Figure 4.6 (e), some parts of the walls are parsed as 
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ground incorrectly. This is because these supervoxels represent the connection of region between 

a building and the ground, and the computing of surface normal is affected by the low point 

density and irregular distribution of points. 

 

Figure 4.6. Rule-based Parsing 

Denoising and smoothing the point cloud plays an important role in performance 

improvement. Although research about robust normal estimation and noise removal has shown 

promising results in point cloud segmentation and parsing (Sun et al. 2015, Wolff et al. 2016), 

these approaches tend to smooth the noise of the point cloud. While in this application, the noise 

might be the damaged components, and cannot be smoothed or removed. Alternative routine is to 

improve the parsing result according to local connectivity. MRF has been widely used in 

applications such as image denoising and segmentation(Lu et al. 2001, Diebel et al. 2005, Cao et 

al. 2011).  The method constructs a MRF over the pixels or points, and denoises the 2D or 3D 

images by optimizing the energy function over the MRF. In this research, the initial parsing result 

is considered as noised 3D images denoted as  𝑰̂(𝒙, 𝒚, 𝒛), and the semantic building model with 

the optimal parsing result is denoted as 𝑰(𝒙, 𝒚, 𝒛). 
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To retrieve the optimal semantic building model, I construct the MRF over the supervoxels as 

𝓖(𝓥, 𝓔), where 𝓥 represents the nodes of the MRF, and 𝓔 is the weighted edges connecting two 

adjacent nodes. To denoise 𝑰̂(𝒙, 𝒚, 𝒛), I construct the energy function on the MRF as follow: 

𝑬 = 𝝈 ∑ 𝜳𝒊𝒊 + 𝜶 ∑ ∑ 𝜱𝒊𝒋𝒋∈𝓝(𝒊)𝒊     (4.3) 

In the equation, 𝜳𝒊 is the unary potential defined as: 

𝜳𝒊 = (
|𝑉𝑖|0

|𝑉𝑖|0+𝜇
) 𝓘(𝑦𝑖, 𝑦̂𝑖)     (4.4) 

and 𝜱𝒊𝒋 is the pairwise potential function defined as: 

𝜱𝒊𝒋 = (1 − 𝑒𝑥𝑝 (−
ℒ𝑖𝑗∙(𝜃𝑖𝑗)

𝐶

𝛽
)) (𝓘(𝒚𝒊, 𝒚𝒋))   (4.5) 

In equation (4.4), |𝑉𝑖|0 is the number of points in supervoxel Vi and μ is a predefined variable. In 

equation (4.5), ℒ𝑖𝑗  is the length of connection boundary of supervoxel {𝑉𝑖 , 𝑉𝑗}, 𝜃𝑖𝑗 = |𝒏𝑖 ∙ 𝒏𝑗| is 

the angle between normals of supervoxel {𝑉𝑖 , 𝑉𝑗}. 𝓘(𝑎, 𝑏)  is an indicator function defined as 

𝓘(𝑎, 𝑏) = 1 if 𝑎 ≠ 𝑏, otherwise 𝓘(𝑎, 𝑏) = 0. 𝒚𝒊  is the label of supervoxel 𝑉𝑖  and 𝜶, 𝛽  are two 

constant variables. In the pairwise potential function, consider the parallelism of the adjacent 

supervoxels is considered, which means that parallel supervoxels tend to have strong interactions 

with other. Another assumption is that the length of connection affects the pairwise interaction. 

Specifically, a strong interaction exists if two adjacent supervoxels share a long connection 

boundary, and a weak interaction exists if they are connected by a short connection boundary. In 

addition, I also assume the pairwise consistency, which states that adjacent supervoxels tend to 

have same semantic labeling. The assumptions are illustrated in Figure 4.7. 

I implement a simulated annealing algorithm (Kato et al. 2012) to optimize the energy 

function. For each supervoxel, let the label 𝑦𝑖 go through the entire label space and compute the 

corresponding energy value. If the energy value is accepted, I update the supervoxel with the 

corresponding label. This process is repeated until no more supervoxels are updated. The 
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optimization result is shown in Figure 4.6 (f), it is observed that the supervoxels that are 

originally parsed as ground are modified as wall segments correctly. 

The comparison of parsing accuracy is made between   the result with and without MRF 

optimization.  And the  number of correctly parsed  points. The precision and recall in terms of 

the area of correctly parsed components (wall, roof, handrail, balcony), and the length of correctly 

parsed component (column) are used as evaluation metrics. The result is shown in Figure 4.8, it is 

observed that the parsing accuracy with MRF optimization is higher than that of without MRF 

optimization, in terms of metrics of number of points, area of components, and length of 

components. This indicates that MRF optimization does improve the parsing accuracy. 

 

 

Figure 4.7. Assumption of MRF 

 

Figure 4.8. Comparison of Parsing Accuracy between with and without MRF 
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4.3.4 Handrails and Columns Parsing 

The previous phases parse the segments into major building components. In this phase, the 

focus is on smaller building structural elements such as columns, post, and handrails. Detections 

of these components are beneficial for component-level building damage assessment as damage 

of columns indicate the damage of primary supporting structures, and handrail damage poses 

threats to safe inhabitance in the impacted homes.   

When compared with wall and rooftop components, handrail structures have more complex 

structural patterns. If projected to 2-D space, a handrail structure could be identified from the 

diffraction grating-like pattern. Zolanvari et al. (2016) introduced a slicing based approach in 

windows extraction from point cloud, which inspires us in using point cloud slices to detect 

handrail structures. 

Given a vertical plane 𝒱𝑖, I first slice point cloud data horizontally, and for each horizontal 

slice, I slice it vertically. If a vertical slice overlaps with a short handrail column, it contains more 

points, otherwise, it contains less points. By counting the number of points in each vertical slice, I 

will be able to obtain a signal-like graph which shows the unique patterns of corresponding slices. 

Figure 4.9 (d) shows the signal pattern extracted from a handrail segment, and Figure 4.9 (h) 

shows the pattern of a wall segment. It is observed that the signal extracted from handrail 

segment shows an explicit periodicity with large amplitudes, while the signal extracted from wall 

segment shows some random periodicity with small amplitudes. Denote the signal as {𝒮(ℓ𝑖)}, I 

detect the local maxima peaks as {𝒮𝑚𝑎𝑥(ℓ𝑖)|𝒮(ℓ𝑖) > 𝒮(ℓ𝑖−1), 𝒮(ℓ𝑖) > 𝒮(ℓ𝑖+1)}, and local 

minima peaks as {𝒮𝑚𝑖𝑛(ℓ𝑖)|𝒮(ℓ𝑖) < 𝒮(ℓ𝑖−1), 𝒮(ℓ𝑖) < 𝒮(ℓ𝑖+1)}. I compute the amplitude of a 

periodicity as 𝒜𝑖 = 𝑚𝑖𝑛(𝒮𝑚𝑎𝑥(ℓ𝑖) − 𝒮𝑚𝑖𝑛(ℓ𝑗), 𝒮𝑚𝑎𝑥(ℓ𝑖) − 𝒮𝑚𝑖𝑛(ℓ𝑘))}, where ℓ𝑖 , ℓ𝑗, ℓ𝑘 are 

consecutive peak locations. I extract all the local maxima peaks at locations {ℓ𝑖|𝒜𝑖 > 𝛿}. For 

consecutive peaks, if (ℓ𝑖 − ℓ𝑖−1) < 𝜖, the segment is recognized as handrails. 
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Similarly, I use a slicing-based approach (Wu et al. 2017) to detect building columns even if 

they have large inclination angles. 

The point cloud data is first sliced horizontally, and the points are projected to a horizontal 

plane. Clustering techniques are applied to group the points into multiple segments according to 

the pair-wise distance. Then the area of each segment is computed. Because each slice is thin in 

z-direction, the inclination of objects could be neglected. Therefore, the cluster with area smaller 

than threshold δa, is considered as column candidate and represented by its centroid (Figure 4.10 

(b)). When the candidates are detected, I construct the adjacency graph on the candidates, where 

the pair of centroids close to each other are connected. Because columns are linear structures, 

RANSAC fitting is then used to fit centroids to line models. For a line model, if its direction is 

close to vertical, the line model is considered as a column candidate. Then I first compute the 

length of the fitted line segment, and check whether the inlier points of this line model are 

adjacent to each other. If both are satisfied, the candidate is confirmed as a column object. Figure 

4.10 (c) shows the bounding boxes of four detected columns. Although the columns are inclined 

due to disaster impact, this approach is still able to locate them. 

 

Figure 4.9. Handrail Extraction 
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Figure 4.10. Column Extraction 

4.3.5 Semantic Damage Detection 

Within all the components have been parsed semantically, the final phase of the proposed 

approach is to characterize structural damage from each component. I start with wall damage 

detection as it is relatively more straightforward than others. I denote the wall, roof, column, and 

handrail segments as {𝑃𝒲 , 𝑃ℛ, 𝑃𝒞 , 𝑃ℋ} respectively. For a wall segment {𝑃𝑖
𝒲 ∈ 𝑃𝒲}, if it is not 

plumb within a tolerance value, I deem it as damaged wall segments. If it is plumb, I find its 

adjacent wall planes {𝑃𝑗
𝒲 ∈ 𝑃𝒲}, and compute the intersect line segments 𝑙𝑖𝑗. If the intersect line 

is not plumb with a tolerance value, the pair of walls {𝑃𝑖
𝒲 , 𝑃𝑗

𝒲} are determined as damaged. 

Otherwise, 𝑃𝑖
𝒲 is determined as intact. The pseudo code of wall damage detection is presented in 

Algorithm 4.6. The detection is based on the assumption that most of the residential building 

walls are rectangular and vertically built. Therefore, if detected out of plumb, the wall is very 

likely damaged. In addition, the check of intersect line direction is based on the observation that 

walls are rectangular in most cases. If the line direction is not plumb, it often indicates large 

deformation of wall segments. 
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Algorithm 4.6. Pseudo Code for Wall Damage Detection 

 

Residential building roofs have multiple styles, including gable, hip and valley, mansard style, 

saltbox style, and so on (Figure 4.11). It can be observed that most of the common roof styles 

have the following features in common: 1) roofs intersect horizontally with at least one wall 

segment; and 2) if two roofs are rectangular or parallelogram, they intersect horizontally. Based 

on these observations, roof damage in this project is characterized in the following way: (1) for a 

roof segment {𝑃𝑖
ℛ ∈ 𝑃ℛ}, if there is an adjacent non-damaged rectangular wall, and the intersect 

line is horizontal, the roof segment is determined as intact; (2) If the intersect line is not 

horizontal, but there is an adjacent roof segment horizontally intersect with it, the roof segment is 

considered as intact as it is likely to be a gable roof style; (3) If a roof segment cannot fit into any 

of the previous two scenarios, the roof is determined as intact as long as it is adjacent to an intact 

wall segment and they are perpendicularly intersected; and (4) ) If a roof segment cannot fit into 

any of the previous three scenarios, a roof segment is considered as damaged due to inclination. 

The pseudo code for the above logic is shown in Algorithm 4.7. 
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Algorithm 4.7. Pseudo Code for Roof Damage Detection 

 

Due to occlusion, noise, and variation in point cloud density, I only focus on the detection of 

roof structural damage including roof inclination and roof collapsing. Figure 4.11 shows a 

summary of definitions of wall damage and roof damage patterns. The definition is based on the 

assumption that the buildings are built in regular types, which indicates the walls are vertical if 

intact, and roofs are designed according to the general building roof styles. 

Damage detection of other structural components, including columns, handrails and canopies 

are relatively straightforward. Detection of column damage is based on whether the primary 

direction of a column is plumb to a tolerance value. Detection of handrail damage is also based on 

its plumb, and detection of balcony damage is based on whether it is horizontal.  
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Figure 4.11. Roof and Wall Damage Patterns 

4.4 Results and Discussion 

The proposed approach was tested on a mobile lidar data set that was collected in severely 

impacted areas during Hurricane Sandy along the New Jersey coastal line. During the survey, a 

mobile LiDAR system integrated with a Leica ALS70 laser scanner, a navigation system, and 

four digital cameras, was employed to collect the data. The data set includes point cloud data of 

ten residential buildings spanning various damage categories including totally damaged, partially 

damaged, and intact buildings (Figure 4.14). The data set was chosen for validating the capability 

of the approach in parsing building components and identifying building damage in various 

scenarios.  

The parameters I used in the experiment are listed in Table 4.2. The affects of different values 

of MRF parameters on parsing accuracy is evaluated. For each parameter, three different values 

are evaluated, and other parameters are fixed during the evaluation. Figure 4.12 shows the affects 

of different α value and σ value in parsing accuracy. As can been observed, the parsing accuracy 

of different α values and 𝜎 value does not change much, and the same trend is observed for other 

parameters. Therefore, the parameters in Table 4.2 are chosen. The parameters are selected via 

statistical analysis of hundreds of impacted buildings during Hurricane Sandy. Of particular note 

is that the angle thresholds for rule-based parsing phase are set to be relatively large values to 

parse not only intact buildings but also damaged buildings. Similarly, the height threshold for 
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parsing roof objects is set to be 0.5 meter to detect not only intact roofs but also damaged roofs. 

Although the top of an intact roof is obviously much higher than 0.5 meter, this setting facilitates 

the detection of damaged roofs even in situations they have collapsed to the ground. I implement 

the entire proposed framework in MATLAB  (The MathWorks 2016) on Core i5-4570 

CPU(3.20GHz)  machine with 8.00GB RAM. Table 4.1 lists the running time of four buildings as 

well as the number of points of each building. It can be observed that with the increase of number 

of points, the running time of phase 1, phase 2, and phase 3 increases linearly. The trend of 

running time of phase 5 is not linearly proportional to the number of points, this is because some 

building does not contain handrails, columns, or balcony objects.. 

Table 4.1. Running time 

Building ID Num of Pts Phase 

1(sec) 

Phase 

2(sec) 

Phase 

3(sec) 

Phase 

4(sec) 

Phase 

5(sec) 

a 263,235 76.42 12.74 99.62 283.61 472.39 

b 738,906 169.41 69.73 255.69 371.26 613.48 

c 465,111 1143.14 23.80 179.64 - 466.54 

g 336,265 854.34 21.32 183.51 14.40 381.35 

 

The test data were manually annotated to create ground truth (GT) for performance 

evaluation. As commonly used for accuracy evaluation, for a certain category of object, I 1) 

denote the true positive prediction (TP) as correctly recognized as a certain object, 2) denote false 

positive (FP) as that recognized as correct object, while the true condition is other, 3) denote false 

negative (FN) as that recognized as other object, while the true condition is the interested object, 

and 4) denote true negative (TN) as that recognized as other object, and the true condition is other 

object. Table 4.3 lists the accuracy of building component using the proposed approach the 

accuracy is evaluated by TP, FP, FN, and TN metrics.   
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Table 4.2. Parameters used in the Parsing and Damage Assessment Pipeline 

Rule-based Parsing 

θv θh δs δh 

80° 15° 2.5(m) 0.5(m) 

MRF Optimization 

α β μ σ C 

1.0 1.0 1.0 0.3 5.0 

Handrail Extraction Column Extraction Damage Detection 

δ ϵ δa θ 

30 0.5(m) 0.1m2 2° 

 

The results suggested that the proposed approach performs well in parsing wall and rooftop 

segments, regardless the conditions of building objects. The framework correctly detected all the 

visible wall segments for seven out of ten test buildings. The error in wall parsing occurs at 

building (d) and (h), where the handrails are misclassified as wall segment. This is because when 

the handrails are inclined towards the horizontal direction (Figure 4.15), the peak detection 

method fails to detect enough valid peaks from each horizontal slice. Overall, the approach is 

capable of recognizing and segmenting approximately 96% of the wall points. The proposed 

approach has similar performance in rooftop detection. For the ten buildings, the approach has a 

detection accuracy of 86%. The errors occur at building (d) and (i) because the damaged 

handrails at building (d) are misclassified as roofs and the wall protrusion at building (i) is 

misclassified as rooftop. In the former situation, the handrail is severely damaged with large 

inclination angle as 17.05°, which is larger than the angle threshold I defined. In the latter 

situation, the calculation of the normal of the wall protrusion is severely affected by point outliers. 

As a consequence, it is misinterpreted as roof objects. In addition, I use precision and recall to 
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evaluate the performance of the proposed approach in building semantic parsing. The precision is 

defined as Precision = TP/(TP + FP), and recall is defined as Recall = TP/(TP + FN). The 

calculation of precision and recall are shown in Figure 4.13. The same conclusion could be drawn 

from the precision and recall calculation. It can be observed that the accuracy of wall and roof 

parsing is comparatively higher, regardless the building size, configuration , and damage 

condition. The average precision for wall parsing in terms of number of points and area of 

component are 95.6% and 96.6%, respectively, and the average recall for wall parsing in terms 

of number of points and area of component are 92.3%  and 86.2%, respectively. In terms of roof 

parsing, the average precision are 80.3% and 86.2%, respectively, and the average recall are 

85.7% and 93.6%. For handrail parsing, the average of precision and recall drop to 70% and 

50% approximately. 

 

Figure 4.12. Evaluation of MRF Parameters (𝜶, 𝝈) 
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Figure 4.13. Precision and Recall Accuracy of Building Semantic Parsing 

 

Figure 4.14. Damage Detection Results 

The parsing of handrails and columns is a much challenging task. The following failure 

modes have been observed. If a handrail is severely inclined, it might be parsed as rooftops or 

ground objects. If it is vertical but deformed around the normal direction (Figure 4.15), the 

handrail extraction algorithm will fail to detect enough valid peaks. For the parsing failures 

involving column objects, one typical failure mode is caused by the lack of enough data points 
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(Figure 4.15). For a column to be detected, it needs to meet the following two criterions: (1) The 

column candidates (mentioned in section 3.4) that fit line model are adjacent to each other to 

ensure that the detected column object is a valid object; and (2) The column length is longer than 

a threshold value to ensure that the detect object is a valid column object.  If a fitted line segment 

is split into multiple segments due to lack of points, and each segment is shorter than threshold, 

the line segment will be rejected. Because the lack of adequate number of points is the major 

reason of column detection failure, this happens when a building is partially occluded by debris, 

or the column is collapsed. The severe inclination of column objects also causes the parsing 

failure. This is typical when a building is severely damaged or collapsed. 

I use the similar metric to evaluate the performance of the proposed approach in detecting 

damaged components. I first manually label out the damaged components as the ground truth. 

Because the approach assesses building damage at the component level, I label one building 

component as damaged if it is either inclined or deformed, regardless the severity of the damage. 

In addition, because the parsing is based on the propagation of supervoxels, the supervoxels at 

corners, eaves, and windowsills cannot be propagated as either wall or roof due to the lack of 

planarity. As a result, the proposed approach will detect many damages at these supervoxels. To 

address these detection errors, I omit the supervoxels that have points less than 500 if they are 

detected as damage. 

In order to evaluate whether this system is able to detect structural damage correctly, I denote 

the actual damage as ground truth (GT). To evaluate the accuracy of damage detection, for a 

certain component, 1) denote true positive (TP) as it is recognized as damage, and the true 

condition is also damage, 2) denote false positive (FP) as it is recognized as damage, while the 

true condition is intact, 3) denote false negative (FN) as it is recognized as intact, while the true 

condition is damage, and 4) denote true negative (TN) as it is recognized as intact and the true 

condition is intact. 
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Table 4.4. It is observed that for some buildings such as (a), (b), (e) and (f), the FP in terms of 

wall points are much higher than that of TP. This is because there is no actual wall damage at 

these buildings, while the proposed approach finds small supervoxels, such as window, 

windowsills, eaves, and intersecting boundary of two planes, as damage. The frequent errors in 

damage detection are shown in Figure 4.16. For building (c), (d), (g), (h), and (j), the precision 

(defined as Precision = TP/(TP + FP)) of wall damage detection is approximately 91.1% on 

average in terms of the number of points, and 84.2% on average in terms of area of components. 

In terms of recall (defined as Recall = TP/(TP + FN)), the accuracy is 95.4% on average in 

terms of number of points, and 98.3% on average in terms of area of components. For these 

buildings, the damage detection accuracy in terms of rooftops is also very high. Specifically, the 

precision are 95.2%  and 91.9%  with respect to number of points and component area, 

respectively. And the recall are 99.6% and 99.5%, respectively. For building (e) and (h), the 

proposed approach detects 100% handrail damages in terms of number of points and component 

area, evaluated by precision and recall, respectively. For building (a), (d), and (i), the precision of 

column damage detection is 83.5%  and 83.8%  on average in terms of point number ad 

component length. And the recall accuracy is 100% for both metrics. These results indicate that 

the proposed approach performs well when the building has structural damage, while it tends to 

overestimate the structural damage if the building has little or no visible structural damage. 

There are several critical threshold values used in this proposed method for building 

component parsing and damage detection (Table 4.2). An important question is the impact of 

these threshold values to the performance of the method. To answer this question, a sensitivity 

analysis is conducted. To reduce the computational intensity without the loss of generality, 

building (a) in Figure 4.14 is used as an example. Since the proposed method has eight 

parameters, the combination of parameter settings increases exponentially if these parameters are 

changed simultaneously. Therefore, for the sensitivity analysis of each parameter, I fix the rest 
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parameters as default to reduce the computation. The sensitivity analysis results are shown in 

Figure 4.17. It can be noted that the performance of parsing and damage detection for wall and 

roof components are insensitive to the choice of parameters. However, to ensure good 

performance in parsing and damage detection for column, handrails, and balconies, careful 

choices of parameters are of need. This is largely due to the size of these objects and the relative 

sparse point measurement on these objects. 

 

Figure 4.15. The Typical Failure Modes in Recognizing and Segmenting Handrail and Column 

Objects 

 

Figure 4.16. The Typical Errors in Damage Detection 
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Figure 4.17. Sensitivity Analysis 

4.5 Conclusion 

In this research, an approach for fully automated building parsing and component-level 

damage assessment is proposed. The approach first parses a building into components with 

semantic meaning followed by assessment of damages at the building component level. 

Applications of this approach on a post-hurricane building damage data set show that the 

proposed approach performs well in both the parsing and detection phase. The proposed approach 

opens doors to automated detailed damage assessment of residential structures following major 

hurricane events. I envision that the proposed approach can be integrated into existing post-

disaster assessment systems for quicker damage assessment and gaining more comprehensive 

understanding of the extent of hurricane damages in a shorter amount of time.  

For future research, one major constraint of the proposed approach is the error of semantic 

parsing due to defects and complex topological relations of the data. Another constraint is due to 

the complex damage pattern. To address this, imagery data is proposed to be integrated to assist 

the robust and comprehensive automated semantic damage detection. 
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Table 4.3. A Summary of Building Parsing Results 

  Number of Points Area (m2) Height (m) 

  Wall Roof Handrail Column Balcony Wall Roof Handrail Balcony Column 

a TP 151883 20664 22987 6247 0 134.9 42.6 10.0 0.0 7.5 

FP 5839 6986 1188 35 1500 8.3 7.7 0.0 2.8 0.0 

FN 3955 215 9132 2246 0 6.4 0.2 11.8 0.0 3.1 

TN 55652 189464 184022 208801 215829 59.3 155.9 183.8 200.0 54.7 

b TP 538182 70022 12870 1348 0 207.0 107.9 5.4 0.0 2.8 

FP 12078 26810 7808 2070 8390 5.6 25.4 5.6 10.8 3.4 

FN 39150 11962 5848 196 0 44.6 11.7 3.4 0.0 0.2 

TN 90168 570784 653052 675964 671188 119.1 224.4 341.4 342.3 133.6 

c TP 244334 99476 0 0 0 124.9 121.0 0.0 0.0 0.0 

FP 2244 10156 0 0 0 3.2 10.5 0.0 0.0 0.0 

FN 25043 13176 0 0 0 16.9 21.5 0.0 0.0 0.0 

TN 110408 259221 382029 382029 382029 140.1 130.9 274.4 274.4 114.0 

d TP 221896 103653 1440 5624 0 197.2 219.0 1.2 0.0 5.0 

FP 23561 40479 12623 132 3027 8.3 73.0 5.1 3.9 0.0 
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FN 33489 7009 20135 19189 0 60.2 4.8 16.6 0.0 14.3 

TN 133489 261294 378237 387490 409408 246.1 212.2 458.2 477.9 184.6 

e TP 262205 21756 22436 0 6305 106.4 45.8 6.8 17.5 0.0 

FP 6827 15231 3350 0 3026 1.7 13.3 0.0 3.0 0.0 

FN 19557 1419 72 3044 4342 17.3 0.4 0.8 0.6 2.5 

TN 52547 302730 315278 338092 327463 71.3 133.8 173.9 161.1 67.2 

f TP 2134358 220226 0 0 0 457.9 241.0 0.0 0.0 0.0 

FP 378301 28219 0 0 16420 17.5 23.1 0.0 13.0 0.0 

FN 42952 379988 0 0 0 47.7 20.5 0.0 0.0 0.0 

TN 221913 2149091 2777524 2777524 2761104 241.5 471.0 729.5 716.0 248.8 

g TP 340113 158879 0 0 0 166.4 155.2 0.0 0.0 0.0 

FP 723 13760 0 0 3306 0.3 6.0 0.0 5.0 0.0 

FN 14677 3112 0 0 0 9.3 2.8 0.0 0.0 0.0 

TN 161268 341030 516781 516781 513475 157.0 168.9 327.7 323.3 118.7 

h TP 130825 66914 3013 0 0 85.2 78.2 4.6 0.0 0.0 

FP 6422 7543 6 0 48106 8.1 6.6 0.0 44.2 0.0 

FN 39336 16213 6528 0 0 32.8 19.7 6.7 0.0 0.0 

TN 86246 172159 253282 262829 214723 101.2 119.4 207.4 178.2 122.8 
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i TP 183876 38403 0 4747 0 120.4 84.7 0.0 0.0 3.9 

FP 1990 15561 894 841 2832 0.9 28.4 0.7 2.0 12.4 

FN 14933 826 0 519 5840 30.2 0.5 0.0 7.3 0.9 

TN 48345 194354 248250 243037 240472 93.4 126.4 222.7 212.8 72.1 

j TP 135617 27900 0 0 0 95.4 66.8 0.0 0.0 0.0 

FP 5416 2142 0 0 16 4.1 2.2 0.0 0.0 0.0 

FN 2158 5416 0 0 0 3.3 4.1 0.0 0.0 0.0 

TN 27900 135633 171091 171091 171075 66.8 95.4 165.8 165.8 67.1 
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Table 4.4. A Summary of Damage Detection Results 

  Number of Points Area (m2) Height (m) 

  Wall Roof Handrail Column Balcony Wall Roof Handrail Balcony Column 

a TP 0 0 0 6247 0 0.00 0.00 0.00 0.00 7.52 

FP 2093 743 0 0 0 9.23 2.76 0.00 0.00 0.00 

FN 0 0 6408 0 0 0.00 0.00 0.00 0.00 0.00 

TN 149790 19921 16579 0 0 134.40 42.42 10.06 0.00 0.00 

b TP 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

FP 54084 21274 1090 0 0 30.36 16.81 2.36 0.00 0.00 

FN 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

TN 482422 50842 11780 1348 0 193.71 105.31 4.24 0.00 1.38 

c TP 134887 49476 0 0 0 90.91 75.83 0.00 0.00 0.00 

FP 2867 3115 0 0 0 1.25 4.50 0.00 0.00 0.00 

FN 38398 0 0 0 0 4.85 0.00 0.00 0.00 0.00 

TN 68182 46885 0 0 0 26.20 42.46 0.00 0.00 0.00 

d TP 62813 45870 0 1267 0 63.46 64.47 0.00 0.00 1.03 

FP 34079 5912 0 0 0 41.82 17.96 0.00 0.00 0.00 
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FN 500 462 0 0 0 1.74 0.42 0.00 0.00 0.00 

TN 124307 51409 10933 4357 0 114.49 148.13 6.32 0.00 3.95 

e TP 910 0 22436 0 0 0.75 0.00 6.80 0.00 0.00 

FP 37922 984 0 0 0 41.65 4.39 0.00 0.00 0.00 

FN 360 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

TN 223027 20772 0 0 0 99.22 45.44 0.00 0.00 0.00 

f TP 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

FP 1331458 21054 0 0 0 132.37 10.40 0.00 0.00 0.00 

FN 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

TN 802900 199172 0 0 0 428.31 235.01 0.00 0.00 0.00 

g TP 178120 136512 0 0 0 89.74 126.32 0.00 0.00 0.00 

FP 2507 557 0 0 0 7.86 0.92 0.00 0.00 0.00 

FN 19 640 0 0 0 0.41 2.07 0.00 0.00 0.00 

TN 202592 21170 0 0 0 101.27 31.20 0.00 0.00 0.00 

h TP 130533 66914 3013 0 0 84.81 78.29 4.64 0.00 0.00 

FP 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

FN 292 0 0 0 0 0.41 0.00 0.00 0.00 0.00 

TN 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 
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i TP 0 0 0 2590 0 0.00 0.00 0.00 0.00 2.33 

FP 15183 979 0 2527 0 15.56 2.08 0.00 0.00 2.21 

FN 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 

TN 175425 37424 0 0 0 120.85 84.46 0.00 0.00 0.00 

j TP 112363 14432 0 0 0 52.21 26.16 0.00 0.00 0.00 

FP 6567 923 0 0 0 22.41 3.63 0.00 0.00 0.00 

FN 6 60 0 0 0 0.00 0.00 0.00 0.00 0.00 

TN 31385 12485 0 0 0 34.57 39.28 0.00 0.00 0.00 
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Chapter 5 : Image-Based 3d Reconstruction For Post-Hurricane Residential Building 

Damage Assessment 

Street-level storm damage photos are an essential type of data used in post-disaster damage 

assessment. However, the existing damage assessment approaches only leverage such storm 

damage photos in a two-dimensional context. With the recent rapid development in image-based 

3D reconstruction, it is natural to question whether storm damage photos can be leveraged to 

create 3D virtual disaster sites for remote field work, and more importantly whether the 3D 

virtual disaster sites can assist damage assessors to perform accurate storm damage assessment. 

This research leveraged the storm damage photos collected by a foot-on-ground damage 

assessment team during Hurricane Sandy to explore the feasibility of using image-based 3D 

reconstruction for post-hurricane residential building damage assessment. Specifically, two 

commonly used SFM-based 3D image reconstruction pipelines are employed to reconstruct 

several impacted residential buildings from photos to evaluate their performances regarding key 

measurement needs in post-hurricane damage assessment. Damage data recorded by a mobile 

LiDAR system were used as the ground truth for performance evaluation. The study results 

suggest: (1) image-based 3D reconstruction can be used to reconstruct accurate 3D virtual 

disaster sites for individual buildings; (2) the reconstructed models in the form of point clouds 

can support damage assessors to conduct accurate building component-level damage assessment; 

and (3) image-based 3D reconstruction from street-level photos is limited in terms of supporting 

damage assessors to identify and measure geographic factors that have contributed to the failure 

of coastal structures. 

5.1 Introduction 

Recently, humankind has suffered tremendous loss as a result of several massive hurricane 

events (Lin et al. 2012). To develop better hurricane damage forecast models and understand the 

effectiveness of existing building construction practices and mitigation measures, rapid responses 
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are often launched after major disasters to collect empirical damage data (Friedland 2009, 

Massarra 2012). Rapid assessment of hurricane damage has traditionally been conducted through 

field reconnaissance deployments where damage information is captured and cataloged. The most 

commonly used field data collection methods are paper and pen, electronic, and video 

recording(Chiu et al. 1999, Crandell et al. 2005, Curtis et al. 2012). These methods are typically 

labor intensive and are difficult to be scaled up to cover large disaster areas without incurring 

significant cost. In addition, rapid assessment leaves little time for assessors to gather detailed 

field measurements. Therefore, there is inevitably a loss of valuable information for long-term 

research that could otherwise lead to improved understanding of severe wind and flood effects on 

the built environment. Virtual-reality based visualization is likely to play an increasingly 

important role in the rapid scientific response to future natural disasters because it permits large 

numbers of researchers to examine a site remotely and quickly, i.e., perform virtual field work 

(Cowgill et al. 2012), without incurring significant cost and diverting resources away from 

humanitarian efforts.  

Remote sensing methods have been increasingly used for damage assessment purposes. Most 

of these approaches rely on data remotely sensed from air- or ground-based platforms. The types 

of remote sensing data that are useful for post-disaster damage assessment include photo imagery 

and LiDAR data. These data are primary spatial data sources used in many post-disaster studies 

(Masuoka et al. 2004, Ozisik et al. 2004, Li et al. 2008, Eguchi et al. 2010, Kashani et al. 2014, 

Kashani et al. 2014). Infrared, hyperspectral, and radar imagery may also be useful since they 

complement characteristics of images captured in other portions of the spectrum (Jha et al. 2008, 

Klemas 2009). It is possible to create virtual hurricane impacted sites with these remote sensed 

data. However, due to the data resolution limitation, the virtual sites created using these data can 

only support large-scale topographic investigation.  

There are primarily two ways to address this limitation: (1) leveraging high resolution remote 

sensing instrument; and (2) leveraging algorithmic improvement to produce high resolution 
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spatial data. On the first path, static terrestrial LiDAR and mobile LiDAR are representative 

technologies that have been recently deployed for post-disaster assessment (Graettinger et al. 

2012, Olsen et al. 2012, Yim et al. 2014). The high resolution LiDAR data captured in these 

studies have apparent potential for developing virtual disaster sites. However, these studies share 

a common limitation – they rely on ground-based platforms which limit their data collection 

window to a stage where ground access must be available. To address this limitation, unmanned 

airborne LiDAR is poised to be a breakthrough approach in the next few years (Lin et al. 2011). 

Ground-based LiDAR data collection can provide a higher resolution compared with the air-

based data collection. However, air-based data collection method is expected to provide an 

effective routine for relatively larger scale mapping (Sturzenegger et al. 2007). On the second 

path, many studies have resorted to Structure From Motion (SFM)-based dense reconstruction 

methods, a computer vision technique reconstructing 3D high resolution point clouds based on a 

set of photographs taken from different angles(Cheng et al. 2011, Simões et al. 2012, Torok et al. 

2013). Compared with LiDAR-based method which required ground access strictly, image-based 

3D reconstruction methods do not suffer from this limitation that much. Images can be obtained 

using a digital camera as long as the safety of investigators is ensured. 

SFM-based methods have apparent advantages over LiDAR-based methods largely due to the 

cost. In general, a LiDAR sensor is much more expensive than a digital camera. But the central 

concern is whether the SFM-based methods can provide data that have comparable accuracy, 

resolution, and coverage to terrestrial LiDAR sensors. While SFM-based methods have been 

tested for infrastructure modeling and evaluation in several ¬¬studies in indoor laboratory setting 

or outdoor small-scale sites (Jahanshahi et al. 2012, Jahanshahi et al. 2013, Lattanzi 2013), there 

is still a lack of field studies that investigated the utility of such methods in supporting damage 

assessment with large-scale real disaster data. To date, there has been little research effort focused 

on evaluating the utility of SFM-based methods for post-hurricane virtual field studies. Therefore, 

a central research question to be addressed by this study is: can SFM-based methods provide data 
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sufficient for developing virtual hurricane impacted sites that can be used by researchers and 

damage assessors to conduct accurate post-hurricane residential building damage assessment?  

My approach to address this research question involves three components: (1) modeling the 

data requirement for field-based post-hurricane residential building damage assessment; (2) 

developing dense 3D point clouds of impacted residential buildings from a Post-Sandy photo 

collections; and (3) comparing the generated 3D point clouds with mobile LiDAR data of the 

same residential buildings in terms of supporting quantifying damage information as determined 

in the first component.  

5.2 Related Work 

3D reconstruction from images is a classic computer vision problem that has been studied 

extensively for a few decades. The early focus of the field is on recovering 3D geometry from 

images with known camera poses. A rising research interest in this field is running 3D 

reconstruction at large scales on images with unknown camera poses, in particular those images 

harvested from different sources on the Internet. Furukawa et al. (2010) described the basic 

technical ingredients for this type of research as: (1) matching algorithms for providing accurate 

correspondence; (2) SFM algorithms for estimating precise camera pose using the matched 

feature; and (3) multi-view-stereo (MVS) methods for taking images with pose as input and 

producing dense 3D point clouds. Indeed, these elements have become standard components in 

many types of open source or proprietary 3D reconstruction pipelines, such as Autodesk 123D 

Catch, VisualSFM, Photosynth, PhotoModeler, and openMVG.  

In general, these pipelines start with detecting correspondence between images with local 

feature descriptors such as SIFT, Harris Corner, and SURF. During this step, certain consistency 

measures such as RANSAC are often introduced to reduce erroneous matches. SFM-based pose 

estimation is then conducted to estimate camera poses. Notable SFM methods include the mutli-

frame SFM (Spetsakis et al. 1991, Tomasi et al. 1992, Szeliski et al. 1994) and the now widely 

used bundle adjustment (Triggs et al. 1999). Once the camera poses are solved, MVS methods are 
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launched for dense reconstruction. The most common MVS method is the Patch-based Mutli-

View Stereo (PMVS)(Furukawa et al. 2010), although recently there are a few other variants such 

as SURE (Rothermel et al. 2012) — a Semi-Global Matching based method. It is beyond the 

scope of this paper to describe the technical details of various 3D construction methods. However, 

in the following, I provide a brief review of studies which are relevant to the focus of this study.  

The accuracy of image-based 3D reconstruction methods has been under constant debate. 

Most studies suggested that SFM based 3D image reconstruction provides less accurate results 

than the aerial or ground based LiDAR scanning (Dandois et al. 2010, Westoby et al. 2012, Fritz 

et al. 2013, Mathews et al. 2013, Ouédraogo et al. 2014). However , Dandois et al. (2010), Leberl 

et al. (2010), and Fonstad et al. (2013) concluded that SFM-based 3D reconstruction is 

comparable if not more accurate than airborne LiDAR. One common characteristic of these 

studies is that they all used photos collected from an aerial platform. In contrast to using aerial 

photos, Fathi et al. (2013) ) applied 3D reconstruction methods for as-built roof modeling with 

photos taken from the ground level. They reported that their approach can reach the accuracy of 

±1.6𝑐𝑚 for simple roof and ±2.4𝑐𝑚 for complex ones. However, the accuracy can be increased 

to ±1𝑐𝑚 if multiple scanners are combined and registered. Comparing to terrestrial laser 

scanning, which often has millimeter range accuracy, it is safe to conclude that 3D reconstruction 

is still not as accurate as terrestrial laser scanning.  

Recently, SFM-based 3D reconstruction has become a vibrant research area in Civil 

Engineering. Some of the intriguing applications include construction scene reconstruction and 

progress monitoring (Golparvar-Fard et al. 2011, 2012), infrastructure modeling (Fathi et al. 2011, 

Dai et al. 2012), digital fabrication (Fathi et al. 2013), bridge inspection (Jahanshahi et al. 2013, 

Lattanzi 2013), substation modeling (Simões et al. 2012), traffic sign modeling (Soheilian et al. 

2013), pavement distress detection (Koch et al. 2012), post-disaster assessment (Golparvar-Fard 

et al. 2010), and underwater survey (Pizarro et al. 2004). The study described herein has a similar 

objective as the research work by (Torok et al. 2013). In their study, SFM-based 3D 
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reconstruction and a crack detection method were proposed as a system for detecting surface 

cracks on critical building elements. However, the evaluation of the system was conducted on 

simulated disaster scenes. In this research, I focus on evaluating the potential of SFM-based 3D 

reconstruction for supporting large-scale post-hurricane building damage assessment with a real 

hurricane damage data set. Instead of focusing on specific damage features such as cracks, I focus 

on the ability of 3D reconstruction to support the fundamental measurement needs in assessing 

post-hurricane damage. To my best knowledge, this is the first study that has systematically 

evaluated SFM-based 3D reconstruction methods for hurricane damage assessment.  The findings 

of this research provide new knowledge base on how to reconstruct and evaluate hurricane 

damages with photos, which have the potential to significantly reduce field data collection efforts 

after a major hurricane event. 

5.3 Data Requirement 

Existing post-disaster damage assessment protocols can be divided into two major categories: 

protocols for rapid damage assessment and protocols for detailed damage assessment. The first 

type of protocols are designed mainly for gathering information that can be used to quickly 

determine whether a structure is safe to enter or inhabitable. Notable examples of protocols of this 

nature are the rapid assessment protocol as provided in the ATC45 manual – Safe Evaluation of 

Buildings after Windstorms and Floods  (ATC 2014) and the manual from the International 

Search and Rescue Response System (INSAR). These protocols are designed with the 

overarching goal of rapidly collecting perishable data with the degree of accuracy and 

completeness of the data as principal tradeoffs (Massarra 2012) The limitation of a rapid 

assessment can be overcome by following with a detailed assessment.  

The protocols used for detailed assessment are mainly concerned with information that is 

useful for estimating repair cost or other engineering analysis purposes. Since hurricane 

introduces both wind and flood damages, damage information resulted from both events has to be 

collected. There are several post-hurricane damage evaluation protocols that can be used for this 
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purpose. A notable one is the Department of Housing and Urban Development (HUD) protocol 

used during Hurricane Andrew. Recently, Massarra (2012) proposed a new hurricane damage 

assessment protocol, which appears to be the most comprehensive one among existing protocols.  

In general, post-hurricane damage data collection concerns with three types of data: building 

structure data, environmental data, and hazard data. The building structure data focus on the 

characteristics of building assemblies and their damage extents. These data can be collected at the 

building or building component level. The environmental data are geospatial data sets that 

describe terrain conditions and geographic settings of the impacted sites. This type of data is often 

collected at the community level instead of at the scale of individual buildings. The hazard data 

concern atmosphere or oceanographic variables characterizing extreme weathers. In the context 

of a hurricane, they include, but are not limited to, Storm Track, 1-Minute Wind Speed, 3-Second 

Gust Wind Speed, Wind Duration, Wind Direction, Wave Speed, Significant Wave Height, and 

Storm Surge Elevation. Remote sensing-based methods, in particular those aerial-based methods, 

are mostly commonly used methods for gathering environmental and hazard data due to the 

nature of these data sets: large-scale and wide area. The merit of street-level photos is primarily 

for collecting building structure data. The purpose of this study is to evaluate whether ground-

taken image-based 3D reconstruction can provide information about building structures, in 

particular those being quantitative and spatial in nature Table 5.1. I used a similar damage 

classification approach as used in (Massarra 2012). 

Table 5.1. A Post-Hurricane Assessment Protocol with Integrated Wind & Flood Damage 

Information 

Building Subassembly Data 

Roof Subassembly Structure Body Subassembly 

Load Side Resistance Side Load Side Resistance Side 
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Roof Geometry 

Roof Pitch 

Mean Roof Height 

Roof Geometry 

Roof Pitch 

Mean Roof Height 

 Percentage of Glass 

Area 

 

Foundation Subassembly Below First Floor Subassembly 

Load Side Resistance Side Load Side Resistance Side 

Pile Row Orientation 

Pile Diameter 

Pile Row Orientation 

Pile Diameter 

Breakaway Wall 

Orientation 

Breakaway Wall 

Orientation  

General Building Attribute Data 

Number of Stories Structure Area and 

Perimeter 

Lowest Floor 

Height 

 

Wind Damage Description Data 

Roof Structure Body Foundation Below First Floor 

Roof Cover Damage 

Roof Deck Failure 

Roof Structure 

Failure 

Wall Cladding Damage  

Wall Sheathing Damage 

Wall Structure Failure 

Opening Damage 

Not Applicable Not Applicable 

Flood Damage Description Data 

Roof Structure Body Foundation Below First Floor 

Not Applicable Wall Cladding Damage 

Wall Sheathing Damage 

Wall Structure Failure 

Opening Damage 

Scour of Slab or 

Pile 

Lateral Movement 

Foundation 

Settlement 

Racking of 

Elevated Structure 

Stairway Damage 

Breakaway Wall 

Damage 
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Joint Damage Description Data 

Roof Structure Body Foundation Below First Floor 

Not Applicable Wall Cladding Damage 

Wall Sheathing Damage 

Wall Structure Failure 

Opening Damage 

Appurtenant Structure 

Damage 

Not Applicable Appurtenant Structure 

Damage 

 

The specific focus of this study is on the fields requiring tedious field measurements. These 

measurements can be reasonably grouped into four types of measurements, being the length, area, 

angle, and volume measurements. The utility of 3D models created from photos would be highly 

related to these measurements. After all, it is of a great interest to damage assessors and 

researchers to know whether a virtual reality site built from a large collection of images would 

allow them to perform accurate virtual field work that are used to be difficult to perform in the 

actual field. Therefore, this study will focus on a representative set of these field works as shown 

in Table 5.2.  

Table 5.2. Post-Hurricane Assessment Protocol Investigated in this Study 

 Roof Structure body 

Detail assessment 

protocols 

Roof pitch 

Roof area 

Wall flatness 

Wall inclination angles 

Damage area 

Opening size 

 

5.3.1 3D Reconstruction of Disaster Sites 
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Hurricane Damage Data Sets: Hurricane sandy was the most destructive hurricane in 2012. 

The winds and surge caused approximately $50 billion total damage to the residential buildings, 

infrastructure, and commerce. At least 650,000 homes were impacted, and 8.5 million people 

were left without power for up to one month (Blake et al. 2013). After Hurricane Sandy, a 

Rutgers team surveyed several hurricane impacted sites with both a mobile LiDAR scanning 

system and a traditional foot-on-ground survey approach. The covered areas include Staten Island 

and Rockaway in New York City, Ortley Beach, Seaside Heights and Mantoloking on the New 

Jersey Shoreline. In this paper, I used photo and mobile LiDAR data on two representative 

buildings sustained damage from Hurricane Sandy (Figure 5.1). A total of 55 photos and 33 

photos were taken from different angles for building 1 and building 2 on ground, respectively. 

However, a faster alternative can be conducted using a mobile platform. 

The LiDAR system used for data collection is an Optech LYNX Mobile Mapper M1 system. 

The LYNX system relies on two 500 kHz LiDAR sensors to collect a million points per second 

while maintaining survey grade quality precision. Without ground control points but with a 

mobile base station, the Optech system is capable of obtaining LiDAR data sufficient for feature 

extraction of planimetric and topographic features typically at an absolute accuracy of +/

−10𝑐𝑚 @ 1 𝜎 in good GPS coverage areas and an relative accuracies of +/− 5𝑐𝑚 @ 1 𝜎 

anywhere within the project area. The mobile LiDAR point clouds for both buildings are used as 

ground truth information due to their high spatial accuracy. The purpose is to evaluate to what 

extent 3D image reconstruction can be used in post hurricane assessment. 
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Figure 5.1. Selected Residential Buildings for Post-Sandy Assessment. (a) Location of Two 

Selected Buildings; (b) Residential Building 1; (c) Residential Building 2 

5.4 3D Reconstruction 

Many commercial or open source implementations of 3D reconstruction are available and can 

be used for the proposed disaster site reconstruction. In this study, I chose the Comercial 

Autodesk 123D Catch software  (Catch 2012) and SURE (Rothermel et al. 2012) as the tools to 

reconstruct the 3D disaster sites. Regarding these two programs, one is a commercial program; 

and the SURE is an open source implementation. More specifically, in the SURE-based approach, 

a set of images and the interior and exterior orientations are derived by VisualSFM (Wu 2011). 

Afterwards, epipolar images are generated, and the dense matching is conducted using a SGM 

algorithm (Rothermel et al. 2012). By using two approaches, I ensure the results are not biased 

towards one specific method. Because the knowledge of the absolute distances between camera 

poses is not available, the reconstructed point clouds are scale-free and they are properly scaled 

using reference lengths as collected onsite. 
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Figure 5.2. The Workflows used in SURE and 123D Catch-based 3D Reconstruction 

5.5 Comparative Analysis 

The reconstructed 3D point clouds of residential building 1 and building 2 are shown in 

Figure 5.3 and Figure 5.4. Each figure also includes the mobile LiDAR point cloud, which is used 

as the ground truth data. In the following, I compare these point clouds from a variety of 

perspectives including resolution, global accuracy and component-level accuracy. 

5.5.1 Resolution and Details  

In this section, the resolutions of point clouds from the mobile LiDAR, SURE, Autodesk 

123D Catch are compared. To compute the point density, the Delaunay triangulation of this point 

set is computed. For each Delaunay triangle, the vertexes with triangle sizes larger than a user 

defined threshold are treated as outliers and removed. Afterward, the areas of each remaining 
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Delaunay triangles are calculated and the quotient of total number of points to the summation of 

each Delaunay triangles is taken as the density of this point cloud without outliers. Table 5.3 

shows the comparison results. It can be noted that the amount of points generated by LiDAR and 

123D Catch depends on the quality of laser scan and the quality of image collection, while the 

point cloud from SURE has much more points, and consequently it has the highest density. On 

the other hand, the point cloud from the 123D Catch has much sparser resolution. 

 

Figure 5.3. Point Clouds of Residential Building 1 
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Figure 5.4. Point Clouds of Residential Building 2 

Table 5.3. Resolution Comparison 

 Residential Building 1 Residential Building 2 

 Amout of Points 
Point 

Density( /m2) 

Amout of Points 
Point 

Density( /m2) 

LiDAR 68,280,775 3,083 2,546,521 500 

SURE 113,642,407 23,799 37,010,935 2,141 

123D Catch 15,295,295 251 9,797,536 273 

 

In terms of the destruction details that can be observed from these methods, I examined 

several exemplar cases. For example for wall cladding damage as shown in Figure 5.5, both the 

LiDAR and SURE point clouds can clearly display the local protuberance of the siding. In 

contrast, the 123D Catch point cloud tends to smooth the corners of the local protuberance 

through curving the linear legs of the corners.  
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Figure 5.5. Visualizing Wall Cladding Damages in Point Clouds 

In another example, I examined wall opening damages, in particular window damages. Since 

the laser beams do not reflect on glasses, windows with and without broken glasses cannot be 

differentiated based on the LiDAR point clouds. As shown in Figure 5.6, the top part of window 

in Figure 5.6 (a) is broken, which could be indicated from the color change in Figure 5.6 (c). 

However, the LiDAR point cloud returns nothing from both broken and intact part as shown in 

Figure 5.6 (b), and the low point density of Figure 5.6 (d) makes it hard to identify the status of 

window. The window in Figure 5.6 (e) is intact shown in digital image, and this is clearly 

presented through the uniformity of glass color in Figure 5.6 (g), but it is hard to tell whether this 

window is broken or not from the LiDAR point cloud shown in Figure 5.6 (f). For the third 

window illustrated in Figure 5.6 (i), LiDAR returns points from the lower part due to the objects 

behind the window, which differs from what can be seen in Figure 5.6 (k) and Figure 5.6 (l). 

Above all, LiDAR based opening damage assessment performs poorly compared with image-

based approach, in which whether an opening is broken or not can be distinguished from the color.  
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Figure 5.6. Visualizing Window Damages in Point Clouds 

5.5.2 Global Accuracy 

In this section, I examine the overall accuracy of the point clouds from image based 3D 

reconstruction methods by aligning them with the mobile LiDAR point clouds. The alignment 

process includes several steps: (1) aligning two point clouds roughly by picking several 

equivalent point pairs (at least three pairs); (2) an Iterative Closest Point (ICP)-based fine 

registration is performed to register the roughly aligned point clouds; and (3) performing 

Hausdorff distance computation to compute the distances between corresponding points in the 

aligned point clouds. Figure 5.7 and Figure 5.8 show the overall comparison results between the 

SFM based 3D reconstruction point clouds and the LiDAR point cloud. The results suggest that 
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the reconstruction has good spatial accuracy on flat objects such as walls, roofs, and balcony 

railings, but the accuracy suffers on objects such as eaves and openings. This is because: (1) for 

eaves, the reconstructed point clouds erroneously included a number of points representing the 

environment, such as the vegetation and sky along the edge of eaves. These points are also 

counted in computing the point-to-point distance, leading to the larger distance difference at the 

edges of eaves; and 2) for openings like windows, doors, and damaged areas, the reconstructed 

point clouds sometimes include points representing glasses and indoor components (e.g. 

partitions and ceilings) while the mobile LiDAR point clouds do not. This disparity increases the 

point-to-point distance dramatically. A statistics of the comparison results, including the median 

and mean of the differences, is also shown in Table 5.4. For the comparison between SURE 

algorithm and LiDAR, 90% of difference is less than 0.0669m for residential building 1 and 

0.0307m for residential building 2, respectively. For comparison between 123D Catch and 

LiDAR, this value becomes to 0.2374m and 0.0412m regarding to residential building 1 and 2. 

This indicates that both image-based 3D reconstruction methods provide reliable accuracy 

regarding to post-disaster assessment for residential building scale objects. 
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Figure 5.7. Overall Comparison of Residential Building 1 

 

Figure 5.8. Overall Comparison of Residential Building 2 
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Table 5.4. Median and Mean of Comparison (m) 

 

Residential Building 1 Residential Building 2 

Median Mean Median Mean 

SURE to LiDAR 0.15 0.24 0.04 0.08 

123D Catch to LiDAR 0.15 0.23 0.05 0.12 

 

5.5.3 Building Component-level Accuracy Evaluation 

After gaining understanding on the overall accuracy of the reconstructed point clouds, the 

next step is evaluating the accuracy of the reconstructed point clouds in terms of supporting 

component level damage assessment. In this perspective, I focused on a variety of component 

level damage assessment tasks as shown in Figure 5.9. These damage assessment tasks involve 

mostly length, area, and angle measurements 

Direct measurement of length, area, and angles on the point cloud is difficult. However, this 

can be alleviated once the point clouds are fitted to planar surfaces. Since the roofs and walls of a 

residential building are, in most cases, flat surfaces, the roofs and walls can be modeled by planes 

fitted to the 3D point clouds. The following measurements of roof area, opening size, inclination 

angle, and wall flatness are conducted based on the fitted planes. The equation of a plane can be 

expressed as: 

𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑐𝑜𝑠 𝛽 + 𝑧 𝑐𝑜𝑠 𝛾 + 𝑝 = 0   (5.1) 

where 𝑐𝑜𝑠 𝛼, 𝑐𝑜𝑠 𝛽 and 𝑐𝑜𝑠 𝛾 are the direction cosine of the normal vector at point {𝑥, 𝑦, 𝑧} on the 

fitted plane, and |𝑝| is the distance from origin to the plane. Let 𝑑𝑖 denote the distance from point 

i to this plane written as: 

𝑑𝑖 = |𝑥𝑖 𝑐𝑜𝑠 𝛼 + 𝑦𝑖 𝑐𝑜𝑠 𝛽 + 𝑧𝑖 𝑐𝑜𝑠 𝛾|    (5.2) 

In order to obtain the best fitted plane, (∑ 𝑑𝑖
2 → 𝑚𝑖𝑛𝑛

𝑖=1 , with condition of (𝑐𝑜𝑠 𝛼)2 +

(𝑐𝑜𝑠 𝛽)2 + (𝑐𝑜𝑠 𝛾)2 = 1 must to be satisfied. Therefore, the plane fitting problem becomes a 
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Lagrange extreme problem. The inclination angles of roofs and walls will be represented as three 

angles: the angle between x-axis and the normal vector, 𝜃𝑥; the angle between y-axis and the 

normal vector, 𝜃𝑦; and the angle between z-axis and the normal vector, 𝜃𝑧. 

 

Figure 5.9. Evaluated Aspects of Residential Building 

Since the original LiDAR point cloud and SFM based reconstructed point clouds do not 

locate in the plane exactly, some of the points have the same direction to the planes as the normal 

vector of the fitted planes, and some have opposite direction to the planes. It is not reasonable to 

compute the areas and opening sizes based on the original point clouds. In this study, all the 

points are projected onto the fitted plane (Figure 5.10), all the red points represent the original 

point cloud, and the blue ones are projected points). Afterwards, the damage areas, opening sizes, 

etc., are computed based on the projected planes. 
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Figure 5.10. Projecting Point Clouds onto Planes 

Length: Balcony Height / Floor Height / Roof Height: Balcony height, floor height, and 

roof height are important building attributes that will be collected on damaged housing structures. 

Figure 5.9 (a) shows the type of balcony height measurement performed using the point cloud 

data. As the balcony is slightly inclined, the heights from its four corners to the ground are 

measured, respectively. As mentioned before, the fitted surface is employed to represent the 

balcony point clouds because the original point clouds contain noises, which could affect the 

measurement accuracy. ∝-shape method proposed by (Shen et al. 2011) is employed to extract 

the boundary points and the corner points from a user segmented balcony and roof point set. The 

boundary points are detected using this approach. Afterward, a classification procedure is 

conducted to categorize the boundary points into different groups according to the edge they 

belong to based on the histogram distribution of their coordinates. A least-square approach is then 

carried out to predict the line of each edge and the corners are computed as the intersection of 

each pair of intersecting lines. Figure 5.11 (a) illustrates the extracted boundary points of one 
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selected roof from residential building 2 shown in Figure 5.9 (e). The grouped boundary points 

for each edge are shown in Figure 5.11 (b). The ground elevation is also imperative in the 

measurement. Due to the uneven of ground and sparsely located debris/ sand, however, the 

estimation of ground elevation is highly empirical and subjective. In this study, the elevation of 

the first floor, represented by the blue line in Figure 5.9 (a), is used instead of estimating the 

ground elevation. Table 5.5 shows the height measurement results using different point cloud data.  

The type of floor height measurements is shown in Figure 5.9 (b) and Figure 5.9 (c). The 

assessment of floor height is less subjective than the measurement of balcony height because the 

measurement of floor height, if not the first floor, does not rely on ground elevation estimation. 

The convex hull algorithm is, again, employed to detect the edge points. For both floors, edge AB 

and edge CD are detected separately, followed by the measurement of the edge length as the floor 

height. The roof height measurements are the perpendicular distance between the left and right 

edges of a roof (Figure 5.9 (d) and Figure 5.9 (e)). The floor height measurements, the roof height 

measurements, and their measuring errors (compared with mobile LiDAR data) (shown in the 

parenthesis) are summarized in Table 5.6. 

 

Figure 5.11. Boundary Points Extraction 
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Table 5.5. Balcony Height Measurements (m) 

 

Top-left 

Corner(A1-A2) 

Top-right 

Corner(C1-C2) 

Bottom-left 

Corner(B1-B2) 

Bottom-right 

Corner(D1-D2) 

LiDAR 2.59 2.84 2.60 2.86 

SURE 2.65 (0.06) 2.76 (-0.08) 2.59 (-0.01) 2.71 (-0.16) 

123D Catch 2.75 (0.17) 2.68 (-0.16) 2.69 (0.09) 2.61 (-0.25) 

 

Table 5.6. Floor/ Roof Height Measurements (m) 

  Residential Building 1 Residential Building 2 

 
Left Edge(A-

B) 

Right Edge(C-

D) 

Left Edge(A-

B) 

Right Edge(C-

D) 

LiDAR 

Floor 

Height 

1.59 1.57 2.88 3.00 

SURE 1.59 (0.00) 1.62 (0.05) 2.90 (0.02) 3.00 (0.00) 

123D 

Catch 

1.54 (-0.05) 1.62 (0.05) 3.02 (0.14) 3.12 (0.12) 

LiDAR 

Roof 

Height 

2.58 2.61 1.49 1.47 

SURE 2.64 (0.06) 2.92 (0.31) 1.61 (0.12) 1.37 (-0.10) 

123D 

Catch 
2.55 (-0.03) 2.67 (0.06) 1.53 (0.04) 1.36 (-0.11) 

 

Table 5.7. Length Measurement Error Analysis 

 Maximum (m) Median (m) Mean (m) Variance (m) 

SURE 0.630 0.000 -0.020 0.0238 
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123D Catch 0.300 -0.025 -0.019 0.0078 

 

The errors in length measurement are summarized in Table 5.7. It can be noted that once the 

measurement involves estimation of the ground level, the accuracy generally suffers. Another 

observation is that due to missing data on the edge of roofs or on roof surface areas, it is generally 

difficult to obtain reliable results.  

To evaluate the surface area measurement accuracy when the reconstructed point clouds are 

used, I performed measurements on wall opening and cladding damage areas. Figure 5.12 shows 

the measurement on a damaged door opening shown in Figure 5.9 (h). The measurement results 

are summarized in Table 8. The results suggest both approaches give good accuracy in measuring 

the area and opening sizes of the damaged door. The area computed by SURE is only 0.6% 

smaller than the area measured by LiDAR, and for 123D Catch, it is 0.9% smaller than LiDAR 

data. For each edge, the largest discrepancy between SURE and LiDAR is 5.6%, and for 123D 

Catch and LiDAR, it is 3.0%. 
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Figure 5.12. Wall Opening Size Measurements 

Table 5.8. Area and Opening Sizes of Damaged Door 

 Area(m
2
) Opening Sizes(m) 

  Upper Edge Lower Edge Left Edge Right Edge 

LiDAR 1.86 0.86 0.95 1.99 1.98 

SURE 1.85 0.87 0.90 2.04 1.96 

123D Catch 1.84 0.89 0.95 2.03 1.95 

Other than wall opening size measurement, I also conducted measurement the area of lifted 

wall sidings by the storm surge and wind forces. In all the point clouds, the lifted sidings were 
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detected by recognizing points that were falling certain distance off the fitting planes. The blue 

areas in Figure 5.13 show these detected lifted sidings. The Delaunay algorithm in MATLAB, 

which maximize the minimum angle of all the triangles, is carried out to create meshes to 

represent the lifted sidings. The areas of these meshes are then computed for comparison (Table 

5.9). The results suggest that the area measurement on the SURE point cloud has much higher 

accuracy than using the 123D Catch point cloud. More specifically, for residential building 1 

(Figure 5.9 (f)), the area of damaged sidings given by SURE is 0.6% smaller than LiDAR 

scanning, and for residential building 2 (Figure 5.9 (g)), it is 5.5% smaller. However, the areas 

computed on the 123D Catch point cloud are 60.3% and 48.9% larger than the areas computing 

on the LiDAR data. This discrepancy occurs mainly because the 123D Catch tends to smooth the 

protuberance via curving the periphery. It tends, hence, to increase the area of damaged cladding. 

 

Figure 5.13. Lifted Siding Area Detection and Measurement 

Table 5.9. Areas of Damaged Wall Cladding 

 Residential Building 1(m
2
) Residential Building 2(m

2
) 

LiDAR 2.39 0.10 

SURE 2.37 0.10 

123D Catch 3.83 0.15 

 



153 
 

 
 

Inclination Angle: Roof and Balcony Slope: Angle measurements, such as roof slope and 

structure inclination, are another important type of measurements performed during hurricane 

damage assessment. In this study, I performed measurement on balcony inclination (Figure 5.9 

(c)) and roof pitches (Figure 5.9 (e)) using the point cloud data of Residential Building 2. The 

results are summarized in Table 5.10. It can be noted that the measurements on the SURE and 

123D Catch point cloud yield accurate roof pitch angles and slightly less accurate balcony 

inclinations.  

Table 5.10. Roof Pitch and Balcony Inclination of Residential Building 2 

 Roof Pitch Balcony Inclination 

 θx θy θz θx θy θz 

LiDAR 59.1° 90.8° 30.9° 89.7° 84.3° 5.7° 

SURE 58.6° 90.7° 31.4° 89.1° 87.2° 3.0° 

123D Catch 59.0° 90.9° 31.0° 89.2° 91.9° 2.0° 

 

5.6 Discussion 

The results of this research demonstrated that photos taken by ground-based assessment 

teams can be used to recreate damage sites in three dimensions. Compared to mobile LiDAR data, 

point clouds from image-based 3D reconstruction techniques have comparative resolution. This is 

not a surprise as close range images taken by today’s digital cameras often have very high 

resolution. In terms of the accuracy of the derived point cloud data, I focused on the accuracy of 

length, area, and angle measurement. As examples, I focused on these measurements as 

demonstrated by measuring floor height, wall opening size, cladding damage area, roof pitch, and 

structure inclination on two damaged residential houses.  

For length measurement, the study suggests that 10-centimeter accuracy is generally 

achievable except for certain situations where the edges of structures are erroneously 



154 
 

 
 

reconstructed. In terms of area measurement, point clouds reconstructed using the SURE 

approach can generally support area measurement at accuracy close to 6%. Nevertheless, the 

123D catch approach tends to over-smooth the sharp edges of objects, leading to large area 

measurement errors. For roof pitch and structure inclination measurements, measurements on 3D 

reconstructed point clouds can yield fairly accurate results. It should be noted that I did not use 

any manual stitching methods to solve any ambiguity in the image matching process. Use of 

manual stitching method will certainly improve the reconstruction results. 

One limitation of this study is that it assumes that the images are grouped by individual 

buildings. The assumption simplifies the reconstruction process as it is well known that buildings 

tend to have similar local features which often confuse SFM-based 3D reconstruction and lead to 

erroneous image matching. Despite of this limitation, it is a reasonable assumption that damage 

assessors usually keep a good log of pictures for different buildings. Another limitation of this 

study lies in how the photo data were collected. There is limited line of slight or visibility on 

roofing structures when a photo is taken from the ground. This has taken a toll on the 3D 

reconstruction as only a limited portion of the roof can be reconstructed. The rise of Unmanned 

Air Vehicles (UAV) will eliminate this limitation as photos taken from a UAV platform will be 

immune to this issue. It is expected that the combination of UAV and ground-based photo 

collection will provide high quality photo data for 3D reconstruction-based damage assessment.  

5.7 Conclusion 

This study evaluated to what extent SFM based 3D reconstruction methods can be employed 

in post-hurricane assessment. By leveraging image and LiDAR data sets collected during 

Hurricane Sandy, I reconstructed two damaged housing structures and compared them with 

highly accurate mobile LiDAR data to quantify the accuracy of the point clouds from 3D 

reconstruction in terms of length, area, and angle measurement. These measurements are part of 

hurricane damage assessment that was routinely performed on damaged residential buildings. It 

can be concluded that SFM based 3D reconstruction can adequately support hurricane damage 
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assessment needs for residential buildings. However, for critical infrastructures which rely on 

very accurate estimate (generally < 1 cm) of displacement, deflections, and other distresses, it 

requires more accurate methods than SFM-based 3D reconstruction. Despite of this limitation, as 

digital cameras are ubiquitous in mobile devices and the availability of more versatile sensing 

platforms such as UAVs, image-based 3D reconstruction will likely become main stream 

applications in post-disaster response. This study provided new knowledge base for using image-

based 3D reconstruction for post-hurricane damage assessment. 
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Chapter 6 : Robust Alignment Of Multi-Sourced Imagery Data For Building Damage 

Assessment 

Optical data have played a critical role in post-hazard damage assessment. Among them, 

LiDAR point cloud data and aerial/oblique imagery have been extensively used for damage 

assessment. While each of these types of data sets has unique strength in supporting damage 

assessment, they also have their limitations mostly due to their collection mechanisms. Alignment 

of these data sets into a consistent coordinate system such that precise pixel to point 

correspondence can be achieved opens doors to new opportunities for efficient damage 

assessment. However, due to the heterogeneousness in data resolution, data coverage, and data 

capturing angles, such alignment is a challenging task to achieve. In this study, I present a novel 

approach for robust alignment of multi-sourced street-level imagery with point cloud data to 

support essential building damage assessment tasks. In the proposed approach, geo-tagged images 

are first aligned with high-resolution LiDAR point cloud to retrieve the 3-D spatial information. 

This is achieved through a human-in-the-loop process, where human interaction is minimized to 

select several simple polygons. After the image is aligned with the point cloud, fine-scale 

building damage assessment can be conducted using the LiDAR infused street-level images. The 

proposed approach was applied on three damaged homes during Hurricane Sandy. For each 

building, I demonstrated the use of the processed images for assessing damaged areas and 

quantifying flood height. The experiment results show that the proposed approach can efficiently 

align arbitrary street-level images with respective point cloud data, and support quantitative 

damage assessment tasks, in particular those that cannot be conducted with LiDAR point cloud 

data alone. 

6.1 Introduction 

In recent decades, extreme events, especially hurricane and their associated storm surge, have 

caused tremendous damage to coastal communities. Immediately after the coastal storm events, 

post-disaster damage assessment is critical in many aspects, such as loss estimation and post-
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event recovery. Traditional damage assessment approaches rely on foot-on-ground inspection of 

damaged properties and infrastructures (Chiu et al. 1999, Crandell et al. 2005, Hatzikyriakou et al. 

2015, Xian et al. 2015). In many cases, disaster management agencies such as Federal Emergency 

Management Agency (FEMA) rely on public assistance from engineering firms to conduct these 

exhaustive damage surveys. 

Recently, remote sensing technology has provided alternative solutions to post-hazard 

assessment. In general, remote sensing-based damage assessment could be categorized into 1) 

airborne LiDAR-based (He et al. 2016), 2) airborne imagery-based (Sui et al. 2014, Tu et al. 

2016), 3) oblique imagery-based (Vetrivel et al. 2016, Vetrivel et al. 2016), and 4) mobile/static 

LiDAR-based (Gong et al. 2014, Kashani et al. 2014, Kashani et al. 2015). Compared with the 

traditional damage assessment approaches, these approaches have important advantages. 

Airborne-based approaches, including LiDAR and imagery, are efficient means of capturing 

necessary data to support damage assessment. They can be used to conduct immediate assessment, 

and are less affected by the road accessibility issues. In addition, they can capture data from over-

large geographic areas in a short amount of time. These factors often make the airborne-based 

approaches the first choice in post-disaster damage data collection. However, these approaches 

often limit the data collection to the areas which are visible from the aerial view, and are 

generally have issues with dense vegetation. Oblique imagery from manned airplanes can 

alleviate some of these limitations, but often have limited resolution due to high data collection 

attitude. Oblique imagery from Unmanned Aerial Vehicles (UAV) such as multi-rotatory copters 

can provide data at a much higher resolution. However, battery life is still a major constraint that 

limits the area of UAV data collection to targeted areas instead of large geographic regions. 

Ground-based approaches, including static and mobile LiDAR, provide higher resolution and 

accurate data which are often coupled with co-registered street-level imagery. However, both 

mobile-based and static-based approach suffers from several issues including road accessibility 
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and limited field of view. For example, mobile LiDAR is often hosted on a vehicular platform 

such that data collection can only be conducted along the roads. 

Volunteered geographic information (VGI), which in essence leverages crowd-sourced 

information, is a relatively new approach for damage assessment (Poser et al. 2010, Barrington et 

al. 2012, Xie et al. 2016). Among the types of crowd-sourced data, images are an important type 

of information as they are intuitive and information rich. Many types of VGI data are geotagged 

due to the ubiquitous use of mobile devices. These geotag make it feasible to rapidly localize VGI 

data. While these types of geo-localization work well for text type of data, they fall short of 

unleashing the true potential of crowd-sourced image data. In most cases, these images still need 

manual interpretation to extract information. Crowd-sourced image data, once aligned with and 

registered with other modes of visual damage data such as those remotely sensed from aerial and 

mobile platforms, can pave the way towards a data fusion framework for intelligent damage 

assessment with multi-modal visual damage data, such as flood height measurement (Schnebele 

2013, Triglav-Čekada et al. 2013). 

This study addresses the challenge of robust matching and aligning VGI images with high-

resolution imagery and LiDAR data collected during ground assessment trips. The goal is to 

recover precise geometric information in VGI images with the assistance of 3D LiDAR data. By 

doing so, it also addresses a common limitation associated with remotely sensed data. Remotely 

sensed data are often limited in terms of field of view as the data collection paths are limited to 

the platform trajectories. More specific to this study, the registered VGI images can serve as 

additional high-resolution overlays on mobile LiDAR data to support quantification of hazard 

impacts. To this end, an algorithmic framework for fusing VGI images with mobile LiDAR data 

with a minimum human-in-the-loop actions is developed in this study. My method is capable of 

aligning arbitrary street-level images containing geo-location information with high-resolution 

LiDAR data to support various damage assessment task. 
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6.2 Related Work 

In recent years, the fusion of imagery data and LiDAR point cloud data have been paid great 

attention in the field of robotics, mobile mapping, and emergency response. As the LiDAR sensor 

could be categorized into airborne and ground-based, the fusion of imagery data and LiDAR data 

can also be grouped accordingly. 

6.2.1. Fusion in Robotics and Mapping Applications 

Fusion of image and range sensors data has been widely applied in robotics, navigation, 

surveying, and mapping. There are two major categories of fusions: one is the fusion of 

aerial/oblique imagery and airborne LiDAR, and another is the fusion of ground-based imagery 

and LiDAR. 

Fusion of aerial imagery with airborne laser system (ALS) has been excessively used in 

large-scale mapping and surveying. For example, Zhang et al. (2015) proposed a registration 

approach applied in forest survey and mapping. In their approach, the registration between UAV 

image and LiDAR data is achieved using inherent geometric constraint. For a pair of 

corresponding object, if the registration is correctly determined, the points should be back-

projected within the object boundary in the image. Based on this assumption, their approach 

estimates the calibration parameters by optimizing the objective function defined by the ratio of 

points projected within the boundary to the total number of points. For aerial case, linear feature 

is widely used in research efforts and engineering application. Rönnholm et al. (2013) uses a 

linear feature-based approach to register the image with lidar data. In this study, the roof ridges 

are extracted from both lidar and image data. And the orientation parameters are estimated via 

solving least square adjustment subject to coplanarity condition. A similar approach is also 

presented by Liu et al. (2016). In their study, the roof ridges and building boundaries are 

extracted using a semi-automated approach. Using the initial exterior orientation (EO) parameters 

obtained by POS, these line objects are back-projected to images, and the corresponding line 

segments from the image are identified using semi-automated manner. Then the fine EO 



160 
 

 
 

parameters are obtained iteratively by solving a co-planarity function. More recently, Sheng et al. 

(2017) described a line vector-based registration framework. It starts with line detection and 

feature description computation. The exterior orientation parameters are obtained by iteratively 

solving a coplanarity equation and updating the parameters based on the line vector features. 

Instead of registering the image with lidar frame by frame, Yang et al. (2015) and Abayowa 

et al. (2015) utilized the partial overlapping of aerial imagery to recover the relative image 

position. It is done by generating dense point cloud using Structure from Motion technique. After 

the photogrammetry derived point cloud is generated, the lidar point cloud to derived point cloud 

registration is implemented with ICP process. And the fine image to lidar registration is obtained 

through this process. 

In addition to the abovementioned feature-based approaches, data-driven approaches have 

been also studied. For example, mutual information between the image gray-scale value and the 

reflectivity value of point cloud is used as statistical dependency measurement (Mastin et al. 2009, 

Parmehr et al. 2014). Therefore, the registration problem is converted to an optimization problem, 

where the objective of the problem is to find a set of camera-to-lidar parameters that maximizes 

the mutual information. 

Fusion of ground-based camera and mobile laser system (MLS) has been applied excessively 

in many mobile mapping systems and robotic systems for mapping, navigation, and object 

recognition. Therefore, careful calibration of camera-range systems is critical. Many in-lab 

calibration systems have been proposed. For example, Geiger et al. (2012) proposed a fully 

automated approach to calibrate the camera to range system. Their system requires a bunch of 

checkerboards as target. By detecting the checkerboards in both sensors, transformation 

hypothesis is generated by randomly choosing plane associations. The fine parameters are then 

optimized using the best plane association. Similar idea of calibrating assisted by special targets 

is proposed by Alismail et al. (2012). In this system, a special target designed as a single circle 

with a marked center was used. It could benefit the estimation of the normal of its supporting 
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plane and location in both camera and range sensor. Then a point-to-plane optimization is carried 

out to recover the full camera calibration parameters. These approaches require auxiliary targets, 

and therefore cannot be applied to the in-situ application. 

Instead of using designed target for registration, using features extracted from generally 

available objects, such as plane and line objects, for registration plays a more promising role. Liu 

et al. (2007) proposed a LiDAR-to-image registration approach that does not require any 

engineered targets. Their approach assumes the existence of at least two vanishing points. Their 

approach has six major steps. In the first step, all the possible pair of 3D and 2D lines are 

extracted. Then for each pair, the camera position is estimated and verified, and the potential pairs 

are stored for later use. If verifiable camera position is estimated, a weighted average representing 

the camera position is computed. Then the refined parameters are computed by finding the 

parameters that maximize the line overlapping. Tamas et al. (2013) proposed a target-less 2D-to-

3D registration approach. Instead of measuring the reprojection error among correspondences, 

they convert the problem into integral problems. If correct registration parameters are obtained, 

the integral of projected points should close to the integral of image pixels of the same object 

after applying a non-linear function. Therefore, by using either one pair of corresponding plane, 

or two pairs of corresponding planes, the extrinsic parameters, or intrinsic and extrinsic 

parameters could be estimated. In addition to the registration between traditional digital image 

and range sensors, Cui et al. (2016) proposed a line-based registration framework that is able to 

register MLS point cloud data with panoramic image. In their approach, a spherical model is 

employed to describe the coordinate, and the line-based model is used to estimate the registration 

parameters. 

6.2.2. Fusion in Post-disaster Response Application 

Fusion of multiple sensors in emergency response applications has been paid great attention 

regarding aerial platforms, such as aerial/oblique imagery and ALS.  Khoshelham et al. (2013) 

investigated the use of LiDAR and high-resolution satellite imagery in post-earthquake building 



162 
 

 
 

damage assessment. In the study, building extraction is first conducted, and then change detection 

is conducted on both imagery and LiDAR data to estimate the damage roughness index. Vetrivel 

et al. (2015) proposed a system that combines the point cloud and very-high-resolution oblique 

images. By fusing two data sources, their approach can classify the gaps presented in the image 

into true damage and artifacts of image acquisition. As a result, their approach can combine the 

advantages of both point cloud and imagery to improve the comprehensiveness and accuracy of 

building damage assessment. Recently, Vetrivel et al. (2017) proposed a general framework for 

damage detection. Their framework uses the combination and individual 2D image feature 

derived via CNN and 3D feature derived from point cloud. And an SVM classification procedure 

is conducted to detect the damage. The experiment shows promising performance of their 

approach. Although the fusion of imagery improves the level of detail in post-hazard assessment, 

the lack of ground-level perspective still hampers the comprehensive assessment procedure. For 

example, during storm surge events, building damage is likely to happen around the foundation, 

which is not visible in aerial imagery. 

To address this, a more near-field data source, UAV-based image is adopted. Galarreta et al. 

(2015) applied UAV-based imagery to facilitate the assessment. As UAV could capture high-

resolution images with large overlap, dense 3D point cloud could be generated from this image. 

The experiment shows that the multi-scale damage assessment could be conducted on the 

generated dense 3D point cloud. Zhou et al. (2015) used manual registration plus the iterative 

closest point (ICP) approach to accurately register the photogrammetry 3D model to the LiDAR 

point cloud. However, this process is tedious. Also, because any wrong correspondence may 

cause an unexpected error in registration, the correspondence picking has to be very concentrated, 

which makes it time-consuming. 

These approaches, although proven successful in many general applications, have the 

following limitations in post-disaster scenarios. In terms of the fusion of aerial image to ALS data, 

the viewing perspective is downward or oblique with a great distance to the object, causing it 
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difficult to capture detailed condition about vertical facades. In terms of the fusion of MLS and 

their associated cameras, although detailed and high-resolution data can be captured, it is limited 

to capture data that are visible along the path of driving. Also, these approaches essentially 

capture LiDAR and image data at the same time. There are cases that the weather conditions 

during data collection are not favorable for taking images. Therefore, although high quality 

LiDAR data can be collected, the associated image data can be in poor quality. Last, but not the 

least, the disaster sites tend to be very dynamic as the time goes on.  Comprehensive data 

collection would need multiple runs. Therefore, it is cost inefficient to collect multiple runs of 

data just to obtain high-quality image data. As an alternative solution, fusing images taken at 

different post-disaster phases with LiDAR data is a potential method to catch high-quality 

disaster data. However, current studies require either strong assumptions such as the existence of 

vanishing points or rely on extensive manual effort in annotating correspondences. These make 

them less ideal candidates for post-disaster applications. 

To address these challenges and limitations, a novel efficient image to LiDAR registration 

approach was proposed in this study. In the proposed approach, LiDAR data are collected using 

an MLS equipped with multiple carefully calibrated cameras. The images taken by these fixed 

cameras are registered with the point cloud data through the classical stereo-pair approach. For a 

given street-level image, this system can efficiently register it with the point cloud via a couple of 

simple clicks and drags. The experiment shows that this approach can handle the cases that the 

images are taken at varied perspectives and lighting conditions. It is also shown that this approach 

can handle the case even the scene has changed. 

6.3 Methodology 

An overview of the proposed framework is presented in Figure 6.1. The framework has three 

major steps. The first step is the registration between the reference image and the point cloud 

model. Given an arbitrary street-level image, the second step is to retrieve the correspondence 

between this arbitrary image and the point cloud using either automated or semi-automated 
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approach. Within the correspondence been retrieved, the final step is the building damage 

assessment assisted by the registered street-level image. In this framework, the semi-automated 

registration approach is designed with minimum user interaction, which is designed for reducing 

the computational cost for the auxiliary matching extraction. Detailed descriptions of each step 

are given in the following sections. 

 

Figure 6.1. Overview of the Framework 

6.3.1 Reference Image to Point Cloud Registration 

In this research, I adopted a mobile LiDAR mapping system equipped with multiple rooftop 

cameras. The configuration of the data acquisition system is shown in Figure 6.2 (a). The system 

consists of a vehicle, a navigation system, a laser scanner, and a camera, where the relative 

geometric relationship between each pair of components remains fixed. 

 

Figure 6.2. Data Acquisition System and Reference Image Registration 
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The camera calibration and the 3D-to-2D registration have been studied for decades, and very 

mature solution has been proposed by (Zhang 2000). The basic idea of 3D-to-2D registration is to 

solve the camera projection model of 11 parameters. The projection parameters could be 

decomposed from the camera projection matrix 𝓜 = 𝑨[𝑹 𝒕], where 𝑨 = [
𝑓𝑥 𝛾 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

] is the 

intrinsic matrix of the camera model, 𝑹 = 𝑹𝑧(𝜃𝑧) ∙ 𝑹𝑦(𝜃𝑦) ∙ 𝑹𝑥(𝜃𝑥) and 𝒕 = [𝑥, 𝑦, 𝑧]𝑇  are the 

rotation matrix and translation vector, respectively.  

For a pair of image and point cloud frame captured at the same timestamp, a set of 

corresponding points are manually extracted from the point cloud and image, respectively. Here, I 

denote these images taken by MLS-equipped camera as reference image, 𝑰𝒓.Please be noted that 

these corresponding points need to be extracted from non-coplanar objects so that the full 

projection parameters could be recovered from single image. Because the relationship between 

the camera coordinate and the laser scanner coordinate is fixed throughout the entire mapping 

procedure, the projection matrix at one timestamp could be directly applied to other timestamps 

ideally. Due to synchronization error among different sensors, however, this projection matrix 

needs to be re-estimated every several timestamps, so that the system error will not be 

accumulated. Since the 3D-to-2D registration through correspondences is a standard solution, I 

will not talk about the detail because it is not the scope of this research. The readers are referred 

to (Quan et al. 1999, Triggs 1999, He 2012, Zheng et al. 2013, Ferraz et al. 2014) for state-of-the-

art. Figure 6.2 (b) shows the back projection results of three point cloud datasets and the 

corresponding images captured at the synchronized timestamp. Because the objective of this 

research is to assess the building damage with the assistance of street-level imagery, the points of 

interested buildings are segmented out for simplicity. In Figure 6.2 (b), the upper row of images 

are the street-level images collected via the camera mounted on the mobile LiDAR system, and 

the lower row of the images are the overlay of back-projected points. 
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Once the projection between MLS-equipped camera and the point cloud is extracted, the 

correspondence between image and point cloud could be rapidly retrieved. Because imagery data 

provides more intuitive visualization, damage assessment procedure will benefit from the fusion 

of imagery and point cloud dataset. For example, damage assessors can easily identify wall 

opening damage or wall cladding failure from a street-level image. More important, it is possible 

to measure the watermark from the image, while it is significant harder, if not impossible, to do 

so from point cloud data. However, the MLS-equipped cameras suffer from the fact that the 

camera perspectives are restricted to the vehicle accessibility and what can be seen from the 

driving path. As a consequence, the image can only be taken from distance if the building is far 

away from the driving path. Also, the camera orientation is fixed so that the building object might 

be partially occluded.  

Alternatively, there are a large number of street-level imagery captured in a crowd-sourced 

fashion or by ground survey personnel. Here I denote these image as target image, 𝑰𝑡. Since those 

images are taken from arbitrary perspectives, these images tend to provide more detailed 

information in many cases. However, because these images are taken from unknown poses with 

unknown camera parameters, registration with LiDAR data is required for every single image in 

order to recover 3D information in the images. In the following section, I present an efficient 

image-to-point cloud registration approach. This approach does not require any manually selected 

correspondences, but only the reference image, 𝑰𝑟 , is used as a bridge. 

6.3.2 Arbitrary Image to Point Cloud Registration 

To register an arbitrary image, 𝑰𝑡, to the point cloud, a Perspective-n-Point problem is required 

to be solved (Hartley et al. 2003), as shown in Figure 6.3 (a). For the simplicity of notation, I 

denote the PnP between 𝑰𝒓 to the point cloud as ℙ𝑟, and the PnP between 𝑰𝒕 to the point cloud as 

ℙ𝑡. However, this requires manual extraction of corresponding pairs of points, which is tedious 

and labor intensive. Because the correspondences ℙ𝑟 is known (single dot line in Figure 6.3 (b)), 



167 
 

 
 

instead of direct extraction of ℙ𝑡, I first extract the point-wise matching between 𝑰𝒕 and 𝑰𝒓(double 

dot line in Figure 6.3 (b)). Then this image-to-image correspondences could be transferred to 

retrieve ℙ𝑡. Therefore, this PnP problem is equivalent to image matching problem. However, I 

will show shortly that traditional pixel-wise feature matching approaches is not sufficiently robust 

for large perspective- and brightness-variant scenarios. In this section, therefore, a novel image-

matching framework with minimum human-in-the-loop action is introduced to address the image 

matching with large perspective and brightness change. 

 

Figure 6.3. Abstraction of Image-to-PointCloud Registration 

SIFT Matching: As the first step, the SIFT-based matching (Lowe 2004) is implemented to 

generate an initial matching. Because the arbitrary image 𝑰𝒕 is likely taken from a different angle, 

time, and under different brightness condition. These, all, bring difficulty to the SIFT matching. 

Though taking image from various perspective, it is a rigid body transformation regarding to 

various camera locations. And as a consequence, for a corresponding point in (𝑰𝒓, 𝑰𝒕), its 

surrounding pixels should have higher likelihood to match with each other (Bian et al. 2017). 

Unlike (Bian et al. 2017), I adopt a simple solution to extract dense SIFT matching candidates.  

As shown in Figure 6.4, the proposed approach first detects SIFT descriptors (𝑷𝑆𝐼𝐹𝑇
𝑟 , 𝑷𝑆𝐼𝐹𝑇

𝑡 ) 

from both images, where 𝑷𝑆𝐼𝐹𝑇
𝑟 ∈ 𝑰𝒓, and 𝑷𝑆𝐼𝐹𝑇

𝑡 ∈ 𝑰𝒕. Each SIFT descriptor is a (1 × 128) 
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dimension vector. After this, the SIFT descriptors are matched by finding the mutual-unique 

match of each pair of (𝑷𝑆𝐼𝐹𝑇
𝑟 , 𝑷𝑆𝐼𝐹𝑇

𝑡 ). Specifically, for each descriptor 𝒑𝑖
𝑟 ∈ 𝑷𝑆𝐼𝐹𝑇

𝑟 , I find its 

closest match of 𝒑𝑗
𝑡 ∈ 𝑷𝑆𝐼𝐹𝑇

𝑡 . For the found descriptor 𝑝𝑗
𝑡, if the closest match descriptors in 𝑷𝑆𝐼𝐹𝑇

𝑟  

is also 𝑝𝑖
𝑟, I keep (𝒑𝑖

𝑟, 𝒑𝑗
𝑡) as a candidate of valid matching. After all the matches are founded, the 

invalid matches are removed via fitting homography matrix (Hartley et al. 2003). The valid 

matches after the homography matrix estimation are ususally sparse, especially when the images 

are taken with large perspective- and brightness-variance. 

To generate dense SIFT candidates, for each pair of (𝒑𝑖
𝑟, 𝒑𝑗

𝑡), I detect the SIFT descriptors 

from their surrounding grid (𝐺𝑖
𝑟, 𝐺𝑗

𝑡). Each grid is a (𝑛 × 𝑛) square centered at 𝒑𝑖. Then I extract 

the matches of SIFT descriptors following the abovementioned approach. In this stage, I 

introduce another constrain other than the homography-based outlier removal. As shown in 

Figure 6.4 (b), for each set of matched descriptors, I estimate the homography matrix 𝓗. I 

assume that a valid homography will preserve the geometric relationship of pixels during 

transform. That means if a set of pixels are in clockwise sequence, then their affine transformed 

form will also be in clockwise sequence. If after affine transformation, a set of pixels located in 

clockwise sequence does not preserve the clockwise sequence, the homography is invalid. By 

introducing this auxiliary geometric constrain, I will be able to retrieve a set of correctly matched 

points denoted as 𝕔̅. 
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Figure 6.4. Dense SIFT Matching Generation 

Auxiliary Matching Candidates Generation: Because SIFT matches are extracted by 

removing the outliers through estimation of homography matrix, the extracted matches are 

coplanar to a great extent. However, the traditional PnP problem needs a set of non-coplanar 

corresponding points to retrieve the camera parameters. Although a projection matrix can still be 

solved using an 8-points algorithm (Hartley et al. 2003), the solved projection parameters will not 

be sufficiently accurate to establish the precise corresponding ℙ𝑡.  Although (Pandey et al. 2015) 

proposed a correspondence free approach to estimate the camera calibration parameters via 

maximizing the mutual information, the optimization is highly likely to stop at local minima due 

to the non-convexity of the problem. In addition, a bad initial solution will  introduce great 

trouble to the optimization as well. In this research, therefore, a human-in-the-loop auxiliary 

matching generation approach is proposed to add more matching even with poor descriptor 

similarity. 

To add auxiliary matching points, this solution is based on selecting a set of engineered 

auxiliary correspondences which maximizes the mutual information between the target image and 

the point cloud. In the proposed solution, the candidate matches are carefully generated so that a 

brute force searching strategy can be efficiently implemented to obtain an optimal matching. In 
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this research, the candidate matches are preferred to be corners of the building or points along 

edges. To extract these points, the image is first applied with 𝐿0 smoothing (Xu et al. 2011) to 

remove the weak edges, such as the edge between wall panels (Figure 6.5 (b)). Because the edges 

of building structures show clear patterns, such as straight line, L-shape corner, etc. These local 

patterns of edge structures could be taken advantage in detecting real building boundaries or 

edges. Therefore, a sketch token plus random forest decision-making approach (Dollár et al. 2013) 

is implemented to compute the likelihood of pixel as building edges. This approach outputs the 

probability of each pixel assigned as building edges, the pixels along edges with large gradient 

magnitude have higher probability value, while the edges along edges with small gradient 

magnitude or on smooth region tend to have lower probability value (Figure 6.5 (c)). To improve 

the computational efficiency, a simple binarization is conducted, only the pixels with probability 

larger than a threshold value are set with value 1, and all other pixels are set to 0 (Figure 6.5 (d)). 

In this research, the threshold value is set to 0.3. Then the line segments are detected using Hough 

Transform (Duda et al. 1972, Matas et al. 2000, Fernandes et al. 2008). The Hough Transform-

based line detection is able to extract sufficient number of pixel segments satisfy the line model. 

This will excessive line segments and, as a consequence, increase the computational cost. 

Therefore, only those line segments longer than a threshold value are selected (Figure 6.5 (e)). 

Then the auxiliary corner candidates are considered as the end vertices of each line segment. As 

shown in Figure 6.5 (f), most of the building corners have at least one detected auxiliary corners 

points, which indicates good candidates generation. As shown in Figure 6.6, a comparison of 

Harris (Harris et al. 1988) corners and mine is visually presented. As noticed, the Harris approach 

fails to detect the corners of building objects, such as windows, doors, etc. On the contrary, it 

extracts excessive corners at debris and sand dune region, which is considered as noise for the 

purpose of this research. 

Auxiliary Matching Extraction: For a given pair of images (𝑰𝒓, 𝑰𝒕), the auxiliary corner 

candidates are computed as 𝑷𝐶
𝑟 ∈ 𝑰𝑟 , 𝑷𝐶

𝑡 ∈ 𝑰𝑡 . To extract the correct match among (𝑷𝐶
𝑟 , 𝑷𝐶

𝑡 ), a 
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human-in-the-loop match detection approach is developed. As shown in Figure 6.7 (a), the 

proposed human-in-the-loop approach has five steps. The first step is the selection of region of 

interest (𝑹𝑟, 𝑹𝑡) from the pair of image (𝑰𝒓, 𝑰𝒕). In fact, this is the only step that human 

interaction is required for image registration. The SIFT-matching points are usually coplanar, 

therefore, the auxiliary matching is preferred to be detected from the regions that are not coplanar 

with them. In this stage, the users are suggested to crop out the region of building object roughly 

with a rectangle from (𝑰𝒓, 𝑰𝒕) (Figure 6.7 (b)). After that, the selected rectangle is splited into 

multiple rectangle blocks (𝑅𝑖
𝑟 ∈ 𝐼𝑟 , 𝑅𝑗

𝑡 ∈ 𝐼𝑡 ), each covers partial of the building object. In the 

next step, the auxiliary corner points are assigned to each rectangle blocks they lying in. 

For each corner point inside the RoI, the HoG feature (Dalal et al. 2005) is computed. 

Because there are numerous repeated patterns in a building object, a corner in one image might 

have multiple matches in another image. This leads to the estimation of many-to-many 

correspondence between corners in (𝑹𝑖
𝑟, 𝑹𝑗

𝑡 , 𝑖 = 1,2, … , 𝑗 = 1,2, … ) via computing the square root 

of Euclidean distance (SRED) between two HoG feature vectors. Because a unique one-to-one 

matching is not robust in this stage, I propose a block-wise matching approach to narrow down 

the searching space and reduce the computational cost drastically. Specifically, for the corner 

points in each block 𝑅𝑖
𝑟 ∈ 𝐼𝑟 , I match them to the corner points in every block 𝑅𝑗

𝑡 ∈ 𝐼𝑡 , to reduce 

the number of matching, for the corner points in each pair of (𝑅𝑖
𝑟 , 𝑅𝑗

𝑡), I select the matchings with 

SRED smaller than a threshold value. For those pair (𝑅𝑖
𝑟 , 𝑅𝑗

𝑡) where no matching with SRED 

smaller than the threshold exist, I select the first 10 matchings with smallest SRED as the 

matching candidates of the pair of (𝑅𝑖
𝑟 , 𝑅𝑗

𝑡). As shown in Figure 6.7 (c), for each block in 𝐼𝑟 , I 

match the corners inside the block with all the blocks in 𝐼𝑡 . Denote a block-wise matching 

between 𝑅𝑖
𝑟  to all the 𝑅𝑗

𝑡 ∈ 𝐼𝑡  as ℬ𝑖, and the number of approximately matching points is 𝒩𝑖, this 

would result N pairs of block-wise matching (ℬ𝑖 , 𝒩𝑖), where N is the number of blocks in 𝐼𝑟 . 

Because the number of auxiliary matching required to robustly estimate the new projection is 



172 
 

 
 

unknown, I need to check all the possible combination of ℬ𝑖 and find the optimal matching. 

Specifically, I first check the case where only one auxiliary matching is needed, this would result 

∑ 𝒩𝑖
𝑁
𝑖=1  possible matching. Then I check the case where two auxiliary matching are needed, this 

would result (∑ 𝒩𝑗𝒩𝑘
(𝑁

2
)

𝑖=1
, 𝑗 = 1,2, . . , 𝑁, 𝑘 = 1,2, … , 𝑁, 𝑗 ≠ 𝑘) possible matchings, and so on. 

Because I split the building object into multiple rectangle blocks, I introduce a restriction that 

each block-wise matching ℬ𝑖 cannot have more than one valid auxiliary matching point. 

Therefore, by splitting the building object in 𝐼𝑟  into N rectangle blocks, the total number of 

possible matching is computed as: 

∑ ∑ {(𝒩1)ℐ(1)(𝒩2)ℐ(2)(𝑁
𝑖

)

𝑗=1
𝑁
𝑖=1 … (𝒩𝑁)ℐ(𝑁)}    (6.1) 

where (𝑁
𝑖
) is the number of i-combination, 𝒩𝑖 is the number of approximate matching in ℬ𝑖, and 

ℐ(𝑘) is an indication function. It equals to one if k is in the j(th) i-combination, and equals to zero 

otherwise. By stacking all the possible approximate matching, I obtain the set of all possible 

matching, ℂ, detected using HoG feature, and which will be used in the following optimization 

step. As can be seen from equation (6.1), the value of all possible combination increases 

drastically, which will become infeasible if N is large. In this study, I choose N equals to 4. 



173 
 

 
 

 

Figure 6.5. Auxiliary Corner Points Generation 

 

Figure 6.6. Comparison of Corner Detection between Harris and Mine 

 



174 
 

 
 

 

Figure 6.7. Auxiliary Matching Extraction 

After the block-wise approximate matching is estimated, the final auxiliary match could be 

obtained by solving this optimization problem 

ℱ(𝕔̃) = max𝕔𝑖∈ℂ 𝑀𝐼(𝑰𝑡 , 𝑰𝑝)    (6.2) 

In equation (6.2), 𝑀𝐼(𝑰𝑡 , 𝑰𝑝) is a standard mutual information function (Cover et al. 2012), 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)   (6.3) 

𝐻(𝑋) = − ∑ 𝑝(𝑥) 𝑙𝑜𝑔 𝑝(𝑥)𝑥𝜖𝑋     (6.4) 

𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔 𝑝(𝑥, 𝑦)𝑦∈𝑌𝑥∈𝑋    (6.5) 

where 𝑰𝑡 is the target image, and 𝑰𝑝 is the image generated by projecting the point cloud to an 

image plane. ℂ is the set of all possible matching detected using HoG feature, and 𝕔̃ is the optimal 

matching. For this problem, 𝑰𝑡 is constant, and 𝑰𝑝 is a function of the point cloud 𝑿 and the 

projection matrix 𝓜 = 𝑨[𝑹 𝒕]. Because the point cloud is also given, for each 𝕔𝑖 ∈ ℂ, the only 

changed term is the projection matrix 𝓜. For each 𝕔𝑖 ∈ ℂ, I define 𝕔′ = [𝕔̅, 𝕔𝑖]𝑇 as the new 

matching. As the correspondence between 𝑰𝑟  and point cloud 𝑿 is already known, this 

correspondence ℙ𝑟 could be easily employed to transfer to the correspondences between target 

image and point cloud ℙ𝑡. Using Zhang’s method (Zhang 2000), the projection matrix 𝓜 could 
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be estimated. Then the image 𝑰𝑝 is generated via projecting the point cloud to image plane 

applying 𝓜. Then the mutual information of (𝑰𝑡 , 𝑰𝑝) is computed. As shown in Algorithm 6.1, 

this process is repeated for all (𝕔𝑖 ∈ ℂ), and the optimal 𝕔̃ is solved by maximizing equation (6.2). 

Figure 6.8 shows the result of auxiliary matching extraction procedure. Figure 6.8 (a) presents the 

mutual information respect to each auxiliary match, and Figure 6.8 (b) shows the optimal 

matching by solving equation (6.1). As can be seen, the algorithm finds two auxiliary matching 

points. One match is obtained at the corner of the rooftop, and another match is obtained at the 

corner of the front door. Figure 6.8 (c) shows the generated images from point cloud with 

different projection matrix 𝓜 obtained from each possible block-wise matching combination. 

Algorithm 6.1. Auxiliary Matching Extraction 
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Figure 6.8. Optimal Auxiliary Extraction 

6.3.3 Image-based Damage Assessment 

The building component level damage could be measured and evaluated using the assistance 

of street-level imagery. As shown in Figure 6.1, the street level image could help with the 

evaluation of building damage in many aspects. In this research, I focus on the assessment of 

building opening size measurement and flood height measurement. The following will describe 

each of them in detail. 

Point Cloud Pre-processing: Before the image-based damage evaluation, the pre-processing 

is conducted to segment each planar component of the building. Plane segmentation is a major 

research area in point cloud processing, and the segmentation approaches could be categorized 

into RANSAC-based, Smoothness constraint-based, and Hough transform-based (Rabbani et al. 

2006, Pu et al. 2009, Deschaud et al. 2010, Hackel et al. 2016, Li et al. 2017). Because the point 

cloud segmentation is not the scope of this research, the technical detail will not be discussed here. 

In this approach, the smoothness constraint-based approach is applied.  

Flood Height Measurement: The measurement of flood height is critical for post-hurricane 

or post-storm surge hazard assessment. Because the point cloud cannot be acquired until the flood 

ebbs. Which makes it impossible to identify the watermark from LiDAR data as the point cloud 
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intensity won’t change much. Luckily, the watermark could be identified from the high-resolution 

street-level image. Because the arbitrary image to point cloud registration has been described in 

the previous section, it is assumed that the correspondence between arbitrary image and point 

cloud, ℙ𝑡, is known for the following sections.  

To identify watermark from point cloud, a human-in-the-loop process is developed. The users 

are encouraged to select a straight line via simply picking two points, (𝒑′, 𝒑′′), as the end vertices 

of the line segment. Therefore, the straight line is denoted as ℓ(𝒑′, 𝒑′′) for notation simplicity. 

This straight line should be close to the watermark in the image. Within the end points selected, 

the pixels along the line segment are extracted as 

{𝒑𝒊 ∈ 𝑰𝑡  | 𝑓(𝒑𝑖 , 𝒑′, 𝒑′′) < 0, 𝑔(𝒑𝑖 , ℓ) < 𝛿, 𝑖 = 1,2, … }  (6.6) 

In equation (6.6), 𝑓(𝒑𝑖 , 𝒑′, 𝒑′′) = (𝒑′ − 𝒑𝑖) ∙ (𝒑′′ − 𝒑𝑖) represents the angle of ∠𝒑𝑖𝒑′𝒑′′. And 

𝑔(𝒑𝑖 , ℓ) is the orthogonal distance from 𝒑𝑖 to ℓ(𝒑′, 𝒑′′), which is expressed as 𝑔(𝒑𝑖 , ℓ) =

‖(𝒑𝑖 − 𝒑′) ∙ 𝒏‖1 ‖𝒏‖2⁄ , where 𝒏 is an arbitrary length vector satisfying 𝒏 ∙ (𝒑′ − 𝒑′′) = 0. The 

use of threshold value 𝛿 is because the coordinate of 𝒑𝑖 can only take positive integer, while its 

orthogonal projection on ℓ might be decimal. The visual explanation of equation (6.6) is shown in 

(Figure 6.9). 

Once the pixels along ℓ(𝒑′, 𝒑′′) are extracted, the corresponding points in the point cloud 

could be rapidly retrieved. Although the manual selecting watermark line may not be parallel to 

the actual watermark in the image, this could be handled in point cloud efficiently. Because the 

static flood level is always horizontal, the 3D watermark could be estimated via finding a 

horizontal line that best fits the points. 
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Figure 6.9. Extraction of Pixels along Two Pixels 

Opening Size Measurement: A human-in-the-loop opening area measurement procedure is 

described in this section. As an opening is, equivalently, an empty space enclosed by a set of 

points distributed along its boundary. It is, therefore, critical to extract the boundary points of an 

opening area. To select the region-of-interest from the image, the approach presented in previous 

section (flood height measurement) is implemented. Because the boundary of an arbitrary 

opening could be approximately considered as a convex/concave hull, the sequence of the picked 

vertex is of importance. Although the users could select each vertex of the opening area in 

clockwise or counter-clockwise sequence, a concave polygon generation algorithm (Moreira et al. 

2007) is implemented here. So that users could select vertex in any sequence. In this research, the 

users can specify opening in multiple planes at once, and the proposed approach is able to 

compute the size and area of opening in each plane. For each pair of sequentially consecutive 

vertex, the points along the line segment are extracted from the corresponding plane. After all line 

segments are visited, they are grouped according to their corresponding segment, and the 

evaluation is conducted on each group, respectively. If an opening area crosses multiple planes 

(polygon A
…

G in Figure 6.10 (a)), the line segment along the intersection of two non-coplanar 

planes is missed (ℓ(𝐶, 𝐹)in Figure 6.10 (b)), this is because the concave hull algorithm will only 

connect the points along the compact boundary of the polygon. To deal with this issue, the line 
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segment is generated by intersecting the two planes the opening area crosses, as the dot line in 

Figure 6.10 (c). After the missing line segment is estimated, there are two cases. The first case is 

that there is no points along the estimated line ℓ, and I can use the estimated straight line directly. 

Another case is that there are points along ℓ. For this case, the points along ℓ should be extracted.  

In addition, if a line segment belongs to two plane (ℓ(𝐵, 𝐶) in Figure 6.10), it is a shared 

boundary line, and it should be assigned to one of the adjacent planes. To do this, I sort the 

intersection points along this shared line segment from either top to bottom, or from bottom to top. 

For notation simplicity, denote the shared line as ℓ̃, and all the line segments that intersect with ℓ̃ 

as ℓ𝑖
𝑘, where i denotes the index of line segment, and k denotes the index of plane they belong to, 

and the intersection point as 𝒙𝑖(ℓ̃, ℓ𝑖
𝑘). If the sequence of sort is from top to bottom, I assign ℓ̃ to 

plane k if 𝒙𝑖(ℓ̃, ℓ𝑖
𝑘) is the topmost point. If the sequence is from bottom to top, assign ℓ̃ to k if 

𝒙𝑖(ℓ̃, ℓ𝑖
𝑘) is the bottommost point. 

 

Figure 6.10. Concave Polygon in Point Cloud 

For the polygon on each plane, the interior boundary points are extracted by alpha-shape 

algorithm (Edelsbrunner et al. 1994). Alpha-shape algorithm uses a circle (in 2D case) with radius 

α rolling around its interior hull, and extracts the points on its arc as the boundary points. The 

area of the opening region is computed as the area of concave polygon of enclosed by the interior 

boundary points (Figure 6.11). And the perimeter of the opening region is computed as the 

summation of the line segment of each pair of consecutively connected boundary points. 
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Figure 6.11. Interior Boundary Points Extraction 

6.4 Experiment 

6.4.1 Data Description 

An experiment study is conducted on real damage data. The data was collected during 

Hurricane Sandy at shoreline area of New Jersey. A mobile LiDAR system equipped with a 

panoramic camera was used to capture the point cloud and image data. Because the system is 

carefully calibrated, the point cloud could be projected back to image accurately. In addition, an 

on-site survey teamed by Rutgers University, Princeton University, and University of Notre 

Dame was conducted shortly after the event. During the survey, geotagged high-resolution 

images were collected to cover more information as well. Figure 6.12 shows the data collected 

during hurricane Sandy. Figure 6.12 (a) is the overview of the mobile LiDAR data, Figure 6.12 (b) 

is the image captured by the panoramic camera equipped on the mobile LiDAR system of three 

particular buildings, and Figure 6.12 (c) is the images captured by on-site survey team at various 

perspectives. In this research, these three buildings are selected as examples as they represent 

three typical scenarios in post-hazard response. 
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Figure 6.12. LiDAR and Imagery Data Collected during Hurricane Sandy 

6.4.2 Human-in-the-Loop Image Registration 

For each ground-level image captured by on-site survey team, the corresponding building is 

firstly identified via GPS information. For each set of 𝑰𝑟  corresponding to the same building, the 

one that covers the building mostly is chosen. In this experiment, the chosen images 𝑰𝑟  are 

bounded in the red rectangle as shown in Figure 6.12 (b). For the on-site collected images (Figure 

6.12 (c1), (c3), (c5)), denote them as 𝑰1
𝑡  for the convenience of notation. The registration could be 

efficiently conducted with the help of 𝑰𝑟  respectively. The results of corresponding extraction are 

shown in Figure 6.13 (a)-(c). As can be noticed, the proposed framework described in Section 

6.3.2 is able to retrieve dense corresponding using 1 or 2 pairs of auxiliary correspondences with 

human-in-the-loop assistance. However, for the images in Figure 6.12 (c2), (c3), (c5), and (c7), 

denote them as 𝑰2
𝑡 , the proposed approach fails to extract sufficient correspondences directly from 

𝑰𝑟 . This is because the camera perspectives of 𝑰2
𝑡  vary significantly from that of 𝑰𝑟 , after the 

constraint described in Section 3.2.1 is applied, only a limited pairs of correspondences are 

considered as valid. In addition, the detected correspondences are distributed closely (Figure 6.13 

(d)), which is not a good correspondence for 2D-to-3D registration. In order to estimate all the 

camera parameters, more pairs of auxiliary correspondences need to be extracted, which increases 

the computational cost quadratically. In fact, the proposed approach is still able to handle this 

situation. If denote 𝒢(𝐴, 𝐵) = 𝐴 ↔ 𝐵 as the correspondence between dataset A and B, where  A, B 
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could be either image or point cloud, 𝒢(𝑰𝑟 , 𝑰2
𝑡 ) could be derived sequentially as 

{𝒢(𝑰𝑟 , 𝑰1
𝑡 ), 𝒢(𝑰1

𝑡 , 𝑰2
𝑡 )}. By defining this chain-like operation, dense correspondences could be 

extracted as shown in Figure 6.13 (e)-(h). However, a mismatching is identified in Figure 6.13 (g), 

this is because the image is occluded by vegetation, which will be discussed in detail shortly in 

section 6.4.4. 

 

Figure 6.13. Image to Point Cloud Registration Result 

The accuracy of registration is evaluated by back projecting the points to the image plane. If 

the registration is strictly correct, the 3D building model will be projected onto the image plane 

correctly, with every point projected on the one of the building pixels. Otherwise, partial 3D 

building point will be projected out of the building object in image. This two intuitive 

observations are adopted here as the accuracy evaluation criteria. For each building objects, the 

selected regions for the evaluation of registration accuracy are shown in Figure 6.14. In total, 15 

region-of-interests are selected for evaluation. The evaluation is carried out according to the 

overlap ratio. The overlap ratio is computed as the area of concave polygon of projected points to 

the area of concave polygon of pixels inside RoI. To quantitatively analyze the accuracy, I define 

four terms to quantify the accuracy of back-projection as:  

1) 𝒪1 = 𝐴̃𝑝𝑡 𝐴𝑝𝑡⁄ ,  

2) 𝒪2 = (𝐴𝑝𝑡 − 𝐴̃𝑝𝑡) 𝐴𝑝𝑡⁄ ,  

3) 𝒪3 = 𝐴̃𝑝𝑥 𝐴𝑝𝑥⁄ , and  

4) 𝒪4 = (𝐴𝑝𝑥 − 𝐴̃𝑝𝑥) 𝐴𝑝𝑥⁄ .  
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In these terms, 𝐴𝑝𝑥 is the area of concave polygon of the image RoI, 𝐴𝑝𝑡 is the area of the 

point cloud RoI, and 𝐴̃𝑝𝑡 is the area of point cloud that could be correctly projected to image RoI, 

and 𝐴̃𝑝𝑥 is the area of image RoI that has points projected on. The reason that different 

denominator (𝐴𝑝𝑡 , 𝐴𝑝𝑥) are used for the evaluation is because the area of point cloud and area of 

image pixels are in difference space. The result of registration accuracy according to the ratio of 

overlap is shown in Table 6.1. It can be observed from the table that the overlap accuracy for 

rooftop regions is slightly lower than that of front façade, this is because the dense matching 

points are mainly extracted at front façade, while the matching at rooftop is extracted via 

auxiliary matching approach.  

 

Figure 6.14. Region-of-Interest for Evaluation of Registration Accuracy 
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Table 6.1. Registration Accuracy Results (RoI) 

Region ID 𝒪1 𝒪2 𝒪3 𝒪4 Region ID 𝒪1 𝒪2 𝒪3 𝒪4 

a1 0.915 0.085 0.956 0.044 e1 0.961 0.039 0.981 0.019 

a2 0.959 0.041 0.965 0.035 e2 0.993 0.007 0.975 0.025 

b1 0.922 0.078 0.952 0.048 e3 0.738 0.262 0.922 0.078 

b2 0.953 0.047 0.967 0.033 f1 0.981 0.019 0.997 0.003 

b3 1.000 0.000 0.922 0.078 f2 0.933 0.067 0.917 0.083 

c1 0.892 0.108 0.977 0.023 f3 0.888 0.112 0.543 0.457 

c2 0.964 0.036 0.954 0.046 g1 1.000 0.000 0.974 0.026 

d1 0.934 0.066 0.915 0.085      

 

In addition, I also evaluate the accuracy via measuring the overlap of line-of-interest (LoI) in 

point cloud and images. A pair of corresponding line segment is firstly identified in both point 

cloud and image. The projected line segment and the 2D line segment will be close to overlay if 

the registration is accurate. Based on this observation, 21 line segments are selected from both 

images (Figure 6.15) and LiDAR data for the purpose of evaluation. Denote each line segment 

via its end vertex and the orientation, I define the following three terms as:  

1) 𝒞1 = ‖𝓛𝑝𝑡‖
2

‖𝓛𝑝𝑥‖
2

⁄  is the length ratio between projected line and image line,  

2) 𝒞2 = (𝓛𝑝𝑡 ∙ 𝓛𝑝𝑥) (‖𝓛𝑝𝑡‖
2

‖𝓛𝑝𝑥‖
2

)⁄  is the angle of projected line and image line segment 

computed as the dot product of two vectors,  
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3)  𝒞3 = min{𝓍𝑝𝑡 , 𝓍𝑝𝑥} is the minimum distance between the corresponding projected line 

vertex and image line vertex, and  

4) 𝒞4 = max {𝓍𝑝𝑡, 𝓍𝑝𝑥} is the maximum distance between the corresponding  projected line 

vertex and image line vertex, respectively. 

In these four terms, 𝓛𝑝𝑡  is the projected line segment, 𝓛𝑝𝑥  is the image line segment, 𝓍𝑝𝑡 is 

the vertex of projected line segment, and 𝓍𝑝𝑥 is the vertex of image line segment. The unit of 𝒞3 

and 𝒞4 is in pixel. The result of LoI overlap accuracy is presented in  

Table 6.2. It can be noticed that the length ratio and angle between projected line and image 

line is close to 1 for most of the LoI, and the distance between corresponding line vertex is 

approximately 10 pixels, considering the image size is larger than 1000 pixels, this re-projection 

error is around 1% of the image size. However, I noticed that these four terms go larger for d1, d2, 

and d3, this is because the registration of Figure 6.15 (d) to the point cloud is obtained via the 

chain operation {𝒢(𝑰𝑟, 𝑰𝑎), 𝒢(𝑰𝑎 , 𝑰𝑏), 𝒢(𝑰𝑏 , 𝑰𝑑)}, where the registration error is accumulated three 

times. 

 

Figure 6.15. Line-of-Interest for Evaluation of Registration Accuracy 
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Table 6.2. Registration Accuracy Results (LoI) 

Line ID 𝒞1 𝒞2 𝒞3 𝒞4 Line ID 𝒞1 𝒞2 𝒞3 𝒞4 

a1 1.007 1.000 2.785 9.041 d3 1.224 1.000 28.195 47.394 

a2 1.100 1.000 4.236 4.588 e1 1.041 1.000 8.913 34.997 

a3 0.964 1.000 5.767 10.793 e2 1.031 1.000 6.403 8.261 

b1 1.010 1.000 2.193 8.505 e3 1.106 1.000 12.316 33.020 

b2 1.108 0.999 3.458 6.806 e4 0.997 1.000 11.000 11.064 

b3 0.961 1.000 8.378 12.981 f1 0.987 1.000 2.721 12.089 

c1 0.995 1.000 0.538 6.947 f2 1.025 1.000 2.695 10.400 

c2 1.068 0.999 7.837 10.725 f3 1.009 1.000 4.012 4.605 

c3 0.960 0.999 9.359 13.361 g1 1.027 0.999 5.142 9.717 

d1 1.055 0.981 4.581 66.410 g2 0.966 1.000 4.977 9.717 

d2 0.830 0.996 13.118 27.203      

 

6.4.3 Building Damage Assessment 

In this experiment, three damage condition assessments are conducted. For building Figure 

6.16 (a), I estimate the flood height from the image, for building Figure 6.16 (b), I measure the 

area of the opening region at damage wall, and for building Figure 6.16 (c), I measure the area of 

the opening region at damage wall. The difference between damage at building Figure 6.16 (b) 

and Figure 6.16 (c) is, the opening area at building Figure 6.16 (c) was covered by temporary 

wood panel during the collection of LiDAR data, while it was exposed during on-site survey. 

Therefore, the image collected during ground survey could be used to measure the actual area of 

damage region. The extracted points at the height of watermarks are shown in Figure 6.16 (a2), 

and the estimated height of the watermark is given in Table 6.3. As can be seen, the height 
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difference between the two watermark is 2(cm). Table 6.4 presents the results of opening area 

estimation and the perimeter estimation. The experiment shows that the proposed approach makes 

the full advantage of multi-source data to evaluate the building condition. As can be seen, for 

building (b), the image collected by the MLS-equipped camera is far away from the building 

objects, therefore, is not an ideal data source for post-hazard respond personnel to revisit very 

detail damage information. While this could be solved via using street-level image collected close 

to the object. Another typical scenario is shown in Figure 6.16 (c) and Figure 6.16 (c1). Because 

the mobile LiDAR collection can be conducted one or two weeks after the hazard because of 

accessibility and entrance permit issue, some damaged area might have been temporarily covered 

by the homeowners. However, since street level image could be collected shortly after the event, 

which makes it a good complementary source to evaluate these damage objects. 

Table 6.3. Result of Flood Height 

 Watermark 1 Watermark 2 

Flood Height (m) 3.25 3.23 

 

Table 6.4. Result of Opening Area and Perimeter Estimation 

 Building b1 Building c1 

 Opening 1 Opening 2 Opening 1 Opening 2 

Area of Opening (m2) 2.831 6.875 1.475 6.734 

Perimeter of Opening (m) 0.816 3.747 6.657 10.602 
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Figure 6.16. Building Damage Assessment Results 

6.4.4. Failure Analysis and Discussion 

As stated in Section 4.2, a registration error is identified for building Figure 6.17 (a). 

Although dense matching points are extracted and the re-projection matches locally (Figure 6.17 

(b)), the registration is not correct. Because the building has repeated patterns, the feature points 

in target image are matched to another patch of points in the reference image. As can be seen in 

Figure 6.17 (c), the garage door in target image is matched to the rightmost garage door in the 

reference image, while its correct matching is the garage door second to the left, as shown in 

Figure 6.17 (d). In addition to the repeated patterns that brings ambiguity, the failure is in part 

because the correct garage in reference image is occluded by bush. In either way, the experiment 

suggests that it has higher likelihood the registration will fail to match the correct correspondence 

if one of the images only covers local and repeated patterns. 
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Figure 6.17. Failure Matching 

6.5 Conclusion 

In this research, a comprehensive framework of building damage assessment using the fusion 

of street-level imagery and point cloud with human-in-the-loop is proposed. The input of the 

framework is an arbitrary street level image and a set of registered point cloud and imagery data. 

Firstly, the arbitrary image is registered with the point cloud with minimum user interaction. Then 

the building damage condition could be assessed directly from the image. In this research, the 

flood height measurement and damage opening area estimation are presented in detail, and the 

experiment shows reliable performance. I believe the proposed framework could be extended to 

the assessment of other types of damage patterns. 
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: Conclusions, Limitations and Future WorkThe previous chapters described the proposed 

computer vision-based approaches for building damage assessment during major hurricane events. 

Validations of individual modules for processing various types of hurricane damage data are 

presented in each chapter. To understand how the integration of these varied approaches can be 

used to enhance or in some case transforms existing damage assessment approaches, this chapter 

focuses on a comprehensive evaluation of the proposed damage assessment approaches at the 

system level. More specifically, the study aimed at characterizing how the damage data including 

airborne/terrestrial lidar data and street-level imagery data can be gradually processed by the 

proposed approaches to extract damage information at different resolutions.  

Computer vision based damage assessment can be achieved by two major approaches 

including change detection and anomaly identification. Change detection is to detect the changes 

of target objects between their pre- and post-event status. Anomaly identification is based on the 

fact that the structural components of an intact regular building object often follow certain 

topological relationships. If anomaly is detected on certain component, it is very likely that the 

component is damaged. At the same time, in order to recognize these anomalies, the semantic 

meaning of these structural components need to be extracted.  

Figure 6.18 (a1 – a3) shows that in order to identify property-wise damage statuses (a3), 

building objects are identified and extracted from airborne lidar point cloud (a2). Figure 6.18 (b1-

b3) shows for mobile lidar point cloud (b1), building objects are first extracted using the building 

footprint generated from airborne lidar data. Component-level damage assessment is conducted 

on each individual building object (b3). By identifying the damage status of structural 

components such as walls and roofs, fine-scale damage assessment can be accomplished.  

In addition to these damage assessment approaches, this research also addresses the issue of 

incomplete data. For example, airborne LiDAR due to their data collection mechanism cannot 

acquire data on vertical facades of building objects. The incomplete data can also be caused by 

obstruction. During collection of mobile lidar data, for example, vehicles, vegetation, and debris 
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can obstruct the view of LiDAR scanners and cameras, leading to difficulties in differentiating 

gaps in data as openings or just missing data. In addition, disaster sites are dynamic and changing 

over time as post-disaster activities quickly unfold. As a consequence, damage data may be lost 

quickly over time.  In addition, post-disaster data collection trips may be executed during 

unfavorable weather conditions, causing data quality issues. To address these issues, fusing data 

from different sources is a logical approach to enhance the accuracy of damage assessment. 

Based on this belief, Figure 6.18 (c1-c3, d1-d3) show that crowd-sourced imagery as an 

alternative data source are integrated into the proposed damage assessment workflow through a 

data fusion approach. More specifically, Figure 6.18 (c1 – c3) illustrates the use of image-based 

3D reconstruction model for the assessment. If multiple images covering the same building 

objects are collected from varied perspectives, they can be used to reconstruct as-damaged 3D 

models. Fine-scale damage assessment can be conducted using the reconstructed model. Figure 

6.18 (d1 – d3) shows by establishing the correspondence between lidar point cloud and high-

resolution image, fine-scale damage condition such as flooding height can be efficiently and 

quantitatively assessed from images. 
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Figure 6.18. Synopsis of the Research Logic 

7.1 A Synopsis of the Proposed Approach  

7.1.1 Testing Data Sets 

The data used in this chapter were collected at the Ocean County, New Jersey (Figure 6.19). 

In particular, the area enclosed by the 4th Ave to the 7th Ave and the Grand Central Ave to the 

Oceanfront was used  to test the proposed approaches This area suffered devastating damages 

during Hurricane Sandy. The specific types of data used include:  

1) Pre-event airborne LiDAR point cloud collected in 2010 prior to Hurricane Sandy; 

2) Post-event airborne LiDAR point cloud collected in November, 2012, after Hurricane 

Sandy; 

3) Post-event mobile LiDAR point cloud collected in 2012 after Hurricane Sandy, conveyed 

by ground survey team; 

4) Post-event street-level images collected in 2012 after Hurricane Sandy, conveyed by 

ground survey team. 
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Figure 6.19. Validation Data 

7.1.2 Damage Assessment Workflow  

Building Detection from ALS 

 The proposed framework starts with the extraction of individual building objects from the 

airborne LiDAR data. A pre-trained convolutional neural network model was applied (Figure 

6.20). In general, the proposed deep neural network approach is capable of reliably extracting 

building objects, in particular achieving higher precision and recall compared with other 

programs such as LAStools. Because of this, the proposed approach tends to identify more correct 

building objects, which in turn reduces manual effort in extracting building objects. Building 

object extraction is an important step in damage assessment. In the aftermath of Hurricane Maria, 

for example, crowd-sourced approaches are used for extracting building objects due to the vast 

number of damaged buildings and the lack of building footprint databases. 

With the proposed approach, it took a computer with no GPUs about 20 seconds to inference  

a mini-batch of 64 images. For a city block with around 100 properties, it took a CPU-only 

machine approximately 1 hour to implement the building detection and extraction procedure 

because there were 12,352 bounding boxes randomly generated around 193 object proposals. In 

real-world applications, this number can be significantly reduced if GPU-equipped machines are 

used.  
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Figure 6.20. Results of Building Detection from ALS using CNN 

Property-wise Damage Assessment 

Within each building object extracted, the roof models were reconstructed in this step for 

each detected building to compute features related to damages. As can be seen in Figure 6.21, the 

extracted points of each building object are as shown in 7.3 (a), and the corresponding points in 

post-event dataset are shown in Figure 6.21 (c). Figure 6.21 (b) shows the reconstructed roof 

models for each individual buildings, and the corresponding property-wise damage status is 

presented in Figure 6.21 (d). In this study, the property-wise damage status was categorized as  

1) Intact: represented in blue; 

2) Partially collapsed: represented in yellow; and 

3) Totally collapsed: represented in red. 

In this study, it took less than 1 minute to construct a roof model for a given building and 

assess the damage status. For the entire block as described in 7.2.1, it took approximately one 

hour to assess all the buildings in this block. To accelerate the damage assessment, a promising 

approach is to run the algorithms on multiple blocks simultaneously.   
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Figure 6.21. Results of Property-wise Damage Assessment 

Component-level Damage Assessment 

Component-level damage assessment provides detailed damage data for studying the 

performance of building practices. It is a natural extension of property-wise damage assessment. 

Within days after the occurrence of hurricane events, it is often possible to send ground 

assessment teams with various ground-based sensing systems such as cameras, terrestrial LiDAR, 

and mobile LiDAR. Foot-on-ground assessment with traditional photography approaches is the 

most common method used in detailed damage assessment. At the same time, it is also the most 

tedious approach. The proposed approach in this study leverages the increasingly available 
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terrestrial/mobile LiDAR data for component level damage assessment. However, such 

assessment is not done in-situ. With the already extracted building footprints and overall damage 

information from the previous stages, my approach is capable of efficiently extracting individual 

buildings from the high-resolution LiDAR data and conducting semantic parsing for component-

level assessment. This approach has an advantage in terms of time efficiency as it is 

computationally efficient to process on sparse airborne LiDAR data than on dense mobile data. 

Figure 6.22 shows the results of component-level damage detection. Figure 6.22 (a) shows 

the point cloud of each extracted building using the building footprint, and Figure 6.22 (b) shows 

the results of semantic parsing and building damage detection. In terms of computational cost, it 

is largely affected by the size of point cloud. Intuitively, if a building has more data points, it 

takes more time to process. Figure 6.23 shows the relationship between the computational cost 

with respect to the number of points per building of each phase. As can be seen, for phase 1, 2, 3, 

and 5, it follows a linear relationship to some extent. While the linear relationship does not hold 

for phase 4 because not all the buildings have exterior columns and handrails. 

 

Figure 6.22. Results of Component-level Damage Assessment 
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Figure 6.23. Relationship between Computational Cost and Data Size 

Robust alignment of the multi-sourced imagery for damage assessment 

The LiDAR-based damage assessment still has its own limitations. For example, one can 

hardly identify the watermark from mobile LiDAR data. In addition, because the collection of 

mobile LiDAR cannot be conducted without the permission of access, which normally would 

delay the survey. Consequently, the actual damage status might not be preserved because of the 

temporary repair of the house owners. For example in Figure 6.24, the watermark is hard to be 

visually identified from (a) and (a2), but with the assistance of (a1), it could be efficiently and 

quantitatively measured out. Also for the building in (b) and (b2), the large opening hole was 

covered by the homeowner prior to the collection of mobile LiDAR data. However, with the use 

of street level image collected before the temporary repair, the actual area of the opening damage 

was still successfully evaluated. 
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Figure 6.24. Results of Image Assisted Damage Assessment 

7.1.3 Performance Evaluation 

Time Efficiency 

As shown in Figure 1.3, the proposed framework has five sequential phases. Table 6.5 

summarized the detailed information of the data used in phase 1 to phase 3 of the proposed 

framework. Also the running time of each stage was summarized. Please be noted that in the table, 

the running time was summarized in the manner of time per building rather than the total time. 

Because the process of each individual phase could be either processed on single machine, or 

ported onto multiple machines for speeding up, it would be intuitive to estimate the running time 

given the number of buildings within a region of interest and with the number of machines 

available for process. Please also be noted that the summary of phase 4 and 5 were not included 

in this table. This is because for phase 4, the process was split into multiple procedures, and was 

also interacted with human operation such as image grouping, model alignment, etc. For phase 5, 

the running time was also affected by human-in-the-loop process, which makes less sense for 

summarizing the running time of entire procedure.  
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Table 6.5. Summary of Time-wise Efficiency 

  Phase 1 Phase 2 Phase 3 

Num. Points Pre-event 338,994 58,446 - 

Post-

event 

27,829 5,280 26,273,442 

Num. Buildings Pre-event 86 86 - 

Post-

event 

86 86 36 

Platform  Python 2.7 + Tensorflow 

1.3.0 (CPU-only) 

MATLAB 

2016b 

MATLAB 

2016b 

Time/per 

building 

 ≈ 20(sec)  ≈ 60(sec)  ≈ 22(min)  

 

The same data used by this dissertation research was also evaluated in (Gong et al. 2014, 

Hatzikyriakou et al. 2015, Xian et al. 2015). Although remotely sensed data was used in their 

work, the property-wise and component-level damage assessment was still carried out with 

manual approach. For example, although mobile LiDAR data was collected and used in their 

research, the mobile data was not fully made use of. In Xian et al. (2015), the assessment was 

conducted manually, which was extremely time consuming. Although mobile LiDAR data was 

employed in Hatzikyriakou et al. (2015), it was mainly used for reconstructing the as-damaged 

model. The analysis was still carried out with a manual approach.  

In Figure 6.25, an intuitive comparison among proposed approach and traditional foot-on-

ground approach, and GXH (Gong et al. 2014, Hatzikyriakou et al. 2015, Xian et al. 2015) is 

presented. As can be seen, after the landing of Hurricane Sandy, both the proposed approach and 
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GSH started immediately with the availability of airborne data, while the foot-on-ground 

approach cannot start until the accessibility was permitted. 

In terms of the time used in each task, foot-on-ground took longest time among all. Although 

GXH leveraged remotely sensed data, level of detail analysis still required manual work. On the 

contrary, the proposed approach largely took use of computer vision techniques to replace manual 

work. Because the remotely sensed data could be divided into blocks and be processed 

independently, the proposed approaches can be rapidly scaled up to process large-scale data sets.  

 

Figure 6.25. Comparison of Time-wise Efficiency 

7.2 Conclusions, Limitations and Future Research 

7.2.1 Conclusions 

This dissertation research focused on the hurricane-induced building damage detection and 

assessment using remotely sensed data and computer vision techniques. After a major hurricane 

event occurs, airborne laser scanning is often immediately used for evaluating large topographical 

changes and for planning rapid response activities. After the road accessibility of the damaged 

region is granted by the authorities, ground survey is carried out. At this stage, mobile laser 
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scanning and terrestrial laser scanning are often used to acquire high resolution as-damaged data. 

Throughout the entire post-disaster response period, high resolution street level image data are 

often continuously collected by both response personnel and the general public. This dissertation 

formulates a cohesive and multi-scale damage assessment approach that considers the 

continuously evolving data sources and damage assessment needs during different phases of 

disaster management. The individual studies and their findings are concluded as the following. 

1) At first, a deep convolutional neural network was developed to detect and extract each 

individual building object from the LiDAR point cloud. The network was trained using 

the dataset collected prior to the occurrence of the hazard, and an in-depth experimental 

study was carried out with the trained network and both pre- and post-event dataset. The 

result of experimental study suggested that the proposed convolutional neural network 

outperformed the open-source software, LAStools, particularly on post-event data with 

relatively low point cloud density. The result also suggested high precision and recall of 

the proposed approach in detecting building objects from airborne LiDAR point cloud 

data. Therefore, the proposed approach is shown as a generalizable framework of a 

preprocessing procedure of the post-disaster evaluation. 

2) Within the building objects been identified and extracted, a multi-temporal data-based 

building damage detection approach is then developed. In this study, the building roof 

models are first reconstructed from pre-event data with the developed novel approach. 

Then the property-wise damage assessment procedure is carried out by computing the 

change detection between multi-temporal data. An experimental study was also carried 

out here to validate the performance of the proposed approach. And the result suggests 

that the proposed approach is able to identify the totally collapsed building accurately 

regardless the variation of post-event data resolution. And the detection of partially 

collapsed building is relatively sensitive to the data resolution. This would provide the 
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response personnel with the priority map of rescuing, evacuation, in-depth assessment, 

and recovery later on. 

3) The next study of the dissertation focused on the in-depth building component-level 

assessment using post-event mobile laser scanning data only. Although mobile LiDAR 

has been used in post-disaster evaluation, it was mostly used for global damage 

perception and visualization. To my best knowledge, this dissertation is the first research 

effort that digs into this field. The experimental study suggested that using post-event 

mobile LiDAR only can benefit the building component-level damage detection and 

assessment in automated manner. This is encouraging for the engineering, insurance 

agency perspective. With the rapid development of laser scanning technology and cloud 

computing technologies, it is possible in the future that real time scanning and assessment 

would largely replace the foot-on-ground survey. 

4) The fourth study focused on the use of high resolution imagery data for damage 

assessment. In this study, the 3-D as-damaged model of building was reproduced using 

structure from motion technique. Then the evaluated was conducted on the reconstructed 

model. The validation compares the evaluation results between reconstructed model and 

mobile LiDAR data. The results of comparison study suggested that image-based as-

damaged model plays as an ideal alternative and complementary solution to LiDAR. This 

is particularly valuable when the point cloud model of the building object is in part 

missing. 

5) The last study of this dissertation research focused on the fusion of street level image and 

LiDAR. In this study, a novel image-to-lidar alignment approach is proposed. It takes an 

arbitrary street level image as input, and the rigorous registration is estimated through a 

calibrated image with minimum human interaction. The experimental study revealed that 

it is potentially worth leveraging the volunteered geographic information image into post-

disaster damage evaluation without much human work. 
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7.2.2 Limitations 

The approaches developed in this dissertation have following limitations: 

1) The proposed approaches cannot conduct indoor damage assessment. Because the 

approaches developed in this dissertation rely on remote sensing techniques, the 

authoritative geospatial data is collected from distance to the objects. The indoor data 

cannot be acquired by remote sensing approaches. Although crowd-sourced imagery data 

can be taken from both indoor and outdoor environment, it is still a challenging task to 

estimate the correspondence between indoor imagery and outdoor geospatial data.  

2) Anomaly detection-based approach cannot deal with irregular building structures reliably. 

Because the proposed methodology adopts pre-defined damage patterns for decision 

making, it is practically impossible to take every possible building design configuration 

into consideration.  

There is no unified damage assessment protocols. Although post-disaster assessment has been 

causing increasing attention in recent years, relevant research, including this work, use their own 

evaluation protocols. As a result, it is difficult to evaluate the damage condition by integrating 

multiple research efforts. 

7.2.3 Future Research 

This dissertation built a systematic framework using multi-sourced remotely sensed data in 

damage detection and evaluation. It also exposed the following aspects to be further investigated 

in the future: 

1) Deep learning techniques have been continuously breaking through the state-of-the-arts 

in various domain. It is also fetching people’s attention in terms of damage assessment. 

One of the prominent questions is that can deep learning technique benefit the building 

damage detection and assessment using LiDAR point cloud. It has two main branches, 
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one of them is detecting damaged buildings from airborne LiDAR data, and the other is 

detecting damaged buildings or even damaged building components from mobile LiDAR 

data. Because the detection of building objects from airborne LiDAR has already been 

accomplished in this dissertation, the first branch is equivalent to a classification problem 

using deep learning routine, here I call it object-wise classification. However, object-wise 

classification is not enough for the second branch. Because from the mobile LiDAR 

model, not only the property-wise damage status is retrievable, but also the component-

wise status. Therefore, a point-wise damage status classification is recommended to be 

carried out in the future. 

2) As stated in 1) of Sec 7.2.2, leveraging deep learning in damage detection is of high 

interest in my future research. Therefore, the significance of a comprehensive database 

cannot be overemphasized. A well organized and annotated database is vital but also 

difficult to create, as it is extremely labor intensive and ambiguous to systematically label 

the ground truth with damage status. Therefore, an annotation framework is prominent as 

the next stage research. 

3) The fusion of image and LiDAR is always a worth exploring but challenging task. This is 

particularly true in terms of using VGI images and ground-based LiDAR. In this 

dissertation research, an efficient fusion framework was proposed, and I believe it leads 

me on the avenue to exploring more comprehensive solutions. For example, in this 

dissertation, the alignment of arbitrary image still needs a well calibrated image. It is 

worth exploring a generalized approach that does not require the bridge images. In 

addition, the region of damage in this dissertation is manually defined. It would be of 

great value if deep learning technique could be used to reduce the human interaction.  
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