Feature variability in the bilingual-monolingual continuum: Clitics in Bilingual Quechua-Spanish, Bilingual Shipibo-Spanish and in Monolingual Limeño Spanish contact varieties

Rutgers University has made this article freely available. Please share how this access benefits you.
Your story matters. [https://rucore.libraries.rutgers.edu/rutgers-lib/56677/story/]

This work is an ACCEPTED MANUSCRIPT (AM)
This is the author's manuscript for a work that has been accepted for publication. Changes resulting from the publishing process, such as copyediting, final layout, and pagination, may not be reflected in this document. The publisher takes permanent responsibility for the work. Content and layout follow publisher's submission requirements.

Citation for this version and the definitive version are shown below.

Citation to Publisher Version: Mayer, Elisabeth & Sanchez, Liliana. (2017). Feature variability in the bilingual-monolingual continuum: Clitics in Bilingual Quechua-Spanish, Bilingual Shipibo-Spanish and in Monolingual Limeño Spanish contact varieties. International Journal of Bilingual Education and Bilingualism. [https://doi.org/10.1080/13670050.2017.1322037].

Terms of Use: Copyright for scholarly resources published in RUcore is retained by the copyright holder. By virtue of its appearance in this open access medium, you are free to use this resource, with proper attribution, in educational and other non-commercial settings. Other uses, such as reproduction or republication, may require the permission of the copyright holder.

Article begins on next page
Feature variability in the bilingual-monolingual continuum: Clitics in Bilingual Quechua-Spanish, Bilingual Shipibo-Spanish and in Monolingual Limeño Spanish contact varieties

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Bilingual Education and Bilingualism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Special Issue Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>clitics, gender, Quechua, Shipibo, Spanish, Feature reassembly</td>
</tr>
</tbody>
</table>

Abstract:
Direct object clitics in Latin American Spanish are subject to great variability in features across dialects (Camacho and Sánchez 2002; Harris 1995; Heap 2002; Zagona 2002). Variability also characterizes bilingual acquisition (McCarthy 2008) and especially clitic doubling structures in language contact contexts (Luján 1987; Mayer and Sánchez 2016; Sánchez 2003). We focus on the distribution of clitics and DOM in clitic doubling structures among Shipibo-Spanish bilinguals, Quechua-Spanish bilinguals, and monolingual speakers of Spanish in contact with Quechua. We analyze a continuum of clitic forms and DOM as complex cases of feature reassembly (Lardiere 1998, 2005) and functional convergence (Sánchez 2004) that results in new interface rules (Jackendoff 2011) with scalar hierarchies.
Feature variability in the bilingual-monolingual continuum: Clitics in
Bilingual Quechua-Spanish, Bilingual Shipibo-Spanish and in
Monolingual Limeño Spanish contact varieties

Direct object clitics in Latin American Spanish are subject to great variability in
features across dialects (Camacho and Sánchez 2002; Harris 1995; Heap 2002;
Zagona 2002). Variability also characterizes bilingual acquisition (McCarthy
2008) and especially clitic doubling structures in language contact contexts
(Luján 1987; Mayer and Sánchez 2016; Sánchez 2003). We focus on the
distribution of clitics and DOM in clitic doubling structures among Shipibo-
Spanish bilinguals, Quechua-Spanish bilinguals, and monolingual speakers of
Spanish in contact with Quechua. We analyze a continuum of clitic forms and
DOM as complex cases of feature reassembly (Lardiere 1998, 2005) and
functional convergence (Sánchez 2004) that results in new interface rules
(Jackendoff 2011) with scalar hierarchies.

Keywords: clitics, gender, Quechua, Shipibo, Spanish, feature reassembly.

1. Introduction

One of the main debates in bilingual acquisition studies has been the extent to which
acquisition entails a reconfiguration of the mapping of syntactic features onto the
phonological forms of the languages being acquired (Duffield and White 1999; Lardiere
1998, 2000, 2005; Slabakova 2009). This process has been viewed as the result of
mismatches between internal representations such that features already activated in one
of the languages are not appropriately mapped onto morphological or PF forms as in the
Missing Inflection Hypothesis (Duffield and White 1999) or the Bottleneck Hypothesis
Other proposals have looked at this as the result of a process of feature reassembly, namely, a difficulty to produce feature-morpheme mappings (Lardiere 1998, 2000, 2005).

Language contact studies have focused on the development of new matrices of functional features and unique mapping strategies of features onto morphology. New mappings result in variability across idiolects and sometimes across communities (Mufwene 2001) and may also result in functional convergence whereby common matrices of features for both languages are mapped onto equivalent morphological forms in each of the languages (Sánchez 2004). This process might alleviate the cognitive load of having to keep apart two sets of functional features, lexical meanings and morphological and phonological forms.

These proposals incorporate a view that moves away from the more traditional view of purely syntactic parameters as the locus of variability in bilinguals (Epstein et al. 1996). In fact, bilingual studies have focused on the interfaces between language components as the locus of variable attainment since the early 2000s. The Interface Hypothesis (Sorace 2000, 2011; Sorace and Serratrice 2009) is one of the most prominent of such approaches. While the Interface Hypothesis has concentrated on interfaces at the sentential level, we propose to focus on Jackendoff’s (2011) proposal that views the word as an idiosyncratic interface rule that links phonological and syntactic rules to conceptual structure (Jackendoff 2002, 2007b).

Our goal is to examine two phenomena in Bilingual Spanish: clitics and Differential Object Marking (DOM) in clitic-related structures. We propose that clitics behave as minimal interface rules in that they connect syntactically relevant features such as gender and case to morphological forms. In the same way, DOM connects lexical features such as animacy and specificity to a morphological form in specific
syntactic contexts. We study both phenomena in Peruvian Quechua-Spanish, Shipibo-Spanish bilinguals and monolingual speakers of Peruvian Spanish in contact with Quechua. Both Quechua and Shipibo lack gender features in pronominal forms and Differential Object Marking (DOM). Bilingual acquisition of Spanish clitics and DOM may result in variability either in morphological form or features across the continuum of contact.

DOM on the doubled DP in clitic doubling structures is also subject to variability (Leonetti 2008). This may stem from differences in the role of specificity and animacy in different dialects. Some varieties of Spanish are more sensitive to animacy as a trigger of DOM than others (Swart and de Hoop 2007).

Our proposal assumes that variability in clitic features and DOM in language contact situations reflects feature reassembly specific to bilingual varieties (Lardiere 1998, 2000, 2005) and different degrees of functional convergence (Sánchez 2003, 2004). These generate diverging interface rules (Jackendoff 2011) that may result in scalar hierarchies of feature matrices across speakers in contact situations (Mayer and Sánchez 2016, forthcoming).

2. Cross-linguistic differences in object pronominal systems

Direct object clitics and DOM have been the focus of studies on the acquisition of Spanish as a second language in instructional settings and of Spanish as a heritage language (Arche and Dominguez 2011; Chamorro, Sturt and Sorace 2016; Guijarro-Fuentes 2011, 2012; Montrul 2010; Pascual y Cabo 2015). There are fewer comparative studies on variability in morphological expression in language contact situations, especially with Spanish as a socially dominant language and reduced access to standard instruction (Mayer and Sánchez 2016).

In Cuzco-Collao and Huánuco Quechua, both nominative/accusative languages, and in Shipibo, an ergative language, there is no third person object agreement marking on the verb, when the subject is also third person and there are no gender features on pronouns or verbs (Cerrón-Palomino 1987, Faust 2008) as shown in (1) and (2):

Quechua Cuzco-Collao (Mayer Sánchez 2016)

(1) Maga-Ø-n.

hit-Ø-3SG

‘S/He cradles (him, her, it).

Shipibo (Loriot, Lauriault and Day 1993:56)

(2) Nmai pro oin-xon-ra, Jose-kan kena-Ø-ke.

Niima pro see- SS.TR.PRT.EVID Jose-ERG call-Ø-PERF

‘When he saw Nima, José called him.’

In (1) and (2), the null object refers to previously introduced antecedents (like Nima in (2)). In Shipibo the same overt pronominal form serves as the subject of an intransitive
verb (3) and the object of a transitive verb (see (4) with a plural object). A different form is used for transitive subjects (5):

Shipibo (Faust 2008:7)

(3)
Ja-ra jo-ke
s/he-EVID come-PERF

‘S/He came.’

Shipibo (Faust 2008:39)

(4)
En-ra ja-bo bi-ke
I-EVID s/he-PL received-PERF

‘I received them.’

Transitive subject

Shipibo (Faust 2008: 53)

(5)
Ja-baon-ra ino rete-ni-ke
s/he-ERG-EVID tiger kill-DST. PST-PERF

‘They killed (a/the) tiger.’

Regarding NPs, Quechua and Shipibo lack definite or indefinite articles as the direct object in (5) illustrates.

Spanish has third person object clitics that also express number, case, and gender as shown below in (6) as well as definiteness. As anaphors, they can refer to DP objects as proclitics with finite verbs as in (6a) and with complex predicates as enclitics as in (6b). Clitic doubling constructions will be introduced in the next section.
Previous studies on bilingual Lamas Kechwa-Spanish have shown a strong preference for the le form for masculine and feminine antecedents (Camacho and Sánchez 2002, Sánchez 2003). This distribution can also be found in Basque Spanish (Fernández-Ordóñez 1994). A possible explanation for this preference would be the fact that le is the best candidate available in the input to avoid gender specification (Camacho and Sánchez 2002; Sánchez 2003; Zdrojewski and Sánchez 2014). However, in other communities of Quechua-Spanish bilinguals, there is evidence for a preference for lo for masculine and feminine (Escobar 1990; Luján 1987).

Among monolingual speakers of Limeño Spanish Contact Varieties (LSCV) in dialect contact with Andean and Amazonian Spanish (Cerrón-Palomino 2003; Escobar 2000; Klee and Caravedo 2005, 2006; Mayer 2010; Pérez 2000) some form of co-occurrence of lo and le forms has been identified (Mayer 2010). Mayer (2010, 2017) and Mayer and Sánchez (2016) have proposed a scalar clitic system based on animacy. In this paper, we will propose that the scalar system can be derived from clitics as interface rules.

Cross-linguistic differences in the way in which features are assembled in the three languages would involve interface rules that take into account that in Quechua and Shipibo, third person features, accusative in Quechua and absolutive features in
Shipibo, correspond to a null morpheme. In Spanish, in addition to third person and accusative features, number and gender should be part of the interface rule and be reflected in the phonologically overt form. We will focus in particular on gender as it is the feature lacking in the indigenous languages. The differences across languages raise the question of how do bilinguals in Quechua and Spanish and Shipibo and Spanish generate the interface rules needed to develop their direct object clitic systems.

3. Crosslinguistic distribution of Differential Object Marking

DOM is used to mark a selected range of direct objects across genetically unrelated languages following language-specific rules (Aissen 2003; Bosson 1991, 2003; Dalrymple and Nikolaeva 2011; a.o.). To receive DOM, the direct object needs to fulfill either or both of two necessary conditions: animacy and specificity. Animacy is related to agency and the telicity of the verb. This, in turn, has implications for distinctions such as human vs. non-human subjects and may also result in specific interpretations of the object.

Unlike in traditional varieties of Peninsular Spanish where clitic doubling (CLD) is restricted to pronominal NPs, some Latin American dialects, such as River Plate (Jaeggli 1986, Zdrojewski and Sánchez 2014) and Lima Spanish (Sánchez 2003), also allow clitic doubling with DOM-marked objects. They need to be animate and specific, namely, identifiable or recoverable from the context as shown in (7) (Leonetti 2008; Ormazabal and Romero 2013; Rodríguez Mondoñedo 2007; Zdrojewski 2013; a.o.). Importantly, CLD in dialects of this type only obtains with feature-specifying clitics. In order to unveil variability in the distribution of DOM and clitics, we will analyze, in addition to anaphoric clitics, other clitic structures involving DOM: CLD, clitic left dislocation (CLLD) and clitic right dislocation (CLRD) structures.
CLD of human and animate DPs (7) can be found in prestigious Peruvian Spanish dialects and requires (DOM)\(^1\) which is syntactic phenomenon subject to a number of semantic and pragmatic constraints dependent on the variety.

\[
(7) \quad Lo \quad vi \quad a \quad él \quad /Juan \quad [+\text{human}, \text{+specific}]
\]

\[
\text{CL3MSG} \quad \text{see-PST.1SG} \quad \text{DOM} \quad \text{him/Juan}
\]

‘I saw him, Juan.’

CLLD in (8) and CLRD in (9) require DOM for all dislocated objects.

\[
(8) \quad A \quad Juan, \quad lo \quad vi
\]

\[
\text{DOM} \quad Juan \quad \text{CL3MSG} \quad \text{see-PST.1SG}
\]

‘As to Juan, I saw him.’

\[
(9) \quad Lo \quad vi \quad ayer \quad a \quad Juan.
\]

\[
\text{CL3MSG} \quad \text{see-PST.1SG} \quad \text{yesterday} \quad \text{DOM} \quad \text{Juan}
\]

‘I saw him yesterday, that is Juan.’

This complex configuration of DOM presents great difficulties for L2 learners of Spanish in immersion and classrooms settings (Guijarro-Fuentes 2011, 2012). For bilingual speakers of indigenous languages, the typological differences in argument marking are even greater due to limited access to formal instruction.

\(^1\) This is also known as Kayne’s Generalization (Kayne 1975).
In the bilingual and monolingual contact systems under study, the combination of variable uses of DOM and the emergence of invariant *le* and *lo* erode identifiability of referents. Additionally, this may trigger syntactic and referential ambiguity and even a different type of sensitivity to features such as animacy. Invariant forms may result from functional convergence in a system that lacks gender features and is no longer sensitive to animacy as a trigger for DOM. An example of such erosion is the lack of DOM with an animate DP as illustrated in:

(10) *El niño le riñe ese perro*

the boy CL3SG reprimand-3SG DOM that dog

‘The boy reprimands that dog.’ (S2)

Having covered the main characteristics of clitics in terms of their features and the structures in which they occur as well as their interaction with DOM in clitic doubling structures, we can now present the main research questions that guide our study:

1. Is there evidence for differences in the feature configuration of direct object clitics as interface rules in bilinguals and monolinguals in contact situations?

2. Is there a continuum of variability in DOM specification in clitic doubling structures?

With respect to the first question, we hypothesize that in generating clitics as interface rules bilinguals might exhibit convergence of feature specification or morphological expression, especially in the case of gender as it is not an active feature in the indigenous languages. With respect to the second question, we also hypothesize that
bilinguals and monolinguals in a contact situation will exhibit a continuum of feature reassembly and convergence that affects DOM.

4. The Study
To answer these research questions, we examined data from two groups of Quechua-Spanish bilinguals, one group of Shipibo-Spanish bilinguals and Lima Contact Spanish monolinguals. We focus on suppletion of direct object clitics and DOM. For bilingual speakers, suppletion may vary according to the indigenous language in contact with Spanish. In language contact situations, they may also vary according to access to formal instruction. In the case of monolingual speakers, as these are individual data, included only as a point of comparison, we look at their history of exposure to input in Spanish.

4.1 Bilingual groups

4.1.1 Participants
As shown in Table 1, the first group of bilinguals comprised 17 adult Cuzco-Collao Quechua-Spanish bilinguals living in the city of Cuzco. They had secondary and post-secondary schooling in Spanish and were living at the time of the interviews in an urban environment. The second group of 14 adult Huánuco Quechua-Spanish bilinguals from the Huánuco region had mostly primary level and some secondary level schooling in Spanish. At the time of the interviews, they were living in a rural environment in the district of Chaglla. The third group of 24 adult bilingual speakers of Shipibo Spanish with primary, some secondary and postsecondary schooling in Spanish was interviewed in the city of Lima where they had migrated to from a rural environment. All bilinguals reported speaking their indigenous languages sometimes or most of the time.
Table 1: Participant data for the bilingual groups

<table>
<thead>
<tr>
<th></th>
<th>GENDER</th>
<th>AGE</th>
<th>ORIGIN/EDUCATION</th>
<th>LOCATION</th>
<th>PRIM</th>
<th>SEC</th>
<th>POSTSEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuzcoC.</td>
<td>17</td>
<td>8F, 9M</td>
<td>18</td>
<td>rural/urban</td>
<td>------</td>
<td>2F, 33</td>
<td>6F, 6M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huánuco</td>
<td>14</td>
<td>8F, 6M</td>
<td>22</td>
<td>rural/rural</td>
<td>6F, 4M</td>
<td>2F, 49</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipibo</td>
<td>24</td>
<td>12F, 12M</td>
<td>29</td>
<td>rural/urban</td>
<td>9F, 5M</td>
<td>2F, 12M</td>
<td>1F, 56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 Tasks

Cuzco-Collao Quechua-Spanish bilingual data were collected in 2005 in Cuzco, Peru and Huánuco Quechua-Spanish bilingual data were collected in 2006 in Chaglla, Huanuco, Peru. Shipibo data were collected in 2002 in Lima, Peru. All datasets were obtained along with a questionnaire on language history and preferences for language use at the time of data collection. The data analyzed in this article were collected using an oral elicitation technique based on the narration of a frog story (Mayer and Mayer 2003). The two Quechua groups were presented with a series of culturally adapted pictures based on a frog story book and were asked to narrate the story in the pictures. Due to cultural differences and lower levels of literacy among the Shipibo speakers,

2 Quechua-Spanish data from these corpora have been previously analyzed in another study focusing on information structure (Mayer and Sánchez 2016) and Shipibo-Spanish data corresponds to the only tasks involving data with third person pronominal forms. Other data have been analyzed in Sánchez, Camacho and Ulloa (2010).

3 Oral data were collected in the two languages spoken by the bilingual participants.
participants saw and heard the frog story sequence of events acted out with small figures.

4.1.3 Coding and tokens
Recordings were transcribed using the CHILDES system. All sentences containing transitive verbs with direct objects clitics and null objects were coded. The total numbers of tokens for the Cuzco-Collao group was 130, for the Huánuco group was 106, and for the Shipibo group, the number was 141 tokens – altogether, 377 tokens. DOM was coded in all types of clitic doubling structures with special attention to the distinction between [+ animate] vs. [-animate] DPs.

4.2 Monolinguals
The monolingual data are from a longitudinal study (over three months) with two participants and a third by ways of comparison. These data are representative of Limeño Spanish contact varieties which are mainly oral, non-standardized varieties closely related to Andean Spanish and Amazonian Spanish. The reason for including the monolingual data is that these contact speakers have access to input with gender and DOM (as in (9)). They provide a valuable point of comparison in relation to feature assembly and gender expression on the continuum of variability.

4.2.1 Participants
The participants were three adult female monolingual Limeño Spanish speakers of contact varieties, living in the city of Lima at the time of the interviews. Two speakers are siblings (LSCV1, age 40 and LSCV2, age 42); they were born to Quechua-speaking parents close to the city of Iquitos where they received primary education. After migrating to Lima at ages 14 and 16 respectively, they received secondary education and their only exposure to Southern Quechua occurred early on while living in a family
and community of L1 Quechua-L2 Spanish speakers. The third speaker was born and raised in Lima where she was attending college at the time of the interviews; she is the daughter of one of the sisters and had very little exposure to Quechua.

4.2.2 Tasks
The data consist of digital recordings of naturally occurring conversations and interactions with one of the authors as the interviewer. Over a period of six weeks, the interviewer participated in daily activities with the participants eliciting narratives related to their regular activities, their lives and their lives' stories. These narratives, as the frog story narratives, allowed us to elicit transitive verbs and [+animate] objects.

4.2.3 Coding and tokens
The same coding was used as for the bilingual groups. The total number of tokens for the group were 608. The individual number of tokens for each speaker was 380 tokens for LSCV 1, 202 tokens for LSCV 2 and 26 tokens for LSCV 3. No statistical analysis was performed for the third speaker due to insufficient data.

5. Results
Results indicate a different distribution of clitic-related structures across bilingual groups. The Cuzco-Collao group showed the highest percentage of anaphoric clitics (55%) followed by Huánuco (49%) and Shipibo (43%). Conversely, Shipibo bilinguals showed the highest percentage of CLD structures (44%) followed by Huánuco (39%) and Cuzco-Collao (31%), as shown in Table 2. Percentages for the other structures (CLLD, CLRD and null) were low, but it is worth pointing out that, for the Shipibo group, the percentage of null objects was higher (9%) than for the other two. A chi-square test confirmed independence of preference χ² (8, N=377) =25.10 p< .01.
Table 2: Clitic structures in bilingual groups

<table>
<thead>
<tr>
<th></th>
<th>Anaphoric</th>
<th>CLD</th>
<th>CLLD</th>
<th>CLRD</th>
<th>Null</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuzco-C.</td>
<td>72 (55%)</td>
<td>40 (31%)</td>
<td>3 (2%)</td>
<td>10 (8%)</td>
<td>5 (4%)</td>
<td>130 (100%)</td>
</tr>
<tr>
<td>Huánuco</td>
<td>52 (49%)</td>
<td>41 (39%)</td>
<td>8 (8%)</td>
<td>2 (2%)</td>
<td>3 (3%)</td>
<td>106 (100%)</td>
</tr>
<tr>
<td>Shipibo</td>
<td>60 (43%)</td>
<td>62 (44%)</td>
<td>1 (1%)</td>
<td>5 (3%)</td>
<td>13 (9%)</td>
<td>141 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>184 (48%)</td>
<td>143 (38%)</td>
<td>12 (3%)</td>
<td>17 (5%)</td>
<td>21 (6%)</td>
<td>377 (100%)</td>
</tr>
</tbody>
</table>

The distribution of clitics marked and unmarked for gender across doubling structures is shown in Table 3. In CLD structures, le (unmarked for gender) is the most frequent across the three groups. Lo has the lowest percentage among Shipibo bilinguals who show a very high percentage of se (13%). A chi-square test performed for the distribution of le vs. lo in CLD structures across groups confirmed independence of preference $\chi^2 (2, N=138) =15.91$ $p< .003$.

4 These results also include enclitics although they were much lower in frequency than proclitics. No differences seem to stem from their position.
Table 3: *Le* vs. *lo* with DP in CLD, CLLD and CLRD

<table>
<thead>
<tr>
<th></th>
<th>CLD</th>
<th>CLLD</th>
<th>CLRD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le</td>
<td>26</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Lo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>La</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cuzco-C.</th>
<th>Huánuco</th>
<th>Shipibo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le</td>
<td>26 (48%)</td>
<td>32 (60%)</td>
<td>53 (76%)</td>
</tr>
<tr>
<td>Lo</td>
<td>14 (27%)</td>
<td>11 (21%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Se</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>9 (13%)</td>
</tr>
<tr>
<td>La</td>
<td>4 (1%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Total</td>
<td>51 (100%)</td>
<td>53 (100%)</td>
<td>70 (100%)</td>
</tr>
</tbody>
</table>

The monolingual data show a significant difference with respect to the bilingual data. As shown in Table (4), anaphoric clitics are the preferred structure for the three individuals. Regarding doubling structures, CLD is preferred over both dislocated structures followed by low percentages for null objects. A chi-square test over LSCV1 and LSCV 2 did not confirm independence of preference $\chi^2 (4, N=576) = 7.329, p=.11$.

Table 4: Clitic structures

<table>
<thead>
<tr>
<th></th>
<th>Anaphorics</th>
<th>CLD</th>
<th>CLLD</th>
<th>CLRD</th>
<th>Null</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSCV1</td>
<td>266</td>
<td>47</td>
<td>30</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>LSCV2</td>
<td>145</td>
<td>28</td>
<td>7</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(70%)</td>
<td>(12%)</td>
<td>(9%)</td>
<td>(4%)</td>
<td>(5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(72%)</td>
<td>(14%)</td>
<td>(4%)</td>
<td>(7%)</td>
<td>(3%)</td>
</tr>
</tbody>
</table>
The distribution of clitic features in clitic doubling and dislocated structures in Table 5 shows differing individual scalar clitic systems. LSCV 1 prefers \textit{le}>\textit{lo}>\textit{la} for CLD and CLLD, and \textit{le}>\textit{la}>\textit{lo} for CLRD. LSCV 2 disfavors \textit{lo} and shows the pattern \textit{la}>\textit{le}>\textit{lo} for CLD and CLRD and \textit{le}>\textit{la}>\textit{lo} for CLLD. The result for LSCV 3 does not show scalarity and it is insignificant due to the very low numbers of tokens. A chi-square test over LSCV1 and LSCV 2 confirmed independence of preference $\chi^2 (8, N=109) =26.44$ p < .001.

Table 5: \textit{Le}, \textit{lo}, \textit{la} in CLD, CLLD, and CLRD

<table>
<thead>
<tr>
<th>LSCV</th>
<th>CLD</th>
<th>CLLD</th>
<th>CLRD</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>le</td>
<td>lo</td>
<td>la</td>
<td>le</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>13</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(28%)</td>
<td>(20%)</td>
<td>(4%)</td>
<td>(21%)</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(19%)</td>
<td>(10%)</td>
<td>(30%)</td>
<td>(7%)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0%)</td>
<td>(0%)</td>
<td>(50%)</td>
<td>(50%)</td>
</tr>
</tbody>
</table>

| Total | 37 | 17 | 16 | 18 | 9 | 4 | 10 | 3 | 7 | 111 | | | | |

With respect to DOM and animacy, results show significant differences across groups in the distribution of DOM with animate and inanimate DPs. In the two Quechua groups,
there is a high frequency of DOM with animate DPs and lack of DOM with animate DPs (2% and 20%). This is not the case for the Shipibo group that shows an even distribution of DOM with animate and inanimate DPs (45%). A chi-square test confirmed independence of preference $\chi^2 (6, N=170) = 47.34 \ p=1.6$.

Table 6: DOM and animacy

<table>
<thead>
<tr>
<th></th>
<th>+DOM animate DP</th>
<th>- DOM animate DP</th>
<th>+DOM inanimate DP</th>
<th>- DOM inanimate DP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuzco-Collao</td>
<td>52 (98%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>53 (100%)</td>
</tr>
<tr>
<td>Huánuco</td>
<td>40 (78%)</td>
<td>10 (20%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>51 (100%)</td>
</tr>
<tr>
<td>Shipibo</td>
<td>30 (45%)</td>
<td>30 (45%)</td>
<td>6 (10%)</td>
<td>0 (0%)</td>
<td>66 (100%)</td>
</tr>
<tr>
<td>Total</td>
<td>122 (72%)</td>
<td>41 (24%)</td>
<td>1 (0.5%)</td>
<td>6 (3.5%)</td>
<td>170 (100%)</td>
</tr>
</tbody>
</table>

The monolingual results for differential object marking in relation to animacy differ slightly between the two migrant participants. LSCV 1 shows almost even numbers for lack of DOM for animates (20%) and extension of DOM to inanimates (22%), LSCV 2 shows a very low percentage for lack of DOM for animates (6%) and some extension of DOM to inanimates (17%). The results for LSCV 3 are insignificant due to the low numbers, and they are thus not included in the statistical analysis. A chi-square analysis of the overall distribution of [+] DOM with [+] animate and [- animate] DPs showed independence between LSCV 1 and LSCV 2 (both migrants), $\chi^2 (3, N=149) = 7.84, p<.001$.
Table 7: DOM and animacy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCV1</td>
<td>43(80%)</td>
<td>11(20%)</td>
<td>54(100%)</td>
<td>10(22%)</td>
<td>38(78%)</td>
<td>48(100%)</td>
</tr>
<tr>
<td>LSCV2</td>
<td>31(94%)</td>
<td>2(6%)</td>
<td>33(100%)</td>
<td>4(17%)</td>
<td>10(83%)</td>
<td>14(100%)</td>
</tr>
<tr>
<td>LSCV3</td>
<td>1(100%)</td>
<td>0</td>
<td>1(100%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following examples illustrate the types of clitics found in the different clitic structures:

Anaphoric

(11) *Y el perro también le mira*
 and the dog too CL3SG look-3SG
 al sap-o.
 DOM-DET.MSG toad.MSG
 ‘And the dog too looks at the toad.’ (H16)

CLD

(12) *Y el niño le regaña al perr-o*
 and the boy CL3SG tells off DOM-DET.MSG dog.MSG
 ‘And the boy tells off the dog.’ (S5)

(13) *El niño se abre la caj-a*
 the boy CL3SG open DET.FSG box.FSG
 ‘The boy opens the box.’ (S15)

*No aspectual or reflexive meaning

CLLD
(14) Al niño puede morder-le

DOM-DET.MSG boy can bite-CL3SG

‘(It) can bite the boy.’ (H5)

CLRD

(15) Le manda al río

CL3SG sends DOM-DET.MSG river

al sap-ito chiqu-ito.

DOM-DET.MSG toad-DIM little-DIM

‘(He) sends the little toad to the river.’ (C1)

We would like to point out the use of se by Shipibo speakers illustrated in example (13). As mentioned above, Shipibo is an ergative language in which pronominal subjects of intransitive verbs and direct objects receive the same marking. Spanish se has been described as a morpheme that is involved in the formation of middle passives (Kempchinsky 2004) and as a marker of subjects of intransitive verbs (Mayer and Sánchez forthcoming).

The following examples illustrate cases of DOM and lack of DOM with animate DPs:

(16) Y el perro le patea al loro

and the dog CL3SG kick-3SG DOM-DET.MSG parrot

‘And the dog kicks the parrot.’
(17) Le huele el loro
CL3SG smell-3SG the parrot
‘(He) smells the parrot.’ (S2)

In clitic doubling constructions we find gender neutralization in (18) with invariant lo cross-referencing a human, feminine, plural object with DOM; in (19), extension of DOM to an inanimate clitic doubled object with a feature agreeing clitic, and in (20), a CLD sentence with gender agreement, as found in the more prestigious Lima variety.

(18) Lo conoce a las chicas
CL3MSG know-3SG DOM DET.FPL girl-FPL
‘(S)he knows the girls.’ (LSCV 1)

(19) Lo licuo al ajo
CL3MSG blend.1SG DOM-DET.MSG garlic-MSG
‘I blend the garlic.’ (LSCV 2)

(20) La cargó a su hija
CL3FSG carry-PAST.3SG DOM POSS daughter-FSG
‘He carried his daughter.’ (LSCV 3)

The following two examples illustrate clitic left dislocation with gender neutralization. In (21) le refers to a feminine DP without DOM and in (22) la refers to a DOM-marked masculine DP.
(21) Ella, yo le llevé a Iquitos

PRO.3FSG PRO.1SG CL3SG take-PST.1SG LOC Iquitos

‘Her, I took her to Iquitos.’ (LSCV 1)

(22) Al aji la hago hervir

DOM-DET.MSG chili-MSG CL3FSG make boil

‘The chili, I'll boil it.’ (LSCV 2)

The examples of right dislocation below involve a feminine singular [-anim] DP cross-referenced by le in (23) and la in (24). Note the lack of DOM in both.

(23) No le saben pronunciar la erre

not CL3SG know-3PL pronounce DET.FSG ar-FSG

‘They don’t know how to pronounce the “ar”.’ (LSCV 1)

(24) Entonces, la lavo bien la varita

then CL3FSG wash.1SG well DET.FSG stalk

‘Then I wash the stalk well.’ (LSCV 2)

Table 8 shows the scalar clitic systems for all groups. The Huánuco, the Cuzco-Collao and the Shipibo groups share a scale in which le is ranked above lo. Additionally, the Shipibo group exhibits a complex scale in which se is ranked higher than lo and la. As in the bilingual groups, in LSCV 1’s and LSCV2’s scales le is ranked above lo, and
Unlike the Quechua bilinguals both exhibit la\(^5\).

Table 8: Clitic systems and individual feature mapping in all structures

<table>
<thead>
<tr>
<th>Huánuco</th>
<th>Cuzco-C.</th>
<th>Shipibo</th>
<th>LSCV1</th>
<th>LSCV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>le > lo</td>
<td>le > lo</td>
<td>le > se > lo > la</td>
<td>le > lo > la</td>
<td>la > le > lo</td>
</tr>
<tr>
<td>78% > 17%</td>
<td>56% > 38%</td>
<td>74% > 7% > 4% > 3%</td>
<td>50% > 31% > 9%</td>
<td>37% > 33% > 24%</td>
</tr>
</tbody>
</table>

6. Discussion and analysis of comparative results

While we would like to take a cautious approach to our evaluation of the results from the three groups of bilinguals and the monolingual individuals, we think that they provide a first approach to the complex picture of the distribution of clitic structures across groups and individuals in a contact situation. In particular, to the notion of how one can understand feature reassembly and convergence in language contact situations as evidenced in oral speech samples.

In addition to anaphoric clitics, the Huánuco group and the Shipibo group have a high frequency of CLD structures. It is higher in these two groups than in the Cuzco-Collao group. This appears to indicate a preference for some form of overt marking of the direct object on the verb, a possibility that involves generating a type of mapping at the interfaces that differs from the one in the indigenous languages. In those languages, there is no phonologically overt form that corresponds to third person accusative features, when a third overt pronoun or an overt DP are complements of the verb.

\(^5\) The high percentage of la in LSCV2 could be attributed to a higher percentage of feminine antecedents in her speech.
In the case of the Shipibo group, overt spell out of the direct object is surprising. As mentioned above, Shipibo, unlike Quechua and Spanish, is an ergative language in which subjects of transitive verbs are marked in opposition to direct objects and subjects of intransitive verbs. In the Spanish of these Shipibo bilinguals, CLD appears to be a generalized form of overt marking of the direct object. At the same time, this marking may be expressed by the clitic se that has among its repertoire of features in Spanish the expression of middle passives (Kempchinsky 2004). This unexpected form needs further exploration.

Notice also that the monolingual individuals LSCV 1 and LSCV2, both with lower levels of access to formal instruction in Spanish and exposed to a Quechua bilingual variety also show evidence of CLD, although in lower numbers than bilinguals. We take this to indicate that across bilingual groups and in two of the monolingual individuals, overt object marking on the verb is part of the PF representation of Spanish.

With respect to our first research question regarding the convergence of features on the clitic, we see a distribution in which le is the most frequent form across the three bilingual groups and for LSCV 1. We take this to indicate that the type of feature reassembly and convergence with the indigenous language that takes place in the contact situation is such that the word as an interface rule (Jackendoff 2011) results in the following types of configurations evidenced in the oral production data:

Quechua Spanish Bilingual data

(25) PF

le > lo-V

Features

ACC

3

Shipibo Spanish Bilingual data
These configurations indicate a continuum of feature assembly options across groups and individuals that ranges from assembling an interface rule with a PF form that is unmarked for gender (le) to a more complex array of PF forms that compete. In LSCV 2 data there appears to be a one-to-one correspondence between gender features and PF forms. One could argue that variability does not take place at the representational level but at the production level in bilinguals. However, the data from the monolingual speakers exposed to second language speech seem to indicate that variability can still be found in monolingual production.

With respect to our second question regarding a continuum of variability in DOM specification in clitic doubling structures, our results show that there is variation
in DOM regarding lack of DOM with animate DPs. Shipibo bilinguals show the highest frequency of absence of DOM with animates, followed by Huánuco bilinguals. Among the monolingual individuals, LSCV 1 has the highest percentage of lack of DOM with animates. Here again, we find a continuum of feature reassembly and convergence with the configurations in (29-32). The Huánuco group (30), the Shipibo group (31) and LSCV1 (32) show variability in the PF expression of DOM. The Shipibo group, LSCV1, and LSCV2 (33) show overextension of DOM to inanimates.

Cuzco-Collao Spanish

| (29) PF | a |
| Features | ACC |
| [+animate] |

Huánuco Spanish

| (30) PF | (a) |
| Features | ACC |
| [+animate] |

Shipibo Spanish

| (31) PF | (a) |
| Features | ACC |
| [+animate], [-animate] |

LSCV1

| (32) PF | a |
| Features | ACC |
| [+animate], [-animate] |
The fact that these clitics and DOM patterns of assembly are not homogenous and are found in monolingual individuals in contact situations suggests that there is range of options in the way in which words or morphological units are configured as interface rules. They may involve convergence towards a lack of features as in the lack of sensitivity towards animacy among Shipibo speakers, LSCV1 and LSCV2, and unstable feature assembly as in the competition between \textit{le} and \textit{lo} among Cuzco-Collao and Huánuco speakers.

Different characteristics of groups and individuals (exposure to instruction in the language, rural vs. urban environment, exposure to different social networks) may result in variability in the way in which the PF, morphology, and syntactic features are assembled into units of interface rules. In this respect, variability can be seen as a continuum of matrix configurations. We acknowledge that this study has limitations in terms of the number of monolingual participants and in terms of the fact that it deals with production data from various tasks, however, we also think that it is an initial step towards our understanding of feature configurations in language contact situations.

Acknowledgements

We would like to thank all participants and acknowledge the following individuals for their help with data collection and/or transcription Y. García, M. J. Cabrera, W. Carbajal, D. Valle, S. Zavaleta, E. Espinoza y Jesus. We would also like to thank three anonymous reviewers for their very helpful comments.

References

