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THESIS ABSTRACT

Biological Networks Under Oscillating Conditions and in Equilibrium

by ZHEMING AN

Thesis Director:

Dr. Benedetto Piccoli

Two examples each representing a biological network under oscillating

conditions and in equilibrium are studied in the thesis. In the first prob-

lem, we recall a new methodology for the simulation and control of large

metabolic systems called LIFE (Linear in Flux Expressions) introduced in

a recent paper [46].

The second problem focuses on the rhythmic behavior of an organism’s

biological system. Circadian rhythms are observed in most organisms on

earth and are known to play a major role in successful adaptation to the

24-h cycling environment. Circadian phenotypes are characterized by a

free-running period that is observed in constant conditions and an en-

trained phase that is observed in light-dark conditions. The relationship

between the free-running period and phase of entrainment is of interest.

Our analyses support the view that the circadian period of an organism

is not the only predictor of the entrained phase.

Keywords: metabolic systems, Linear in Flux Expressions, quantitative

systems pharmacology, Stoichiometric Matrix, kernel, period, phase of

entrainment, mathematical model
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1 Introduction

This study concerns two main problems related to biological net-

works. In the first problem, firstly, we recall a new methodology for

the simulation and control of large metabolic systems called LIFE (Lin-

ear in Flux Expressions) introduced by a recent paper [46]. In the last

decades, great progress of drug development has been made by imple-

menting the Quantitative Systems Pharmacology (QSP) approach which

involves systems biology and pharmacology. In preclinical study, animal

model test and in patients, QSP explores the mechanisms of pharmaco-

dynamics of new and existing drugs by creating the mathematical and

computational models at a systems level. It is an ideal tool for designing

drugs and dosing regimens with a consideration of a patient’s biology

[55, 20]. We gain knowledge by testing a drug on a Virtual Patient (VP),

which is a parametrizations of the QSP models reproducing the response

to the drug corresponding to a specific patient [69, 22].

QSP models have been implemented in studying disease mechanisms

and therapeutic effects for cholesterol, HIV [29, 45] and the others. It is

important to note that the initial levels of metabolites (or more general,

chemical compounds) of patients receiving treatment can vary greatly,

and even patients with similar baseline levels may respond differently.

These variations show that, for QSP models to effectively predict the

clinical results of a drug, there must be a wide range of VPs represent-

ing the variety of patient responses [20, 69, 3]. QSP models generate VPs

from typical parameters that have the greatest impact on the model and

that vary across the patient population.

Metabolic networks comprise metabolites and fluxes among them.
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These interactions could be modeled by graphs in which the nodes rep-

resent metabolites and the edges represent fluxes. The dynamics is mod-

eled by a systems of Ordinary Differential Equations (ODEs). Tradi-

tional methods focuses on linearity of the systems of ODEs with respect

to metabolites [24]. LIFE methodology relies on linearity with respect

to the fluxes, thus allowing for non-linearity in metabolites. For given

metabolite levels x one can define the kernel K(x) as the null space of

the stoichiometric matrix of metabolite reactions, seen as a linear map

from the space of fluxes to the space of metabolites. This thesis focuses

on understanding the map x ! K(x) assigning to each metabolite level a

subspace of the fluxes space, the latter is called Grassmannian. More pre-

cisely, we address two main problems: the first is understanding the in-

tersection of the kernels corresponding to different levels of metabolites,

while the second is finding all metabolite levels such that a given flux

belongs to the corresponding kernels. A number of results for these two

problems are presented in terms of properties of the graph represent-

ing the metabolic network. Such results are illustrated with an example

from the human cholesterol metabolism and a simple toy network (Fig-

ure 1.1). We also present a practical application for the LIFE approach;

it can be used for QSP simulations, particularly how VPs can be fit to

clinical data using an optimization process.

The second problem focuses on the rhythmic behavior of biological

system. Organisms, from bacteria to humans, experience predictable

and unpredictable environmental changes. The ability of an organism to

predict incoming stresses and resources could serve a selective advan-

tage, and biological clocks underlie such an ability; the clock with an ap-

proximately 24-h period is called the circadian clock [6, 51, 63]. Among

the features of a typical circadian clock [56, 17] are its free-running period
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Source Source1 Source2

x1 x2 x3

x4

x5 x6

f1 f2 f3

f4 f5
f6

f7 f8
f9 f10

Sink

ẋ1 = f1 � x1 · f4
ẋ4 = x1 · f4 + x2 · f5 + x3 · f6 � (x4 · f 7 + x4 · f8)

ẋ6 = x4 · f8 +
x5 · f9 � x6 · f10

metabolic
network

FIGURE 1.1: An example of a human cholesterol metabolic network with corre-
sponding LIFE equations.

(t), the time that the oscillator takes to complete 1 full cycle in constant

conditions, and phase of entrainment (Y), the stable time difference be-

tween a defined phase of a behavioral or physiological rhythm and the

cycling environmental signal (zeitgeber) that synchronizes it to 24 h (Fig-

ure 1.2).

Natural selection is predicted to favor a circadian period close to 24

h because this eases the process of entrainment to the daily solar cycle

[56, 7, 63]. However, since Y is a feature expressed in natural conditions,

it is the expected target of natural selection. Variation in Y among nat-

ural populations is likely to reflect differences in selection on circadian

parameters in their progenitors [12, 7]. Since Y is critical to the evolution

of the circadian clock, it is important to learn how Y is determined [62].

There have been significant efforts in theoretical and empirical stud-

ies to understand the mechanisms determining Y, while recent work has

focused mostly on elucidating molecular mechanisms that determine t
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[62, 60]. There are several factors that influence Y when t and the pe-

riod of the entraining cycle do not match: zeitgeber strength or ampli-

tude [4, 1], zeitgeber period [5, 47, 60], amplitude of the oscillator [38, 57],

amplitude relaxation rate and coupling among oscillators [1], and photo-

period [60, 67].

A simple "rule" on the relationship between t and Y is that a short t

leads to an earlier (advanced) Y and a long t leads to a later (delayed)

Y-has been supported by some dramatic examples. The short period

mutant tau in the Syrian hamster showed an advanced Y [59, 42]; a short

period allele of period in Drosophila melanogaster showed an advanced

Y and a long period allele a delayed Y [26, 66]; a short period allele

of frequency, f rq1, in Neurospora crassa showed an advanced Y and a

long period allele f rq7 a delayed Y [60]; and even in human sleep dis-

orders, with mutations in hPer2 in familial advanced sleep phase syn-

drome (FASPS) and in CRY in familial delayed sleep phase syndrome

[71, 53].

However, this simple view does not explain all available data. The

seminal work in explaining FASPS as the result of a short t was based on

the data from one patient [32]. In elderly individuals, advanced Y cannot

be explained by a shortened t with age [16, 15]. There are also examples

in clock mutants that showed an altered Y without a change in t [33,

27]. Although there are many genetic resources available to examine the

relationship between Y and t, most of the studies have focused on t

[41, 44, 74, 75].

We wished to systematically test the relationship between Y and t

using the model system Neurospora crassa and considered 3 different

options: (1) association study among natural populations, if there is a
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causative relationship between Y and t; (2) biological aging or pharma-

ceutical alteration of t; and (3) genetic alteration of t.

FIGURE 1.2: Mathematical model. (A) A cartoon describing the mathematical
parameters in a biological system. The zeitgeber (qZ) entrains photosensitive
protein (qP). Entrainment is active during a specific time of day, hence the pho-
toreaction arrow. The endogenous clock (qE) is influenced by the state of the
photosensitive protein (qP). The clock constantly aligns with the photosensitive
protein, hence the straight arrow. (B) A plot showing the zeitgeber signal and
the endogenous clock signal. The dotted wave line represents zeitgeber signal
(qZ). The solid wave line represents endogenous signal (qE). The phase of en-
trainment (Y) between the 2 signals is calculated as y = F � f. The blue lines
indicate reference times of day, that is, qZ = 0 , t ⌘ 0(mod24),qZ = p , t ⌘
12(mod24).

In this thesis, Lee lab first examined the correlation between t and Y

in 3 different populations of N. crassa, with different genetic complexities-

natural accessions, near-isogenic strains produced by back-crosses, and

classical single gene mutants-and found no simple linear relationship

between t and Y in all populations studied. Then, Lee lab generated 14

isogenic F1 populations by crossing classical period mutants to a com-

mon female strain and analyzed 2 populations that violated the rule.

Finally, to characterize the parameter(s) that determine the relationship

between Y and t, we developed a mathematical model. There are pre-

vious deterministic models characterizing Y based on multiple factors

in the literature [1, 67]. Our mathematical model can describe all possi-

ble relationships between t and Y; furthermore, the model is dynamic,
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showing unstable Y’s gradually becoming stable over a few days.
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2 Equilibria for Large Metabolic

Systems and the LIFE Approach

2.1 Introduction

The rate of drug development has increased in recent years. With the

improved understanding of the clinically relevant differences among pa-

tient biology, there is a growing need to develop treatments in the con-

text of a specific patient. Quantitative Systems Pharmacology (QSP) is

an ideal tool for designing drugs and dosing regimens with a consid-

eration of a patient’s biology [55, 20]. In QSP, mathematical models of

biological systems are implemented in-silico. The effects of a treatment

can vary between individual patients. The reasons for this variability are

not yet well understood, however with QSP models we may gain under-

standing by testing a drug on a Virtual Patient (briefly VP), an in-silico

representation of a person’s response to a drug.

QSP models can be tested on several VPs that sample the space of pa-

tient biological networks, and the result of a simulation using a VP bet-

ter predicts the response to drug for a patient with similar biology to the

VP. QSP models have been used for applications in modeling cholesterol,

HIV, and arthritis among others [68, 29, 45]. These predictions compare

the expected effectiveness of the drug with the current established meth-

ods as well as predict the safety of new drug candidates. It is important

to note that the initial levels of metabolites (or more general, chemical

compounds) of patients receiving treatment can vary greatly, and even
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patients with similar baseline levels may respond differently. These vari-

ations show that, for QSP models to effectively predict patient response

to a drug, there must be a wide range of VPs that represent the variety

of patient responses [20, 69, 3].

QSP models generate VPs from several different parameterizations.

The purpose of multiple parameterizations is to produce a wide range

of responses that closely matches the range of clinical data. The param-

eters selected are typically parameters that have the greatest impact on

the model and that vary across the patient population. These parameters

will be chosen to fit the desired range, and then qualified by using a clin-

ical dataset to test the model [68, 29, 3, 21]. The parameters used in QSP

models are often assumed to have little to no correlation, or correlation

is ignored completely [68, 29, 3]. Some patients may initially have sim-

ilar baseline chemical compound levels yet respond very differently to

treatment, and understanding how a perturbation of parameters effects

the system will help predict patient response.

Traditional methods focuses on linearity of the systems of Ordinary

Differential Equations (ODEs) [24], representing the metabolic network,

with respect to the state of metabolites. LIFE methodology relies on

linearity with respect to the fluxes, thus allowing for non-linearity in

metabolites. Now, for given metabolite levels x one can define the ker-

nel K(x) as the null space of the stoichiometric matrix of metabolite re-

actions, seen as a linear map from the space of fluxes to the space of

metabolites. This paper focuses on understanding the map x ! K(x)

from the space of metabolites to the space of subspaces of fluxes, also

called Grassmannian. More precisely, we address two main problems:

the first is understanding the intersection of the kernels corresponding
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to different levels of metabolites, while the second is finding all metabo-

lite levels such that a given flux belongs to the corresponding kernels. A

number of results for these two problems are presented in terms of prop-

erties of the graph representing the metabolic network. Such results are

illustrated with an example from the human cholesterol metabolism and

a simple toy network. We also present a practical application for the LIFE

approach; it can be used for QSP simulations, particularly how VPs can

be fit to clinical data using an optimization process.

2.2 The LIFE Approach

2.2.1 LIFE approach for general metabolic systems

A biochemical system consists of compounds and chemical reactions.

In modeling biochemical systems, the stoichiometric matrix can be formed

from the reaction network of the system. This matrix is constructed such

that every column represents a chemical reaction and every row repre-

sents a chemical compound [50]. The fluxes are the chemical reaction

rates. The stoichiometric matrix transforms the flux vector into a vector

containing the derivatives of compounds and is dependent on the state

of the system.

The LIFE method begins by precisely defining a network of biochem-

ical reactions as a graph, where the nodes are reactants/products of

metabolic reactions; the edge labels represent reaction rates. A system of

ODEs which governs the quantities of biochemical compounds (x) and
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fluxes ( f ) is written as

dx
dt

= F(x, f ),

d f
dt

= G(x, f ).

The dynamics of the state of the compounds is a relatively fast pro-

cess compared to the dynamics of fluxes in a biochemical system [35, 24].

We can assume G(x, f ) ⇡ 0. In the LIFE method, we consider

dx
dt

= S(x) f x 2 Rn, f 2 Rm. (2.1)

S(x) is called the Stoichiometric Matrix. Note that the system is linear

in fluxes, but S(x) is not necessarily linear in x. The kernel of S(x) is

denoted by K(S(x)) (or K(x) for brevity), it is a subspace of the space

of fluxes, and a mapping of the state to the corresponding kernel can be

written x 2 Rn ! K(x) 2 Rm.

K(x) = { f : S(x) f = 0}.

With analysis of the kernel of S(x) in (2.1), we investigate fluxes that

keep the system in equilibrium. Generally, biological systems are com-

posed of subsystems which have a faster dynamics than the larger sys-

tem, and it is reasonable to assume that the state x is not far from equi-

librium [24].

We use generalized idea of a directed graph, where we allow inflows to

a graph from a general source, and outflows from the graph to a general

sink. We say graph for brevity in this paper.

Definition 2.2.1 The indegree of a node is the number of directed edges for

which the node is the terminal vertex. The outdegree of a node is the number
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of directed edges for which the node is the initial vertex.

Definition 2.2.2 A source of a graph is a directed edge with a node represent-

ing a compound only at the terminal end; the initial vertex has outdegree 1,

indegree 0 and is not represented in our system. This is equivalent to an ex-

change reaction entering the system [50]. A sink of a graph is a directed edge

with a node representing a compound only at the initial end. The terminal ver-

tex has indegree 1 and outdegree 0, and is not represented in the system. This is

equivalent to an exchange reaction leaving the system.

Definition 2.2.3 The stoichiometric matrix depends on a state variable x, and

is denoted S(x), (or S for brevity). (S)ij = sij can be defined from a graph. If

the edge fj has initial vertex xi and terminal vertex xk, then

8
>><

>>:

sij = �xi

skj = xi .

If the edge fj is a source with terminal vertex xk,

skj = 1 .

If the edge fj is a sink with initial vertex xi,

sij = �xi .

Definition 2.2.4 A Weakly Connected Component of a graph is a maxi-

mum subgraph such that an undirected path exists between every pair of nodes.

A graph is weakly connected if there exists such a path between every pair of

nodes.
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Definition 2.2.5 The Grassmannian G(k,V) is the k-dimensional linear sub-

space of a space of dimension V.

The kernel of dimension d of a system is a subset of the Grassmannian(d,m).

We study the map x ! K(x) as it relates to perturbations of stable sys-

tems.

Lemma 2.2.1 Let x be the initial state for system (2.1), f 2 K(x). Assume

that all eigenvalues of the Jacobian matrix of the system at x have negative real

part. Then there exists e > 0 such that if y = x + d, |d|< e,y(·) is the solution

starting at y

lim
t!+•

y(t) 2 K�1( f ).

Proof 2.2.1 The assumption on the eigenvalues of the Jacobian matrix imply

the system is Lyapunov stable at x, see theorem 4.1.2 of [8], which implies

limt!+• S(y(t)) f = 0 ; we conclude limt!0 y(t) 2 K�1( f ).

Lemma 2.2.1 motivates our investigation of K�1( f ) and will deter-

mine candidate states to which a stable system will return after a pertur-

bation.

Two main problems are investigated in this work.

• Problem 1: Characterize the intersections of the kernel for different

states. For x 6= y determine the intersection of the kernels K(x) \

K(y).

• Problem 2: Given x, f 2 K(x) compute K�1( f ).

By exploring the map x ! K(x) we will characterize K(x) \ K(x̃) for

some perturbation of the state, x̃ 6= x. We show that for a fixed state

x, K(x) \ K(x̃) can have any dimension depending on x̃. That is, for

some x̃ there is a dim(K(x)\K(x̃)) = 1, and for some other x̃, dim(K(x)\

K(x̃)) = 2, etc.
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2.2.2 LIFE approach for Virtual Patients

Traditional QSP approaches perturb the fluxes of a system and ana-

lyze the response. The LIFE method also perturbs the system, but as-

sumes a steady state prior to the perturbation. We can utilize K(x) to

simulate VPs with the LIFE method, and optimize the fluxes to simulate

metabolite trajectories that approximate clinical data. We find param-

eterizations of the system which minimize the distance between com-

pound trajectories and measurements (Fig. 2.1). The first step of the

procedure to fit our LIFE model is to generate a flux from K(x). We sam-

ple coefficients to use for a linear combination of kernel basis vectors.

The coefficients of the basis for the kernel are hereafter called parameters

and are denoted ai, i 2 {1, . . . ,k} for k = dim(K(x)). Different parameters

give a different sample from the kernel, and different samples produce

different trajectories over time. We calculate the trajectory of metabolites

x(t) according to system (2.1), as well as solutions to a variational sys-

tem: vi 2 Rn for i 2 {1, . . . ,m}. More precisely, for f̂ , a flux sampled from

K(x), and dx
dt = S(x) · f̂

dvi
dt

= Fi(x,vi, f̂ )

Fi(y,z, f̂ ) = (D(S(x) · f ) · z)��x=y, f= f̂
+

∂(S(x) · f )|x=y

∂ fi

We calculate trajectories of x and v by using a fourth order Runge-

Kutta scheme. We use v to calculate the gradient of the cost function and

use steepest decent method for minimizing this cost. For measurement
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of metabolites at time tj, (x̄j), we have

J = Â
j
kx(tj, a, x0)� x̄jk2 (2.2)

∂J
∂ fi

= Â
j
h2(x̂ � x̄(tj)),vi(tj)i (2.3)

where vi(tj) is a value of vi corresponding to time tj. The derivative of

the cost (2.3) (see proposition 1 and 2 in [10]) is used to selected new

parameters ai.

The steepest decent method can be implemented to update the coef-

ficients.

anew
i = aold

i � gJ fj for i 2 {1, . . . ,k} (2.4)

where k = dim(K(x)), with g 2 R+ an optimization parameter.

The LIFE method requires that we sample fluxes from the kernel K(x)

of our stoichiometric matrix S, and that all metabolites are positive val-

ues. Therefore we consider the intersection of the positive orthant with

the K(x). A convex combination of kernel basis vectors with positive

entries will achieve this goal, however, it will only describe a subset of

the kernel, in general. This problem was recognized by Palsson, [50]. In

future work we will investigate this further.

2.3 Key Example

A graph of a simple metabolic network is shown (Fig. 2.2). In this

network are six metabolites x = xi, i 2 {1, ...,6}. ẋi indicates the deriva-

tive of metabolite, xi. The fluxes are fixed and our system models the

dynamics of the metabolites with a given flux.
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In Fig. 2.2, the fluxes inside rectangles { f1, f2, f3} represent constant

rates, whereas those in circles are first order rates. Specifically, the amount

of x1 molecules increases at a rate of f1 per hour. Linearity in the flux

space of the LIFE method facilitates the description for the kernel. We

utilize fluxes from the kernel to analyze the system at steady state.

For this example, S(x) is a 6⇥ 10 matrix, f is a vector composed of ten

rate constants, from Fig. 2.2. A similar method for modeling biochemical

networks is explained in [50], however S is not dependent on x in [50].

S(x) =
0

BBBBBBBBBBBBBB@

1 0 0 �x1 0 0 0 0 0 0

0 1 0 0 �x2 0 0 0 0 0

0 0 1 0 0 �x3 0 0 0 0

0 0 0 x1 x2 x3 �x4 �x4 0 0

0 0 0 0 0 0 x4 0 �x5 0

0 0 0 0 0 0 0 x4 x5 �x6

1

CCCCCCCCCCCCCCA

.
(2.5)

Stochiometric matrix (2.5) governs the metabolites shown in Fig. 2.2.

We may write this system of six ODEs from our sample in matrix form

(2.5). One advantage of writing our system this way is we can calculate

the kernel of the flux space for large systems. The kernel of S(x) is a set
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of flux vectors. We call an element of this set f̂

f̂ = a1v1 + a2v2 + a3v3 + a4v4

= a1

2

6666666666666666666666666666664

x6

0

0

x6
x1

0

0

0

x6
x4

0

1

3

7777777777777777777777777777775

+ a2

2

6666666666666666666666666666664

0

0

0

0

0

0

x5
x4

�x5
x4

1

0

3

7777777777777777777777777777775

+ a3

2

6666666666666666666666666666664

�x3

0

x3

�x3
x1

0

1

0

0

0

0

3

7777777777777777777777777777775

+ a4

2

6666666666666666666666666666664

�x2

x2

0

�x2
x1

1

0

0

0

0

0

3

7777777777777777777777777777775

.

(2.6)

The kernel for equation (2.5) is given in equation (2.6). Note that

there are four free variables, a1, a2, a3, a4, in this kernel for any fixed set

of metabolite levels, x.

2.4 Results

Lemma 2.4.1 Let S 2 Mn⇥m, n < m, be a stoichiometric matrix and G the

associated directed graph. Assume G to be weakly connected with no sources or

sinks. Denote by si the ith row of S. Then we have,

a1 = a2 = · · · = an ()
n

Â
i=1

aisi =~0.

Proof 2.4.1 Because G has no sources and sinks S will have exactly two nonzero

elements in each column. This is because each column represents a flow from
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one node to another.

(= ) Fix a column j and let a,b be the rows with nonzero entries. Consider

a linear combination of the rows of S such that

n

Â
i=1

aisi =~0. (2.7)

Recall from definition (2.2.3) we have sa,j = �sb,j. Because a,b are the only

nonzero entries in column j, the jth entry of Ân
i=1 aisi satisfies

aasa,j + absb,j = 0 =) aa = ab.

Because G is weakly connected there exists a path between any pair of nodes.

Select two arbitrary nodes in the graph G and label them v,v0. Let W be the path

between v and v0 and label the nodes on the path W as v = v1,v2, . . . ,vp�1,vp =

v0. Let ji be the edge connecting vi and vi+1. Then for any i, the jith column

satisfies 8
>><

>>:

si,ji = �si+1,ji

sk,ji = 0, for k 6= i, i + 1.

Assume (2.7) then,

aisi,ji + ai+1si+1,ji = 0 =) ai = ai+1.

Because ji can represent any edge on path W, we have

a1 = a2,a2 = a3, . . . ,ap�1 = ap =) a1 = a2 = · · · = ap.

Because v,v0 were arbitrary nodes,

n

Â
i=1

aisi =~0 =) a1 = a2 = · · · = an. (2.8)
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=) ) We assume that a1 = a2 = · · ·= an. As before, fix a column j and let a,b

be the rows with nonzero entries. From definition (2.2.3) we have sa,j = �sb,j.

Now consider the jth column of Ân
i=1 aisi,

n

Â
i=1

aisi,j (2.9)

which simplifies to

aasa,j + absb,j = aasa,j � absa,j = (aa � ab)sa,j = 0

This is true for each column, which gives us Ân
i=1 aisi =~0.

Proposition 2.4.1 Let S 2 Mn⇥m, n < m, be a stoichiometric matrix and G the

associated directed graph. Assume G to be weakly connected with no sources or

sinks. Then we have,

Rank(S) = n � 1.

Proof 2.4.2 The ( =) ) of lemma 2.4.1 implies Rank(S) < n. Now we

show that Rank(S)� n � 1. Consider the submatrix S⇤ constructed by remov-

ing the nth row from S. Then for s⇤i the ith row of S⇤,

n�1

Â
i=1

ais⇤i =

 
n

Â
i=1

aisi

!

��an=0

. (2.10)

by (2.10) and lemma 2.4.1, it follows that

n

Â
i=1

ais⇤i =~0 =) ai = 0 for all i 2 {1, . . . ,n � 1}.

Therefore, Rank(S⇤) = n� 1 =) n� 1 Rank(S)< n and so Rank(S) =

n � 1.
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A system with the properties of proposition 2.4.1 also satisfies the

zero deficiency theorem of [19], which implies it has one equilibrium

solution.

Proposition 2.4.2 Let S 2 Mn⇥m, n < m, be a stoichiometric matrix and G

the associated directed graph. Assume G to be weakly connected with at least

one source and no sinks. Then we have,

Rank(S) = n.

Proof 2.4.3 First we show that for a graph G with a single source and no sinks,

that for S, the stoichiometric matrix for G, Rank(S) = n. Let the source be

called fm+1 and the terminal vertex of fm+1 be called x1. Let G⇤ be the sub-

graph of G without the source, and S⇤ be the matrix for G⇤. S⇤ is a submatrix

of S excluding the column containing the source. We have rank(S⇤) = n � 1.

We can use elementary row operations to change a row in S⇤ without chang-

ing the rank of S⇤. We replace the first row of S⇤ with Ân
i=1 s⇤i =~0 and call

this new matrix S1, rank(S1) = rank(S⇤) = n � 1. Similarly, if we append a

column of zeros to the right side of S⇤
1 the rank will not change. We call the

matrix with the added column S2, rank(S2) = rank(S1) = rank(S⇤) = n � 1.

S2 is S with the first row of S set to ~0. Now we replace the first row of S2

with (s1,1, s1,2, . . . , s1,m�1, s1,m = 1) which gives us S. Because the first row is

independent to all others:

rank(S) = rank(S2) + 1 = n.

For ease of proof the graph contained no sinks. However, adding sinks

to the graph will not change the rank of the S. This is because S is already

full rank and adding a sink will append a new column to S. A graph with
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sources and no sinks is not realistic as it will have continuous accumula-

tion of metabolites.

Proposition 2.4.3 Let S be the stoichiometric matrix and G the associated di-

rected graph. Assume G to be weakly connected with no sources or sinks. Con-

sider the kernel of S, K(x), and assume that x̃ = cx for some c 2 R. Then we

have, K(x) = K(x̃).

Proof 2.4.4 Let f̂ 2 K(x), and f̆ 2 K(x̃) then

S(x) f̂ = 0 =) cS(x) f̂ = S(x̃) f̂ = 0

S(x̃) f̆ = 0 =) cS(x) f̆ = 0.
(2.11)

Proposition 2.4.4 Let S be a stoichiometric matrix for a graph containing a

directed path along three nodes, and the middle node has only one incoming and

one outgoing edge. For a state x and different state x̃, if x̃ 6= cx for c 2 R then

K(x) \ K(x̃) = {~0}. (2.12)

Proof 2.4.5 G has a directed path along three nodes, initial node x1, middle

node x2, terminal node x3; call edge connecting x1 to x2 as f1 the other edge is

f2. Then the second row of S is s2 = (�x1, x2,0, . . . ,0) and

S(x) f = 0 =) f1x1 = f2x2 =) f1 = f2
x2
x1

S(x̃) f = 0 =) f1x̃1 = f2x̃2 =) f1 = f2
x̃2
x̃1

f 2 K(x) \ K(x̃), f 6= {~0} =) f2
x2
x1

= f2
x̃2
x̃1

=) x̃ = cx.

Proposition 2.4.5 Let S 2 Mn⇥m, n < m, be a stoichiometric matrix and G the

associated directed graph. Assume G to be weakly connected with one source

and no sinks. Let S⇤ 2 Mn⇥m�1, be a submatrix of S where the source is
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removed. (WLOG let the source in G be represented by the last column of S).

Consider the kernels of S and S⇤, K(x) and K⇤(x) respectively and let B⇤ be a

basis of K⇤(x). Let B be the collection of vectors such that each b 2 B is equal to

a b⇤ 2 B⇤ with a 0 appended as the last entry for each vector. Then B is a basis

for K(x).

Proof 2.4.6 We prove:

1. for b 2 B,Sb =~0 and so b 2 K(x).

2. B is an independent set with number of elements equal to dimension of

K(x).

Let e be an n ⇥ 1 column vector containing a single 1 and the other entries

0.

Sn⇥(m+1)b =
✓

S⇤|e
◆
0

B@
b⇤

0

1

CA .

Let bj be the jth entry of vector b. For Ai, the ith entry of the solution to Sb.

Ai =
m

Â
j=1

Sijbj =
m�1

Â
j=1

S⇤
ijb

⇤
j + Si m · 0 = 0.

Appending a 0 to each vector of a linearly independent set gives an linearly

independent set. From propositions 2.4.1 and 2.4.2 we know that

Rank(S⇤(x)) = n � 1, Rank(S(x)) = n.

The dimension of each kernel is the same, i.e. dim(K⇤(x)) = (m � 1) �

(n � 1) and dim(K(x)) = m � n. The cardinality of B⇤ = cardinality of B =

dim(K(x)) = dim(K⇤(x)) because B is a basis and both kernels have the same

dimension (though the dimension of their ambient space differs), we conclude

that B is a basis for K(x).
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2.5 Example

Here we show a complete solution to problem 1. In this section we

explore the kernel of an example network. The initial state of the kernel

will be characterized, and the intersection of this kernel with the kernels

of perturbed metabolic states will be analyzed.

S(x) is the stoichiometric matrix associated to the graph in Fig. 2.3

S(x) =

0

BBBBBBB@

�x1 0 0 x4 �x1 0

x1 �x2 0 0 0 �x2

0 x2 �x3 0 x1 0

0 0 x3 �x4 0 x2

1

CCCCCCCA

.

From proposition 2.4.1 we have rank(S) = 3, which implies the di-

mension of the kernel is 3. The basis for the kernel is

(v1|v2|v3) =

0

BBBBBBBBBBBBBB@

0 �1 x4
x1

�1 � x1
x2

x4
x2

� x2
x3

0 x4
x3

0 0 1

0 1 0

1 0 0

1

CCCCCCCCCCCCCCA

.

A perturbation of x ! x̃ will alter the basis vectors and thus change

the kernel K(x) ! K(x̃). K(x̃) may have some non trivial intersection

with K(x). Any flux in the perturbed kernel can be represented by the

perturbed basis vectors. For all f 2 K(x̃) : f = l̃1ṽ1 + l̃2ṽ2 + l̃3ṽ3 where

each ṽi represents a perturbed basis vector and each l̃i 2 R. A flux
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f 2 K(x) \ K(x̃) can be found as a solution to the following equation:

l1v1 + l2v2 + l3v3 = l̃1ṽ1 + l̃2ṽ2 + l̃3ṽ3.

Comparing the equation by components, we have the conditions that

must be satisfied for any flux in the intersection.

l1 = l̃1, l2 = l̃2, l3 = l̃3 (2.13)
8
>>>>>><

>>>>>>:

l1
x4
x1
� l2 = l̃1

x̃4
x̃1
� l̃2

l1
x4
x2
� l2

x1
x2
� l3 = l̃1

x̃4
x̃2
� l̃2

x̃1
x̃2
� l̃3

l1
x4
x3
� l3

x2
x3

= l̃1
x̃4
x̃3
� l̃3

x̃2
x̃3

.

(2.14)

With (2.13), we simplify system (2.14) to

x4
x1

=
x̃4
x̃1

(2.15)

l1

✓
x4
x2

� x̃4
x̃2

◆
= l2

✓
x1
x2

� x̃1
x̃2

◆
(2.16)

l1

✓
x4
x3

� x̃4
x̃3

◆
= l3

✓
x2
x3

� x̃2
x̃3

◆
. (2.17)

Depending on which of the conditions are met the dimension of the

intersection dim(K(x) \ K(x̃)) can be determined. Different perturba-

tions of x will be considered that satisfy only some of these conditions.

The following cases ((I) through (V)) show results specific to which con-

dition are satisfied.

(I) Let x̃ be a perturbation such that (2.15) is not satisfied, the inter-

section will be trivial and dim(K(x) \ K(x̃)) = 0.

(II) Let x̃ be a perturbation which satisfies (2.15) and

✓
x4
x2

� x̃4
x̃2

◆✓
x1
x2

� x̃1
x̃2

◆
6= 0,

✓
x4
x3

� x̃4
x̃3

◆✓
x2
x3

� x̃2
x̃3

◆
6= 0.
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This allows equations (2.16) and (2.17) to be arranged in the following

manner.

l2 = l1

x4
x2
� x̃4

x̃2
x1
x2
� x̃1

x̃2

, l3 = l1

x4
x3
� x̃4

x̃3
x2
x3
� x̃2

x̃3

.

This shows a relationship where both l2 and l3 depend on l1 and the

metabolites xi. l1 is the only free variable and so dim(K(x) \ K(x̃)) = 1.

(III) Let x̃ satisfy (2.15). And also let
⇣

x4
x3
� x̃4

x̃3

⌘⇣
x2
x3
� x̃2

x̃3

⌘
6= 0, x4

x2
�

x̃4
x̃2

= 0, x1
x2
� x̃1

x̃2
= 0. Then (2.16) is satisfied regardless of the value of l2.

l2 is a free variable in addition to l1 while l3 is still dependent on the

state x̃ and l1. With two free variables dim(K(x) \ K(x̃)) = 2.

(IV) Let x̃ satisfy (2.15) and also let

x4
x3

� x̃4
x̃3

= 0,
x2
x3

� x̃2
x̃3

= 0 (2.18)

✓
x4
x2

� x̃4
x̃2

◆✓
x1
x2

� x̃1
x̃2

◆
6= 0. (2.19)

Upon further inspection, however, we find that (2.15) and (2.18) im-

plies
⇣

x4
x2
� x̃4

x̃2

⌘
=
⇣

x1
x2
� x̃1

x̃2

⌘
= 0 which contradicts (2.19). Thus the per-

turbation given by case (IV) doesn’t exist.

(V) Let x̃ satisfy (2.15). And let

x4
x2

� x̃4
x̃2

=
x1
x2

� x̃1
x̃2

=
x4
x3

� x̃4
x̃3

=
x2
x3

� x̃2
x̃3

= 0.

Equations (2.15), (2.16) and (2.17) are satisfied for any value of l1, l2

and l3. With three free variables dim(K(x) \ K(x̃)) = 3. Fig. 2.4 shows

states x̃ for which K(x) \ K(x̃) is non trivial. The reference state x is

shown, and the entire space represents other states x̃ such that equation

(2.15) is satisfied.
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2.6 Conclusions

Our method exploits the linearity of some metabolic systems with

respect to fluxes. Namely, we have demonstrated that there are system-

atic relationships among fluxes at equilibrium. In our method, model

parameters correspond to kernel basis vectors, as opposed to individual

fluxes. We’ve presented results concerning the rank of our stoichiomet-

ric matrix, from which the dimension of the kernel is deduced. Then,

we demonstrated that the kernels of S(x) and S(x̃) may have non-trivial

intersection for perturbed x̃, and thus perturbations do not necessarily

exit the kernel.
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FIGURE 2.1: An example of optimization algorithm performed with the LIFE
method. Each step of the procedure minimizes cost in (2.2) according to mea-
surements (cyan dot).

Source Source1 Source2

x1 x2 x3

x4

x5 x6

f1 f2 f3

f4 f5
f6

f7 f8
f9 f10

Sink

ẋ1 = f1 � x1 · f4
ẋ4 = x1 · f4 + x2 · f5 + x3 · f6 � (x4 · f 7 + x4 · f8)

ẋ6 = x4 · f8 +
x5 · f9 � x6 · f10

metabolic
network

FIGURE 2.2: An example of a human cholesterol metabolic network with corre-
sponding LIFE equations.
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f1

f2

f3

f4
f5 f 6

FIGURE 2.3: A directed graph representing a biochemical system.

O

x3

x2

x1

a

b

x

FIGURE 2.4: A 3-D representation of the metabolic state space which highlights
states x̃ with nontrivial intersections with the kernel of the initial state (repre-
sented by x). A three dimensional representation is appropriate because (2.15)
implies that x1 and x4 are proportional. The line a represents case (IV) where
x̃1, x̃2, x̃3 are proportional to x1, x2, x3 respectively. States x̃ on this line will have
kernels such that dimension(K(x) \ K(x̃)) = 3. The plane b represents case (III)
where only x̃1, x̃2 are proportional to x1, x2.
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3 Experimental and

Mathematical Analyses Relating

Circadian Period and Phase of

Entrainment in Neurospora

crassa

3.1 Introduction

Organisms, from bacteria to humans, experience predictable and un-

predictable environmental changes. The ability of an organism to pre-

dict incoming stresses and resources could serve a selective advantage,

and biological clocks underlie such an ability; the clock with an approx-

imately 24-h period is called the circadian clock [6, 51, 63]. Among the

features of a typical circadian clock [56, 17] are its free-running period

(t), the time that the oscillator takes to complete 1 full cycle in constant

conditions, and phase of entrainment (Y), the stable time difference be-

tween a defined phase of a behavioral or physiological rhythm and the

cycling environmental signal (zeitgeber) that synchronizes it to 24 h.

There have been significant efforts in theoretical and empirical stud-

ies to understand the mechanisms determining Y, while recent work has

focused mostly on elucidating molecular mechanisms that determine t

[62, 60]. A simple "rule" on the relationship between t and Y-that a short

t leads to an earlier (advanced) Y and a long t leads to a later (delayed)
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Y-has been supported by some dramatic examples.

However, this simple view does not explain all available data. The

seminal work in explaining FASPS as the result of a short t was based on

the data from 1 patient [32]. In elderly individuals, advanced Y cannot

be explained by a shortened t with age [16, 15]. There are also examples

in clock mutants that showed an altered Y without a change in t [33, 27].

We wished to systematically test the relationship between Y and t

using the model system Neurospora crassa and considered 3 different

options: (1) association study among natural populations, if there is a

causative relationship between Y and t; (2) biological aging or pharma-

ceutical alteration of t; and (3) genetic alteration of t.

In previous study using the first approach, Lee lab could not ob-

serve meaningful correlations between Y and t among 564 F1 strains

in 3 mapping populations (supplementary figure 1 in [34]). However,

Lee lab could not make a definitive conclusion since they analyzed only

3 mapping populations generated from 6 ecotype parents. The second

approach could be interesting, and there are reports showing that t is

altered based on an organism’s age, nutritional condition, and pharma-

ceutical chemical treatment [13, 36, 54]. However, the value of Y in in-

dividuals with such altered t might reflect confounding effects because

of other age-related or chemical-caused secondary effects and may not

lead to a definitive conclusion. Thus, Lee lab chose to use the genetic

approach to test the universality of the simple rule relating Y and t (i.e.,

shorter t, advanced Y; longer t, delayed Y).

In the current study, Lee lab first examined the correlation between

t and Y in 3 different populations of N. crassa, with different genetic

complexities-natural accessions, near-isogenic strains produced by back-

crosses, and classical single gene mutants-and found no simple linear
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relationship between t and Y in all populations studied. Then, Lee lab

generated 14 isogenic F1 populations by crossing classical period mu-

tants to a common female strain and analyzed 2 populations that vio-

lated the rule. Finally, to characterize the parameter(s) that determine

the relationship between Y and t, we developed a mathematical model.

There are previous deterministic models characterizing Y based on mul-

tiple factors in the literature [1, 67], but we sought a model that could

account for our new experimental results.

3.2 Materials And Methods

3.2.1 Strains and Growth conditions

Lee lab obtained 75 natural ecotypes and 14 other classical mutants

from the Fungal Genetics Stock Center (www. f gsc.net). N453 is the BC3

(backcross third generation) between FGSC 4715 and FGSC 4720. FGSC

4720 has been a recurring female strain for back-crosses. Strains used in

this study were cultured as previously described [40]. The list of strains

used in this study and the analyzed data set to make figures are available

in the supplementary data.

3.2.2 Assessing Phenotype

N. crassa, a model organism for the study of circadian rhythm, ex-

presses its rhythm by alternating areas of asexual spore formation (coni-

diation) with areas of thinner hyphal growth without spore formation

when growing on solid agar medium. Areas of spore formation are

known as "bands", and thinner areas without spore formation are known

as "inter-bands". The observed overt rhythm has a periodicity of about
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24 h in constant environmental conditions (free-running period). The

rhythm is also reset (entrained) by environmental cues in a cycling en-

vironment, which allows the internal clock to align its internal time to

the local time. The overt clock phenotypes including t and Y were mea-

sured using the inverted race tube assay [52]. Race tubes were incubated

in constant light (LL) for 12 h at room temperature. After confirming

normal mycelial growth in the race tube, tubes were transferred to an

I � 36L Percival Scientific (Perry, IA) growth chamber and incubated an

additional 12 h under LL. For all experiments, temperature was set at

25 �C. After the 24-h LL treatment, the light was off for the rest of the

experiment for the t measurement. The growing front was marked at

the light-to-dark transition and on the last day of the experiment. In the

race tube experiment for the Y phenotype, the light condition was a light

12 h:dark 12 h (LD) cycle. The growing front of the culture in the race

tube was marked every 24 h at the time when the light-to-dark transi-

tion occurred. The fluence rate was 250µE/m2/sec in LL. Light sources

were white fluorescent bulbs and incandescent bulbs (Osram Sylvania,

Danvers, MA). In both t and Y experiments, tubes were randomly posi-

tioned within the chamber to reduce the possibility of positional effects.

In each experiment, 3 replicates of each progeny were assayed. Lee lab

repeated the experiment to generate data from at least 3 biological repli-

cates for each strain.

3.2.3 t Analysis

For the analysis of t phenotype, individual t estimates of F1 proge-

nies of each produced after 4 to 5 days of consecutive conidial banding,

using the fast Fourier transform nonlinear least-squares program [58, 77]

and the program Chrono [64].
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3.2.4 Y Analysis

The reference phase of individual genotype/progeny was the coni-

dial band center. Thus, the Y of individual progeny was determined

based on the time elapsed to reach the band center within a day. The

time when cultures were transferred to the dark cycle is, by definition,

CT12 (dusk). Thus, in these experiments, the time in the band center of

an individual was calculated by the following formula: zeitgeber (ZT)

Y = (growth to band center/overall growth) ⇥24 + 12. For example, if

a conidial band occurs at 180 mm and the total growth after light-dark

transition is 280 mm, ZT Y = 24 ⇥ (180/280) + 12 = 27.43. By conven-

tion, ZT is always expressed as 24 ZT h. For example, ZT Y27.43 is ex-

pressed as ZT 3.43(27.43˘24) instead of ZT 27.43. Lee lab used the pro-

gram Chrono to calculate Y [64].

3.2.5 Mathematical Model

We model the relationship between Y and t with a set of ODEs. Be-

cause our focus is on this relationship, we do not model the range of

entrainment (i.e., the range of zeitgeber periods to which an oscillator is

able to entrain), which depends also on oscillator amplitude and zeitge-

ber strength [1, 23]. Our model consists of 3 oscillators: the periodic sig-

nal representing the environmental rhythm (zeitgeber, qZ), the periodic

expression of a light-sensitive protein (qP), and the periodic expression

of an endogenous clock (qE). The zeitgeber entrains the light-sensitive

protein at a specific time of day, for instance, during the time when

light-to-dark transition occurs (dusk). The model identifies the start of

an oscillator’s period with 0 and the completion of a full cycle with 2p.
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The zeitgeber oscillator represents the diurnal cycle, and dawn is repre-

sented as qZ = 0, while dusk is qZ = p (p = 12 h, for the zeitgeber cycle).

This is halfway through the zeitgeber cycle beginning at dawn. In our

model, we specify how close the zeitgeber must be to dusk with a pa-

rameter denoted e, which is the radius of the time window that defines

when the zeitgeber is "close enough" to dusk for entrainment to occur.

For instance, with parameter e = p
24 , our model activates entrainment

30 min before and after dusk, that is, when the zeitgeber angle satisfies

|qZ � p| < e = p
24 . The model is given by,

8
>>>>>>>>>><

>>>>>>>>>>:

dqZ
dt = 2p

24

dqP
dt = 2p

t + Y(qZ)(qZ � qP)

dqE
dt = 2p

t + CP(qP(t � t0)� qE(t))

(3.1)

Y(qZ) =

8
><

>:

CZ i f |qZ � p| < e

0 otherwise.
(3.2)

In the system above, we show the 3 oscillators and the differential

equations that govern them; t is the endogenous period of the biologi-

cal clock. Entrainment is modeled in 2 stages; each stage synchronizes

2 clocks together by a term in the style of the Kuramoto model [37].

The first stage of entrainment is described by the term Y(qZ)(qZ � qP),

which synchronizes qP with qZ. The second stage is described by the

term CP(qP(t � t0)� qE(t)), which synchronizes qE with qP. We call CZ

"the entrainment strength" and CP "the alignment strength." The zeitge-

ber (qZ) entrains the light-sensitive protein (qP) at dusk. The endogenous
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clock (qE) constantly aligns to this light-sensitive protein. The entrain-

ment of the endogenous clock to the zeitgeber is a 2�step process, and

in our model, the endogenous clock does not directly sense the zeitge-

ber but instead senses an intermediate rhythmic molecule. The t0 term

in the equation for dq
dt represents an time offset in the alignment of the

endogenous clock (qE) to the light-sensitive protein (qP). Supplementary

Document 1 provides a more detailed description of the model.

3.2.6 Simulations

In our simulations, we visualize the periodic signals over time of the

endogenous clock and the zeitgeber by plotting sin(qE) and sin(qZ), re-

spectively. We measure the phase of entrainment (Y) between the en-

dogenous signal and the zeitgeber by comparing the time correspond-

ing to the peak signal (shown in Fig. 3.1B). The phase of entrainment is

defined as,

Y = F � f (3.3)

where F is the phase of the zeitgeber and f is the phase of the entrained

biological oscillation. Note that Y < 0 implies a delayed phase, and

Y > 0 implies an advanced phase. For every day (peak of the zeitge-

ber), we measure Y (Fig. 3.1B) by observing the time coordinate of the

closest peak of the endogenous clock to the zeitgeber peak. When we

run our simulations, we observe how Y changes from day to day. Plots

of time versus Y are shown in Fig. 3.1C. The Y between the zeitgeber

and the endogenous clock changes over consecutive days and then fi-

nally stabilizes to a stable Y. The code to generate Fig. 3.1C is available

in the supplementary data.
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3.3 Results

Lee lab measured t and Y among 75 natural N. crassa ecotypes and

found a weak correlation between them, Pearson correlation r = 0.3, p <

0.01 (Fig. 3.2 A).

Since these natural ecotypes are adapted to different habitats and

have different genetic backgrounds, Lee lab measured circadian traits

among 9 near-isogenic lines (NIL) N453 (see the Materials and Meth-

ods section). In theory, these NIL should share 93.75% of the recurrent

female’s genome. Lee lab still found no apparent correlation between

t and Y (Pearson correlation r = �0.18, p = 0.59, Fig. 3.2B). Next, Lee

lab measured t and Y of the 14 classical mutants of t. There was an

apparent negative correlation between t and Y among mutants (Pear-

son correlation r = �0.64, p = 0.01; Fig. 3.2 C). However, this apparent

negative correlation is due to the convention of ZT hours expressed as

discontinuous numbers (e.g., ZT 1 = ZT 25). When the Y data are ex-

pressed as continuous numbers, the correlation between t and Y among

all the tested mutants is reduced (Pearson correlation r = 0.46, p = 0.09,

Fig. 3.2 C).

To further test the relationship between t and Y using the F1 popula-

tions, Lee lab crossed the classical mutants to the common strain FGSC

4720. Lee lab chose 2 classical mutant alleles, a short period mutant cys-

9 (FGSC 2160) and a long period mutant prd-1 (FGSC 4902), for further

analysis.

There were 2 sub-populations with different periods as expected (Fig.

3.3 A,C). More interestingly, there were statistically significant differ-

ences in the Y’s of the sub-populations (Fig. 3.3 B,D; Table 3.1). The

short t progeny in N264 had a delayed Y (Fig. 3.3 B), and the long t
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progeny in N272 had an advanced Y (Fig. 3.3 D). These populations

represent a stable t and Y relationship that does not obey the simple

rule that is thought to relate t and Y (i.e., shorter t, advanced Y; longer

t, delayed Y). To understand the parameter space that would produce

the experimental relationship, we turned to mathematical modeling.

Our mathematical model (see the Materials and Methods section) can

describe all possible relationships between t and Y; furthermore, the

model is dynamic, showing unstable Y’s gradually becoming stable over

a few days (Fig. 3.1 C). These 2 aspects of the model suggest that we have

a simplified version of mechanisms that govern the periodic behavior of

endogenous clocks upon entrainment. The endogenous clock is sensi-

tive to the choice of "the entrainment strength" (CZ) and "the alignment

strength" (CP; Fig. 3.1 D and Materials and Methods section). We con-

cluded that combinations of the entrainment strength and the alignment

strength are key parameters that can lead to a variety of stable t and Y

relationships.
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TABLE 3.1: Statistical Analysis

Source SS df MS F Prob>F

N264, t Groups 14.641 1 14.641 17.288 0.00317

Error 6.775 8 0.864

Total 21.41604 9

N264, Y Groups 17.360 1 17.360 8.366 0.02012

Error 16.600 8 2.075

Total 33.961 9

N272, t Groups 17.080 1 17.080 92.940 4.85E-06

Error 1.653 9 0.183

Total 18.733 10

N272, t Groups 13.647 1 13.647 1.906 0.20062

Error 64.410 9 7.156

Total 78.057 10

3.4 Discussion

Although the relationship between t and Y is of fundamental inter-

est to chronobiologists, there has been no systematic empirical or math-

ematical study done to address the possibility, as shown here, of a short

t/delayed Y and a long t/advanced Y.

One possible explanation for such a relationship between t and Y

is that it reflects a different directionality and/or sensitivity of different

stages of the circadian oscillator to a zeitgeber. The phase response curve

(PRC) has been an important tool to account for Y. The PRC represents

differential responses of a circadian oscillator to an outside stimulus ap-

plied at different phases of its circadian cycle [31]. At the cellular level, t

is quite elastic depending on nutritional and environmental conditions

[28, 73, 54]. And there are different stages of a circadian oscillation that
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respond differentially to genetic and pharmacological perturbations [54].

A mutation in one clock component may yield a particular t and Y re-

lationship in one context but another relationship in a different one. As

an example, a mutation of CKIs that caused FASPS in humans caused

a shorter t in mice and a longer t in Drosophila [74]. In a typical limit

cycle model, the zeitgeber is explained as a unidirectional force moving

a state variable to a predictable isochron. Neurospora has been a good

tool explaining entrainment mechanisms by light and temperature [17].

However, it is also possible that the same zeitgeber signal may cause dif-

ferent directional changes at the molecular level. For example, light as a

zeitgeber entrains fungal and mammalian clocks by inducing the nega-

tive regulators [43, 17], whereas the same zeitgeber entrains the fly clock

by degrading the negative regulators [14]. It is possible that the differ-

ent sensitivity of circadian oscillators at different stages to a particular

zeitgeber may create a diverse set of t and Y relationships.

Although the PRC is a powerful tool, it is not a sufficient one to ac-

count for all t and Y relationships [62, 60]. Y is influenced by many

different factors [4, 5, 38, 57, 62, 1, 60, 67]. Quantitative trait locus (QTL)

analysis is one way of estimating the number of genetic factors underly-

ing a complex trait. In one study with 3 mapping populations of Neu-

rospora, the authors found 16 QTL for t and 27 QTL for Y, in which 7

loci were co-localized for both t and Y [34]. It is not surprising that there

are more genetic factors responsible for the variation of Y than that of t.

Thus, it may be challenging to derive a unified and simple model that ex-

plains all entrainment data; however, such a model could provide new

insights on fundamental questions such as the evolution of clocks and

on applied aspects of clock studies such as diagnosing or intervening in

sleep disorders.
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Another process that might account for variation in the relationship

between t and Y is the "rate of entrainment", the kinetics of signal trans-

duction, by which a zeitgeber signal reaches the oscillator. In our math-

ematical model, this could be an example of alignment strength, CP (dis-

cussed more later). There are 2 known examples of Y-influencing clock

mutants in the Neurospora clock; both are blue-light receptors, wc � 1

and vvd [33, 27]. In these mutants, Y is altered while t is not, demon-

strating the feasibility of different Y’s when the input pathway of a cir-

cadian clock is altered.

Lee lab’s investigation of a short period mutant cys � 9 (FGSC 2160)

and a long period mutant prd � 1 (FGSC 4902) revealed associated Y’s

that were counterintuitive. The short period gene cys� 9 is an NADPH-

dependent thioredoxin reductase [48]. The authors in their initial report

suggested that the clock phenotype could be caused by altered protein

modification of potential clock transcription factors or kinases or by al-

tered house-keeping metabolism [48].

Although its short t clock phenotype was reported 20 years ago,

there has been no follow-up study on the gene since the initial report.

There are now ample data supporting the existence of circadian oscil-

lations in cellular redox conditions both in prokaryote and eukaryote

organisms [70] In the prokaryote clock, the redox change in the form

of the adenosine triphosphate (ATP)/adenosine diphosphate ratio can

replace the phase shift of the clock by light [65]. In a similar manner,

the redox condition plays an important role in circadian clock and light

entrainment in Neurospora [76, 25]. So one possible explanation for

the cys � 9 phenotype could be that an altered cellular redox condi-

tion by the cys � 9 mutation results in a delayed Y. The long period

clock gene prd � 1 is an ATP-dependent DEAD-box RNA helicase [18,
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2]. DEAD-box helicases are involved in many cellular processes involv-

ing RNA metabolism [61]. In addition to a function unwinding RNA

[9], DEAD-box helicases are involved in different functions at different

stages of circadian regulation. In the Neurospora clock, FRQ-interacting

RNA helicase’s primary role is to mediate a proper contact among FRQ,

CK1a, and WCC [30, 39, 11]. TOGR1, a DEAD-box helicase in the rice

plant, is involved in temperature-dependent and clock-controlled plant

growth through stabilizing rRNA homeostasis [72]. DDX5, an ortholog

of PRD � 1, is associated in the PER complex and regulates per RNA

metabolism and its clock function [49]. As in the case of CYS� 9, PRD �

1 appears to be involved in housekeeping metabolic processes and not

a part of the transcription/translation feedback loop oscillator (TTFL);

prd � 1 is not regulated by light or the TTFL [18]. Although PRD � 1

is clearly a part of the metabolic oscillator, the biochemical function of

PRD � 1 is not clear yet [18, 2], and it is too early to speculate on how

PRD � 1 contributes to shape the t/Y relationship.

We have constructed a mathematical model to describe the complex

relationships between t and Y that we observe in the current study.

This model is general in the sense that it does not describe particular

molecules that regulate rhythmic expression in the endogenous clock or

participate in entrainment. Rather, it describes biological rhythms that

synchronize with a zeitgeber and how such signals affect the endoge-

nous clock. In our model, the endogenous clock does not directly sense

the zeitgeber. Instead, there is an intermediate quantity that responds to

the light-to-dark transition by synchronizing to the zeitgeber as the Ku-

ramoto model describes. We considered parameters in our mathematical

model, entrainment strength (CZ) and the alignment strength of the os-

cillator to the light receptor (CP). Zeitgeber strength has been included
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in other models [1, 67]. The alignment strength (CP) could reflect several

other factors, including amplitude of the oscillator and coupling of the

oscillators.

Some parameterizations of this model show long t with a delayed

Y and short t with an advanced Y, as traditional models do. Our pro-

posed model in this work is the result of starting with a simpler model.

We began our investigation by producing a very simple set of ODEs with

2 oscillators. In this first model, the zeitgeber entrained the endogenous

clock the same way that the zeitgeber entrains the light-sensitive protein

in our tri-oscillator model. This direct synchronization of the 2 oscilla-

tors showed stable entrainment only with short t/advanced Y and long

t/delayed Y relationships (this first model is shown in the supplemen-

tary material). To build a model that could explain our experimental

observations, we added a third oscillator in our proposed model, which

is the light-sensitive protein. The addition of an intermediate protein

that would be entrained by the zeitgeber, which in turn would serve

as a regulator of the endogenous clock, was able to describe the wider

range of behavior. Our mathematical model requires more optimization

to include other known factors to explain the full spectrum of t/Y rela-

tionships.

In summary, genetic data generated in Lee lab demonstrate varia-

tion in the relationship between t and Y, and the mathematical model

provides working hypotheses for further characterization of molecular

mechanisms of entrainment. Our data also imply that misaligned Y’s

(e.g., in human sleep disorders) may have etiologies distinct from an al-

tered t.
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FIGURE 3.1: Mathematical model. (A) A cartoon describing the mathematical
parameters in a biological system. The zeitgeber (qZ) entrains photosensitive
protein (qP), and the time derivative for the state of this protein ( dqP

dt ) is a func-
tion of the entrainment strength (CZ). Entrainment is active during a specific
time of day, hence the photoreaction arrow. The endogenous clock (qE) is in-
fluenced by the state of the photosensitive protein (qP), and the time derivative
of the clock ( dqE

dt ) is a function of the alignment strength (CP). The clock con-
stantly aligns with the photosensitive protein, hence the straight arrow. (B) A
plot showing the zeitgeber signal and the endogenous clock signal. The dot-
ted wave line represents zeitgeber signal (qZ). The solid wave line represents
endogenous signal (qE). The phase of entrainment (Y) between the 2 signals
is calculated as y = F � f. The blue lines indicate reference times of day, that
is, qZ = 0 , t ⌘ 0(mod24),qZ = p , t ⌘ 12(mod24). (c) A plot showing how Y
gradually changes over time (dynamic Y) and eventually stabilizes after several
days (stable Y). (d) A heat map of the simulations in panel c showing the val-
ues of the entrainment strength (CZ) and alignment strength (CP) that produce
various stable Y’s over time.
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FIGURE 3.2: t/Y correlation in 75 natural ecotypes (A), 9 BC3 near-isogenic
lines (B), and 14 classical mutants (C).
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FIGURE 3.3: A significant correlation between t and Y of F1 populations; a
short period (cys-9, N264) and a long period (prd-1, N272) mutant. t (A) and Y
(B) of N264 progeny. t (C) and Y (D) of N272 progeny.
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